WO2016026610A1 - A method of manufacturing a spring comprising a steel wire and a coating - Google Patents

A method of manufacturing a spring comprising a steel wire and a coating Download PDF

Info

Publication number
WO2016026610A1
WO2016026610A1 PCT/EP2015/065541 EP2015065541W WO2016026610A1 WO 2016026610 A1 WO2016026610 A1 WO 2016026610A1 EP 2015065541 W EP2015065541 W EP 2015065541W WO 2016026610 A1 WO2016026610 A1 WO 2016026610A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
steel wire
coated
coating
spring
Prior art date
Application number
PCT/EP2015/065541
Other languages
French (fr)
Inventor
Steven DERYCKE
Luc Stefaan Ledoux
Peter Persoone
Sanaa SARGHINI
Bart VANDE PUTTE
Original Assignee
Nv Bekaert Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nv Bekaert Sa filed Critical Nv Bekaert Sa
Publication of WO2016026610A1 publication Critical patent/WO2016026610A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/024Covers or coatings therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F35/00Making springs from wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/04Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/10Metallic substrate based on Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2350/00Pretreatment of the substrate
    • B05D2350/60Adding a layer before coating
    • B05D2350/65Adding a layer before coating metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2701/00Coatings being able to withstand changes in the shape of the substrate or to withstand welding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • a method of manufacturing a spring comprising a steel wire and a coating
  • the invention relates to a method of manufacturing a spring comprising a steel wire and a silane based coating.
  • the invention further relates to a spring comprising a steel wire provided with a silane based coating.
  • Springs are well known and widely used. Protective coatings have been used to protect the steel wires from corrosion. Corrosion protection is for example important when springs are used in in extreme environments.
  • the protective coating is applied on the coiled springs. This means that first the spring wire is coiled to form the spring and that subsequently the protective coating is applied on the coiled spring.
  • Such manufacturing method has a number of drawbacks. The main drawbacks are that the manufacturing process is expensive and results in springs having a non-uniform coating. Therefore there is a need to provide an improved method of manufacturing coated springs.
  • the method comprises the steps of
  • the curing is for example UV curing or IR curing, for example near infra-red curing.
  • silane based coatings any coating comprising an organofunctional silane.
  • silane based coatings is meant the main component of coating is an organofunctional silane.
  • the coating may contain other components including trace components which are less than the organofunctional silane.
  • the range of the quantity of an organofunctional silane is at least more than 51 wt parts, and preferably the quantity of an organofunctional silane is more than 70 wt parts and more preferably more than 90 wt parts.
  • the organofunctional silanes are usually used as coupling agents between an inorganic, e.g.
  • the silane based coating applied on the steel wire has multiple functions and is much thicker than the silane based coating usually applied between an inorganic and an organic phase as a coupling agent.
  • the silane based coating according to the present invention has a thickness in the range of 4 to 10 ⁇ ; and preferably has a thickness ranging between 5 and 8 ⁇ .
  • the thickness of silane in the range of 4 to 10 ⁇ refers to the average thickness of silane over the coated steel wire product.
  • the coating is preferably homogeneously distributed and has uniform thickness over the coated surface of the steel wire.
  • the thickness may have some deviations, i.e. exceed 10 ⁇ and may lower than 4 ⁇ at certain locations of the coated steel wire.
  • This quantity is distinguishing with the normal dose for applications of silane based polymer between an inorganic and an organic phase as coupling agents.
  • one or more monolayer of silane as coupling agent is applied to the surface of inorganic substrate.
  • the quantity of the coated silane as a coupling agent is desired to provide adhesion between inorganic and organic phase.
  • the silane based polymer of the present invention has multiple functions and its thickness is significantly thicker than the normal use of silane as coupling agent.
  • the silane based coating of the present invention can adhere well to steel wires and provide corrosion resistance for the steel wires.
  • the silane based coating has sufficient flexibility and durability such that e.g. the coated steel wire can survive the spring making operation.
  • the silane based coating also has sufficient heat resistance such that it can be survived e.g. in a stress relieving heat treatment after spring making.
  • At least one of the silicon functional groups X comprises a
  • Functional group Y preferably comprises at least one of the following
  • an amine group (-NH2, -NHR', -NR'2), an unsaturated terminal double or triple carbon-carbon group, an acrylic, methacrylic acid group and its methyl or ethyl esters, -CN, -SH, an isocyanate group, a
  • thiocyanate group or a cyclic ether group as for example an epoxy group or an oxetane group.
  • Preferred functional groups Y comprise an amine group, a vinyl group, an epoxy group or an oxetane group.
  • the functional group Y comprises an epoxy group
  • this epoxy group forms preferably part of a glycidoxy group.
  • Spacer R preferably comprises an alkyl group or an alkoxy group.
  • This alkyl or alkoxy group preferably has from 1 to 6 carbon atoms. Examples comprise methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, hexyl, methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, t-butoxy, pentyloxy and hexyloxy.
  • the organic functional group Y may react with a polymer backbone.
  • the at least one hydrolysable group OR' can react with water, forming reactive silanol groups (SiOH), and then bond to a substrate or self-condense to form siloxane crosslinks (SiOSi).
  • amino silanes such as 7-aminopropyltriethoxysilane
  • glycidoxy alkyl alkoxy silanes such as (3-glycidoxy propyl)- trimethoxysilane, (2-glycidoxyethyl)-trimethoxysilane, (3-glycidoxy propyl)-triethoxysilane, (2-glycidoxyethyl)-triethoxysilane and 3- glycidoxypropyl methyl diethoxysilane.
  • epoxy cyclohexylalkylalkoxy silanes such as [ ⁇ (3,4-epoxy cyclohexyl)ethyl] triethoxysilane;
  • silanes comprising an oxetane group such as 3-alkyl-3-[(trialkoxy silyl alkoxy)methyl] oxetane, for example 3-methyl-3-[(3-trimethoxy silyl propoxy)methyl] oxetane.
  • the coating can be applied by any technique known in the art, for example by dipping or by spraying.
  • a preferred spraying technique comprises electrostatically assisted spraying.
  • Electrostatically assisted spraying a coating is applied by applying a static electricity charge to the droplets of a spray and an opposite charge to the part being sprayed, which then attracts the droplets directly to its surface. Electrostatically assisted spraying allows obtaining a
  • the coating composition further comprises a photoinitiator.
  • Preferred photoinitiators comprise cationic photoinitiators.
  • Preferred deformation processes comprise bending or coiling. As coiling cold winding as well as hot winding can be considered.
  • the spring By the mechanical deformation step such as the coiling step, stresses are created within the material. To relieve theses stresses and to allow the spring to maintain its characteristic resilience, the spring is subjected to a stress relief treatment. Therefore, the spring is preferably subjected to a heat treatment. The spring is thereby heated at a predetermined temperature during a predetermined time period.
  • the spring is for example heated to a temperature above 200 °C, above 250 °C, above 300°C or even above 350 °C and this during a time period of 10 minutes, 15 minutes, 30 minutes or even 45 minutes.
  • a typical heat treatment comprises heating to a temperature of 250 °C during 45 minutes, or heating to a temperature of 280 °C during 30 minutes.
  • the spring is cooled after the stress relief treatment.
  • the method comprises additional steps, for example finishing steps such as grinding and/or shot peening.
  • the steel wire may be made of any kind of steel suitable for coiling
  • examples are steel with a high carbon content, stainless steel, chromium-vanadium alloyed steel, chromium-silicon alloyed steel and chromium-silicon-vanadium alloyed steel.
  • the wire used for the manufacturing of springs may have different cross- sections such as round, square, rectangular, oval, half oval, half round, trapezoidal, triangular cross-sections.
  • Compression springs are preferably made from round wire.
  • compression springs are made from wires having a diameter ranging between 0.1 and 10 mm.
  • Torsion or power springs are preferably made from flat wire.
  • Zinc alloy coatings comprise for example brass coatings, zinc aluminium coatings or zinc aluminium magnesium coatings.
  • a further suitable zinc alloy coating is an alloy comprising 2 to 10 % Al and 0.1 to 0.4 % of a rare earth element such as La and/or Ce.
  • An important advantage of the method of manufacturing springs according to the present invention is that it allows the mechanical deformation of the coated steel wires to make springs. This is a main advantage compared to coated springs known in the art.
  • the springs are first coiled and the coiled springs are coated in a
  • Springs manufactured by such methods have the drawback that it is difficult to obtain a uniform coating. Furthermore the manufacturing process is expensive.
  • coated springs having a uniform and homogenous coating that is completely covering the surface of the wire.
  • the wire is completely coated. Even for springs having no gap or very small gaps between adjacent coils, the full surface of the wire is coated also between two adjacent coils.
  • the method according to the present invention allows to manufacture a coated spring wire having a high degree of concentricity. Furthermore the method according to the present invention avoids post- coating process steps.
  • the coated spring has a high corrosion resistance.
  • the coating material should be flexible. Furthermore the coating should resist the temperatures reached during the coil making step and/or during the stress relief treatment.
  • the coating should preferably resist a temperature of 200 °C, 250 °C, preferably 300°C or even 350 °C and this preferably during a time period of at least 10 minutes, for example 15 minutes, 30 minutes or 45 minutes.
  • a spring having a silane based coating comprises a steel wire coated with a silane based coating in the range of 4 to 10 ⁇ , preferably in the range of 5 to 8 ⁇ .
  • the silane base coating is applied on the steel before the coated steel wire is coiled to form the spring.
  • coated wire according to the present invention can be used to make
  • Springs are defined as elastic bodies used to store mechanical energy.
  • Springs can be classified in different types depending on how the load force is applied to the springs. Different types of springs are tension springs, compression springs and torsion springs:
  • Tension springs are designed to operate with a tension load. This means that a tension spring stretches as the load is applied to the spring.
  • Compression springs are designed to operate with a compression load. This means that a compression springs get shorter as the load is applied to the spring.
  • Torsion springs are designed to operate with a twisting force. The end of the spring rotates through an angle as the load is applied.
  • Springs can also be classified depending on their shape. One can for example distinguish helical springs and flat springs (leaf springs).
  • Helical springs are made of wire coiled in the form of a helix.
  • Flat springs or leaf springs are made of a flat or conical shaped metal.
  • manufacture springs having a spring index lower than 10, for example lower than 9, lower than 8 or even lower than 7.
  • the spring index is defined as the ratio of the mean coil diameter (Dmean) to the wire diameter (d) : D m ean/d.
  • the mean coil diameter Dmean is the average of the outer diameter of the coil and the inner diameter of the coil.
  • FIGURE 1 shows a helical coiled coated spring according to the
  • FIGURE 2 shows the cross-section of a coated wire of a coated spring according to the present invention.
  • Figure 1 shows the cross-section of a spring 100 according to the present invention.
  • the spring 100 comprises a coated steel wire 102.
  • Figure 2 shows the cross-section of the coated steel wire 102.
  • the coated steel wire has a diameter d of 1.6 mm.
  • the coated steel wire 102 comprises a core of high carbon steel wire 104.
  • a zinc or zinc alloy coating 106 is applied on the steel wire 104.
  • a silane based coating 108 is applied on the zinc or zinc alloy coating 106.
  • the silane based coating 108 comprises for example (3-glycidoxy propyl)-trimethoxysilane.
  • the silane based coating 108 is preferably applied by electrostatically assisted spraying.
  • the silane based coating 108 further comprises a photoinitiator such as a cationic photoinitiator.
  • the thickness of the silane based coating 108 is in the range of 4 to 10 ⁇ and preferably in the range of 5 to 8 ⁇ .
  • the coated steel wire is subsequently subjected to a mechanical
  • deformation step for example a coiling step.
  • the spring is for example coiled to form a spring having a spring index equal to 10 or to a spring having a spring index equal to 8.
  • the steel wire is for example subjected to a heat treatment comprising heating to a temperature of 250 °C during 45 minutes or heating to a temperature of 280 °C during 30 minutes.
  • All the springs are made of a steel wire, coated with a zinc or zinc alloy coating and a silane based coating (3-glycidoxy propyl)-trimethoxysilane).
  • the first spring comprises a compression spring having a spring index equal to 10
  • the second spring comprises a compression spring having a spring index equal to 8
  • the third spring comprises a tension spring having a spring index equal to 10.

Abstract

The invention relates to a method of manufacturing a coated spring, said method comprising the steps of - providing a steel wire; - coating said steel wire with a silane based coating in the range of 4 to 10 μm to provide a coated steel wire; - subjecting said coated steel wire to a mechanical deformation to obtain a coated and mechanical deformed steel wire; - subjecting said coated and mechanical deformed steel wire to a stress relief treatment. The invention further relates to a coated spring.

Description

A method of manufacturing a spring comprising a steel wire and a coating
Description
Technical Field
[0001] The invention relates to a method of manufacturing a spring comprising a steel wire and a silane based coating.
The invention further relates to a spring comprising a steel wire provided with a silane based coating.
Background Art
[0002] Springs are well known and widely used. Protective coatings have been used to protect the steel wires from corrosion. Corrosion protection is for example important when springs are used in in extreme environments.
[0003] It is common practice to apply a protective coating on the spring. Such protective coatings are generally applied by spraying or dipping
techniques. In the manufacturing methods known in the art, the protective coating is applied on the coiled springs. This means that first the spring wire is coiled to form the spring and that subsequently the protective coating is applied on the coiled spring. Such manufacturing method has a number of drawbacks. The main drawbacks are that the manufacturing process is expensive and results in springs having a non-uniform coating. Therefore there is a need to provide an improved method of manufacturing coated springs.
Disclosure of Invention
[0004] It is an object of the present invention to provide a method of
manufacturing a spring comprising a steel wire and a silane based coating avoiding the drawbacks of the prior art.
It is another object of the present invention to provide a method of manufacturing a spring whereby a coated wire is coiled.
It is a further object of the present invention to provide a spring provided with a coating whereby the coating is concentric and has a low thickness, for example a thickness lower than 10 μηη.
It is still a further object of the present invention to provide a spring having good corrosion resistance.
[0005] According to a first aspect of the present invention a method of
manufacturing a spring coated with a coating layer is provided.
The method comprises the steps of
- providing a steel wire;
- coating said steel wire with a silane based coating in the range of 4 to 10 Mm, and preferably in the range of 5 to 8 μηη, to provide a coated steel wire;
- subjecting said coated steel wire to a mechanical deformation to obtain a coated and mechanical deformed steel wire;
- subjecting said coated and mechanical deformed steel wire to a stress relief treatment.
[0006] It can be preferred to add one or more curing or drying steps after the application of the coating. The curing is for example UV curing or IR curing, for example near infra-red curing.
[0007] For the purpose of this invention with "silane based coatings" is meant any coating comprising an organofunctional silane. In the present invention, term "silane based coatings" is meant the main component of coating is an organofunctional silane. In the other word, the coating may contain other components including trace components which are less than the organofunctional silane. In case of 100 wt parts silane based coating, the range of the quantity of an organofunctional silane is at least more than 51 wt parts, and preferably the quantity of an organofunctional silane is more than 70 wt parts and more preferably more than 90 wt parts. The organofunctional silanes are usually used as coupling agents between an inorganic, e.g. a metal or glass, and an organic phase, e.g. a polymer or resin, in order to enhance the adhesion between the two phases. In the present invention, the silane based coating applied on the steel wire has multiple functions and is much thicker than the silane based coating usually applied between an inorganic and an organic phase as a coupling agent. The silane based coating according to the present invention has a thickness in the range of 4 to 10 μηη; and preferably has a thickness ranging between 5 and 8 μηη. Herein, the thickness of silane in the range of 4 to 10 μηη refers to the average thickness of silane over the coated steel wire product. The coating is preferably homogeneously distributed and has uniform thickness over the coated surface of the steel wire.
However, the thickness may have some deviations, i.e. exceed 10 μηη and may lower than 4 μηη at certain locations of the coated steel wire. This quantity is distinguishing with the normal dose for applications of silane based polymer between an inorganic and an organic phase as coupling agents. Usually one or more monolayer of silane as coupling agent is applied to the surface of inorganic substrate. The quantity of the coated silane as a coupling agent is desired to provide adhesion between inorganic and organic phase. The silane based polymer of the present invention has multiple functions and its thickness is significantly thicker than the normal use of silane as coupling agent. The silane based coating of the present invention can adhere well to steel wires and provide corrosion resistance for the steel wires. Since it is available in several colors, it can provide aesthetics for the wires. Importantly, the silane based coating has sufficient flexibility and durability such that e.g. the coated steel wire can survive the spring making operation. The silane based coating also has sufficient heat resistance such that it can be survived e.g. in a stress relieving heat treatment after spring making. These advantages make it possible to coil, bend or mould a coated steel wire with silane based coating into a spring. Spring making from a coated steel wire has cost competitive advantages over a post coating operation where a steel wire without polymer coating is first coiled, bent or moulded into a spring and afterwards the spring is coated with polymers. Organofunctional silanes comprise in general an organic functional group Y, linked through a spacer R to one or more silicon atoms having functional groups X. [0008] Preferably, the organifunctional silane has the following formula
Y-R-SiXs
whereby
- X comprises a first functional group, each of these first functional
groups being independently selected from each other;
- R comprises a spacer;
- Y comprises a second functional group.
[0009] The first functional group X represents a silicon functional group, each of the silicon functional groups being independently selected from the group consisting of -OH, -R', -OR', -OC(=O)R' and the halogens such as -CI, -Br, -F, whereby -R' is an alkyl, preferably a C1 -C4 alkyl, most preferably -CH3
[0010] Preferaby, at least one of the silicon functional groups X comprises a
hydrolysable alkoxy group (-OR).
[001 1] Functional group Y preferably comprises at least one of the following
groups : an amine group (-NH2, -NHR', -NR'2), an unsaturated terminal double or triple carbon-carbon group, an acrylic, methacrylic acid group and its methyl or ethyl esters, -CN, -SH, an isocyanate group, a
thiocyanate group or a cyclic ether group as for example an epoxy group or an oxetane group.
Preferred functional groups Y comprise an amine group, a vinyl group, an epoxy group or an oxetane group.
In case the functional group Y comprises an epoxy group, this epoxy group forms preferably part of a glycidoxy group.
[0012] Spacer R preferably comprises an alkyl group or an alkoxy group. This alkyl or alkoxy group preferably has from 1 to 6 carbon atoms. Examples comprise methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, hexyl, methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, t-butoxy, pentyloxy and hexyloxy. [0013] The organic functional group Y may react with a polymer backbone. The at least one hydrolysable group OR' can react with water, forming reactive silanol groups (SiOH), and then bond to a substrate or self-condense to form siloxane crosslinks (SiOSi).
[0014] Examples of suitable commercially available organofunctional silanes
include
amino silanes such as 7-aminopropyltriethoxysilane,
glycidoxy alkyl alkoxy silanes such as (3-glycidoxy propyl)- trimethoxysilane, (2-glycidoxyethyl)-trimethoxysilane, (3-glycidoxy propyl)-triethoxysilane, (2-glycidoxyethyl)-triethoxysilane and 3- glycidoxypropyl methyl diethoxysilane.
epoxy cyclohexylalkylalkoxy silanes such as [β (3,4-epoxy cyclohexyl)ethyl] triethoxysilane;
silanes comprising an oxetane group such as 3-alkyl-3-[(trialkoxy silyl alkoxy)methyl] oxetane, for example 3-methyl-3-[(3-trimethoxy silyl propoxy)methyl] oxetane.
[0015] The coating can be applied by any technique known in the art, for example by dipping or by spraying. A preferred spraying technique comprises electrostatically assisted spraying.
In electrostatically assisted spraying a coating is applied by applying a static electricity charge to the droplets of a spray and an opposite charge to the part being sprayed, which then attracts the droplets directly to its surface. Electrostatically assisted spraying allows obtaining a
homogeneous coating.
[0016] Preferably, the coating composition further comprises a photoinitiator.
Preferred photoinitiators comprise cationic photoinitiators. [0017] According to the present invention, the steel wire coated with the silane based coating is subjected to a mechanical deformation.
Any type of mechanical deformation can be considered. Preferred deformation processes comprise bending or coiling. As coiling cold winding as well as hot winding can be considered.
[0018] By the mechanical deformation step such as the coiling step, stresses are created within the material. To relieve theses stresses and to allow the spring to maintain its characteristic resilience, the spring is subjected to a stress relief treatment. Therefore, the spring is preferably subjected to a heat treatment. The spring is thereby heated at a predetermined temperature during a predetermined time period.
The spring is for example heated to a temperature above 200 °C, above 250 °C, above 300°C or even above 350 °C and this during a time period of 10 minutes, 15 minutes, 30 minutes or even 45 minutes.
A typical heat treatment comprises heating to a temperature of 250 °C during 45 minutes, or heating to a temperature of 280 °C during 30 minutes.
[0019] Preferably, the spring is cooled after the stress relief treatment.
[0020] Possibly, the method comprises additional steps, for example finishing steps such as grinding and/or shot peening.
[0021] The steel wire may be made of any kind of steel suitable for coiling
springs, examples are steel with a high carbon content, stainless steel, chromium-vanadium alloyed steel, chromium-silicon alloyed steel and chromium-silicon-vanadium alloyed steel.
[0022] The wire used for the manufacturing of springs may have different cross- sections such as round, square, rectangular, oval, half oval, half round, trapezoidal, triangular cross-sections.
Compression springs are preferably made from round wire. In a preferred embodiment compression springs are made from wires having a diameter ranging between 0.1 and 10 mm.
Torsion or power springs are preferably made from flat wire.
This flat wire has preferably a width between 1 and 30 mm, for example between 5 and 25 mm. The thickness of the flat wire is preferably between 1 and 6 mm.
[0023] Preferably, the steel wire is provided with a zinc coating or a zinc alloy coating before the silane based coating is applied.
Zinc alloy coatings comprise for example brass coatings, zinc aluminium coatings or zinc aluminium magnesium coatings. A further suitable zinc alloy coating is an alloy comprising 2 to 10 % Al and 0.1 to 0.4 % of a rare earth element such as La and/or Ce.
[0024] An important advantage of the method of manufacturing springs according to the present invention is that it allows the mechanical deformation of the coated steel wires to make springs. This is a main advantage compared to coated springs known in the art. For the coated springs known in the art the springs are first coiled and the coiled springs are coated in a
subsequent step. Springs manufactured by such methods have the drawback that it is difficult to obtain a uniform coating. Furthermore the manufacturing process is expensive.
[0025] The method according to the present invention allows to manufacture
coated springs having a uniform and homogenous coating that is completely covering the surface of the wire. For a spring manufactured by the method according to the present invention the wire is completely coated. Even for springs having no gap or very small gaps between adjacent coils, the full surface of the wire is coated also between two adjacent coils.
[0026] The method according to the present invention allows to manufacture a coated spring wire having a high degree of concentricity. Furthermore the method according to the present invention avoids post- coating process steps.
[0027] A further advantage of a spring manufactured by the method of the
present invention is that the coated spring has a high corrosion resistance.
[0028] It is clear that a coating used to coat a spring according to the present invention needs to survive the spring-making process.
In order to do so the coating material should be flexible. Furthermore the coating should resist the temperatures reached during the coil making step and/or during the stress relief treatment. The coating should preferably resist a temperature of 200 °C, 250 °C, preferably 300°C or even 350 °C and this preferably during a time period of at least 10 minutes, for example 15 minutes, 30 minutes or 45 minutes.
[0029] According to a second aspect of the present invention a spring having a silane based coating is provided. The spring comprises a steel wire coated with a silane based coating in the range of 4 to 10 μηη, preferably in the range of 5 to 8 μηη. The silane base coating is applied on the steel before the coated steel wire is coiled to form the spring.
[0030] The coated wire according to the present invention can be used to
manufacture any type of springs. Springs are defined as elastic bodies used to store mechanical energy.
Springs can be classified in different types depending on how the load force is applied to the springs. Different types of springs are tension springs, compression springs and torsion springs:
Tension springs are designed to operate with a tension load. This means that a tension spring stretches as the load is applied to the spring.
Compression springs are designed to operate with a compression load. This means that a compression springs get shorter as the load is applied to the spring.
Torsion springs are designed to operate with a twisting force. The end of the spring rotates through an angle as the load is applied. [0031] Springs can also be classified depending on their shape. One can for example distinguish helical springs and flat springs (leaf springs).
Helical springs are made of wire coiled in the form of a helix.
Flat springs or leaf springs are made of a flat or conical shaped metal.
[0032] With the method according to the present invention it is possible
manufacture springs having a spring index lower than 10, for example lower than 9, lower than 8 or even lower than 7.
The spring index is defined as the ratio of the mean coil diameter (Dmean) to the wire diameter (d) : Dmean/d.
The mean coil diameter Dmean is the average of the outer diameter of the coil and the inner diameter of the coil.
[0033] The method according to the present invention is also suitable to
manufacture closed springs, i.e. springs having no or very small gaps between adjacent coils. Such coils are difficult to manufacture in a post coating method as it is difficult or even impossible to apply the coating on the wire between two adjacent coils having no or very small gaps between adjacent coils.
Brief Description of Figures in the Drawings
[0034] The invention will now be described into more detail with reference to the accompanying drawings whereby
- FIGURE 1 shows a helical coiled coated spring according to the
present invention;
- FIGURE 2 shows the cross-section of a coated wire of a coated spring according to the present invention.
Mode(s) for Carrying Out the Invention
[0035] The present invention will be described with respect to particular
embodiments and with reference to certain drawings but the invention is not limited thereto but only by the claims. The drawings described are only schematic and are non-limiting. In the drawings, the size of some of the elements may be exaggerated and not drawn on scale for illustrative purposes. The dimensions and the relative dimensions do not correspond to actual reductions to practice of the invention.
[0036] Figure 1 shows the cross-section of a spring 100 according to the present invention. The spring 100 comprises a coated steel wire 102. Figure 2 shows the cross-section of the coated steel wire 102. The coated steel wire has a diameter d of 1.6 mm. The coated steel wire 102 comprises a core of high carbon steel wire 104. A zinc or zinc alloy coating 106 is applied on the steel wire 104. A silane based coating 108 is applied on the zinc or zinc alloy coating 106. The silane based coating 108 comprises for example (3-glycidoxy propyl)-trimethoxysilane. The silane based coating 108 is preferably applied by electrostatically assisted spraying. Possibly, the silane based coating 108 further comprises a photoinitiator such as a cationic photoinitiator. The thickness of the silane based coating 108 is in the range of 4 to 10 μηη and preferably in the range of 5 to 8 μηη.
[0037] The coated steel wire is subsequently subjected to a mechanical
deformation step, for example a coiling step. The spring is for example coiled to form a spring having a spring index equal to 10 or to a spring having a spring index equal to 8.
[0038] To relieve the stresses induced during the coiling, the coated and
mechanical deformed steel wire is subjected to a stress relief treatment. The steel wire is for example subjected to a heat treatment comprising heating to a temperature of 250 °C during 45 minutes or heating to a temperature of 280 °C during 30 minutes.
[0039] To evaluate the corrosion resistance of a coated spring according to the present invention the coated springs are subjected to a salt spray test according to ASTM B1 17. The time until the first with rust appears is determined.
Three different springs are compared in table 1. All the springs are made of a steel wire, coated with a zinc or zinc alloy coating and a silane based coating (3-glycidoxy propyl)-trimethoxysilane).
The first spring comprises a compression spring having a spring index equal to 10, the second spring comprises a compression spring having a spring index equal to 8 and the third spring comprises a tension spring having a spring index equal to 10.
Column 3 of Table 1 shows the corrosion resistance of the coated wire of the springs (expressed in hours till the first white rust appears). The corrosion resistance of the coiled springs is tested at different
temperatures. Therefore the coiled springs are subjected to room temperature, to a temperature of 250 °C during 30 minutes and to a temperature of 270 °C during 30 minutes. The results of the corrosion tests are given in Table 1.
Table 1
Figure imgf000013_0001
From the results of Table 1 one can conclude that good corrosion resistance is maintained even after subjecting the spring to a heat treatment.

Claims

Claims
1. A method of manufacturing a coated spring, said method comprising the steps of
- providing a steel wire;
- coating said steel wire with a silane based coating in the range of 4 to 10 Mm to provide a coated steel wire;
- subjecting said coated steel wire to a mechanical deformation to obtain a coated and mechanical deformed steel wire;
- subjecting said coated and mechanical deformed steel wire to a stress relief treatment.
2. A method of manufacturing a coated spring according to claim 1 , wherein said steel wire comprises a steel wire provided with a zinc coating or a zinc alloy coating.
3. A method according to claim 1 or claim 2, wherein said silane based coating comprises an organofunctional silane having the formula Y-R-S1X3, with X a first functional group, each of said first functional groups X being independently selected from each other, R a spacer and Y a second functional group.
4. A method according to claim 3, wherein at least one of said first functional groups X comprises a hydrolysable alkoxy group.
5. A method according to claim 3 or claim 4, wherein said second functional group Y comprises at least one functional group selected from the group consisting of an amine group, an unsaturated terminal double or triple carbon- carbon group, an acrylic group, a methacrylic acid group, a cyanide group, a thiol group, an isocyanate group, a thiocyanate group or a cyclic ether group.
6. A method according to claim 5, wherein said cyclic ether group comprises an epoxy or oxetane group.
7. A method according to any one of the preceding claims, wherein said silane based coating is applied by electrostatically assisted spray deposition.
8. A method according to any one of the preceding claims, wherein said
mechanical deformation comprises bending or coiling.
9. A method according to any one of the preceding claims, wherein said stress relief treatment comprises subjecting said coated and mechanical deformed steel wire to a temperature of at least 200 °C during a time period of at least 10 minutes.
10. A coated spring comprising a steel wire and a silane based coating in the
range of 4 to 10 μηη, said silane based coating being applied on said steel wire before the steel wire coated with said silane based coating is mechanically deformed to form said coated spring.
1 1. A coated spring according to claim 10, wherein said steel wire comprises a steel wire provided with a zinc or a zinc alloy coating.
12. A coated spring according to claim 10 or 1 1 , wherein said silane based coating comprises an organofunctional silane having the formula Y-R-S1X3, with X a first functional group, each of said first functional groups X being independently selected from each other, R a spacer and Y a second functional group.
13. A coated spring according to claim 12, wherein at least one of said first
functional groups X comprises a hydrolysable alkoxy group.
14. A coated spring according to claim 12 or 13, wherein said second functional group Y comprises at least one functional group selected from the group consisting of an amine group, an unsaturated terminal double or triple carbon- carbon group, an acrylic group, a methacrylic acid group, a cyanide group, a thiol group, an isocyanate group, a thiocyanate group or a cyclic ether group.
15. A coated spring according to any one of claims 10 to 14, wherein said silane based coating has a thickness in the range of 5 to 8 μηη.
PCT/EP2015/065541 2014-08-20 2015-07-08 A method of manufacturing a spring comprising a steel wire and a coating WO2016026610A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14181617 2014-08-20
EP14181617.3 2014-08-20

Publications (1)

Publication Number Publication Date
WO2016026610A1 true WO2016026610A1 (en) 2016-02-25

Family

ID=51357863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/065541 WO2016026610A1 (en) 2014-08-20 2015-07-08 A method of manufacturing a spring comprising a steel wire and a coating

Country Status (1)

Country Link
WO (1) WO2016026610A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021188075A1 (en) * 2020-03-18 2021-09-23 Boycelik Metal Sanayi Ve Ticaret Anonim Sirketi A method of mattress or upholstered furniture springs having improved mechanical features with extra (additional) heat treatment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138513A (en) * 1982-02-09 1983-08-17 Sumitomo Electric Ind Ltd Production of steel wire having excellent spring workability
JPS6326383A (en) * 1986-07-17 1988-02-03 Sawahira:Kk Coating method for coil spring
JPH08188881A (en) * 1995-01-09 1996-07-23 Sumitomo Electric Ind Ltd Stainless steel wire for spring and production of stainless steel spring
JP2001140962A (en) * 1999-11-11 2001-05-22 Kawasaki Steel Corp Steel product for spring and spring
DE10308237A1 (en) * 2003-02-25 2004-09-09 Chemetall Gmbh Aqueous composition imparting improved corrosion resistance to metal surfaces contains a hydrolyzable silane and a metal chelate and optionally also an organic film-former and film-forming aid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58138513A (en) * 1982-02-09 1983-08-17 Sumitomo Electric Ind Ltd Production of steel wire having excellent spring workability
JPS6326383A (en) * 1986-07-17 1988-02-03 Sawahira:Kk Coating method for coil spring
JPH08188881A (en) * 1995-01-09 1996-07-23 Sumitomo Electric Ind Ltd Stainless steel wire for spring and production of stainless steel spring
JP2001140962A (en) * 1999-11-11 2001-05-22 Kawasaki Steel Corp Steel product for spring and spring
DE10308237A1 (en) * 2003-02-25 2004-09-09 Chemetall Gmbh Aqueous composition imparting improved corrosion resistance to metal surfaces contains a hydrolyzable silane and a metal chelate and optionally also an organic film-former and film-forming aid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021188075A1 (en) * 2020-03-18 2021-09-23 Boycelik Metal Sanayi Ve Ticaret Anonim Sirketi A method of mattress or upholstered furniture springs having improved mechanical features with extra (additional) heat treatment

Similar Documents

Publication Publication Date Title
CA2953510C (en) Uv-resistant superhydrophobic coating compositions
MX2008013642A (en) Thin chip resistant powder topcoats for steel.
BRPI0619535A2 (en) metal coating material, metal coating method, metal element
JP2012512338A (en) Cord with improved adhesion promoting coating
JP2006519308A (en) Method for coating a metal surface with a polymer-rich composition
US20230193055A1 (en) High performance coating
KR101499361B1 (en) Uncombustible color steel sheet for household appliances and bulding materials and mehtod of mamufacturing the same
CN102414020A (en) Surface-treated metal material and manufacturing method therefor
US20110274841A1 (en) Coil spring coating portion forming method and apparatus
WO2016026610A1 (en) A method of manufacturing a spring comprising a steel wire and a coating
JP5606807B2 (en) Powder coating method
MX2015005155A (en) Paint composition which has excellent staining resistance and paint films obtained by coating same.
CN106318170A (en) Water-based environment-friendly treating agent for galvanized steel plate, manufacture method and using method thereof
CN112939481A (en) Sunglass lens hardening material and preparation method thereof
EP3137564A1 (en) Coating composition, method for making the coating and use thereof
DE19530836C1 (en) Corrosion resistant coating for bronze
WO2017082170A1 (en) Flocking powder coating method
WO2018053064A1 (en) Glass article containing a composite coating
JP2007175975A (en) Coated, zinc-aluminum alloy-plated steel sheet
DE19627223C1 (en) Production of anticorrosion coating on iron with good adhesion and weather resistance and reversibility
TWI726763B (en) Self-bonding coated electrical steel sheet, laminated core, and method for producing the same
CN112358796A (en) Powder coating for metal sheet coiled material and spraying and curing process
EP1918418B1 (en) Method of coating a substrate
KR101202254B1 (en) Scratch self-recovery coating steel and manufacturing method thereof
KR20100055172A (en) Plastic parts for car

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15734690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15734690

Country of ref document: EP

Kind code of ref document: A1