WO2016026148A1 - 背光模块及液晶显示装置 - Google Patents

背光模块及液晶显示装置 Download PDF

Info

Publication number
WO2016026148A1
WO2016026148A1 PCT/CN2014/085039 CN2014085039W WO2016026148A1 WO 2016026148 A1 WO2016026148 A1 WO 2016026148A1 CN 2014085039 W CN2014085039 W CN 2014085039W WO 2016026148 A1 WO2016026148 A1 WO 2016026148A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
liquid crystal
light
backlight module
crystal display
Prior art date
Application number
PCT/CN2014/085039
Other languages
English (en)
French (fr)
Inventor
樊勇
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/384,150 priority Critical patent/US20160054503A1/en
Publication of WO2016026148A1 publication Critical patent/WO2016026148A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to the field of liquid crystal display technology, and in particular to a backlight module and a liquid crystal display device. Background technique
  • a white light emitting diode In the conventional liquid crystal display device, a white light emitting diode (LED) is generally used as a backlight source, and a backlight of the liquid crystal is realized by a reasonable combination of the light guide plate and the optical film.
  • LED white light emitting diode
  • the current solutions for realizing white light source, high color gamut, and high color saturation in backlights are: using ultraviolet LEDs with RGB phosphors; Blue LED with red and green phosphor; use blue LED plus green LED plus red LED. These schemes can all increase the color gamut, but they are more difficult to implement and costly.
  • the Quantum Dot (QD) technology is a semiconductor nanomaterial structure technology in which electrons are bound to a certain range, and is composed of ultra-small compound crystals having a size of 1 to 100 nm.
  • quantum dot technology crystals of different sizes can be used to control the wavelength of light, thereby precisely controlling the color of light. Therefore, quantum dot materials are used in backlight modules, and high-spectrum light sources (such as blue LEDs) are used to replace traditional white LED light sources.
  • the quantum dots are irradiated with high-frequency light sources, and lasers can generate different wavelengths of light by adjusting quantum dots.
  • the size of the material can adjust the color of the synthesized light to achieve the backlight requirement of the liquid crystal display device with high color gamut.
  • a blue light emitting diode (LED) 11 is disposed on a light incident side of the light guide plate 12
  • a quantum dot phosphor film 13 is disposed on a light emitting surface of the light guide plate 12 , wherein the light emitted by the blue LED 11 passes through the light guide plate 12 . It is converted into a surface light source, and is emitted from the light-emitting surface of the light guide plate 12 through the quantum dot phosphor film 13, thereby converting blue light into a backlight required for the liquid crystal display device.
  • a quantum dot phosphor film 13 is required to be produced in a large-sized liquid crystal display device, a large number of quantum dot materials are required, and uniformity of coating of the quantum dot phosphor layer is required, resulting in high cost. .
  • the quantum dot phosphor film 13 is in use, if the optical film structure is different or the optical film type is different, the optical film is improved. After the light passes through the liquid crystal display panel, the chromaticity and brightness thereof are greatly different, so the structure of the optical film, the supplier of the optical film or the supplier of the optical film cannot be easily changed during the use of the quantum dot fluorescent film 13 The type of optical diaphragm, which greatly limits the flexibility and versatility of quantum dot phosphor optical film use.
  • a blue light emitting diode (LED) 21 is disposed on the light incident side of the light guide plate 22, and the quantum dot phosphor is encapsulated in a glass tube to form a quantum dot phosphor glass tube 23, wherein the quantum dot phosphor glass tube 23 is disposed.
  • LED 21 blue light emitting diode
  • the blue light emitted from the blue LED 11 is irradiated onto the light incident side of the light guide plate 12 through the quantum dot phosphor glass tube 23.
  • the quantum dot phosphor glass tube 23 is complicated to manufacture and costly, and the quantum dot phosphor glass tube 23 is easily broken. Summary of the invention
  • an object of the present invention is to provide a backlight module, including: a light guide plate having at least one light incident side; a light source disposed adjacent to the light incident side; at least one quantum dot a film strip disposed between the light source and the light incident side surface; wherein light emitted by the light source is irradiated onto the light incident side through the quantum dot film strip.
  • the quantum dot film strip comprises a quantum dot phosphor layer and a transparent protective outer layer; wherein the transparent protective outer layer encloses the quantum dot phosphor layer.
  • the quantum dot film strip further includes a water vapor barrier layer disposed between the transparent protective outer layer and the quantum dot phosphor layer.
  • the backlight module further includes: a concentrating element disposed between the quantum dot film strip and the light incident side. Further, the backlight module further includes: a concentrating element disposed on an outer sidewall of the transparent protective outer layer.
  • the transparent protective outer layer is made of polyethylene terephthalate.
  • the quantum dot phosphor layer is formed by inkjet printing. Further, the material used for the water vapor barrier layer is silica gel.
  • Another object of the present invention is to provide a liquid crystal display device including a backlight module and a liquid crystal display panel, wherein the backlight module provides a display light source to the liquid crystal display panel to display the liquid crystal display panel. The image, wherein the backlight module is the backlight module described above.
  • the backlight module and the liquid crystal display device of the invention adopt the quantum dot film strip prepared by the optical film encapsulation, have a small coupling distance, improve the coupling light efficiency, and utilize the prism structure to converge the light passing through the quantum dot film strip. , reducing the angle of illumination on the light incident side of the light guide plate, further improving the coupling efficiency.
  • the quantum dot film strips are printed, are easy to manufacture, are not limited by size, and reduce the use of quantum dot phosphor materials, reducing costs.
  • the quantum dot film strips are simple to splicing, and there is no problem of breakage.
  • FIG. 3 is a schematic structural view of a liquid crystal display device according to an embodiment of the present invention. Referring to FIG.
  • a liquid crystal display device includes a liquid crystal display panel 200 and a backlight module 100 disposed opposite to the liquid crystal display panel 200, wherein the backlight module 100 provides a display light source to the liquid crystal display panel 200 to enable liquid crystal display.
  • the panel 200 displays an image.
  • the liquid crystal display panel 200 generally includes a Thin Film Transistor (TFT) array substrate 210, a color filter (CF) substrate 220 disposed opposite to the TFT array substrate, and a TFT array substrate 210 and CF.
  • TFT Thin Film Transistor
  • CF color filter
  • the specific structure of the liquid crystal display panel 200 of the present embodiment is substantially the same as that of the prior art liquid crystal display panel, and thus will not be described herein.
  • the specific structure of the backlight module 100 according to an embodiment of the present invention will be described in detail below.
  • Fig. 4 is a schematic structural view of a backlight module according to a first embodiment of the present invention.
  • a backlight module 100 according to a first embodiment of the present invention includes: a light guide plate 110, a light source 120, two quantum dot film strips 130, a first brightness enhancement film 141 and a second brightness enhancement film 142, and diffusion.
  • the light guide plate 110 includes a light incident side surface 111 and a light exit surface 112.
  • the light source 120 is disposed adjacent to the light incident side 111 of the light guide plate 110.
  • Two quantum dot film strips 130 are disposed between the light source 120 and the light incident side surface 111 of the light guide plate 110, wherein the light emitted by the light source 120 passes through two quantum dots.
  • the film strip 130 is then irradiated onto the light incident side surface 111 of the light guide plate 110.
  • the first brightness enhancement film 141, the second brightness enhancement film 142, and the diffusion film 150 are sequentially disposed on the light emitting surface 112 of the light guide plate 110, wherein the first brightness enhancement film 141 and the second brightness enhancement film 142 is used to concentrate the light emitted by the light exit surface 112 to increase the brightness of the light emitted by the light exit surface 112; the diffusion film 150 is used to lift the light after passing through the first brightness enhancement film 141 and the second brightness enhancement film 142.
  • the upward brightness is softened by the light after the first brightness enhancement film 141 and the second brightness enhancement film 142, thereby providing a uniform surface light source to the liquid crystal display panel 200.
  • the reflective sheet 160 is disposed under the bottom surface of the light guide plate 110 for reflecting the light emitted from the bottom surface of the light guide plate 110 back into the light guide plate 110 to provide light utilization efficiency in the light guide plate 110.
  • the light source 120 may be, for example, an LED light bar composed of a plurality of high frequency blue light emitting diodes (LEDs), but the invention is not limited thereto.
  • the quantum dot material in the two quantum dot film strips 130 is illuminated by the high frequency blue LED to excite the quantum dot material to produce different colors of light, thereby producing a white backlight required for the liquid crystal display device.
  • Figure 5 is a schematic view showing the structure of a quantum dot film strip according to a first embodiment of the present invention. Referring to FIG.
  • the quantum dot film strip 130 includes a quantum dot phosphor layer 131 and a transparent protective outer layer 132, wherein the transparent protective outer layer 132 encloses the quantum dot phosphor layer 131.
  • the number of the quantum dot film strips 130 of the present invention is not limited to the number shown in FIG. 4, and may be one sheet, three sheets, or the like.
  • the quantum dot phosphor layer 131 may be formed by inkjet printing, but the present invention is not limited thereto.
  • the transparent protective outer layer 132 may be made of polyethylene terephthalate (PET), but the invention is not limited thereto, and the transparent protective outer layer 132 may also adopt other suitable types.
  • the quantum dot film strip 130 according to the first embodiment of the present invention further includes a water vapor barrier layer 133 disposed between the transparent protective outer layer 132 and the quantum dot phosphor layer 131. This prevents moisture from entering the environment, thereby extending the life of the quantum dot phosphor layer 131.
  • the water vapor barrier layer 133 may have a thickness of about 200 ⁇ m, which may be formed using silica gel, but the invention is not limited thereto.
  • the quantum dot phosphor layer 131 has a width of 0.5 mm to 10 mm and a thickness of 0.2 mm to 1.5 mm, but the present invention is not limited thereto.
  • FIG. 6 is a schematic structural view of a backlight module according to a second embodiment of the present invention.
  • the backlight module 100 according to the second embodiment of the present invention further includes a concentrating element 140, wherein the concentrating element 140 is disposed at two quantum dots.
  • the film strip 130 is spaced between the light incident side 111 of the light guide plate 110.
  • the concentrating element 140 may be disposed between the two quantum dot film strips 130.
  • the concentrating element 140 can converge the light passing through the two quantum dot film strips 130 to reduce the angle of light incident on the light incident side surface 111 of the light guide plate 110, thereby improving the coupling efficiency.
  • the concentrating element 140 may be, for example, a prism sheet, but the invention is not limited thereto.
  • the light output direction of the prism sheet is the same as the light exit direction of the light source 120, and the prism ridge line direction of the prism sheet is parallel to the longitudinal direction of the light source 120 (ie, the LED strip).
  • Fig. 7 is a schematic structural view of a backlight module according to a third embodiment of the present invention.
  • Figure 8 is a schematic view showing the structure of a quantum dot film strip in accordance with a third embodiment of the present invention.
  • the same points as those of the first embodiment will not be described again, and only differences from the first embodiment will be described.
  • the third embodiment is different from the first embodiment in that the backlight module 100 according to the second embodiment of the present invention further includes a concentrating element 140, wherein the concentrating element 140 is disposed at two quantum dots.
  • the film strip 130 is adjacent to the outer side wall of the transparent protective outer layer 132 of the quantum dot film strip 130 of the light incident side 111 of the light guide plate 110.
  • the concentrating element 140 may also be disposed on the outer sidewall of the transparent protective outer layer 132 of the quantum dot film strip 130 of the two quantum dot film strips 130 adjacent to the light source 120.
  • the quantum dot film strip according to the third embodiment of the present invention includes a quantum dot phosphor layer 131, a transparent protective outer layer 132, and a concentrating element 140 disposed on the outer sidewall of the transparent protective layer 132.
  • the transparent protective outer layer 132 encloses the quantum dot phosphor layer 131.
  • the concentrating element 140 can converge the light passing through the two quantum dot film strips 130 to reduce the angle of light incident on the light incident side surface 111 of the light guide plate 110, thereby improving the coupling efficiency.
  • the material of the transparent protective outer layer 132 can be polyethylene terephthalate. (PET), but the invention is not limited thereto, and the transparent protective outer layer 132 may also be formed of other suitable types of transparent materials.
  • the quantum dot film strip 130 according to the third embodiment of the present invention further includes a water vapor barrier layer 133 disposed between the transparent protective outer layer 132 and the quantum dot phosphor layer 131.
  • the water vapor barrier layer 133 may have a thickness of about 200 ⁇ m, which may be formed using silica gel, but the invention is not limited thereto.
  • the quantum dot phosphor layer 131 has a width of 0.5 mm to 10 mm and a thickness of 0.2 mm to 1.5 mm, but the present invention is not limited thereto.
  • the concentrating element 140 may be, for example, a prism sheet, but the invention is not limited thereto.
  • the light output direction of the prism sheet is the same as the light exit direction of the light source 120, and the prism ridge line direction of the prism sheet is parallel to the longitudinal direction of the light source 120 (ie, the LED strip).
  • Each of the concentrating elements 140 can converge light passing through its corresponding quantum dot film strip 130, thereby further reducing the angle of light incident on the light incident side surface 111 of the light guide plate 110, further improving the coupling efficiency.
  • the concentrating element 140 may be, for example, a prism sheet, but the invention is not limited thereto.
  • the light output direction of the prism sheet is the same as the light exit direction of the light source 120, or the prism ridge line direction of the prism sheet is parallel to the longitudinal direction of the light source 120 (i.e., the LED strip).

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

一种背光模块及具有该背光模块的液晶显示装置,包括:导光板(110),具有至少一入光侧面(111);光源(120),邻近于入光侧面(111)设置;至少一量子点薄膜条(130),设置于光源(120)与入光侧面(111)之间;其中,光源(120)发出的光经过量子点薄膜条(130)照射到入光侧面(111)上。背光模块及液晶显示装置采用光学薄膜封装制备的量子点薄膜条,耦光距离较小,提高了耦光效率,且利用棱镜结构对经过量子点薄膜条的光进行会聚,减小照射到导光板的入光侧面上的角度,进一步提高耦光效率。此外,量子点薄膜条采用印刷工艺,制作方便,不受尺寸限制,且降低了量子点荧光粉材料的使用量,降低成本。

Description

背光模块及液晶显示装置 技术领域
本发明属于液晶显示技术领域, 具体地讲, 涉及一种背光模块及液晶显示 装置。 背景技术
在现有的液晶显示装置中, 通常采用白光发光二极管 (LED) 作为背光光 源, 通过导光板和光学膜片的合理搭配实现液晶所需的背光。 随着人们对高色 域、高色彩饱和度、节能的要求越来越高, 目前背光中实现白光光源、高色域、 高色彩饱和度的方案有: 利用紫外 LED配合 RGB荧光粉实现; 利用蓝光 LED 配合红绿荧光粉; 利用蓝光 LED加绿光 LED加红光 LED等。 这些方案都可 以提高色域, 但是实施起来较为困难, 并且成本较高。 量子点(Quantum Dot, 简称 QD )技术, 是把电子束缚在一定范围内的半 导体纳米材料结构技术, 其由尺寸大小在 l~100nm的超小化合物结晶体构成。 在量子点技术中, 可利用不同尺寸大小的结晶体控制光的波长, 进而精确控制 光的颜色。 因此, 量子点材料被应用于背光模块中, 采用高频谱光源 (例如蓝 光 LED ) 取代传统白光 LED光源, 量子点在高频光源的照射小, 可被激光产 生不同波长的光, 通过调整量子点材料的尺寸大小, 即可调节合成光的颜色, 实现高色域的液晶显示装置的背光要求。 图 1是一种现有的采用量子点荧光粉膜片的背光模块。 参照图 1, 将蓝光 发光二极管(LED) 11设置在导光板 12的入光侧面, 量子点荧光粉膜片 13设 置在导光板 12的出光面上, 其中, 蓝光 LED11发出的光经导光板 12转换成 面光源, 并由导光板 12的出光面出射经过量子点荧光粉膜片 13, 从而将蓝光 转换成液晶显示装置所需的背光。 但是, 由于在大尺寸液晶显示装置中, 需要 大面积制作量子点荧光粉膜片 13,这样需要的量子点材料较多,且量子点荧光 粉层涂布的均匀性要求高, 导致成本很高。 另外, 由于量子点荧光粉膜片 13 在使用中, 如果光学膜片架构不同或光学膜片型号不同, 则经光学膜片改善后 的光透过液晶显示面板后, 其色度和亮度会有很大差异, 所以在量子点荧光粉 膜片 13的使用过程中不能轻易的改变光学膜片的架构、 光学膜片的供应商或 光学膜片的型号, 这大大限制了量子点荧光粉光学膜片使用的灵活性和普遍 性。 图 2是另一种现有的采用量子点荧光粉膜片的背光模块。 参照图 2, 将蓝 光发光二极管 (LED ) 21设置在导光板 22的入光侧面, 量子点荧光粉被封装 在玻璃管内形成量子点荧光粉玻璃管 23, 其中, 量子点荧光粉玻璃管 23设置 在蓝光 LED21与导光板 12的入光侧面之间。 蓝光 LED11发出的蓝光经过量 子点荧光粉玻璃管 23照射到导光板 12的入光侧面上。但是,采用这种方式时, 量子点荧光粉玻璃管 23制作复杂、 成本较高, 并且量子点荧光粉玻璃管 23易 于破碎。 发明内容
为了解决上述现有技术存在的问题, 本发明的目的在于提供一种一种背光 模块, 包括: 导光板, 具有至少一入光侧面; 光源, 邻近于所述入光侧面设置; 至少一量子点薄膜条, 设置于所述光源与所述入光侧面之间; 其中, 所述光源 发出的光经过所述量子点薄膜条照射到所述入光侧面上。 进一步地,所述量子点薄膜条包括量子点荧光粉层及透明保护外层;其中, 所述透明保护外层包裹所述量子点荧光粉层。 进一步地, 所述量子点薄膜条还包括水汽隔绝层, 设置在所述透明保护外 层与所述量子点荧光粉层之间。 进一步地, 所述背光模块还包括: 聚光元件, 设置在所述量子点薄膜条与 所述入光侧面之间。 进一步地, 所述背光模块还包括: 聚光元件, 设置在所述透明保护外层的 外侧壁上。 进一步地, 所述透明保护外层采用的材料为聚对苯二甲酸乙二醇酯。 进一步地, 述量子点荧光粉层采用喷墨印刷的方式形成。 进一步地, 所述水汽隔绝层采用的材料为硅胶。 本发明的另一目的还在于提供一种液晶显示装置, 包括相对设置的背光模 块及液晶显示面板, 其中, 所述背光模块提供显示光源给所述液晶显示面板, 以使所述液晶显示面板显示影像, 其中, 所述背光模块为上述的背光模块。 本发明的背光模块及液晶显示装置, 采用光学薄膜封装制备的量子点薄膜 条, 耦光距离较小, 提高了耦光效率, 并且利用了棱镜结构, 可对经量子点薄 膜条的光进行会聚, 减小照射到导光板的入光侧面上的角度, 进一步提高耦光 效率。 此外, 量子点薄膜条采用印刷工艺, 制作方便, 不受尺寸限制, 且降低 了量子点荧光粉材料的使用量, 降低了成本。 另外, 量子点薄膜条拼接简单, 不存在破碎的问题。 附图说明
通过结合附图进行的以下描述, 本发明的实施例的上述和其它方面、 特点 和优点将变得更加清楚, 附图中: 图 1是一种现有的采用量子点荧光粉膜片的背光模块; 图 2是另一种现有的采用量子点荧光粉膜片的背光模块; 图 3是根据本发明的实施例的液晶显示装置的结构示意图; 图 4是根据本发明的第一实施例的背光模块的结构示意图; 图 5是根据本发明的第一实施例的量子点薄膜条的结构示意图; 图 6是根据本发明的第二实施例的背光模块的结构示意图; 图 7是根据本发明的第三实施例的背光模块的结构示意图; 图 8是根据本发明的第三实施例的量子点薄膜条的结构示意图; 图 9是根据本发明的第四实施例的背光模块的结构示意图。 具体实施方式
以下, 将参照附图来详细描述本发明的实施例。 然而, 可以以许多不同的 形式来实施本发明, 并且本发明不应该被解释为限制于这里阐述的具体实施 例。 相反, 提供这些实施例是为了解释本发明的原理及其实际应用, 从而使本 领域的其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的 各种修改。 将理解的是,尽管在这里可使用术语"第一"、 "第二"等来描述各种元件, 但是这些元件不应受这些术语的限制。这些术语仅用于将一个元件与另一个元 件区分开来。 图 3是根据本发明的实施例的液晶显示装置的结构示意图。 参照图 3, 根据本发明的实施例的液晶显示装置包括液晶显示面板 200及 与液晶显示面板 200相对设置的背光模块 100, 其中, 背光模块 100提供显示 光源给液晶显示面板 200, 以使液晶显示面板 200显示影像。 液晶显示面板 200通常包括薄膜晶体管 (Thin Film Transistor, 简称 TFT) 阵列基板 210、与 TFT阵列基板相对设置的彩色滤光片(Color Filter,简称 CF) 基板 220以及夹设于 TFT阵列基板 210与 CF基板 220之间的液晶层 230, 其 中, 液晶层 230中包括若干液晶分子。 由于本实施例的液晶显示面板 200的具 体结构与现有技术的液晶显示面板的结构大体相同, 所以在此不再赘述。 以下将对根据本发明的实施例的背光模块 100的具体结构进行详细的描 述。
<第一实施例〉 图 4是根据本发明的第一实施例的背光模块的结构示意图。 参照图 4, 根据本发明的第一实施例的背光模块 100包括: 导光板 110、 光源 120、 两张量子点薄膜条 130、 第一增亮膜片 141和第二增亮膜片 142、扩 散膜片 150、 反射片 160。 具体而言, 导光板 110包括一入光侧面 111及出光面 112。 光源 120邻近 于导光板 110的入光侧面 111设置。 两张量子点薄膜条 130均设置在光源 120 与导光板 110的入光侧面 111之间, 其中, 光源 120发出的光经过两张量子点 薄膜条 130后照射到导光板 110的入光侧面 111。 第一增亮膜片 141、 第二增 亮膜片 142、 扩散膜片 150依序设置在导光板 110的出光面 112之上, 其中, 第一增亮膜片 141和第二增亮膜片 142用于汇聚由出光面 112出射的光, 以提 高由出光面 112出射的光的亮度; 扩散膜片 150用于提升经第一增亮膜片 141 和第二增亮膜片 142后的光的向上亮度, 并将经第一增亮膜片 141和第二增亮 膜片 142后的光柔散化, 从而向液晶显示面板 200提供均匀的面光源。 反射片 160设置在导光板 110的底面之下, 用于将由导光板 110的底面出射的光反射 回导光板 110中, 以提供导光板 110中光的利用率。 在本实施例中, 光源 120可例如是由多个高频的蓝光发光二极管 (LED ) 组成的 LED灯条, 但本发明并不限制于此。 通过高频的蓝光 LED照射两张量 子点薄膜条 130中的量子点材料, 激发量子点材料产生不同色彩的光, 从而产 生液晶显示装置所需的白色背光源。 图 5是根据本发明的第一实施例的量子点薄膜条的结构示意图。 参照图 5, 根据本发明的第一实施例的量子点薄膜条 130包括量子点荧光 粉层 131及透明保护外层 132, 其中, 透明保护外层 132包裹量子点荧光粉层 131。 应当说明的是, 本发明的量子点薄膜条 130的数量并不以图 4所示的数 量为限, 其可以为一张、 三张等。 此外, 量子点荧光粉层 131可采用喷墨印刷 的方式形成, 但本发明并不限制于此。 在本实施例中, 透明保护外层 132可采用的材料为聚对苯二甲酸乙二醇酯 (PET),但本发明并不限制于此,透明保护外层 132也可采用其他合适类型的 透明材料形成。 此外, 为了防止量子点荧光粉层 131受潮, 根据本发明的第一 实施例的量子点薄膜条 130还包括水汽隔绝层 133, 设置在透明保护外层 132 与量子点荧光粉层 131之间, 这样可防止环境中的水汽进入, 从而延长量子点 荧光粉层 131的寿命。在本实施例中,水汽隔绝层 133的厚度可约为 200微米, 其可采用硅胶形成, 但本发明并不局限于此。 在本实施例中, 量子点荧光粉层 131的宽度为 0.5mm-10mm, 其厚度为 0.2mm-1.5mm, 但本发明并不局限于此。
<第二实施例〉 图 6是根据本发明的第二实施例的背光模块的结构示意图。 在第二实施例的描述中, 与第一实施例相同之处在此不再赘述, 只描述与 第一实施例的不同之处。参照图 6,第二实施例与第一实施例的不同之处在于, 根据本发明的第二实施例的背光模块 100还包括聚光元件 140, 其中, 聚光元 件 140设置在两张量子点薄膜条 130与导光板 110的入光侧面 111之间。此外, 作为另一种实施方式, 聚光元件 140可设置在两张量子点薄膜条 130之间。聚 光元件 140可对经过两张量子点薄膜条 130的光进行会聚, 以减小入射到导光 板 110的入光侧面 111上的光的角度, 提高耦光效率。 在本实施例中, 聚光元件 140可例如为棱镜片, 但本发明并不局限于此。 该棱镜片的出光方向与光源 120的出光方向相同, 且该棱镜片的棱镜棱线方向 与光源 120 (即 LED灯条) 的长度方向平行。
<第三实施例〉 图 7是根据本发明的第三实施例的背光模块的结构示意图。 图 8是根据本 发明的第三实施例的量子点薄膜条的结构示意图。 在第三实施例的描述中, 与第一实施例相同之处在此不再赘述, 只描述与 第一实施例的不同之处。参照图 7,第三实施例与第一实施例的不同之处在于, 根据本发明的第二实施例的背光模块 100还包括聚光元件 140, 其中, 聚光元 件 140设置在两张量子点薄膜条 130中靠近导光板 110的入光侧面 111的量子 点薄膜条 130的透明保护外层 132的外侧壁上。 作为另一种实施方式, 聚光元 件 140也可设置在两张量子点薄膜条 130中靠近光源 120的量子点薄膜条 130 的透明保护外层 132的外侧壁上。 换句话说, 参照图 8, 根据本发明的第三实施例的量子点薄膜条包括量子 点荧光粉层 131、 透明保护外层 132及设置在透明保护层 132的外侧壁上的聚 光元件 140, 其中, 透明保护外层 132包裹量子点荧光粉层 131。 聚光元件 140 可对经过两张量子点薄膜条 130的光进行会聚, 以减小入射到导光板 110的入 光侧面 111上的光的角度, 提高耦光效率。 在本实施例中, 透明保护外层 132可采用的材料为聚对苯二甲酸乙二醇酯 (PET),但本发明并不限制于此,透明保护外层 132也可采用其他合适类型的 透明材料形成。 此外, 为了防止量子点荧光粉层 131受潮, 根据本发明的第三 实施例的量子点薄膜条 130还包括水汽隔绝层 133, 设置在透明保护外层 132 与量子点荧光粉层 131之间, 这样可防止环境中的水汽进入, 从而延长量子点 荧光粉层 131的寿命。在本实施例中,水汽隔绝层 133的厚度可约为 200微米, 其可采用硅胶形成, 但本发明并不局限于此。 在本实施例中, 量子点荧光粉层 131的宽度为 0.5mm-10mm, 其厚度为 0.2mm-1.5mm, 但本发明并不局限于此。 在本实施例中, 聚光元件 140可例如为棱镜片, 但本发明并不局限于此。 该棱镜片的出光方向与光源 120的出光方向相同, 且该棱镜片的棱镜棱线方向 与光源 120 (即 LED灯条) 的长度方向平行。
<第四实施例〉 图 9是根据本发明的第四实施例的背光模块的结构示意图。 在第四实施例的描述中, 与第三实施例相同之处在此不再赘述, 只描述与 第三实施例的不同之处。参照图 9,第四实施例与第三实施例的不同之处在于, 根据本发明的第二实施例的背光模块 100还包括两个聚光元件 140, 其中, 每 个聚光元件 140设置在对应的量子点薄膜条 130的透明保护外层 132的外侧壁 上。 每个聚光元件 140可对经过其对应的量子点薄膜条 130的光进行会聚, 从 而进一步减小入射到导光板 110的入光侧面 111上的光的角度, 进一步提高耦 光效率。 在本实施例中, 聚光元件 140可例如为棱镜片, 但本发明并不局限于 此。 该棱镜片的出光方向与光源 120的出光方向相同, 或者该棱镜片的棱镜棱 线方向与光源 120 (即 LED灯条) 的长度方向平行。 综上所述, 根据本发明的实施例的背光模块及液晶显示装置, 采用光学薄 膜封装制备的量子点薄膜条, 耦光距离较小, 提高了耦光效率, 并且利用了棱 镜结构, 可对经量子点薄膜条的光进行会聚, 减小照射到导光板的入光侧面上 的角度, 进一步提高耦光效率。此外, 量子点薄膜条采用印刷工艺, 制作方便, 不受尺寸限制, 且降低了量子点荧光粉材料的使用量, 降低了成本。 另外, 量 子点薄膜条拼接简单, 不存在破碎的问题。 虽然已经参照特定实施例示出并描述了本发明, 但是本领域的技术人员将 理解: 在不脱离由权利要求及其等同物限定的本发明的精神和范围的情况下, 可在此进行形式和细节上的各种变化。

Claims

权利要求书
1、 一种背光模块, 其中, 包括: 导光板, 具有至少一入光侧面; 光源, 邻近于所述入光侧面设置; 至少一量子点薄膜条, 设置于所述光源与所述入光侧面之间; 其中, 所述光源发出的光经过所述量子点薄膜条照射到所述入光侧面上。
2、 根据权利要求 1所述的背光模块, 其中, 所述量子点薄膜条包括量子 点荧光粉层及透明保护外层; 其中, 所述透明保护外层包裹所述量子点荧光粉 层。
3、 根据权利要求 2所述的背光模块, 其中, 所述量子点薄膜条还包括水 汽隔绝层, 设置在所述透明保护外层与所述量子点荧光粉层之间。
4、 根据权利要求 1所述的背光模块, 其中, 还包括: 聚光元件, 设置在 所述量子点薄膜条与所述入光侧面之间。
5、 根据权利要求 2所述的背光模块, 其中, 还包括: 聚光元件, 设置在 所述量子点薄膜条与所述入光侧面之间。
6、 根据权利要求 2所述的背光模块, 其中, 还包括: 聚光元件, 设置在 所述透明保护外层的外侧壁上。
7、 根据权利要求 3所述的背光模块, 其中, 还包括: 聚光元件, 设置在 所述透明保护外层的外侧壁上。
8、 根据权利要求 2所述的背光模块, 其中, 所述透明保护外层采用的材 料为聚对苯二甲酸乙二醇酯。
9、 根据权利要求 1所述的背光模块, 其中, 所述量子点荧光粉层采用喷 墨印刷的方式形成。
10、 根据权利要求 2所述的背光模块, 其中, 所述水汽隔绝层采用的材料 为硅胶。
11、一种液晶显示装置,包括相对设置的背光模块及液晶显示面板,其中, 所述背光模块提供显示光源给所述液晶显示面板, 以使所述液晶显示面板显示 影像, 其中, 所述背光模块包括: 导光板, 具有至少一入光侧面; 光源, 邻近于所述入光侧面设置; 至少一量子点薄膜条, 设置于所述光源与所述入光侧面之间; 其中, 所述光源发出的光经过所述量子点薄膜条照射到所述入光侧面上。
12、 根据权利要求 11所述的液晶显示装置, 其中, 所述量子点薄膜条包 括量子点荧光粉层及透明保护外层; 其中, 所述透明保护外层包裹所述量子点 荧光粉层。
13、 根据权利要求 12所述的液晶显示装置, 其中, 所述量子点薄膜条还 包括水汽隔绝层, 设置在所述透明保护外层与所述量子点荧光粉层之间。
14、 根据权利要求 11所述的液晶显示装置, 其中, 还包括: 聚光元件, 设置在所述量子点薄膜条与所述入光侧面之间。
15、 根据权利要求 12所述的液晶显示装置, 其中, 还包括: 聚光元件, 设置在所述量子点薄膜条与所述入光侧面之间。
16、 根据权利要求 12所述的液晶显示装置, 其中, 还包括: 聚光元件, 设置在所述透明保护外层的外侧壁上。
17、 根据权利要求 13所述的液晶显示装置, 其中, 还包括: 聚光元件, 设置在所述透明保护外层的外侧壁上。
18、 根据权利要求 12所述的液晶显示装置, 其中, 所述透明保护外层采 用的材料为聚对苯二甲酸乙二醇酯。
19、 根据权利要求 11所述的液晶显 采用喷墨印刷的方式形成。
20、 根据权利要求 12所述的液晶显 的材料为硅胶。
PCT/CN2014/085039 2014-08-19 2014-08-22 背光模块及液晶显示装置 WO2016026148A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/384,150 US20160054503A1 (en) 2014-08-19 2014-08-22 Backlight Module and Liquid Crystal Display Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410413409.6 2014-08-19
CN201410413409.6A CN104155803A (zh) 2014-08-19 2014-08-19 背光模块及液晶显示装置

Publications (1)

Publication Number Publication Date
WO2016026148A1 true WO2016026148A1 (zh) 2016-02-25

Family

ID=51881342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085039 WO2016026148A1 (zh) 2014-08-19 2014-08-22 背光模块及液晶显示装置

Country Status (2)

Country Link
CN (1) CN104155803A (zh)
WO (1) WO2016026148A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104456311B (zh) * 2014-11-25 2018-01-16 深圳市华星光电技术有限公司 背光模块及具有该背光模块的液晶显示装置
CN104464534B (zh) * 2014-12-10 2017-09-05 深圳市华星光电技术有限公司 显示模块及具有该显示模块的显示装置
CN104503137A (zh) * 2014-12-30 2015-04-08 深圳市华星光电技术有限公司 背光模块及具有该背光模块的液晶显示器
CN104793284A (zh) * 2015-04-30 2015-07-22 武汉华星光电技术有限公司 导光板、背光模块及液晶显示器
CN104808387A (zh) * 2015-05-07 2015-07-29 武汉华星光电技术有限公司 光源组件、背光模块及液晶显示器
CN106292055A (zh) 2015-06-09 2017-01-04 瑞仪光电(苏州)有限公司 量子点增强薄膜和背光模块
CN105116609B (zh) * 2015-09-16 2018-06-15 武汉华星光电技术有限公司 一种背光模组和液晶显示器
CN105676535A (zh) * 2016-04-01 2016-06-15 深圳市华星光电技术有限公司 一种背光模组及液晶显示装置
CN110501842A (zh) * 2018-05-18 2019-11-26 深圳Tcl新技术有限公司 一种背光模组及显示装置
TWI683449B (zh) * 2018-11-14 2020-01-21 晟森科技有限公司 複合量子點材料、製備方法及其顯示裝置
CN109991777B (zh) * 2019-04-09 2020-11-24 深圳市华星光电半导体显示技术有限公司 背光模组及其制备方法和显示装置
CN113219730A (zh) * 2021-05-17 2021-08-06 嘉兴追光智能科技有限公司 白光led照明灯具

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1333478A (zh) * 2000-07-13 2002-01-30 精工爱普生株式会社 光源装置、照明装置、液晶装置和电子装置
WO2011081014A1 (ja) * 2009-12-28 2011-07-07 シャープ株式会社 照明装置、表示装置及びテレビ受信装置
CN102588851A (zh) * 2012-03-19 2012-07-18 深圳市华星光电技术有限公司 侧入式背光模组
CN102954408A (zh) * 2011-08-26 2013-03-06 三星电子株式会社 背光单元及其制造方法和具有背光单元的液晶显示装置
CN103069331A (zh) * 2010-08-16 2013-04-24 Lg伊诺特有限公司 使用量子点的用于背光单元的部件及其制造方法
CN103499054A (zh) * 2013-10-11 2014-01-08 深圳市华星光电技术有限公司 背光模组及液晶显示器
US20140036203A1 (en) * 2012-07-31 2014-02-06 Apple Inc. Light mixture for a display utilizing quantum dots
CN103852817A (zh) * 2014-03-14 2014-06-11 宁波激智科技股份有限公司 一种应用于背光模组的量子点膜
WO2014132726A1 (ja) * 2013-02-28 2014-09-04 Nsマテリアルズ株式会社 液晶表示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1333478A (zh) * 2000-07-13 2002-01-30 精工爱普生株式会社 光源装置、照明装置、液晶装置和电子装置
WO2011081014A1 (ja) * 2009-12-28 2011-07-07 シャープ株式会社 照明装置、表示装置及びテレビ受信装置
CN103069331A (zh) * 2010-08-16 2013-04-24 Lg伊诺特有限公司 使用量子点的用于背光单元的部件及其制造方法
CN102954408A (zh) * 2011-08-26 2013-03-06 三星电子株式会社 背光单元及其制造方法和具有背光单元的液晶显示装置
CN102588851A (zh) * 2012-03-19 2012-07-18 深圳市华星光电技术有限公司 侧入式背光模组
US20140036203A1 (en) * 2012-07-31 2014-02-06 Apple Inc. Light mixture for a display utilizing quantum dots
WO2014132726A1 (ja) * 2013-02-28 2014-09-04 Nsマテリアルズ株式会社 液晶表示装置
CN103499054A (zh) * 2013-10-11 2014-01-08 深圳市华星光电技术有限公司 背光模组及液晶显示器
CN103852817A (zh) * 2014-03-14 2014-06-11 宁波激智科技股份有限公司 一种应用于背光模组的量子点膜

Also Published As

Publication number Publication date
CN104155803A (zh) 2014-11-19

Similar Documents

Publication Publication Date Title
WO2016026148A1 (zh) 背光模块及液晶显示装置
WO2016106896A1 (zh) 背光模块及具有该背光模块的液晶显示器
WO2016082312A1 (zh) 背光模块及具有该背光模块的液晶显示装置
US7834953B2 (en) Light unit, liquid crystal display having the same, and method of manufacturing the same
WO2016074267A1 (zh) 背光模块及液晶显示装置
KR101210163B1 (ko) 광학 시트 및 이를 포함하는 표시장치
WO2019148591A1 (zh) 直下式背光模组以及液晶显示器
US10042103B2 (en) Display device
WO2016033848A1 (zh) 背光模组
WO2016054838A1 (zh) 直下式背光模组及其制造方法
US10089935B2 (en) Display device
US20180106938A1 (en) Quantum dot backlight module
WO2014040306A1 (zh) 直下式背光模组
TW201602692A (zh) 光學件與具有其之顯示裝置以及其製作方法
WO2015081692A1 (zh) 一种导光板、背光源及液晶显示装置
WO2016138671A1 (zh) 具有量子条的背光模组以及液晶显示装置
KR20120056001A (ko) 백라이트 유닛 및 액정표시장치
CN108919558B (zh) 一种楔形基板的量子点彩膜结构
US20160054503A1 (en) Backlight Module and Liquid Crystal Display Device
CN104570480A (zh) 一种液晶显示装置
WO2016155115A1 (zh) 导光板及具有该导光板的背光模块和液晶显示器
WO2016138699A1 (zh) 背光模组及具有该背光模组的液晶显示装置
US10495923B2 (en) Backlight module and liquid crystal display
WO2020133816A1 (zh) 显示面板及其制备方法
WO2019019253A1 (zh) 背光模块及液晶显示器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14384150

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14900165

Country of ref document: EP

Kind code of ref document: A1