WO2016027789A1 - Wavelength conversion member, and light-emitting apparatus, light-emitting element, light source apparatus, and display apparatus using same - Google Patents

Wavelength conversion member, and light-emitting apparatus, light-emitting element, light source apparatus, and display apparatus using same Download PDF

Info

Publication number
WO2016027789A1
WO2016027789A1 PCT/JP2015/073061 JP2015073061W WO2016027789A1 WO 2016027789 A1 WO2016027789 A1 WO 2016027789A1 JP 2015073061 W JP2015073061 W JP 2015073061W WO 2016027789 A1 WO2016027789 A1 WO 2016027789A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength conversion
conversion member
container
storage space
Prior art date
Application number
PCT/JP2015/073061
Other languages
French (fr)
Japanese (ja)
Inventor
晋吾 國土
宮永 昭治
榮一 金海
哲二 伊藤
投野 義和
Original Assignee
Nsマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nsマテリアルズ株式会社 filed Critical Nsマテリアルズ株式会社
Priority to CN201580044961.5A priority Critical patent/CN106663727B/en
Priority to KR1020177003704A priority patent/KR20170045206A/en
Priority to US15/504,200 priority patent/US10598844B2/en
Priority to EP15833902.8A priority patent/EP3185316A4/en
Priority to JP2016544205A priority patent/JP6746498B2/en
Publication of WO2016027789A1 publication Critical patent/WO2016027789A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0026Wavelength selective element, sheet or layer, e.g. filter or grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body

Definitions

  • the present invention relates to a wavelength conversion member in which a wavelength conversion member is filled in a container, and a light emitting device, a light emitting element, a light source device, and a display device using the wavelength conversion member.
  • Patent Document 1 discloses an invention related to a light emitting device including a light source, a wavelength conversion member, a light guide plate, and the like.
  • the wavelength conversion member is provided between the light source and the light guide plate, and absorbs light having a wavelength emitted from the light source, and then generates light having a different wavelength.
  • the wavelength conversion part substance is enclosed with cylindrical containers, such as glass, for example.
  • the wavelength changing substance includes a fluorescent pigment, a fluorescent dye, a quantum dot, or the like.
  • the wavelength changing substance absorbs blue light from a light source and converts a part thereof into red light or green light.
  • Patent Document 1 [0015] to [0017] describe that light from a light source passes through a wavelength conversion substance, and thereby red, green, and blue light are combined to generate white light. ing.
  • the present invention has been made in view of such points, and in particular, a wavelength conversion member capable of performing color conversion appropriately and with high efficiency, and a light emitting device, a light emitting element, and a light source device using the same
  • An object is to provide a display device.
  • the wavelength conversion member of the present invention includes a first surface, a second surface facing the first surface, and a side surface connecting the first surface and the second surface, and the side surface.
  • a container provided with a storage space on the inner side, a wavelength converting substance disposed in the storage space, and the second side from the side surface, the end of the second surface, or the side surface. And a colored layer formed over the end of the surface.
  • the wavelength conversion member of the present invention includes a first surface, a second surface facing the first surface, and a side surface connecting the first surface and the second surface, and the side surface.
  • the container further includes a container having a storage space inside, a wavelength converting substance disposed in the storage space, and a colored layer formed on a wall surface of the storage space.
  • the wavelength conversion member of the present invention includes a first surface, a second surface facing the first surface, and a side surface connecting the first surface and the second surface, and the side surface.
  • a container provided with a storage space on the inner side, a wavelength converting substance disposed in the storage space, and a colored layer provided between the side surface of the container and the storage space.
  • the wavelength converting material includes quantum dots.
  • the said wavelength conversion substance is formed with the resin composition which disperse
  • the wavelength conversion substance is formed of a resin composition in which the quantum dots are dispersed in a silicone resin.
  • vertical to at least any one of the said 1st surface and the said 2nd surface is a rectangular shape.
  • the colored layer is preferably colored white.
  • the colored layer is preferably composed of paint, ink, or tape.
  • the refractive index of resin which comprises the said wavelength conversion substance is smaller than the refractive index of the said container.
  • the light-emitting device in this invention has the light emitting element provided facing the said 1st surface, and the wavelength conversion member in any one of said arrange
  • the light-emitting element according to the present invention includes a light-emitting chip that emits blue light, and the wavelength conversion member according to any one of the above that is disposed on a light-emitting side of the light-emitting chip. To do.
  • the light source device includes the light emitting device described above or the light emitting element described above and a light guide plate.
  • the display device includes a display portion and the light-emitting device described above or the light-emitting element described above disposed on the back side of the display portion.
  • the wavelength conversion member of the present invention color conversion can be performed appropriately and efficiently compared to the conventional case.
  • the light emitting device, light emitting element, light source device, and display device of the present invention each include the wavelength conversion member of the present invention. Therefore, it can be appropriately and efficiently converted to a desired color through the wavelength conversion member or a color closer to the desired color, and the reliability of the apparatus can be increased. Thereby, power consumption can be reduced.
  • FIG. 2 is a cross-sectional view of the wavelength conversion member shown in FIG. 1 cut in a plane direction along the line AA and viewed from the direction of the arrows. It is sectional drawing of the wavelength conversion member which shows a different cross-sectional shape from FIG. It is sectional drawing of the wavelength conversion member which shows the cross-sectional shape different from FIG. 2, FIG. It is sectional drawing of the wavelength conversion member which shows a different cross-sectional shape from FIG. It is sectional drawing of the wavelength conversion member which shows a different cross-sectional shape from FIG. It is sectional drawing of the wavelength conversion member which shows a different cross-sectional shape from FIG. It is a top view of the light-emitting device and light source device using the wavelength conversion member shown in FIG.
  • FIG. 9 is an enlarged longitudinal sectional view taken in the height direction along the line BB and viewed from the arrow direction in a state where the wavelength conversion members shown in FIG. 8 are combined.
  • FIG. 9 is a longitudinal cross-sectional view of the light emitting device as viewed from the direction of the arrow, cut in the height direction along the line BB shown in FIG. 8 in a state where the members of the light emitting device shown in FIG.
  • FIG. 10 is an enlarged longitudinal sectional view of a wavelength conversion member showing a sectional shape different from FIG. 9. It is a longitudinal cross-sectional view of the display apparatus using the light emitting element shown in FIG.
  • Example 2 is an emission spectrum in Example 1.
  • 2 is a chromaticity diagram in Example 1.
  • FIG. 2 is an emission spectrum in Example 2.
  • 6 is a chromaticity diagram in Example 2.
  • FIG. 7 is an emission spectrum in Example 3.
  • 6 is a chromaticity diagram in Example 3.
  • FIG. 1 is a perspective view of a wavelength conversion member showing a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the wavelength conversion member shown in FIG. 1 cut along a line AA in the plane direction and viewed from the direction of the arrow.
  • the wavelength conversion member 1 in the first embodiment includes a container 2, a wavelength conversion material 3, and a colored layer 4.
  • the container 2 can store and hold the wavelength converting substance 3.
  • the container 2 is preferably a transparent member. “Transparent” refers to what is generally recognized as being transparent, or having a visible light transmittance of about 50% or more.
  • the container 2 includes a light incident surface 2a, a light emitting surface 2b, and a side surface 2c that connects the light incident surface 2a and the light emitting surface 2b. As shown in FIGS. 1 and 2, the light incident surface 2a and the light emitting surface 2b are in a positional relationship facing each other.
  • the container 2 has a storage space 5 formed inside the light incident surface 2a, the light emitting surface 2b, and the side surface 2c.
  • the storage space 5 should just be located inside at least the side surface 2c. That is, for example, a part of the storage space 5 may reach the light incident surface 2a and the light emitting surface 2b.
  • the wavelength conversion substance 3 is disposed in the storage space 5. As shown in FIG. 1, the storage space 5 is open, from which the wavelength converting substance 3 can be sealed and filled in the storage space 5.
  • the vertical and horizontal dimensions of the container 2 are about several mm to several tens of mm, and the vertical and horizontal dimensions of the storage space 5 are about several hundred ⁇ m to several mm.
  • the outer cross section of the storage space 5 and the outer cross section of the container 2 are both rectangular. It is formed with.
  • Such a cut surface is a surface cut in the direction in which the light incident surface 2a, the light emitting surface 2b, and the side surface 2c appear.
  • the “rectangular shape” has four vertices having a substantially right angle and includes a square and a rectangle.
  • the outer cross section of the storage space 5 and the outer cross section of the container 2 are preferably similar.
  • the container 2 shown in FIGS. 1 and 2 is, for example, a glass tube container, and can be exemplified by a glass capillary.
  • a resin or the like may be used as long as the container having excellent transparency can be configured as described above.
  • the wavelength conversion material 3 includes quantum dots. Fluorescent pigments other than quantum dots, fluorescent dyes, and the like may be used as the wavelength conversion substance 3, but the inclusion of quantum dots is excellent in wavelength conversion characteristics.
  • the wavelength converting substance 3 is preferably formed of a resin composition in which quantum dots are dispersed.
  • resins include polypropylene, polyethylene, polystyrene, AS resin, ABS resin, methacrylic resin, polyvinyl chloride, polyacetal, polyamide, polycarbonate, modified polyphenylene ether, polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyethersulfone, and polyphenylene sulfide.
  • Polyamideimide, polymethylpentene, liquid crystal polymer, epoxy resin, phenol resin, urea resin, melamine resin, epoxy resin, diallyl phthalate resin, unsaturated polyester resin, polyimide, polyurethane, silicone resin, or some mixture thereof Etc. can be used.
  • the refractive index of the resin constituting the wavelength converting substance 3 is preferably smaller than the refractive index of the container 2.
  • the refractive index of the silicone resin is 1.52 for SCR1016 manufactured by Shin-Etsu Chemical Co., Ltd., 1.55 for A2045 manufactured by Daicel Corporation, at 23 ° C., sodium D line, manufactured by Shin-Etsu Chemical Co., Ltd. KER-2500 of 1.41 and A1080 manufactured by Daicel Corporation of 1.41.
  • the refractive index of an epoxy resin is 1.51 in Cell Venus WO917 made from Daicel Corporation, and 1.50 in Cell Venus WO925 in sodium D line
  • the refractive index of the container 2 made of glass is about 1.45 in the case of general glass, and about 1.50 to 1.90 in the case of optical glass with a high refractive index. Therefore, by appropriately selecting the resin constituting the wavelength converting substance 3 and the material of the container 2, the refractive index of the resin constituting the wavelength converting substance 3 can be made smaller than the refractive index of the container 2.
  • A1080 or KER-2500 which is a silicone resin having a refractive index of 1.41, is used as the resin constituting the wavelength converting substance 3, and the container 2 can be made of glass having a refractive index of 1.45.
  • a silicone resin or an epoxy resin having a refractive index of 1.41 to 1.55 is used as a resin constituting the wavelength converting substance 3, and the container 2 is made of a high refractive index glass having a refractive index of 1.56 or more. Can be configured.
  • a part of the light that has entered the wavelength converting substance 3 is totally reflected by the side wall portion of the container 2 facing the storage space 5. This is because the incident angle on the medium side with a small refractive index is larger than the incident angle on the medium side with a large refractive index.
  • the resin constituting the wavelength converting substance 3 here is not limited to the resin for dispersing the quantum dots.
  • the quantum dot in this Embodiment has the core of a semiconductor particle, and the shell part which coat
  • CdSe is used for the core, but the material is not particularly limited.
  • a core material containing at least Zn and Cd, a core material containing Zn, Cd, Se and S, ZnCuInS, CdS, CdSe, ZnS, ZnSe, InP, CdTe, and some composites thereof are used. it can.
  • the quantum dot in this Embodiment may be comprised only by the core part of a semiconductor particle, without forming a shell part. That is, the quantum dot does not need to have a covering structure with a shell part as long as it has at least a core part. For example, when the shell portion is coated on the core portion, the region that becomes the covering structure may be small or the covering portion may be too thin to analyze and confirm the covering structure. Therefore, it can be determined as a quantum dot regardless of the presence or absence of the shell portion by analysis.
  • Quantum dots include, for example, two types of quantum dots having an absorption wavelength of 460 nm (blue) and a fluorescence wavelength of about 520 nm (green) and a quantum dot of about 660 nm (red). For this reason, when blue light is incident from the light incident surface 2a, a part of blue is converted into green or red by each quantum dot. Thereby, white light can be obtained from the light emitting surface 2b. However, conventionally, blue light cannot be appropriately converted into white light. This is because the blue light passes through the side region 7 (see FIG. 2) between the storage space 5 filled with the wavelength converting substance 3 and the side surface 2c (see FIG. 2) from the light incident surface 2a to the light emitting surface 2b. This is because the blue wavelength intensity is strong at 2b.
  • the colored layers 4 and 4 are provided on the side surfaces 2c and 2c as shown in FIGS.
  • the “colored layer” is a layer that is not transparent, and refers to a layer colored in colors including white.
  • the colored layer 4 is preferably composed of paint, ink, or tape.
  • the color of the colored layer 4 is not limited, it is suitable that it is white. Therefore, the colored layer 4 can be easily formed by simply applying white paint or white ink to the side surface 2c or simply applying a white tape to the side surface 2c.
  • the metal layer 4 can be formed by vapor-depositing a metal such as Ni, Ag, Al, or Cr.
  • the emission intensity of white light can be made equal to or higher than that of the prior art.
  • the colored layer 4 is formed on the side surface 2c of the container 2, but as shown in FIG. 3A, the colored layer 4 extends from the side surface 2c of the container 2 to the end 2e of the light emitting surface 2b. Can be formed. Or as shown to FIG. 3B, the colored layer 4 can also be formed only in the edge part 2e of the light-projection surface 2b.
  • the colored layer 4 is preferably formed from the side surface 2c of the container 2 as shown in FIG. 2 or from the side surface 2c of the container 2 to the end 2e of the light emitting surface 2b as shown in FIG. 3A.
  • the end 2e of the light exit surface 2b faces the side region 7 between the storage space 5 and the side surface 2c. Therefore, the end 2e does not face the storage space 5 filled with the wavelength converting substance 3. Therefore, the colored layer 4 provided at the end 2e of the light exit surface 2b is preferably located on both sides of the storage space 5 filled with the wavelength converting substance 3 and does not face the storage space 5, but the light exit surface 2b.
  • the colored layer 4 may be formed to be slightly longer and may partially face the storage space 5.
  • the colored layer 4 is included in the allowable range as long as it faces about 1/3 or less of the width of the storage space 5.
  • the colored layer 4 is preferably formed on the entire surface of the side surface 2c or the end portion 2e, but may not necessarily be the entire surface, and may be a part of the side surface 2c or the end portion 2e. However, the colored layer 4 preferably covers an area of 50% or more of the side surface 2c or the end 2e. Further, the colored layer 4 may be formed by using all or part of the side region 7 as a colored material instead of being formed on the side region 7. For example, all or part of the side region 7 can be formed by using white glass or white resin.
  • the cross-sectional shape is preferably such that the outer shape of the container 2 and the storage space 5 is rectangular.
  • the side surface 2c of the container 2 and the side wall surface of the storage space 5 may be curved or may have an elliptical configuration.
  • the outer shape of the container 2 and the storage space 5 is square, but as shown in FIG. 4B, the outer shape of the container 2 and the storage space 5 can be rectangular.
  • the outer shapes of the cross section of the container 2 and the storage space 5 are similar to each other, but as shown in FIG. 4C, the outer shape of the cross section of the container 2 and the storage space It is also possible to make the outer shape of the cross section of 5 different.
  • the outer shape of the cross section of the container 2 is a rectangular shape
  • the outer shape of the cross section of the storage space 5 is a hexagon.
  • making the outer shape of the cross section of the container 2 and the storage space 5 similar to each other has the effect of providing the colored layer 4 of the present embodiment (color conversion can be performed appropriately and efficiently, and desired as compared with the prior art.
  • the external shape of the cross section of the container 2 and the storage space 5 can be made into a trapezoid shape similar to each other.
  • the shorter side of the trapezoid is the light incident surface 2a
  • the longer side is the light emitting surface 2b.
  • the light emitted from the light source can be enlarged to a predetermined size.
  • the long side of the trapezoid may be the light incident surface 2a and the short side may be the light emitting surface 2b. Thereby, the light emitted from the light source can be condensed to a predetermined size.
  • the outer shapes of the cross sections of the container 2 and the storage space 5 are different from those in FIG. 4D, and the side surfaces are formed symmetrically with respect to the center line passing through the centers of the upper base and the lower base of the trapezoid. May be.
  • the light incident surface and the light exit surface are formed as flat surfaces, but either one of the light incident surface and the light exit surface or both are formed as curved surfaces. May be.
  • the side surface of the container 2 is formed as a flat surface, but the side surface may be formed as a curved surface.
  • the corners between the sides may be R-shaped.
  • expressions such as a rectangular shape, a hexagonal shape, and a trapezoidal shape are not limited to geometrically accurate quadrangular shapes, hexagonal shapes, trapezoidal shapes, etc., and lines and angles constituting these have distortions, or Including errors are also included. By these, the direction of the emitted light can be adjusted.
  • the colored layer 4 is formed on the side surface 2c of the container 2, but the colored layer 4 is formed on the side surface 2c of the container 2 from the side 2c of the container 2 as shown in FIG. 3A. It can also be provided on the end 2e of the light exit surface 2b as shown in FIG. 3B.
  • the colored layer 4 is formed on the outer surface of the container 2, but the colored layer 4 can also be formed on the wall surface 5a of the internal space 5, as shown in FIG.
  • the wall surface 5 a that forms the colored layer 4 is located at a position facing the side surface 2 c of the container 2.
  • the side portion 2 d of the container 2 between the side surface 2 c of the container 2 and the internal space 5 can be a colored layer 4.
  • the container 2 is molded in two colors, and at this time, a colored resin is used for a portion to be the side portion 2d of the container 2.
  • the container 2 shown in FIG. 6 can be formed by bonding the side part 2d of the container 2 and other parts by bonding or the like. 5 and 6, the same reference numerals as those in FIGS. 2 and 3 indicate the same parts as those in FIGS.
  • the wavelength conversion member 1 shown in FIG. 1 can be interposed between a light emitting element 10 such as an LED and a light guide plate 12 as shown in FIG.
  • a combination of the wavelength conversion member 1 and the light emitting element 10 is a light emitting device, and a light source plate 12 is added to the light emitting device to constitute a light source device.
  • the light guide member can be configured by combining the wavelength conversion member 1 and the light guide plate 12.
  • the light emitting device shown in FIG. 7 can be used as a white surface light source of a liquid crystal display, for example.
  • the light emitted from the light emitting element 10 is incident from the light incident surface 2 a of the wavelength conversion member 1, wavelength-converted by the wavelength conversion material 3 (see FIG. 1), and wavelength-converted light. Is emitted from the light exit surface 2b to the light guide plate 12.
  • the colored layer 4 formed on the side surface 2c of the container 2 constituting the wavelength conversion member 1 appears on the upper and lower surfaces.
  • Light of a desired color can be obtained from the light emitting surface 2b.
  • the desired color of emitted light is white light
  • the light-emitting device and the light source device shown in FIG. 7 can emit white light more effectively than conventional ones, and can improve the reliability of the device.
  • FIG. 8 is an exploded perspective view of a light-emitting element provided with a wavelength conversion member according to the second embodiment of the present invention.
  • FIG. 9 is an enlarged longitudinal sectional view taken along the line BB in the height direction and viewed from the arrow direction in a state where the wavelength conversion members shown in FIG. 8 are combined.
  • FIG. 10 is a longitudinal cross-sectional view of the light-emitting element as viewed from the direction of the arrow, cut in the height direction along the line BB shown in FIG. 8 in a state where the members of the light-emitting element shown in FIG. 8 are combined.
  • the wavelength conversion member 21 includes a container 25 formed of a plurality of pieces of a container main body 23 and a lid body 24. As shown in FIGS. 8, 9, and 10, a bottomed storage space 26 is formed at the center of the container body 23. The wavelength conversion substance 27 is filled in the storage space 26.
  • the lid body 24 is joined to the container body 23 via an adhesive layer (not shown). Further, the colored layer 28 is formed on the side surface 25 c of the container 25.
  • the lower surface of the container 25 of the wavelength conversion member 21 is a light incident surface 25 a.
  • the upper surface facing the light incident surface 25a is the light emitting surface 25b.
  • a storage space 26 is formed at a position inside the side surface 25c provided in the container 25 of the wavelength conversion member 21 shown in FIGS. 9 shows the side surface 25c that appears on the cut surface along the line BB in FIG. 8, but the other two side surfaces 25c that do not appear on the cut surface along the line BB (the front side and the back surface shown in FIG. 8).
  • the colored layer 28 it is preferable to form the colored layer 28 on the side). If it is effective to provide the colored layer 28 on a certain side surface 25c due to the directivity of light, the colored layer 28 may be provided only on the certain side surface 25c and the colored layer 28 may not be provided on the other side surface 25c. Good. However, it is preferable to provide the colored layer 28 on all the side surfaces 25c.
  • the LED chip 22 is connected to a printed wiring board 29, and the periphery of the LED chip 22 is surrounded by a frame 30 as shown in FIGS.
  • the inside of the frame 30 is sealed with a resin layer 31.
  • the wavelength conversion member 21 is joined to the upper surface of the frame body 30 via an adhesive layer (not shown) to form a light emitting element 20 such as an LED.
  • the colored layer 28 may be formed from the side surface 25c of the container 25 of the wavelength conversion member 21 to the end portion 25e of the light emitting surface 25b. Further, as shown in FIG. 11B, the colored layer 28 may be formed only on the end portion 25e of the light emitting surface 25b.
  • FIG. 12 is a longitudinal sectional view of a display device using the light emitting element shown in FIG.
  • the display device 50 includes a plurality of light emitting elements 20 (LEDs) and a display unit 54 such as a liquid crystal display facing the light emitting elements 20.
  • Each light emitting element 20 is disposed on the back side of the display unit 54.
  • the plurality of light emitting elements 20 are supported by the support body 52.
  • the light emitting elements 20 are arranged at a predetermined interval.
  • Each light emitting element 20 and the support 52 constitute a backlight 55 for the display unit 54.
  • the support 52 is not particularly limited in shape or material such as a sheet shape, a plate shape, or a case shape.
  • a light diffusion plate 53 or the like is interposed between the backlight 55 and the display unit 54.
  • the light-emitting device (including the light-emitting element, the capillary-shaped wavelength conversion member 1, the light guide plate 12, and the like) shown in FIG. 7 is disposed on the back side of the display unit 54 shown in FIG.
  • the display device 50 may be configured.
  • the wavelength conversion member and the light emitting element of the present embodiment can be applied to other types of light source devices, illumination devices, light diffusion devices, light reflection devices, and the like. it can.
  • Example 1 A silicone resin was used as a dispersion resin for the quantum dots, and the silicone resin in which the quantum dots were dispersed was sealed in a capillary. The quantum dot concentration was set to a concentration at which the absorbance was 15%.
  • Example 2 An epoxy resin was used as a dispersion resin for the quantum dots, and the epoxy resin in which the quantum dots were dispersed was sealed in a capillary. The quantum dot concentration was set to a concentration at which the absorbance was 15%.
  • Example 1 In Example 1, the sample 1 was used, a wavelength conversion member (hereinafter referred to as “none_1”) in which no paint was applied to the capillary, and a wavelength conversion member (hereinafter, referred to as “none_1”) in which white paint was applied to the end of the light emission surface of the capillary. "Top_1”), a wavelength conversion member (hereinafter referred to as "side_1”) coated with white paint on the side of the light exit surface of the capillary, white paint from the side of the light exit surface of the capillary to the end of the light exit surface The wavelength conversion member (henceforth "side + top_1”) which apply
  • the white paint suppresses blue light leakage from the side region from the light incident surface to the light emitting surface, so that the synthetic hole on the light emitting surface is conventional (none_1).
  • side_1 and side + top_1 were able to obtain white light or near-white light.
  • all of top_1, side_1, and side + top_1 were able to obtain white light emission intensity equal to or higher than that of none_1.
  • the increase in the light emission intensity of white light was more noticeable than that of none_1.
  • Example 2 In Example 2, a wavelength conversion member (hereinafter referred to as “none_2”) in which the sample 1 is used and no paint is applied to the capillary, and a wavelength conversion member (top_2) in which silver paint is applied to the end of the light emission surface of the capillary A wavelength converting member (side_2) coated with silver paint on the side of the light emitting surface of the capillary, and a wavelength converting member (side + top_2) coated with silver paint from the side of the light emitting surface of the capillary to the end of the light emitting surface. Prepared.
  • Example 1 by applying silver paint, blue is weaker than none_2 and close to white.
  • the effect of Example 1 with white paint was greater than that of Example 2.
  • Example 3 In Example 3, the sample 2 was used, a wavelength conversion member (none_3) in which no paint was applied to the capillary, a wavelength conversion member (top_3) in which white paint was applied to the end of the light output surface of the capillary, and light output from the capillary A wavelength converting member (side_3) coated with white paint on the side surface of the surface and a wavelength converting member (side + top_3) coated with white paint from the side surface of the light emitting surface of the capillary to the end of the light emitting surface were prepared.
  • blue is weaker than none_3 and close to white, but it is better to use a silicone resin as the dispersion resin (see FIG. 14). It has been found that blue can be suppressed and white can be made closer than when an epoxy resin is used.
  • Example 3 An epoxy resin was used as a dispersion resin for the quantum dots, and the epoxy resin in which the quantum dots were dispersed was sealed in a capillary. The density
  • Sample 4 An epoxy resin was used as a dispersion resin for the quantum dots, and the epoxy resin in which the quantum dots were dispersed was sealed in a capillary. The density
  • Example 5 A silicone resin was used as a dispersion resin for the quantum dots, and the silicone resin in which the quantum dots were dispersed was sealed in a capillary.
  • concentration of the quantum dot in dispersion resin was made into the density
  • Comparative Example 1 In Comparative Example 1, a sample 3 was used and a wavelength conversion member in which paint was not applied to the capillary was prepared. The measurement results obtained by measuring the luminous flux are shown in Table 1 below.
  • Comparative Example 2 In Comparative Example 2, a sample 4 was used and a wavelength conversion member in which no paint was applied to the capillary was prepared. The measurement results obtained by measuring the luminous flux are shown in Table 2 below.
  • Example 3 to 5 wavelength conversion members were prepared by using Sample 1 and applying white paint to the side surfaces of the capillaries. The measurement position at which the light flux measurement was performed was changed in Examples 3-5.
  • Example 4 was set as the measurement position in the vicinity of the center of the light guide plate, and Examples 3 and 5 were positioned on both sides thereof.
  • Example 3 The measurement results of Example 3 are shown in Table 3 below, the measurement results of Example 4 are shown in Table 4, and the measurement results of Example 5 are shown in Table 5 below.
  • Example 6 In Examples 6 to 8, wavelength conversion members were prepared using Sample 5 and applying white paint to the side surfaces of the capillaries. The measurement position at which the light flux measurement was performed was changed in Examples 6-8. In Example 7, the vicinity of the center of the light guide plate was used, and in Examples 6 and 8, both side positions thereof were set as measurement positions.
  • Example 6 The measurement results of Example 6 are shown in Table 6 below, the measurement results of Example 7 are shown in Table 7, and the measurement results of Example 8 are shown in Table 8 below.
  • the x coordinate of the chromaticity diagram can be 0.30 to 0.40
  • the y coordinate can be 0.35 to 045
  • the color temperature can be about 4000 K to 6500 K in the example.
  • an LED, a backlight device, a display device, or the like can be realized using a wavelength conversion member in which a wavelength conversion substance is sealed in a container.
  • a wavelength conversion member of the present invention since color conversion can be performed appropriately and with high efficiency, it is possible to reduce power consumption of an LED, a backlight device, a display device, and the like using the wavelength conversion member of the present invention. it can.

Abstract

The purpose of the present invention is to provide, in particular, a wavelength conversion member capable of performing more appropriate color conversion than conventionally, as well as a light-emitting apparatus, a light-emitting element, a light source apparatus, and a display apparatus using the same. A wavelength conversion member (1) of the present invention is provided with a light-entrance surface (2a), a light-exit surface (2b), and lateral surfaces (2c) that connect between the light-entrance surface and the light-exit surface and is characterized by having a container (2) provided with a storage space (5) disposed father inward than the lateral surfaces, a wavelength conversion substance (3) filling the storage space, and colored layers (4) formed on the lateral surfaces.

Description

波長変換部材、及びそれを用いた発光装置、発光素子、光源装置、並びに表示装置Wavelength conversion member, and light emitting device, light emitting element, light source device, and display device using the same
 本発明は、容器内に波長変換部材を充填した波長変換部材、及びそれを用いた発光装置、発光素子、光源装置、並びに表示装置に関する。 The present invention relates to a wavelength conversion member in which a wavelength conversion member is filled in a container, and a light emitting device, a light emitting element, a light source device, and a display device using the wavelength conversion member.
 例えば下記の特許文献1には、光源、波長変換部材及び導光板等を備えた発光装置に関する発明が開示されている。 For example, the following Patent Document 1 discloses an invention related to a light emitting device including a light source, a wavelength conversion member, a light guide plate, and the like.
 波長変換部材は、光源と導光板との間に設けられ、光源が発する波長の光を吸収した後、これとは異なる波長の光を発生させるものである。波長変換部材は、例えばガラス等の筒状の容器に波長変換部物質が封入されている。波長変化物質には、蛍光顔料、蛍光染料又は量子ドット等が含まれる。例えば波長変化物質は、光源の青色光を吸収して、その一部を赤色光又は緑色光に変換する。そして、特許文献1の[0015]~[0017]には、光源の光が波長変換物質を通過することにより、赤色、緑色、及び青色の光が合成されて白色光が生成されると記載されている。 The wavelength conversion member is provided between the light source and the light guide plate, and absorbs light having a wavelength emitted from the light source, and then generates light having a different wavelength. As for the wavelength conversion member, the wavelength conversion part substance is enclosed with cylindrical containers, such as glass, for example. The wavelength changing substance includes a fluorescent pigment, a fluorescent dye, a quantum dot, or the like. For example, the wavelength changing substance absorbs blue light from a light source and converts a part thereof into red light or green light. In Patent Document 1, [0015] to [0017] describe that light from a light source passes through a wavelength conversion substance, and thereby red, green, and blue light are combined to generate white light. ing.
特開2013―218954号公報JP 2013-218854 A
 しかしながら、特許文献1に示す構成では、光源から波長変換部材を通過した光の色合いは、光源色に近く、適切に色変換されていないことがわかった。光源からの光は、波長変換物質の側方に位置する容器側部内も通り抜ける。このため、波長変換部材の光出射面では、波長変換物質内を通った光と、波長変換物質内を通らずに容器側部内を通過した光とが混じり合い、合成色としては、光源色に近い色合いとなってしまう。 However, in the configuration shown in Patent Document 1, it has been found that the hue of light that has passed through the wavelength conversion member from the light source is close to the light source color and is not appropriately color-converted. Light from the light source passes through the side of the container located on the side of the wavelength converting substance. For this reason, on the light exit surface of the wavelength conversion member, the light that has passed through the wavelength conversion substance and the light that has passed through the side of the container without passing through the wavelength conversion substance are mixed together, and the combined color is the light source color. It becomes a close hue.
 したがって上記のように、光源の青色光を、白色光に変換するために波長変換部材に通しても、白色光に適切に変換できなかった。 Therefore, as described above, even when the blue light of the light source is passed through the wavelength conversion member in order to convert it into white light, it cannot be converted into white light appropriately.
 本発明はかかる点に鑑みてなされたものであり、特に、従来に比べて、色変換を適切かつ高効率に行うことができる波長変換部材、及びそれを用いた発光装置、発光素子、光源装置、並びに表示装置を提供することを目的とする。 The present invention has been made in view of such points, and in particular, a wavelength conversion member capable of performing color conversion appropriately and with high efficiency, and a light emitting device, a light emitting element, and a light source device using the same An object is to provide a display device.
 本発明の波長変換部材は、第1の面、前記第1の面に対向する第2の面、及び、前記第1の面と前記第2の面との間を繋ぐ側面を備え、前記側面よりも内側に収納空間が設けられた容器と、前記収納空間内に配置された波長変換物質と、前記側面上、前記第2の面の端部上、又は、前記側面上から前記第2の面の端部上にかけて形成された着色層と、を有することを特徴とする。 The wavelength conversion member of the present invention includes a first surface, a second surface facing the first surface, and a side surface connecting the first surface and the second surface, and the side surface. A container provided with a storage space on the inner side, a wavelength converting substance disposed in the storage space, and the second side from the side surface, the end of the second surface, or the side surface. And a colored layer formed over the end of the surface.
 本発明の波長変換部材は、第1の面、前記第1の面に対向する第2の面、及び、前記第1の面と前記第2の面との間を繋ぐ側面を備え、前記側面よりも内側に収納空間が設けられた容器と、前記収納空間内に配置された波長変換物質と、前記収納空間の壁面に形成された着色層と、を有することを特徴とする。 The wavelength conversion member of the present invention includes a first surface, a second surface facing the first surface, and a side surface connecting the first surface and the second surface, and the side surface. The container further includes a container having a storage space inside, a wavelength converting substance disposed in the storage space, and a colored layer formed on a wall surface of the storage space.
 本発明の波長変換部材は、第1の面、前記第1の面に対向する第2の面、及び、前記第1の面と前記第2の面との間を繋ぐ側面を備え、前記側面よりも内側に収納空間が設けられた容器と、前記収納空間内に配置された波長変換物質と、前記容器の前記側面と前記収納空間までの間に設けられた着色層と、を有することを特徴とする。 The wavelength conversion member of the present invention includes a first surface, a second surface facing the first surface, and a side surface connecting the first surface and the second surface, and the side surface. A container provided with a storage space on the inner side, a wavelength converting substance disposed in the storage space, and a colored layer provided between the side surface of the container and the storage space. Features.
 また本発明では、前記波長変換物質は、量子ドットを含むことが好ましい。また本発明では、前記波長変換物質は、前記量子ドットを分散した樹脂組成物により形成されることが好ましい。このとき、前記波長変換物質は、前記量子ドットをシリコーン樹脂に分散した樹脂組成物により形成されることが好ましい。 In the present invention, it is preferable that the wavelength converting material includes quantum dots. Moreover, in this invention, it is preferable that the said wavelength conversion substance is formed with the resin composition which disperse | distributed the said quantum dot. At this time, it is preferable that the wavelength conversion substance is formed of a resin composition in which the quantum dots are dispersed in a silicone resin.
 また本発明では、前記第1の面及び前記第2の面の、少なくともいずれか一方に垂直な平面で切断した、前記収納空間及び前記容器の外形断面は、いずれも矩形状であることが好ましい。 Moreover, in this invention, it is preferable that the external space cross section cut | disconnected by the plane perpendicular | vertical to at least any one of the said 1st surface and the said 2nd surface is a rectangular shape. .
 また本発明では、前記着色層は、白色に着色されていることが好ましい。また本発明では、前記着色層は塗料、インク、あるいはテープにより構成されることが好ましい。また本発明では、前記波長変換物質を構成する樹脂の屈折率は、前記容器の屈折率よりも小さいことが好ましい。 In the present invention, the colored layer is preferably colored white. In the present invention, the colored layer is preferably composed of paint, ink, or tape. Moreover, in this invention, it is preferable that the refractive index of resin which comprises the said wavelength conversion substance is smaller than the refractive index of the said container.
 また本発明における発光装置は、前記第1の面に対向して設けられた発光素子と、前記発光素子の発光側に配置される上記のいずれかに記載の波長変換部材と、を有して構成されることを特徴とする。 Moreover, the light-emitting device in this invention has the light emitting element provided facing the said 1st surface, and the wavelength conversion member in any one of said arrange | positioned at the light emission side of the said light emitting element. It is characterized by being configured.
 また本発明における発光素子は、青色光を発する発光チップと、前記発光チップの光出射側に配置された上記のいずれかに記載の波長変換部材と、を有して構成されることを特徴とする。 The light-emitting element according to the present invention includes a light-emitting chip that emits blue light, and the wavelength conversion member according to any one of the above that is disposed on a light-emitting side of the light-emitting chip. To do.
 また本発明における光源装置は、上記に記載の発光装置、あるいは、上記に記載の発光素子と、導光板と、を有することを特徴とする。 The light source device according to the present invention includes the light emitting device described above or the light emitting element described above and a light guide plate.
 また本発明における表示装置は、表示部と、前記表示部の裏面側に配置された上記に記載の発光装置、あるいは、上記に記載の発光素子と、を有することを特徴とする。 The display device according to the present invention includes a display portion and the light-emitting device described above or the light-emitting element described above disposed on the back side of the display portion.
 本発明の波長変換部材によれば、従来に比べて、色変換を適切かつ高効率に行うことができる。本発明の発光装置、発光素子、光源装置及び表示装置は、いずれも本発明の波長変換部材を備えている。したがって波長変換部材を通して所望の色に、あるいは所望の色により近い色に適切かつ高効率に変換でき、装置としての信頼度を高めることができる。これにより、消費電力を低減することができる。 According to the wavelength conversion member of the present invention, color conversion can be performed appropriately and efficiently compared to the conventional case. The light emitting device, light emitting element, light source device, and display device of the present invention each include the wavelength conversion member of the present invention. Therefore, it can be appropriately and efficiently converted to a desired color through the wavelength conversion member or a color closer to the desired color, and the reliability of the apparatus can be increased. Thereby, power consumption can be reduced.
本発明における第1の実施の形態を示す波長変換部材の斜視図である。It is a perspective view of the wavelength conversion member which shows a 1st embodiment in the present invention. 図1に示す波長変換部材をA-A線に沿って平面方向に切断し矢印方向から見た断面図である。FIG. 2 is a cross-sectional view of the wavelength conversion member shown in FIG. 1 cut in a plane direction along the line AA and viewed from the direction of the arrows. 図2とは異なる断面形状を示す波長変換部材の断面図である。It is sectional drawing of the wavelength conversion member which shows a different cross-sectional shape from FIG. 図2、図3とは異なる断面形状を示す波長変換部材の断面図である。It is sectional drawing of the wavelength conversion member which shows the cross-sectional shape different from FIG. 2, FIG. 図2とは異なる断面形状を示す波長変換部材の断面図である。It is sectional drawing of the wavelength conversion member which shows a different cross-sectional shape from FIG. 図2とは異なる断面形状を示す波長変換部材の断面図である。It is sectional drawing of the wavelength conversion member which shows a different cross-sectional shape from FIG. 図1に示す波長変換部材を用いた発光装置及び光源装置の平面図である。It is a top view of the light-emitting device and light source device using the wavelength conversion member shown in FIG. 本発明における第2の実施の形態を示す波長変換部材を備えた発光素子の分解斜視図である。It is a disassembled perspective view of the light emitting element provided with the wavelength conversion member which shows 2nd Embodiment in this invention. 図8に示す波長変換部材を組み合せた状態で、B-B線に沿って高さ方向に切断し矢印方向から見た拡大縦断面図である。FIG. 9 is an enlarged longitudinal sectional view taken in the height direction along the line BB and viewed from the arrow direction in a state where the wavelength conversion members shown in FIG. 8 are combined. 図8に示す発光素子の各部材を組み合わせた状態で、図8に示すB-B線に沿って高さ方向に切断し矢印方向から見た発光素子の縦断面図である。FIG. 9 is a longitudinal cross-sectional view of the light emitting device as viewed from the direction of the arrow, cut in the height direction along the line BB shown in FIG. 8 in a state where the members of the light emitting device shown in FIG. 図9とは異なる断面形状を示す波長変換部材の拡大縦断面図である。FIG. 10 is an enlarged longitudinal sectional view of a wavelength conversion member showing a sectional shape different from FIG. 9. 図8に示す発光素子を用いた表示装置の縦断面図である。It is a longitudinal cross-sectional view of the display apparatus using the light emitting element shown in FIG. 実施例1における発光スペクトルである。2 is an emission spectrum in Example 1. 実施例1における色度図である。2 is a chromaticity diagram in Example 1. FIG. 実施例2における発光スペクトルである。2 is an emission spectrum in Example 2. 実施例2における色度図である。6 is a chromaticity diagram in Example 2. FIG. 実施例3における発光スペクトルである。7 is an emission spectrum in Example 3. 実施例3における色度図である。6 is a chromaticity diagram in Example 3. FIG.
 以下、本発明の一実施の形態(以下、「実施の形態」と略記する。)について、詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, an embodiment of the present invention (hereinafter abbreviated as “embodiment”) will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
 図1は、本発明における第1の実施の形態を示す波長変換部材の斜視図である。図2は、図1に示す波長変換部材をA-A線に沿って平面方向に切断し矢印方向から見た断面図である。 FIG. 1 is a perspective view of a wavelength conversion member showing a first embodiment of the present invention. FIG. 2 is a cross-sectional view of the wavelength conversion member shown in FIG. 1 cut along a line AA in the plane direction and viewed from the direction of the arrow.
 図1、図2に示すように、第1の実施の形態における波長変換部材1は、容器2と、波長変換物質3と、着色層4とを有して構成される。 As shown in FIGS. 1 and 2, the wavelength conversion member 1 in the first embodiment includes a container 2, a wavelength conversion material 3, and a colored layer 4.
 容器2は、波長変換物質3を収納し保持することが可能とされる。容器2は透明な部材であることが好ましい。「透明」とは、一般的に透明と認識されるものや、可視光線透過率が約50%以上のものを指す。 The container 2 can store and hold the wavelength converting substance 3. The container 2 is preferably a transparent member. “Transparent” refers to what is generally recognized as being transparent, or having a visible light transmittance of about 50% or more.
 図1、図2に示すように容器2は、光入射面2a、光出射面2b、及び、光入射面2aと光出射面2bとの間を繋ぐ側面2cとを備える。図1、図2に示すように、光入射面2aと光出射面2bとは互いに対向した位置関係にある。 As shown in FIGS. 1 and 2, the container 2 includes a light incident surface 2a, a light emitting surface 2b, and a side surface 2c that connects the light incident surface 2a and the light emitting surface 2b. As shown in FIGS. 1 and 2, the light incident surface 2a and the light emitting surface 2b are in a positional relationship facing each other.
 図1、図2に示すように、容器2には、光入射面2a、光出射面2b及び側面2cよりも内側に収納空間5が形成されている。収納空間5は少なくとも側面2cよりも内側に位置していればよい。すなわち、例えば収納空間5の一部は、光入射面2a及び光出射面2bにまで達していてもよい。 As shown in FIGS. 1 and 2, the container 2 has a storage space 5 formed inside the light incident surface 2a, the light emitting surface 2b, and the side surface 2c. The storage space 5 should just be located inside at least the side surface 2c. That is, for example, a part of the storage space 5 may reach the light incident surface 2a and the light emitting surface 2b.
 収納空間5には、波長変換物質3が配置されている。図1に示すように、収納空間5は開口しており、ここから波長変換物質3を収納空間5内に封入して、充填することができる。 The wavelength conversion substance 3 is disposed in the storage space 5. As shown in FIG. 1, the storage space 5 is open, from which the wavelength converting substance 3 can be sealed and filled in the storage space 5.
 例えば、容器2の縦横寸法の大きさは、数mm~数十mm程度、収納空間5の縦横寸法は、数百μm~数mm程度である。 For example, the vertical and horizontal dimensions of the container 2 are about several mm to several tens of mm, and the vertical and horizontal dimensions of the storage space 5 are about several hundred μm to several mm.
 図2に示すように、光入射面2a及び光出射面2bの、少なくともいずれか一方に垂直な平面で切断した断面形状において、収納空間5の外形断面及び容器2の外形断面はいずれも矩形状で形成されている。このような切断面は、光入射面2a、光出射面2b及び側面2cが現れる方向に向けて切断した面である。ここで「矩形状」とは4つの頂点が略直角であり、正方形、長方形を含む。 As shown in FIG. 2, in the cross-sectional shape cut by a plane perpendicular to at least one of the light incident surface 2a and the light emitting surface 2b, the outer cross section of the storage space 5 and the outer cross section of the container 2 are both rectangular. It is formed with. Such a cut surface is a surface cut in the direction in which the light incident surface 2a, the light emitting surface 2b, and the side surface 2c appear. Here, the “rectangular shape” has four vertices having a substantially right angle and includes a square and a rectangle.
 図2に示すように、収納空間5の外形断面及び容器2の外形断面は相似形であることが好ましい。 As shown in FIG. 2, the outer cross section of the storage space 5 and the outer cross section of the container 2 are preferably similar.
 図1、図2に示す容器2は例えばガラス管の容器であり、ガラスキャピラリを例示できる。ただし、上記したように透明性に優れる容器を構成できれば樹脂等であってもよい。 The container 2 shown in FIGS. 1 and 2 is, for example, a glass tube container, and can be exemplified by a glass capillary. However, a resin or the like may be used as long as the container having excellent transparency can be configured as described above.
 図1、図2に示す波長変換物質3は、青色の光を吸収して赤色の光を発する物質、及び、青色の光を吸収して緑色の光を発する物質を含むことが好ましい。具体的には、波長変換物質3に量子ドットを含むことが好ましい。波長変換物質3として、量子ドット以外の蛍光顔料、蛍光染料等を用いてもよいが、量子ドットを含むことが、波長変換特性に優れる。 1 and 2 preferably include a substance that absorbs blue light and emits red light, and a substance that absorbs blue light and emits green light. Specifically, it is preferable that the wavelength conversion material 3 includes quantum dots. Fluorescent pigments other than quantum dots, fluorescent dyes, and the like may be used as the wavelength conversion substance 3, but the inclusion of quantum dots is excellent in wavelength conversion characteristics.
 波長変換物質3は、量子ドットを分散した樹脂組成物により形成されることが好ましい。樹脂としては、ポリプロピレン、ポリエチレン、ポリスチレン、AS樹脂、ABS樹脂、メタクリル樹脂、ポリ塩化ビニル、ポリアセタール、ポリアミド、ポリカーボネート、変性ポリフェニレンエーテル、ポリブチレンテレフタレート、ポリエチレンテレンテレフタレート、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイド、ポリアミドイミド、ポリメチルペンテン、液晶ポリマー、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、エポキシ樹脂、ジアリルフタレート樹脂、不飽和ポリエステル樹脂、ポリイミド、ポリウレタン、シリコーン樹脂、又は、これらのいくつかの混合物等を使用することができる。このうち、シリコーン樹脂あるいはエポキシ樹脂を用いて量子ドットを分散した樹脂組成物を形成することが好適である。より好ましくは、シリコーン樹脂を用いて量子ドットを分散した樹脂組成物を形成する。 The wavelength converting substance 3 is preferably formed of a resin composition in which quantum dots are dispersed. Examples of resins include polypropylene, polyethylene, polystyrene, AS resin, ABS resin, methacrylic resin, polyvinyl chloride, polyacetal, polyamide, polycarbonate, modified polyphenylene ether, polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyethersulfone, and polyphenylene sulfide. , Polyamideimide, polymethylpentene, liquid crystal polymer, epoxy resin, phenol resin, urea resin, melamine resin, epoxy resin, diallyl phthalate resin, unsaturated polyester resin, polyimide, polyurethane, silicone resin, or some mixture thereof Etc. can be used. Among these, it is preferable to form a resin composition in which quantum dots are dispersed using a silicone resin or an epoxy resin. More preferably, a resin composition in which quantum dots are dispersed is formed using a silicone resin.
 また、波長変換物質3を構成する樹脂の屈折率は、容器2の屈折率に比べて小さいことが好ましい。例えば、シリコーン樹脂の屈折率は、ナトリウムD線、23℃において、信越化学工業(株)製のSCR1016で1.52、(株)ダイセル製のA2045で1.55、信越化学工業(株)製のKER-2500で1.41、(株)ダイセル製のA1080で1.41である。また、エポキシ樹脂の屈折率は、ナトリウムD線、23℃において、(株)ダイセル製のセルビーナスWO917で1.51、セルビーナスWO925で1.50である。これに対して、ガラスによる容器2の屈折率は、一般的なガラスの場合で1.45前後であり、高屈折率の光学ガラスの場合で1.50~1.90程度である。したがって、波長変換物質3を構成する樹脂及び容器2の材質を適切に選択することにより、波長変換物質3を構成する樹脂の屈折率を、容器2の屈折率に比べて小さくできる。例えば、波長変換物質3を構成する樹脂として屈折率が1.41のシリコーン樹脂であるA1080又はKER-2500を用い、容器2を屈折率1.45のガラスで構成することができる。また別の例として、波長変換物質3を構成する樹脂として屈折率が1.41~1.55のシリコーン樹脂又はエポキシ樹脂を用い、容器2を屈折率1.56以上の高屈折率のガラスで構成することができる。これにより、波長変換物質3内に進入した光の一部が、収納空間5に面する容器2の側壁部分で全反射する。屈折率の小さい媒体側における入射角は、屈折率の大きい媒体側における入射角より大きくなるためである。これにより光が容器2の側方から外部へ漏れる量を減らすことができるので、色変換効率及び発光強度を高めることができる。なお、ここでいう波長変換物質3を構成する樹脂とは、量子ドットを分散するための樹脂に限定されるものではない。 Further, the refractive index of the resin constituting the wavelength converting substance 3 is preferably smaller than the refractive index of the container 2. For example, the refractive index of the silicone resin is 1.52 for SCR1016 manufactured by Shin-Etsu Chemical Co., Ltd., 1.55 for A2045 manufactured by Daicel Corporation, at 23 ° C., sodium D line, manufactured by Shin-Etsu Chemical Co., Ltd. KER-2500 of 1.41 and A1080 manufactured by Daicel Corporation of 1.41. Moreover, the refractive index of an epoxy resin is 1.51 in Cell Venus WO917 made from Daicel Corporation, and 1.50 in Cell Venus WO925 in sodium D line | wire and 23 degreeC. On the other hand, the refractive index of the container 2 made of glass is about 1.45 in the case of general glass, and about 1.50 to 1.90 in the case of optical glass with a high refractive index. Therefore, by appropriately selecting the resin constituting the wavelength converting substance 3 and the material of the container 2, the refractive index of the resin constituting the wavelength converting substance 3 can be made smaller than the refractive index of the container 2. For example, A1080 or KER-2500, which is a silicone resin having a refractive index of 1.41, is used as the resin constituting the wavelength converting substance 3, and the container 2 can be made of glass having a refractive index of 1.45. As another example, a silicone resin or an epoxy resin having a refractive index of 1.41 to 1.55 is used as a resin constituting the wavelength converting substance 3, and the container 2 is made of a high refractive index glass having a refractive index of 1.56 or more. Can be configured. As a result, a part of the light that has entered the wavelength converting substance 3 is totally reflected by the side wall portion of the container 2 facing the storage space 5. This is because the incident angle on the medium side with a small refractive index is larger than the incident angle on the medium side with a large refractive index. Thereby, since the amount of light leaking from the side of the container 2 to the outside can be reduced, the color conversion efficiency and the light emission intensity can be increased. The resin constituting the wavelength converting substance 3 here is not limited to the resin for dispersing the quantum dots.
 また波長変換物質3に含まれる量子ドットの構成及び材質を限定するものではないが、例えば、本実施の形態における量子ドットは、半導体粒子のコアと、コアの周囲を被覆するシェル部とを有することができる。コアには、例えば、CdSeが使用されるが、特に材質を限定するものでない。例えば、少なくともZnとCdとを含有するコア材、Zn、Cd、Se及びSを含有するコア材、ZnCuInS、CdS、CdSe、ZnS、ZnSe、InP、CdTe、これらのいくつかの複合物等が使用できる。本実施の形態における量子ドットは、シェル部が形成されず、半導体粒子のコア部のみで構成されてもよい。すなわち、量子ドットは、少なくともコア部を備えていれば、シェル部による被覆構造を備えていなくてもよい。例えば、コア部に対して、シェル部の被覆を行った場合、被覆構造となる領域が小さいか被覆部分が薄すぎて被覆構造を分析・確認できないことがある。したがって、分析によるシェル部の有無にかかわらず、量子ドットと判断することができる。 Moreover, although the structure and material of the quantum dot contained in the wavelength conversion substance 3 are not limited, for example, the quantum dot in this Embodiment has the core of a semiconductor particle, and the shell part which coat | covers the circumference | surroundings of a core. be able to. For example, CdSe is used for the core, but the material is not particularly limited. For example, a core material containing at least Zn and Cd, a core material containing Zn, Cd, Se and S, ZnCuInS, CdS, CdSe, ZnS, ZnSe, InP, CdTe, and some composites thereof are used. it can. The quantum dot in this Embodiment may be comprised only by the core part of a semiconductor particle, without forming a shell part. That is, the quantum dot does not need to have a covering structure with a shell part as long as it has at least a core part. For example, when the shell portion is coated on the core portion, the region that becomes the covering structure may be small or the covering portion may be too thin to analyze and confirm the covering structure. Therefore, it can be determined as a quantum dot regardless of the presence or absence of the shell portion by analysis.
 量子ドットとして、例えば、吸収波長が460nm(青色)であって、蛍光波長が約520nm(緑色)の量子ドット及び約660nm(赤色)の量子ドットの2種類が含まれている。このため、光入射面2aから青色の光が入射されると、それぞれの量子ドットによって、青色の一部が、緑色又は赤色に変換される。これによって、光出射面2bから白色の光を得ることができる。しかしながら従来においては、青色光を適切に白色光に変換できなかった。それは、波長変換物質3を充填した収納空間5と側面2cとの間の側方領域7(図2参照)を青色光が、光入射面2aから光出射面2bに抜けることで、光出射面2bにて青色の波長強度が強く出てしまうためである。 Quantum dots include, for example, two types of quantum dots having an absorption wavelength of 460 nm (blue) and a fluorescence wavelength of about 520 nm (green) and a quantum dot of about 660 nm (red). For this reason, when blue light is incident from the light incident surface 2a, a part of blue is converted into green or red by each quantum dot. Thereby, white light can be obtained from the light emitting surface 2b. However, conventionally, blue light cannot be appropriately converted into white light. This is because the blue light passes through the side region 7 (see FIG. 2) between the storage space 5 filled with the wavelength converting substance 3 and the side surface 2c (see FIG. 2) from the light incident surface 2a to the light emitting surface 2b. This is because the blue wavelength intensity is strong at 2b.
 そこで本実施の形態では、図1、図2に示すように側面2c、2cに着色層4、4を設けた。「着色層」とは透明でない層であり、白色を含む色が着色された層を指す。着色層4は、塗料、インク、あるいはテープにより構成されることが好ましい。また着色層4の色を限定するものでないが、白色であることが好適である。したがって白い塗料や白色インクを側面2cに塗布したり、白色テープを側面2cに貼るだけで簡単に着色層4を形成することができる。また、Ni、Ag、Al、Cr等の金属を蒸着して金属層4とすることもできる。 Therefore, in this embodiment, the colored layers 4 and 4 are provided on the side surfaces 2c and 2c as shown in FIGS. The “colored layer” is a layer that is not transparent, and refers to a layer colored in colors including white. The colored layer 4 is preferably composed of paint, ink, or tape. Moreover, although the color of the colored layer 4 is not limited, it is suitable that it is white. Therefore, the colored layer 4 can be easily formed by simply applying white paint or white ink to the side surface 2c or simply applying a white tape to the side surface 2c. Alternatively, the metal layer 4 can be formed by vapor-depositing a metal such as Ni, Ag, Al, or Cr.
 これにより、側方領域7を通過する光抜けを従来に抑制することができ、従来に比べて色変換を適切かつ高効率に行うことができ、所望の色の光を光出射面2bより得ることができる。また本実施の形態によれば、白色光の発光強度を従来と同等あるいそれ以上にすることができる。 As a result, light leakage through the side region 7 can be suppressed conventionally, color conversion can be performed appropriately and efficiently compared to the conventional method, and light of a desired color can be obtained from the light emitting surface 2b. be able to. Further, according to the present embodiment, the emission intensity of white light can be made equal to or higher than that of the prior art.
 図1、図2では着色層4を、容器2の側面2cに形成しているが、図3Aに示すように、着色層4を、容器2の側面2cから光出射面2bの端部2eにかけて形成することができる。あるいは図3Bに示すように、着色層4を、光出射面2bの端部2eにのみ形成することもできる。着色層4は、図2に示すように、容器2の側面2cか、図3Aに示すように、容器2の側面2cから光出射面2bの端部2eにかけて形成されることが好ましい。 In FIG. 1 and FIG. 2, the colored layer 4 is formed on the side surface 2c of the container 2, but as shown in FIG. 3A, the colored layer 4 extends from the side surface 2c of the container 2 to the end 2e of the light emitting surface 2b. Can be formed. Or as shown to FIG. 3B, the colored layer 4 can also be formed only in the edge part 2e of the light-projection surface 2b. The colored layer 4 is preferably formed from the side surface 2c of the container 2 as shown in FIG. 2 or from the side surface 2c of the container 2 to the end 2e of the light emitting surface 2b as shown in FIG. 3A.
 光出射面2bの端部2eは、収納空間5と側面2cとの間の側方領域7に対向している。よって端部2eは、波長変換物質3が充填された収納空間5と対向していない。したがって光出射面2bの端部2eに設けられた着色層4は、波長変換物質3が充填された収納空間5の両側に位置し、収納空間5と対向しないことが好ましいが、光出射面2b上で着色層4が多少長く形成され、収納空間5と一部対向していてもよい。例えば着色層4は、収納空間5の幅の約1/3以下と対向する程度であれば許容範囲に含まれる。 The end 2e of the light exit surface 2b faces the side region 7 between the storage space 5 and the side surface 2c. Therefore, the end 2e does not face the storage space 5 filled with the wavelength converting substance 3. Therefore, the colored layer 4 provided at the end 2e of the light exit surface 2b is preferably located on both sides of the storage space 5 filled with the wavelength converting substance 3 and does not face the storage space 5, but the light exit surface 2b. The colored layer 4 may be formed to be slightly longer and may partially face the storage space 5. For example, the colored layer 4 is included in the allowable range as long as it faces about 1/3 or less of the width of the storage space 5.
 なお着色層4は、側面2cあるいは端部2eの全面に形成されることが好ましいが、必ずしも全面でなくてもよく、側面2cあるいは端部2eの一部であってもよい。ただし、側面2cあるいは端部2eの50%以上の面積を着色層4で覆うことが好ましい。また、着色層4は、側方領域7の上に形成される代わりに、側方領域7の全部又は一部を着色された材料とすることで形成してもよい。例えば、側方領域7の全部又は一部を、白色のガラス又は白色の樹脂とすることで形成することもできる。 The colored layer 4 is preferably formed on the entire surface of the side surface 2c or the end portion 2e, but may not necessarily be the entire surface, and may be a part of the side surface 2c or the end portion 2e. However, the colored layer 4 preferably covers an area of 50% or more of the side surface 2c or the end 2e. Further, the colored layer 4 may be formed by using all or part of the side region 7 as a colored material instead of being formed on the side region 7. For example, all or part of the side region 7 can be formed by using white glass or white resin.
 図2、図3に示すように、断面形状は、容器2及び収納空間5の外形形状が矩形状であることが好適である。ただし、図4Aのように、容器2の側面2c及び収納空間5の側壁面が曲面である構成や、楕円状の構成とすることもできる。 As shown in FIGS. 2 and 3, the cross-sectional shape is preferably such that the outer shape of the container 2 and the storage space 5 is rectangular. However, as shown in FIG. 4A, the side surface 2c of the container 2 and the side wall surface of the storage space 5 may be curved or may have an elliptical configuration.
 また、図2、図3では、容器2及び収納空間5の外形形状が正方形であったが、図4Bに示すように、容器2及び収納空間5の外形形状を長方形とすることできる。 2 and 3, the outer shape of the container 2 and the storage space 5 is square, but as shown in FIG. 4B, the outer shape of the container 2 and the storage space 5 can be rectangular.
 なお曲面を含む断面形状よりも、図2や図4Bに示すように、矩形状であることで、本実施の形態の着色層4を設けた効果(適切かつ高効率に色変換でき、従来に比べて所望の色の光を得ることができる)を適切に発揮させることができる。 In addition, as shown in FIG.2 and FIG.4B rather than the cross-sectional shape containing a curved surface, the effect which provided the colored layer 4 of this Embodiment (color conversion can be carried out appropriately and efficiently, as shown in FIG. In comparison, the desired color light can be obtained).
 また図2、図3及び図4A、図4Bでは、容器2及び収納空間5の断面の外形形状を互いに相似形状としているが、図4Cに示すように、容器2の断面の外形形状と収納空間5の断面の外形形状とを異ならせることもできる。例えば図4Cでは、容器2の断面の外形形状が矩形状であり、収納空間5の断面の外形形状が六角形である。ただし、容器2及び収納空間5の断面の外形形状を互いに相似形状とすることが、本実施の形態の着色層4を設けた効果(適切かつ高効率に色変換でき、従来に比べて所望の色の光を得ることができる)を適切に発揮させることができ好ましい。また図4Dに示すように、容器2及び収納空間5の断面の外形形状を、それぞれ互いに相似の台形状にすることができる。例えば図4Dでは、台形の短辺側を光入射面2aとし、長辺側を光出射面2bとしている。これにより、光源から放出された光を、所定の大きさに拡大することができる。また、他の例として、図4Dとは逆に、台形の長辺側を光入射面2aとし、短辺側を光出射面2bとしてもよい。これにより、光源から放出された光を、所定の大きさに集光することができる。また、容器2及び収納空間5の断面の外形形状は、図4Dとは異なり、台形の上底と下底との中心を通る中心線に対して、側面が互いに線対称の位置に形成されていてもよい。 2, 3, 4 </ b> A, and 4 </ b> B, the outer shapes of the cross section of the container 2 and the storage space 5 are similar to each other, but as shown in FIG. 4C, the outer shape of the cross section of the container 2 and the storage space It is also possible to make the outer shape of the cross section of 5 different. For example, in FIG. 4C, the outer shape of the cross section of the container 2 is a rectangular shape, and the outer shape of the cross section of the storage space 5 is a hexagon. However, making the outer shape of the cross section of the container 2 and the storage space 5 similar to each other has the effect of providing the colored layer 4 of the present embodiment (color conversion can be performed appropriately and efficiently, and desired as compared with the prior art. Color light) can be appropriately exhibited, which is preferable. Moreover, as shown to FIG. 4D, the external shape of the cross section of the container 2 and the storage space 5 can be made into a trapezoid shape similar to each other. For example, in FIG. 4D, the shorter side of the trapezoid is the light incident surface 2a, and the longer side is the light emitting surface 2b. Thereby, the light emitted from the light source can be enlarged to a predetermined size. As another example, contrary to FIG. 4D, the long side of the trapezoid may be the light incident surface 2a and the short side may be the light emitting surface 2b. Thereby, the light emitted from the light source can be condensed to a predetermined size. Further, the outer shapes of the cross sections of the container 2 and the storage space 5 are different from those in FIG. 4D, and the side surfaces are formed symmetrically with respect to the center line passing through the centers of the upper base and the lower base of the trapezoid. May be.
 また図2、図3、及び図4の各図において、光入射面及び光出射面は平面で形成されているが、光入射面及び光出射面のいずれか一方、又は、双方が曲面で形成されてもよい。また、図2、図3、図4B~図4Dの各図において、容器2の側面は平面で形成されているが、側面が曲面で形成されてもよい。また各辺の間の角をR形状にしてもよい。すなわち、矩形状、六角形、台形状などの表現は、幾何学的に正確な四角形、六角形、台形などに限られるものではなく、これらを構成する線及び角度が、歪を有し、又は、誤差を含むものも含まれる。これらにより、放出される光の方向を調節することができる。 2, 3 and 4, the light incident surface and the light exit surface are formed as flat surfaces, but either one of the light incident surface and the light exit surface or both are formed as curved surfaces. May be. Further, in each of FIGS. 2, 3, and 4B to 4D, the side surface of the container 2 is formed as a flat surface, but the side surface may be formed as a curved surface. The corners between the sides may be R-shaped. In other words, expressions such as a rectangular shape, a hexagonal shape, and a trapezoidal shape are not limited to geometrically accurate quadrangular shapes, hexagonal shapes, trapezoidal shapes, etc., and lines and angles constituting these have distortions, or Including errors are also included. By these, the direction of the emitted light can be adjusted.
 なお図4の各図ではいずれも着色層4を容器2の側面2cに形成しているが、図3Aのように、着色層4を容器2の側面2c上から光出射面2bの端部2e上にかけて、あるいは図3Bのように、光出射面2bの端部2e上に設けることもできる。 In each drawing of FIG. 4, the colored layer 4 is formed on the side surface 2c of the container 2, but the colored layer 4 is formed on the side surface 2c of the container 2 from the side 2c of the container 2 as shown in FIG. 3A. It can also be provided on the end 2e of the light exit surface 2b as shown in FIG. 3B.
 また上記では、いずれも着色層4を容器2の外面に形成していたが、図5に示すように、着色層4を内部空間5の壁面5aに形成することもできる。着色層4を形成する壁面5aは、容器2の側面2cと対向した位置にある。 In each of the above, the colored layer 4 is formed on the outer surface of the container 2, but the colored layer 4 can also be formed on the wall surface 5a of the internal space 5, as shown in FIG. The wall surface 5 a that forms the colored layer 4 is located at a position facing the side surface 2 c of the container 2.
 あるいは、図6に示すように、容器2の側面2cと内部空間5との間の容器2の側部2dそのものを着色層4とすることができる。係る場合、容器2の成形を二色成形し、このとき、容器2の側部2dとなる部分には着色した樹脂を用いる。あるいは、容器2の側部2dと、それ以外の部分とを接着等で接合し図6に示す容器2を形成することもできる。なお、図5、図6において、図2、図3と同じ符号は、図2、図3と同じ部分を示している。 Alternatively, as shown in FIG. 6, the side portion 2 d of the container 2 between the side surface 2 c of the container 2 and the internal space 5 can be a colored layer 4. In such a case, the container 2 is molded in two colors, and at this time, a colored resin is used for a portion to be the side portion 2d of the container 2. Alternatively, the container 2 shown in FIG. 6 can be formed by bonding the side part 2d of the container 2 and other parts by bonding or the like. 5 and 6, the same reference numerals as those in FIGS. 2 and 3 indicate the same parts as those in FIGS.
 図1に示す波長変換部材1を、図7に示すように、LED等の発光素子10と導光板12との間に介在させることができる。ここで波長変換部材1と発光素子10とを組み合わせたものが、発光装置であり、さらに発光装置に導光板12を加えて光源装置が構成される。あるいは、波長変換部材1と導光板12とを組み合わせて導光部材を構成することもできる。図7に示す発光装置は、例えば、液晶ディスプレイの白色面光源として用いることができる。 The wavelength conversion member 1 shown in FIG. 1 can be interposed between a light emitting element 10 such as an LED and a light guide plate 12 as shown in FIG. Here, a combination of the wavelength conversion member 1 and the light emitting element 10 is a light emitting device, and a light source plate 12 is added to the light emitting device to constitute a light source device. Alternatively, the light guide member can be configured by combining the wavelength conversion member 1 and the light guide plate 12. The light emitting device shown in FIG. 7 can be used as a white surface light source of a liquid crystal display, for example.
 図7に示す構成により、発光素子10から発せられた光は、波長変換部材1の光入射面2aから入射され、波長変換物質3(図1参照)にて波長変換され、波長変換された光が光出射面2bから導光板12に出射される。図1に示す図面では、波長変換部材1を構成する容器2の側面2cに形成された着色層4は上下面に現れる。本実施の形態では、着色層4を設けたことで、発光素子10からの光源光が波長変換部材1の側方領域を波長変換されずに通り抜ける割合を減らすことができ、従来に比べて、所望の色の光を光出射面2bから得ることができる。例えば所望の色の発光光とは白色光であり、図7に示す発光装置や光源装置は白色光を従来に比べて効果的に発光させることができ装置としての信頼度を高めることができる。 With the configuration shown in FIG. 7, light emitted from the light emitting element 10 is incident from the light incident surface 2 a of the wavelength conversion member 1, wavelength-converted by the wavelength conversion material 3 (see FIG. 1), and wavelength-converted light. Is emitted from the light exit surface 2b to the light guide plate 12. In the drawing shown in FIG. 1, the colored layer 4 formed on the side surface 2c of the container 2 constituting the wavelength conversion member 1 appears on the upper and lower surfaces. In the present embodiment, by providing the colored layer 4, it is possible to reduce the rate at which the light source light from the light emitting element 10 passes through the side region of the wavelength conversion member 1 without wavelength conversion. Light of a desired color can be obtained from the light emitting surface 2b. For example, the desired color of emitted light is white light, and the light-emitting device and the light source device shown in FIG. 7 can emit white light more effectively than conventional ones, and can improve the reliability of the device.
 図8は、本発明における第2の実施の形態を示す波長変換部材を備えた発光素子の分解斜視図である。図9は、図8に示す波長変換部材を組み合せた状態で、B-B線に沿って高さ方向に切断し矢印方向から見た拡大縦断面図である。図10は、図8に示す発光素子の各部材を組み合わせた状態で、図8に示すB-B線に沿って高さ方向に切断し矢印方向から見た発光素子の縦断面図である。 FIG. 8 is an exploded perspective view of a light-emitting element provided with a wavelength conversion member according to the second embodiment of the present invention. FIG. 9 is an enlarged longitudinal sectional view taken along the line BB in the height direction and viewed from the arrow direction in a state where the wavelength conversion members shown in FIG. 8 are combined. FIG. 10 is a longitudinal cross-sectional view of the light-emitting element as viewed from the direction of the arrow, cut in the height direction along the line BB shown in FIG. 8 in a state where the members of the light-emitting element shown in FIG. 8 are combined.
 図8、図10に示す発光素子20は、波長変換部材21と、LEDチップ(発光チップ)22とを有して構成される。波長変換部材21は、容器本体23と蓋体24との複数ピースで構成された容器25を備える。また図8、図9、図10に示すように、容器本体23の中央部には有底の収納空間26が形成されている。そして波長変換物質27が収納空間26に充填されている。蓋体24が容器本体23上に図示しない接着層を介して接合される。また、容器25の側面25cに着色層28が形成される。 8 and 10 includes a wavelength converting member 21 and an LED chip (light emitting chip) 22. The wavelength conversion member 21 includes a container 25 formed of a plurality of pieces of a container main body 23 and a lid body 24. As shown in FIGS. 8, 9, and 10, a bottomed storage space 26 is formed at the center of the container body 23. The wavelength conversion substance 27 is filled in the storage space 26. The lid body 24 is joined to the container body 23 via an adhesive layer (not shown). Further, the colored layer 28 is formed on the side surface 25 c of the container 25.
 図8、図9、図10に示す波長変換部材21の容器25の下面が光入射面25aである。光入射面25aに対向する上面が光出射面25bである。 8, 9, and 10, the lower surface of the container 25 of the wavelength conversion member 21 is a light incident surface 25 a. The upper surface facing the light incident surface 25a is the light emitting surface 25b.
 図8、図9、図10に示す波長変換部材21の容器25に設けられた側面25cに対して内側の位置に収納空間26が形成されている。図9では、図8のB-B線での切断面に現れる側面25cを図示したが、B-B線での切断面に現れない他の2つの側面25c(図8に示す正面側と裏面側)にも同様に着色層28を形成することが好適である。なお、光の指向性により、ある側面25cに着色層28を設けることが効果的であれば、ある側面25c上にのみ着色層28を設け、他の側面25cに着色層28を設けなくてもよい。ただし、好ましくは全ての側面25c上に着色層28を設けることである。 A storage space 26 is formed at a position inside the side surface 25c provided in the container 25 of the wavelength conversion member 21 shown in FIGS. 9 shows the side surface 25c that appears on the cut surface along the line BB in FIG. 8, but the other two side surfaces 25c that do not appear on the cut surface along the line BB (the front side and the back surface shown in FIG. 8). Similarly, it is preferable to form the colored layer 28 on the side). If it is effective to provide the colored layer 28 on a certain side surface 25c due to the directivity of light, the colored layer 28 may be provided only on the certain side surface 25c and the colored layer 28 may not be provided on the other side surface 25c. Good. However, it is preferable to provide the colored layer 28 on all the side surfaces 25c.
 図10に示すように、LEDチップ22は、プリント配線基板29に接続され、図8、図10に示すようにLEDチップ22の周囲が枠体30に囲まれている。そして、枠体30内は樹脂層31で封止されている。 As shown in FIG. 10, the LED chip 22 is connected to a printed wiring board 29, and the periphery of the LED chip 22 is surrounded by a frame 30 as shown in FIGS. The inside of the frame 30 is sealed with a resin layer 31.
 図10に示すように、波長変換部材21が枠体30の上面に図示しない接着層を介して接合されてLED等の発光素子20が構成される。 As shown in FIG. 10, the wavelength conversion member 21 is joined to the upper surface of the frame body 30 via an adhesive layer (not shown) to form a light emitting element 20 such as an LED.
 図11Aに示すように、着色層28は、波長変換部材21の容器25の側面25c上から光出射面25bの端部25e上にかけて形成されてもよい。また図11Bに示すように、着色層28は、光出射面25bの端部25e上にのみ形成されてもよい。 As shown in FIG. 11A, the colored layer 28 may be formed from the side surface 25c of the container 25 of the wavelength conversion member 21 to the end portion 25e of the light emitting surface 25b. Further, as shown in FIG. 11B, the colored layer 28 may be formed only on the end portion 25e of the light emitting surface 25b.
 図12は、図8に示す発光素子を用いた表示装置の縦断面図である。図12に示すように表示装置50は、複数の発光素子20(LED)と、各発光素子20に対向する液晶ディスプレイ等の表示部54とを有して構成される。各発光素子20は、表示部54の裏面側に配置される。 FIG. 12 is a longitudinal sectional view of a display device using the light emitting element shown in FIG. As shown in FIG. 12, the display device 50 includes a plurality of light emitting elements 20 (LEDs) and a display unit 54 such as a liquid crystal display facing the light emitting elements 20. Each light emitting element 20 is disposed on the back side of the display unit 54.
 複数の発光素子20は支持体52に支持されている。各発光素子20は、所定の間隔を空けて配列されている。各発光素子20と支持体52とで表示部54に対するバックライト55を構成している。支持体52はシート状や板状、あるいはケース状である等、特に形状や材質を限定するものでない。 The plurality of light emitting elements 20 are supported by the support body 52. The light emitting elements 20 are arranged at a predetermined interval. Each light emitting element 20 and the support 52 constitute a backlight 55 for the display unit 54. The support 52 is not particularly limited in shape or material such as a sheet shape, a plate shape, or a case shape.
 図12に示すように、バックライト55と表示部54との間には、光拡散板53等が介在している。 As shown in FIG. 12, a light diffusion plate 53 or the like is interposed between the backlight 55 and the display unit 54.
 図8、図10に示す発光素子20と図7に示す導光板12とを組み合わせて光源装置を構成することができる。あるいは、図7に示す発光装置(発光素子と、キャピラリ状の波長変換部材1と導光板12等を備える)を図12に示す表示部54の裏面側に配置し(光拡散板53等の介在は任意である)、表示装置50を構成してもよい。 8 and 10 can be combined with the light guide plate 12 shown in FIG. 7 to constitute a light source device. Alternatively, the light-emitting device (including the light-emitting element, the capillary-shaped wavelength conversion member 1, the light guide plate 12, and the like) shown in FIG. 7 is disposed on the back side of the display unit 54 shown in FIG. The display device 50 may be configured.
 また本実施の形態の波長変換部材や発光素子を、上記に示した光源装置や表示装置以外に、その他の形態の光源装置、照明装置、光拡散装置、光反射装置等にも適用することができる。 In addition to the light source device and the display device described above, the wavelength conversion member and the light emitting element of the present embodiment can be applied to other types of light source devices, illumination devices, light diffusion devices, light reflection devices, and the like. it can.
 以下、本発明の効果を明確にするために実施した実施例及び比較例により本発明を詳細に説明する。なお、本発明は、以下の実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples and comparative examples implemented in order to clarify the effects of the present invention. In addition, this invention is not limited at all by the following examples.
[キャピラリ]
 内寸0.5mm×0.5mm角型ガラスキャピラリ(図1、図2参照)
[量子ドット]
 コア/シェル構造の赤色発光量子ドット(QY値;83%)と緑色発光量子ドット(QY値80%、81%)
[量子ドットに対する分散樹脂]
 シリコーン樹脂
 エポキシ樹脂
[キャピラリへの樹脂封入]
 真空引きで封入
[全光束測定]
 キャピラリを導光板の底に貼り付けて測定した。その際、光源として450nm波長LED(駆動20mA)を3個点灯させた。そして、分光器としてASENSETEK lighting Passportを用いた。
[Capillary]
Inner size 0.5 mm x 0.5 mm square glass capillary (see Figs. 1 and 2)
[Quantum dots]
Core / shell structure red light emitting quantum dots (QY value; 83%) and green light emitting quantum dots (QY value 80%, 81%)
[Dispersion resin for quantum dots]
Silicone resin Epoxy resin [Resin encapsulated in capillary]
Enclosed by vacuum [total luminous flux measurement]
Measurement was performed by attaching a capillary to the bottom of the light guide plate. At that time, three 450 nm wavelength LEDs (drive 20 mA) were turned on as light sources. As a spectroscope, ASENSETEK lighting Passport was used.
[試料1]
 量子ドットに対する分散樹脂としてシリコーン樹脂を用い、量子ドットが分散されたシリコーン樹脂をキャピラリへ封入した。なお、量子ドット濃度は、吸光度が15%となる濃度とした。
[試料2]
 量子ドットに対する分散樹脂としてエポキシ樹脂を用い、量子ドットが分散されたエポキシ樹脂をキャピラリへ封入した。なお、量子ドット濃度は、吸光度が15%となる濃度とした。
[Sample 1]
A silicone resin was used as a dispersion resin for the quantum dots, and the silicone resin in which the quantum dots were dispersed was sealed in a capillary. The quantum dot concentration was set to a concentration at which the absorbance was 15%.
[Sample 2]
An epoxy resin was used as a dispersion resin for the quantum dots, and the epoxy resin in which the quantum dots were dispersed was sealed in a capillary. The quantum dot concentration was set to a concentration at which the absorbance was 15%.
[実施例1]
 実施例1では、試料1を用い、キャピラリにペイントを塗布していない波長変換部材(以下、「none_1」という)、キャピラリの光出射面の端部に白色ペイントを塗布した波長変換部材(以下、「top_1」という)、キャピラリの光出射面の側面に白色ペイントを塗布した波長変換部材(以下、「side_1」という)、キャピラリの光出射面の側面上から光出射面の端部上にかけて白色ペイントを塗布した波長変換部材(以下、「side+top_1」という)を用意した。
[Example 1]
In Example 1, the sample 1 was used, a wavelength conversion member (hereinafter referred to as “none_1”) in which no paint was applied to the capillary, and a wavelength conversion member (hereinafter, referred to as “none_1”) in which white paint was applied to the end of the light emission surface of the capillary. "Top_1"), a wavelength conversion member (hereinafter referred to as "side_1") coated with white paint on the side of the light exit surface of the capillary, white paint from the side of the light exit surface of the capillary to the end of the light exit surface The wavelength conversion member (henceforth "side + top_1") which apply | coated was prepared.
 そして、導光板の表面(光出射面)側から発せられる光の発光スペクトル、及び色度図を求めた。その実験結果が、図13及び図14に示されている。 Then, the emission spectrum and chromaticity diagram of light emitted from the surface (light emitting surface) side of the light guide plate were obtained. The experimental results are shown in FIG. 13 and FIG.
 図13に示すように、none_1では、波長約450nm(青色)に大きなピークが見られた。白色ペイントを施すことで、波長約450nm(青色)でのピークを抑えることができるとわかった。特に、side_1あるいは、side+top_1とすることで、効果的に、波長約450nm(青色)でのピークを抑えることができるとわかった。 As shown in FIG. 13, in none_1, a large peak was observed at a wavelength of about 450 nm (blue). It was found that the peak at a wavelength of about 450 nm (blue) can be suppressed by applying white paint. In particular, it was found that the peak at a wavelength of about 450 nm (blue) can be effectively suppressed by setting side_1 or side + top_1.
 続いて、図14の色度図に示すように、none_1が青色で、side_1及びside+top_1は白色あるいは白色に近く、top_1は、none_1とside_1との間の色合いになることがわかった。 Subsequently, as shown in the chromaticity diagram of FIG. 14, it was found that none_1 is blue, side_1 and side + top_1 are white or close to white, and top_1 has a hue between none_1 and side_1.
 このように、top_1、side_1及びside+top_1では白色ペイントにより光入射面から光出射面への側方領域からの青色の光抜けが抑えられることで、光出射面での合成孔は従来(none_1)よりも青みを抑えることができ、特に、side_1及びside+top_1では白色あるいは白色に近い光を得ることができた。しかも、top_1、side_1及びside+top_1ではいずれもnone_1と同等以上の白色光の発光強度を得ることができ、特にside_1の場合はnone_1よりも白色光の発光強度の増大が顕著に見られた。 As described above, in top_1, side_1, and side + top_1, the white paint suppresses blue light leakage from the side region from the light incident surface to the light emitting surface, so that the synthetic hole on the light emitting surface is conventional (none_1). In particular, side_1 and side + top_1 were able to obtain white light or near-white light. Moreover, all of top_1, side_1, and side + top_1 were able to obtain white light emission intensity equal to or higher than that of none_1. In particular, in the case of side_1, the increase in the light emission intensity of white light was more noticeable than that of none_1.
[実施例2]
 実施例2では、試料1を用い、キャピラリにペイントを塗布していない波長変換部材(以下、「none_2」という)、キャピラリの光出射面の端部に銀色ペイントを塗布した波長変換部材(top_2)、キャピラリの光出射面の側面に銀色ペイントを塗布した波長変換部材(side_2)、キャピラリの光出射面の側面上から光出射面の端部上にかけて銀色ペイントを塗布した波長変換部材(side+top_2)を用意した。
[Example 2]
In Example 2, a wavelength conversion member (hereinafter referred to as “none_2”) in which the sample 1 is used and no paint is applied to the capillary, and a wavelength conversion member (top_2) in which silver paint is applied to the end of the light emission surface of the capillary A wavelength converting member (side_2) coated with silver paint on the side of the light emitting surface of the capillary, and a wavelength converting member (side + top_2) coated with silver paint from the side of the light emitting surface of the capillary to the end of the light emitting surface. Prepared.
 そして、導光板の表面(光出射面)側から発せられる光の発光スペクトル、及び色度図を求めた。その実験結果が、図15及び図16に示されている。 Then, the emission spectrum and chromaticity diagram of light emitted from the surface (light emitting surface) side of the light guide plate were obtained. The experimental results are shown in FIG. 15 and FIG.
 図15に示すように、none_2では、波長約450nm(青色)に大きなピークが見られた。一方、銀色ペイントを施すことで、特に、top_2や、side+top_2とすることで、効果的に、波長約450nm(青色)でのピークを抑えることができるとわかった。 As shown in FIG. 15, in none_2, a large peak was observed at a wavelength of about 450 nm (blue). On the other hand, it has been found that the peak at a wavelength of about 450 nm (blue) can be effectively suppressed by applying silver paint, particularly by setting top_2 or side + top_2.
 図16の色度図を見ると、銀色ペイントを施すことで、いずれもnone_2より青色が弱まり、白色に近くなる。本実施の形態では、白色ペイントを施した実施例1の方が、実施例2よりも効果が大きかった。 Referring to the chromaticity diagram of FIG. 16, by applying silver paint, blue is weaker than none_2 and close to white. In the present embodiment, the effect of Example 1 with white paint was greater than that of Example 2.
[実施例3]
 実施例3では、試料2を用い、キャピラリにペイントを塗布していない波長変換部材(none_3)、キャピラリの光出射面の端部に白色ペイントを塗布した波長変換部材(top_3)、キャピラリの光出射面の側面に白色ペイントを塗布した波長変換部材(side_3)、キャピラリの光出射面の側面上から光出射面の端部上にかけて白色ペイントを塗布した波長変換部材(side+top_3)を用意した。
[Example 3]
In Example 3, the sample 2 was used, a wavelength conversion member (none_3) in which no paint was applied to the capillary, a wavelength conversion member (top_3) in which white paint was applied to the end of the light output surface of the capillary, and light output from the capillary A wavelength converting member (side_3) coated with white paint on the side surface of the surface and a wavelength converting member (side + top_3) coated with white paint from the side surface of the light emitting surface of the capillary to the end of the light emitting surface were prepared.
 そして、導光板の表面(光出射面)側から発せられる光の発光スペクトル、及び色度図を求めた。その実験結果が、図17及び図18に示されている。 Then, the emission spectrum and chromaticity diagram of light emitted from the surface (light emitting surface) side of the light guide plate were obtained. The experimental results are shown in FIGS.
 図17に示すように、none_3では、波長約450nm(青色)に大きなピークが見られた。白色ペイントを施すことで、波長約450nm(青色)でのピークを抑えることができるがわかった。 As shown in FIG. 17, in none_3, a large peak was observed at a wavelength of about 450 nm (blue). It was found that the peak at a wavelength of about 450 nm (blue) can be suppressed by applying white paint.
 続いて、図18の色度図に示すように、白色ペイントを施すことで、いずれもnone_3より青色が弱まり、白色に近くなるが、分散樹脂としてシリコーン樹脂を用いたほうが(図14参照)、エポキシ樹脂を用いるよりも、青色を抑制でき、より白色に近づけることができるとわかった。 Subsequently, as shown in the chromaticity diagram of FIG. 18, by applying white paint, blue is weaker than none_3 and close to white, but it is better to use a silicone resin as the dispersion resin (see FIG. 14). It has been found that blue can be suppressed and white can be made closer than when an epoxy resin is used.
[試料3]
 量子ドットに対する分散樹脂としてエポキシ樹脂を用い、量子ドットが分散されたエポキシ樹脂をキャピラリへ封入した。分散樹脂中の量子ドットの濃度を吸光度が20%となる濃度とした。
[試料4]
 量子ドットに対する分散樹脂としてエポキシ樹脂を用い、量子ドットが分散されたエポキシ樹脂をキャピラリへ封入した。分散樹脂中の量子ドットの濃度を吸光度が30%となる濃度とした。
[試料5]
 量子ドットに対する分散樹脂としてシリコーン樹脂を用い、量子ドットが分散されたシリコーン樹脂をキャピラリへ封入した。分散樹脂中の量子ドットの濃度を吸光度が20%となる濃度とした。
[Sample 3]
An epoxy resin was used as a dispersion resin for the quantum dots, and the epoxy resin in which the quantum dots were dispersed was sealed in a capillary. The density | concentration of the quantum dot in dispersion resin was made into the density | concentration which becomes 20% of light absorbency.
[Sample 4]
An epoxy resin was used as a dispersion resin for the quantum dots, and the epoxy resin in which the quantum dots were dispersed was sealed in a capillary. The density | concentration of the quantum dot in dispersion resin was made into the density | concentration used as a light absorbency 30%.
[Sample 5]
A silicone resin was used as a dispersion resin for the quantum dots, and the silicone resin in which the quantum dots were dispersed was sealed in a capillary. The density | concentration of the quantum dot in dispersion resin was made into the density | concentration which becomes 20% of light absorbency.
[比較例1]
 比較例1では、試料3を用い、キャピラリにペイントを塗布していない波長変換部材を用意した。そして光束測定を行った測定結果が以下の表1に示されている。
[Comparative Example 1]
In Comparative Example 1, a sample 3 was used and a wavelength conversion member in which paint was not applied to the capillary was prepared. The measurement results obtained by measuring the luminous flux are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[比較例2]
 比較例2では、試料4を用い、キャピラリにペイントを塗布していない波長変換部材を用意した。そして光束測定を行った測定結果が以下の表2に示されている。
[Comparative Example 2]
In Comparative Example 2, a sample 4 was used and a wavelength conversion member in which no paint was applied to the capillary was prepared. The measurement results obtained by measuring the luminous flux are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実施例3~5]
 実施例3~5では、夫々試料1を用い、キャピラリの側面に白色ペイントを塗布した波長変換部材を用意した。そして光束測定を行う測定位置を実施例3~5で変えた。実施例4は導光板の中央付近、実施例3、及び実施例5はその両側位置を測定位置とした。
[Examples 3 to 5]
In Examples 3 to 5, wavelength conversion members were prepared by using Sample 1 and applying white paint to the side surfaces of the capillaries. The measurement position at which the light flux measurement was performed was changed in Examples 3-5. Example 4 was set as the measurement position in the vicinity of the center of the light guide plate, and Examples 3 and 5 were positioned on both sides thereof.
 実施例3の測定結果が、以下の表3に、実施例4の測定結果が、以下の表4に、実施例5の測定結果が、以下の表5に、夫々示されている。 The measurement results of Example 3 are shown in Table 3 below, the measurement results of Example 4 are shown in Table 4, and the measurement results of Example 5 are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[実施例6~8]
 実施例6~8では、夫々試料5を用い、キャピラリの側面に白色ペイントを塗布した波長変換部材を用意した。そして光束測定を行う測定位置を実施例6~8で変えた。実施例7は導光板の中央付近、実施例6、及び実施例8はその両側位置を測定位置とした。
[Examples 6 to 8]
In Examples 6 to 8, wavelength conversion members were prepared using Sample 5 and applying white paint to the side surfaces of the capillaries. The measurement position at which the light flux measurement was performed was changed in Examples 6-8. In Example 7, the vicinity of the center of the light guide plate was used, and in Examples 6 and 8, both side positions thereof were set as measurement positions.
 実施例6の測定結果が、以下の表6に、実施例7の測定結果が、以下の表7に、実施例8の測定結果が、以下の表8に、夫々示されている。 The measurement results of Example 6 are shown in Table 6 below, the measurement results of Example 7 are shown in Table 7, and the measurement results of Example 8 are shown in Table 8 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 上記の実験結果により、実施例では、色度図のx座標を0.30~0.40、y座標を0.35~045、かつ、色温度を4000K~6500K程度にできることがわかった。 From the above experimental results, it was found that the x coordinate of the chromaticity diagram can be 0.30 to 0.40, the y coordinate can be 0.35 to 045, and the color temperature can be about 4000 K to 6500 K in the example.
 本発明では、容器内に波長変換物質を封入した波長変換部材を用いて、LEDやバックライト装置、表示装置等を実現できる。本発明の波長変換部材によれば、色変換を適切かつ高効率に行うことができるので、本発明の波長変換部材を用いたLED、バックライト装置、表示装置等の消費電力を低減することができる。 In the present invention, an LED, a backlight device, a display device, or the like can be realized using a wavelength conversion member in which a wavelength conversion substance is sealed in a container. According to the wavelength conversion member of the present invention, since color conversion can be performed appropriately and with high efficiency, it is possible to reduce power consumption of an LED, a backlight device, a display device, and the like using the wavelength conversion member of the present invention. it can.
 本出願は、2014年8月22日出願の特願2014-169531に基づく。この内容は全てここに含めておく。 This application is based on Japanese Patent Application No. 2014-169531 filed on Aug. 22, 2014. All this content is included here.

Claims (14)

  1.  第1の面、前記第1の面に対向する第2の面、及び、前記第1の面と前記第2の面との間を繋ぐ側面を備え、前記側面よりも内側に収納空間が設けられた容器と、
     前記収納空間内に配置された波長変換物質と、
     前記側面上、前記第2の面の端部上、又は、前記側面上から前記第2の端部上にかけて形成された着色層と、
     を有することを特徴とする波長変換部材。
    A first surface, a second surface facing the first surface, and a side surface connecting the first surface and the second surface, and a storage space is provided inside the side surface A container,
    A wavelength converting substance disposed in the storage space;
    A colored layer formed on the side surface, on an end portion of the second surface, or on the side surface to the second end portion;
    A wavelength conversion member comprising:
  2.  第1の面、前記第1の面に対向する第2の面、及び、前記第1の面と前記第2の面との間を繋ぐ側面を備え、前記側面よりも内側に収納空間が設けられた容器と、
     前記収納空間内に配置された波長変換物質と、
     前記収納空間の壁面に形成された着色層と、
     を有することを特徴とする波長変換部材。
    A first surface, a second surface facing the first surface, and a side surface connecting the first surface and the second surface, and a storage space is provided inside the side surface A container,
    A wavelength converting substance disposed in the storage space;
    A colored layer formed on the wall surface of the storage space;
    A wavelength conversion member comprising:
  3.  第1の面、前記第1の面に対向する第2の面、及び、前記第1の面と前記第2の面との間を繋ぐ側面を備え、前記側面よりも内側に収納空間が設けられた容器と、
     前記収納空間内に配置された波長変換物質と、
     前記容器の前記側面と前記収納空間までの間に設けられた着色層と、
     を有することを特徴とする波長変換部材。
    A first surface, a second surface facing the first surface, and a side surface connecting the first surface and the second surface, and a storage space is provided inside the side surface A container,
    A wavelength converting substance disposed in the storage space;
    A colored layer provided between the side surface of the container and the storage space;
    A wavelength conversion member comprising:
  4.  前記波長変換物質は、量子ドットを含むことを特徴とする請求項1ないし3のいずれかに記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 3, wherein the wavelength conversion substance includes quantum dots.
  5.  前記波長変換物質は、前記量子ドットを分散した樹脂組成物により形成されることを特徴とする請求項4に記載の波長変換部材。 The wavelength conversion member according to claim 4, wherein the wavelength conversion substance is formed of a resin composition in which the quantum dots are dispersed.
  6.  前記波長変換物質は、前記量子ドットをシリコーン樹脂に分散した樹脂組成物により形成されることを特徴とする請求項5に記載の波長変換部材。 The wavelength converting member according to claim 5, wherein the wavelength converting substance is formed of a resin composition in which the quantum dots are dispersed in a silicone resin.
  7.  前記第1の面及び前記第2の面の、少なくともいずれか一方に垂直な平面で切断した、前記収納空間及び前記容器の外形断面は、いずれも矩形状であることを特徴とする請求項1ないし6のいずれかに記載の波長変換部材。 The outer cross section of the storage space and the container cut by a plane perpendicular to at least one of the first surface and the second surface are both rectangular. The wavelength conversion member in any one of 6 thru | or 6.
  8.  前記着色層は、白色に着色されていることを特徴とする請求項1ないし7のいずれかに記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 7, wherein the colored layer is colored white.
  9.  前記着色層は塗料、インク、あるいはテープにより構成されることを特徴とする請求項1ないし8のいずれかに記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 8, wherein the colored layer is made of paint, ink, or tape.
  10.  前記波長変換物質を構成する樹脂の屈折率は、前記容器の屈折率よりも小さいことを特徴とする請求項1ないし9のいずれかに記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 9, wherein a refractive index of a resin constituting the wavelength conversion substance is smaller than a refractive index of the container.
  11.  前記第1の面に対向して設けられた発光素子と、前記発光素子の発光側に配置される請求項1ないし10のいずれかに記載の波長変換部材と、を有して構成されることを特徴とする発光装置。 The light-emitting element provided to face the first surface, and the wavelength conversion member according to claim 1 disposed on a light-emitting side of the light-emitting element. A light emitting device characterized by the above.
  12.  青色光を発する発光チップと、前記発光チップの光出射側に配置された請求項1ないし10のいずれかに記載の波長変換部材と、を有して構成されることを特徴とする発光素子。 A light emitting device comprising: a light emitting chip that emits blue light; and the wavelength conversion member according to claim 1 disposed on a light emitting side of the light emitting chip.
  13.  請求項11に記載の発光装置、あるいは、請求項12に記載の発光素子と、導光板と、を有することを特徴とする光源装置。 A light source device comprising the light emitting device according to claim 11 or the light emitting element according to claim 12 and a light guide plate.
  14.  表示部と、前記表示部の裏面側に配置された請求項11に記載の発光装置、あるいは、請求項12に記載の発光素子と、を有することを特徴とする表示装置。
     
    A display device comprising: a display unit; and the light-emitting device according to claim 11 or the light-emitting element according to claim 12 arranged on a back side of the display unit.
PCT/JP2015/073061 2014-08-22 2015-08-18 Wavelength conversion member, and light-emitting apparatus, light-emitting element, light source apparatus, and display apparatus using same WO2016027789A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580044961.5A CN106663727B (en) 2014-08-22 2015-08-18 Wavelength conversion member, and light-emitting device, light-emitting element, light source device, and display device using same
KR1020177003704A KR20170045206A (en) 2014-08-22 2015-08-18 Wavelength conversion member, and light-emitting apparatus, light-emitting element, light source apparatus, and display apparatus using same
US15/504,200 US10598844B2 (en) 2014-08-22 2015-08-18 Wavelength conversion member, and light-emitting apparatus, light-emitting element, light source apparatus, and display apparatus using same
EP15833902.8A EP3185316A4 (en) 2014-08-22 2015-08-18 Wavelength conversion member, and light-emitting apparatus, light-emitting element, light source apparatus, and display apparatus using same
JP2016544205A JP6746498B2 (en) 2014-08-22 2015-08-18 Wavelength conversion member, light emitting device using the same, light emitting element, light source device, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-169531 2014-08-22
JP2014169531 2014-08-22

Publications (1)

Publication Number Publication Date
WO2016027789A1 true WO2016027789A1 (en) 2016-02-25

Family

ID=55350733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073061 WO2016027789A1 (en) 2014-08-22 2015-08-18 Wavelength conversion member, and light-emitting apparatus, light-emitting element, light source apparatus, and display apparatus using same

Country Status (7)

Country Link
US (1) US10598844B2 (en)
EP (1) EP3185316A4 (en)
JP (1) JP6746498B2 (en)
KR (1) KR20170045206A (en)
CN (1) CN106663727B (en)
TW (2) TWI681574B (en)
WO (1) WO2016027789A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163151A1 (en) * 2015-04-10 2016-10-13 日本電気硝子株式会社 Wavelength conversion material
JP2017049586A (en) * 2015-09-03 2017-03-09 迎輝科技股▲分▼有限公司 Optical film and light-emitting device having the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072312A1 (en) * 2014-11-04 2016-05-12 Nsマテリアルズ株式会社 Wavelength conversion member, light-emitting device in which same is used, light-emitting element, light-source device, display device, light guide member, and method for manufacturing wavelength conversion member
WO2019108771A1 (en) * 2017-11-29 2019-06-06 Corning Incorporated Quantum-dot led backlight module for led displays
CN110389470A (en) * 2018-04-19 2019-10-29 鸿富锦精密工业(深圳)有限公司 Backing structure and display device
JP2020016856A (en) * 2018-07-27 2020-01-30 セイコーエプソン株式会社 Light source device and projector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071005A (en) * 2007-09-13 2009-04-02 Sony Corp Wavelength-converting member and production method thereof, and light-emitting device using wavelength converting member
JP2013016583A (en) * 2011-07-01 2013-01-24 Nippon Electric Glass Co Ltd Cell for light emitting device and light emitting device
JP2013068728A (en) * 2011-09-21 2013-04-18 Nippon Electric Glass Co Ltd Capillary tube for encapsulating light emission body and wavelength conversion member
JP2013115351A (en) * 2011-11-30 2013-06-10 Sumitomo Metal Mining Co Ltd Led wavelength conversion member and manufacturing method therefor
JP2013218954A (en) * 2012-04-11 2013-10-24 Sony Corp Light-emitting device, display device and lighting device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002251550A1 (en) * 2002-04-25 2003-11-10 Nichia Corporation Light-emitting device using fluorescent substance
US20040032728A1 (en) * 2002-08-19 2004-02-19 Robert Galli Optical assembly for LED chip package
US20040222426A1 (en) * 2003-05-07 2004-11-11 Bear Hsiung Light emitting diode module structure
TW200632430A (en) * 2004-12-03 2006-09-16 Sony Corp Light pickup lens, light-emitting element assembly, surface light source device, and color liquid crystal display device assembly
WO2009092041A2 (en) * 2008-01-16 2009-07-23 Abu-Ageel Nayef M Illumination systems utilizing wavelength conversion materials
TW201034256A (en) * 2008-12-11 2010-09-16 Illumitex Inc Systems and methods for packaging light-emitting diode devices
KR101091348B1 (en) * 2010-07-09 2011-12-07 엘지이노텍 주식회사 Light guide plate using quantum dot, method for manufacturing the same and back light unit
KR101664507B1 (en) 2011-12-08 2016-10-10 엘지이노텍 주식회사 Display device
JP6092522B2 (en) * 2012-04-11 2017-03-08 サターン ライセンシング エルエルシーSaturn Licensing LLC LIGHT EMITTING DEVICE, DISPLAY DEVICE, AND LIGHTING DEVICE
JP5939004B2 (en) * 2012-04-11 2016-06-22 ソニー株式会社 LIGHT EMITTING DEVICE, DISPLAY DEVICE, AND LIGHTING DEVICE
WO2014053951A1 (en) * 2012-10-01 2014-04-10 Koninklijke Philips N.V. Wavelength converting element comprising ceramic capsule
CN103681990B (en) * 2013-12-11 2017-09-01 深圳市华星光电技术有限公司 LED encapsulation piece and preparation method thereof
US9316388B2 (en) * 2014-01-31 2016-04-19 Christie Digital Systems Usa, Inc. Device and kit for cooling a light emitting material
CN105785650B (en) * 2016-05-17 2019-08-20 京东方科技集团股份有限公司 Backlight and its assemble method, display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071005A (en) * 2007-09-13 2009-04-02 Sony Corp Wavelength-converting member and production method thereof, and light-emitting device using wavelength converting member
JP2013016583A (en) * 2011-07-01 2013-01-24 Nippon Electric Glass Co Ltd Cell for light emitting device and light emitting device
JP2013068728A (en) * 2011-09-21 2013-04-18 Nippon Electric Glass Co Ltd Capillary tube for encapsulating light emission body and wavelength conversion member
JP2013115351A (en) * 2011-11-30 2013-06-10 Sumitomo Metal Mining Co Ltd Led wavelength conversion member and manufacturing method therefor
JP2013218954A (en) * 2012-04-11 2013-10-24 Sony Corp Light-emitting device, display device and lighting device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3185316A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016163151A1 (en) * 2015-04-10 2016-10-13 日本電気硝子株式会社 Wavelength conversion material
JP2017049586A (en) * 2015-09-03 2017-03-09 迎輝科技股▲分▼有限公司 Optical film and light-emitting device having the same

Also Published As

Publication number Publication date
TWI681574B (en) 2020-01-01
TW201921733A (en) 2019-06-01
US10598844B2 (en) 2020-03-24
JP6746498B2 (en) 2020-08-26
KR20170045206A (en) 2017-04-26
CN106663727A (en) 2017-05-10
EP3185316A1 (en) 2017-06-28
US20170269280A1 (en) 2017-09-21
EP3185316A4 (en) 2018-03-07
TWI696301B (en) 2020-06-11
CN106663727B (en) 2020-10-16
JPWO2016027789A1 (en) 2017-07-20
TW201616693A (en) 2016-05-01

Similar Documents

Publication Publication Date Title
WO2016027789A1 (en) Wavelength conversion member, and light-emitting apparatus, light-emitting element, light source apparatus, and display apparatus using same
US10698263B2 (en) Light source device and display unit
US10670230B2 (en) Wavelength conversion member, molded body, wavelength conversion apparatus, sheet member, light emitting apparatus, light guide apparatus and display apparatus
TWI640972B (en) Display device and light source module thereof
WO2016072311A1 (en) Wavelength conversion member, and light-emitting device, light-emitting element, light source device, and display device using wavelength conversion member
WO2016072313A1 (en) Light guide member and light source device in which same is used
US9405051B2 (en) Backlight assembly and display device having the same
JP6883159B2 (en) Manufacturing method of wavelength conversion member
TWI608601B (en) Led module, led array module and display module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833902

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544205

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177003704

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15504200

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015833902

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015833902

Country of ref document: EP