WO2016026391A1 - 集成式电液驱动调节阀及控制方法 - Google Patents

集成式电液驱动调节阀及控制方法 Download PDF

Info

Publication number
WO2016026391A1
WO2016026391A1 PCT/CN2015/086426 CN2015086426W WO2016026391A1 WO 2016026391 A1 WO2016026391 A1 WO 2016026391A1 CN 2015086426 W CN2015086426 W CN 2015086426W WO 2016026391 A1 WO2016026391 A1 WO 2016026391A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
regulating valve
hydraulic
gear pump
oil
Prior art date
Application number
PCT/CN2015/086426
Other languages
English (en)
French (fr)
Inventor
谢玉东
王勇
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410414844.0A external-priority patent/CN104197074B/zh
Priority claimed from CN201410415263.9A external-priority patent/CN104197081B/zh
Priority claimed from CN201420474696.7U external-priority patent/CN204099699U/zh
Priority claimed from CN201420474588.XU external-priority patent/CN204099686U/zh
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2016026391A1 publication Critical patent/WO2016026391A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/122Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a piston

Definitions

  • the invention relates to an integrated electro-hydraulic driving regulating valve and a control method formed by using an inserting structure, belonging to the technical field of regulating valves.
  • Regulating valve is one of the key equipments of industrial process control system. It is widely used in fluid control applications such as thermal power generation, nuclear power and chemical industry. It is the most commonly used terminal control component in industrial production process.
  • the electro-hydraulic drive control valve combines the advantages of both electronic technology and hydraulic technology, and has the characteristics of large output power, fast response speed, high control precision and flexible signal processing.
  • the traditional electro-hydraulic drive regulating valve requires a complicated oil pipeline, and a large and cumbersome hydraulic station brings inconvenience to the transportation, installation and maintenance of the regulating valve, and is limited to the further advancement of the electro-hydraulic driving regulating valve. Promote the application.
  • valve components are coupled to the actuator and are responsive to signals from the control components.
  • the force acting on the adjusting mechanism of the actuator will be eccentric, if The use of a conventional rigid connection between the actuator and the adjustment mechanism tends to cause the valve stem of the adjustment mechanism to be bent, causing the adjustment valve to jam.
  • the invention aims at the problem that the existing electro-hydraulic driving regulating valve has a large volume and needs to construct a complicated oil pipeline, and provides an electro-hydraulic driving regulating valve with a compact structure and almost no oil pipeline connection.
  • the integrated electro-hydraulic drive regulating valve comprises a valve body, the valve body is provided with an integrated valve core and a valve stem, and the valve stem is connected to a lower piston rod of a double-outlet symmetric hydraulic cylinder through a flexible connecting sleeve, a double-rod symmetrical hydraulic cylinder has a valve position detecting sensor at a top end of the upper piston rod; and the upper and lower oil ports of the double-rod symmetrical hydraulic cylinder are connected with two oil outlets of the two-way gear pump,
  • the two-way gear pump is connected to the motor, and the motor drives the two-way gear pump to operate; and the common motor has a frequency converter, and the frequency converter is connected with the single-chip control unit.
  • the motor is mounted on a rear end surface of a cartridge valve block through a motor mounting screw hole, and the two-way gear pump is mounted on a front end surface of the valve block through a bidirectional gear pump mounting screw hole; an output shaft of the motor Extending into the through hole opened in the valve block, the input shaft of the two-way gear pump also extends into the through hole opened in the valve block, and the output shaft of the motor and the input shaft of the bidirectional gear pump are connected through the coupling together.
  • the replenishing oil tank is installed on the front end surface of the valve block through the oil tank mounting screw hole, and surrounds the two-way gear pump, the two-way gear pump drain port and the safety valve unloading port into the inner cavity of the oil tank.
  • the cartridge valve block is further provided with a hydraulic lock insertion port, a safety valve insertion port and a hydraulic oil port, wherein the hydraulic lock insertion port is used for inserting a hydraulic lock, and the safety valve is inserted.
  • the port is used for inserting a safety valve, and the hydraulic port is respectively connected to the oil inlet and the lower oil port of the double-rod symmetrical hydraulic cylinder through the hose.
  • the cartridge valve block is mounted on one side of a double-outlet symmetric hydraulic cylinder.
  • a flexible connection kit comprising a left earring and a right earring, the left earring and the right earring forming a groove matching the top end of the valve stem, the left earring and the right earring are respectively threaded at the ends of the large cylindrical pin, in the middle of the large cylindrical pin a small hole perpendicularly intersecting the axis and penetrating the large cylindrical pin, the small hole passing through a small cylindrical pin connecting the large cylindrical pin and the upper curved pedestal, and a pair on the upper curved pedestal
  • the anti-skid equalizing spring which implements the pre-tightening force, the anti-slip uniform spring surrounds the large cylindrical pin and the small cylindrical pin; the upper end of the anti-slip uniform spring is on the upper seat, and the lower end is on the left earring and the right earring,
  • the upper seat is provided with a head thread that cooperates with the piston rod.
  • the left earring and the right earring are symmetrically disposed and form an I-shaped groove, and the I-shaped groove cooperates with the upper end of the valve stem.
  • the length of the large cylindrical pin and the small cylindrical pin are smaller than the inner diameter of the anti-skid uniform spring, so the anti-skid uniform spring can prevent the large cylindrical pin and the small cylindrical pin from sliding out of the pin hole.
  • the initial state of the anti-skid equalizing spring is a compressed state, and the connection of the left earring, the right earring and the large cylindrical pin, the connection of the large cylindrical pin and the small cylindrical pin, and the connection of the small cylindrical pin and the upper curved shaft frame are pre-prepared. tight.
  • the whole hydraulic power system does not need hydraulic lines everywhere.
  • the system structure is highly integrated, saving space and compact structure.
  • the valve position detecting sensor detects the moving distance of the upper piston rod, and feeds back the detection result to the regulating valve controller; the distance reflects the opening degree of the regulating valve.
  • a controlled parameter detection sensor is mounted on the fluid delivery conduit.
  • control method of the present invention is as follows:
  • the controlled valve controller sets the controlled parameter of the fluid transported by the pipeline, and the controlled parameter detecting sensor feeds back the collected signal to the regulating valve controller to perform the difference conversion with the set value; the regulating valve controller then calculates the calculated value.
  • the signal is output to the frequency converter, the frequency converter receives the signal from the regulating valve controller, and determines the rotation direction and speed of the motor according to the control signal; the motor drives the two-way gear pump to operate and supplies oil to the system;
  • the hydraulic oil When the two-way gear pump supplies oil from right to left, the hydraulic oil first passes through the hydraulic lock, and then enters the upper chamber of the double-out rod symmetric hydraulic cylinder from the oil inlet port, pushing the piston to move downward with the upper piston rod and the lower piston rod;
  • the lower piston rod acts on the flexible connection kit, and the flexible connection kit applies the self-adjusting action to smoothly and evenly apply the thrust output of the double-outlet symmetric hydraulic cylinder to the valve stem, and the valve stem pushes the spool of the regulating valve downward downward. Reduce the opening of the regulating valve;
  • the hydraulic oil When the two-way gear pump supplies oil from left to right, the hydraulic oil first passes through the hydraulic lock, and then enters the double-out rod symmetrical liquid from the lower oil port.
  • the lower chamber of the cylinder pushes the piston upward with the upper piston rod and the lower piston rod.
  • the lower piston rod acts on the flexible connection kit, and the flexible connection kit adjusts the tension of the double-shaft symmetrical hydraulic cylinder on the valve stem smoothly and evenly by the self-adjusting action, and the valve stem pulls the valve core of the regulating valve upwards, increasing The opening of the large regulating valve.
  • the flexible connection kit works by: the lower end of the piston rod of the hydraulic cylinder is screwed with the head of the flexible connection kit, and the lower end of the valve stem of the adjustment mechanism is connected to the valve core of the regulating valve, and the upper end is made in an I-shape, nested in In the I-shaped groove of the flexible connection kit; when the piston of the hydraulic cylinder moves up and down, the valve core of the regulating valve is moved up and down through the lower end of the piston rod, the flexible connection kit and the valve stem to adjust the valve opening degree of the regulating valve.
  • the integrated electro-hydraulic driving regulating valve of the invention has the advantages of small volume and light weight, and adopts a combination of a frequency converter and an ordinary driving motor to realize the function of controlling the motor, and has a relatively good cost performance and electricity.
  • the output pressure and flow rate of the liquid drive system can be automatically adjusted with the change of the load, the power consumption is small, the life of the regulating valve is prolonged, the system is stable for a long time, and the reliability is high.
  • the force output from the hydraulic actuator acts on the flexible connection kit. Since the small cylindrical pin and the large cylindrical pin of the flexible connection kit can rotate freely, rotation occurs between the upper seat and the left earring and the right earring, and the output shaft of the actuator can be automatically corrected. And the position difference caused by the different axes of the input shaft of the adjusting mechanism, so that the force of the output of the actuator is quickly and effectively transmitted to the adjusting mechanism, and the opening degree of the regulating valve is changed.
  • Figure 1 is a schematic view showing the structure of the present invention
  • FIG. 2 is a schematic view showing the structure of the hydraulic system in the present invention.
  • Figure 2 (a) is a front view of the hydraulic system insertion structure
  • Figure 2 (b) is a left side view of the hydraulic system insertion structure
  • Figure 2 (c) is a plan view of the hydraulic system insertion structure
  • Figure 2 (d) is a rear view of the hydraulic system insertion structure
  • FIG. 3 is a schematic diagram of a control principle of the present invention.
  • FIG. 4 is a schematic diagram of a control algorithm of a single chip controller in the present invention.
  • Figure 5 is a schematic structural view of a flexible connection kit in the present invention.
  • Figure 6 is a cross-sectional view taken along line A-A of Figure 2;
  • Figure 7 is a cross-sectional view taken along line B-B of Figure 2;
  • Figure 8 is a cross-sectional view taken along line C-C of Figure 2;
  • Figure 9 is a schematic view showing the structure of a large cylindrical pin in the present invention.
  • the entirety of the present invention includes a closed hydraulic drive system with a plug-in structure, a flexible connection set 18 that connects the drive system to the valve stem, a valve component, and a control module.
  • the hydraulic drive system is a closed system with a plug-in structure for controlling the opening size of the regulating valve, including the inverter, the motor 7, the two-way gear pump 8, the filter 22, the check valve 3/4/5/6, the safety valve 2. Hydraulic lock 9, double-rod symmetrical hydraulic cylinder 12.
  • the frequency converter is connected to the control module and receives the output signal of the control module.
  • the motor 7 is a general motor for driving, and its control line is connected to the inverter, and the output shaft is connected to the bidirectional gear pump 8.
  • the two ports of the two-way gear pump 8 are connected to the double-outlet symmetrical hydraulic cylinder 12 via a hydraulic lock 9, and the piston rod of the hydraulic cylinder is connected to the valve stem 10 of the regulating valve valve member via a flexible connection kit.
  • the valve component is the regulating part of the regulating valve, which is directly in contact with the controlled medium. Through the action of the spool 20, the throttle area of the valve can be changed, and the parameters such as the pressure and speed of the fluid are changed.
  • the valve components are connected to the hydraulic drive system and are responsive to signals from the control module.
  • the control module adopts single-chip control and built-in control system software, which can complete data collection, processing and storage, and can communicate with the host computer remotely.
  • the integrated electro-hydraulic drive regulating valve of the present invention comprises a charge oil tank 1, a safety valve 2, a check valve 3-6, a common motor 7, a two-way gear pump 8, a hydraulic lock 9, and a double rod symmetry.
  • the two-way gear pump 8 is connected to the ordinary motor 7, and the ordinary motor 7 drives the two-way gear pump 8 to operate.
  • the ordinary motor 7 has an inverter, and the inverter is connected with the single-chip control unit.
  • the two oil outlets of the two-way gear pump 8 are connected to the upper and lower oil ports 13, 15 of the double-outlet symmetric hydraulic cylinder 12 via the hydraulic lock 9, and the lower piston rod 16 of the double-outlet symmetric hydraulic cylinder passes through the flexible connection set 18 and the valve stem 10 is connected, and the valve stem 10 is connected to the spool 20 of the regulating valve.
  • the ordinary motor 7 is mounted on the rear end surface of the valve block 23 through the motor mounting screw hole 40, and the two-way gear pump 8 is mounted on the valve block through the bidirectional gear pump mounting screw holes 26 and 35. 23 on the front side.
  • the output shaft of the ordinary motor 7 extends into the through hole 41 opened in the cartridge valve block 23, and the input shaft of the bidirectional gear pump 8 is also inserted into the insertion hole.
  • the output shaft of the ordinary motor 7 and the input shaft of the bidirectional gear pump 8 are connected together by a coupling.
  • 27 and 36 are the ports of the two-way gear pump 8, and 31 is the drain port of the two-way gear pump.
  • the charge oil tank 1 is mounted on the front end surface of the valve block 23 through the tank mounting screw hole 38, and surrounds the two-way gear pump 8, the two-way gear pump drain port 31, and the safety valve discharge ports 30, 33 into the tank inner cavity.
  • the two-way gear pump 8 is immersed in the hydraulic oil.
  • a series of valve insertion holes and oil flow paths are machined into the cartridge valve block 23 as needed.
  • Two hydraulic locks 9 are respectively installed in the hydraulic lock insertion ports 25, 37, and two safety valves 2 are respectively installed in the safety valve insertion ports 28, 34, the one-way valves 3, 4, 5, 6 and the filter 22 They are mounted on the two-way gear pump 8, respectively.
  • the external hydraulic ports 24, 39 of the valve block 23 are respectively connected to the oil supply port 13 and the lower oil port 15 of the double-outlet symmetric hydraulic cylinder 12 through the hose. In this way, the entire hydraulic power system is connected with a hose between the hydraulic oil port and the double-rod symmetrical hydraulic cylinder 12, and the rest of the hydraulic power system does not need hydraulic lines.
  • the system structure is highly integrated, saving space and compact structure.
  • the flexible connection kit includes a left earring 18-1 and a right earring 18-8, and a left groove 18-1 and a right earring 18-8 form a groove matching the top end of the valve stem, and the left earring 18-1 and the right earring 18 -8 are respectively arranged at both ends of the large cylindrical pin 18-3, and a small hole perpendicularly intersecting the axis and penetrating the large cylindrical pin 18-3 is disposed in the middle of the large cylindrical pin 18-3, and the small hole passes through a connection
  • the large cylindrical pin 18-3 and the small cylindrical pin 18-4 of the upper curved pedestal are provided with a non-slip equalizing spring 18-5 on the upper curved yoke 18-10, and the anti-skid equalizing spring 18-5
  • the large cylindrical pin and the small cylindrical pin are surrounded; the upper end of the anti-slip uniform spring 18-5 is placed on the upper seat 18-6, and the lower end is placed on the left earring 18-1 and the right earring 18-8, and the
  • the upper seat 18-6 is provided with a head thread 18-7 that cooperates with the piston rod.
  • the left earring 18-1 is symmetrically disposed with the right earring 18-8 and forms an I-shaped groove 18-9.
  • the length of the large cylindrical pin 18-3 and the small cylindrical pin 18-4 are smaller than the inner diameter of the anti-slip uniform spring 18-5, so the anti-skid uniform spring 18-5 can prevent the large cylindrical pin 18-3 and the small cylindrical pin 18-4. Slide out the pin hole.
  • the left earring and the right earring are connected by bolts 18-2.
  • the force acting on the valve stem may be eccentric, if a conventional between the lower end of the piston rod and the valve stem is used.
  • the rigid connection is easy to cause the valve stem of the regulating valve to be bent, causing the regulating valve to jam.
  • FIG. 3 shows the control principle of the present invention.
  • a valve position detecting sensor is provided at the top end of the upper piston rod 11 of the double-outlet symmetric hydraulic cylinder 12.
  • the valve position detecting sensor detects the moving distance of the upper piston rod 11 and feeds back the detection result to the regulating valve controller, which reflects the opening degree of the regulating valve.
  • the controlled parameter detecting sensor is installed on the fluid conveying pipeline for detecting controlled parameters such as pressure and flow rate of the fluid transported in the pipeline.
  • the controlled valve controller sets the controlled parameters of the fluid transported by the pipeline, such as the pressure and flow of the fluid, and the controlled parameter detecting sensor feeds back the collected signal to the regulating valve controller, and performs the difference conversion with the set value.
  • the regulating valve controller outputs the calculated signal to the frequency converter, and controls the hydraulic driving system to adjust the opening degree of the regulating valve to stabilize the controlled parameters of the pipeline conveying fluid, such as flow rate and pressure.
  • the frequency converter receives the signal from the regulating valve controller and determines the direction and speed of rotation of the ordinary motor 7 based on the control signal.
  • the ordinary motor 7 drives the two-way gear pump 8 to operate and supplies oil to the system. As shown in FIG. 1, when the two-way gear pump 8 supplies oil from right to left, the hydraulic oil first passes through the hydraulic lock 9, and then enters the upper chamber of the double-out-rod symmetric hydraulic cylinder 12 from the oil-filling port 13, pushing the piston 14 with The upper piston rod 11 and the lower piston rod 16 move downward.
  • the lower piston rod 16 acts on the flexible connection set 18, and the flexible connection set 18 exerts the thrust of the double-out-rod symmetric hydraulic cylinder 12 on the valve stem 10 smoothly and evenly by self-adjusting action, and the valve stem 10 pushes the regulating valve again.
  • the spool 20 moves downward to reduce the opening of the regulating valve.
  • the lower piston rod 16 acts on the flexible connection set 18, and the flexible connection set 18 acts on the valve stem 10 by the self-adjusting action to smoothly and evenly distribute the output force of the double-out-rod symmetric hydraulic cylinder 12, and the valve stem 10 pulls the regulating valve again.
  • the spool 20 moves upward to increase the opening of the regulating valve.
  • FIG. 4 is a schematic diagram of a control algorithm of a single chip controller in the present invention.
  • the cascade control system is a commonly used complex control system.
  • O.J.M.Smith proposed a time-delay compensation method, namely the smith predictive control algorithm.
  • an intelligent composite control algorithm combining the cascade control and the Smith predictive control is proposed.
  • the input of the previous controller is the difference between the set value of the controlled parameter of the pipeline conveying fluid and the signal collected by the controlled parameter detecting sensor; the output of the previous controller is used as the set value of the latter controller;
  • the input of one controller is the difference between the output value of the previous controller and the feedback value of the valve position of the regulating valve; the output of the latter controller is applied to the regulating valve;
  • the previous PID controller on the main ring is the main controller,
  • the latter PID controller on the secondary ring is the secondary controller.
  • the influence of the parameter change of each link on the system gain becomes small, and the control system allows the characteristics of each link to change within a certain range without affecting the control quality of the whole system, that is, the system has a comparative Good adaptive ability.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanically-Actuated Valves (AREA)

Abstract

公开了一种集成式电液驱动调节阀及控制方法。调节阀包括阀体(17),阀体(17)内设有相连的阀芯和阀杆(10),阀杆(10)通过一个柔性连接套(18)与一个双出杆对称液压缸(12)的下活塞杆(16)相连,双出杆对称液压缸(12)的上活塞杆(11)的顶端设有阀位检测传感器;且双出杆对称液压缸(12)的上、下油口(13,15)与双向齿轮泵(8)的两个出油口相连通,双向齿轮泵(8)与电机(7)连接,由电机(7)带动双向齿轮泵(8)运转;且在电机(7)上有变频器,变频器与单片机控制单元连接。该集成式电液驱动调节阀体积小,重量轻,采用变频器与普通驱动电机组合的方式来实现控制电机的功能,具有比较好的性价比,电液驱动系统的输出压力和流量能随负载的变化而自动调整,延长了调节阀的寿命,保证系统长时间稳定运行,具有很高的可靠性。

Description

集成式电液驱动调节阀及控制方法 技术领域
本发明涉及一种利用插装结构形成的集成式电液驱动调节阀及控制方法,属于调节阀技术领域。
背景技术
调节阀是工业过程控制系统的关键设备之一,广泛应用于火力发电、核电、化工等流体控制场合,是工业生产过程最常用的终端控制元件。电液驱动调节阀结合了电子技术和液压技术两方面的优势,具有输出功率大、响应速度快、控制精度高、信号处理灵活等特点。但传统的电液驱动调节阀需要复杂的油液管路,带着一个体积庞大且笨重的液压站,给调节阀的运输、安装、维护带来不便,限制在了电液驱动调节阀的进一步推广应用。
在工业生产控制系统中,阀门部件与执行机构相连,可响应控制元件传来的信号。对于直行程的调节阀而言,在实际安装过程中,很难完全做到执行机构的输出轴与调节机构输入轴完全同轴,因此执行机构作用在调节机构上的力会发生偏载,如果在执行机构与调节机构之间采用传统的刚性连接,则容易导致调节机构的阀杆被压弯,造成调节阀发生卡阻现象。
发明内容
本发明针对现有的电液驱动调节阀存在的体积庞大、需要构建复杂的油液管路等问题,提供一种结构紧凑、几乎不需油液管路连接的电液驱动调节阀。
本发明采用的技术方案如下:
集成式电液驱动调节阀,包括阀体,阀体内设有相连的阀芯和阀杆,所述的阀杆通过一个柔性连接套与一个双出杆对称液压缸的下活塞杆相连,所述的双出杆对称液压缸的上活塞杆的顶端设有阀位检测传感器;且所述的双出杆对称液压缸的上、下油口与双向齿轮泵的两个出油口相连通,所述的双向齿轮泵与电机连接,由电机带动双向齿轮泵运转;且在普通电机上有变频器,变频器与单片机控制单元连接。
所述的电机通过电机安装螺孔安装在一个插装阀阀块的后端面上,双向齿轮泵通过双向齿轮泵安装螺孔安装在所述阀块的前端面上;所述的电机的输出轴伸入所述阀块上开的通孔中,双向齿轮泵的输入轴也伸入所述阀块上开的通孔中,电机的输出轴和双向齿轮泵的输入轴通过联轴器连接在一起。
所述的补油油箱通过油箱安装螺孔安装在阀块的前端面上,把双向齿轮泵、双向齿轮泵泄油口和安全阀卸油口包围到油箱内腔中。
所述的插装阀阀块上还设有液压锁插装口、安全阀插装口、液压油口,所述的液压锁插装口用于插装液压锁,所述的安全阀插装口用于插装安全阀,所述的液压油口通过软管分别接到双出杆对称液压缸的上油口和下油口上。
所述的插装阀阀块安装在双出杆对称液压缸的一侧。
柔性连接套件,包括左耳环和右耳环,左耳环和右耳环中间形成与阀杆的顶端相配合的凹槽,左耳环与右耳环分别串在大圆柱销的两端,在大圆柱销的中部设有一个与其轴线垂直相交且贯通大圆柱销的小孔,小孔内穿过一个连接大圆柱销与上座弧形轴架的小圆柱销,在所述的上座弧形轴架上套装一个对其实施预紧力的防滑均力弹簧,防滑均力弹簧将大圆柱销、小圆柱销包围起来;防滑均力弹簧上端部顶在上座上,下端部顶在左耳环与右耳环上,所述的上座上设有与活塞杆相配合的头部螺纹。
左耳环与右耳环对称设置,且形成工字形凹槽,所述的工字形凹槽与阀杆上端相配合。大圆柱销、小圆柱销的长度均小于防滑均力弹簧的内径,故防滑均力弹簧可以防止大圆柱销、小圆柱销滑出销孔。
所述的防滑均力弹簧初始状态为压缩状态,可对左耳环、右耳环与大圆柱销的连接、大圆柱销与小圆柱销的连接、小圆柱销与上座弧形轴架的连接进行预紧。
整套液压动力系统除了液压油口与双出杆对称液压缸间连接有软管外,其余各处均不用液压管路,系统结构高度集成,节省了空间,结构紧凑。
所述的阀位检测传感器检测上活塞杆的移动距离,并将检测结果反馈给调节阀控制器;该距离反映了调节阀的开口度。
在流体输送管道上安装有被控参数检测传感器。
本发明的控制方法如下:
通过调节阀控制器设定管路输送流体的被控参数,被控参数检测传感器将采集到的信号反馈到调节阀控制器,与设定值进行差值换算;调节阀控制器再将运算所得的信号输出给变频器,变频器接收来自调节阀控制器的信号,并根据控制信号确定电机的旋转方向和速度;电机带动双向齿轮泵运转并向系统供油;
当双向齿轮泵自右向左供油时,液压油先通过液压锁,然后由上油口进入双出杆对称液压缸的上腔,推动活塞带着上活塞杆和下活塞杆向下运动;下活塞杆作用在柔性连接套件上,柔性连接套件通过自身调节作用,平稳均衡地将双出杆对称液压缸输出的推力作用在阀杆上,阀杆再推动调节阀的阀芯向下运动,减小调节阀的开度;
当双向齿轮泵自左向右供油时,液压油先通过液压锁,然后由下油口进入双出杆对称液 压缸的下腔,推动活塞带着上活塞杆和下活塞杆向上运动。下活塞杆作用在柔性连接套件上,柔性连接套件通过自身调节作用,平稳均衡地将双出杆对称液压缸输出的拉力作用在阀杆上,阀杆再拉调节阀的阀芯向上运动,增大调节阀的开度。
柔性连接套件的工作方法是:液压缸的活塞杆下端与柔性连接套件的头部螺纹旋合在一起,调节机构的阀杆下端与调节阀的阀芯相连,上端做成工字形,嵌套在柔性连接套件的工字形凹槽中;液压缸的活塞上下运动时,将通过活塞杆下端、柔性连接套件和阀杆带动调节阀的阀芯上下运动,调节调节阀的阀门开度。
本发明的有益效果如下:
与传统的液压驱动调节阀相比,本发明的集成式电液驱动调节阀体积小,重量轻,采用变频器与普通驱动电机组合的方式来实现控制电机的功能,具有比较好的性价比,电液驱动系统的输出压力和流量能随负载的变化而自动调整,功率消耗小,延长了调节阀的寿命,保证系统长时间稳定运行,具有很高的可靠性。
液压执行机构输出的力作用在柔性连接套件上,由于柔性连接套件的小圆柱销与大圆柱销可以自由转动,在上座与左耳环、右耳环间会发生转动,能够自动矫正执行机构的输出轴和调节机构输入轴不同轴造成的位置差别,从而将执行机构输出的力作用快速有效地传递给调节机构,改变调节阀的开度。
附图说明
图1为本发明的结构原理示意图;
图2为本发明中液压系统插装结构示意图;
图2(a)为液压系统插装结构的主视图;
图2(b)为液压系统插装结构的左视图;
图2(c)为液压系统插装结构的俯视图;
图2(d)为液压系统插装结构的后视图;
图3为本发明的控制原理示意图;
图4为本发明中单片机控制器的控制算法示意图;
图5为本发明中柔性连接套件的结构示意图;
图6为图2的A-A剖视图;
图7为图2的B-B剖视图;
图8为图2的C-C剖视图;
图9为本发明中大圆柱销的结构示意图。
图中:1、补油油箱,2、安全阀,3、4、5、6、单向阀,7、电机,8、双向齿轮泵,9、液压锁,10、阀杆,11、上活塞杆,12、双出杆对称液压缸,13、上油口,14、活塞,15、下油口,16、下活塞杆,17、支架,18、柔性连接套件,18-1、左耳环,18-2、螺栓,18-3、大圆柱销,18-4、小圆柱销,18-5、防滑均力弹簧,18-6、上座,18-7、头部螺纹,18-8、右耳环,18-9、工字形凹槽,18-10、上座弧形轴架;19、阀体,20、阀芯,21、油标,22、过滤器,23、插装阀阀块,24、39、液压油口,25、37、液压锁插装口,26、35、双向齿轮泵安装螺孔,27、36、双向齿轮泵油口,28、34、安全阀插装口,29、32、阀块安装螺孔,30、33、安全阀卸油口,31齿轮泵卸油口,38、油箱安装螺孔,40、电机安装螺孔,41、通孔。
具体实施方式
下面结合附图对本发明进行详细说明:
本发明的整体包括插装结构的闭式液压驱动系统、连接驱动系统与阀杆的柔性连接套件18、阀门部件和控制模块。液压驱动系统为插装结构的闭式系统,用于控制调节阀的开口大小,包括变频器、电机7、双向齿轮泵8、过滤器22、单向阀3/4/5/6、安全阀2、液压锁9、双出杆对称液压缸12。变频器与控制模块相连,接收控制模块的输出信号。电机7为驱动用普通电机,其控制线和变频器相连,输出轴与双向齿轮泵8连接。双向齿轮泵8的两个油口通过液压锁9与双出杆对称液压缸12相通,液压缸的活塞杆通过柔性连接套件与调节阀阀门部件的阀杆10连接。阀门部件是调节阀的调节部分,直接与被控介质接触,通过阀芯20动作,可改变阀门的节流面积,使流体的压力和速度等参数发生变化。阀门部件与液压驱动系统相连,可响应控制模块传来的信号。控制模块采用单片机控制,内装控制系统软件,可完成数据的采集、处理和储存,并可与上位机进行远程通讯。
具体结构如下:
如图1所示,本发明的集成式电液驱动调节阀包括补油油箱1、安全阀2、单向阀3-6、普通电机7、双向齿轮泵8、液压锁9、双出杆对称液压缸12、支架17、柔性连接套件18、阀体19等。双向齿轮泵8与普通电机7连接,由普通电机7带动双向齿轮泵8运转,普通电机7上有变频器,变频器与单片机控制单元连接。双向齿轮泵8的两个出油口通过液压锁9与双出杆对称液压缸12的上下油口13、15连接,双出杆对称液压缸的下活塞杆16通过柔性连接套件18与阀杆10相连,阀杆10再与调节阀的阀芯20相连。
图2是本发明的液压系统插装结构图,普通电机7通过电机安装螺孔40安装在阀块23的后端面上,双向齿轮泵8通过双向齿轮泵安装螺孔26和35安装在阀块23的前端面上。普通电机7的输出轴伸入插装阀阀块23上开的通孔41中,双向齿轮泵8的输入轴也伸入插装 阀阀块23上开的通孔41中,普通电机7的输出轴和双向齿轮泵8的输入轴通过联轴器连接在一起。27和36为双向齿轮泵8的油口,31为双向齿轮泵的泄油口。补油油箱1通过油箱安装螺孔38安装在阀块23的前端面上,把双向齿轮泵8、双向齿轮泵泄油口31和安全阀卸油口30、33包围到油箱内腔中。当油箱灌入液压油后,双向齿轮泵8便被浸入液压油中。
根据需要,插装阀阀块23上加工出一系列阀门插装孔和油液流道。2个液压锁9分别安装在液压锁插装口25、37中,2个安全阀2分别安装在安全阀插装口28、34中,单向阀3、4、5、6和过滤器22分别安装在双向齿轮泵8上。阀块23对外的液压油口24、39,通过软管分别接到双出杆对称液压缸12的上油口13和下油口15上。这样,整套液压动力系统除了液压油口与双出杆对称液压缸12间连接有软管外,其余各处均不用液压管路,系统结构高度集成,节省了空间,结构紧凑。
柔性连接套件,包括左耳环18-1和右耳环18-8,左耳环18-1和右耳环18-8中间形成与阀杆的顶端相配合的凹槽,左耳环18-1与右耳环18-8分别串在大圆柱销18-3的两端,在大圆柱销18-3的中部设有一个与其轴线垂直相交且贯通大圆柱销18-3的小孔,小孔内穿过一个连接大圆柱销18-3与上座弧形轴架的小圆柱销18-4,在所述的上座弧形轴架18-10上套装一个防滑均力弹簧18-5,防滑均力弹簧18-5将大圆柱销、小圆柱销包围起来;防滑均力弹簧18-5上端部顶在上座18-6上,下端部顶在左耳环18-1与右耳环18-8上,防滑均力弹簧18-5初始状态为压缩状态,可对左耳环、右耳环与大圆柱销的连接、大圆柱销与小圆柱销的连接、小圆柱销与上座弧形轴架18-10的连接进行预紧。所述的上座18-6上设有与活塞杆相配合的头部螺纹18-7。左耳环18-1与右耳环18-8对称设置,且形成工字形凹槽18-9。大圆柱销18-3、小圆柱销18-4的长度均小于防滑均力弹簧18-5的内径,故防滑均力弹簧18-5可以防止大圆柱销18-3、小圆柱销18-4滑出销孔。左耳环与右耳环之间通过螺栓18-2连接。
当液压缸输出的力作用在柔性连接套件后,作用力将通过上座18-6、上座弧形轴架18-10、小圆柱销18-4、大圆柱销18-3、左耳环18-1与右耳环18-8、阀杆10,传递给阀芯20,调整调节阀的开口度。
由于在调节阀的实际安装过程中,很难完全做到活塞和阀杆完全同轴,因此作用在阀杆上的力可能会发生偏载,如果在活塞杆下端与阀杆之间采用传统的刚性连接,则容易导致调节阀的阀杆被压弯,造成调节阀发生卡阻现象。采用本发明的柔性连接套件后,当上活塞杆11与阀杆10不同轴时,由于小圆柱销18-4与大圆柱销18-3可以自由转动,在上座18-6与左耳环18-1、右耳环18-8间会发生转动,能够自动矫正下活塞杆16和阀杆10不同轴造成的位置差别,从而将液压缸1输出的力快速有效地传递给阀芯20,避免了不同轴造成的调节 阀卡阻现象,延长了调节阀的寿命,提高了调节阀的响应速度和控制精度。
图3给出了本发明的控制原理。在双出杆对称液压缸12的上活塞杆11顶端设有阀位检测传感器。阀位检测传感器检测上活塞杆11的移动距离,并将检测结果反馈给调节阀控制器,该距离反映了调节阀的开口度。被控参数检测传感器安装在流体输送管道上,用于检测管道中输送流体的被控参数,如压力、流量等。通过调节阀控制器设定管路输送流体的被控参数,如流体的压力和流量等,被控参数检测传感器将采集到的信号反馈到调节阀控制器,与设定值进行差值换算,根据控制算法,调节阀控制器再将运算所得的信号输出给变频器,控制液压驱动系统对调节阀的开度进行调整,以稳定管路输送流体的被控参数,如流量和压力等。
变频器接收来自调节阀控制器的信号,并根据控制信号确定普通电机7的旋转方向和速度。普通电机7带动双向齿轮泵8运转并向系统供油。如图1所示,当双向齿轮泵8自右向左供油时,液压油先通过液压锁9,然后由上油口13进入双出杆对称液压缸12的上腔,推动活塞14带着上活塞杆11和下活塞杆16向下运动。下活塞杆16作用在柔性连接套件18上,柔性连接套件18通过自身调节作用,平稳均衡地将双出杆对称液压缸12输出的推力作用在阀杆10上,阀杆10再推动调节阀的阀芯20向下运动,减小调节阀的开度。当双向齿轮泵8自左向右供油时,液压油先通过液压锁9,然后由下油口15进入双出杆对称液压缸12的下腔,推动活塞14带着上活塞杆11和下活塞杆16向上运动。下活塞杆16作用在柔性连接套件18上,柔性连接套件18通过自身调节作用,平稳均衡地将双出杆对称液压缸12输出的拉力作用在阀杆10上,阀杆10再拉调节阀的阀芯20向上运动,增大调节阀的开度。
图4为本发明中单片机控制器的控制算法示意图。串级控制系统是一种常用的复杂控制系统。为消除时滞环节对控制系统的影响,O.J.M.Smith提出一种时滞补偿方法,即smith预估控制算法。在本发明中,为了消除管道输送系统的时滞特性对调节阀控制性能的影响,提出了将串级控制与Smith预估控制进行复合的智能复合控制算法。前一个控制器的输入为管路输送流体的被控参数的设定值与被控参数检测传感器采集到的信号的差值;前一个控制器的输出作为后一个控制器的设定值;后一个控制器的输入为前一个控制器的输出值与调节阀阀位反馈值的差值;后一个控制器的输出给调节阀;处于主环上的前一个PID控制器为主控制器,处于副环上的后一个PID控制器为副控制器。采用本发明的智能复合控制算法后,各环节的参数变化对系统增益的影响程度变小,控制系统允许各环节的特性在一定范围内变动,而不影响整个系统的控制品质,即系统具有较好的自适应能力。

Claims (10)

  1. 集成式电液驱动调节阀,包括阀体,阀体内设有相连的阀芯和阀杆,其特征在于:所述的阀杆通过一个柔性连接套与一个双出杆对称液压缸的下活塞杆相连,所述的双出杆对称液压缸的上活塞杆的顶端设有阀位检测传感器;且所述的双出杆对称液压缸的上、下油口与双向齿轮泵的两个出油口相连通,所述的双向齿轮泵与电机连接,由电机带动双向齿轮泵运转;且在普通电机上有变频器,变频器与单片机控制单元连接。
  2. 如权利要求1所述的集成式电液驱动调节阀,其特征在于:所述的双向齿轮泵的两个出油口通过液压锁与双出杆对称液压缸的上下油口连接。
  3. 如权利要求1所述的集成式电液驱动调节阀,其特征在于:所述的电机通过电机安装螺孔安装在一个插装阀阀块的后端面上,双向齿轮泵通过双向齿轮泵安装螺孔安装在所述阀块的前端面上;所述的电机的输出轴伸入所述阀块上开的通孔中,双向齿轮泵的输入轴也伸入所述阀块上开的通孔中,电机的输出轴和双向齿轮泵的输入轴通过联轴器连接在一起。
  4. 如权利要求1所述的集成式电液驱动调节阀,其特征在于:所述的补油油箱通过油箱安装螺孔安装在阀块的前端面上,把双向齿轮泵、双向齿轮泵泄油口和安全阀卸油口包围到油箱内腔中。
  5. 如权利要求1所述的集成式电液驱动调节阀,其特征在于:所述的插装阀阀块上还设有液压锁插装口、安全阀插装口、液压油口,所述的液压锁插装口用于插装液压锁,所述的安全阀插装口用于插装安全阀,所述的液压油口通过软管分别接到双出杆对称液压缸的上油口和下油口上。
  6. 如权利要求1所述的集成式电液驱动调节阀,其特征在于:在流体输送管道上安装有被控参数检测传感器。
  7. 如权利要求1所述的集成式电液驱动调节阀,其特征在于:所述的柔性连接套件,包括左耳环和右耳环,左耳环和右耳环中间形成与阀杆的顶端相配合的凹槽,左耳环与右耳环分别串在大圆柱销的两端,在大圆柱销的中部设有一个与其轴线垂直相交且贯通大圆柱销的小孔,小孔内穿过一个连接大圆柱销与上座弧形轴架的小圆柱销,在所述的上座弧形轴架上套装一个对其实施预紧力的防滑均力弹簧,防滑均力弹簧将大圆柱销、小圆柱销包围起来;防滑均力弹簧上端部顶在上座上,下端部顶在左耳环与右耳环上,所述的上座上设有与活塞杆相配合的头部螺纹。
  8. 如权利要求7所述的集成式电液驱动调节阀,其特征在于:左耳环与右耳环对称设置,且形成工字形凹槽。
  9. 如权利要求7所述的集成式电液驱动调节阀,其特征在于:大圆柱销、小圆柱销的长 度均小于防滑均力弹簧的内径,故防滑均力弹簧可以防止大圆柱销、小圆柱销滑出销孔。
  10. 如权利要求1所述的集成式电液驱动调节阀的控制方法,其特征在于:
    通过调节阀控制器设定管路输送流体的被控参数,被控参数检测传感器将采集到的信号反馈到调节阀控制器,与设定值进行差值换算;根据控制算法,调节阀控制器再将运算所得的信号输出给变频器,变频器接收来自调节阀控制器的信号,并根据控制信号确定电机的旋转方向和速度;电机带动双向齿轮泵运转并向系统供油;
    当双向齿轮泵自右向左供油时,液压油先通过液压锁,然后由上油口进入双出杆对称液压缸的上腔,推动活塞带着上活塞杆和下活塞杆向下运动;下活塞杆作用在柔性连接套件上,柔性连接套件通过自身调节作用,平稳均衡地将双出杆对称液压缸输出的推力作用在阀杆上,阀杆再推动调节阀的阀芯向下运动,减小调节阀的开度;
    当双向齿轮泵自左向右供油时,液压油先通过液压锁,然后由下油口进入双出杆对称液压缸的下腔,推动活塞带着上活塞杆和下活塞杆向上运动。下活塞杆作用在柔性连接套件上,柔性连接套件通过自身调节作用,平稳均衡地将双出杆对称液压缸输出的拉力作用在阀杆上,阀杆再拉调节阀的阀芯向上运动,增大调节阀的开度。
PCT/CN2015/086426 2014-08-21 2015-08-08 集成式电液驱动调节阀及控制方法 WO2016026391A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201410414844.0 2014-08-21
CN201420474588.X 2014-08-21
CN201410414844.0A CN104197074B (zh) 2014-08-21 2014-08-21 集成式电液驱动调节阀及控制方法
CN201410415263.9A CN104197081B (zh) 2014-08-21 2014-08-21 一种控制阀柔性连接套件
CN201410415263.9 2014-08-21
CN201420474696.7 2014-08-21
CN201420474696.7U CN204099699U (zh) 2014-08-21 2014-08-21 一种控制阀柔性连接套件
CN201420474588.XU CN204099686U (zh) 2014-08-21 2014-08-21 集成式电液驱动调节阀

Publications (1)

Publication Number Publication Date
WO2016026391A1 true WO2016026391A1 (zh) 2016-02-25

Family

ID=55350188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086426 WO2016026391A1 (zh) 2014-08-21 2015-08-08 集成式电液驱动调节阀及控制方法

Country Status (1)

Country Link
WO (1) WO2016026391A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108223495A (zh) * 2018-01-16 2018-06-29 莱歇研磨机械制造(上海)有限公司 一种翻辊泵站装置
CN108425894A (zh) * 2018-05-21 2018-08-21 长江三峡通航管理局 一种实现同步控制与适应动态负载的液压装置
TWI641937B (zh) * 2016-03-30 2018-11-21 日商富士金股份有限公司 Pressure control device and pressure control system
CN109268325A (zh) * 2018-11-20 2019-01-25 燕山大学 面向超越负载可精确保位控制的电液驱动单元
CN111425471A (zh) * 2020-04-26 2020-07-17 山东理工大学 一种电磁直驱柱塞泵驱动的静液作动系统
CN112879428A (zh) * 2021-03-16 2021-06-01 安徽工程大学 一种基于机液控制系统的直线滚动导轨的预紧装置
CN113202965A (zh) * 2021-04-13 2021-08-03 深圳科荣达航空科技有限公司 一种容积控制式阀
CN113716025A (zh) * 2021-08-30 2021-11-30 西安微电子技术研究所 一种无人机电静液刹车控制装置及动态保压方法
CN113958548A (zh) * 2021-11-05 2022-01-21 中国船舶科学研究中心 一种自动互锁的半浸桨船用双驾驶台液压控制系统
CN114017415A (zh) * 2021-11-02 2022-02-08 陈金祥 一种液压油缸
CN114370521A (zh) * 2022-01-13 2022-04-19 中国铁建重工集团股份有限公司 一种电比例溢流阀滞环补偿控制方法及其系统
CN114593113A (zh) * 2022-03-09 2022-06-07 青岛豪德博尔实业有限公司 煤矿集中远程供液系统
CN114704388A (zh) * 2022-04-08 2022-07-05 西安交通大学 一种燃气轮机燃料调节阀及控制系统、控制方法
CN117404483A (zh) * 2023-12-15 2024-01-16 中国矿业大学 一种浮选柱矿浆流量调节阀

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3430916A (en) * 1967-04-11 1969-03-04 Ramcon Corp Electrically operated valve
US4132071A (en) * 1977-10-11 1979-01-02 Hills-Mccanna Company Electro-hydraulic controlled valve actuator system
CN201162841Y (zh) * 2008-02-28 2008-12-10 朱玉民 液压关闭开启阀
CN201306149Y (zh) * 2008-12-01 2009-09-09 什邡慧丰采油机械有限责任公司 井口安全液压截断装置
CN101598232A (zh) * 2009-07-20 2009-12-09 山东大学 控制阀电液驱动器
CN104197074A (zh) * 2014-08-21 2014-12-10 山东大学 集成式电液驱动调节阀及控制方法
CN204099686U (zh) * 2014-08-21 2015-01-14 山东大学 集成式电液驱动调节阀

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3430916A (en) * 1967-04-11 1969-03-04 Ramcon Corp Electrically operated valve
US4132071A (en) * 1977-10-11 1979-01-02 Hills-Mccanna Company Electro-hydraulic controlled valve actuator system
CN201162841Y (zh) * 2008-02-28 2008-12-10 朱玉民 液压关闭开启阀
CN201306149Y (zh) * 2008-12-01 2009-09-09 什邡慧丰采油机械有限责任公司 井口安全液压截断装置
CN101598232A (zh) * 2009-07-20 2009-12-09 山东大学 控制阀电液驱动器
CN104197074A (zh) * 2014-08-21 2014-12-10 山东大学 集成式电液驱动调节阀及控制方法
CN204099686U (zh) * 2014-08-21 2015-01-14 山东大学 集成式电液驱动调节阀

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI641937B (zh) * 2016-03-30 2018-11-21 日商富士金股份有限公司 Pressure control device and pressure control system
CN108223495B (zh) * 2018-01-16 2024-02-09 莱歇研磨机械制造(上海)有限公司 一种翻辊泵站装置
CN108223495A (zh) * 2018-01-16 2018-06-29 莱歇研磨机械制造(上海)有限公司 一种翻辊泵站装置
CN108425894A (zh) * 2018-05-21 2018-08-21 长江三峡通航管理局 一种实现同步控制与适应动态负载的液压装置
CN108425894B (zh) * 2018-05-21 2023-10-31 宜昌三峡通航工程技术有限公司 一种实现同步控制与适应动态负载的液压装置
CN109268325A (zh) * 2018-11-20 2019-01-25 燕山大学 面向超越负载可精确保位控制的电液驱动单元
CN109268325B (zh) * 2018-11-20 2023-09-26 燕山大学 面向超越负载可精确保位控制的电液驱动单元
CN111425471A (zh) * 2020-04-26 2020-07-17 山东理工大学 一种电磁直驱柱塞泵驱动的静液作动系统
CN112879428A (zh) * 2021-03-16 2021-06-01 安徽工程大学 一种基于机液控制系统的直线滚动导轨的预紧装置
CN113202965B (zh) * 2021-04-13 2022-08-23 深圳科荣达航空科技有限公司 一种容积控制式阀
CN113202965A (zh) * 2021-04-13 2021-08-03 深圳科荣达航空科技有限公司 一种容积控制式阀
CN113716025B (zh) * 2021-08-30 2023-05-16 西安微电子技术研究所 一种无人机电静液刹车控制装置及动态保压方法
CN113716025A (zh) * 2021-08-30 2021-11-30 西安微电子技术研究所 一种无人机电静液刹车控制装置及动态保压方法
CN114017415A (zh) * 2021-11-02 2022-02-08 陈金祥 一种液压油缸
CN113958548A (zh) * 2021-11-05 2022-01-21 中国船舶科学研究中心 一种自动互锁的半浸桨船用双驾驶台液压控制系统
CN114370521A (zh) * 2022-01-13 2022-04-19 中国铁建重工集团股份有限公司 一种电比例溢流阀滞环补偿控制方法及其系统
CN114370521B (zh) * 2022-01-13 2024-02-02 中国铁建重工集团股份有限公司 一种电比例溢流阀滞环补偿控制方法及其系统
CN114593113A (zh) * 2022-03-09 2022-06-07 青岛豪德博尔实业有限公司 煤矿集中远程供液系统
CN114593113B (zh) * 2022-03-09 2022-11-15 青岛豪德博尔实业有限公司 煤矿集中远程供液系统
CN114704388A (zh) * 2022-04-08 2022-07-05 西安交通大学 一种燃气轮机燃料调节阀及控制系统、控制方法
CN117404483A (zh) * 2023-12-15 2024-01-16 中国矿业大学 一种浮选柱矿浆流量调节阀

Similar Documents

Publication Publication Date Title
WO2016026391A1 (zh) 集成式电液驱动调节阀及控制方法
CN104197074B (zh) 集成式电液驱动调节阀及控制方法
CN109654269B (zh) 平衡活塞式恒压阀
CN109340220B (zh) 深海用电静液作动器
CN103032612B (zh) 一种双开启压力双排量安全阀
CN105545852B (zh) 一种高速开关先导比例阀
CN204099686U (zh) 集成式电液驱动调节阀
CN106762926B (zh) 可调压和卸荷的电液控制机构
CN105134538B (zh) 一种变量液压泵、马达的变量控制活塞及其应用
CN110332172B (zh) 一种动力单元内置于液压杆的液压促动器
CN210595251U (zh) 一种液氨制氢系统
CN102221024A (zh) 大流量机械反馈先导控制插装式比例节流阀系统
CN211475052U (zh) 新型水力驱动调压调流阀
CN201944158U (zh) 液压制动器的制动泵
CN210566503U (zh) 一种液氨制氢系统中的压力控制阀
CN205001135U (zh) 一种变量液压泵、马达的变量控制活塞及液压泵、马达
CN111963740A (zh) 一种节能的恒流量调节阀
CN203604777U (zh) 设有故障反馈结构的阀门液压执行器
CN202158028U (zh) 大流量机械反馈先导控制插装式比例节流阀
CN201016329Y (zh) 可调式组合阀液力平衡泵头
CN111997956A (zh) 一种液压调速阀
CN112177991A (zh) 一种基于电磁阀的新型ac伺服泵控油缸系统
CN2624002Y (zh) 定压注水控制器
CN204200522U (zh) 一种集成阀及压缩机
CN201047345Y (zh) 往复式液压隔膜泵差压型油量自动控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 15833532

Country of ref document: EP

Kind code of ref document: A1