WO2016024505A1 - Load distribution system - Google Patents

Load distribution system Download PDF

Info

Publication number
WO2016024505A1
WO2016024505A1 PCT/JP2015/072204 JP2015072204W WO2016024505A1 WO 2016024505 A1 WO2016024505 A1 WO 2016024505A1 JP 2015072204 W JP2015072204 W JP 2015072204W WO 2016024505 A1 WO2016024505 A1 WO 2016024505A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
refrigerator
pump
heat
capacity
Prior art date
Application number
PCT/JP2015/072204
Other languages
French (fr)
Japanese (ja)
Inventor
瑞樹 田中
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2016024505A1 publication Critical patent/WO2016024505A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to a load distribution system.
  • a heat source device having a variable speed compressor and a heat source device having a constant speed compressor or an absorption heat source device are arranged in parallel, and each heat source device is driven according to a load required from the use side equipment.
  • the operation efficiency when the heat source machine or the absorption heat source machine having the constant speed compressor is driven with the rated capacity is much better than the heat source machine having the variable speed compressor.
  • the operation efficiency of the heat source machine or the absorption heat source machine having the constant speed compressor is lower than that of the heat source machine having the variable speed compressor because the operation efficiency is lowered.
  • the load of each heat source machine has the property of being proportional to the supply amount of the heat medium to each heat source machine.
  • a lower limit flow rate which is the minimum flow rate of the heat medium required for operation, is set in the heat source unit in order to prevent an abnormal stop due to freezing or the like. For this reason, even when adjusting the supply amount of the heat medium to each heat source unit and changing the load distribution of each heat source unit, the heat medium is supplied to each heat source unit so that it does not fall below the lower limit flow rate. There is a problem that must be.
  • Patent Document 1 Japanese Patent Laid-Open No. 2010-127559
  • a heat medium circuit configured by sequentially connecting a plurality of pumps, a plurality of heat source units, and a use-side facility.
  • a bypass pipe for returning the heat medium after passing through the heat source unit to the upstream side of the pump is provided.
  • this system by changing the flow rate of the heat medium flowing through the bypass pipe, it is possible to set the load distribution to each heat source unit without considering the lower limit flow rate of the heat source unit.
  • an object of the present invention is to provide a load distribution system capable of suppressing an increase in cost and appropriately setting load distribution to each heat source unit.
  • the load distribution system concerning the 1st viewpoint of the present invention is provided with the 1st heat source machine, the 2nd heat source machine, the 1st pump, the 2nd pump, the use side equipment, and the control part.
  • the first heat source machine heats or cools the heat medium.
  • the second heat source machine heats or cools the heat medium.
  • the 2nd heat source machine is arranged in parallel with the 1st heat source machine.
  • the first pump causes the heat medium to flow to the first heat source machine.
  • the first pump can change the discharge capacity of the heat medium.
  • the second pump causes the heat medium to flow to the second heat source machine.
  • the second pump has a constant heat medium discharge capacity per unit time.
  • the use side facility is supplied with a heat medium from the first heat source device and the second heat source device.
  • a control part controls the drive number of a 1st heat-source machine and a 2nd heat-source machine according to the load requested
  • the first heat source machine is a heat source machine having a variable speed compressor.
  • the second heat source machine is a heat source machine having a constant speed compressor or an endothermic heat source machine.
  • the control unit causes the heat medium to flow to the second heat source machine.
  • the driving of the second pump is started, and the driving of the first pump is controlled so that the flow rate of the heat medium for the first heat source device is smaller than the flow rate of the heat medium for the second heat source device.
  • each heat source machine is a system in which a heat source machine having a variable speed compressor and a heat source machine having a constant speed compressor or an endothermic heat source machine are arranged in parallel.
  • the discharge capacity per unit time is constant even if a heat medium is flowed by a pump whose discharge capacity can be changed with respect to a heat source machine having a constant speed compressor or an endothermic heat source machine. It was found that even when the heat medium is flowed by the pump of No. 1, there is almost no difference in the flow rate of the heat medium flowing through the heat source machine having the constant speed compressor or the endothermic heat source machine due to the pressure with other pumps.
  • the heat medium flows to the second heat source machine that is a heat source machine having a constant speed compressor or an endothermic heat source machine by a pump having a constant discharge capacity per unit time. It is a configuration. For this reason, an amount of heat medium equivalent to that in the case where the heat medium flows through the second heat source device by the pump whose discharge capacity can be changed can be flowed through the second heat source device. Furthermore, since a pump having a constant discharge capacity per unit time is generally cheaper than a pump capable of changing the discharge capacity, the heat medium is transferred to the second heat source machine by a pump capable of changing the discharge capacity. The cost can be reduced compared to the case where the current flows.
  • the load distribution system according to the second aspect of the present invention is the load distribution system according to the first aspect, wherein there are two or more first heat source units.
  • the total capacity of the first heat source machine is equal to or less than the rated capacity of the second heat source machine. For this reason, when it comes to the situation where the 2nd heat source machine is driven in addition to the 1st heat source machine, the energy loss of the whole system can be suppressed by adjusting the flow rate of the heat medium to each first heat source machine. .
  • a load distribution system includes the heat medium circulation circuit in the load distribution system according to the first aspect or the second aspect.
  • the heat medium circuit includes a forward header, a return header, a first path, and a bypass path.
  • the forward header mixes the heat medium flowing out from the first heat source machine and the second heat source machine.
  • the return header the heat medium that has been heat-exchanged in the user-side equipment flows back.
  • route is a path
  • the bypass path is provided in the first path.
  • the bypass path returns the heat medium after passing through the first heat source device to the upstream side of the first pump. In this load distribution system, the heat medium after passing through the first heat source device by the bypass path can be returned to the upstream side of the first pump.
  • the heat medium after passing through the first heat source device can be returned to the upstream side of the first pump.
  • FIG. 1 is a schematic configuration diagram of a load distribution system according to an embodiment of the present invention.
  • the control block diagram of the control apparatus with which a load distribution system is provided.
  • the schematic block diagram of the primary side equipment with which the load distribution system as a prior art is provided.
  • the schematic block diagram of the primary side equipment with which the load distribution system which concerns on the modification A is provided.
  • the schematic block diagram of the primary side equipment with which the load distribution system which concerns on the modification B is provided.
  • FIG. 1 is a schematic configuration diagram of a load distribution system according to an embodiment of the present invention.
  • the load distribution system according to the present embodiment can suppress deterioration in energy efficiency of the entire system.
  • Load distribution systems are mainly installed in relatively large buildings such as buildings, factories, hospitals, and hotels.
  • the load distribution system includes a heating medium between a primary side equipment 10 as a heat source side equipment and a secondary side equipment 20 as a usage side equipment via a pipe connecting the both 10 and 20.
  • a heating medium between a primary side equipment 10 as a heat source side equipment and a secondary side equipment 20 as a usage side equipment via a pipe connecting the both 10 and 20.
  • the primary side equipment 10 mainly includes first to third refrigerators 51 to 53 as heat source units for heating or cooling a heat medium, and first to third refrigerators 51 to 53 provided corresponding to the first to third refrigerators 51 to 53.
  • the 1st refrigerator 51 of this embodiment is a heat source machine which has a variable speed compressor.
  • the variable speed compressor is a compressor capable of changing the rotation speed.
  • the first refrigerator 51 is a variable capacity type heat source device that can be operated by adjusting the capacity (refrigeration capacity) by switching the rotation speed of the compressor.
  • the 2nd refrigerator 52 and the 3rd refrigerator 53 are heat source machines which have a constant speed compressor.
  • a constant speed compressor is a compressor in which the rotational speed of the compressor is constant.
  • the 2nd refrigerator 52 and the 3rd refrigerator 53 are heat source machines which have a constant speed compressor
  • the 2nd refrigerator 52 and the 3rd refrigerator 53 are absorption type heat source machines. May be.
  • the absorption heat source machine is a heat source machine that does not include a compressor and has a constant capacity. That is, the 2nd freezer 52 and the 3rd freezer 53 are constant capacity type heat source machines.
  • variable capacity heat source unit is supplied with water from a pump whose discharge capacity can be changed, and the constant capacity type heat source unit is supplied with a pump having a constant discharge capacity per unit time. Water shall be supplied.
  • the secondary-side equipment 20 mainly includes first to ninth air conditioners 21 to 29 which are heat utilization devices installed in each air-conditioning target space (hereinafter referred to as indoor space) in the building. Then, cold water flows during cooling, warm water flows from the primary side equipment 10 to the secondary side equipment 20 during heating, and the first to ninth air conditioners 21 to 29 during operation of the secondary side equipment 20 are cooled or heated. Used for air conditioning.
  • the primary side equipment 10 is controlled by a chiller system controller 110, and the secondary side equipment 20 is controlled by an air conditioner controller 120.
  • the heat medium circulation circuit 70 is a closed circuit filled with water, and is configured so that water circulates between the first to third refrigerators 51 to 53 and the first to ninth air conditioners 21 to 29. ing.
  • the heat medium circulation circuit 70 includes first to third pumps 61 to 63, first to third refrigerators 51 to 53, a forward header 11, first to ninth air conditioners 21 to 29, and a return header. 12 are connected.
  • the heat medium circulation circuit 70 includes a secondary side pipe 71, a first common pipe 72, a second common pipe 73, first to third pipes 74 to 76, a bypass pipe 77, Have.
  • the secondary side pipe 71 connects the forward header 11 and the return header 12 so that water flows through the first to ninth air conditioners 21 to 29, respectively.
  • the first common pipe 72 is connected to the return header 12.
  • the second common pipe 73 is connected to the forward header 11.
  • the first to third pipes 74 to 76 are pipes that connect the first common pipe 72 and the second common pipe 73.
  • first to third pipes 74 to 76 are arranged in parallel so as to connect the branch point P1 located at the end of the first common pipe 72 and the branch point P2 located at the end of the second common pipe 73. It is the piping provided in.
  • the bypass pipe 77 connects the return header 12 and the forward header 11.
  • the three first to third refrigerators 51 to 53 serve as heat sources in the load distribution system.
  • Each of the first to third refrigerators 51 to 53 is provided with one each of the first to third pumps 61 to 63.
  • the first to third refrigerators 51 to 53 are connected in parallel to each other as shown in FIG. Specifically, the first pipe 74 is provided with the first pump 61 and the first refrigerator 51, the second pipe 75 is provided with the second pump 62 and the second refrigerator 52, and the third pipe 76 is provided with A third pump 63 and a third refrigerator 53 are provided.
  • the first to third refrigerators 51 to 53 are air-cooled heat pump chillers, and a compressor, an air side heat exchanger, an expansion valve, and a water side heat exchanger are sequentially connected to form a refrigerant circuit. Is filled with a refrigerant.
  • the first refrigerator 51 is equipped with one or a plurality of variable speed compressors, and in this embodiment, the variable speed compressor is an inverter compressor whose capacity can be adjusted.
  • the second and third refrigerators 53 are equipped with one or a plurality of constant speed compressors.
  • the constant speed compressors are compressors whose capacity cannot be adjusted. Instead of the constant speed compressor of this embodiment, a compressor whose capacity can be adjusted by hot gas bypass may be used.
  • the first to third pumps 61 to 63 are for flowing water to the first to third refrigerators 51 to 53, respectively, and play a role of circulating water in the heat medium circulation circuit 70.
  • the first pump 61 causes water to flow to the first refrigerator 51.
  • the first pump 61 is a pump capable of changing the discharge capacity, that is, a variable capacity pump, and is inverter-driven by the chiller system controller 110. For this reason, the first pump 61 can adjust the amount of water flowing to the first refrigerator 51 when flowing water to the first refrigerator 51.
  • the second pump 62 causes water to flow to the second refrigerator 52.
  • the second pump 62 is a constant speed pump in which the discharge amount of water per unit time is constant, and its start / stop is controlled by the chiller system controller 110.
  • the third pump 63 causes water to flow to the third refrigerator 53.
  • the third pump 63 is a constant speed pump in which the discharge amount of water per unit time is constant, and its start / stop is controlled by the chiller system controller 110. For this reason, the third pump 63 cannot adjust the amount of water flowing to the third refrigerator 53 when flowing water to the third refrigerator 53.
  • the first to third pumps 61 to 63 are driven, so that water (cold water or hot water) sent from the first to third refrigerators 51 to 53 is sent to the second common pipe 73 and the outgoing pipe. It flows to the secondary side pipe 71 through the header 11. In addition, the water returned from the secondary equipment 20 through the secondary pipe 71 flows into the return header 12 and then passes through the first common pipe 72 to the first to third refrigerators 51 to 53. Flowing.
  • a bypass flow rate adjusting valve 77a is provided in the bypass pipe 13 connecting the forward header 11 and the return header 12.
  • the secondary side equipment 20 has nine first to ninth air conditioners 21 to 29 as heat utilization devices.
  • the first to ninth air conditioners 21 to 29 use the cold water of the cold water or the hot water generated by the first to third refrigerators 51 to 53 of the primary side equipment 10 that is a heat source unit, respectively, Handle the load.
  • the first to ninth air conditioners 21 to 29 perform air conditioning (cooling or heating) of the indoor space using cold water or hot water flowing from the primary side equipment 10.
  • the first to ninth air conditioners 21 to 29 are installed in the same or different indoor spaces. Each of the first to ninth air conditioners 21 to 29 is arranged in parallel between the secondary side pipe 71 extending from the forward header 11 and the secondary side pipe 71 connected to the return header 12. The first to ninth air conditioners 21 to 29 take in water from the secondary pipe 71 on the forward header 11 side and return the water to the secondary pipe 71 on the return header 12 side.
  • an air passage through which air flows is formed.
  • One end of a suction duct (not shown) is connected to the inflow end of the air passage, and one end of an air supply duct (not shown) is connected to the outflow end of the air passage.
  • the other ends of the suction duct and the air supply duct are each connected to the indoor space.
  • the heat exchanger causes heat exchange between water and air to cool or heat the air.
  • a heat exchanger for example, a fin-and-tube heat exchanger having a plurality of heat transfer fins and a heat transfer tube penetrating the heat transfer fins is employed.
  • the heat transfer tube of the heat exchanger water circulating between the primary side equipment 10 and the secondary side equipment 20 flows, and the heat of the water is supplied to the air via the heat transfer pipe and the heat transfer fins. The air is cooled or heated.
  • the blower fan can change the rotational speed stepwise by inverter control, and can adjust the blown amount of heated or cooled air.
  • the flow rate adjusting valve plays a role of adjusting the amount of water flowing to the air conditioner. That is, the flow rate of water flowing through each of the first to ninth air conditioners 21 to 29 is determined by the opening degree of each flow rate adjusting valve.
  • Each blower fan and each flow rate adjustment valve are controlled by the air conditioner controller 120.
  • FIG. 2 is a control block diagram of a control device provided in the load distribution system.
  • the control device mainly includes a chiller system controller 110 and an air conditioner controller 120.
  • the chiller system controller 110 controls the first to third refrigerators 51 to 53 and the first to third pumps 61 to 63
  • the air conditioner controller 120 controls the first to ninth air conditioners 21 to 29. To control.
  • the chiller system controller 110 is mainly composed of a CPU 180 and a memory 190.
  • the memory 190 includes a ROM and a RAM, and various programs and the like that are read and executed by the CPU 180 are stored in the ROM.
  • the RAM functions as a work memory for the CPU 180 and stores information that can be rewritten by the CPU 180.
  • the chiller system controller 110 can change the number of operating refrigerators according to the load on the secondary equipment 20 (specifically, the thermal load of each indoor space to be processed by the first to ninth air conditioners 21 to 29). Control of the number of refrigerators to be performed is performed as control relating to the first to third refrigerators 51 to 53.
  • the CPU 180 that executes the program read from the ROM includes a secondary load amount calculation unit 181 and a refrigerator number determination unit 182 as functional units on the software related to activation control. Will be provided.
  • the memory 190 stores a refrigerator characteristic table 191.
  • the refrigerator characteristic table 191 information on the types (capacity variable type, constant capacity type, etc.), compressor capacity, operating efficiency, and the like of the first to third refrigerators 51 to 53 is created and input in advance.
  • the secondary load amount calculation unit 181 calculates a load required by the secondary equipment 20.
  • the secondary load amount calculation unit 181 measures the measured value of the outgoing water temperature sensor 111 that measures the temperature of the water flowing from the primary side equipment 10 to the secondary side equipment 20 every predetermined time, and the secondary side equipment 20. Air conditioner that the secondary side equipment 20 is operating on the basis of the measured value of the return water temperature sensor 112 that measures the temperature of the water flowing from the primary side equipment 10 to the primary side equipment 10 and the amount of circulating water measured by the water quantity sensor 113.
  • the load of the machine that is, the load required by the secondary equipment 20 (hereinafter referred to as the required load amount) is calculated.
  • the refrigerator number determining unit 182 determines the number and capacity of the refrigerators to be operated so that the required load amount calculated by the secondary load amount calculating unit 181 is processed. Then, the refrigerator number determining unit 182 controls the first to third pumps 61 to 63 and the first to third refrigerators 51 to 53 according to the determined number and capacity of the refrigerators. In other words, the refrigerator number determining unit 182 has a role as a functional unit for reviewing the refrigerator to be operated from the start control to the end of the start control. Specifically, the refrigerator number determining unit 182 reviews one or a plurality of refrigerators that are already in operation every predetermined time.
  • the number-of-refrigerating machine determination unit 182 determines the primary side determined last time when a predetermined time has elapsed based on the measured / estimated load of the secondary equipment 20 while the start-up control is being executed. The operation number and capacity of the refrigerator of the facility 10 are corrected.
  • the refrigerator number determining unit 182 determines the number and capacity of the refrigerators to be operated.
  • the number of refrigerators determination unit 182 determines the number and capacity (load) of refrigerators by selecting an appropriate combination from the operating combinations of the first to third refrigerators 51 to 53 according to the required load amount. To do.
  • the number-of-freezer determining unit 182 It is determined that only the refrigerator 51 is operated. And when the load requested
  • the refrigerator number determining unit 182 causes the flow rate of water to the first refrigerator 51 to be smaller than the flow rate of water to the second refrigerator 52.
  • the first pump 61 and the second pump 62 are controlled. Then, the capacities of the first refrigerator 51 and the second refrigerator 52 are determined according to the amount of water flowing through the first refrigerator 51 and the second refrigerator 52.
  • the first refrigerator 51 and the second refrigerator 52 are controlled so as to be less than the flow rate of water.
  • the capacities of the first to third refrigerators 51 to 53 are determined according to the amount of water flowing to the first to third refrigerators 51 to 53.
  • the load required from the secondary side equipment 20 is gradually reduced to operate the first refrigerator 51 and the second refrigerator 52.
  • the number-of-freezer determining unit 182 determines to stop the operation of the third refrigerator 53 and operate the first refrigerator 51 and the second refrigerator 52. I do.
  • required from the secondary side equipment 20 reduces gradually, and a required load is made to drive only the 1st freezer 51.
  • the refrigerator number determining unit 182 determines to stop the operation of the second refrigerator 52 and operate only the first refrigerator 51.
  • the refrigerator number determining unit 182 operates the pump that supplies water to the operated refrigerator with a predetermined capacity and supplies water to the refrigerator that is not operated. Stop pump operation.
  • the secondary side load amount calculation unit 181 calculates the load of the secondary side equipment 20 based on the temperature of the outgoing water, the temperature of the circulating water, and the amount of water, and based on that.
  • the refrigerator number determining unit 182 determines the number and capacity of refrigerators to be operated.
  • step S11 it is determined to operate the first refrigerator 51, and only the first refrigerator 51 is operated. Specifically, the first pump 61 is controlled so that the water temperature on the outlet side of the first refrigerator 51 becomes a set temperature, and the variable speed compressor is driven with a predetermined capacity (inverter output). Then, the process proceeds to step S12.
  • step S12 the secondary load amount calculation unit 181 and the refrigerator number determination unit 182 determine whether or not the capacity of the first refrigerator 51 has reached 100%. Then, when it is determined in step S12 that the capacity of the first refrigerator 51 has reached 100%, the process proceeds to step S13. On the other hand, if it is determined in step S12 that the capacity of the first refrigerator 51 has not reached 100%, the process returns to step S12.
  • step S13 the refrigerator number determining unit 182 determines the start of operation of the second refrigerator 52 in addition to the first refrigerator 51, and proceeds to step S14.
  • step S14 when the capacity of the first pump 61 is not fixed at the minimum capacity (here, the minimum capacity that can be exhibited based on the pump characteristics), the capacity of the first pump 61 is fixed at the minimum capacity. At the same time, the capacity of the first refrigerator 51 is determined to be the capacity according to the flow rate. Further, when the operation of the second refrigerator 52 has not been started, the second pump 62 is started to be driven and the compression provided in the second refrigerator 52 in order to start the operation of the second refrigerator 52. Start the machine.
  • the first refrigerator 51 and the second refrigerator 52 are operated, and an amount of water that flows with the minimum capacity of the first pump 61 flows to the first refrigerator 51, and the remaining water flows to the second. It will flow to the refrigerator 52. Then, the process proceeds to step S15.
  • step S15 the secondary load amount calculation unit 181 and the refrigerator number determination unit 182 determine whether or not the capacity of the second refrigerator 52 has reached 100%. If it is determined in step S15 that the capacity of the second refrigerator 52 has reached 100%, if the capacity of the first pump 61 is not released, the capacity of the first pump 61 is determined in step S16. While releasing the fixation, the first pump 61 is controlled so that the capacity of the second refrigerator 52 is maintained at 100%. Thereafter, the process proceeds to step S19. On the other hand, if it is determined in step S15 that the capacity of the second refrigerator 52 has not reached 100%, in step S17, the capacity of the second refrigerator 52 continues for a certain time or more and is less than 85%. Judge whether or not.
  • step S17 If it is determined in step S17 that the capacity of the second refrigerator 52 continues to be less than 85% for a predetermined time or longer, the refrigerator in which the refrigerator number determining unit 182 is operated is determined as the first refrigerator in step S18.
  • the refrigerator 51 is determined, that is, the second refrigerator 52 is determined to be reduced, and the driving of the second refrigerator 52 and the second pump 62 is stopped. As a result, only the first refrigerator 51 is operated. Then, it returns to step S12.
  • step S17 On the other hand, if it is determined in step S17 that the capacity of the second refrigerator 52 continues for a certain time or more and is not less than 85%, the process returns to step S14.
  • step S19 the secondary load amount calculation unit 181 and the refrigerator number determination unit 182 determine whether the respective capacities of the first refrigerator 51 and the second refrigerator 52 have reached 100%. When it is determined in step S19 that the capacities of the first refrigerator 51 and the second refrigerator 52 have reached 100%, the process proceeds to step S20. On the other hand, if it is determined in step S19 that the capacities of the first refrigerator 51 and the second refrigerator 52 have not reached 100%, the process returns to step S17.
  • step S20 the refrigerator number determining unit 182 determines the start of operation of the third refrigerator 53 in addition to the first refrigerator 51 and the second refrigerator 52, and the capacity of the first pump 61 is fixed at the minimum capacity. If not, in step S21, the capacity of the first pump 61 is fixed to the minimum capacity, and the capacity of the first refrigerator 51 is determined as the capacity corresponding to the flow rate. Further, when the operation of the third refrigerator 53 has not been started, the third pump 63 is started to be driven and the compression provided by the third refrigerator 53 is started in order to start the operation of the third refrigerator 53. Start the machine.
  • the first to third refrigerators 51 to 53 are operated, and the first refrigerator 51 is supplied with an amount of water that flows with the minimum capacity of the first pump 61, and the remaining water is supplied to the second refrigerator. It will flow equally to the machine 52 and the third refrigerator 53. Then, the process proceeds to step S22.
  • step S22 the secondary load amount calculation unit 181 and the refrigerator number determination unit 182 determine whether the respective capacities of the second refrigerator 52 and the third refrigerator 53 have reached 100%. And when it is judged that the capacity
  • step S24 the capacities of the third refrigerator 53 continue for a certain time or more. It is judged whether it is less than 92.5%. If it is determined in step S24 that the capacity of the third refrigerator 53 continues for a certain time or more and is less than 92.5%, the refrigerator in which the refrigerator number determining unit 182 is operated in step S25. The first refrigerator 51 and the second refrigerator 52 are determined, that is, it is determined to reduce the third refrigerator 53, and the process returns to step S16. As a result, the first refrigerator 51 and the second refrigerator 52 are operated, and the operation of the third refrigerator 53 is stopped. On the other hand, if it is determined in step S24 that the capacity of the third refrigerator 53 continues for a certain time or more and is not less than 92.5%, the process returns to step S21.
  • each heat source machine is a system in which a heat source machine having a variable speed compressor and a heat source machine having a constant speed compressor or an endothermic heat source machine are arranged in parallel.
  • the heat source device having a constant speed compressor or the heat absorption type heat source device whether the heat medium is flown by a variable capacity pump, the heat medium is flown by a constant speed pump, It has been found that there is almost no difference in the flow rate of the heat medium flowing through the heat source device having a constant speed compressor or the endothermic heat source device due to the pressure with the pump.
  • water is supplied from the first pump 61, which is a variable capacity pump, to the first refrigerator 51, which is a variable capacity type heat source apparatus, and the second refrigerator 52, which is a constant capacity type heat source apparatus.
  • the third refrigerator 53 is supplied with water from the second pump 62 and the third pump 63 which are constant speed pumps. Regardless of whether the heat medium is flown by a capacity variable type pump or the constant speed pump, the heat source machine of constant capacity type is changed to a heat source machine of constant capacity type due to the pressure with other pumps. Since there is almost no difference in the flow rate of the flowing heat medium, the second refrigerator 52 and the third refrigerator 52 and the third refrigerator 53 are supplied with the same amount of water as when the water flows from the variable capacity pump. It can flow to the third refrigerator 53. Furthermore, since the constant speed pump is generally less expensive than the variable displacement pump, the constant speed pump is compared with a case where water flows through the second refrigerator 53 and the third refrigerator 53 by the variable displacement pump. Cost.
  • FIG. 4 is a schematic configuration diagram of a primary-side facility provided in a load distribution system as a conventional technique.
  • FIG. 5 is a diagram for explaining the energy loss of each of the load distribution system according to the present embodiment and the load distribution system as the prior art.
  • the energy loss range in each of the load distribution system which concerns on this embodiment, and the load distribution system as a prior art is typically shown by hatching.
  • the capacity ratio between the constant speed pumps (second pump 62 and third pump 63) and the variable displacement pump (first pump 61) is the maximum due to the characteristics of the pump. Therefore, the energy loss range is shown in the case where the minimum capacity of the variable capacity pump at the time of starting the heat source apparatus of constant capacity is 50%.
  • the conventional load distribution system is the same as that of the present embodiment except that a constant speed pump is employed as the first pump 61 ′ in the heat medium circulation circuit 70 included in the load distribution system according to the present embodiment. It is assumed to be a configuration. Then, the refrigerators to be operated are determined in the order of the first refrigerator 51 ′, the second refrigerator 52 ′, and the third refrigerator 53 ′ so that the required load amount from the secondary equipment is processed. To do.
  • variable capacity type heat source unit when the variable capacity type heat source unit is operated, the power consumption increases or decreases depending on the capacity.
  • the constant capacity type heat source unit when the constant capacity type heat source unit is operated, the power consumption is the same regardless of the capacity. . For this reason, wasteful power consumption can be suppressed by adjusting the amount of the heat medium flowing through the constant-capacity type heat source unit so that the capability of the constant-capacity type heat source unit can be maximized.
  • the amount of water flowing to the first refrigerator 51 ′ to the third refrigerator 53 ′ cannot be adjusted, so that the second refrigerator 52 ′ is operated in addition to the first refrigerator 51 ′. Is started, an equal amount of water flows through each of the first refrigerator 51 ′ and the second refrigerator 52 ′. If it does so, as shown in FIG. 5, the capability of a constant capacity type heat source machine (2nd freezer 52 ') will be lost by 50% at maximum. Further, when the operation of the third refrigerator 53 ′ is started in addition to the first refrigerator 51 ′ and the second refrigerator 52 ′, an equal amount is added to each of the first to third refrigerators 51 ′ to 53 ′. Water flows. Then, as shown in FIG. 5, the capacity of the constant capacity type heat source machine (the second refrigerator 52 'and the third refrigerator 53') is lost up to about 67%.
  • the pump that supplies water to the first refrigerator 51 ′ which is a variable capacity heat source machine, is a variable capacity pump.
  • the minimum capacity of the first pump 61 can be determined based on the pump characteristics of the first to third pumps 61 to 63. For this reason, when starting the operation of the second refrigerator 52 in addition to the first refrigerator 51, an amount of water flowing with the minimum capacity of the first pump 61 is caused to flow to the first refrigerator 51, and the remaining water Can flow to the second refrigerator 52. Thereby, when starting the operation of the second refrigerator 52 in addition to the first refrigerator 51, as shown in FIG. 5, the capacity loss of the constant-capacity heat source unit (second refrigerator 52) is reduced. The maximum is 33%.
  • the third refrigerator 53 when starting the operation of the third refrigerator 53 in addition to the first refrigerator 51 and the second refrigerator 52, an amount of water flowing with the minimum capacity of the first pump 61 is supplied to the first refrigerator 51. The remaining water can be allowed to flow to the second refrigerator 53 and the third refrigerator 53.
  • the loss of capacity of the third refrigerator 53 is 40% at the maximum.
  • the amount of water that flows to the first refrigerator 51 due to the pump characteristics is minimized, and the remaining water is allowed to flow to the second refrigerator 52 and the third refrigerator 53 to reduce the amount of water. Since the capacity of the second refrigerator 52 and the third refrigerator 53 can be maximized, the energy loss of the entire system can be suppressed as compared with the load distribution system as the prior art. .
  • FIG. 6 is a schematic configuration diagram of primary-side equipment included in the load distribution system according to Modification A.
  • FIG. 7 is a diagram for explaining the energy loss of each of the load distribution system according to Modification A and the load distribution system as the prior art.
  • the energy loss range in the load distribution system as a prior art is typically shown by hatching.
  • the capacity ratio between the constant speed pumps (second pump 62 and third pump 63) and the variable displacement pump (first pump 61) is the maximum due to the characteristics of the pump. Therefore, the energy loss range is shown in the case where the minimum capacity of the variable capacity pump at the time of starting the heat source apparatus of constant capacity is 50%.
  • variable capacity type heat source machine first refrigerator 51
  • two or more variable capacity type heat source units may be provided.
  • the first refrigerator 251 and the second refrigerator 252 are variable capacity heat source machines
  • the third refrigerator 253 has a constant capacity. It is a heat source machine of the type.
  • the first pump 261 and the second pump 262 are variable displacement pumps
  • the third pump 263 is a constant speed pump.
  • the 1st freezer 251, the 2nd freezer 252, and the 3rd freezer 253 are determined in order of the refrigerating machine to operate so that the demand load amount from the secondary side equipment may be processed. It is assumed that the minimum capacities of the first refrigerator 251 and the second refrigerator 252 that are variable capacity heat source machines are 15%, respectively. That is, in this modification, the total capacity of the first refrigerator 251 and the second refrigerator 252 is equal to or less than the rated capacity of the third refrigerator 253.
  • the load distribution system as the prior art shown in FIG. 7 is the heat medium circulation circuit provided in the load distribution system according to this modification, except that constant speed pumps are employed as the first pump and the second pump. It is assumed that the configuration is the same as that of the present modification. And it shall determine in order of a 1st freezer, a 2nd freezer, and a 3rd freezer as a freezer to be operated so that a demand load amount from a secondary side equipment may be processed.
  • the load distribution system as the prior art includes the first refrigerator and the second refrigerator as variable capacity heat source machines with a minimum capacity of 15%, but the amount of water flowing to the first to third refrigerators is adjusted. Therefore, when the operation of the third refrigerator is started in addition to the first refrigerator and the second refrigerator, an equal amount of water flows through each of the first to third refrigerators. If it does so, as shown in FIG. 7, the capacity
  • the pumps that supply water to the first refrigerator 251 and the second refrigerator 252 that are variable capacity heat source machines are variable capacity pumps.
  • the minimum capacities of the first pump 261 and the second pump 262 can be determined based on the pump characteristics of the first to third pumps 261 to 263. For this reason, when starting the operation of the third refrigerator 253 in addition to the first refrigerator 251 and the second refrigerator 252, the amount of water flowing with the minimum capacity of the first pump 261 and the second pump 262 is increased. It is possible to flow to the first refrigerator 251 and the second refrigerator 252, and to flow the remaining water to the third refrigerator 253. Accordingly, when the operation of the third refrigerator 53 is started in addition to the first refrigerator 51 and the second refrigerator 52, the capacity of the third refrigerator 253 can be maximized. As shown in FIG. 3, the loss of the third refrigerator 253 can be eliminated.
  • the total capacity of the minimum capacity of the variable capacity type heat source unit is equal to or less than the rated capacity of the constant capacity type heat source unit.
  • the number of heat source apparatuses is not limited to this, One or several units
  • FIG. 8 is a schematic configuration diagram of primary-side equipment included in the load distribution system according to Modification B.
  • FIG. 9 is a diagram for explaining the energy loss of each of the load distribution system according to Modification B and the load distribution system as the prior art.
  • the energy loss range in the load distribution system which concerns on this modification, and the load distribution system as a prior art is typically shown by hatching.
  • the minimum capacity of the first refrigerator 51 which is a variable capacity heat source machine, is assumed to be 15%. It is assumed that the load distribution system as a conventional technique has the same configuration as the system including the primary side equipment shown in FIG.
  • a bypass path may be provided that returns the heat medium after passing through the variable capacity heat source apparatus to the upstream side of the pump that supplies the heat medium to the variable capacity heat source apparatus.
  • a bypass pipe 174 serving as a bypass path connecting the downstream side (exit side) of the first refrigerator 51 and the upstream side (inlet side) of the first pump 61 is water in the return header 12.
  • the bypass pipe 174 is provided with a flow rate adjustment valve 174a.
  • the flow rate adjusting valve 174 a can adjust the flow rate of water that passes through the first refrigerator 51 and returns to the upstream side of the first pump 61 by changing the opening degree.
  • the flow rate adjustment valve 174a by adjusting the flow rate adjustment valve 174a, the amount of water flowing to the constant capacity heat source machine (second refrigerator 52 or third refrigerator 53) out of the total amount of water circulating in the heat medium circulation circuit is reduced. Can be increased. And since the capability of the 1st freezer 51 can be reduced to the minimum capability, as shown in Drawing 9, in addition to the 1st freezer 51, the operation of the 2nd freezer 52 is started, and the 1st freezer When the operation of the third refrigerator 53 is started in addition to the machine 51 and the second refrigerator 52, the capacity loss of the constant capacity type heat source machine (the second refrigerator 52 or the third refrigerator 53) is the largest. 15%.
  • a bypass path is provided to return the heat medium after passing through the variable capacity type heat source apparatus to the upstream side of the pump that supplies the heat medium to the variable capacity type heat source apparatus. Therefore, since the capacity of the variable capacity type heat source machine can be fixed to the minimum capacity, the capacity of the constant capacity type heat source machine can be maximized. Thereby, compared with the load distribution system as a prior art, the energy loss (loss) of the whole system can be suppressed.
  • bypass path for returning the heat medium after passing through the variable capacity type heat source machine to the upstream side of the pump that supplies the heat medium to the variable capacity type heat source apparatus.
  • a bypass path is provided to return the heat medium after passing through the heat source unit to the upstream side of the pump that supplies the heat medium to the constant capacity type heat source unit, and supplies the heat medium to the constant capacity type heat source unit.
  • the primary equipment with a constant-speed pump is used as a pump for supplying a heat medium to a constant-capacity heat source machine (when replacing or adding a refrigerator).
  • the primary side equipment provided in such a system, it is not necessary to change the pump that supplies the heat medium to the heat source unit with a constant capacity, and all the heat exchanged by the heat source unit with the constant capacity is performed. Since the heat medium is sent to the secondary equipment, it is possible to suppress an increase in cost at the time of renewal and to suppress waste of pump power during operation.
  • the present invention is capable of suppressing an increase in cost and appropriately setting load distribution for each heat source unit, and has a heat source unit having a variable speed compressor and a constant speed compressor as a plurality of heat source units.
  • a heat source unit having a variable speed compressor and a constant speed compressor as a plurality of heat source units.
  • Application to a system including a heat source machine or an absorption heat source machine is effective.

Abstract

In the present invention, a load distribution system is provided with a first refrigerator (51), a second refrigerator (52) arranged in parallel with the first refrigerator (51), a first pump (61) able to modify the volume of discharge of a heat medium, a second pump (62) that has a constant volume of discharge of the heat medium per unit time, secondary-side equipment (20), and a refrigerator number determination unit (182). If there is a gradual increase in a load that is demanded by the secondary-side equipment (20) and a demand is made for a load greater than or equal to a load that can be handled with the first refrigerator (51), which is a heat source machine that has a variable-speed compressor, then the refrigerator number determination unit (182) initiates driving of the second pump (62) so that the heat medium flows to the second refrigerator (52), which is a heat source machine that has a constant-speed compressor or is an endothermic-type heat source machine, and also controls driving of the first pump (61) so that the flow rate of the heat medium to the first refrigerator (51) is less than the flow rate of the heat medium to the second refrigerator (52).

Description

負荷分配システムLoad distribution system
 本発明は、負荷分配システムに関する。 The present invention relates to a load distribution system.
 従来より、可変速圧縮機を有する熱源機と定速圧縮機を有する熱源機又は吸収式熱源機とが並列に配置されており、利用側設備から要求される負荷に応じて各熱源機の駆動を制御するシステムがある。ここで、定速圧縮機を有する熱源機又は吸収式熱源機は、可変速圧縮機を有する熱源機よりも定格能力で駆動される際の運転効率が格段によいことが知られている。一方、部分負荷時には、定速圧縮機を有する熱源機又は吸収式熱源機は、運転効率が低下するため、可変速圧縮機を有する熱源機よりも運転効率が下回ることがある。このため、各熱源機を組み合わせて使用する場合には、利用側設備から要求される負荷に応じて各熱源機の負荷の配分を変化させることで、システム全体のエネルギー効率を向上させるという従来技術がある。 Conventionally, a heat source device having a variable speed compressor and a heat source device having a constant speed compressor or an absorption heat source device are arranged in parallel, and each heat source device is driven according to a load required from the use side equipment. There is a system to control. Here, it is known that the operation efficiency when the heat source machine or the absorption heat source machine having the constant speed compressor is driven with the rated capacity is much better than the heat source machine having the variable speed compressor. On the other hand, at the time of partial load, the operation efficiency of the heat source machine or the absorption heat source machine having the constant speed compressor is lower than that of the heat source machine having the variable speed compressor because the operation efficiency is lowered. For this reason, when using each heat source machine in combination, the conventional technology of improving the energy efficiency of the entire system by changing the load distribution of each heat source machine according to the load required from the user side equipment There is.
 ところで、各熱源機の負荷は、各熱源機に対する熱媒体の供給量に比例するという性質がある。また、熱源機には、凍結等による異常停止を防ぐために運転時に最低限必要な熱媒体の流量である下限流量が設定されている。このため、各熱源機に対する熱媒体の供給量を調整して各熱源機の負荷の配分を変化させる場合であっても、各熱源機に対して下限流量を下回らないように熱媒体を供給しなければならないという課題がある。 By the way, the load of each heat source machine has the property of being proportional to the supply amount of the heat medium to each heat source machine. In addition, a lower limit flow rate, which is the minimum flow rate of the heat medium required for operation, is set in the heat source unit in order to prevent an abnormal stop due to freezing or the like. For this reason, even when adjusting the supply amount of the heat medium to each heat source unit and changing the load distribution of each heat source unit, the heat medium is supplied to each heat source unit so that it does not fall below the lower limit flow rate. There is a problem that must be.
 この課題を解決するために、特許文献1(特開2010-127559号公報)記載のシステムでは、複数のポンプと複数の熱源機と利用側設備とが順次接続されて構成された熱媒体回路において、熱源機を通過した後の熱媒体をポンプの上流側に戻すためのバイパス管が設けられている。このシステムでは、バイパス管を流れる熱媒体の流量を変更することで、熱源機の下限流量を考慮することなく、各熱源機に対する負荷の配分を設定することができるようになっている。 In order to solve this problem, in the system described in Patent Document 1 (Japanese Patent Laid-Open No. 2010-127559), in a heat medium circuit configured by sequentially connecting a plurality of pumps, a plurality of heat source units, and a use-side facility. A bypass pipe for returning the heat medium after passing through the heat source unit to the upstream side of the pump is provided. In this system, by changing the flow rate of the heat medium flowing through the bypass pipe, it is possible to set the load distribution to each heat source unit without considering the lower limit flow rate of the heat source unit.
 しかしながら、特許文献1記載のシステムでは、熱媒体の吐出容量を変更することのできるインバータポンプを必須の構成要件と捉えている。このような先行技術を見た当業者であれば、各熱源機に熱媒体を流すポンプの全てをインバータポンプにする必要があると考えてしまい、コスト的な制約により最適効率の実現を諦めてしまうことがある。 However, in the system described in Patent Document 1, an inverter pump that can change the discharge capacity of the heat medium is regarded as an essential component. Those skilled in the art who have seen such prior art think that it is necessary to use all of the pumps that flow the heat medium to each heat source machine as inverter pumps, and give up realizing the optimum efficiency due to cost constraints. May end up.
 そこで、本発明の課題は、コスト増加を抑え、かつ各熱源機に対して負荷の配分を適切に設定することのできる負荷分配システムを提供することにある。 Therefore, an object of the present invention is to provide a load distribution system capable of suppressing an increase in cost and appropriately setting load distribution to each heat source unit.
 本発明の第1観点に係る負荷分配システムは、第1熱源機と、第2熱源機と、第1ポンプと、第2ポンプと、利用側設備と、制御部と、を備える。第1熱源機は、熱媒体を加熱又は冷却する。第2熱源機は、熱媒体を加熱又は冷却する。第2熱源機は、第1熱源機と並列に配置されている。第1ポンプは、第1熱源機へと熱媒体を流す。第1ポンプは、熱媒体の吐出容量を変更することができる。第2ポンプは、第2熱源機へと熱媒体を流す。第2ポンプは、単位時間当たりの熱媒体の吐出容量が一定である。利用側設備は、第1熱源機及び第2熱源機から熱媒体が供給される。制御部は、利用側設備から要求される負荷に応じて、第1熱源機及び第2熱源機の駆動台数を制御する。第1熱源機は、可変速圧縮機を有する熱源機である。第2熱源機は、定速圧縮機を有する熱源機又は吸熱式熱源機である。制御部は、利用側設備から要求される負荷が徐々に増加して第1熱源機で対応可能な負荷以上の負荷が要求された場合には、第2熱源機へと熱媒体が流れるように第2ポンプの駆動を開始させ、かつ、第1熱源機に対する熱媒体の流量が第2熱源機に対する熱媒体の流量よりも少なくなるように第1ポンプの駆動を制御する。 The load distribution system concerning the 1st viewpoint of the present invention is provided with the 1st heat source machine, the 2nd heat source machine, the 1st pump, the 2nd pump, the use side equipment, and the control part. The first heat source machine heats or cools the heat medium. The second heat source machine heats or cools the heat medium. The 2nd heat source machine is arranged in parallel with the 1st heat source machine. The first pump causes the heat medium to flow to the first heat source machine. The first pump can change the discharge capacity of the heat medium. The second pump causes the heat medium to flow to the second heat source machine. The second pump has a constant heat medium discharge capacity per unit time. The use side facility is supplied with a heat medium from the first heat source device and the second heat source device. A control part controls the drive number of a 1st heat-source machine and a 2nd heat-source machine according to the load requested | required from a utilization side installation. The first heat source machine is a heat source machine having a variable speed compressor. The second heat source machine is a heat source machine having a constant speed compressor or an endothermic heat source machine. When the load required from the use side equipment is gradually increased and a load higher than the load that can be handled by the first heat source machine is requested, the control unit causes the heat medium to flow to the second heat source machine. The driving of the second pump is started, and the driving of the first pump is controlled so that the flow rate of the heat medium for the first heat source device is smaller than the flow rate of the heat medium for the second heat source device.
 ここで、本発明者らは、鋭意検討した結果、可変速圧縮機を有する熱源機と定速圧縮機を有する熱源機又は吸熱式熱源機とが並列に配置されているシステムにおいて、各熱源機を組み合わせて使用する場合に、定速圧縮機を有する熱源機又は吸熱式熱源機に対して、吐出容量を変更することのできるポンプにより熱媒体を流しても、単位時間当たりの吐出容量が一定のポンプにより熱媒体を流しても、他のポンプとの圧力の関係上、定速圧縮機を有する熱源機又は吸熱式熱源機に流れる熱媒体の流量にほとんど差がないことを見いだした。 Here, as a result of intensive studies, the present inventors have determined that each heat source machine is a system in which a heat source machine having a variable speed compressor and a heat source machine having a constant speed compressor or an endothermic heat source machine are arranged in parallel. When using in combination, the discharge capacity per unit time is constant even if a heat medium is flowed by a pump whose discharge capacity can be changed with respect to a heat source machine having a constant speed compressor or an endothermic heat source machine. It was found that even when the heat medium is flowed by the pump of No. 1, there is almost no difference in the flow rate of the heat medium flowing through the heat source machine having the constant speed compressor or the endothermic heat source machine due to the pressure with other pumps.
 本発明の第1観点に係る負荷分配システムでは、定速圧縮機を有する熱源機又は吸熱式熱源機である第2熱源機には、単位時間当たりの吐出容量が一定のポンプによって熱媒体が流れる構成である。このため、吐出容量を変更することのできるポンプによって第2熱源機に熱媒体が流れる構成である場合と同等程度の量の熱媒体を第2熱源機に流すことができる。さらに、単位時間当たりの吐出容量が一定のポンプは、吐出容量を変更することのできるポンプよりも一般的に安価であるため、吐出容量を変更することのできるポンプによって第2熱源機に熱媒体が流れる構成である場合と比較して、コストを抑えることができる。 In the load distribution system according to the first aspect of the present invention, the heat medium flows to the second heat source machine that is a heat source machine having a constant speed compressor or an endothermic heat source machine by a pump having a constant discharge capacity per unit time. It is a configuration. For this reason, an amount of heat medium equivalent to that in the case where the heat medium flows through the second heat source device by the pump whose discharge capacity can be changed can be flowed through the second heat source device. Furthermore, since a pump having a constant discharge capacity per unit time is generally cheaper than a pump capable of changing the discharge capacity, the heat medium is transferred to the second heat source machine by a pump capable of changing the discharge capacity. The cost can be reduced compared to the case where the current flows.
 これにより、コスト増加を抑え、かつ各熱源機に対して負荷の配分を適切に設定することができる。 This makes it possible to suppress an increase in cost and appropriately set the load distribution for each heat source device.
 本発明の第2観点に係る負荷分配システムは、第1観点の負荷分配システムにおいて、第1熱源機は、2台以上ある。第1熱源機の最小能力を合計した能力は、第2熱源機の定格能力以下である。このため、第1熱源機に加えて第2熱源機を駆動させる状況になった場合に、各第1熱源機に対する熱媒体の流量を調整することで、システム全体のエネルギー損失を抑えることができる。 The load distribution system according to the second aspect of the present invention is the load distribution system according to the first aspect, wherein there are two or more first heat source units. The total capacity of the first heat source machine is equal to or less than the rated capacity of the second heat source machine. For this reason, when it comes to the situation where the 2nd heat source machine is driven in addition to the 1st heat source machine, the energy loss of the whole system can be suppressed by adjusting the flow rate of the heat medium to each first heat source machine. .
 本発明の第3観点に係る負荷分配システムは、第1観点又は第2観点のいずれかの負荷分配システムにおいて、熱媒体循環回路を備える。熱媒体循環回路は、往ヘッダと、還ヘッダと、第1経路と、バイパス経路と、を含む。往ヘッダは、第1熱源機及び第2熱源機から流出した熱媒体を混合する。還ヘッダは、利用側設備において熱交換された熱媒体が還流する。第1経路は、還ヘッダの熱媒体を第1ポンプ及び第1熱源機を介して往ヘッダへと流す経路である。バイパス経路は、第1経路に設けられている。バイパス経路は、第1熱源機を通過した後の熱媒体を第1ポンプの上流側へと戻す。この負荷分配システムでは、バイパス経路により第1熱源機を通過した後の熱媒体を第1ポンプの上流側に戻すことができる。 A load distribution system according to a third aspect of the present invention includes the heat medium circulation circuit in the load distribution system according to the first aspect or the second aspect. The heat medium circuit includes a forward header, a return header, a first path, and a bypass path. The forward header mixes the heat medium flowing out from the first heat source machine and the second heat source machine. In the return header, the heat medium that has been heat-exchanged in the user-side equipment flows back. A 1st path | route is a path | route which flows the heat medium of a return header to a forward header via a 1st pump and a 1st heat source machine. The bypass path is provided in the first path. The bypass path returns the heat medium after passing through the first heat source device to the upstream side of the first pump. In this load distribution system, the heat medium after passing through the first heat source device by the bypass path can be returned to the upstream side of the first pump.
 本発明の第1観点に係る負荷分配システムでは、コスト増加を抑え、かつ各熱源機に対して負荷の配分を適切に設定することができる。 In the load distribution system according to the first aspect of the present invention, it is possible to suppress an increase in cost and appropriately set load distribution to each heat source unit.
 本発明の第2観点に係る負荷分配システムでは、システム全体のエネルギー損失を抑えることができる。 In the load distribution system according to the second aspect of the present invention, energy loss of the entire system can be suppressed.
 本発明の第3観点に係る負荷分配システムでは、第1熱源機を通過した後の熱媒体を第1ポンプの上流側に戻すことができる。 In the load distribution system according to the third aspect of the present invention, the heat medium after passing through the first heat source device can be returned to the upstream side of the first pump.
本発明の一実施形態に係る負荷分配システムの概略構成図。1 is a schematic configuration diagram of a load distribution system according to an embodiment of the present invention. 負荷分配システムの備える制御装置の制御ブロック図。The control block diagram of the control apparatus with which a load distribution system is provided. チラーシステムコントローラによる冷凍機台数制御のフローを示す図。The figure which shows the flow of the refrigerator number control by a chiller system controller. 従来技術としての負荷分配システムの備える一次側設備の概略構成図。The schematic block diagram of the primary side equipment with which the load distribution system as a prior art is provided. 本実施形態に係る負荷分配システム及び従来技術としての負荷分配システムそれぞれのエネルギー損失を説明するための図。The figure for demonstrating each energy loss of the load distribution system which concerns on this embodiment, and the load distribution system as a prior art. 変形例Aに係る負荷分配システムの備える一次側設備の概略構成図。The schematic block diagram of the primary side equipment with which the load distribution system which concerns on the modification A is provided. 変形例Aに係る負荷分配システム及び従来技術としての負荷分配システムそれぞれのエネルギー損失を説明するための図。The figure for demonstrating each energy loss of the load distribution system which concerns on the modification A, and the load distribution system as a prior art. 変形例Bに係る負荷分配システムの備える一次側設備の概略構成図。The schematic block diagram of the primary side equipment with which the load distribution system which concerns on the modification B is provided. 変形例Bに係る負荷分配システム及び従来技術としての負荷分配システムそれぞれのエネルギー損失を説明するための図。The figure for demonstrating each energy loss of the load distribution system which concerns on the modification B, and the load distribution system as a prior art.
 以下、本発明の一実施形態に係る負荷分配システムについて、図面を参照しつつ説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術範囲を限定するものではない。 Hereinafter, a load distribution system according to an embodiment of the present invention will be described with reference to the drawings. The following embodiments are specific examples of the present invention and do not limit the technical scope of the present invention.
 (1)負荷分配システムの全体構成
 図1は、本発明の一実施形態に係る負荷分配システムの概略構成図である。本実施形態に係る負荷分配システムは、システム全体のエネルギー効率の悪化を抑制することのできるものである。負荷分配システムは、主に、ビルや工場、病院及びホテル等の、比較的大きい建物内に設置されている。
(1) Overall Configuration of Load Distribution System FIG. 1 is a schematic configuration diagram of a load distribution system according to an embodiment of the present invention. The load distribution system according to the present embodiment can suppress deterioration in energy efficiency of the entire system. Load distribution systems are mainly installed in relatively large buildings such as buildings, factories, hospitals, and hotels.
 この負荷分配システムは、図1に示すように、熱源側設備としての一次側設備10と利用側設備としての二次側設備20との間で、両者10,20を結ぶ配管を介して熱媒体としての水を循環させるシステムである。 As shown in FIG. 1, the load distribution system includes a heating medium between a primary side equipment 10 as a heat source side equipment and a secondary side equipment 20 as a usage side equipment via a pipe connecting the both 10 and 20. As a system to circulate water.
 一次側設備10は、主として、熱媒体を加熱又は冷却する熱源機としての第1~第3冷凍機51~53と、第1~第3冷凍機51~53に対応して設けられる第1~第3ポンプ61~63と、を含む。 The primary side equipment 10 mainly includes first to third refrigerators 51 to 53 as heat source units for heating or cooling a heat medium, and first to third refrigerators 51 to 53 provided corresponding to the first to third refrigerators 51 to 53. Third pumps 61 to 63.
 なお、本実施形態の第1冷凍機51は、可変速圧縮機を有する熱源機である。可変速圧縮機とは、回転速度を変更することのできる圧縮機である。第1冷凍機51は、圧縮機の回転速度を切り替えることで能力(冷凍能力)を調整して運転できる、能力可変型の熱源機である。第2冷凍機52及び第3冷凍機53は、定速圧縮機を有する熱源機である。定速圧縮機とは、圧縮機の回転速度が一定の圧縮機である。ところで、本実施形態では、第2冷凍機52及び第3冷凍機53は、定速圧縮機を有する熱源機であるが、第2冷凍機52及び第3冷凍機53が吸収式熱源機であってもよい。吸収式熱源機とは、圧縮機を備えていない熱源機であって、能力が一定の熱源機である。すなわち、第2冷凍機52及び第3冷凍機53は、能力一定型の熱源機である。 In addition, the 1st refrigerator 51 of this embodiment is a heat source machine which has a variable speed compressor. The variable speed compressor is a compressor capable of changing the rotation speed. The first refrigerator 51 is a variable capacity type heat source device that can be operated by adjusting the capacity (refrigeration capacity) by switching the rotation speed of the compressor. The 2nd refrigerator 52 and the 3rd refrigerator 53 are heat source machines which have a constant speed compressor. A constant speed compressor is a compressor in which the rotational speed of the compressor is constant. By the way, in this embodiment, although the 2nd refrigerator 52 and the 3rd refrigerator 53 are heat source machines which have a constant speed compressor, the 2nd refrigerator 52 and the 3rd refrigerator 53 are absorption type heat source machines. May be. The absorption heat source machine is a heat source machine that does not include a compressor and has a constant capacity. That is, the 2nd freezer 52 and the 3rd freezer 53 are constant capacity type heat source machines.
 また、本実施形態では、能力可変型の熱源機には、吐出容量を変更することのできるポンプから水が供給され、能力一定型の熱源機には単位時間当たりの吐出容量が一定のポンプから水が供給されるものとする。 In this embodiment, the variable capacity heat source unit is supplied with water from a pump whose discharge capacity can be changed, and the constant capacity type heat source unit is supplied with a pump having a constant discharge capacity per unit time. Water shall be supplied.
 二次側設備20は、主として、建物内の各空調対象空間(以下、室内空間という)に設置される熱利用機器である第1~第9空調機21~29から成る。そして、冷房時には冷水が、暖房時には温水が一次側設備10から二次側設備20へと流れ、水の冷熱あるいは温熱が二次側設備20の運転中の第1~第9空調機21~29において空調に利用される。 The secondary-side equipment 20 mainly includes first to ninth air conditioners 21 to 29 which are heat utilization devices installed in each air-conditioning target space (hereinafter referred to as indoor space) in the building. Then, cold water flows during cooling, warm water flows from the primary side equipment 10 to the secondary side equipment 20 during heating, and the first to ninth air conditioners 21 to 29 during operation of the secondary side equipment 20 are cooled or heated. Used for air conditioning.
 一次側設備10はチラーシステムコントローラ110によって、二次側設備20は空調機コントローラ120によって、それぞれコントロールされる。 The primary side equipment 10 is controlled by a chiller system controller 110, and the secondary side equipment 20 is controlled by an air conditioner controller 120.
 (2)負荷分配システムの詳細構成
 (2-1)熱媒体循環回路70
 熱媒体循環回路70は、水が充填された閉回路であり、第1~第3冷凍機51~53と第1~第9空調機21~29との間で水が循環するように構成されている。熱媒体循環回路70には、第1~第3ポンプ61~63と、第1~第3冷凍機51~53と、往ヘッダ11と、第1~第9空調機21~29と、還ヘッダ12と、が接続されている。
(2) Detailed configuration of load distribution system (2-1) Heat medium circulation circuit 70
The heat medium circulation circuit 70 is a closed circuit filled with water, and is configured so that water circulates between the first to third refrigerators 51 to 53 and the first to ninth air conditioners 21 to 29. ing. The heat medium circulation circuit 70 includes first to third pumps 61 to 63, first to third refrigerators 51 to 53, a forward header 11, first to ninth air conditioners 21 to 29, and a return header. 12 are connected.
 熱媒体循環回路70は、図1に示すように、二次側配管71と、第1共通配管72と、第2共通配管73と、第1~第3配管74~76と、バイパス管77と、を有する。二次側配管71は、第1~第9空調機21~29それぞれに水が流れるように往ヘッダ11と還ヘッダ12との間を結んでいる。第1共通配管72は還ヘッダ12に接続されている。第2共通配管73は往ヘッダ11に接続されている。第1~第3配管74~76は、第1共通配管72と第2共通配管73とを結ぶ配管である。より詳しくは、第1~第3配管74~76は、第1共通配管72の端部に位置する分岐点P1と第2共通配管73の端部に位置する分岐点P2とを結ぶように並列に設けられた配管である。バイパス管77は、還ヘッダ12と往ヘッダ11とを結んでいる。 As shown in FIG. 1, the heat medium circulation circuit 70 includes a secondary side pipe 71, a first common pipe 72, a second common pipe 73, first to third pipes 74 to 76, a bypass pipe 77, Have. The secondary side pipe 71 connects the forward header 11 and the return header 12 so that water flows through the first to ninth air conditioners 21 to 29, respectively. The first common pipe 72 is connected to the return header 12. The second common pipe 73 is connected to the forward header 11. The first to third pipes 74 to 76 are pipes that connect the first common pipe 72 and the second common pipe 73. More specifically, the first to third pipes 74 to 76 are arranged in parallel so as to connect the branch point P1 located at the end of the first common pipe 72 and the branch point P2 located at the end of the second common pipe 73. It is the piping provided in. The bypass pipe 77 connects the return header 12 and the forward header 11.
 (2-2)一次側設備10
 一次側設備10では、3台の第1~第3冷凍機51~53が負荷分配システムにおける熱源として働く。第1~第3冷凍機51~53それぞれには、第1~第3ポンプ61~63が1つずつ配設されている。第1~第3冷凍機51~53は、図1に示すように互いに並列に接続されている。具体的には、第1配管74には第1ポンプ61及び第1冷凍機51が設けられ、第2配管75には第2ポンプ62及び第2冷凍機52が設けられ、第3配管76には第3ポンプ63及び第3冷凍機53が設けられている。
(2-2) Primary equipment 10
In the primary side equipment 10, the three first to third refrigerators 51 to 53 serve as heat sources in the load distribution system. Each of the first to third refrigerators 51 to 53 is provided with one each of the first to third pumps 61 to 63. The first to third refrigerators 51 to 53 are connected in parallel to each other as shown in FIG. Specifically, the first pipe 74 is provided with the first pump 61 and the first refrigerator 51, the second pipe 75 is provided with the second pump 62 and the second refrigerator 52, and the third pipe 76 is provided with A third pump 63 and a third refrigerator 53 are provided.
 第1~第3冷凍機51~53は、空冷式のヒートポンプチラーであり、圧縮機、空気側熱交換器、膨張弁、水側熱交換器が順次接続されて冷媒回路を構成し、冷媒回路の内部には、冷媒が充填されている。第1冷凍機51は、上記のように可変速圧縮機を1又は複数台搭載しており、本実施形態では、可変速圧縮機が容量調整の可能なインバータ圧縮機であるものとする。第2及び第3冷凍機53は、上記のように定速圧縮機を1又は複数台搭載しており、本実施形態では、定速圧縮機が容量調整のできない圧縮機であるものとする。なお、本実施形態の定速圧縮機に代えて、ホットガスバイパスによって容量調整のできる圧縮機であってもよい。 The first to third refrigerators 51 to 53 are air-cooled heat pump chillers, and a compressor, an air side heat exchanger, an expansion valve, and a water side heat exchanger are sequentially connected to form a refrigerant circuit. Is filled with a refrigerant. As described above, the first refrigerator 51 is equipped with one or a plurality of variable speed compressors, and in this embodiment, the variable speed compressor is an inverter compressor whose capacity can be adjusted. As described above, the second and third refrigerators 53 are equipped with one or a plurality of constant speed compressors. In this embodiment, the constant speed compressors are compressors whose capacity cannot be adjusted. Instead of the constant speed compressor of this embodiment, a compressor whose capacity can be adjusted by hot gas bypass may be used.
 第1~第3ポンプ61~63は、第1~第3冷凍機51~53それぞれに水を流すためのものであって、熱媒体循環回路70に水を循環させる役割を果たす。第1ポンプ61は、第1冷凍機51へと水を流す。第1ポンプ61は、吐出容量を変更することのできるポンプ、すなわち容量可変型のポンプであって、チラーシステムコントローラ110によりインバータ駆動される。このため、第1ポンプ61は、第1冷凍機51へと水を流す際に、第1冷凍機51へと流れる水の量を調整することができる。第2ポンプ62は、第2冷凍機52へと水を流す。第2ポンプ62は、単位時間当たりの水の吐出量が一定である定速ポンプであって、チラーシステムコントローラ110により発停が制御される。このため、第2ポンプ62は、第2冷凍機52へと水を流す際に、第2冷凍機52へと流れる水の量を調整することができない。第3ポンプ63は、第3冷凍機53へと水を流す。第3ポンプ63は、単位時間当たりの水の吐出量が一定である定速ポンプであって、チラーシステムコントローラ110により発停が制御される。このため、第3ポンプ63は、第3冷凍機53へと水を流す際に、第3冷凍機53へと流れる水の量を調整することができない。 The first to third pumps 61 to 63 are for flowing water to the first to third refrigerators 51 to 53, respectively, and play a role of circulating water in the heat medium circulation circuit 70. The first pump 61 causes water to flow to the first refrigerator 51. The first pump 61 is a pump capable of changing the discharge capacity, that is, a variable capacity pump, and is inverter-driven by the chiller system controller 110. For this reason, the first pump 61 can adjust the amount of water flowing to the first refrigerator 51 when flowing water to the first refrigerator 51. The second pump 62 causes water to flow to the second refrigerator 52. The second pump 62 is a constant speed pump in which the discharge amount of water per unit time is constant, and its start / stop is controlled by the chiller system controller 110. For this reason, the second pump 62 cannot adjust the amount of water flowing to the second refrigerator 52 when flowing water to the second refrigerator 52. The third pump 63 causes water to flow to the third refrigerator 53. The third pump 63 is a constant speed pump in which the discharge amount of water per unit time is constant, and its start / stop is controlled by the chiller system controller 110. For this reason, the third pump 63 cannot adjust the amount of water flowing to the third refrigerator 53 when flowing water to the third refrigerator 53.
 一次側設備10では、第1~第3ポンプ61~63が駆動することにより、第1~第3冷凍機51~53から送り出された水(冷水あるいは温水)が、第2共通配管73及び往ヘッダ11を介して二次側配管71へと流れる。また、二次側設備20から二次側配管71を介して戻ってきた水が、還ヘッダ12に一旦流入し、第1共通配管72を介して第1~第3冷凍機51~53へと流れる。 In the primary side equipment 10, the first to third pumps 61 to 63 are driven, so that water (cold water or hot water) sent from the first to third refrigerators 51 to 53 is sent to the second common pipe 73 and the outgoing pipe. It flows to the secondary side pipe 71 through the header 11. In addition, the water returned from the secondary equipment 20 through the secondary pipe 71 flows into the return header 12 and then passes through the first common pipe 72 to the first to third refrigerators 51 to 53. Flowing.
 また、往ヘッダ11と還ヘッダ12とを結ぶバイパス配管13には、バイパス流量調節弁77aが配設されている。バイパス流量調節弁77aの開度を変更し、バイパス配管13を通って往ヘッダ11から還ヘッダ12に直接戻る水の流量を調節することで、二次側設備20に流れる水の流量を抑制することができる。 Further, a bypass flow rate adjusting valve 77a is provided in the bypass pipe 13 connecting the forward header 11 and the return header 12. By changing the opening of the bypass flow rate control valve 77a and adjusting the flow rate of water that returns directly from the forward header 11 to the return header 12 through the bypass pipe 13, the flow rate of water flowing to the secondary equipment 20 is suppressed. be able to.
 (2-3)二次側設備20
 二次側設備20は、熱利用機器としての9台の第1~第9空調機21~29を有している。第1~第9空調機21~29は、それぞれ、熱源機である一次側設備10の第1~第3冷凍機51~53が生成する冷水の冷熱あるいは温水の温熱を使って、室内空間の負荷を処理する。すなわち、第1~第9空調機21~29は、一次側設備10から流れてくる冷水あるいは温水を用いて、室内空間の空調(冷房や暖房)を行う。
(2-3) Secondary equipment 20
The secondary side equipment 20 has nine first to ninth air conditioners 21 to 29 as heat utilization devices. The first to ninth air conditioners 21 to 29 use the cold water of the cold water or the hot water generated by the first to third refrigerators 51 to 53 of the primary side equipment 10 that is a heat source unit, respectively, Handle the load. In other words, the first to ninth air conditioners 21 to 29 perform air conditioning (cooling or heating) of the indoor space using cold water or hot water flowing from the primary side equipment 10.
 第1~第9空調機21~29は、それぞれ同一あるいは異なる室内空間に設置されている。そして、第1~第9空調機21~29それぞれは、往ヘッダ11から延びる二次側配管71と、還ヘッダ12につながる二次側配管71との間に、並列に配置されている。第1~第9空調機21~29は、往ヘッダ11側の二次側配管71から水を取り入れ、還ヘッダ12側の二次側配管71へと水を戻す。 The first to ninth air conditioners 21 to 29 are installed in the same or different indoor spaces. Each of the first to ninth air conditioners 21 to 29 is arranged in parallel between the secondary side pipe 71 extending from the forward header 11 and the secondary side pipe 71 connected to the return header 12. The first to ninth air conditioners 21 to 29 take in water from the secondary pipe 71 on the forward header 11 side and return the water to the secondary pipe 71 on the return header 12 side.
 第1~第9空調機21~29の各ケーシングの内部には、空気が流通する空気通路が形成されている。空気通路の流入端には、吸い込みダクト(図示せず)の一端が接続され、空気通路の流出端には、給気ダクト(図示せず)の一端が接続されている。吸い込みダクト及び給気ダクトの他端は、それぞれ室内空間に接続されている。 In each casing of the first to ninth air conditioners 21 to 29, an air passage through which air flows is formed. One end of a suction duct (not shown) is connected to the inflow end of the air passage, and one end of an air supply duct (not shown) is connected to the outflow end of the air passage. The other ends of the suction duct and the air supply duct are each connected to the indoor space.
 第1~第9空調機21~29の各ケーシングの内部には、送風ファン、熱交換器、流量調整弁などが配備されている。熱交換器は、水と空気との間で熱交換を行わせて、空気を冷却または加熱させる。熱交換器は、例えば、複数の伝熱フィンと、それらの伝熱フィンを貫通する伝熱管とを有する、フィンアンドチューブ式の熱交換器等が採用される。熱交換器の伝熱管には、一次側設備10と二次側設備20との間を循環する水が流れ、伝熱管及び伝熱フィンを介して水の熱が空気に供給されることで、空気が冷却または加熱されるようになっている。送風ファンは、インバータ制御によって回転数を段階的に変化させることが可能であって、加熱または冷却された空気の送風量を調節できる。流量調整弁は、その空調機に流れる水の量を調節する役割を果たす。つまり、第1~第9空調機21~29それぞれに流れる水の流量は、各流量調整弁の開度によって決まる。各送風ファン及び各流量調整弁は、空調機コントローラ120によりコントロールされる。 In each casing of the first to ninth air conditioners 21 to 29, a blower fan, a heat exchanger, a flow rate adjusting valve, and the like are arranged. The heat exchanger causes heat exchange between water and air to cool or heat the air. As the heat exchanger, for example, a fin-and-tube heat exchanger having a plurality of heat transfer fins and a heat transfer tube penetrating the heat transfer fins is employed. In the heat transfer tube of the heat exchanger, water circulating between the primary side equipment 10 and the secondary side equipment 20 flows, and the heat of the water is supplied to the air via the heat transfer pipe and the heat transfer fins. The air is cooled or heated. The blower fan can change the rotational speed stepwise by inverter control, and can adjust the blown amount of heated or cooled air. The flow rate adjusting valve plays a role of adjusting the amount of water flowing to the air conditioner. That is, the flow rate of water flowing through each of the first to ninth air conditioners 21 to 29 is determined by the opening degree of each flow rate adjusting valve. Each blower fan and each flow rate adjustment valve are controlled by the air conditioner controller 120.
 (2-4)制御装置
 図2は、負荷分配システムの備える制御装置の制御ブロック図である。制御装置は、主として、チラーシステムコントローラ110及び空調機コントローラ120から成る。上述のように、チラーシステムコントローラ110は第1~第3冷凍機51~53、第1~第3ポンプ61~63をコントロールし、空調機コントローラ120は第1~第9空調機21~29をコントロールする。
(2-4) Control Device FIG. 2 is a control block diagram of a control device provided in the load distribution system. The control device mainly includes a chiller system controller 110 and an air conditioner controller 120. As described above, the chiller system controller 110 controls the first to third refrigerators 51 to 53 and the first to third pumps 61 to 63, and the air conditioner controller 120 controls the first to ninth air conditioners 21 to 29. To control.
 なお、チラーシステムコントローラ110の起動制御に関する詳細構成については、以下で詳述する。 Note that the detailed configuration related to the startup control of the chiller system controller 110 will be described in detail below.
 (3)負荷分配システムの動作
 (3-1)全体概略動作
 第1~第9空調機21~29それぞれでは、吸込ダクト(図示せず)によって室内空間から取り込まれた室内空気が、ケーシング内の空気通路を流れる。この空気は、各熱交換器等において一次側設備10から流れてきた冷水/温水によって冷却/加熱される。その冷却/加熱された空気が給気ダクト(図示せず)を介して室内空間へ供給されることで、室内空間の冷房/暖房が行われる。
(3) Operation of the load distribution system (3-1) Overall schematic operation In each of the first to ninth air conditioners 21 to 29, the indoor air taken in from the indoor space by the suction duct (not shown) Flow through air passage. This air is cooled / heated by cold water / hot water flowing from the primary side equipment 10 in each heat exchanger or the like. The cooled / heated air is supplied to the indoor space via an air supply duct (not shown), thereby cooling / heating the indoor space.
 (3-2)チラーシステムコントローラ110による起動制御
 チラーシステムコントローラ110は、主として、CPU180及びメモリ190から構成されている。メモリ190は、ROMとRAMとで構成されており、ROMには、CPU180が読み出して実行する各種プログラム等が格納されている。RAMは、CPU180のワークメモリとして機能する他、CPU180によって書き換え可能な情報が格納されている。
(3-2) Startup Control by Chiller System Controller 110 The chiller system controller 110 is mainly composed of a CPU 180 and a memory 190. The memory 190 includes a ROM and a RAM, and various programs and the like that are read and executed by the CPU 180 are stored in the ROM. The RAM functions as a work memory for the CPU 180 and stores information that can be rewritten by the CPU 180.
 チラーシステムコントローラ110は、二次側設備20の負荷(具体的には、第1~第9空調機21~29が処理すべき各室内空間の熱負荷)に応じて冷凍機の運転台数を可変させる冷凍機台数制御を、第1~第3冷凍機51~53に関する制御として行う。 The chiller system controller 110 can change the number of operating refrigerators according to the load on the secondary equipment 20 (specifically, the thermal load of each indoor space to be processed by the first to ninth air conditioners 21 to 29). Control of the number of refrigerators to be performed is performed as control relating to the first to third refrigerators 51 to 53.
 (3-3)冷凍機台数制御
 次に、チラーシステムコントローラ110の冷凍機台数制御に関係する機能について詳述する。
(3-3) Control of the number of refrigerators Next, functions related to the control of the number of refrigerators of the chiller system controller 110 will be described in detail.
 ROMから読み出したプログラムを実行するCPU180には、図2に示すように、起動制御に関係するソフトウェア上の機能部として、二次側負荷量演算部181と、冷凍機台数決定部182と、が備わることになる。また、メモリ190には、冷凍機特性テーブル191が記憶されている。冷凍機特性テーブル191には、第1~第3冷凍機51~53の種類(能力可変型や能力一定型等)、圧縮機容量及び運転効率等に関する情報が事前に作成・入力されている。 As shown in FIG. 2, the CPU 180 that executes the program read from the ROM includes a secondary load amount calculation unit 181 and a refrigerator number determination unit 182 as functional units on the software related to activation control. Will be provided. The memory 190 stores a refrigerator characteristic table 191. In the refrigerator characteristic table 191, information on the types (capacity variable type, constant capacity type, etc.), compressor capacity, operating efficiency, and the like of the first to third refrigerators 51 to 53 is created and input in advance.
 二次側負荷量演算部181は、二次側設備20によって要求される負荷を演算する。例えば、二次側負荷量演算部181は、所定時間毎に、一次側設備10から二次側設備20へと流れる水の温度を計測する往水温度センサ111の計測値、二次側設備20から一次側設備10へと流れる水の温度を計測する還水温度センサ112の計測値、及び水量センサ113の計測した循環している水量を基に、二次側設備20の運転している空調機の負荷、すなわち二次側設備20の要求する負荷(以下、要求負荷量という)を演算する。 The secondary load amount calculation unit 181 calculates a load required by the secondary equipment 20. For example, the secondary load amount calculation unit 181 measures the measured value of the outgoing water temperature sensor 111 that measures the temperature of the water flowing from the primary side equipment 10 to the secondary side equipment 20 every predetermined time, and the secondary side equipment 20. Air conditioner that the secondary side equipment 20 is operating on the basis of the measured value of the return water temperature sensor 112 that measures the temperature of the water flowing from the primary side equipment 10 to the primary side equipment 10 and the amount of circulating water measured by the water quantity sensor 113. The load of the machine, that is, the load required by the secondary equipment 20 (hereinafter referred to as the required load amount) is calculated.
 冷凍機台数決定部182は、二次側負荷量演算部181が演算した要求負荷量が処理されるように、運転させる冷凍機の台数及び能力を決定する。そして、冷凍機台数決定部182は、決定した冷凍機の台数及び能力に応じて、第1~第3ポンプ61~63及び第1~第3冷凍機51~53を制御する。すなわち、冷凍機台数決定部182は、起動制御が開始されてから起動制御が終了するまでの間、運転させる冷凍機を見直すための機能部としての役割を有する。具体的には、冷凍機台数決定部182は、所定時間毎に、既に運転されている1又は複数の冷凍機を見直す。より具体的には、冷凍機台数決定部182は、起動制御が実行されている間、計測・推定された二次側設備20の負荷を基に、所定時間の経過時に前回に決めた一次側設備10の冷凍機の運転台数及び能力を補正する。 The refrigerator number determining unit 182 determines the number and capacity of the refrigerators to be operated so that the required load amount calculated by the secondary load amount calculating unit 181 is processed. Then, the refrigerator number determining unit 182 controls the first to third pumps 61 to 63 and the first to third refrigerators 51 to 53 according to the determined number and capacity of the refrigerators. In other words, the refrigerator number determining unit 182 has a role as a functional unit for reviewing the refrigerator to be operated from the start control to the end of the start control. Specifically, the refrigerator number determining unit 182 reviews one or a plurality of refrigerators that are already in operation every predetermined time. More specifically, the number-of-refrigerating machine determination unit 182 determines the primary side determined last time when a predetermined time has elapsed based on the measured / estimated load of the secondary equipment 20 while the start-up control is being executed. The operation number and capacity of the refrigerator of the facility 10 are corrected.
 ここでは、メモリ190に記憶されている冷凍機特性テーブル191を用いて、冷凍機台数決定部182は運転させる冷凍機の台数及び能力を決定する。冷凍機台数決定部182は、要求負荷量に応じて、第1~第3冷凍機51~53の運転組合せの中から適切な組合せを選ぶことで、冷凍機の台数及び能力(負荷)を決定する。 Here, using the refrigerator characteristic table 191 stored in the memory 190, the refrigerator number determining unit 182 determines the number and capacity of the refrigerators to be operated. The number of refrigerators determination unit 182 determines the number and capacity (load) of refrigerators by selecting an appropriate combination from the operating combinations of the first to third refrigerators 51 to 53 according to the required load amount. To do.
 例えば、冷凍機台数決定部182は、二次側設備20から要求される負荷が小さい場合、すなわち第1冷凍機51だけ運転させることで要求負荷量を処理することができる場合には、第1冷凍機51のみを運転させるという決定を行う。そして、二次側設備20から要求される負荷が徐々に増加して第1冷凍機51で対応可能な負荷以上の負荷が要求された場合、すなわち第1冷凍機51だけ運転させても要求負荷量を処理できず、第1冷凍機51に加えて第2冷凍機52を運転させる必要がある場合には、第1冷凍機51に加えて第2冷凍機52を運転させるという決定を行う。なお、第2冷凍機52の運転(駆動)を開始させるときは、冷凍機台数決定部182は、第1冷凍機51に対する水の流量が第2冷凍機52に対する水の流量よりも少なくなるように、第1ポンプ61及び第2ポンプ62を制御する。そして、第1冷凍機51及び第2冷凍機52に流れる水量に応じて、第1冷凍機51及び第2冷凍機52の能力を決定する。その後、二次側設備20から要求される負荷が徐々に増加して第1冷凍機51及び第2冷凍機52で対応可能な負荷以上の負荷が要求された場合、すなわち第1冷凍機51及び第2冷凍機52を運転させても要求負荷量を処理できず、第1冷凍機51及び第2冷凍機52に加えて第3冷凍機53を運転させる必要がある場合には、第1冷凍機51及び第2冷凍機52に加えて第3冷凍機53を運転させるという決定を行う。なお、第3冷凍機53の運転(駆動)を開始させるときは、冷凍機台数決定部182は、第1冷凍機51に対する水の流量が第2冷凍機52及び第3冷凍機53のそれぞれに対する水の流量よりも少なくなるように、第1ポンプ~第3ポンプ61~63を制御する。そして、第1~第3冷凍機51~53に流れる水量に応じて、第1~第3冷凍機51~53の能力を決定する。一方、第1~第3冷凍機51~53が運転しているときに、二次側設備20から要求される負荷が徐々に減少して第1冷凍機51及び第2冷凍機52を運転させることで要求負荷量を処理することができる場合には、冷凍機台数決定部182は、第3冷凍機53の運転を停止させ、第1冷凍機51及び第2冷凍機52を運転させるという決定を行う。また、第1冷凍機51及び第2冷凍機52が運転しているときに、二次側設備20から要求される負荷が徐々に減少して第1冷凍機51のみを運転させることで要求負荷量を処理することができる場合には、冷凍機台数決定部182は、第2冷凍機52の運転を停止させ、第1冷凍機51のみ運転させるという決定を行う。 For example, when the load required from the secondary-side equipment 20 is small, that is, when the required load amount can be processed by operating only the first refrigerator 51, the number-of-freezer determining unit 182 It is determined that only the refrigerator 51 is operated. And when the load requested | required from the secondary side equipment 20 increases gradually and the load more than the load which can be coped with by the 1st freezer 51 is requested | required, ie, only the 1st freezer 51 is operated, a required load When the amount cannot be processed and it is necessary to operate the second refrigerator 52 in addition to the first refrigerator 51, a determination is made to operate the second refrigerator 52 in addition to the first refrigerator 51. When the operation (drive) of the second refrigerator 52 is started, the refrigerator number determining unit 182 causes the flow rate of water to the first refrigerator 51 to be smaller than the flow rate of water to the second refrigerator 52. In addition, the first pump 61 and the second pump 62 are controlled. Then, the capacities of the first refrigerator 51 and the second refrigerator 52 are determined according to the amount of water flowing through the first refrigerator 51 and the second refrigerator 52. After that, when the load required from the secondary side equipment 20 is gradually increased and a load more than the load that can be handled by the first refrigerator 51 and the second refrigerator 52 is required, that is, the first refrigerator 51 and If the required load cannot be processed even if the second refrigerator 52 is operated, and the third refrigerator 53 needs to be operated in addition to the first refrigerator 51 and the second refrigerator 52, the first refrigerator It is determined that the third refrigerator 53 is operated in addition to the machine 51 and the second refrigerator 52. When the operation (drive) of the third refrigerator 53 is started, the refrigerator number determining unit 182 determines that the flow rate of water with respect to the first refrigerator 51 is relative to the second refrigerator 52 and the third refrigerator 53, respectively. The first to third pumps 61 to 63 are controlled so as to be less than the flow rate of water. Then, the capacities of the first to third refrigerators 51 to 53 are determined according to the amount of water flowing to the first to third refrigerators 51 to 53. On the other hand, when the first to third refrigerators 51 to 53 are in operation, the load required from the secondary side equipment 20 is gradually reduced to operate the first refrigerator 51 and the second refrigerator 52. When the required load amount can be processed, the number-of-freezer determining unit 182 determines to stop the operation of the third refrigerator 53 and operate the first refrigerator 51 and the second refrigerator 52. I do. Moreover, when the 1st freezer 51 and the 2nd freezer 52 are driving | operating, the load requested | required from the secondary side equipment 20 reduces gradually, and a required load is made to drive only the 1st freezer 51. When the amount can be processed, the refrigerator number determining unit 182 determines to stop the operation of the second refrigerator 52 and operate only the first refrigerator 51.
 なお、本実施形態では、運転させる冷凍機を決定した場合、冷凍機台数決定部182は、運転させる冷凍機に水を流すポンプを所定の能力で運転させるとともに、運転させない冷凍機に水を流すポンプの運転を停止させる。 In the present embodiment, when the refrigerator to be operated is determined, the refrigerator number determining unit 182 operates the pump that supplies water to the operated refrigerator with a predetermined capacity and supplies water to the refrigerator that is not operated. Stop pump operation.
 (3-4)冷凍機台数制御のフロー
 図3を参照して、チラーシステムコントローラ110による冷凍機台数制御の各ステップについて説明する。なお、以下の説明では、各冷凍機の100%の能力とは各冷凍機の定格能力を意味している。
(3-4) Flow of Control of Number of Refrigerators Each step of control of the number of chillers by the chiller system controller 110 will be described with reference to FIG. In the following description, 100% capacity of each refrigerator means the rated capacity of each refrigerator.
 冷凍機台数制御では、上述のように、二次側負荷量演算部181が、往水の温度、環水の温度及び水量を基に、二次側設備20の負荷を演算し、それに基づいて、冷凍機台数決定部182が運転させる冷凍機の台数及び能力を決定する。 In the control of the number of refrigerators, as described above, the secondary side load amount calculation unit 181 calculates the load of the secondary side equipment 20 based on the temperature of the outgoing water, the temperature of the circulating water, and the amount of water, and based on that. The refrigerator number determining unit 182 determines the number and capacity of refrigerators to be operated.
 まずステップS11では、第1冷凍機51を運転させることを決定し、第1冷凍機51のみを運転させる。具体的には、第1冷凍機51の出口側の水温が設定温度となるように第1ポンプ61を制御するとともに、可変速圧縮機を所定の能力(インバータ出力)で駆動させる。そして、ステップS12に移行する。 First, in step S11, it is determined to operate the first refrigerator 51, and only the first refrigerator 51 is operated. Specifically, the first pump 61 is controlled so that the water temperature on the outlet side of the first refrigerator 51 becomes a set temperature, and the variable speed compressor is driven with a predetermined capacity (inverter output). Then, the process proceeds to step S12.
 ステップS12では、二次側負荷量演算部181及び冷凍機台数決定部182が第1冷凍機51の能力が100%に到達したか否かを判断する。そして、ステップS12において第1冷凍機51の能力が100%に到達したと判断されると、ステップS13に移行する。一方、ステップS12において第1冷凍機51の能力が100%に到達していないと判断されると、ステップS12に戻る。 In step S12, the secondary load amount calculation unit 181 and the refrigerator number determination unit 182 determine whether or not the capacity of the first refrigerator 51 has reached 100%. Then, when it is determined in step S12 that the capacity of the first refrigerator 51 has reached 100%, the process proceeds to step S13. On the other hand, if it is determined in step S12 that the capacity of the first refrigerator 51 has not reached 100%, the process returns to step S12.
 ステップS13では、冷凍機台数決定部182が第1冷凍機51に加えて第2冷凍機52の運転開始を決定し、ステップS14へと移行する。ステップS14では、第1ポンプ61の能力が最小能力(ここでは、ポンプ特性に基づき発揮することのできる最小の能力)で固定されていない場合には、第1ポンプ61の能力を最小能力で固定するとともに、第1冷凍機51の能力を流量に応じた能力に決定する。さらに、第2冷凍機52の運転が開始されていない場合には、第2冷凍機52の運転を開始させるために、第2ポンプ62の駆動を開始させるとともに、第2冷凍機52の備える圧縮機の駆動を開始させる。これにより、第1冷凍機51及び第2冷凍機52が運転された状態となり、かつ第1冷凍機51には第1ポンプ61の最小能力で流れる量の水が流れ、残りの水が第2冷凍機52に流れることになる。そして、ステップS15に移行する。 In step S13, the refrigerator number determining unit 182 determines the start of operation of the second refrigerator 52 in addition to the first refrigerator 51, and proceeds to step S14. In step S14, when the capacity of the first pump 61 is not fixed at the minimum capacity (here, the minimum capacity that can be exhibited based on the pump characteristics), the capacity of the first pump 61 is fixed at the minimum capacity. At the same time, the capacity of the first refrigerator 51 is determined to be the capacity according to the flow rate. Further, when the operation of the second refrigerator 52 has not been started, the second pump 62 is started to be driven and the compression provided in the second refrigerator 52 in order to start the operation of the second refrigerator 52. Start the machine. As a result, the first refrigerator 51 and the second refrigerator 52 are operated, and an amount of water that flows with the minimum capacity of the first pump 61 flows to the first refrigerator 51, and the remaining water flows to the second. It will flow to the refrigerator 52. Then, the process proceeds to step S15.
 ステップS15では、二次側負荷量演算部181及び冷凍機台数決定部182が第2冷凍機52の能力が100%に到達したか否かを判断する。そして、ステップS15において第2冷凍機52の能力が100%に到達したと判断されると、第1ポンプ61の能力固定が解除されていない場合には、ステップS16で、第1ポンプ61の能力固定を解除するとともに、第2冷凍機52の能力が100%を維持するように第1ポンプ61を制御する。その後、ステップS19に移行する。一方、ステップS15において第2冷凍機52の能力が100%に到達していないと判断されると、ステップS17において、第2冷凍機52の能力が一定時間以上継続して85%未満であるか否かを判断する。そして、ステップS17において、第2冷凍機52の能力が一定時間以上継続して85%未満であると判断されると、ステップS18で、冷凍機台数決定部182が運転される冷凍機を第1冷凍機51に決定し、すなわち第2冷凍機52を削減することを決定し、第2冷凍機52及び第2ポンプ62の駆動を停止させる。これにより、第1冷凍機51のみが運転されることになる。その後、ステップS12へと戻る。これに対して、ステップS17において、第2冷凍機52の能力が一定時間以上継続して85%未満でないと判断されると、ステップS14へと戻る。 In step S15, the secondary load amount calculation unit 181 and the refrigerator number determination unit 182 determine whether or not the capacity of the second refrigerator 52 has reached 100%. If it is determined in step S15 that the capacity of the second refrigerator 52 has reached 100%, if the capacity of the first pump 61 is not released, the capacity of the first pump 61 is determined in step S16. While releasing the fixation, the first pump 61 is controlled so that the capacity of the second refrigerator 52 is maintained at 100%. Thereafter, the process proceeds to step S19. On the other hand, if it is determined in step S15 that the capacity of the second refrigerator 52 has not reached 100%, in step S17, the capacity of the second refrigerator 52 continues for a certain time or more and is less than 85%. Judge whether or not. If it is determined in step S17 that the capacity of the second refrigerator 52 continues to be less than 85% for a predetermined time or longer, the refrigerator in which the refrigerator number determining unit 182 is operated is determined as the first refrigerator in step S18. The refrigerator 51 is determined, that is, the second refrigerator 52 is determined to be reduced, and the driving of the second refrigerator 52 and the second pump 62 is stopped. As a result, only the first refrigerator 51 is operated. Then, it returns to step S12. On the other hand, if it is determined in step S17 that the capacity of the second refrigerator 52 continues for a certain time or more and is not less than 85%, the process returns to step S14.
 ステップS19では、二次側負荷量演算部181及び冷凍機台数決定部182が第1冷凍機51及び第2冷凍機52のそれぞれの能力が100%に到達したか否かを判断する。そして、ステップS19において第1冷凍機51及び第2冷凍機52の能力が100%に到達したと判断されると、ステップS20へと移行する。一方で、ステップS19において第1冷凍機51及び第2冷凍機52の能力が100%に到達していないと判断されると、ステップS17に戻る。 In step S19, the secondary load amount calculation unit 181 and the refrigerator number determination unit 182 determine whether the respective capacities of the first refrigerator 51 and the second refrigerator 52 have reached 100%. When it is determined in step S19 that the capacities of the first refrigerator 51 and the second refrigerator 52 have reached 100%, the process proceeds to step S20. On the other hand, if it is determined in step S19 that the capacities of the first refrigerator 51 and the second refrigerator 52 have not reached 100%, the process returns to step S17.
 ステップS20では、冷凍機台数決定部182が第1冷凍機51及び第2冷凍機52に加えて第3冷凍機53の運転開始を決定し、第1ポンプ61の能力が最小能力で固定されていない場合には、ステップS21で、第1ポンプ61の能力を最小能力に固定するとともに、第1冷凍機51の能力を流量に応じた能力に決定する。さらに、第3冷凍機53の運転が開始されていない場合には、第3冷凍機53の運転を開始させるために、第3ポンプ63の駆動を開始させるとともに、第3冷凍機53の備える圧縮機の駆動を開始させる。これにより、第1~第3冷凍機51~53が運転された状態となり、かつ第1冷凍機51には第1ポンプ61の最小能力で流れる量の水が流れ、残りの水が第2冷凍機52及び第3冷凍機53に等しく流れることになる。そして、ステップS22に移行する。 In step S20, the refrigerator number determining unit 182 determines the start of operation of the third refrigerator 53 in addition to the first refrigerator 51 and the second refrigerator 52, and the capacity of the first pump 61 is fixed at the minimum capacity. If not, in step S21, the capacity of the first pump 61 is fixed to the minimum capacity, and the capacity of the first refrigerator 51 is determined as the capacity corresponding to the flow rate. Further, when the operation of the third refrigerator 53 has not been started, the third pump 63 is started to be driven and the compression provided by the third refrigerator 53 is started in order to start the operation of the third refrigerator 53. Start the machine. As a result, the first to third refrigerators 51 to 53 are operated, and the first refrigerator 51 is supplied with an amount of water that flows with the minimum capacity of the first pump 61, and the remaining water is supplied to the second refrigerator. It will flow equally to the machine 52 and the third refrigerator 53. Then, the process proceeds to step S22.
 ステップS22では、二次側負荷量演算部181及び冷凍機台数決定部182が第2冷凍機52及び第3冷凍機53のそれぞれの能力が100%に到達したか否かを判断する。そして、ステップS22において第2冷凍機52及び第3冷凍機53の能力が100%に到達したと判断されると、第1ポンプ61の能力固定が解除されていない場合には、ステップS23で、第1ポンプ61の能力固定を解除するとともに、第2冷凍機52及び第3冷凍機53の能力が100%を維持するように第1ポンプ61が制御され、ステップS22に戻る。一方で、ステップS22において第2冷凍機52及び第3冷凍機53の能力が100%に到達していないと判断されると、ステップS24において、第3冷凍機53の能力が一定時間以上継続して92.5%未満であるか否かを判断する。そして、ステップS24において、第3冷凍機53の能力が一定時間以上継続して92.5%未満であると判断されると、ステップS25において、冷凍機台数決定部182が運転される冷凍機を第1冷凍機51及び第2冷凍機52に決定し、すなわち第3冷凍機53を削減することを決定し、ステップS16へと戻る。これにより、第1冷凍機51及び第2冷凍機52が運転され、第3冷凍機53の運転が停止される。一方で、ステップS24において、第3冷凍機53の能力が一定時間以上継続して92.5%未満でないと判断されると、ステップS21に戻る。 In step S22, the secondary load amount calculation unit 181 and the refrigerator number determination unit 182 determine whether the respective capacities of the second refrigerator 52 and the third refrigerator 53 have reached 100%. And when it is judged that the capacity | capacitance of the 2nd refrigerator 52 and the 3rd refrigerator 53 reached | attained 100% in step S22, when the capacity | capacitance fixation of the 1st pump 61 is not cancelled | released, in step S23, The first pump 61 is controlled so that the capacities of the first pump 61 are released and the capacities of the second refrigerator 52 and the third refrigerator 53 are maintained at 100%, and the process returns to step S22. On the other hand, when it is determined in step S22 that the capacities of the second refrigerator 52 and the third refrigerator 53 have not reached 100%, in step S24, the capacities of the third refrigerator 53 continue for a certain time or more. It is judged whether it is less than 92.5%. If it is determined in step S24 that the capacity of the third refrigerator 53 continues for a certain time or more and is less than 92.5%, the refrigerator in which the refrigerator number determining unit 182 is operated in step S25. The first refrigerator 51 and the second refrigerator 52 are determined, that is, it is determined to reduce the third refrigerator 53, and the process returns to step S16. As a result, the first refrigerator 51 and the second refrigerator 52 are operated, and the operation of the third refrigerator 53 is stopped. On the other hand, if it is determined in step S24 that the capacity of the third refrigerator 53 continues for a certain time or more and is not less than 92.5%, the process returns to step S21.
 (4)特徴
 (4-1)
 ここで、本発明者らは、鋭意検討した結果、可変速圧縮機を有する熱源機と定速圧縮機を有する熱源機又は吸熱式熱源機とが並列に配置されているシステムにおいて、各熱源機を組み合わせて使用する場合に、定速圧縮機を有する熱源機又は吸熱式熱源機に対して容量可変型のポンプにより熱媒体を流しても、定速ポンプにより熱媒体を流しても、他のポンプとの圧力の関係上、定速圧縮機を有する熱源機又は吸熱式熱源機に流れる熱媒体の流量にはほとんど差がないことを見いだした。
(4) Features (4-1)
Here, as a result of intensive studies, the present inventors have determined that each heat source machine is a system in which a heat source machine having a variable speed compressor and a heat source machine having a constant speed compressor or an endothermic heat source machine are arranged in parallel. In combination with the heat source device having a constant speed compressor or the heat absorption type heat source device, whether the heat medium is flown by a variable capacity pump, the heat medium is flown by a constant speed pump, It has been found that there is almost no difference in the flow rate of the heat medium flowing through the heat source device having a constant speed compressor or the endothermic heat source device due to the pressure with the pump.
 本実施形態では、能力可変型の熱源機である第1冷凍機51には容量可変型のポンプである第1ポンプ61から水が供給され、能力一定型の熱源機である第2冷凍機52及び第3冷凍機53には定速ポンプである第2ポンプ62及び第3ポンプ63から水が供給される。能力一定型の熱源機に対して容量可変型のポンプにより熱媒体を流しても、定速ポンプにより熱媒体を流しても、他のポンプとの圧力の関係上、能力一定型の熱源機に流れる熱媒体の流量にはほとんど差がないため、第2冷凍機52及び第3冷凍機53それぞれに対して容量可変型のポンプから水が流れる場合と同等程度の水を第2冷凍機52及び第3冷凍機53に流すことができる。さらに、定速ポンプは、容量可変型のポンプよりも一般的に安価であるため、容量可変型のポンプによって第2冷凍機52及び第3冷凍機53に水が流れる構成である場合と比較して、コストを抑えることができる。 In the present embodiment, water is supplied from the first pump 61, which is a variable capacity pump, to the first refrigerator 51, which is a variable capacity type heat source apparatus, and the second refrigerator 52, which is a constant capacity type heat source apparatus. The third refrigerator 53 is supplied with water from the second pump 62 and the third pump 63 which are constant speed pumps. Regardless of whether the heat medium is flown by a capacity variable type pump or the constant speed pump, the heat source machine of constant capacity type is changed to a heat source machine of constant capacity type due to the pressure with other pumps. Since there is almost no difference in the flow rate of the flowing heat medium, the second refrigerator 52 and the third refrigerator 52 and the third refrigerator 53 are supplied with the same amount of water as when the water flows from the variable capacity pump. It can flow to the third refrigerator 53. Furthermore, since the constant speed pump is generally less expensive than the variable displacement pump, the constant speed pump is compared with a case where water flows through the second refrigerator 53 and the third refrigerator 53 by the variable displacement pump. Cost.
 これにより、コスト増加を抑え、かつ各冷凍機に対して負荷の配分を適切に設定することができている。 This makes it possible to suppress an increase in cost and to appropriately set the load distribution for each refrigerator.
 (4-2)
 図4は、従来技術としての負荷分配システムの備える一次側設備の概略構成図である。図5は、本実施形態に係る負荷分配システム及び従来技術としての負荷分配システムそれぞれのエネルギー損失を説明するための図である。なお、図5では、本実施形態に係る負荷分配システム及び従来技術としての負荷分配システムそれぞれにおけるエネルギー損失範囲を、ハッチングによって模式的に示している。また、図5において、本実施形態に関しては、ポンプの特性により、定速ポンプ(第2ポンプ62及び第3ポンプ63)と、容量可変型のポンプ(第1ポンプ61)との能力比が最大で2:1となるために、能力一定型の熱源機起動時における容量可変型のポンプの最小能力を50%とした場合のエネルギー損失範囲について示している。
(4-2)
FIG. 4 is a schematic configuration diagram of a primary-side facility provided in a load distribution system as a conventional technique. FIG. 5 is a diagram for explaining the energy loss of each of the load distribution system according to the present embodiment and the load distribution system as the prior art. In addition, in FIG. 5, the energy loss range in each of the load distribution system which concerns on this embodiment, and the load distribution system as a prior art is typically shown by hatching. Further, in FIG. 5, the capacity ratio between the constant speed pumps (second pump 62 and third pump 63) and the variable displacement pump (first pump 61) is the maximum due to the characteristics of the pump. Therefore, the energy loss range is shown in the case where the minimum capacity of the variable capacity pump at the time of starting the heat source apparatus of constant capacity is 50%.
 従来技術としての負荷分配システムは、本実施形態に係る負荷分配システムの備える熱媒体循環回路70において、第1ポンプ61’として定速ポンプが採用されていること以外は、本実施形態と同様の構成であるものとする。そして、二次側設備からの要求負荷量が処理されるように、運転させる冷凍機が第1冷凍機51’、第2冷凍機52’、第3冷凍機53’の順に決定されるものとする。 The conventional load distribution system is the same as that of the present embodiment except that a constant speed pump is employed as the first pump 61 ′ in the heat medium circulation circuit 70 included in the load distribution system according to the present embodiment. It is assumed to be a configuration. Then, the refrigerators to be operated are determined in the order of the first refrigerator 51 ′, the second refrigerator 52 ′, and the third refrigerator 53 ′ so that the required load amount from the secondary equipment is processed. To do.
 ここで、能力可変型の熱源機が運転されると、その能力に応じて消費電力が増減するが、能力一定型の熱源機が運転されると、その能力に拘わらず消費電力が同じになる。このため、能力一定型の熱源機の能力が最大限発揮できるように能力一定型の熱源機に流れる熱媒体の量を調整することで、無駄な電力消費を抑えることができる。 Here, when the variable capacity type heat source unit is operated, the power consumption increases or decreases depending on the capacity. However, when the constant capacity type heat source unit is operated, the power consumption is the same regardless of the capacity. . For this reason, wasteful power consumption can be suppressed by adjusting the amount of the heat medium flowing through the constant-capacity type heat source unit so that the capability of the constant-capacity type heat source unit can be maximized.
 従来技術としての負荷分配システムでは、第1冷凍機51’~第3冷凍機53'に流れる水量を調整することができないため、第1冷凍機51’に加えて第2冷凍機52’の運転が開始されると第1冷凍機51’及び第2冷凍機52’のそれぞれには等量の水が流れる。そうすると、図5に示すように、能力一定型の熱源機(第2冷凍機52’)の能力を最大で50%損失することになる。さらに、第1冷凍機51’及び第2冷凍機52’に加えて第3冷凍機53’の運転が開始されると第1~第3冷凍機51’~53’のそれぞれには等量の水が流れる。そうすると、図5に示すように、能力一定型の熱源機(第2冷凍機52’及び第3冷凍機53')の能力を最大で約67%損失することになる。 In the load distribution system as the prior art, the amount of water flowing to the first refrigerator 51 ′ to the third refrigerator 53 ′ cannot be adjusted, so that the second refrigerator 52 ′ is operated in addition to the first refrigerator 51 ′. Is started, an equal amount of water flows through each of the first refrigerator 51 ′ and the second refrigerator 52 ′. If it does so, as shown in FIG. 5, the capability of a constant capacity type heat source machine (2nd freezer 52 ') will be lost by 50% at maximum. Further, when the operation of the third refrigerator 53 ′ is started in addition to the first refrigerator 51 ′ and the second refrigerator 52 ′, an equal amount is added to each of the first to third refrigerators 51 ′ to 53 ′. Water flows. Then, as shown in FIG. 5, the capacity of the constant capacity type heat source machine (the second refrigerator 52 'and the third refrigerator 53') is lost up to about 67%.
 本実施形態では、能力可変型の熱源機である第1冷凍機51’に水を供給するポンプは、容量可変型のポンプである。そして、第1~第3ポンプ61~63のポンプ特性を基に、第1ポンプ61の最小能力を決定することができる。このため、第1冷凍機51に加えて第2冷凍機52の運転を開始させる場合には、第1ポンプ61の最小能力で流れる量の水を第1冷凍機51へと流し、残りの水を第2冷凍機52へと流すことができる。これにより、第1冷凍機51に加えて第2冷凍機52の運転を開始させる場合には、図5に示すように、能力一定型の熱源機(第2冷凍機52)の能力の損失が最大で33%となる。さらに、第1冷凍機51及び第2冷凍機52に加えて第3冷凍機53の運転を開始させる場合には、第1ポンプ61の最小能力で流れる量の水を第1冷凍機51へと流し、残りの水を第2冷凍機52及び第3冷凍機53へと流すことができる。これにより、第1冷凍機51及び第2冷凍機52に加えて第3冷凍機53の運転を開始させる場合には、図5に示すように、能力一定型の熱源機(第2冷凍機52及び第3冷凍機53)の能力の損失が最大で40%となる。このように、本実施形態では、ポンプ特性により第1冷凍機51に流れてしまう水の量を最小限にとどめ、残りの水を第2冷凍機52や第3冷凍機53に流すことで第2冷凍機52や第3冷凍機53の能力を最大限発揮させることができるため、従来技術としての負荷分配システムと比較して、システム全体のエネルギーの損失(ロス)を抑えることができている。 In the present embodiment, the pump that supplies water to the first refrigerator 51 ′, which is a variable capacity heat source machine, is a variable capacity pump. The minimum capacity of the first pump 61 can be determined based on the pump characteristics of the first to third pumps 61 to 63. For this reason, when starting the operation of the second refrigerator 52 in addition to the first refrigerator 51, an amount of water flowing with the minimum capacity of the first pump 61 is caused to flow to the first refrigerator 51, and the remaining water Can flow to the second refrigerator 52. Thereby, when starting the operation of the second refrigerator 52 in addition to the first refrigerator 51, as shown in FIG. 5, the capacity loss of the constant-capacity heat source unit (second refrigerator 52) is reduced. The maximum is 33%. Further, when starting the operation of the third refrigerator 53 in addition to the first refrigerator 51 and the second refrigerator 52, an amount of water flowing with the minimum capacity of the first pump 61 is supplied to the first refrigerator 51. The remaining water can be allowed to flow to the second refrigerator 53 and the third refrigerator 53. As a result, when starting the operation of the third refrigerator 53 in addition to the first refrigerator 51 and the second refrigerator 52, as shown in FIG. And the loss of capacity of the third refrigerator 53) is 40% at the maximum. As described above, in the present embodiment, the amount of water that flows to the first refrigerator 51 due to the pump characteristics is minimized, and the remaining water is allowed to flow to the second refrigerator 52 and the third refrigerator 53 to reduce the amount of water. Since the capacity of the second refrigerator 52 and the third refrigerator 53 can be maximized, the energy loss of the entire system can be suppressed as compared with the load distribution system as the prior art. .
 (4-3)
 本実施形態では、第2冷凍機52の運転を開始させるときに第1冷凍機51の運転を停止させないため、第1冷凍機51においてサーモオフによる圧縮機の停止を防止することができる。これにより、二次側設備20からの要求負荷量に対して素早く対応することができるとともに、圧縮機の発停回数の増加による機器寿命の短縮を防止することができる。
(4-3)
In this embodiment, since the operation of the first refrigerator 51 is not stopped when the operation of the second refrigerator 52 is started, the compressor can be prevented from being stopped due to the thermo-off in the first refrigerator 51. Thereby, while being able to respond | correspond quickly with respect to the required load amount from the secondary side equipment 20, the shortening of the apparatus lifetime by the increase in the frequency | count of a start / stop of a compressor can be prevented.
 (5)変形例
 (5-1)変形例A
 図6は、変形例Aに係る負荷分配システムの備える一次側設備の概略構成図である。図7は、変形例Aに係る負荷分配システム及び従来技術としての負荷分配システムそれぞれのエネルギー損失を説明するための図である。なお、図7では、従来技術としての負荷分配システムにおけるエネルギー損失範囲を、ハッチングによって模式的に示している。また、図7おいて、本変形例に関しては、ポンプの特性により、定速ポンプ(第2ポンプ62及び第3ポンプ63)と容量可変型のポンプ(第1ポンプ61)との能力比が最大で2:1となるために、能力一定型の熱源機起動時における容量可変型のポンプの最小能力を50%とした場合のエネルギー損失範囲について示している。
(5) Modification (5-1) Modification A
FIG. 6 is a schematic configuration diagram of primary-side equipment included in the load distribution system according to Modification A. FIG. 7 is a diagram for explaining the energy loss of each of the load distribution system according to Modification A and the load distribution system as the prior art. In addition, in FIG. 7, the energy loss range in the load distribution system as a prior art is typically shown by hatching. Further, in FIG. 7, the capacity ratio between the constant speed pumps (second pump 62 and third pump 63) and the variable displacement pump (first pump 61) is the maximum due to the characteristics of the pump. Therefore, the energy loss range is shown in the case where the minimum capacity of the variable capacity pump at the time of starting the heat source apparatus of constant capacity is 50%.
 上記実施形態では、複数台の熱源機のうち能力可変型の熱源機(第1冷凍機51)が1台だけ設けられている。これに代えて、能力可変型の熱源機が2台以上設けられていてもよい。 In the above embodiment, only one variable capacity type heat source machine (first refrigerator 51) is provided among the plurality of heat source machines. Instead of this, two or more variable capacity type heat source units may be provided.
 例えば、本変形例Aに係る負荷分配システムでは、図6に示すように、第1冷凍機251及び第2冷凍機252が能力可変型の熱源機であって、第3冷凍機253が能力一定型の熱源機である。また、第1ポンプ261及び第2ポンプ262には容量可変型のポンプが、第3ポンプ263には定速ポンプが、それぞれ採用されている。そして、二次側設備からの要求負荷量が処理されるように、運転させる冷凍機として第1冷凍機251、第2冷凍機252、第3冷凍機253の順に決定される。なお、能力可変型の熱源機である第1冷凍機251及び第2冷凍機252の最小能力は、それぞれ15%であるものとする。すなわち、本変形例では、第1冷凍機251及び第2冷凍機252の最小能力を合計した能力が、第3冷凍機253の定格能力以下となる。 For example, in the load distribution system according to Modification A, as shown in FIG. 6, the first refrigerator 251 and the second refrigerator 252 are variable capacity heat source machines, and the third refrigerator 253 has a constant capacity. It is a heat source machine of the type. The first pump 261 and the second pump 262 are variable displacement pumps, and the third pump 263 is a constant speed pump. And the 1st freezer 251, the 2nd freezer 252, and the 3rd freezer 253 are determined in order of the refrigerating machine to operate so that the demand load amount from the secondary side equipment may be processed. It is assumed that the minimum capacities of the first refrigerator 251 and the second refrigerator 252 that are variable capacity heat source machines are 15%, respectively. That is, in this modification, the total capacity of the first refrigerator 251 and the second refrigerator 252 is equal to or less than the rated capacity of the third refrigerator 253.
 一方、図7に示す従来技術としての負荷分配システムは、本変形例に係る負荷分配システムの備える熱媒体循環回路において、第1ポンプ及び第2ポンプとして定速ポンプが採用されていること以外は、本変形例と同様の構成であるものとする。そして、二次側設備からの要求負荷量が処理されるように、運転させる冷凍機として第1冷凍機、第2冷凍機、第3冷凍機の順に決定されるものとする。 On the other hand, the load distribution system as the prior art shown in FIG. 7 is the heat medium circulation circuit provided in the load distribution system according to this modification, except that constant speed pumps are employed as the first pump and the second pump. It is assumed that the configuration is the same as that of the present modification. And it shall determine in order of a 1st freezer, a 2nd freezer, and a 3rd freezer as a freezer to be operated so that a demand load amount from a secondary side equipment may be processed.
 従来技術としての負荷分配システムでは、最小能力15%の能力可変型の熱源機として第1冷凍機及び第2冷凍機を備えているが、第1~第3冷凍機に流れる水量を調整することができないため、第1冷凍機及び第2冷凍機に加えて第3冷凍機の運転が開始されると第1~第3冷凍機のそれぞれには等量の水が流れる。そうすると、図7に示すように、第3冷凍機の能力を最大で約33%損失することになる。 The load distribution system as the prior art includes the first refrigerator and the second refrigerator as variable capacity heat source machines with a minimum capacity of 15%, but the amount of water flowing to the first to third refrigerators is adjusted. Therefore, when the operation of the third refrigerator is started in addition to the first refrigerator and the second refrigerator, an equal amount of water flows through each of the first to third refrigerators. If it does so, as shown in FIG. 7, the capacity | capacitance of a 3rd refrigerator will be lost about 33% at maximum.
 これに対して本変形例では、能力可変型の熱源機である第1冷凍機251及び第2冷凍機252に水を供給するポンプは、容量可変型のポンプである。そして、第1~第3ポンプ261~263のポンプ特性を基に、第1ポンプ261及び第2ポンプ262の最小能力を決定することができる。このため、第1冷凍機251及び第2冷凍機252に加えて第3冷凍機253の運転を開始させる場合には、第1ポンプ261及び第2ポンプ262の最小能力で流れる量の水を第1冷凍機251及び第2冷凍機252へと流し、残りの水を第3冷凍機253へと流すことができる。これにより、第1冷凍機51及び第2冷凍機52に加えて第3冷凍機53の運転を開始させる場合には、第3冷凍機253の能力を最大限発揮させることができるため、図7に示すように、第3冷凍機253の損失をなくすことができる。 On the other hand, in this modification, the pumps that supply water to the first refrigerator 251 and the second refrigerator 252 that are variable capacity heat source machines are variable capacity pumps. The minimum capacities of the first pump 261 and the second pump 262 can be determined based on the pump characteristics of the first to third pumps 261 to 263. For this reason, when starting the operation of the third refrigerator 253 in addition to the first refrigerator 251 and the second refrigerator 252, the amount of water flowing with the minimum capacity of the first pump 261 and the second pump 262 is increased. It is possible to flow to the first refrigerator 251 and the second refrigerator 252, and to flow the remaining water to the third refrigerator 253. Accordingly, when the operation of the third refrigerator 53 is started in addition to the first refrigerator 51 and the second refrigerator 52, the capacity of the third refrigerator 253 can be maximized. As shown in FIG. 3, the loss of the third refrigerator 253 can be eliminated.
 このように、負荷分配システムの備える複数台の熱源機において、能力可変型の熱源機の最小能力を合計した能力が能力一定型の熱源機の定格能力以下の能力であることで、能力可変型の熱源機に加えて能力一定型の熱源機の運転を開始させるときに、能力可変型の熱源機に対する熱媒体の流量を調整することで、システム全体のエネルギーの損失を抑えることができる。 In this way, in the multiple heat source units with which the load distribution system is equipped, the total capacity of the minimum capacity of the variable capacity type heat source unit is equal to or less than the rated capacity of the constant capacity type heat source unit. When starting the operation of the constant capacity type heat source apparatus in addition to the heat source apparatus, the energy loss of the entire system can be suppressed by adjusting the flow rate of the heat medium to the variable capacity type heat source apparatus.
 また、上記実施形態では、熱媒体を加熱又は冷却する熱源機として3台の冷凍機が設けられている例を示しているが、熱源機の台数はこれに限定されず、1又は複数台の能力可変型の熱源機と1又は複数台の能力一定型の熱源機とが並列に設けられていればよい。さらに、熱利用機器である空調機に関してもその台数は上記実施形態に限定されない。 Moreover, in the said embodiment, although the example provided with three refrigerators as a heat source apparatus which heats or cools a heat medium is shown, the number of heat source apparatuses is not limited to this, One or several units | sets are provided. It is only necessary that the variable capacity type heat source apparatus and one or a plurality of constant capacity type heat source apparatuses are provided in parallel. Further, the number of air conditioners that are heat utilization devices is not limited to the above embodiment.
 (5-2)変形例B
 図8は、変形例Bに係る負荷分配システムの備える一次側設備の概略構成図である。図9は、変形例Bに係る負荷分配システム及び従来技術としての負荷分配システムそれぞれのエネルギー損失を説明するための図である。なお、図9では、本変形例に係る負荷分配システム及び従来技術としての負荷分配システムにおけるエネルギー損失範囲を、ハッチングによって模式的に示している。また、能力可変型の熱源機である第1冷凍機51の最小能力は、15%であるものとする。従来技術としての負荷分配システムは、図4に示す一次側設備を備えるシステムと同様の構成であるものとする。
(5-2) Modification B
FIG. 8 is a schematic configuration diagram of primary-side equipment included in the load distribution system according to Modification B. FIG. 9 is a diagram for explaining the energy loss of each of the load distribution system according to Modification B and the load distribution system as the prior art. In addition, in FIG. 9, the energy loss range in the load distribution system which concerns on this modification, and the load distribution system as a prior art is typically shown by hatching. The minimum capacity of the first refrigerator 51, which is a variable capacity heat source machine, is assumed to be 15%. It is assumed that the load distribution system as a conventional technique has the same configuration as the system including the primary side equipment shown in FIG.
 上記実施形態に加えて、能力可変型の熱源機を通過した後の熱媒体を、能力可変型の熱源機に熱媒体を供給するポンプの上流側へと戻すバイパス経路が設けられていてもよい。 In addition to the above embodiment, a bypass path may be provided that returns the heat medium after passing through the variable capacity heat source apparatus to the upstream side of the pump that supplies the heat medium to the variable capacity heat source apparatus. .
 例えば、図8に示すように、第1冷凍機51の下流側(出口側)と第1ポンプ61の上流側(入口側)とを結ぶバイパス経路としてのバイパス管174が、還ヘッダ12の水を第1ポンプ61及び第1冷凍機51を介して往ヘッダ11へと流す経路としての第1配管74に接続されている場合について説明する。バイパス管174には、流量調整弁174aが設けられている。流量調整弁174aは、その開度を変更することで第1冷凍機51を通過し第1ポンプ61の上流側に戻す水の流量を調整することができる。このため、流量調整弁174aを調整することで、熱媒体循環回路を循環する水の全体量のうち能力一定型の熱源機(第2冷凍機52や第3冷凍機53)へと流れる水量を増やすことができる。そして、第1冷凍機51の能力を最小能力まで下げることができるため、図9に示すように、第1冷凍機51に加えて第2冷凍機52の運転を開始させる場合、及び第1冷凍機51及び第2冷凍機52に加えて第3冷凍機53の運転を開始させる場合には、能力一定型の熱源機(第2冷凍機52や第3冷凍機53)の能力の損失が最大で15%となる。 For example, as shown in FIG. 8, a bypass pipe 174 serving as a bypass path connecting the downstream side (exit side) of the first refrigerator 51 and the upstream side (inlet side) of the first pump 61 is water in the return header 12. Will be described as being connected to a first pipe 74 as a path through which the gas flows to the forward header 11 via the first pump 61 and the first refrigerator 51. The bypass pipe 174 is provided with a flow rate adjustment valve 174a. The flow rate adjusting valve 174 a can adjust the flow rate of water that passes through the first refrigerator 51 and returns to the upstream side of the first pump 61 by changing the opening degree. For this reason, by adjusting the flow rate adjustment valve 174a, the amount of water flowing to the constant capacity heat source machine (second refrigerator 52 or third refrigerator 53) out of the total amount of water circulating in the heat medium circulation circuit is reduced. Can be increased. And since the capability of the 1st freezer 51 can be reduced to the minimum capability, as shown in Drawing 9, in addition to the 1st freezer 51, the operation of the 2nd freezer 52 is started, and the 1st freezer When the operation of the third refrigerator 53 is started in addition to the machine 51 and the second refrigerator 52, the capacity loss of the constant capacity type heat source machine (the second refrigerator 52 or the third refrigerator 53) is the largest. 15%.
 このように、本変形例では、能力可変型の熱源機を通過した後の熱媒体を能力可変型の熱源機に熱媒体を供給するポンプの上流側へと戻すバイパス経路が設けられていることで、能力可変型の熱源機の能力を最小能力に固定することができるため、能力一定型の熱源機の能力を最大限発揮させることができる。これにより、従来技術としての負荷分配システムと比較して、システム全体のエネルギーの損失(ロス)を抑えることができる。 As described above, in this modification, a bypass path is provided to return the heat medium after passing through the variable capacity type heat source apparatus to the upstream side of the pump that supplies the heat medium to the variable capacity type heat source apparatus. Therefore, since the capacity of the variable capacity type heat source machine can be fixed to the minimum capacity, the capacity of the constant capacity type heat source machine can be maximized. Thereby, compared with the load distribution system as a prior art, the energy loss (loss) of the whole system can be suppressed.
 また、能力可変型の熱源機を通過した後の熱媒体を能力可変型の熱源機に熱媒体を供給するポンプの上流側へと戻すバイパス経路が設けられているだけでなく、能力一定型の熱源機を通過した後の熱媒体を能力一定型の熱源機に熱媒体を供給するポンプの上流側へと戻すバイパス経路が設けられており、かつ、能力一定型の熱源機に熱媒体を供給するポンプとして容量可変型のポンプが採用されている一次側設備を備えるシステムにおいて、各熱源機に対して適切な負荷配分を行うために能力一定型の熱源機により熱交換された熱媒体を二次側設備へと送らずにバイパスさせる制御が行われる場合、能力一定型の熱源機に熱媒体を供給するポンプの動力が無駄になる。さらに、このような一次側設備の構成を、能力一定型の熱源機に熱媒体を供給するポンプとして定速ポンプが採用されている構成の一次側設備の更新時(冷凍機の置き換えや追加時)に採用しようとすると、能力一定型の熱源機に熱媒体を供給するポンプを定速ポンプから容量可変型のポンプへと変更しなければならず、コストアップとなる。 In addition, there is not only a bypass path for returning the heat medium after passing through the variable capacity type heat source machine to the upstream side of the pump that supplies the heat medium to the variable capacity type heat source apparatus. A bypass path is provided to return the heat medium after passing through the heat source unit to the upstream side of the pump that supplies the heat medium to the constant capacity type heat source unit, and supplies the heat medium to the constant capacity type heat source unit. In a system having a primary-side facility in which a variable capacity pump is employed as a pump to perform the heat transfer, a heat medium that is heat-exchanged by a constant-capacity type heat source unit is used in order to perform appropriate load distribution to each heat source unit. When bypass control is performed without sending to the next-side equipment, the power of the pump that supplies the heat medium to the heat source unit with a constant capacity is wasted. In addition, when the primary equipment is renewed in the configuration where a constant speed pump is used as a pump for supplying a heat medium to a constant capacity heat source machine (when a refrigerator is replaced or added). ), The pump for supplying the heat medium to the heat source device with a constant capacity must be changed from a constant speed pump to a variable displacement pump, resulting in an increase in cost.
 これに対して、能力一定型の熱源機に熱媒体を供給するポンプとして定速ポンプが採用されている構成の一次側設備の更新時(冷凍機の置き換えや追加時)に、本変形例に係るシステムの備える一次側設備の構成が採用されることで、能力一定型の熱源機に熱媒体を供給するポンプを変更する必要はなく、かつ能力一定型の熱源機により熱交換されたすべての熱媒体が二次側設備へと送られるため、更新時のコストアップを抑えることができるとともに、運転時のポンプ動力の無駄を抑えることができる。 On the other hand, when the primary equipment with a constant-speed pump is used as a pump for supplying a heat medium to a constant-capacity heat source machine (when replacing or adding a refrigerator), By adopting the configuration of the primary side equipment provided in such a system, it is not necessary to change the pump that supplies the heat medium to the heat source unit with a constant capacity, and all the heat exchanged by the heat source unit with the constant capacity is performed. Since the heat medium is sent to the secondary equipment, it is possible to suppress an increase in cost at the time of renewal and to suppress waste of pump power during operation.
 本発明は、コスト増加を抑えかつ各熱源機に対して負荷の配分を適切に設定することのできるものであり、複数の熱源機として可変速圧縮機を有する熱源機及び定速圧縮機を有する熱源機又は吸収式熱源機を備えるシステムへの適用が有効である。 The present invention is capable of suppressing an increase in cost and appropriately setting load distribution for each heat source unit, and has a heat source unit having a variable speed compressor and a constant speed compressor as a plurality of heat source units. Application to a system including a heat source machine or an absorption heat source machine is effective.
  11   往ヘッダ
  12   還ヘッダ
  20   二次側設備(利用側設備)
  51   第1冷凍機(第1熱源機)
  52   第2冷凍機(第2熱源機)
  61   第1ポンプ
  62   第2ポンプ
 182   冷凍機台数決定部(制御部)
11 Outbound header 12 Return header 20 Secondary side equipment (use side equipment)
51 First refrigerator (first heat source machine)
52 Second refrigerator (second heat source machine)
61 1st pump 62 2nd pump 182 Refrigerator number determination part (control part)
特開2010-127559号公報JP 2010-127559 A

Claims (3)

  1.  熱媒体を加熱又は冷却する第1熱源機(51)と、
     熱媒体を加熱又は冷却し、前記第1熱源機と並列に配置されている第2熱源機(52)と、
     熱媒体の吐出容量を変更することができ、前記第1熱源機へと熱媒体を流す第1ポンプ(61)と、
     単位時間当たりの熱媒体の吐出容量が一定であり、前記第2熱源機へと熱媒体を流す第2ポンプ(62)と、
     前記第1熱源機及び前記第2熱源機から熱媒体が供給される利用側設備(20)と、
     前記利用側設備から要求される負荷に応じて、前記第1熱源機及び前記第2熱源機の駆動台数を制御する制御部(182)と、
    を備え、
     前記第1熱源機は、可変速圧縮機を有する熱源機であり、
     前記第2熱源機は、定速圧縮機を有する熱源機、又は、吸収式熱源機であり、
     前記制御部は、前記利用側設備から要求される負荷が徐々に増加して前記第1熱源機で対応可能な負荷以上の負荷が要求された場合には、前記第2熱源機へと熱媒体が流れるように前記第2ポンプの駆動を開始させ、かつ、前記第1熱源機に対する熱媒体の流量が前記第2熱源機に対する熱媒体の流量よりも少なくなるように前記第1ポンプの駆動を制御する、
    負荷分配システム。
    A first heat source machine (51) for heating or cooling the heat medium;
    A second heat source unit (52) that heats or cools the heat medium and is arranged in parallel with the first heat source unit;
    A first pump (61) capable of changing a discharge capacity of the heat medium and flowing the heat medium to the first heat source unit;
    A second pump (62) in which the discharge capacity of the heat medium per unit time is constant, and the heat medium flows to the second heat source unit;
    A use side facility (20) to which a heat medium is supplied from the first heat source machine and the second heat source machine;
    A control unit (182) for controlling the number of driven first heat source units and the second heat source unit according to the load required from the use side facility,
    With
    The first heat source machine is a heat source machine having a variable speed compressor,
    The second heat source machine is a heat source machine having a constant speed compressor or an absorption heat source machine,
    When the load required from the use-side facility gradually increases and a load greater than the load that can be handled by the first heat source device is requested, the control unit transfers the heat medium to the second heat source device. And the first pump is driven so that the flow rate of the heat medium to the first heat source unit is smaller than the flow rate of the heat medium to the second heat source unit. Control,
    Load distribution system.
  2.  前記第1熱源機は、2台以上あり、
     前記第1熱源機の最小能力を合計した能力は、前記第2熱源機の定格能力以下である、
    請求項1に記載の負荷分配システム。
    There are two or more first heat source machines,
    The total capacity of the minimum capacity of the first heat source machine is less than or equal to the rated capacity of the second heat source machine.
    The load distribution system according to claim 1.
  3.  前記第1熱源機及び前記第2熱源機から流出した熱媒体を混合する往ヘッダ(11)と、
     前記利用側設備において熱交換された熱媒体が還流する還ヘッダ(12)と、
     前記還ヘッダの熱媒体を前記第1ポンプ及び前記第1熱源機を介して前記往ヘッダへと流す第1経路と、
     前記第1経路に設けられており、前記第1熱源機を通過した後の熱媒体を前記第1ポンプの上流側へと戻すバイパス経路と、
    を含む、熱媒体循環回路を備える、
    請求項1又は2に記載の負荷分配システム。
    A forward header (11) for mixing the heat medium flowing out from the first heat source device and the second heat source device;
    A return header (12) through which a heat medium heat-exchanged in the user-side equipment flows back;
    A first path through which the heat medium of the return header flows to the forward header via the first pump and the first heat source unit;
    A bypass path which is provided in the first path and returns the heat medium after passing through the first heat source unit to the upstream side of the first pump;
    Including a heat medium circulation circuit,
    The load distribution system according to claim 1 or 2.
PCT/JP2015/072204 2014-08-11 2015-08-05 Load distribution system WO2016024505A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014163545A JP2016038189A (en) 2014-08-11 2014-08-11 Load distributing system
JP2014-163545 2014-08-11

Publications (1)

Publication Number Publication Date
WO2016024505A1 true WO2016024505A1 (en) 2016-02-18

Family

ID=55304134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072204 WO2016024505A1 (en) 2014-08-11 2015-08-05 Load distribution system

Country Status (2)

Country Link
JP (1) JP2016038189A (en)
WO (1) WO2016024505A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791765A (en) * 1993-09-27 1995-04-04 Toshiba Corp Heat source controller
JP2004353986A (en) * 2003-05-30 2004-12-16 Sanken Setsubi Kogyo Co Ltd Air-conditioning system
JP2007292374A (en) * 2006-04-24 2007-11-08 Yamatake Corp Heat source variable flow control device and method
JP2010127559A (en) * 2008-11-28 2010-06-10 Sanki Eng Co Ltd Heat source control system for air conditioning facility

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791765A (en) * 1993-09-27 1995-04-04 Toshiba Corp Heat source controller
JP2004353986A (en) * 2003-05-30 2004-12-16 Sanken Setsubi Kogyo Co Ltd Air-conditioning system
JP2007292374A (en) * 2006-04-24 2007-11-08 Yamatake Corp Heat source variable flow control device and method
JP2010127559A (en) * 2008-11-28 2010-06-10 Sanki Eng Co Ltd Heat source control system for air conditioning facility

Also Published As

Publication number Publication date
JP2016038189A (en) 2016-03-22

Similar Documents

Publication Publication Date Title
JP5501179B2 (en) Medium temperature source system with free cooling
JP5182358B2 (en) Refrigeration equipment
JP4920654B2 (en) Air conditioner
JP6119141B2 (en) Air conditioning system
RU2535271C1 (en) Heat source
KR20130031090A (en) Air conditioner and controlling method of the same
JP2012141113A (en) Air conditioning/water heating device system
JP6609697B2 (en) Heat source system and control method of heat source system
JP5869648B1 (en) Air conditioning system
JP2011153756A (en) Air conditioner and method of controlling the same
JP6141089B2 (en) Cold / hot water supply system and air conditioner
JP5300889B2 (en) Refrigeration cycle equipment
JP2007205605A (en) Air conditioning system
JP6422590B2 (en) Heat source system
JP6123289B2 (en) Air conditioning system
WO2020174618A1 (en) Air-conditioning device
KR101911256B1 (en) Gas heat pump system and Method for controlling it
JP2017009269A5 (en)
JP2017009269A (en) Air conditioning system
WO2016024504A1 (en) Load distribution system
JP2012247118A (en) Air-cooled heat pump chiller
JP6252636B2 (en) Load distribution system
WO2016024505A1 (en) Load distribution system
KR101321545B1 (en) Air conditioner
JP6257993B2 (en) Refrigeration system and method for controlling the number of refrigeration systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15831317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15831317

Country of ref document: EP

Kind code of ref document: A1