WO2016024724A1 - Device for measuring respiration and method for measuring respiration using same - Google Patents

Device for measuring respiration and method for measuring respiration using same Download PDF

Info

Publication number
WO2016024724A1
WO2016024724A1 PCT/KR2015/007192 KR2015007192W WO2016024724A1 WO 2016024724 A1 WO2016024724 A1 WO 2016024724A1 KR 2015007192 W KR2015007192 W KR 2015007192W WO 2016024724 A1 WO2016024724 A1 WO 2016024724A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sensor
measured
respiratory
user
Prior art date
Application number
PCT/KR2015/007192
Other languages
French (fr)
Korean (ko)
Inventor
신희원
이화선
김영호
Original Assignee
연세대학교 원주산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 원주산학협력단 filed Critical 연세대학교 원주산학협력단
Publication of WO2016024724A1 publication Critical patent/WO2016024724A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0803Recording apparatus specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/082Evaluation by breath analysis, e.g. determination of the chemical composition of exhaled breath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/087Measuring breath flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/003Detecting lung or respiration noise

Definitions

  • the present application relates to a respiration measurement device and a respiration measurement method using the same.
  • Bio-signals such as respiratory rate are one of the most convenient factors for diagnosing the health and abnormality of the human body.
  • Biosignal meters eg, respirators
  • Biosignal meters are constantly attached to vital signs, mainly for critical patients, emergency patients, patients during surgery, or elderly people who are vulnerable to maintaining health.
  • the patient's breathing condition is constantly checked during the operation.
  • the oxygen mask may cause fear to the patient, and a large number of connecting lines connecting the oxygen mask and the respiratory monitoring device may be used. Due to the restrictions on the movement of people, such as doctors, there was an uncomfortable point difficult to parallel with other procedures or surgery.
  • the sleep apnea which is a disease that temporarily does not breathe during sleep, needs to be used to diagnose a person's health by measuring the actual respiratory rate or respiratory rate.
  • the present application is to provide a respiratory measurement device and a respiration measurement method that can more easily and accurately measure the respiratory rate of the user.
  • the present application is to provide a respiration measurement device and respiration measurement method that can remotely check the user's health status in real time by transmitting the respiratory data of the user in the daily life outside the hospital to a system such as a hospital.
  • the present application provides a respiratory measurement device and a respiratory measurement method that can monitor the respiratory state of the patient in real time while measuring the respiratory rate of the user without attaching equipment such as an oxygen mask to the user in parallel with surgery and various treatments I would like to.
  • a respiration measurement apparatus is a pad, which is attached to the body of the user, is installed on the pad, the movement of the user's body by the user's breathing
  • Three or more sensors for measuring the signal generated according to, and using the signal measured by at least two or more of the three or more sensors, may include a determination unit for measuring the respiratory rate of the user.
  • the senor includes a first sensor and a second sensor
  • the determination unit compares the first signal measured by the first sensor and the second signal measured by the second sensor. The number of times the peak value of the first signal and the second signal appear at the same time may be counted as the respiratory rate.
  • the respiration measurement apparatus further includes a conversion unit for converting the first signal and the second signal in the frequency domain, the determination unit frequency of the first signal and the frequency of the second signal Is equal to, and when the frequency of the first signal and the frequency of the second signal coincide, the number of times the peak value of the first signal and the second signal appear at the same time is determined as the respiration rate. Can count.
  • the senor includes a third sensor
  • the determination unit compares the first signal and the third signal measured by the third sensor, and at the same time and the first signal The number of times the peak value of the third signal is displayed is counted, and the determination unit determines the number of times the peak value of the first signal and the second signal appear and the peak value of the first signal and the third signal at the same time. The smaller number of times that appear may be counted as the respiratory rate.
  • the senor includes a first sensor and a second sensor, and the determination unit compares the first signal measured by the first sensor and the second signal measured by the second sensor.
  • the number of cases where the difference between the peak value of the first signal equal to or greater than the threshold and the peak value of the second signal equal to or greater than the threshold of the second signal is smaller than the preset value may be counted and counted as the respiratory rate.
  • the respiration measurement apparatus further includes a conversion unit for converting the first signal and the second signal in the frequency domain, the determination unit frequency of the first signal and the frequency of the second signal Is equal to, and when the frequency of the first signal and the frequency of the second signal coincide, the peak value equal to or greater than the threshold of the first signal and the peak value equal to or greater than the threshold of the second signal at the same time.
  • the number of cases where the difference in value is smaller than the preset value may be counted as the respiratory rate.
  • the senor includes a first sensor, a second sensor, and a third sensor
  • the determination unit includes a first signal measured by the first sensor and a first measured by the second sensor. Comparing the second signal and the third signal measured by the third sensor, and counting the number of times the peak value of the first signal, the second signal and the third signal appear at the same time to count the respiratory rate Can be.
  • the senor includes a first sensor and a second sensor, and the determination unit compares the first signal measured by the first sensor and the second signal measured by the second sensor.
  • the determination unit may count the number of times the peak value of the first signal and the second signal appear within a preset time difference and count the number of breaths.
  • the three or more sensors may include a piezoelectric sensor.
  • the three or more sensors may be manufactured by the MEMS (Micro Electro Mechanical Systems) technique.
  • the three or more sensors may include an acceleration sensor.
  • the respiration measurement device further comprises a memory for storing data relating to the relationship between the signal measured by the three or more sensors and the actual respiratory rate of the user, wherein the determination unit the three The respiratory rate of the user may be measured based on signals measured by at least two sensors among the above sensors and data stored in the memory.
  • the respiration measurement device may further include an amplifier for amplifying the magnitude of the signal measured by the three or more sensors.
  • the respiration measurement device may further include an output unit for outputting the signal measured by the three or more sensors and the measured respiratory rate.
  • the respiration measurement device may further include a transmission unit for transmitting a signal measured by the three or more sensors and the measured respiratory rate to an external monitoring device in conjunction with the respiration measurement device.
  • the respiration measurement device further includes a voice signal measuring unit for measuring a voice signal generated when the user's breathing, the determination unit is measured by at least two or more of the three or more sensors The respiratory rate of the user may be measured based on the received signal and the voice signal.
  • Respiration measurement method is a step of measuring a signal generated in accordance with the movement of the user's body by the user's breathing with three or more sensors installed on a pad attachable to the user's body, the 3 Comparing the first signal measured by the first sensor and the second signal measured by the second sensor of the at least one sensor, and at the same time the peak value of the first signal and the second signal It may include the step of counting the number of times per unit time shown by the respiratory rate.
  • the user is installed on a pad attachable to the user's body, and acquires a signal from a plurality of sensors for generating a signal according to the change of the user's body by the user's breathing
  • the respiratory rate By measuring the respiratory rate, the user's respiratory rate can be measured in real time without limiting the user's activity, without causing discomfort to the user, and in parallel with other operations or procedures.
  • any one of the above problem solving means of the present application by measuring the respiratory rate of the user in consideration of a plurality of signals generated from the plurality of sensors at the same time, it is possible to accurately measure the respiratory rate of the user.
  • FIG. 1 is a view showing a breathing apparatus according to an embodiment of the present application.
  • FIG. 2 is a block diagram of a breathing apparatus according to an embodiment of the present application.
  • FIG. 3 is a diagram illustrating an example of a signal obtained from a sensor of a breathing apparatus according to an embodiment of the present application.
  • FIG. 4 is a view showing another example of a signal obtained from a sensor of a breathing apparatus according to an embodiment of the present application.
  • FIG. 5 is a diagram illustrating another example of a signal obtained from a sensor of a respiration measuring device according to an embodiment of the present disclosure.
  • FIG. 6 is a diagram illustrating another example of a signal obtained from a sensor of a respiration measuring device according to an embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating an example of a signal obtained from a sensor and a voice signal measuring unit of a breathing apparatus according to an embodiment of the present application.
  • FIG. 8 is a flowchart illustrating a respiratory measurement method according to an embodiment of the present application.
  • FIG. 1 is a view showing a breathing apparatus according to an embodiment of the present application.
  • a respiration measurement apparatus according to an exemplary embodiment of the present disclosure is installed in a plurality of pads 10 and the pads 10 which are attachable to a body of a user 100, and installed on the body of the user 100.
  • the first sensor 12, the second sensor 14, the third sensor 16, and the voice signal measuring unit 18 may be included.
  • the respiratory measurement device may include a plurality of bands 20 connecting the plurality of pads (10).
  • the band 20 may be made of an elastic material, and its deformation, such as stretching and contraction, is free.
  • the plurality of pads 10 may be attached to different positions of the body of the user 100, respectively.
  • the pad 10 in which the voice signal measuring unit 18 is installed may be installed at the neck part of the user to measure the voice signal generated from the user's body during breathing. Can be.
  • the installation position of the pad 10 shown in FIG. 1 is merely exemplary, and the pad 10 may be installed at another body part of the user 100 to improve the accuracy of the respiration measurement.
  • the pad 10 may be installed at another body part of the user 100 to improve the accuracy of the respiration measurement.
  • three pads 10, three sensors 1, a first sensor 12, a second sensor 14, and a third sensor 16 are illustrated as being installed in the body of the user 100.
  • the number of pads 10 and sensors is not limited thereto, and three or more sensors may be installed, for example, five sensors.
  • the first sensor 12, the second sensor 14, and the third sensor 16 generate a signal according to the movement of the user's body by the user's breathing and measure the generated signal. can do.
  • the first sensor 12, the second sensor 14, and the third sensor 16 may include a piezoelectric sensor.
  • the piezoelectric sensor is a piezoelectric element that uses a piezoelectric element that causes an electrical reaction by varying the magnitude of the voltage according to the pressure applied when a predetermined pressure is applied to the piezoelectric sensor. The pressure is applied to the sensor, and the device converts and outputs a respiratory signal into an electrical signal.
  • the first sensor 12, the second sensor 14, and the third sensor 16 may include an acceleration sensor.
  • the acceleration sensor is a device capable of measuring the direction and the acceleration in the direction according to the change by a predetermined pressure or external force, in this embodiment by measuring the acceleration of the change of the body in one direction by the user's breathing 100
  • An output device can be used.
  • the first sensor 12, the second sensor 14, and the third sensor 16 may be manufactured in a compact form using a MEMS (Micro Electro Mechanical Systems) technique. Therefore, it is possible to reduce the weight of the respiratory measurement device, and by attaching to the body of the user 100 can minimize the foreign object that can be given to the user (100).
  • MEMS Micro Electro Mechanical Systems
  • the voice signal measuring unit 18 may convert and measure the sound generated by the inhalation and exhalation of the breathing of the user 100 to a voice signal. For example, while the user 100 continues to breathe normally, a breathing sound signal having a substantially constant amplitude may be repeated at a constant cycle.
  • the voice signal measuring unit 18 may include a microphone.
  • the breath measuring apparatus of the present application is a signal measured by at least two or more of the three or more sensors (eg, the first sensor 12, the second sensor 14 and the third sensor 16).
  • the respiratory rate of the user 100 may be measured using.
  • the respiration measurement device is the waveform of the first signal measured by the first sensor 12 and the waveform of the second signal measured by the second sensor 14 Compare The respiratory measuring device counts the number of times the peak value of the waveform of the first signal and the waveform of the second signal appear at the same time, and counts the counted number of times by the user 100. You can count by number.
  • the respiration measurement device counts the number of times the peak value of the waveform of the waveform of the first signal and the waveform of the second signal is recorded at the same time (for example, 1 minute) for a predetermined time per minute of the user 100 Can be measured by respiratory rate.
  • the magnitude of the peak value of the waveform of the first signal and the waveform of the second signal may not be the same depending on the position, the performance of the sensor, and the like.
  • the breathing apparatus of the present invention in order to improve the accuracy of the respiratory rate measurement, the waveform of the first signal measured by the first sensor 12 and the second signal measured by the second sensor 14 The waveform and the waveform of the third signal measured by the third sensor 16 are compared.
  • the respiratory measuring device counts the number of times the peak value of the waveform of the first signal, the waveform of the second signal, and the waveform of the third signal appears at the same time, and counts the counted number of times by the user ( Can be counted as the respiratory rate of 100).
  • the respiration measurement device converts the signals measured by the three or more sensors into the frequency domain, and determines whether the frequencies of the waveforms measured by the three or more sensors match. Can be.
  • the respiration measuring device may be At the same time, the number of times the peak value of the waveform of the waveform of the first signal and the waveform of the second signal appear may be counted by the respiratory rate of the user 100.
  • the signal generated by the movement of the body by the user's breathing and the signal generated by the movement or external force other than the breathing may have different frequencies.
  • each signal is used as the data of the respiratory rate judgment only when the frequency is the same, and when the frequency is different, the corresponding signal is determined by the respiratory rate By not using this data, the accuracy of respiratory rate measurement can be improved.
  • the respiration measurement device is a waveform of the first signal measured by the first sensor 12 and the waveform of the second signal measured by the second sensor 14 Compare. As a result of the comparison, the respiration measurement device counts the number of times the peak value of the waveform of the waveform of the first signal and the waveform of the second signal appears at the same time. In addition, the respiration measurement device compares the waveform of the first signal measured by the first sensor 12 with the waveform of the third signal measured by the third sensor 16. As a result of the comparison, the respiration measurement device counts the number of times the peak value of the waveform of the waveform of the first signal and the waveform of the third signal appears at the same time.
  • the respiratory measuring device is the number of times that the peak value of the waveform of the waveform of the first signal and the waveform of the second signal at the same time counted and the waveform of the first signal and the third signal at the same time counted By counting the smaller number of times the peak value of the waveform of the user to the respiratory rate of the user 100, it is possible to improve the accuracy of the respiratory rate measurement.
  • the respiration measuring device may be configured to generate the waveform of the waveform of the second signal and the waveform of the third signal at the same time as the number of peaks of the waveform of the waveform of the first signal and the waveform of the third signal. By comparing the number of times the peak value appears can be measured as a small number of the user 100 breathing rate.
  • the respiration measuring apparatus may include the waveform of the waveform of the second signal and the waveform of the third signal at the same time as the number of times the peak value of the waveform of the waveform of the first signal and the waveform of the second signal appears. At the same time that the peak value appears, the smallest number of times the peak value of the waveform of the first signal and the waveform of the third signal may appear may be measured as the respiration rate of the user 100.
  • the respiration measurement device is a first signal measured by the first sensor 12 and the second signal measured by the second sensor 14 Compare.
  • the difference between the peak value greater than or equal to a preset threshold among the waveforms of the first signal recorded at the same time and the peak value greater than or equal to the threshold among the waveforms of the second signal is smaller than a preset value.
  • the number of times may be counted as the number of breaths of the user 100.
  • the preset value may be set in consideration of the attachment position of each sensor.
  • the first signal The time point at which the peak value is recorded in the waveform of the waveform and the second signal may be the same, but the magnitude of the peak value of the waveform of the first signal and the magnitude of the peak value of the waveform of the second signal may be different. .
  • the breathing apparatus can measure the number of times the peak value of the first signal and the peak value of the second signal at the same time by the respiratory rate of the user (100). If the peak value is recorded at the same time in the waveform of the first signal and the waveform of the second signal, but the difference in the magnitude of the peak value of each signal is larger than the preset value, the movement or external force other than breathing It is regarded as a signal generation due to the change of the body and is not used as a data for respiratory rate judgment.
  • the peak value having a size less than or equal to the threshold value is too small to determine the respiratory rate.
  • the threshold may be set to, for example, 60% of the peak value of the normal respiratory waveform in consideration of the waveform that may be measured during normal respiration, but is not limited thereto. As such, by considering not only the timing at which the peak values are generated in the plurality of sensors but also the difference in size, the accuracy of the respiratory rate determination of the user 100 may be improved.
  • the respiration measurement device may convert the signal measured by the three or more sensors into the frequency domain. Also, for example, the respiration measuring device may determine whether the frequency of the first signal and the frequency of the second signal match. As a result of the determination, when the frequency of the first signal and the frequency of the second signal coincide with each other, the respiration measurement device has a peak value equal to or greater than the threshold value of the first signal and the threshold value of the second signal at the same time. The number of cases where the difference between the peak values is smaller than the preset value may be counted as the respiratory rate of the user 100.
  • the respiration measurement device may compare the first signal measured by the first sensor 12 and the second signal measured by the second sensor 14.
  • the respiratory measurement device may count the number of times the peak value of the first signal and the second signal appear within a time difference of a predetermined range to measure the number of breaths of the user 100. For example, since the first sensor 12 and the second sensor 14 are different in the attachment position, and the degree of change or movement is different according to the part of the body when the user 100 breathes, There may be a slight time difference between the waveform of the first signal and the waveform of the second signal when the peak value is recorded.
  • the time difference within the preset range may be set to, for example, about 0.1 seconds in consideration of the performance of the sensor, but is not limited thereto.
  • the respiration measurement device may store the respiration data about the relationship between the signal measured by the three or more sensors and the actual respiratory rate or volume of the user 100 or the general person.
  • the respiratory data may include actual respiratory rate or respiratory volume of a large number of people measured by the actual respiratory apparatus using a real breathing apparatus (eg, a spyometer spirometer) and the breathing apparatus of the present application simultaneously.
  • the data may be recorded in advance by matching the waveforms or the respiratory rate measured using the respiratory measurement device of the present application.
  • the respiration data is measured by using the actual breathing apparatus and the breathing apparatus of the present invention at the same time
  • the actual breathing rate or respiratory rate and the individual measured by the breathing apparatus of the present Personal breathing data may be recorded in advance by matching waveforms or respiratory rate.
  • the respiratory measurement device may measure the respiratory rate of the user 100 based on the signal and the respiration data measured by at least two or more of the three or more sensors 12, 14, 16.
  • the respiratory measuring device stores the respiratory data stored in advance using data such as the magnitude of the waveform, the number of peak values, the frequency, and the like measured by the first sensor 12 and the second sensor 14. The respiratory rate or respiratory volume matched may be searched for and determined.
  • the respiratory measurement device is a voice signal measured by the voice signal measuring unit 18 and a signal measured by at least two or more of the three or more sensors 12, 14, 16
  • the respiratory rate of the user 100 may be measured.
  • the respiratory measuring device counts the number of times the peak value of the signal waveform of the first sensor 12 and the peak value of the signal waveform of the second sensor 14 and the peak value of the voice signal are simultaneously recorded. It can be measured by the respiratory rate of the user 100.
  • the respiration measurement device of the present application may transmit the signal and the measured respiratory rate measured by the three or more sensors 12, 14, 16 to the external monitoring device 22 in conjunction with the respiration measurement device.
  • the respiration measurement device may be connected to the external monitoring device 22 by wire or transmit data to the external monitoring device 22 using wireless communication.
  • the respiration measurement apparatus of the present application considers a plurality of signals acquired from two or more sensors simultaneously, instead of using only signals obtained from a single sensor, and compares the magnitude, frequency, and time difference between the corresponding signals. By determining the user's breathing rate using the back, the accuracy is very high.
  • the respiratory measuring device measures the respiratory rate of the user 100 using the first signal measured by the first sensor 12 and the second signal measured by the second sensor 14.
  • the present invention is not limited thereto, and in order to improve the accuracy of the respiratory rate measurement, a plurality of combined data of the plurality of sensors (eg, the first sensor 12, the second sensor 14, and the second sensor 14).
  • the third sensor 16, the first sensor 12, and the third sensor 16 may be selectively used according to the performance of each sensor or the attachment position of the sensor.
  • respiration rate of the user 100 in the same manner as in the above-described embodiment, based on not only an electrical signal measured by the piezoelectric sensor but also a change pattern and magnitude value of acceleration having a certain periodicity measured from each acceleration sensor. Can be measured.
  • the breathing apparatus 200 may include a pad (not shown), a first sensor 202, a second sensor 204, a third sensor 206, a voice signal measuring unit 208, and a memory ( 210, a converter 212, an amplifier 214, a determiner 216, an output unit 218, and a transmitter 220 may be included.
  • the breathing apparatus 200 shown in FIG. 2 is only one embodiment of the present disclosure, and may be modified in various forms based on the components shown in FIG. 2 in the technical field to which the embodiments of the present disclosure belong.
  • anyone with ordinary knowledge can understand. For example, components and functionality provided within those components may be combined into a smaller number of components or further separated into additional components.
  • the first sensor 202, the second sensor 204, and the third sensor 206 may be installed on a pad (not shown), and may generate and measure a signal according to the movement of the user's body by the user's breathing.
  • the first sensor 202, the second sensor 204, and the third sensor 206 may include a piezoelectric sensor or an acceleration sensor manufactured by the MEMS technique.
  • the voice signal measuring unit 208 may convert the sound generated by the inhalation and exhalation of the user's breath into a voice signal and measure it.
  • the voice signal measuring unit 208 may include a microphone.
  • the memory 210 may store respiration data about a relationship between a signal measured by the first sensor 202, the second sensor 204, and the third sensor 206 and the actual respiration rate of the user.
  • the respiratory data using the actual breathing apparatus and the breathing apparatus 200 at the same time using the actual breathing apparatus and the breathing apparatus 200 of the general number of people measured through the actual breathing apparatus It may be a general number of average respiration data recorded in advance by matching the measured waveforms (including information such as magnitude value and frequency) or the respiratory rate.
  • the respiration data is measured by using the individual breathing apparatus and the respiratory measurement device 200 for each individual measured through the actual respiratory measurement device using the real breathing apparatus and the breathing apparatus 200 at the same time.
  • Personal breathing data may be recorded in advance by matching the individual waveforms or the number of breaths.
  • the converter 212 may convert the signals measured by the first sensor 202, the second sensor 204, and the third sensor 206 into a frequency domain, and detect the frequency of the waveform measured by each sensor. have.
  • the converter 212 may convert the time domain signal measured by each sensor into the frequency domain by using a conventional general algorithm for converting a signal in the time domain to the frequency domain.
  • the amplifier 214 may amplify the magnitude of the signal measured by the first sensor 202, the second sensor 204, and the third sensor 206 and the voice signal measured by the voice signal measuring unit 208. have. Since the signals and the audio signals measured by the first sensor 202, the second sensor 204 and the third sensor 206 are fine, it is necessary to amplify the magnitude of the respiratory rate. Since the amplifier 214 has a structure including a general signal amplifier circuit, detailed description thereof will be omitted.
  • the determination unit 216 may measure the respiratory rate of the user using signals measured by at least two or more sensors among the first sensor 202, the second sensor 204, and the third sensor 206. According to one embodiment of the present application, the determination unit 216 compares the waveform of the first signal measured by the first sensor 202 and the waveform of the second signal measured by the second sensor 204. As a result of the comparison, the number of times the peak value of the waveform of the first signal and the waveform of the second signal appear simultaneously may be counted, and the counted number may be counted as the user's breathing rate.
  • the determination unit 216 is the waveform of the first signal measured by the first sensor 202 and the waveform of the second signal measured by the second sensor 204 And waveforms of the third signal measured by the third sensor 206.
  • the determination unit 216 counts the number of times the peak value of the waveform of the first signal, the waveform of the second signal, and the waveform of the third signal appear at the same time, and counts the counted times of the user. You can count by breathing rate.
  • the determination unit 216 may determine whether the frequencies of the first signal, the second signal, and the third signal converted into the frequency domain by the conversion unit 212 are equal to each other. Can be. For example, when the frequency of the waveform of the first signal and the waveform of the second signal coincide, the determination unit 216 may display the peak value of the waveform of the waveform of the first signal and the waveform of the second signal simultaneously. By counting the number of times can be counted by the user's breathing rate.
  • the determination unit 216 counts the number of times the peak value of the waveform of the waveform of the first signal and the waveform of the second signal at the same time. In addition, the determination unit 216 compares the waveform of the first signal and the waveform of the third signal measured by the third sensor 206, and the peak of the waveform of the first signal and the waveform of the third signal. Count the number of times the value appears at the same time. In addition, the determination unit 216 may determine the number of times the peak value of the waveform of the first signal and the waveform of the second signal appear at the same time as the count and the waveform of the first signal and the third at the same time. The smaller number of times the peak value of the waveform of the signal appears can be counted as the user's breathing rate.
  • the determination unit 216 is a difference between the peak value of the predetermined threshold value or more of the waveform of the first signal recorded at the same time and the peak value or more of the threshold value of the waveform of the second signal. Can be counted as the user's breathing rate by counting the number of cases less than the preset value.
  • the determination unit 216 may determine whether the frequencies of the first signal and the second signal converted into the frequency domain by the conversion unit 212 match. As a result of the determination, when the frequency of the first signal and the frequency of the second signal coincide, the determination unit 216 determines that the peak value or more than the threshold value of the first signal and the threshold value of the second signal at the same time. The number of cases where the difference between the above peak values is smaller than the preset value can be counted as the user's breathing rate.
  • the determination unit 216 may count the number of times the peak value of the first signal and the second signal appear within a preset time difference and measure the number of breaths by the user. .
  • the determination unit 216 and the signal measured by at least two or more of the first sensor 202, the second sensor 204 and the third sensor 206 and the The respiratory rate of the user may be measured based on the respiration data stored in the memory 210.
  • the determination unit 216 may store the breath stored in advance using data such as the magnitude of the waveform, the number of peak values, the frequency, and the like measured by the first sensor 202 and the second sensor 204. The respiratory rate matched in the data can be retrieved and determined.
  • the determination unit 216 is a voice signal measured by the voice signal measuring unit 208 and the first sensor 202, the second sensor 204 and the third sensor ( The user's respiratory rate may be measured by simultaneously considering signals measured by at least two or more sensors. For example, the determination unit 216 determines the number of times the peak value of the signal waveform of the first sensor 202 and the peak value of the signal waveform of the second sensor 204 and the peak value of the audio signal are simultaneously recorded. It can be counted and measured by the user's breathing rate.
  • the output unit 218 may output a signal measured by the first sensor 202, the second sensor 204, and the third sensor 206 and the respiratory rate measured by the determination unit 216.
  • the output unit 218 may output data regarding the signal and the respiratory rate using voice, an image, and the like.
  • the output unit 218 may be formed of a general display device such as a touch screen, a liquid crystal display (LCD), and a light emitting diode (LED).
  • the transmitter 220 measures the signal measured by the first sensor 202, the second sensor 204, and the third sensor 206 and the respiratory rate measured by the determination unit 216. ) To an external monitoring device that works with For example, the transmitter 220 may transmit data regarding the signal and the respiratory rate to an external monitoring device using wired or wireless communication. Examples of wireless communication include Wi-Fi, Internet (Internet), Local Area Network (LAN), Wireless Local Area Network (WLAN), Wide Area Network (WAN), Personal Area Network (PAN), 3G, 4G, LTE may be included, but is not limited thereto.
  • wireless communication include Wi-Fi, Internet (Internet), Local Area Network (LAN), Wireless Local Area Network (WLAN), Wide Area Network (WAN), Personal Area Network (PAN), 3G, 4G, LTE may be included, but is not limited thereto.
  • the respiration measuring apparatus compares the waveform of the first signal S1 measured by the first sensor with the waveform of the second signal S2 measured by the second sensor.
  • the waveform of the first signal S1 and the waveform of the second signal S2 may have a wave form having a periodicity according to respiration, but is not limited thereto.
  • the upward peak value is recorded in the waveform of the first signal S1 and the waveform of the second signal S2, and when the user breathes in, the waveform and the first signal of the first signal S1 are recorded.
  • Downward peak values may be recorded in the waveform of the two signals S2.
  • the respiration measuring device counts the number of times the peak value of the waveform of the waveform of the first signal (S1) and the waveform of the second signal (S2) at the same time, and counts the number of times You can count by breathing rate. For example, as shown in FIG. 3, the peak value of the first signal S1 and the second signal S2 was simultaneously recorded at four timings of T1, T2, T3, and T4. Therefore, the respiratory measuring device may measure the respiratory rate of the user four times.
  • the respiration measurement apparatus may include a waveform of the first signal S1 measured by the first sensor, a waveform of the second signal S2 measured by the second sensor, and a third signal measured by the third sensor.
  • the waveforms of S3 can be compared.
  • the respiratory measuring device counts the number of times the peak value of the waveform of the first signal S1, the waveform of the second signal S2 and the waveform of the third signal S3 appears at the same time.
  • the counted number of times may be counted as a user's respiratory rate.
  • the first signal S1, the second signal S2, and the third signal S3 simultaneously record peak values at four timings of T1, T2, T3, and T4. It became. Therefore, the respiratory measuring device may measure the respiratory rate of the user four times.
  • the respiration measuring apparatus compares the waveform of the first signal S1 measured by the first sensor with the waveform of the second signal S2 measured by the second sensor.
  • the respiratory measuring device has a peak value P1 or higher in the waveform of the first signal S1 that is higher than or equal to a predetermined threshold value R, and a peak value higher than or equal to the threshold value R in the waveform of the second signal S2.
  • the peak value P1 of the waveform of the first signal S1 or more which is higher than or equal to the preset threshold R, and the peak of the signal value of the threshold R or more, among the waveforms of the second signal S2.
  • the value P2 was simultaneously recorded at the two timings of T1 and T2, wherein if the difference (50 or 52) between the peak value P1 and the peak value P2 of the timing is smaller than the preset value, breathing
  • the measuring device may measure the respiratory rate of the user twice.
  • FIG. 6 is a diagram illustrating another example of a signal obtained from a sensor of a respiration measuring device according to an embodiment of the present disclosure.
  • the respiration measuring apparatus compares the waveform of the first signal S1 measured by the first sensor with the waveform of the second signal S2 measured by the second sensor.
  • the respiratory measuring device may count the number of times the peak value of the first signal (S1) and the second signal (S2) appears within a time difference of a predetermined range to measure by the user's respiratory rate. For example, as shown in FIG. 6, the peak value of the waveform of the first signal S1 was recorded at the timing of T1, and the peak value of the waveform of the second signal S2 was recorded at the timing of T2.
  • the respiration measurement apparatus may have a peak value of the waveform of the first signal S1 and a peak value of the waveform of the second signal S2. It can be judged to be caused by breathing.
  • the peak value of the waveform of the signal S1 was recorded at the timing T3
  • the peak value of the waveform of the second signal S2 was recorded at the timing T4
  • the time difference 62 between the T3 and T4 was set in advance. If less than the value, the respiratory measurement device may count the respiratory rate of the user.
  • the breathing apparatus may not count the user's breathing rate.
  • the respiration measuring apparatus compares the waveform of the first signal S1 measured by the first sensor with the waveform of the second signal S2 measured by the second sensor and the waveform of the voice signal S4. do.
  • the respiratory measuring device measures the number of times when the peak value of the first signal S1, the peak value of the second signal S2, and the peak value of the voice signal S4 are simultaneously recorded, or the peak of the first signal S1.
  • the number of times when the waveform of the voice signal S4 changes abruptly may be counted and measured by the user's respiration rate.
  • the peak value is simultaneously recorded with the first signal S1 and the second signal S2 at three timings of T1, T2, and T3, and at this time, the audio signal S4.
  • the waveform of was changed suddenly. Therefore, the respiratory measurement device may measure the respiratory rate of the user three times.
  • FIG. 8 is a flowchart illustrating a respiratory measurement method according to an embodiment of the present application.
  • the breath measuring method illustrated in FIG. 8 may be performed by the breath measuring apparatus described with reference to the above drawings. Therefore, even if omitted below, the descriptions of the apparatus for measuring breathing through FIGS. 1 to 7 also apply to FIG. 8.
  • the respiratory measuring device may measure a signal generated according to the movement of the user's body by the user's breathing with three or more sensors installed on a pad attachable to the user's body (S810).
  • the three or more sensors may include piezoelectric sensors.
  • the respiratory measurement device may compare the signals measured by the three or more sensors (S820).
  • the respiration measurement apparatus may compare the waveform of the first signal measured by the first sensor and the waveform of the second signal measured by the second sensor.
  • the respiratory measurement device may measure the respiratory rate of the user based on a comparison result of the signals measured by the three or more sensors (S830). For example, the respiratory measuring device may count the number of times per unit time at which the peak values of the first signal and the second signal appear at the same time and measure the number of respirations.
  • the respiratory measuring device transmits the measured respiratory rate to an external output device linked with the respiratory measuring device using a network, and outputs itself to provide information about the respiratory rate to a user or a medical staff (S840). .
  • steps S810 to S840 may be further divided into additional steps or combined into fewer steps, according to an embodiment of the present invention.
  • some steps may be omitted as necessary, and the order between the steps may be changed.
  • Computer readable media can be any available media that can be accessed by a computer and includes both volatile and nonvolatile media, removable and non-removable media.
  • Computer readable media may include both computer storage media and communication media.
  • Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data.
  • Communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave, or other transmission mechanism, and includes any information delivery media.
  • voice signal measuring unit 210 memory

Abstract

A device for measuring respiration may comprise: pads which are attachable to the body of a user; three or more sensors which are installed on the pads and measure signals generated by movements of the body of the user caused by the respiration of the user; and a determination unit which measures the respiration rate of the user using signals measured by at least two sensors of the three or more sensors.

Description

호흡 측정 장치 및 그를 이용한 호흡 측정 방법Breathing apparatus and method for measuring breathing using the same
본원은 호흡 측정 장치 및 그를 이용한 호흡 측정 방법에 관한 것이다.The present application relates to a respiration measurement device and a respiration measurement method using the same.
호흡수와 같은 생체신호는 인체의 건강상태, 이상 유/무를 가장 간편하게 진단할 수 있는 요소 중 하나이다. 주로 중환자, 응급환자, 수술 중 환자, 또는 건강 유지에 취약한 노약들에게 생체신호측정기 (예를 들어, 호흡기)를 부착하여 지속적으로 생체신호를 체크하고 있다.Bio-signals such as respiratory rate are one of the most convenient factors for diagnosing the health and abnormality of the human body. Biosignal meters (eg, respirators) are constantly attached to vital signs, mainly for critical patients, emergency patients, patients during surgery, or elderly people who are vulnerable to maintaining health.
예컨대, 수술 중인 환자에게 산소 마스크를 부착시켜 수술 중 환자의 호흡 상태를 지속적으로 체크하게 되는데, 산소 마스크는 환자에게 공포감을 줄 수 있으며, 산소 마스크와 호흡 상태 모니터링 장치를 연결하는 많은 수의 연결 선으로 인해 의사 등의 사람의 동선에 제약을 주며, 다른 시술 또는 수술과 병행하기 어려운 불편한 점이 있었다.For example, by attaching an oxygen mask to a patient under surgery, the patient's breathing condition is constantly checked during the operation. The oxygen mask may cause fear to the patient, and a large number of connecting lines connecting the oxygen mask and the respiratory monitoring device may be used. Due to the restrictions on the movement of people, such as doctors, there was an uncomfortable point difficult to parallel with other procedures or surgery.
또한, 병원에서 입원 또는 수술하고 있는 환자뿐만 아니라, 병원 밖에서 생활을 하는 사람들의 호흡 상태를 체크할 필요가 있는 경우가 많다. 예를 들어, 호흡 패턴이 불안정한 노약자나 부모와 다른 공간에서 생활하는 영유아들의 호흡 패턴이나 수면 중 호흡 패턴을 측정할 필요가 있다. 특히, 최근에는 수면 중에 일시적으로 호흡을 하지 않는 질병인 수면 무호흡증을 진단하는 정도에서 나아가, 실제적인 호흡수 또는 호흡량을 측정하여 그 사람의 건강상태를 진단하는데 활용할 필요가 있다.In addition, it is often necessary to check the breathing conditions of not only patients who are hospitalized or operated in the hospital but also those who live outside the hospital. For example, it is necessary to measure breathing patterns during sleep or sleep patterns of the elderly or parents who are unstable in breathing patterns or parents who live in different places. In particular, in recent years, the sleep apnea, which is a disease that temporarily does not breathe during sleep, needs to be used to diagnose a person's health by measuring the actual respiratory rate or respiratory rate.
그러나, 종래에는 병원 내에 마련되어 있는 것과 같은 호흡 측정 장비 없이 사용자의 호흡수 및 호흡량을 정확히 측정하여 데이터를 획득하고, 획득한 데이터를 병원 내의 의사 등에게 정확히 전달하는 데에는 어려움이 있었다. 특히, 단순 센서 등을 몸에 부착하여 그 센서로부터 획득된 1차 신호를 이용하여 호흡수를 측정하는 종래의 방법은 그 정확도에 있어서 병원 장비를 통해 호흡수를 측정하는 방법에 비해 많이 부족한 상태이다. 본원의 배경이 되는 기술은 대한민국 공개특허공보 제 2006-0005092호 (2006. 1. 17. 공개)에 개시되어 있다.However, in the related art, it is difficult to accurately obtain the data by accurately measuring the respiratory rate and the respiratory volume of the user without the respiratory measuring equipment as provided in the hospital, and to accurately transfer the acquired data to a doctor in the hospital. In particular, the conventional method of measuring respiratory rate using a primary sensor obtained from the sensor by attaching a simple sensor or the like to the body is far shorter than the method of measuring respiratory rate through hospital equipment. . The background technology of the present application is disclosed in Korean Patent Laid-Open Publication No. 2006-0005092 (published Jan. 17, 2006).
전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 본원은 보다 정확하게 사용자의 호흡수를 간편하고 정확하게 측정할 수 있는 호흡 측정 장치 및 호흡 측정 방법을 제공하고자 한다.In order to solve the above-mentioned problems of the prior art, the present application is to provide a respiratory measurement device and a respiration measurement method that can more easily and accurately measure the respiratory rate of the user.
또한, 본원은 병원 밖의 일상생활 중의 사용자의 호흡 데이터를 병원 등의 시스템으로 전송하여 원격으로 사용자의 건강상태를 실시간으로 체크할 수 있는 호흡 측정 장치 및 호흡 측정 방법을 제공하고자 한다.In addition, the present application is to provide a respiration measurement device and respiration measurement method that can remotely check the user's health status in real time by transmitting the respiratory data of the user in the daily life outside the hospital to a system such as a hospital.
또한, 본원은 사용자에게 산소 마스크 등의 장비를 부착하지 않고 사용자의 호흡수를 측정하여, 수술 및 다양한 치료와 병행하면서 환자의 호흡 상태를 실시간으로 모니터링 할 수 있는 호흡 측정 장치 및 호흡 측정 방법을 제공하고자 한다.In addition, the present application provides a respiratory measurement device and a respiratory measurement method that can monitor the respiratory state of the patient in real time while measuring the respiratory rate of the user without attaching equipment such as an oxygen mask to the user in parallel with surgery and various treatments I would like to.
다만, 본 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.However, the technical problem to be achieved by the present embodiment is not limited to the technical problems as described above, and other technical problems may exist.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 일 실시예에 따른 호흡 측정 장치는 사용자의 몸에 부착 가능한 패드, 상기 패드에 설치되고, 상기 사용자의 호흡에 의한 상기 사용자의 몸의 움직임에 따라 발생하는 신호를 측정하는 3개 이상의 센서, 및 상기 3개 이상의 센서 중 적어도 2개 이상의 센서에서 측정된 신호를 이용하여, 상기 사용자의 호흡수를 측정하는 판단부를 포함할 수 있다.As a technical means for achieving the above technical problem, a respiration measurement apparatus according to an embodiment of the present application is a pad, which is attached to the body of the user, is installed on the pad, the movement of the user's body by the user's breathing Three or more sensors for measuring the signal generated according to, and using the signal measured by at least two or more of the three or more sensors, may include a determination unit for measuring the respiratory rate of the user.
본 실시예의 일 예에 따르면, 상기 센서는 제1센서 및 제2센서를 포함하고, 상기 판단부는 상기 제1센서에 의해 측정된 제1신호와 상기 제2센서에 의해 측정된 제2신호를 비교하고, 동일한 시간에 상기 제1신호와 상기 제2신호의 피크(peak)값이 나타나는 횟수를 카운트하여 상기 호흡수로 카운트할 수 있다.According to an embodiment of the present embodiment, the sensor includes a first sensor and a second sensor, and the determination unit compares the first signal measured by the first sensor and the second signal measured by the second sensor. The number of times the peak value of the first signal and the second signal appear at the same time may be counted as the respiratory rate.
본 실시예의 일 예에 따르면, 상기 호흡 측정 장치는 상기 제1신호 및 상기 제2신호를 주파수 도메인으로 변환하는 변환부를 더 포함하고, 상기 판단부는 상기 제1신호의 주파수와 상기 제2신호의 주파수가 일치하는지 여부를 판단하고, 상기 제1신호의 주파수와 상기 제2신호의 주파수가 일치하는 경우에, 동일한 시간에 상기 제1신호와 상기 제2신호의 피크값이 나타나는 횟수를 상기 호흡수로 카운트할 수 있다.According to an example of this embodiment, the respiration measurement apparatus further includes a conversion unit for converting the first signal and the second signal in the frequency domain, the determination unit frequency of the first signal and the frequency of the second signal Is equal to, and when the frequency of the first signal and the frequency of the second signal coincide, the number of times the peak value of the first signal and the second signal appear at the same time is determined as the respiration rate. Can count.
본 실시예의 일 예에 따르면, 상기 센서는 제3센서를 포함하고, 상기 판단부는 상기 제1신호와 상기 제3센서에 의해 측정된 제3신호를 비교하고, 상기 동일한 시간에 상기 제1신호와 상기 제3신호의 피크값이 나타나는 횟수를 카운트하고, 상기 판단부는 상기 동일한 시간에 상기 제1신호와 상기 제2신호의 피크값이 나타나는 횟수와 상기 제1신호와 상기 제3신호의 피크값이 나타나는 횟수 중 작은 수를 상기 호흡수로 카운트할 수 있다.According to an example of this embodiment, the sensor includes a third sensor, the determination unit compares the first signal and the third signal measured by the third sensor, and at the same time and the first signal The number of times the peak value of the third signal is displayed is counted, and the determination unit determines the number of times the peak value of the first signal and the second signal appear and the peak value of the first signal and the third signal at the same time. The smaller number of times that appear may be counted as the respiratory rate.
본 실시예의 일 예에 따르면, 상기 센서는 제1센서 및 제2센서를 포함하고, 상기 판단부는 상기 제1센서에 의해 측정된 제1신호와 상기 제2센서에 의해 측정된 제2신호를 비교하고, 동일한 시간의 상기 제1신호의 미리 설정된 임계치 이상의 피크값과 상기 제2신호의 상기 임계치 이상의 피크값의 차이가 미리 설정된 값보다 작은 경우의 수를 카운트하여 상기 호흡수로 카운트할 수 있다.According to an embodiment of the present embodiment, the sensor includes a first sensor and a second sensor, and the determination unit compares the first signal measured by the first sensor and the second signal measured by the second sensor. The number of cases where the difference between the peak value of the first signal equal to or greater than the threshold and the peak value of the second signal equal to or greater than the threshold of the second signal is smaller than the preset value may be counted and counted as the respiratory rate.
본 실시예의 일 예에 따르면, 상기 호흡 측정 장치는 상기 제1신호 및 상기 제2신호를 주파수 도메인으로 변환하는 변환부를 더 포함하고, 상기 판단부는 상기 제1신호의 주파수와 상기 제2신호의 주파수가 일치하는지 여부를 판단하고, 상기 제1신호의 주파수와 상기 제2신호의 주파수가 일치하는 경우에, 동일한 시간의 상기 제1신호의 상기 임계치 이상의 피크값과 상기 제2신호의 상기 임계치 이상의 피크값의 차이가 상기 미리 설정된 값보다 작은 경우의 수를 상기 호흡수로 카운트할 수 있다.According to an example of this embodiment, the respiration measurement apparatus further includes a conversion unit for converting the first signal and the second signal in the frequency domain, the determination unit frequency of the first signal and the frequency of the second signal Is equal to, and when the frequency of the first signal and the frequency of the second signal coincide, the peak value equal to or greater than the threshold of the first signal and the peak value equal to or greater than the threshold of the second signal at the same time. The number of cases where the difference in value is smaller than the preset value may be counted as the respiratory rate.
본 실시예의 일 예에 따르면, 상기 센서는 제1센서, 제2센서 및 제3센서를 포함하고, 상기 판단부는 상기 제1센서에 의해 측정된 제1신호와 상기 제2센서에 의해 측정된 제2신호와 상기 제3센서에 의해 측정된 제3신호를 비교하고, 동일한 시간에 상기 제1신호와 상기 제2신호와 상기 제3신호의 피크값이 나타나는 횟수를 카운트하여 상기 호흡수로 카운트할 수 있다.According to an example of the present embodiment, the sensor includes a first sensor, a second sensor, and a third sensor, and the determination unit includes a first signal measured by the first sensor and a first measured by the second sensor. Comparing the second signal and the third signal measured by the third sensor, and counting the number of times the peak value of the first signal, the second signal and the third signal appear at the same time to count the respiratory rate Can be.
본 실시예의 일 예에 따르면, 상기 센서는 제1센서 및 제2센서를 포함하고, 상기 판단부는 상기 제1센서에 의해 측정된 제1신호와 상기 제2센서에 의해 측정된 제2신호를 비교하고, 상기 판단부는 미리 설정된 범위의 시간차 내에 상기 제1신호와 상기 제2신호의 피크값이 나타나는 횟수를 카운트하여 상기 호흡수로 카운트할 수 있다.According to an embodiment of the present embodiment, the sensor includes a first sensor and a second sensor, and the determination unit compares the first signal measured by the first sensor and the second signal measured by the second sensor. The determination unit may count the number of times the peak value of the first signal and the second signal appear within a preset time difference and count the number of breaths.
본 실시예의 일 예에 따르면, 상기 3개 이상의 센서는 압전 센서를 포함할 수 있다.According to an example of this embodiment, the three or more sensors may include a piezoelectric sensor.
본 실시예의 일 예에 따르면, 상기 3개 이상의 센서는 MEMS (Micro Electro Mechanical Systems) 기법으로 제작될 수 있다.According to an example of this embodiment, the three or more sensors may be manufactured by the MEMS (Micro Electro Mechanical Systems) technique.
본 실시예의 일 예에 따르면, 상기 3개 이상의 센서는 가속도 센서를 포함할 수 있다.According to an example of this embodiment, the three or more sensors may include an acceleration sensor.
본 실시예의 일 예에 따르면, 상기 호흡 측정 장치는 상기 3개 이상의 센서에서 측정되는 신호와 상기 사용자의 실제 호흡수의 관계에 관한 데이터를 저장하고 있는 메모리를 더 포함하고, 상기 판단부는 상기 3개 이상의 센서 중 적어도 2개 이상의 센서에서 측정된 신호와 상기 메모리에 저장되어 있는 데이터에 기초하여, 상기 사용자의 호흡수를 측정할 수 있다.According to an example of this embodiment, the respiration measurement device further comprises a memory for storing data relating to the relationship between the signal measured by the three or more sensors and the actual respiratory rate of the user, wherein the determination unit the three The respiratory rate of the user may be measured based on signals measured by at least two sensors among the above sensors and data stored in the memory.
본 실시예의 일 예에 따르면, 상기 호흡 측정 장치는 상기 3개 이상의 센서에서 측정되는 신호의 크기를 증폭시키는 증폭부를 더 포함할 수 있다.According to an example of this embodiment, the respiration measurement device may further include an amplifier for amplifying the magnitude of the signal measured by the three or more sensors.
본 실시예의 일 예에 따르면, 상기 호흡 측정 장치는 상기 3개 이상의 센서에서 측정되는 신호 및 상기 측정된 호흡수를 출력하는 출력부를 더 포함할 수 있다.According to an example of this embodiment, the respiration measurement device may further include an output unit for outputting the signal measured by the three or more sensors and the measured respiratory rate.
본 실시예의 일 예에 따르면, 상기 호흡 측정 장치는 상기 3개 이상의 센서에서 측정되는 신호 및 상기 측정된 호흡수를 상기 호흡 측정 장치와 연동하는 외부 모니터링 장치로 전송하는 전송부를 더 포함할 수 있다.According to an example of this embodiment, the respiration measurement device may further include a transmission unit for transmitting a signal measured by the three or more sensors and the measured respiratory rate to an external monitoring device in conjunction with the respiration measurement device.
본 실시예의 일 예에 따르면, 상기 호흡 측정 장치는 상기 사용자의 호흡시에 발생하는 음성신호를 측정하는 음성신호 측정부를 더 포함하고, 상기 판단부는 상기 3개 이상의 센서 중 적어도 2개 이상의 센서에서 측정된 신호와 상기 음성신호에 기초하여, 상기 사용자의 호흡수를 측정할 수 있다.According to an example of this embodiment, the respiration measurement device further includes a voice signal measuring unit for measuring a voice signal generated when the user's breathing, the determination unit is measured by at least two or more of the three or more sensors The respiratory rate of the user may be measured based on the received signal and the voice signal.
본원의 다른 일 실시예에 따른 호흡 측정 방법은 사용자의 몸에 부착 가능한 패드에 설치된 3개 이상의 센서로 상기 사용자의 호흡에 의한 상기 사용자의 몸의 움직임에 따라 발생하는 신호를 측정하는 단계, 상기 3개 이상의 센서 중 제1센서에 의해 측정된 제1신호와 제2센서에 의해 측정된 제2신호를 비교하는 단계, 및 동일한 시간에 상기 제1신호와 상기 제2신호의 피크(peak)값이 나타나는 단위시간 당 횟수를 카운트하여 호흡수로 측정하는 단계를 포함할 수 있다.Respiration measurement method according to another embodiment of the present invention is a step of measuring a signal generated in accordance with the movement of the user's body by the user's breathing with three or more sensors installed on a pad attachable to the user's body, the 3 Comparing the first signal measured by the first sensor and the second signal measured by the second sensor of the at least one sensor, and at the same time the peak value of the first signal and the second signal It may include the step of counting the number of times per unit time shown by the respiratory rate.
상술한 과제 해결 수단은 단지 예시적인 것으로서, 본 발명을 제한하려는 의도로 해석되지 않아야 한다. 상술한 예시적인 실시예 외에도, 도면 및 발명의 상세한 설명에 기재된 추가적인 실시예가 존재할 수 있다.The above-mentioned means for solving the problems are merely exemplary, and should not be construed to limit the present invention. In addition to the exemplary embodiments described above, there may be additional embodiments described in the drawings and detailed description of the invention.
전술한 본원의 과제 해결 수단 중 어느 하나에 의하면, 사용자의 몸에 부착 가능한 패드에 설치되고, 사용자의 호흡에 의한 사용자의 몸의 변화에 따라 신호를 발생시키는 복수의 센서로부터 신호를 획득하여 사용자의 호흡수를 측정함으로써, 사용자의 활동에 제약을 주지 않고, 사용자에게 불편감을 주지 않으며, 다른 수술 또는 시술과 병행하여 사용자의 호흡수를 실시간으로 측정할 수 있다.According to any one of the above problem solving means of the present application, the user is installed on a pad attachable to the user's body, and acquires a signal from a plurality of sensors for generating a signal according to the change of the user's body by the user's breathing By measuring the respiratory rate, the user's respiratory rate can be measured in real time without limiting the user's activity, without causing discomfort to the user, and in parallel with other operations or procedures.
전술한 본원의 과제 해결 수단 중 어느 하나에 의하면, 복수의 센서로부터 발생된 복수의 신호를 동시에 고려하여 사용자의 호흡수를 측정함으로써, 정확하게 사용자의 호흡수를 측정할 수 있다.According to any one of the above problem solving means of the present application, by measuring the respiratory rate of the user in consideration of a plurality of signals generated from the plurality of sensors at the same time, it is possible to accurately measure the respiratory rate of the user.
도 1은 본원의 일 실시예에 따른 호흡 측정 장치를 나타낸 도면이다.1 is a view showing a breathing apparatus according to an embodiment of the present application.
도 2는 본원의 일 실시예에 따른 호흡 측정 장치의 구성도이다.2 is a block diagram of a breathing apparatus according to an embodiment of the present application.
도 3은 본원의 일 실시예에 따른 호흡 측정 장치의 센서로부터 획득되는 신호의 일 예를 나타낸 도면이다.3 is a diagram illustrating an example of a signal obtained from a sensor of a breathing apparatus according to an embodiment of the present application.
도 4는 본원의 일 실시예에 따른 호흡 측정 장치의 센서로부터 획득되는 신호의 또 다른 일 예를 나타낸 도면이다.4 is a view showing another example of a signal obtained from a sensor of a breathing apparatus according to an embodiment of the present application.
도 5는 본원의 일 실시예에 따른 호흡 측정 장치의 센서로부터 획득되는 신호의 또 다른 일 예를 나타낸 도면이다.5 is a diagram illustrating another example of a signal obtained from a sensor of a respiration measuring device according to an embodiment of the present disclosure.
도 6은 본원의 일 실시예에 따른 호흡 측정 장치의 센서로부터 획득되는 신호의 또 다른 일 예를 나타낸 도면이다.6 is a diagram illustrating another example of a signal obtained from a sensor of a respiration measuring device according to an embodiment of the present disclosure.
도 7은 본원의 일 실시예에 따른 호흡 측정 장치의 센서 및 음성신호 측정부로부터 획득되는 신호의 일 예를 나타낸 도면이다.7 is a diagram illustrating an example of a signal obtained from a sensor and a voice signal measuring unit of a breathing apparatus according to an embodiment of the present application.
도 8은 본원의 일 실시예에 따른 호흡 측정 방법을 예시적으로 도시한 흐름도이다.8 is a flowchart illustrating a respiratory measurement method according to an embodiment of the present application.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present disclosure. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted for simplicity of explanation, and like reference numerals designate like parts throughout the specification.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. Throughout this specification, when a portion is "connected" to another portion, this includes not only "directly connected" but also "electrically connected" with another element in between. do.
본원 명세서 전체에서, 어떤 부재가 다른 부재 “상에” 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout this specification, when a member is located “on” another member, this includes not only when one member is in contact with another member but also when another member exists between the two members.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. Throughout this specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless specifically stated otherwise.
본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~ 를 위한 단계"를 의미하지 않는다.As used throughout this specification, the terms "about", "substantially" and the like are used at, or in the sense of, numerical values when a manufacturing and material tolerance inherent in the stated meanings is indicated, Accurate or absolute figures are used to assist in the prevention of unfair use by unscrupulous infringers. As used throughout this specification, the term "step to" or "step of" does not mean "step for."
도 1은 본원의 일 실시예에 따른 호흡 측정 장치를 나타낸 도면이다. 도 1에 도시된 바와 같이, 본원의 일 실시예에 따른 호흡 측정 장치는 사용자(100)의 몸에 부착 가능한 복수의 패드(10) 및 상기 패드(10) 내에 설치되어 사용자(100)의 몸에 접촉되는 제1센서(12), 제2센서(14), 제3센서(16) 및 음성신호 측정부(18)를 포함할 수 있다. 또한, 호흡 측정 장치는 상기 복수의 패드(10)를 연결하는 복수의 밴드(20)를 포함할 수 있다. 상기 밴드(20)는 신축성 있는 소재로 만들어질 수 있으며, 신장, 축소 등 그 변형이 자유롭다.1 is a view showing a breathing apparatus according to an embodiment of the present application. As shown in FIG. 1, a respiration measurement apparatus according to an exemplary embodiment of the present disclosure is installed in a plurality of pads 10 and the pads 10 which are attachable to a body of a user 100, and installed on the body of the user 100. The first sensor 12, the second sensor 14, the third sensor 16, and the voice signal measuring unit 18 may be included. In addition, the respiratory measurement device may include a plurality of bands 20 connecting the plurality of pads (10). The band 20 may be made of an elastic material, and its deformation, such as stretching and contraction, is free.
상기 복수의 패드(10)는 각각 사용자(100)의 몸의 서로 다른 위치에 부착될 수 있다. 예를 들어, 도 1에 도시된 바와 같이, 사용자(100)의 호흡 시에 사용자(100)의 몸의 움직임이 용이하게 포착될 수 있는 위치인 사용자(100)의 명치 부위, 갈비뼈 부위, 복부에 패드(10)를 설치할 수 있다. 이 때, 심장박동에 의한 몸의 움직임이 발생할 수 있는 사용자(100)의 왼쪽 가슴부위에는 패드를 설치하지 않는 편이 정확한 호흡 측정을 위해 유리하다. 심장박동에 의한 몸의 움직임에 의해 센서가 동작하여 신호가 측정될 경우, 호흡에 의한 몸의 움직임에 의한 신호와 구분이 어려울 수 있기 때문이다. 또한, 예를 들어, 도 1에 도시된 바와 같이, 음성신호 측정부(18)가 설치된 패드(10)는 호흡시의 사용자의 몸에서 발생하는 음성신호를 측정하기 위해 사용자의 목 부위에 설치될 수 있다. The plurality of pads 10 may be attached to different positions of the body of the user 100, respectively. For example, as shown in Figure 1, when the user 100 breathing in the position of the user 100, which is a position that can be easily captured body movements of the user 100, rib portion, abdomen The pad 10 can be installed. At this time, it is advantageous for accurate respiration measurement not to install a pad on the left chest portion of the user 100, which can cause body movement due to heartbeat. This is because when the sensor is operated by the movement of the body due to the heartbeat and the signal is measured, it may be difficult to distinguish the signal from the movement of the body due to the breathing. In addition, for example, as shown in FIG. 1, the pad 10 in which the voice signal measuring unit 18 is installed may be installed at the neck part of the user to measure the voice signal generated from the user's body during breathing. Can be.
다만, 도 1에 도시된 패드(10)의 설치위치는 단지 예시적인 것으로서, 호흡 측정의 정확도를 향상시키기 위해 사용자(100)의 다른 신체 부위에 패드(10)가 설치될 수 있다. 또한, 도 1에는 3개의 패드(10)와 제1센서(12), 제2센서(14), 제3센서(16)의 3개의 센서가 사용자(100)의 몸에 설치되는 것으로 도시되어 있으나, 패드(10) 및 센서의 수는 이에 한정되지 않으며, 3개 이상의 센서가, 예를 들어, 5개의 센서, 설치될 수 있다.However, the installation position of the pad 10 shown in FIG. 1 is merely exemplary, and the pad 10 may be installed at another body part of the user 100 to improve the accuracy of the respiration measurement. In addition, in FIG. 1, three pads 10, three sensors 1, a first sensor 12, a second sensor 14, and a third sensor 16 are illustrated as being installed in the body of the user 100. The number of pads 10 and sensors is not limited thereto, and three or more sensors may be installed, for example, five sensors.
상기 제1센서(12), 제2센서(14) 및 제3센서(16)는 사용자(100)의 호흡에 의한 사용자(100)의 몸의 움직임에 따라 신호를 발생시키고, 발생되는 신호를 측정할 수 있다. 예를 들어, 상기 제1센서(12), 제2센서(14) 및 제3센서(16)는 압전 센서를 포함할 수 있다. 압전 센서는 소정의 압력을 받으면 가해진 압력에 따라 전압의 크기를 다르게 하여 전기적인 반응이 일어나는 압전 소자를 이용한 것으로서, 사용자(100)의 몸에 접촉되어 사용자의 호흡시 횡경막, 복부, 갈비뼈 등의 이동에 의해 센서에 압력이 가해지고, 호흡 신호를 전기적인 신호로 변환 및 출력하는 소자이다. 또 다른 예로서, 상기 제1센서(12), 제2센서(14) 및 제3센서(16)는 가속도센서를 포함할 수 있다. 가속도센서는 소정의 압력 또는 외력에 의한 변화에 따라 방향 및 그 방향으로의 가속도를 측정할 수 있는 소자로서, 본 실시예에서는 사용자(100)의 호흡에 의한 일방향으로의 신체의 변화 가속도를 측정하여 출력하는 소자가 사용될 수 있다. 상기 제1센서(12), 제2센서(14) 및 제3센서(16)는 MEMS (Micro Electro Mechanical Systems) 기법을 이용하여 초소형으로 제작될 수 있다. 따라서, 호흡 측정 장치의 경량화를 도모할 수 있고, 사용자(100)의 몸에 부착됨으로써 사용자(100)에게 줄 수 있는 이물감을 최소화할 수 있다.The first sensor 12, the second sensor 14, and the third sensor 16 generate a signal according to the movement of the user's body by the user's breathing and measure the generated signal. can do. For example, the first sensor 12, the second sensor 14, and the third sensor 16 may include a piezoelectric sensor. The piezoelectric sensor is a piezoelectric element that uses a piezoelectric element that causes an electrical reaction by varying the magnitude of the voltage according to the pressure applied when a predetermined pressure is applied to the piezoelectric sensor. The pressure is applied to the sensor, and the device converts and outputs a respiratory signal into an electrical signal. As another example, the first sensor 12, the second sensor 14, and the third sensor 16 may include an acceleration sensor. The acceleration sensor is a device capable of measuring the direction and the acceleration in the direction according to the change by a predetermined pressure or external force, in this embodiment by measuring the acceleration of the change of the body in one direction by the user's breathing 100 An output device can be used. The first sensor 12, the second sensor 14, and the third sensor 16 may be manufactured in a compact form using a MEMS (Micro Electro Mechanical Systems) technique. Therefore, it is possible to reduce the weight of the respiratory measurement device, and by attaching to the body of the user 100 can minimize the foreign object that can be given to the user (100).
또한, 상기 음성신호 측정부(18)는 사용자(100)의 호흡시의 들숨과 날숨에 의해 발생되는 소리를 음성신호로 변환 및 측정할 수 있다. 예를 들어, 사용자(100)가 정상적인 호흡을 계속하는 동안에는 대체적으로 일정한 진폭을 가지는 호흡소리신호가 일정한 주기로 반복될 수 있다. 예를 들어, 상기 음성신호 측정부(18)는 마이크로폰을 포함할 수 있다.In addition, the voice signal measuring unit 18 may convert and measure the sound generated by the inhalation and exhalation of the breathing of the user 100 to a voice signal. For example, while the user 100 continues to breathe normally, a breathing sound signal having a substantially constant amplitude may be repeated at a constant cycle. For example, the voice signal measuring unit 18 may include a microphone.
또한, 본원의 호흡 측정 장치는 상기 3개 이상의 센서(예를 들어, 상기 제1센서(12), 제2센서(14) 및 제3센서(16)) 중 적어도 2개 이상의 센서에서 측정된 신호를 이용하여 사용자(100)의 호흡수를 측정할 수 있다. 예를 들어, 본원의 일 실시예에 따르면, 상기 호흡 측정 장치는 상기 제1센서(12)에 의해 측정된 제1신호의 파형과 상기 제2센서(14)에 의해 측정된 제2신호의 파형을 비교한다. 상기 호흡 측정 장치는, 그 비교 결과, 동일한 시간에 상기 제1신호의 파형과 상기 제2신호의 파형의 피크(peak)값이 나타나는 횟수를 카운트하고, 상기 카운트된 횟수를 사용자(100)의 호흡수로 카운트할 수 있다. 이 때, 상기 호흡 측정 장치는 소정의 시간 동안에 (예를 들어, 1분) 상기 제1신호의 파형과 상기 제2신호의 파형의 피크값이 동시에 기록된 횟수를 카운트하여 사용자(100)의 분당 호흡수로 측정할 수 있다. 센서의 위치, 성능 등에 따라 상기 제1신호의 파형과 상기 제2신호의 파형의 피크값의 크기는 동일하지 않을 수도 있다.In addition, the breath measuring apparatus of the present application is a signal measured by at least two or more of the three or more sensors (eg, the first sensor 12, the second sensor 14 and the third sensor 16). The respiratory rate of the user 100 may be measured using. For example, according to one embodiment of the present application, the respiration measurement device is the waveform of the first signal measured by the first sensor 12 and the waveform of the second signal measured by the second sensor 14 Compare The respiratory measuring device counts the number of times the peak value of the waveform of the first signal and the waveform of the second signal appear at the same time, and counts the counted number of times by the user 100. You can count by number. At this time, the respiration measurement device counts the number of times the peak value of the waveform of the waveform of the first signal and the waveform of the second signal is recorded at the same time (for example, 1 minute) for a predetermined time per minute of the user 100 Can be measured by respiratory rate. The magnitude of the peak value of the waveform of the first signal and the waveform of the second signal may not be the same depending on the position, the performance of the sensor, and the like.
또한, 본원의 호흡 측정 장치는 호흡수 측정의 정확도를 향상시키기 위하여, 상기 제1센서(12)에 의해 측정된 제1신호의 파형과 상기 제2센서(14)에 의해 측정된 제2신호의 파형과 상기 제3센서(16)에 의해 측정된 제3신호의 파형을 비교한다. 상기 호흡 측정 장치는, 그 비교 결과, 동일한 시간에 상기 제1신호의 파형과 상기 제2신호의 파형과 상기 제3신호의 파형의 피크값이 나타나는 횟수를 카운트하고, 상기 카운트된 횟수를 사용자(100)의 호흡수로 카운트할 수 있다.In addition, the breathing apparatus of the present invention, in order to improve the accuracy of the respiratory rate measurement, the waveform of the first signal measured by the first sensor 12 and the second signal measured by the second sensor 14 The waveform and the waveform of the third signal measured by the third sensor 16 are compared. The respiratory measuring device counts the number of times the peak value of the waveform of the first signal, the waveform of the second signal, and the waveform of the third signal appears at the same time, and counts the counted number of times by the user ( Can be counted as the respiratory rate of 100).
또한, 본원의 다른 일 실시예에 따르면, 상기 호흡 측정 장치는 상기 3개 이상의 센서에서 측정된 신호를 주파수 도메인으로 변환하고, 상기 3개 이상의 센서에서 측정된 파형의 주파수가 일치하는지 여부를 판단할 수 있다. 예를 들어, 상기 제1센서(12)에 의해 측정된 제1신호의 파형과 상기 제2센서(14)에 의해 측정된 제2신호의 파형의 주파수가 일치하는 경우에, 상기 호흡 측정 장치는 동일한 시간에 상기 제1신호의 파형과 상기 제2신호의 파형의 피크값이 나타나는 횟수를 카운트하여 사용자(100)의 호흡수로 카운트할 수 있다. 사용자(100)의 호흡에 의한 몸의 움직임에 의해 발생한 신호와 호흡이 아닌 다른 움직임 또는 외력에 의해 발생한 신호는 그 주파수가 상이할 수 있다. 따라서, 각 센서에서 측정된 신호를 주파수 도메인으로 변환하고, 신호의 주파수를 비교하여, 주파수가 같은 경우에만 각 신호를 호흡수 판단의 자료로 사용하고, 주파수가 상이한 경우에는 해당 신호를 호흡수 판단의 자료로 이용하지 않음으로써, 호흡수 측정의 정확도를 향상시킬 수 있다.In addition, according to another embodiment of the present application, the respiration measurement device converts the signals measured by the three or more sensors into the frequency domain, and determines whether the frequencies of the waveforms measured by the three or more sensors match. Can be. For example, when the frequency of the waveform of the first signal measured by the first sensor 12 and the waveform of the second signal measured by the second sensor 14 coincide, the respiration measuring device may be At the same time, the number of times the peak value of the waveform of the waveform of the first signal and the waveform of the second signal appear may be counted by the respiratory rate of the user 100. The signal generated by the movement of the body by the user's breathing and the signal generated by the movement or external force other than the breathing may have different frequencies. Therefore, by converting the signal measured in each sensor into the frequency domain, and comparing the frequency of the signal, each signal is used as the data of the respiratory rate judgment only when the frequency is the same, and when the frequency is different, the corresponding signal is determined by the respiratory rate By not using this data, the accuracy of respiratory rate measurement can be improved.
또한, 본원의 다른 일 실시예에 따르면, 상기 호흡 측정 장치는 상기 제1센서(12)에 의해 측정된 제1신호의 파형과 상기 제2센서(14)에 의해 측정된 제2신호의 파형을 비교한다. 상기 호흡 측정 장치는, 그 비교 결과, 동일한 시간에 상기 제1신호의 파형과 상기 제2신호의 파형의 피크값이 나타나는 횟수를 카운트한다. 또한, 상기 호흡 측정 장치는 상기 제1센서(12)에 의해 측정된 제1신호의 파형과 상기 제3센서(16)에 의해 측정된 제3신호의 파형을 비교한다. 상기 호흡 측정 장치는, 그 비교 결과, 동일한 시간에 상기 제1신호의 파형과 상기 제3신호의 파형의 피크값이 나타나는 횟수를 카운트한다. 그리고, 상기 호흡 측정 장치는 상기 카운트한 동일한 시간에 상기 제1신호의 파형과 상기 제2신호의 파형의 피크값이 나타나는 횟수와 상기 카운트한 동일한 시간에 상기 제1신호의 파형과 상기 제3신호의 파형의 피크값이 나타나는 횟수 중 작은 수를 사용자(100)의 호흡수로 카운트함으로써, 호흡수 측정의 정확도를 향상시킬 수 있다. 또 다른 예로서, 상기 호흡 측정 장치는 동일한 시간에 상기 제1신호의 파형과 상기 제3신호의 파형의 피크값이 나타나는 횟수와 동일한 시간에 상기 제2신호의 파형과 상기 제3신호의 파형의 피크값이 나타나는 횟수를 비교하여 작은 수를 사용자(100)의 호흡수로 측정할 수 있다. 또 다른 예로서, 상기 호흡 측정 장치는 동일한 시간에 상기 제1신호의 파형과 상기 제2신호의 파형의 피크값이 나타나는 횟수와 동일한 시간에 상기 제2신호의 파형과 상기 제3신호의 파형의 피크값이 나타나는 횟수와 동일한 시간에 상기 제1신호의 파형과 상기 제3신호의 파형의 피크값이 나타나는 횟수 중 가장 작은 수를 사용자(100)의 호흡수로 측정할 수 있다.In addition, according to another embodiment of the present application, the respiration measurement device is a waveform of the first signal measured by the first sensor 12 and the waveform of the second signal measured by the second sensor 14 Compare. As a result of the comparison, the respiration measurement device counts the number of times the peak value of the waveform of the waveform of the first signal and the waveform of the second signal appears at the same time. In addition, the respiration measurement device compares the waveform of the first signal measured by the first sensor 12 with the waveform of the third signal measured by the third sensor 16. As a result of the comparison, the respiration measurement device counts the number of times the peak value of the waveform of the waveform of the first signal and the waveform of the third signal appears at the same time. In addition, the respiratory measuring device is the number of times that the peak value of the waveform of the waveform of the first signal and the waveform of the second signal at the same time counted and the waveform of the first signal and the third signal at the same time counted By counting the smaller number of times the peak value of the waveform of the user to the respiratory rate of the user 100, it is possible to improve the accuracy of the respiratory rate measurement. As another example, the respiration measuring device may be configured to generate the waveform of the waveform of the second signal and the waveform of the third signal at the same time as the number of peaks of the waveform of the waveform of the first signal and the waveform of the third signal. By comparing the number of times the peak value appears can be measured as a small number of the user 100 breathing rate. As another example, the respiration measuring apparatus may include the waveform of the waveform of the second signal and the waveform of the third signal at the same time as the number of times the peak value of the waveform of the waveform of the first signal and the waveform of the second signal appears. At the same time that the peak value appears, the smallest number of times the peak value of the waveform of the first signal and the waveform of the third signal may appear may be measured as the respiration rate of the user 100.
또한, 본원의 다른 일 실시예에 따르면, 예를 들어, 상기 호흡 측정 장치는 상기 제1센서(12)에 의해 측정된 제1신호와 상기 제2센서(14)에 의해 측정된 제2신호를 비교한다. 상기 호흡 측정 장치는, 그 비교 결과, 동일한 시간에 기록된 상기 제1신호의 파형 중에서 미리 설정된 임계치 이상의 피크값과 상기 제2신호의 파형 중에서 상기 임계치 이상의 피크값의 차이가 미리 설정된 값보다 작은 경우의 수를 카운트하여 사용자(100)의 호흡수로 카운트할 수 있다. 상기 미리 설정된 값은 각 센서의 부착 위치 등을 고려하여 설정될 수 있다. 상기 제1센서(12)와 상기 제2센서(14)는 그 부착위치가 상이하고, 사용자(100)의 호흡시 몸의 부위에 따라 그 변화 또는 움직임의 정도가 상이하기 때문에, 상기 제1신호의 파형과 상기 제2신호의 파형에서 피크값이 기록되는 시점은 동일할 수 있지만, 상기 제1신호의 파형의 피크값의 크기와 상기 제2신호의 파형의 피크값의 크기는 상이할 수 있다. 따라서, 상기 제1신호의 파형과 상기 제2신호의 파형에서 동일한 시간에 피크값이 기록되고, 각 신호의 피크값의 크기의 차이가 미리 설정된 값보다 작은 경우에는 각 센서가 부착된 몸의 부위에 따른 차이로 인정하고, 상기 호흡 측정 장치는 동일한 시간의 상기 제1신호의 피크값과 상기 제2신호의 피크값이 나타나는 횟수를 사용자(100)의 호흡수로 측정할 수 있다. 만약, 상기 제1신호의 파형과 상기 제2신호의 파형에서 동일한 시간에 피크값이 기록되었지만, 각 신호의 피크값의 크기의 차이가 미리 설정된 값보다 크게 나는 경우에는, 호흡 이외의 움직임 또는 외력에 의한 몸의 변화에 의한 신호 발생으로 간주하고, 호흡수 판단의 자료로 사용하지 않는다. 또한, 상기 임계치 이하의 크기를 가지는 피크값에 대해서는 그 크기가 너무 미세하여 호흡수로 판단할 수 없다. 상기 임계치는 정상적인 호흡시에 측정될 수 있는 파형을 고려하여, 예를 들어, 정상적인 호흡 파형의 피크값의 60% 수준으로 설정될 수 있으나, 이에 한정되는 것은 아니다. 이와 같이, 복수의 센서에서 피크값이 발생한 타이밍뿐만 아니라, 그 크기의 차이까지 고려함으로써, 사용자(100)의 호흡수 판단의 정확도를 향상시킬 수 있다.In addition, according to another embodiment of the present application, for example, the respiration measurement device is a first signal measured by the first sensor 12 and the second signal measured by the second sensor 14 Compare. When the respiration measurement device, as a result of the comparison, the difference between the peak value greater than or equal to a preset threshold among the waveforms of the first signal recorded at the same time and the peak value greater than or equal to the threshold among the waveforms of the second signal is smaller than a preset value. The number of times may be counted as the number of breaths of the user 100. The preset value may be set in consideration of the attachment position of each sensor. Since the first sensor 12 and the second sensor 14 are different in their attachment positions, and the degree of change or movement is different depending on the part of the body when the user 100 breathes, the first signal The time point at which the peak value is recorded in the waveform of the waveform and the second signal may be the same, but the magnitude of the peak value of the waveform of the first signal and the magnitude of the peak value of the waveform of the second signal may be different. . Therefore, when the peak value is recorded at the same time in the waveform of the first signal and the waveform of the second signal, and the difference in the magnitude of the peak value of each signal is smaller than the preset value, the part of the body where each sensor is attached Recognizing the difference according to, and the breathing apparatus can measure the number of times the peak value of the first signal and the peak value of the second signal at the same time by the respiratory rate of the user (100). If the peak value is recorded at the same time in the waveform of the first signal and the waveform of the second signal, but the difference in the magnitude of the peak value of each signal is larger than the preset value, the movement or external force other than breathing It is regarded as a signal generation due to the change of the body and is not used as a data for respiratory rate judgment. In addition, the peak value having a size less than or equal to the threshold value is too small to determine the respiratory rate. The threshold may be set to, for example, 60% of the peak value of the normal respiratory waveform in consideration of the waveform that may be measured during normal respiration, but is not limited thereto. As such, by considering not only the timing at which the peak values are generated in the plurality of sensors but also the difference in size, the accuracy of the respiratory rate determination of the user 100 may be improved.
또한, 본원의 다른 일 실시예에서는, 상기 호흡 측정 장치는 상기 3개 이상의 센서에서 측정된 신호를 주파수 도메인으로 변환할 수 있다. 또한, 예를 들어, 상기 호흡 측정 장치는 상기 제1신호의 주파수와 상기 제2신호의 주파수가 일치하는지 여부를 판단할 수 있다. 상기 호흡 측정 장치는, 그 판단 결과, 상기 제1신호의 주파수와 상기 제2신호의 주파수가 일치하는 경우에, 동일한 시간의 상기 제1신호의 상기 임계치 이상의 피크값과 상기 제2신호의 상기 임계치 이상의 피크값의 차이가 미리 설정된 값보다 작은 경우의 수를 사용자(100)의 호흡수로 카운트할 수 있다. 이렇게 하여, 복수의 센서에서 피크값이 발생한 타이밍과, 그 피크값 크기의 차이뿐만 아니라, 각 파형의 주파수를 고려함으로써, 사용자의 호흡에 의해 발생한 신호인지, 기타 움직임 또는 외력에 의해 발생한 신호인지를 구분하여 판단할 수 있다.Further, in another embodiment of the present disclosure, the respiration measurement device may convert the signal measured by the three or more sensors into the frequency domain. Also, for example, the respiration measuring device may determine whether the frequency of the first signal and the frequency of the second signal match. As a result of the determination, when the frequency of the first signal and the frequency of the second signal coincide with each other, the respiration measurement device has a peak value equal to or greater than the threshold value of the first signal and the threshold value of the second signal at the same time. The number of cases where the difference between the peak values is smaller than the preset value may be counted as the respiratory rate of the user 100. In this way, by considering the frequency of each waveform as well as the timing of occurrence of peak values in the plurality of sensors and the difference between the magnitudes of the peak values, it is determined whether the signal is generated by the user's breathing or other signals generated by movement or external force. Can be judged separately.
또한, 본원의 다른 일 실시예는, 상기 호흡 측정 장치는 상기 제1센서(12)에 의해 측정된 제1신호와 상기 제2센서(14)에 의해 측정된 제2신호를 비교할 수 있다. 또한, 상기 호흡 측정 장치는 미리 설정된 범위의 시간차 내에 상기 제1신호와 상기 제2신호의 피크값이 나타나는 횟수를 카운트하여 사용자(100)의 호흡수로 측정할 수 있다. 예를 들어, 상기 제1센서(12)와 상기 제2센서(14)는 그 부착위치가 상이하고, 사용자(100)의 호흡시 몸의 부위에 따라 그 변화 또는 움직임의 정도가 상이하기 때문에, 상기 제1신호의 파형과 상기 제2신호의 파형에서 피크값이 기록되는 시점에 약간의 시간차이가 발생할 수 있다. 따라서, 그 시간차를 고려하여, 미리 설정된 범위의 시간차 내에 상기 제1신호와 상기 제2신호의 피크값이 나타나는 횟수를 카운트하여 사용자(100)의 호흡수로 카운트할 수 있다. 상기 미리 설정된 범위의 시간차는 센서의 성능 등을 고려하여, 예를 들어, 약 0.1초로 설정될 수 있으나, 이에 한정되는 것은 아니다.In addition, in another embodiment of the present application, the respiration measurement device may compare the first signal measured by the first sensor 12 and the second signal measured by the second sensor 14. In addition, the respiratory measurement device may count the number of times the peak value of the first signal and the second signal appear within a time difference of a predetermined range to measure the number of breaths of the user 100. For example, since the first sensor 12 and the second sensor 14 are different in the attachment position, and the degree of change or movement is different according to the part of the body when the user 100 breathes, There may be a slight time difference between the waveform of the first signal and the waveform of the second signal when the peak value is recorded. Therefore, in consideration of the time difference, it is possible to count the number of times the peak value of the first signal and the second signal appear within a preset time difference, and count the number of breaths of the user 100. The time difference within the preset range may be set to, for example, about 0.1 seconds in consideration of the performance of the sensor, but is not limited thereto.
또한, 본원의 일 실시예에 따르면, 상기 호흡 측정 장치는 3개 이상의 센서에서 측정되는 신호와 사용자(100) 또는 일반 사람의 실제 호흡수 또는 호흡량의 관계에 관한 호흡 데이터를 저장하고 있을 수 있다. 예를 들어, 상기 호흡 데이터는 실제 호흡측정기구(예를 들어, 스파이로미터 spirometer)와 본원의 호흡 측정 장치를 동시에 이용하여 실제 호흡측정기구를 통해 측정된 일반 다수 사람의 실제 호흡수 또는 호흡량과 본원의 호흡 측정 장치를 이용하여 측정되는 파형들 또는 호흡수를 매칭시켜 미리 기록해 놓은 데이터일 수 있다. 또 다른 예를 들어, 상기 호흡 데이터는 실제 호흡측정기구와 본원의 호흡 측정 장치를 동시에 이용하여 실제 호흡측정기구를 통해 측정된 개인별 실제 호흡수 또는 호흡량과 본원의 호흡 측정 장치를 이용하여 측정되는 개인별 파형들 또는 호흡수를 매칭시켜 미리 기록해 놓은 개인별 호흡 데이터일 수 있다.In addition, according to one embodiment of the present application, the respiration measurement device may store the respiration data about the relationship between the signal measured by the three or more sensors and the actual respiratory rate or volume of the user 100 or the general person. For example, the respiratory data may include actual respiratory rate or respiratory volume of a large number of people measured by the actual respiratory apparatus using a real breathing apparatus (eg, a spyometer spirometer) and the breathing apparatus of the present application simultaneously. The data may be recorded in advance by matching the waveforms or the respiratory rate measured using the respiratory measurement device of the present application. In another example, the respiration data is measured by using the actual breathing apparatus and the breathing apparatus of the present invention at the same time, the actual breathing rate or respiratory rate and the individual measured by the breathing apparatus of the present Personal breathing data may be recorded in advance by matching waveforms or respiratory rate.
나아가, 상기 호흡 측정 장치는 상기 3개 이상의 센서(12, 14, 16) 중 적어도 2개 이상의 센서에서 측정된 신호와 상기 호흡 데이터에 기초하여, 사용자(100)의 호흡수를 측정할 수 있다. 예를 들어, 상기 호흡 측정 장치는 상기 제1센서(12)와 상기 제2센서(14)에서 측정된 파형의 크기, 피크값의 횟수, 주파수 등의 데이터를 이용하여 상기 미리 저장되어 있는 호흡 데이터에서 매칭되는 호흡수 또는 호흡량을 검색 및 판단할 수 있다.In addition, the respiratory measurement device may measure the respiratory rate of the user 100 based on the signal and the respiration data measured by at least two or more of the three or more sensors 12, 14, 16. For example, the respiratory measuring device stores the respiratory data stored in advance using data such as the magnitude of the waveform, the number of peak values, the frequency, and the like measured by the first sensor 12 and the second sensor 14. The respiratory rate or respiratory volume matched may be searched for and determined.
또한, 본원의 일 실시예에 따르면, 상기 호흡 측정 장치는 음성신호 측정부(18)에서 측정된 음성신호와 상기 3개 이상의 센서(12, 14, 16) 중 적어도 2개 이상의 센서에서 측정된 신호를 동시에 고려하여 사용자(100)의 호흡수를 측정할 수 있다. 예를 들어, 상기 호흡 측정 장치는 상기 제1센서(12)의 신호 파형의 피크값과 상기 제2센서(14)의 신호 파형의 피크값과 상기 음성신호의 피크값이 동시에 기록되는 횟수를 카운트하여 사용자(100)의 호흡수로 측정할 수 있다.In addition, according to one embodiment of the present application, the respiratory measurement device is a voice signal measured by the voice signal measuring unit 18 and a signal measured by at least two or more of the three or more sensors 12, 14, 16 In consideration of this, the respiratory rate of the user 100 may be measured. For example, the respiratory measuring device counts the number of times the peak value of the signal waveform of the first sensor 12 and the peak value of the signal waveform of the second sensor 14 and the peak value of the voice signal are simultaneously recorded. It can be measured by the respiratory rate of the user 100.
또한, 본원의 호흡 측정 장치는 상기 3개 이상의 센서(12, 14, 16)에서 측정되는 신호 및 측정된 호흡수를 상기 호흡 측정 장치와 연동하는 외부 모니터링 장치(22)로 전송할 수 있다. 예를 들어, 상기 호흡 측정 장치는 외부 모니터링 장치(22)와 유선으로 연결되거나, 무선통신을 이용하여 데이터를 외부 모니터링 장치(22)로 전송할 수 있다.In addition, the respiration measurement device of the present application may transmit the signal and the measured respiratory rate measured by the three or more sensors 12, 14, 16 to the external monitoring device 22 in conjunction with the respiration measurement device. For example, the respiration measurement device may be connected to the external monitoring device 22 by wire or transmit data to the external monitoring device 22 using wireless communication.
이와 같이, 본원의 호흡 측정 장치는 단일의 센서에서 획득한 신호만을 이용하는 것이 아니라 2개 이상의 복수의 센서에서 획득한 복수의 신호를 동시에 고려하고, 해당 신호들 사이의 크기 비교, 주파수 비교, 시간 차 등을 이용하여 사용자의 호흡수를 판단함으로써, 그 정확도가 매우 높다.As such, the respiration measurement apparatus of the present application considers a plurality of signals acquired from two or more sensors simultaneously, instead of using only signals obtained from a single sensor, and compares the magnitude, frequency, and time difference between the corresponding signals. By determining the user's breathing rate using the back, the accuracy is very high.
*지금까지, 호흡 측정 장치가 상기 제1센서(12)로부터 측정된 제1신호와 상기 제2센서(14)로부터 측정된 제2신호를 이용하여 사용자(100)의 호흡수를 측정하는 것으로 설명하였으나, 이에 한정되지 않으며, 호흡수 측정의 정확도를 향상시키기 위해, 복수의 센서들의 복수의 조합된 데이터(예를 들어, 제1센서(12)와 제2센서(14), 제2센서(14)와 제3센서(16), 제1센서(12)와 제3센서(16))를 각 센서의 성능 또는 센서의 부착 위치 등에 따라 선택적으로 이용하여 호흡수를 측정할 수 있다. * Until now, it will be described that the respiratory measuring device measures the respiratory rate of the user 100 using the first signal measured by the first sensor 12 and the second signal measured by the second sensor 14. However, the present invention is not limited thereto, and in order to improve the accuracy of the respiratory rate measurement, a plurality of combined data of the plurality of sensors (eg, the first sensor 12, the second sensor 14, and the second sensor 14). ) And the third sensor 16, the first sensor 12, and the third sensor 16 may be selectively used according to the performance of each sensor or the attachment position of the sensor.
또한, 압전 센서에서 측정되는 전기적 신호뿐만 아니라, 각각의 가속도 센서로부터 측정되는 일정한 주기성을 가지는 가속도의 변화 패턴 및 크기값 등에 기초하여, 앞서 설명드린 실시예와 동일한 방식으로 사용자(100)의 호흡수를 측정할 수 있다. In addition, the respiration rate of the user 100 in the same manner as in the above-described embodiment, based on not only an electrical signal measured by the piezoelectric sensor but also a change pattern and magnitude value of acceleration having a certain periodicity measured from each acceleration sensor. Can be measured.
도 2는 본원의 일 실시예에 따른 호흡 측정 장치(200)의 구성도이다. 도 2를 참조하면, 호흡 측정 장치(200)는 패드(미도시), 제1센서(202), 제2센서(204), 제3센서(206), 음성신호 측정부(208), 메모리(210), 변환부(212), 증폭부(214), 판단부(216), 출력부(218) 및 전송부(220)를 포함할 수 있다. 다만, 도 2에 도시된 호흡 측정 장치(200)는 본원의 하나의 구현 예에 불과하며, 도 2에 도시된 구성 요소들을 기초로 하여 여러 형태로 변형이 가능함은 본원의 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 이해할 수 있다. 예를 들어, 구성 요소들과 해당 구성 요소들 안에서 제공되는 기능은 더 작은 수의 구성 요소들로 결합되거나 추가적인 구성 요소들로 더 분리될 수 있다.2 is a block diagram of a breathing apparatus 200 according to an embodiment of the present application. Referring to FIG. 2, the breathing apparatus 200 may include a pad (not shown), a first sensor 202, a second sensor 204, a third sensor 206, a voice signal measuring unit 208, and a memory ( 210, a converter 212, an amplifier 214, a determiner 216, an output unit 218, and a transmitter 220 may be included. However, the breathing apparatus 200 shown in FIG. 2 is only one embodiment of the present disclosure, and may be modified in various forms based on the components shown in FIG. 2 in the technical field to which the embodiments of the present disclosure belong. Anyone with ordinary knowledge can understand. For example, components and functionality provided within those components may be combined into a smaller number of components or further separated into additional components.
제1센서(202), 제2센서(204) 및 제3센서(206)는 패드(미도시)에 설치되고, 사용자의 호흡에 의한 사용자의 몸의 움직임에 따라 신호를 발생하고 측정할 수 있다. 예를 들어, 상기 제1센서(202), 제2센서(204) 및 제3센서(206)는 MEMS 기법으로 제작된 압전 센서 또는 가속도 센서를 포함할 수 있다.The first sensor 202, the second sensor 204, and the third sensor 206 may be installed on a pad (not shown), and may generate and measure a signal according to the movement of the user's body by the user's breathing. . For example, the first sensor 202, the second sensor 204, and the third sensor 206 may include a piezoelectric sensor or an acceleration sensor manufactured by the MEMS technique.
음성신호 측정부(208)는 사용자의 호흡시의 들숨과 날숨에 의해 발생되는 소리를 음성신호로 변환하고, 측정할 수 있다. 예를 들어, 상기 음성신호 측정부(208)는 마이크로폰을 포함할 수 있다.The voice signal measuring unit 208 may convert the sound generated by the inhalation and exhalation of the user's breath into a voice signal and measure it. For example, the voice signal measuring unit 208 may include a microphone.
메모리(210)는 상기 제1센서(202), 제2센서(204) 및 제3센서(206)에서 측정되는 신호와 사용자의 실제 호흡수의 관계에 관한 호흡 데이터를 저장하고 있을 수 있다. 예를 들어, 상기 호흡 데이터는 실제 호흡측정기구와 상기 호흡 측정 장치(200)를 동시에 이용하여 실제 호흡측정기구를 통해 측정된 일반 다수 사람의 실제 호흡수와 상기 호흡 측정 장치(200)를 이용하여 측정되는 파형들 (크기값, 주파수 등의 정보 포함) 또는 호흡수를 매칭시켜 미리 기록해 놓은 일반 다수의 평균 호흡 데이터일 수 있다. 또 다른 예를 들어, 상기 호흡 데이터는 실제 호흡측정기구와 상기 호흡 측정 장치(200)를 동시에 이용하여 실제 호흡측정기구를 통해 측정된 개인별 실제 호흡수와 상기 호흡 측정 장치(200)를 이용하여 측정되는 개인별 파형들 또는 호흡수를 매칭시켜 미리 기록해 놓은 개인별 호흡 데이터일 수 있다. The memory 210 may store respiration data about a relationship between a signal measured by the first sensor 202, the second sensor 204, and the third sensor 206 and the actual respiration rate of the user. For example, the respiratory data using the actual breathing apparatus and the breathing apparatus 200 at the same time using the actual breathing apparatus and the breathing apparatus 200 of the general number of people measured through the actual breathing apparatus It may be a general number of average respiration data recorded in advance by matching the measured waveforms (including information such as magnitude value and frequency) or the respiratory rate. In another example, the respiration data is measured by using the individual breathing apparatus and the respiratory measurement device 200 for each individual measured through the actual respiratory measurement device using the real breathing apparatus and the breathing apparatus 200 at the same time. Personal breathing data may be recorded in advance by matching the individual waveforms or the number of breaths.
변환부(212)는 상기 제1센서(202), 제2센서(204) 및 제3센서(206)에서 측정되는 신호를 주파수 도메인으로 변환하고, 각 센서에서 측정된 파형의 주파수를 검출할 수 있다. 변환부(212)는 시간 도메인의 신호를 주파수 도메인으로 변환하는 종래의 일반적인 알고리즘을 이용하여 각 센서에서 측정되는 시간 도메인의 신호를 주파수 도메인으로 변환할 수 있다.The converter 212 may convert the signals measured by the first sensor 202, the second sensor 204, and the third sensor 206 into a frequency domain, and detect the frequency of the waveform measured by each sensor. have. The converter 212 may convert the time domain signal measured by each sensor into the frequency domain by using a conventional general algorithm for converting a signal in the time domain to the frequency domain.
증폭부(214)는 상기 제1센서(202), 제2센서(204) 및 제3센서(206)에서 측정되는 신호 및 음성신호 측정부(208)에서 측정되는 음성신호의 크기를 증폭할 수 있다. 상기 제1센서(202), 제2센서(204) 및 제3센서(206)에서 측정되는 신호 및 음성신호는 미세하기 때문에 호흡수 측정을 위해서는 그 크기를 증폭시킬 필요가 있다. 증폭부(214)는 일반적인 신호 증폭 회로를 포함하는 구조이므로, 자세한 설명은 생략하기로 한다.The amplifier 214 may amplify the magnitude of the signal measured by the first sensor 202, the second sensor 204, and the third sensor 206 and the voice signal measured by the voice signal measuring unit 208. have. Since the signals and the audio signals measured by the first sensor 202, the second sensor 204 and the third sensor 206 are fine, it is necessary to amplify the magnitude of the respiratory rate. Since the amplifier 214 has a structure including a general signal amplifier circuit, detailed description thereof will be omitted.
판단부(216)는 상기 제1센서(202), 제2센서(204) 및 제3센서(206) 중 적어도 2개 이상의 센서에서 측정된 신호를 이용하여 사용자의 호흡수를 측정할 수 있다. 본원의 일 실시예에 따르면, 판단부(216)는 제1센서(202)에 의해 측정된 제1신호의 파형과 상기 제2센서(204)에 의해 측정된 제2신호의 파형을 비교한다. 그 비교 결과, 상기 제1신호의 파형과 상기 제2신호의 파형의 피크(peak)값이 동시에 나타나는 횟수를 카운트하고, 상기 카운트된 횟수를 사용자의 호흡수로 카운트할 수 있다. The determination unit 216 may measure the respiratory rate of the user using signals measured by at least two or more sensors among the first sensor 202, the second sensor 204, and the third sensor 206. According to one embodiment of the present application, the determination unit 216 compares the waveform of the first signal measured by the first sensor 202 and the waveform of the second signal measured by the second sensor 204. As a result of the comparison, the number of times the peak value of the waveform of the first signal and the waveform of the second signal appear simultaneously may be counted, and the counted number may be counted as the user's breathing rate.
또한, 본원의 다른 일 실시예에 따르면, 판단부(216)는 상기 제1센서(202)에 의해 측정된 제1신호의 파형과 상기 제2센서(204)에 의해 측정된 제2신호의 파형과 상기 제3센서(206)에 의해 측정된 제3신호의 파형을 비교한다. 그 비교 결과, 판단부(216)는 동일한 시간에 상기 제1신호의 파형과 상기 제2신호의 파형과 상기 제3신호의 파형의 피크값이 나타나는 횟수를 카운트하고, 상기 카운트된 횟수를 사용자의 호흡수로 카운트할 수 있다.In addition, according to another embodiment of the present application, the determination unit 216 is the waveform of the first signal measured by the first sensor 202 and the waveform of the second signal measured by the second sensor 204 And waveforms of the third signal measured by the third sensor 206. As a result of the comparison, the determination unit 216 counts the number of times the peak value of the waveform of the first signal, the waveform of the second signal, and the waveform of the third signal appear at the same time, and counts the counted times of the user. You can count by breathing rate.
또한, 본원의 다른 일 실시예에 따르면, 판단부(216)는 변환부(212)에 의해 주파수 도메인으로 변환된 상기 제1신호, 제2신호 및 제3신호의 주파수가 일치하는지 여부를 판단할 수 있다. 예를 들어, 상기 제1신호의 파형과 상기 제2신호의 파형의 주파수가 일치하는 경우에, 판단부(216)는 상기 제1신호의 파형과 상기 제2신호의 파형의 피크값이 동시에 나타나는 횟수를 카운트하여 사용자의 호흡수로 카운트할 수 있다. In addition, according to another exemplary embodiment of the present application, the determination unit 216 may determine whether the frequencies of the first signal, the second signal, and the third signal converted into the frequency domain by the conversion unit 212 are equal to each other. Can be. For example, when the frequency of the waveform of the first signal and the waveform of the second signal coincide, the determination unit 216 may display the peak value of the waveform of the waveform of the first signal and the waveform of the second signal simultaneously. By counting the number of times can be counted by the user's breathing rate.
또한, 본원의 다른 일 실시예에 따르면, 판단부(216)는 동일한 시간에 상기 제1신호의 파형과 상기 제2신호의 파형의 피크값이 나타나는 횟수를 카운트한다. 또한, 판단부(216)는 상기 제1신호의 파형과 상기 제3센서(206)에 의해 측정된 제3신호의 파형을 비교하고, 상기 제1신호의 파형과 상기 제3신호의 파형의 피크값이 동시에 나타나는 횟수를 카운트한다. 그리고, 판단부(216)는 상기 카운트한 동일한 시간에 상기 제1신호의 파형과 상기 제2신호의 파형의 피크값이 나타나는 횟수와 상기 카운트한 동일한 시간에 상기 제1신호의 파형과 상기 제3신호의 파형의 피크값이 나타나는 횟수 중 작은 수를 사용자의 호흡수로 카운트할 수 있다.In addition, according to another embodiment of the present application, the determination unit 216 counts the number of times the peak value of the waveform of the waveform of the first signal and the waveform of the second signal at the same time. In addition, the determination unit 216 compares the waveform of the first signal and the waveform of the third signal measured by the third sensor 206, and the peak of the waveform of the first signal and the waveform of the third signal. Count the number of times the value appears at the same time. In addition, the determination unit 216 may determine the number of times the peak value of the waveform of the first signal and the waveform of the second signal appear at the same time as the count and the waveform of the first signal and the third at the same time. The smaller number of times the peak value of the waveform of the signal appears can be counted as the user's breathing rate.
또한, 본원의 다른 일 실시예에 따르면, 판단부(216)는 동일한 시간에 기록된 상기 제1신호의 파형의 미리 설정된 임계치 이상의 피크값과 상기 제2신호의 파형의 상기 임계치 이상의 피크값의 차이가 미리 설정된 값보다 작은 경우의 수를 카운트하여 사용자의 호흡수로 카운트할 수 있다.In addition, according to another embodiment of the present application, the determination unit 216 is a difference between the peak value of the predetermined threshold value or more of the waveform of the first signal recorded at the same time and the peak value or more of the threshold value of the waveform of the second signal. Can be counted as the user's breathing rate by counting the number of cases less than the preset value.
또한, 본원의 다른 일 실시예에 따르면, 판단부(216)는 변환부(212)에 의해 주파수 도메인으로 변환된 상기 제1신호 및 제2신호의 주파수가 일치하는지 여부를 판단할 수 있다. 그 판단 결과, 판단부(216)는 상기 제1신호의 주파수와 상기 제2신호의 주파수가 일치하는 경우에, 동일한 시간의 상기 제1신호의 상기 임계치 이상의 피크값과 상기 제2신호의 상기 임계치 이상의 피크값의 차이가 미리 설정된 값보다 작은 경우의 수를 사용자의 호흡수로 카운트할 수 있다. In addition, according to another exemplary embodiment of the present application, the determination unit 216 may determine whether the frequencies of the first signal and the second signal converted into the frequency domain by the conversion unit 212 match. As a result of the determination, when the frequency of the first signal and the frequency of the second signal coincide, the determination unit 216 determines that the peak value or more than the threshold value of the first signal and the threshold value of the second signal at the same time. The number of cases where the difference between the above peak values is smaller than the preset value can be counted as the user's breathing rate.
또한, 본원의 다른 일 실시예에 따르면, 판단부(216)는 미리 설정된 범위의 시간차 내에 상기 제1신호와 상기 제2신호의 피크값이 나타나는 횟수를 카운트하여 사용자의 호흡수로 측정할 수 있다.In addition, according to another exemplary embodiment of the present application, the determination unit 216 may count the number of times the peak value of the first signal and the second signal appear within a preset time difference and measure the number of breaths by the user. .
또한, 본원의 다른 일 실시예에 따르면, 판단부(216)는 상기 제1센서(202), 제2센서(204) 및 제3센서(206) 중 적어도 2개 이상의 센서에서 측정된 신호와 상기 메모리(210)에 저장되어 있는 호흡 데이터에 기초하여, 사용자의 호흡수를 측정할 수 있다. 예를 들어, 판단부(216)는 상기 제1센서(202)와 상기 제2센서(204)에서 측정된 파형의 크기, 피크값의 횟수, 주파수 등의 데이터를 이용하여 상기 미리 저장되어 있는 호흡 데이터에서 매칭되는 호흡수를 검색 및 판단할 수 있다.In addition, according to another embodiment of the present application, the determination unit 216 and the signal measured by at least two or more of the first sensor 202, the second sensor 204 and the third sensor 206 and the The respiratory rate of the user may be measured based on the respiration data stored in the memory 210. For example, the determination unit 216 may store the breath stored in advance using data such as the magnitude of the waveform, the number of peak values, the frequency, and the like measured by the first sensor 202 and the second sensor 204. The respiratory rate matched in the data can be retrieved and determined.
또한, 본원의 다른 일 실시예에 따르면, 판단부(216)는 상기 음성신호 측정부(208)에서 측정된 음성신호와 상기 제1센서(202), 제2센서(204) 및 제3센서(206) 중 적어도 2개 이상의 센서에서 측정된 신호를 동시에 고려하여 사용자의 호흡수를 측정할 수 있다. 예를 들어, 판단부(216)는 상기 제1센서(202)의 신호 파형의 피크값과 상기 제2센서(204)의 신호 파형의 피크값과 상기 음성신호의 피크값이 동시에 기록되는 횟수를 카운트하여 사용자의 호흡수로 측정할 수 있다.In addition, according to another embodiment of the present application, the determination unit 216 is a voice signal measured by the voice signal measuring unit 208 and the first sensor 202, the second sensor 204 and the third sensor ( The user's respiratory rate may be measured by simultaneously considering signals measured by at least two or more sensors. For example, the determination unit 216 determines the number of times the peak value of the signal waveform of the first sensor 202 and the peak value of the signal waveform of the second sensor 204 and the peak value of the audio signal are simultaneously recorded. It can be counted and measured by the user's breathing rate.
출력부(218)는 상기 제1센서(202), 제2센서(204) 및 제3센서(206)에서 측정되는 신호 및 상기 판단부(216)에 의해 측정된 호흡수를 출력할 수 있다. 출력부(218)는 상기 신호 및 호흡수에 관한 데이터를 음성, 영상 등을 이용하여 출력할 수 있다. 예를 들어, 출력부(218)는 터치스크린, LCD(Liquid Crystal Display), LED(Light Emitting Diode) 등의 일반적인 디스플레이 소자로 이루어질 수 있다. The output unit 218 may output a signal measured by the first sensor 202, the second sensor 204, and the third sensor 206 and the respiratory rate measured by the determination unit 216. The output unit 218 may output data regarding the signal and the respiratory rate using voice, an image, and the like. For example, the output unit 218 may be formed of a general display device such as a touch screen, a liquid crystal display (LCD), and a light emitting diode (LED).
전송부(220)는 상기 제1센서(202), 제2센서(204) 및 제3센서(206)에서 측정되는 신호 및 상기 판단부(216)에 의해 측정된 호흡수를 호흡 측정 장치(200)와 연동하는 외부 모니터링 장치로 전송할 수 있다. 예를 들어, 전송부(220)는 유선 또는 무선통신을 이용하여 상기 신호 및 호흡수에 관한 데이터를 외부 모니터링 장치로 전송할 수 있다. 무선통신의 일 예는, Wi-Fi, 인터넷(Internet), LAN(Local Area Network), Wireless LAN(Wireless Local Area Network), WAN(Wide Area Network), PAN(Personal Area Network), 3G, 4G, LTE 등이 포함되나 이에 한정되지는 않는다.The transmitter 220 measures the signal measured by the first sensor 202, the second sensor 204, and the third sensor 206 and the respiratory rate measured by the determination unit 216. ) To an external monitoring device that works with For example, the transmitter 220 may transmit data regarding the signal and the respiratory rate to an external monitoring device using wired or wireless communication. Examples of wireless communication include Wi-Fi, Internet (Internet), Local Area Network (LAN), Wireless Local Area Network (WLAN), Wide Area Network (WAN), Personal Area Network (PAN), 3G, 4G, LTE may be included, but is not limited thereto.
도 3은 본원의 일 실시예에 따른 호흡 측정 장치의 센서로부터 획득되는 신호의 일 예를 나타낸 도면이다. 예를 들어, 호흡 측정 장치는 제1센서에 의해 측정된 제1신호(S1)의 파형과 제2센서에 의해 측정된 제2신호(S2)의 파형을 비교한다. 예를 들어, 제1신호(S1)의 파형과 제2신호(S2)의 파형은 호흡에 따라 주기성을 가지는 웨이브(WAVE) 형태를 가질 수 있으나, 이에 한정되는 것은 아니다. 사용자가 들숨을 쉬는 경우에는 제1신호(S1)의 파형과 제2신호(S2)의 파형에 상방향 피크값이 기록되고, 사용자가 날숨을 쉬는 경우에는 제1신호(S1)의 파형과 제2신호(S2)의 파형에 하방향 피크값이 기록될 수 있다. 3 is a diagram illustrating an example of a signal obtained from a sensor of a breathing apparatus according to an embodiment of the present application. For example, the respiration measuring apparatus compares the waveform of the first signal S1 measured by the first sensor with the waveform of the second signal S2 measured by the second sensor. For example, the waveform of the first signal S1 and the waveform of the second signal S2 may have a wave form having a periodicity according to respiration, but is not limited thereto. When the user inhales, the upward peak value is recorded in the waveform of the first signal S1 and the waveform of the second signal S2, and when the user breathes in, the waveform and the first signal of the first signal S1 are recorded. Downward peak values may be recorded in the waveform of the two signals S2.
또한, 파형의 비교 결과, 호흡 측정 장치는 동일한 시간에 상기 제1신호(S1)의 파형과 상기 제2신호(S2)의 파형의 피크값이 나타나는 횟수를 카운트하고, 상기 카운트된 횟수를 사용자의 호흡수로 카운트할 수 있다. 예를 들어, 도 3에 도시된 바와 같이, 제1신호(S1)와 제2신호(S2)는 T1, T2, T3 및 T4의 4번의 타이밍에 동시에 피크값이 기록되었다. 따라서, 호흡 측정 장치는 사용자의 호흡수를 4번으로 측정할 수 있다.In addition, as a result of comparing the waveforms, the respiration measuring device counts the number of times the peak value of the waveform of the waveform of the first signal (S1) and the waveform of the second signal (S2) at the same time, and counts the number of times You can count by breathing rate. For example, as shown in FIG. 3, the peak value of the first signal S1 and the second signal S2 was simultaneously recorded at four timings of T1, T2, T3, and T4. Therefore, the respiratory measuring device may measure the respiratory rate of the user four times.
도 4는 본원의 일 실시예에 따른 호흡 측정 장치의 센서로부터 획득되는 신호의 또 다른 일 예를 나타낸 도면이다. 예를 들어, 호흡 측정 장치는 제1센서에 의해 측정된 제1신호(S1)의 파형과 제2센서에 의해 측정된 제2신호(S2)의 파형과 제3센서에 의해 측정된 제3신호(S3)의 파형을 비교할 수 있다. 호흡 측정 장치는, 그 비교 결과, 동일한 시간에 상기 제1신호(S1)의 파형과 상기 제2신호(S2)의 파형과 상기 제3신호(S3)의 파형의 피크값이 나타나는 횟수를 카운트하고, 상기 카운트된 횟수를 사용자의 호흡수로 카운트할 수 있다. 예를 들어, 도 4에 도시된 바와 같이, 제1신호(S1)와 제2신호(S2)와 제3신호(S3)는 T1, T2, T3 및 T4의 4번의 타이밍에 동시에 피크값이 기록되었다. 따라서, 호흡 측정 장치는 사용자의 호흡수를 4번으로 측정할 수 있다.4 is a view showing another example of a signal obtained from a sensor of a breathing apparatus according to an embodiment of the present application. For example, the respiration measurement apparatus may include a waveform of the first signal S1 measured by the first sensor, a waveform of the second signal S2 measured by the second sensor, and a third signal measured by the third sensor. The waveforms of S3 can be compared. As a result of the comparison, the respiratory measuring device counts the number of times the peak value of the waveform of the first signal S1, the waveform of the second signal S2 and the waveform of the third signal S3 appears at the same time. The counted number of times may be counted as a user's respiratory rate. For example, as shown in FIG. 4, the first signal S1, the second signal S2, and the third signal S3 simultaneously record peak values at four timings of T1, T2, T3, and T4. It became. Therefore, the respiratory measuring device may measure the respiratory rate of the user four times.
도 5는 본원의 일 실시예에 따른 호흡 측정 장치의 센서로부터 획득되는 신호의 또 다른 일 예를 나타낸 도면이다. 예를 들어, 호흡 측정 장치는 제1센서에 의해 측정된 제1신호(S1)의 파형과 제2센서에 의해 측정된 제2신호(S2)의 파형을 비교한다. 호흡 측정 장치는, 그 비교 결과, 상기 제1신호(S1)의 파형 중에서 미리 설정된 임계치(R) 이상의 피크값(P1)과 상기 제2신호(S2)의 파형 중에서 상기 임계치(R) 이상의 피크값(P2)이 동시에 기록되고, 상기 피크값(P1)과 피크값(P2)의 차이(50 또는 52)가 미리 설정된 값보다 작은 경우의 수를 카운트하여 사용자의 호흡수로 카운트할 수 있다. 예를 들어, 도 5에 도시된 바와 같이, 제1신호(S1)의 파형 중에서 미리 설정된 임계치(R) 이상의 피크값(P1)과 제2신호(S2)의 파형 중에서 상기 임계치(R) 이상의 피크값(P2)이 T1 및 T2의 2번의 타이밍에 동시에 기록되었으며, 이 때, 해당 타이밍의 피크값(P1)과 피크값(P2)의 차이(50 또는 52)가 미리 설정된 값보다 작다면, 호흡 측정 장치는 사용자의 호흡수를 2번으로 측정할 수 있다.5 is a diagram illustrating another example of a signal obtained from a sensor of a respiration measuring device according to an embodiment of the present disclosure. For example, the respiration measuring apparatus compares the waveform of the first signal S1 measured by the first sensor with the waveform of the second signal S2 measured by the second sensor. As a result of the comparison, the respiratory measuring device has a peak value P1 or higher in the waveform of the first signal S1 that is higher than or equal to a predetermined threshold value R, and a peak value higher than or equal to the threshold value R in the waveform of the second signal S2. (P2) can be recorded at the same time, and the number of cases where the difference (50 or 52) between the peak value (P1) and the peak value (P2) is smaller than a preset value can be counted and counted as the user's breathing rate. For example, as shown in FIG. 5, the peak value P1 of the waveform of the first signal S1 or more, which is higher than or equal to the preset threshold R, and the peak of the signal value of the threshold R or more, among the waveforms of the second signal S2. The value P2 was simultaneously recorded at the two timings of T1 and T2, wherein if the difference (50 or 52) between the peak value P1 and the peak value P2 of the timing is smaller than the preset value, breathing The measuring device may measure the respiratory rate of the user twice.
도 6은 본원의 일 실시예에 따른 호흡 측정 장치의 센서로부터 획득되는 신호의 또 다른 일 예를 나타낸 도면이다. 예를 들어, 호흡 측정 장치는 제1센서에 의해 측정된 제1신호(S1)의 파형과 제2센서에 의해 측정된 제2신호(S2)의 파형을 비교한다. 또한, 호흡 측정 장치는 미리 설정된 범위의 시간차 내에 상기 제1신호(S1)와 상기 제2신호(S2)의 피크값이 나타나는 횟수를 카운트하여 사용자의 호흡수로 측정할 수 있다. 예를 들어, 도 6에 도시된 바와 같이, 제1신호(S1)의 파형의 피크값이 T1의 타이밍에 기록되었고, 제2신호(S2)의 파형의 피크값이 T2의 타이밍에 기록되었다. 이 때, 상기 T1과 T2의 시간차(60)가 미리 설정된 값보다 작다면, 호흡 측정 장치는 제1신호(S1)의 파형의 피크값과 제2신호(S2)의 파형의 피크값이 사용자의 호흡에 의해 발생한 것으로 판단할 수 있다. 또한, 신호(S1)의 파형의 피크값이 T3의 타이밍에 기록되었고, 제2신호(S2)의 파형의 피크값이 T4의 타이밍에 기록되었으며, 상기 T3과 T4의 시간차(62)가 미리 설정된 값보다 작다면, 호흡 측정 장치는 사용자의 호흡수를 카운트할 수 있다. 또한, 신호(S1)의 파형의 피크값이 T5의 타이밍에 기록되었고, 제2신호(S2)의 파형의 피크값이 T6의 타이밍에 기록되었으나, 상기 T5와 T6의 시간차(64)가 미리 설정된 값보다 큰 경우에는 호흡 측정 장치는 사용자의 호흡수로 카운트하지 않을 수 있다.6 is a diagram illustrating another example of a signal obtained from a sensor of a respiration measuring device according to an embodiment of the present disclosure. For example, the respiration measuring apparatus compares the waveform of the first signal S1 measured by the first sensor with the waveform of the second signal S2 measured by the second sensor. In addition, the respiratory measuring device may count the number of times the peak value of the first signal (S1) and the second signal (S2) appears within a time difference of a predetermined range to measure by the user's respiratory rate. For example, as shown in FIG. 6, the peak value of the waveform of the first signal S1 was recorded at the timing of T1, and the peak value of the waveform of the second signal S2 was recorded at the timing of T2. At this time, if the time difference 60 between the T1 and the T2 is smaller than a preset value, the respiration measurement apparatus may have a peak value of the waveform of the first signal S1 and a peak value of the waveform of the second signal S2. It can be judged to be caused by breathing. In addition, the peak value of the waveform of the signal S1 was recorded at the timing T3, the peak value of the waveform of the second signal S2 was recorded at the timing T4, and the time difference 62 between the T3 and T4 was set in advance. If less than the value, the respiratory measurement device may count the respiratory rate of the user. In addition, the peak value of the waveform of the signal S1 was recorded at the timing of T5, and the peak value of the waveform of the second signal S2 was recorded at the timing of T6, but the time difference 64 between the T5 and T6 is preset. If greater than this value, the breathing apparatus may not count the user's breathing rate.
도 7은 본원의 일 실시예에 따른 호흡 측정 장치의 센서 및 음성신호 측정부로부터 획득되는 신호의 일 예를 나타낸 도면이다. 예를 들어, 호흡 측정 장치는 제1센서에 의해 측정된 제1신호(S1)의 파형과 제2센서에 의해 측정된 제2신호(S2)의 파형과, 음성신호(S4)의 파형을 비교한다. 또한, 호흡 측정 장치는 제1신호(S1)의 피크값과 제2신호(S2)의 피크값과, 음성신호(S4)의 피크값이 동시에 기록는 경우의 횟수 또는 제1신호(S1)의 피크값과 제2신호(S2)의 피크값이 기록되는 시점에 음성신호(S4)의 파형이 급격하게 변화하는 경우의 횟수를 카운트하여 사용자의 호흡수로 측정할 수 있다. 예를 들어, 도 7에 도시된 바와 같이, 제1신호(S1)와 제2신호(S2)와는 T1, T2 및 T3의 3번의 타이밍에 동시에 피크값이 기록되었고, 이 때 음성신호(S4)의 파형이 급격하게 변화하였다. 따라서, 호흡 측정 장치는 사용자의 호흡수를 3번으로 측정할 수 있다.7 is a diagram illustrating an example of a signal obtained from a sensor and a voice signal measuring unit of a breathing apparatus according to an embodiment of the present application. For example, the respiration measuring apparatus compares the waveform of the first signal S1 measured by the first sensor with the waveform of the second signal S2 measured by the second sensor and the waveform of the voice signal S4. do. In addition, the respiratory measuring device measures the number of times when the peak value of the first signal S1, the peak value of the second signal S2, and the peak value of the voice signal S4 are simultaneously recorded, or the peak of the first signal S1. At the time when the value and the peak value of the second signal S2 are recorded, the number of times when the waveform of the voice signal S4 changes abruptly may be counted and measured by the user's respiration rate. For example, as shown in FIG. 7, the peak value is simultaneously recorded with the first signal S1 and the second signal S2 at three timings of T1, T2, and T3, and at this time, the audio signal S4. The waveform of was changed suddenly. Therefore, the respiratory measurement device may measure the respiratory rate of the user three times.
도 8은 본원의 일 실시예에 따른 호흡 측정 방법을 예시적으로 도시한 흐름도이다. 도 8에 도시된 호흡 측정 방법은 앞선 도면들을 통해 설명된 호흡 측정 장치에 의하여 수행될 수 있다. 따라서, 이하 생략된 내용이라고 하더라도 도 1 내지 도 7을 통해 호흡 측정 장치에 대하여 설명된 내용은 도 8에도 적용된다.8 is a flowchart illustrating a respiratory measurement method according to an embodiment of the present application. The breath measuring method illustrated in FIG. 8 may be performed by the breath measuring apparatus described with reference to the above drawings. Therefore, even if omitted below, the descriptions of the apparatus for measuring breathing through FIGS. 1 to 7 also apply to FIG. 8.
호흡 측정 장치는 사용자의 몸에 부착 가능한 패드에 설치된 3개 이상의 센서로 사용자의 호흡에 의한 사용자의 몸의 움직임에 따라 발생하는 신호를 측정할 수 있다(S810). 예를 들어, 상기 3개 이상의 센서는 압전 센서를 포함할 수 있다.The respiratory measuring device may measure a signal generated according to the movement of the user's body by the user's breathing with three or more sensors installed on a pad attachable to the user's body (S810). For example, the three or more sensors may include piezoelectric sensors.
다음으로, 호흡 측정 장치는 상기 3개 이상의 센서에 의해 측정된 신호를 비교할 수 있다(S820). 예를 들어, 호흡 측정 장치는 제1센서에 의해 측정된 제1신호의 파형과 제2센서에 의해 측정된 제2신호의 파형을 비교할 수 있다.Next, the respiratory measurement device may compare the signals measured by the three or more sensors (S820). For example, the respiration measurement apparatus may compare the waveform of the first signal measured by the first sensor and the waveform of the second signal measured by the second sensor.
다음으로, 호흡 측정 장치는 상기 3개 이상의 센서에 의해 측정된 신호의 비교 결과에 기초하여 사용자의 호흡수를 측정할 수 있다(S830). 예를 들어, 호흡 측정 장치는 동일한 시간에 상기 제1신호와 상기 제2신호의 피크값이 나타나는 단위시간 당 횟수를 카운트하여 호흡수로 측정할 수 있다.Next, the respiratory measurement device may measure the respiratory rate of the user based on a comparison result of the signals measured by the three or more sensors (S830). For example, the respiratory measuring device may count the number of times per unit time at which the peak values of the first signal and the second signal appear at the same time and measure the number of respirations.
다음으로, 호흡 측정 장치는 측정된 호흡수를 호흡 측정 장치와 연동된 외부 출력 장치로 네트워크를 이용하여 전송하고, 자체적으로 출력하여 사용자 또는 의료진에게 호흡수에 관한 정보를 제공할 수 있다(S840).Next, the respiratory measuring device transmits the measured respiratory rate to an external output device linked with the respiratory measuring device using a network, and outputs itself to provide information about the respiratory rate to a user or a medical staff (S840). .
상술한 설명에서, 단계 S810 내지 S840은 본 발명의 구현예에 따라서, 추가적인 단계들로 더 분할되거나, 더 적은 단계들로 조합될 수 있다. 또한, 일부 단계는 필요에 따라 생략될 수도 있고, 단계 간의 순서가 변경될 수도 있다.In the above description, steps S810 to S840 may be further divided into additional steps or combined into fewer steps, according to an embodiment of the present invention. In addition, some steps may be omitted as necessary, and the order between the steps may be changed.
전술한 호흡 측정 방법은 컴퓨터에 의해 실행되는 프로그램 모듈과 같은 컴퓨터에 의해 실행 가능한 명령어를 포함하는 기록 매체의 형태로도 구현될 수 있다. 컴퓨터 판독 가능 매체는 컴퓨터에 의해 액세스될 수 있는 임의의 가용 매체일 수 있고, 휘발성 및 비휘발성 매체, 분리형 및 비분리형 매체를 모두 포함한다. 또한, 컴퓨터 판독가능 매체는 컴퓨터 저장 매체 및 통신 매체를 모두 포함할 수 있다. 컴퓨터 저장 매체는 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈 또는 기타 데이터와 같은 정보의 저장을 위한 임의의 방법 또는 기술로 구현된 휘발성 및 비휘발성, 분리형 및 비분리형 매체를 모두 포함한다. 통신 매체는 전형적으로 컴퓨터 판독가능 명령어, 데이터 구조, 프로그램 모듈, 또는 반송파와 같은 변조된 데이터 신호의 기타 데이터, 또는 기타 전송 메커니즘을 포함하며, 임의의 정보 전달 매체를 포함한다.The above-described respiratory measurement method may also be implemented in the form of a recording medium containing instructions executable by a computer, such as a program module executed by a computer. Computer readable media can be any available media that can be accessed by a computer and includes both volatile and nonvolatile media, removable and non-removable media. In addition, computer readable media may include both computer storage media and communication media. Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave, or other transmission mechanism, and includes any information delivery media.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above description of the present application is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present application. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present application is indicated by the following claims rather than the above description, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present application.
본원의 도면들의 부호를 예시하면 아래와 같을 수 있다. To illustrate the symbols of the drawings of the present application may be as follows.
10: 패드 12: 제1센서10: pad 12: first sensor
14: 제2센서 16: 제3센서14: second sensor 16: third sensor
18: 음성신호 측정부 20: 밴드18: audio signal measuring unit 20: band
22: 외부 모니터링 장치 202: 제1센서22: external monitoring device 202: first sensor
204: 제2센서 206: 제3센서204: second sensor 206: third sensor
208: 음성신호 측정부 210: 메모리208: voice signal measuring unit 210: memory
212: 변환부 214: 증폭부212: converter 214: amplifier
216: 판단부 218: 출력부216: determination unit 218: output unit
220: 전송부220: transmission unit

Claims (17)

  1. 호흡 측정 장치에 있어서,In the respiratory measuring device,
    사용자의 몸에 부착 가능한 패드;A pad attachable to the user's body;
    상기 패드에 설치되고, 상기 사용자의 호흡에 의한 상기 사용자의 몸의 움직임에 따라 발생하는 신호를 측정하는 3개 이상의 센서; 및Three or more sensors installed on the pad and configured to measure signals generated by movement of the user's body by the user's breathing; And
    상기 3개 이상의 센서 중 적어도 2개 이상의 센서에서 측정된 신호를 이용하여, 상기 사용자의 호흡수를 측정하는 판단부;Determination unit for measuring the respiratory rate of the user using a signal measured by at least two or more sensors of the three or more sensors;
    를 포함하는 호흡 측정 장치.Respiratory measurement device comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 센서는 제1센서 및 제2센서를 포함하고,The sensor includes a first sensor and a second sensor,
    상기 판단부는 상기 제1센서에 의해 측정된 제1신호와 상기 제2센서에 의해 측정된 제2신호를 비교하고, 동일한 시간에 상기 제1신호와 상기 제2신호의 피크(peak)값이 나타나는 횟수를 카운트하여 상기 호흡수로 카운트하는 것인 호흡 측정 장치.The determination unit compares the first signal measured by the first sensor and the second signal measured by the second sensor, and the peak value of the first signal and the second signal appear at the same time. Respiratory measurement device that counts the number of times to count the respiratory rate.
  3. 제2항에 있어서,The method of claim 2,
    상기 호흡 측정 장치는 상기 제1신호 및 상기 제2신호를 주파수 도메인으로 변환하는 변환부를 더 포함하고,The respiration measurement device further includes a conversion unit for converting the first signal and the second signal in the frequency domain,
    상기 판단부는 상기 제1신호의 주파수와 상기 제2신호의 주파수가 일치하는지 여부를 판단하고, 상기 제1신호의 주파수와 상기 제2신호의 주파수가 일치하는 경우에, 동일한 시간에 상기 제1신호와 상기 제2신호의 피크값이 나타나는 횟수를 상기 호흡수로 카운트하는 것인 호흡 측정 장치. The determination unit determines whether the frequency of the first signal and the frequency of the second signal match, and when the frequency of the first signal and the frequency of the second signal match, the first signal at the same time. And counting the number of times the peak value of the second signal appears as the respiratory rate.
  4. 제2항에 있어서,The method of claim 2,
    상기 센서는 제3센서를 포함하고,The sensor includes a third sensor,
    상기 판단부는 상기 제1신호와 상기 제3센서에 의해 측정된 제3신호를 비교하고, 상기 동일한 시간에 상기 제1신호와 상기 제3신호의 피크값이 나타나는 횟수를 카운트하고,The determination unit compares the first signal and the third signal measured by the third sensor, counts the number of times the peak value of the first signal and the third signal appear at the same time,
    상기 판단부는 상기 동일한 시간에 상기 제1신호와 상기 제2신호의 피크값이 나타나는 횟수와 상기 제1신호와 상기 제3신호의 피크값이 나타나는 횟수 중 작은 수를 상기 호흡수로 카운트하는 것인 호흡 측정 장치.Wherein the determination unit counts the smaller number of times the peak value of the first signal and the second signal appear and the number of times the peak value of the first signal and the third signal appear in the same time as the respiratory rate. Breathing apparatus.
  5. 제1항에 있어서,The method of claim 1,
    상기 센서는 제1센서 및 제2센서를 포함하고,The sensor includes a first sensor and a second sensor,
    상기 판단부는 상기 제1센서에 의해 측정된 제1신호와 상기 제2센서에 의해 측정된 제2신호를 비교하고, 동일한 시간의 상기 제1신호의 미리 설정된 임계치 이상의 피크값과 상기 제2신호의 상기 임계치 이상의 피크값의 차이가 미리 설정된 값보다 작은 경우의 수를 카운트하여 상기 호흡수로 카운트하는 것인 호흡 측정 장치.The determination unit compares the first signal measured by the first sensor and the second signal measured by the second sensor, and compares a peak value equal to or greater than a preset threshold of the first signal at the same time. And counting the number of cases where the difference between the peak values of the threshold value or more is smaller than a preset value and counting the number of breaths.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 호흡 측정 장치는 상기 제1신호 및 상기 제2신호를 주파수 도메인으로 변환하는 변환부를 더 포함하고,The respiration measurement device further includes a conversion unit for converting the first signal and the second signal in the frequency domain,
    상기 판단부는 상기 제1신호의 주파수와 상기 제2신호의 주파수가 일치하는지 여부를 판단하고, 상기 제1신호의 주파수와 상기 제2신호의 주파수가 일치하는 경우에, 동일한 시간의 상기 제1신호의 상기 임계치 이상의 피크값과 상기 제2신호의 상기 임계치 이상의 피크값의 차이가 상기 미리 설정된 값보다 작은 경우의 수를 상기 호흡수로 카운트하는 것인 호흡 측정 장치.The determination unit determines whether the frequency of the first signal and the frequency of the second signal match, and when the frequency of the first signal and the frequency of the second signal match, the first signal at the same time. And the number of times when the difference between the peak value of the threshold value or more and the peak value of the second signal of the second signal or more is smaller than the preset value.
  7. 제1항에 있어서,The method of claim 1,
    상기 센서는 제1센서, 제2센서 및 제3센서를 포함하고,The sensor includes a first sensor, a second sensor and a third sensor,
    상기 판단부는 상기 제1센서에 의해 측정된 제1신호와 상기 제2센서에 의해 측정된 제2신호와 상기 제3센서에 의해 측정된 제3신호를 비교하고, 동일한 시간에 상기 제1신호와 상기 제2신호와 상기 제3신호의 피크값이 나타나는 횟수를 카운트하여 상기 호흡수로 카운트하는 것인 호흡 측정 장치.The determination unit compares the first signal measured by the first sensor with the second signal measured by the second sensor and the third signal measured by the third sensor, and compares the first signal with the first signal. And counting the number of times the peak value of the second signal and the third signal appear and counting the number of breaths.
  8. 제1항에 있어서,The method of claim 1,
    상기 센서는 제1센서 및 제2센서를 포함하고,The sensor includes a first sensor and a second sensor,
    상기 판단부는 상기 제1센서에 의해 측정된 제1신호와 상기 제2센서에 의해 측정된 제2신호를 비교하고, The determination unit compares the first signal measured by the first sensor and the second signal measured by the second sensor,
    상기 판단부는 미리 설정된 범위의 시간차 내에 상기 제1신호와 상기 제2신호의 피크값이 나타나는 횟수를 카운트하여 상기 호흡수로 카운트하는 것인 호흡 측정 장치. And the determination unit counts the number of times a peak value of the first signal and the second signal appear within a preset time difference and counts the number of breaths.
  9. 제1항에 있어서,The method of claim 1,
    상기 3개 이상의 센서는 압전 센서를 포함하는 것인 호흡 측정 장치.The three or more sensors will include a piezoelectric sensor.
  10. 제1항에 있어서,The method of claim 1,
    상기 3개 이상의 센서는 MEMS (Micro Electro Mechanical Systems) 기법으로 제작된 것인 호흡 측정 장치.The three or more sensors are manufactured by MEMS (Micro Electro Mechanical Systems).
  11. 제1항에 있어서,The method of claim 1,
    상기 3개 이상의 센서는 가속도 센서를 포함하는 것인 호흡 측정 장치.And said at least three sensors comprise an acceleration sensor.
  12. 제1항에 있어서,The method of claim 1,
    상기 호흡 측정 장치는The respiratory measuring device
    상기 3개 이상의 센서에서 측정되는 신호와 상기 사용자의 실제 호흡수의 관계에 관한 데이터를 저장하고 있는 메모리를 더 포함하고,And a memory storing data relating to a signal measured by the three or more sensors and the actual respiration rate of the user.
    상기 판단부는 상기 3개 이상의 센서 중 적어도 2개 이상의 센서에서 측정된 신호와 상기 메모리에 저장되어 있는 데이터에 기초하여, 상기 사용자의 호흡수를 측정하는 것인 호흡 측정 장치.The determining unit measures the respiratory rate of the user based on the signal measured in at least two or more of the three or more sensors and the data stored in the memory.
  13. 제1항에 있어서,The method of claim 1,
    상기 호흡 측정 장치는The respiratory measuring device
    상기 3개 이상의 센서에서 측정되는 신호의 크기를 증폭시키는 증폭부를 더 포함하는 것인 호흡 측정 장치.Respiratory measurement device further comprising an amplifier for amplifying the magnitude of the signal measured by the three or more sensors.
  14. 제1항에 있어서,The method of claim 1,
    상기 호흡 측정 장치는 The respiratory measuring device
    상기 3개 이상의 센서에서 측정되는 신호 및 상기 측정된 호흡수를 출력하는 출력부를 더 포함하는 것인 호흡 측정 장치.Respiratory measurement device further comprises an output unit for outputting the signal measured by the three or more sensors and the measured respiratory rate.
  15. 제1항에 있어서,The method of claim 1,
    상기 호흡 측정 장치는 The respiratory measuring device
    상기 3개 이상의 센서에서 측정되는 신호 및 상기 측정된 호흡수를 상기 호흡 측정 장치와 연동하는 외부 모니터링 장치로 전송하는 전송부를 더 포함하는 것인 호흡 측정 장치.Respiratory measurement device further comprising a transmission unit for transmitting the signal measured by the three or more sensors and the measured respiratory rate to an external monitoring device in conjunction with the respiratory measurement device.
  16. 제1항에 있어서,The method of claim 1,
    상기 호흡 측정 장치는 The respiratory measuring device
    상기 사용자의 호흡시에 발생하는 음성신호를 측정하는 음성신호 측정부를 더 포함하고,Further comprising a voice signal measuring unit for measuring the voice signal generated when the user's breathing,
    상기 판단부는 상기 3개 이상의 센서 중 적어도 2개 이상의 센서에서 측정된 신호와 상기 음성신호에 기초하여, 상기 사용자의 호흡수를 측정하는 것인 호흡 측정 장치. The determining unit measures the respiratory rate of the user based on the signal and the voice signal measured by at least two or more of the three or more sensors.
  17. 호흡 측정 방법에 있어서,In the respiration measurement method,
    사용자의 몸에 부착 가능한 패드에 설치된 3개 이상의 센서로 상기 사용자의 호흡에 의한 상기 사용자의 몸의 움직임에 따라 발생하는 신호를 측정하는 단계; Measuring a signal generated according to movement of the user's body by the user's breathing with three or more sensors installed on a pad attachable to the user's body;
    상기 3개 이상의 센서 중 제1센서에 의해 측정된 제1신호와 제2센서에 의해 측정된 제2신호를 비교하는 단계; 및Comparing a first signal measured by a first sensor among the three or more sensors with a second signal measured by a second sensor; And
    동일한 시간에 상기 제1신호와 상기 제2신호의 피크(peak)값이 나타나는 단위시간 당 횟수를 카운트하여 호흡수로 측정하는 단계;Counting the number of times per unit time at which the peak value of the first signal and the second signal appear at the same time and measuring the number of breaths;
    를 포함하는 호흡 측정 방법.Respiratory measurement method comprising a.
PCT/KR2015/007192 2014-08-12 2015-07-10 Device for measuring respiration and method for measuring respiration using same WO2016024724A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0104666 2014-08-12
KR1020140104666A KR101654914B1 (en) 2014-08-12 2014-08-12 Respiration measuring device and method for measuring respiration using thereof

Publications (1)

Publication Number Publication Date
WO2016024724A1 true WO2016024724A1 (en) 2016-02-18

Family

ID=55304316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007192 WO2016024724A1 (en) 2014-08-12 2015-07-10 Device for measuring respiration and method for measuring respiration using same

Country Status (2)

Country Link
KR (1) KR101654914B1 (en)
WO (1) WO2016024724A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102457972B1 (en) * 2018-04-24 2022-10-24 사회복지법인 삼성생명공익재단 The apparatus for generating respiratory signals, the system and operating method for respiratory gated radiotherapy
KR102135407B1 (en) 2019-10-10 2020-07-17 충남대학교병원 Apparatus for measuring respiration
KR102278695B1 (en) * 2019-12-06 2021-07-15 연세대학교 산학협력단 Portable Bio-Sensing Monitoring Apparatus and Respiratory Training System using the same
KR102139047B1 (en) 2019-12-16 2020-07-30 주식회사 피플멀티 Smart health care mattress
KR102128719B1 (en) 2020-01-10 2020-07-02 주식회사 피플멀티 Health care monitoring system using smart health care mattress
KR102236461B1 (en) 2020-08-19 2021-04-06 주식회사 피플멀티 Health care monitoring system using bio information and environment information
KR102229999B1 (en) 2020-09-28 2021-03-22 주식회사 피플멀티 Apparatus for measuring respiration through chest displacement
KR102236863B1 (en) 2020-10-14 2021-04-07 주식회사 피플멀티 Apparatus for measuring patient heartbeat/respiration of dental chair using radar
KR102248739B1 (en) 2020-10-28 2021-05-07 주식회사 피플멀티 System for monitoring heartbeat/respiration of patient using dental chair
KR102247752B1 (en) 2020-10-30 2021-05-07 주식회사 피플멀티 Gate apparatus using radar and thermo-graphic camera
KR102241569B1 (en) 2020-11-09 2021-04-21 주식회사 피플멀티 Pedestrian monitoring system using gate apparatus
KR102471623B1 (en) * 2020-11-20 2022-11-28 링크페이스 주식회사 Method of measuring bio-metric data using sensors and system performing the same
KR102475035B1 (en) * 2020-11-20 2022-12-07 링크페이스 주식회사 Methof of monitoring user state using bio-signal and system performing the same
KR102568269B1 (en) * 2021-06-09 2023-08-18 서울대학교산학협력단 System for monitoring patient motion in radiation therapy based on inertial measurement unit sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320733A (en) * 2006-06-30 2006-11-30 Matsushita Electric Works Ltd Sleep testing apparatus and sleep apnea testing apparatus
WO2011133582A1 (en) * 2010-04-19 2011-10-27 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
KR20120066868A (en) * 2010-12-15 2012-06-25 아주대학교산학협력단 Apparatus and method for determining health of user by measuring respiration and heart beat in real time
US20140213937A1 (en) * 2011-02-15 2014-07-31 The General Hospital Corporation Systems and methods to monitor and quantify physiological stages

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006320733A (en) * 2006-06-30 2006-11-30 Matsushita Electric Works Ltd Sleep testing apparatus and sleep apnea testing apparatus
WO2011133582A1 (en) * 2010-04-19 2011-10-27 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
KR20120066868A (en) * 2010-12-15 2012-06-25 아주대학교산학협력단 Apparatus and method for determining health of user by measuring respiration and heart beat in real time
US20140213937A1 (en) * 2011-02-15 2014-07-31 The General Hospital Corporation Systems and methods to monitor and quantify physiological stages

Also Published As

Publication number Publication date
KR20160019822A (en) 2016-02-22
KR101654914B1 (en) 2016-10-10

Similar Documents

Publication Publication Date Title
WO2016024724A1 (en) Device for measuring respiration and method for measuring respiration using same
Ding et al. Wearable sensing and telehealth technology with potential applications in the coronavirus pandemic
JP6019559B2 (en) PSG inspection equipment
WO2017010683A1 (en) Smartphone with telemedical device
WO2016186472A1 (en) Earphone comprising bio-signal measurement means, and bio-signal monitoring system comprising same
US20110087084A1 (en) Face mask type vital signs measuring apparatus and vital signs management system using the same
EP3338630B1 (en) Swallowing movement monitoring sensor
KR102309022B1 (en) Artificial intelligence-based bio-signal remote monitoring system
JP6463433B1 (en) Respiration evaluation system, analysis system, and program
KR20160024887A (en) Respiration measuring device and method for measuring respiration using thereof
WO2014035056A1 (en) Sleep disorder detection system including bottom garment attachment-type sensor unit
WO2022173103A1 (en) Wearable device for measuring multiple biosignals, and artificial-intelligence-based remote monitoring system using same
CN111374644A (en) Body temperature detection method, training method for artificial neural network for detecting body temperature, computer-readable storage medium and mask
WO2022145610A1 (en) Respiration sound measurement method in telemedicine system, and telemedicine system implementing same
WO2011155680A1 (en) Communication processing system in which compatibility is improved to process a complex biosignal
RU172819U1 (en) Instrument unit of a portable medical diagnostic complex
KR101332828B1 (en) Alarm system of sleep disturbance by sleep pattern detection device
WO2018093163A1 (en) Neonatal apnea measuring device, operation method thereof, and neonatal apnea measuring system
CN110151149A (en) A kind of ICU Intensive Care Therapy device
WO2017171149A1 (en) Method for managing medical suction device through network and management server used for same
WO2023136451A1 (en) Apparatus and method for outputting electrocardiogram signal and respiratory signal
CN113658411B (en) Wearable obstructive sleep apnea early warning device
TWM369507U (en) In-hospital wireless transmission and monitor apparatus for physiology signals
KR102597981B1 (en) Sound Analysis Device
WO2023033278A1 (en) Wireless breathing monitoring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15832250

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15832250

Country of ref document: EP

Kind code of ref document: A1