WO2016023308A1 - 用于变压器局部放电源的定位方法和装置 - Google Patents

用于变压器局部放电源的定位方法和装置 Download PDF

Info

Publication number
WO2016023308A1
WO2016023308A1 PCT/CN2014/093194 CN2014093194W WO2016023308A1 WO 2016023308 A1 WO2016023308 A1 WO 2016023308A1 CN 2014093194 W CN2014093194 W CN 2014093194W WO 2016023308 A1 WO2016023308 A1 WO 2016023308A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
calculation result
sensor
electromagnetic wave
distance difference
Prior art date
Application number
PCT/CN2014/093194
Other languages
English (en)
French (fr)
Inventor
程序
郑书生
李成榕
唐志国
Original Assignee
国家电网公司
国网北京市电力公司
华北电力大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国家电网公司, 国网北京市电力公司, 华北电力大学 filed Critical 国家电网公司
Publication of WO2016023308A1 publication Critical patent/WO2016023308A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing

Definitions

  • the present invention relates to the field of power supply positioning, and in particular to a positioning method and apparatus for a local power supply of a transformer.
  • the UHF positioning technology is usually used for positioning, wherein the UHF positioning technology uses the four-array sensor array to detect the partial discharge electromagnetic wave signal, by reading each signal.
  • three relative propagation time values ie, propagation time differences
  • a propagation time-distance difference equation group also called a time difference equation group.
  • Positioning measurement on a real transformer due to the real transformer structure, the complexity of the internal partial discharge RF electromagnetic wave signal propagation mechanism and the background noise level are not conducive to the accurate measurement of the propagation time value, and the ultra-high frequency electromagnetic wave propagation speed is extremely fast, Small propagation time measurement errors and distance errors will easily lead to positioning failures, which leads to the high accuracy requirements of traditional positioning algorithms for time difference measurement and distance measurement. If there is a slight error in the propagation time value (within 1 ns error) or a small error in the size measurement, it is likely that there is no solution in the real number field or the calculation result is very large.
  • the location of the partial discharge is usually obtained by using the hyperbolic time difference equations in the three-dimensional space.
  • the positioning failure is often caused, mainly because of the time error. There will be no intersection between the hyperboloids, ie the equations have no solution in the real field.
  • the main object of the present invention is to provide a positioning method and apparatus for a transformer local discharge power source, which solves the problem that the positioning failure is easily caused in the prior art in the case of a certain time error.
  • a positioning method for a transformer partial discharge power source includes: reading a start time of an electromagnetic wave signal detected by each sensor in the sensor array of four array elements, wherein the electromagnetic wave signal is an electromagnetic wave signal generated by a discharge source of a partial discharge of the transformer; and establishing an electromagnetic wave according to the starting time
  • the time-distance difference equations of signal propagation, the time-distance difference equations are used to reflect the relationship between the time when the four-element sensor receives the electromagnetic wave signal and the distance from the four-element sensor to the discharge source; using the Newton iterative localization algorithm
  • the time-distance difference equations are calculated in the preset confidence interval to obtain the calculation result in the complex field, and the calculation result is used to reflect the position of the power supply; whether the calculation result is a plural form, wherein the plural form includes the real part and the virtual form If it is judged that the calculation result is in the plural form, the real-time
  • the time-distance difference equation group for establishing the electromagnetic wave signal propagation according to the initial time includes: determining the position coordinates of each sensor in the sensor array of the four-element element; and using the position coordinate of the discharge power source as a variable according to the propagation time of the electromagnetic wave signal The time-distance difference equations are established in relation to the distance of the four-element sensor to the discharge source.
  • using the Newton iterative localization algorithm to calculate the time-distance difference equations includes: linearizing the nonlinear equations by Taylor series of functions to form an iterative sequence; converting the iterative sequence into a linear equation; selecting the initial in the complex domain The value is iteratively operated on the linear equations to obtain the calculation result of the complex field.
  • determining the real solution of the time-distance difference equation group by using the grid search algorithm according to the calculation result comprises: obtaining a real part of the calculation result; and discretizing the preset range area around the real part of the calculation result into N grids to form N
  • the mesh vertices, N is the preset value; calculate the propagation time of the sensor with N mesh vertices reaching four array elements; use the position coordinates of the N mesh vertices, the propagation time, and the coordinates of the sensor to pass the time-distance difference equations
  • the N sets of 2-norm arrays are calculated; and the minimum values of the N sets of 2-norm arrays are calculated, and the minimum value is the real number solution.
  • a positioning device for a partial discharge power source of a transformer includes: a reading unit for reading a start time of an electromagnetic wave signal detected by each sensor in the sensor array of four array elements, wherein the electromagnetic wave signal is an electromagnetic wave signal generated by a discharge source of partial discharge of the transformer; Establishing a unit for establishing a time-distance difference equation group for electromagnetic wave signal propagation according to the starting time, and the time-distance difference equation group is used for reflecting the time when the sensor of the four-array element receives the electromagnetic wave signal and the sensor of the four-array element to the discharge source
  • the relationship between the distances and the calculation unit is used to calculate the time-distance difference equations in the preset confidence interval by using the Newton iterative localization algorithm to obtain the calculation result in the complex domain, and the calculation result is used to reflect the position of the power supply; a unit, configured to determine whether the calculation result is a plural form, where
  • the establishing unit includes: a determining module, configured to determine position coordinates of each sensor in the sensor array of the four-element element; and a establishing module, configured to use the position coordinate of the power source as a variable according to the propagation time of the electromagnetic wave signal and the four-array element The relationship between the sensor and the distance of the discharge source establishes a time-distance difference equation.
  • the calculation unit includes: a first conversion module for linearizing the nonlinear equation by a Taylor series of the function to form an iterative sequence; and a second transformation module for converting the iterative sequence into a linear equation group;
  • the module is configured to select an initial value in the complex domain to perform an iterative operation on the linear equation group to obtain a calculation result of the complex domain.
  • the start time of the electromagnetic wave signal is detected by each sensor in the sensor array of the four-array element, and the time-distance difference equation group of the electromagnetic wave signal propagation is established according to the starting time, and the Newton iterative positioning algorithm is used in advance.
  • the time-distance difference equations are calculated in the confidence interval, and the calculation results in the complex domain are obtained to determine whether the calculation result is in the plural form. If it is judged that the calculation result is in the plural form, the grid search algorithm is used to determine according to the calculation result.
  • FIG. 1 is a flow chart of a positioning method for a transformer partial discharge power supply according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the positional relationship between a discharge source and a sensor according to an embodiment of the invention
  • FIG. 3 is a geometric schematic diagram of a time difference positioning algorithm according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a two-dimensional positioning principle according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a positioning device for a partial discharge source of a transformer in accordance with an embodiment of the present invention.
  • Embodiments of the present invention provide a positioning method for a partial power supply of a transformer.
  • FIG. 1 is a flow chart of a positioning method for a transformer partial discharge source in accordance with an embodiment of the present invention. As shown in FIG. 1, the positioning method includes the following steps:
  • Step S102 reading a start time of an electromagnetic wave signal detected by each sensor in the sensor array of four array elements, wherein the electromagnetic wave signal is an electromagnetic wave signal generated by a discharge source of partial discharge of the transformer.
  • the four-element sensor array includes four sensors that use four sensors to detect electromagnetic wave signals. The starting time at which each sensor detects the electromagnetic wave signal is read to calculate the distance between each sensor and the discharge source.
  • Step S104 establishing a time-distance difference equation group for electromagnetic wave signal propagation according to the starting time, and the time-distance difference equation group is used for reflecting the time when the sensor of the four-array element receives the electromagnetic wave signal and the distance from the sensor of the four-array element to the discharge source. Relationship. Based on the reading of the start time of the electromagnetic wave signal detected by each sensor, a time-distance difference equation group, that is, a time difference equation group is established.
  • the time-distance difference equation group for establishing electromagnetic wave signal propagation according to the starting time may include: determining position coordinates of each sensor in the sensor array of four array elements; and using the position coordinate of the power source as a variable according to the propagation of the electromagnetic wave signal The relationship between the time and the distance from the four-element sensor to the discharge source establishes a time-distance difference equation.
  • any one of the sensor arrays of four elements can be used as the reference sensor.
  • any given point P(x, y, z) in the transformer is used as a discharge radiation source, that is, a discharge point, and the electromagnetic wave radiated from the discharge point P propagates in the form of a spherical wave, and is fixedly mounted on the outer casing.
  • the sensor Si(x i , y i , z i ) is received.
  • Figure 2 shows the relative position of the discharge point P to the sensor.
  • c is the wave velocity of the electromagnetic wave.
  • Equation 1-2 represents a hyperbolic equation, so the time difference localization algorithm is also called hyperbolic algorithm. If the three-dimensional problem is reduced to a two-dimensional plane problem, the geometric principle of the time difference localization algorithm can be represented by FIG.
  • the local discharge source P is the intersection of the two hyperbolas.
  • Equation 1-2 can be written in the following form:
  • step S106 the Newton iterative localization algorithm is used to calculate the time-distance difference equation group in a preset confidence interval, and the calculation result in the complex domain is obtained, and the calculation result is used to reflect the position of the power supply.
  • the time-distance difference equations can be transformed and then solved, because there is a certain time error.
  • the time-distance difference equation has no solution in the real range. Therefore, in the embodiment of the present invention, when calculating the time-distance difference equation group, it is necessary to introduce an error estimate, and give a confidence interval to the calculation result, which can ensure the result. .
  • the calculation of the time-distance difference equation by using the Newton iterative localization algorithm comprises: linearizing the nonlinear equation by a Taylor series of the function to form an iterative sequence; converting the iterative sequence into a linear equation group; selecting the initial in the complex domain The value is iteratively operated on the linear equations to obtain the calculation result of the complex field.
  • the Newton iteration method linearizes the nonlinear equation by the Taylor series of the function to form an iterative sequence.
  • Equations (1-5) can be written as follows:
  • the equations represent two hyperbolic curves.
  • the intersection of the two hyperbolas is the solution of the equations.
  • the two pairs of curves may have the following three conditions: that is, there are unique solutions, no solutions, and multiple solutions. Taking the no-solution case as an example, it is possible to set the measurement time of the propagation time at this time ( ⁇ 12 , ⁇ 13 ). According to the engineering measurement experience, it can be known that the measurement error is generally not greater than er, so the theoretical propagation time value must exist in the interval [ ⁇ 12 ⁇ er, ⁇ 13 ⁇ er]. Based on ⁇ 12, a hyperbolic curve (such as the ⁇ 12 hyperbola shown in Fig. 4) can be constructed.
  • the basic principle of three-dimensional spatial positioning is similar to two-dimensional positioning.
  • the equations (2-2) represent three hyperboloids geometrically. Based on the error estimate er value, three spaces S12, S13 and S14 can finally be formed. The theoretical partial discharge point must exist in the intersection space of S12, S13, and S14. The method takes the center position of the intersection space as the final positioning result.
  • Step S108 determining whether the calculation result is a plural form, wherein the plural form includes a real part and an imaginary part.
  • the result of the complex form is a complex result including the real part and the imaginary part.
  • Step S110 if it is determined that the calculation result is in the plural form, the real solution of the time-distance difference equation group is determined by using the grid search algorithm according to the calculation result. If it is judged that the calculation result is not in the plural form, the time-distance difference equation group has no solution in the real number domain.
  • step S112 the real solution is output, and the real solution is used as the position coordinate of the power source.
  • the iterative result is a real number
  • P 1 (x 1 , y 1 , z 1 ) is the positioning result.
  • the iterative result is in complex form, the iterative result will not represent the coordinates in the geometric space, and the real part of the iterative result is not necessarily an approximate solution in the real field; in this case, the real part of the complex field Newton iteration result is
  • the optimal solution in the real number domain is calculated according to the grid search algorithm in a certain area around it.
  • the start time of the electromagnetic wave signal is detected by each sensor in the sensor array of the four-array element, and the time-distance difference equation group of the electromagnetic wave signal propagation is established according to the starting time, and the Newton iterative positioning algorithm is used for the time.
  • the distance difference equations are calculated to obtain the calculation result in the complex field, and whether the calculation result is in the plural form. If the calculation result is determined to be a complex form, the grid search algorithm is used to determine the real number of the time-distance difference equation group according to the calculation result.
  • the solution solves the problem that the real number solution is used as the position coordinate of the power supply, which solves the problem that the positioning failure is easily caused in the prior art when there is a certain time error.
  • determining the real solution of the time-distance difference equation group by using the grid search algorithm according to the calculation result comprises: obtaining a real part of the calculation result; and discretizing the preset range area around the real part of the calculation result into N grids, forming N grid vertices, where N is a preset value; a sensor that calculates electromagnetic waves from N grid vertices to four array elements Propagation time; using N position coordinates, propagation time, and sensor coordinates of N mesh vertices to calculate N sets of 2-norm arrays by time-distance difference equations; and calculating minimum values of N sets of 2-norm arrays, The minimum value is the most real solution.
  • the real part of the calculation result is obtained, and the optimal solution in the real number domain is calculated according to the grid search algorithm in the surrounding range region around it.
  • the preset range area around the real part of the calculation result is discretized into N grids to form N grid vertices, wherein each grid of the N grids has one grid vertice, and N is a preset value. , can be adjusted as needed.
  • the search area is firstly dispersed into a plurality of meshes to form N mesh vertices; if a partial discharge fault occurs in the vertices Pn(x n , y n , z n ) of any one of the meshes, the point can be calculated.
  • the propagation time ⁇ i0 of the sensor the coordinates of the point, the propagation time and sensor coordinates of the reference sensor, and the measured time delay are substituted into the (2-) equation to obtain the 2-norm of each function value, namely:
  • a 2 -norm array ( N 1 , A 2 ... A N ) containing N elements is formed; the minimum value in the array is obtained, and the mesh vertex coordinates corresponding to the minimum value are taken as the optimal solution.
  • the mesh size (L ⁇ H ⁇ W) is: 1 ⁇ 1 ⁇ 1cm 3 ; for the volume (L ⁇ H ⁇ W): 1 ⁇ 1 ⁇ 1m 3 search space;
  • the number N of vertices is about 10 6 .
  • the complex domain Newton iteration-grid search joint localization algorithm solves the local convergence and divergence problems in the existing Newton iterative algorithm in the real number domain, thus realizing the calculation of the optimal solution of the equations in the real number domain, which can improve the detection accuracy.
  • Power units reduce a large amount of material consumption, financial consumption and human consumption, and improve economic efficiency.
  • the embodiment of the invention also provides a positioning device for a partial discharge power supply of a transformer.
  • the device can be functionalized by positioning it for the partial discharge of the transformer.
  • the apparatus for the local power supply of the transformer in the embodiment of the present invention may be used to perform the positioning method for the partial power supply of the transformer provided by the embodiment of the present invention.
  • the positioning method can also be performed by the positioning device for the transformer partial discharge power source provided by the embodiment of the present invention.
  • the positioning device includes a reading unit 10, an establishing unit 20, a calculating unit 30, a determining unit 40, a determining unit 50, and an output unit 60.
  • the reading unit 10 is configured to read a start time of an electromagnetic wave signal detected by each sensor in the sensor array of four elements, wherein the electromagnetic wave signal is an electromagnetic wave signal generated by a discharge source of a partial discharge of the transformer.
  • the establishing unit 20 is configured to establish a time-distance difference equation group for electromagnetic wave signal propagation according to the starting time, and the time-distance difference equation group is used for reflecting the time when the sensor of the four-array element receives the electromagnetic wave signal and the sensor of the four-array element to the discharge source The relationship between the distances.
  • the four-element sensor array includes four sensors that use four sensors to detect electromagnetic wave signals. The starting time at which each sensor detects the electromagnetic wave signal is read to calculate the distance between each sensor and the discharge source.
  • the establishing unit 20 comprises: a determining module for determining position coordinates of each sensor in the sensor array of four elements; and a building module for using the position coordinates of the power source as a variable, according to the propagation time of the electromagnetic wave signal and the fourth The relationship between the sensor of the array element and the distance of the discharge source establishes a time-distance difference equation group.
  • the above determining module and the establishing module may be run in the computer terminal as part of the device, and the functions implemented by the above module may be performed by a processor in the computer terminal, and the computer terminal may also be a smart phone (such as Android). Mobile phones, iOS phones, etc.), tablet computers, applause computers, and mobile Internet devices (MID), PAD and other terminal devices.
  • a smart phone such as Android
  • Mobile phones, iOS phones, etc. tablet computers, applause computers, and mobile Internet devices (MID), PAD and other terminal devices.
  • MID mobile Internet devices
  • any one of the sensor arrays of four elements can be used as the reference sensor.
  • any given point P(x, y, z) in the transformer is used as a discharge radiation source, that is, a discharge point, and the electromagnetic wave radiated from the discharge point P propagates in the form of a spherical wave, and is fixedly mounted on the outer casing.
  • the sensor Si(x i , y i , z i ) is received.
  • Figure 2 shows the relative position of the discharge point P to the sensor.
  • c is the wave velocity of the electromagnetic wave.
  • Equation 1-2 represents a hyperbolic equation, so the time difference localization algorithm is also called hyperbolic algorithm. If the three-dimensional problem is reduced to a two-dimensional plane problem, the geometric principle of the time difference localization algorithm can be represented by FIG.
  • the local discharge source P is the intersection of the two hyperbolas.
  • Equation 1-2 can be written in the following form:
  • the calculating unit 30 is configured to calculate the time-distance difference equation group in a preset confidence interval by using the Newton iterative positioning algorithm to obtain a calculation result in the complex domain, and the calculation result is used to reflect the position of the power source.
  • the time-distance difference equations can be transformed and then solved, because there is a certain time error.
  • the time-distance difference equation has no solution in the real range. Therefore, in the embodiment of the present invention, when calculating the time-distance difference equation group, it is necessary to introduce an error estimate, and give a confidence interval to the calculation result, which can ensure the result. .
  • the calculation unit 30 includes: a first conversion module for linearizing a nonlinear equation by a Taylor series of functions to form an iterative sequence; and a second transformation module for converting the iterative sequence into a linear equation group;
  • the calculation module is configured to select an initial value in the complex domain to perform an iterative operation on the linear equation group to obtain a calculation result of the complex domain.
  • the first conversion module, the second conversion module, and the first calculation module may be run in a computer terminal as part of the device, and the functions implemented by the module may be performed by a processor in the computer terminal, the computer
  • the terminal can also be a smart phone (such as an Android phone, an iOS phone, etc.), a tablet computer, an applause computer, and a mobile Internet device (MID), a PAD, and the like.
  • the Newton iteration method linearizes the nonlinear equation by the Taylor series of the function to form an iterative sequence.
  • Equations (1-5) can be written as follows:
  • the equations represent two hyperbolic curves.
  • the intersection of the two hyperbolas is the solution of the equations.
  • the two pairs of curves may have the following three conditions: that is, there are unique solutions, no solutions, and multiple solutions. Taking the no-solution case as an example, it is possible to set the measurement time of the propagation time at this time ( ⁇ 12 , ⁇ 13 ). According to the engineering measurement experience, it can be known that the measurement error is generally not greater than er, so the theoretical propagation time value must exist in the interval [ ⁇ 12 ⁇ er, ⁇ 13 ⁇ er]. Based on ⁇ 12, a hyperbolic curve (such as the ⁇ 12 hyperbola shown in Fig. 4) can be constructed.
  • the basic principle of three-dimensional spatial positioning is similar to two-dimensional positioning.
  • the equations (2-2) represent three hyperboloids geometrically. Based on the error estimate er value, three spaces S12, S13 and S14 can finally be formed. Theoretical partial placement The electrical point must exist in the intersection space of S12, S13, and S14. The device takes the center position of the intersection space as the final positioning result.
  • the determining unit 50 is configured to determine a real solution of the time-distance difference equation group by using a grid search algorithm according to the calculation result when it is determined that the calculation result is a complex form.
  • the output unit 60 is for outputting a real number solution, and the real number solution is used as a position coordinate of the power source.
  • the iterative result is a real number
  • P 1 (x 1 , y 1 , z 1 ) is the positioning result.
  • the iterative result is a complex number
  • the iterative result will not represent the coordinates in the geometric space, and the real part of the iterative result is not necessarily an approximate solution in the real field; in this case, the real part of the complex field Newton iteration result is
  • the optimal solution in the real number domain is calculated according to the grid search algorithm in a certain surrounding area.
  • the start time of the electromagnetic wave signal is detected by each sensor in the sensor array of the four-array element, and the time-distance difference equation group of the electromagnetic wave signal propagation is established according to the starting time, and the Newton iterative positioning algorithm is used for the time.
  • the distance difference equations are calculated to obtain the calculation result in the complex field, and it is judged whether the calculation result is a complex form. If it is judged that the calculation result is a complex form, the grid search algorithm is used to determine the time-distance difference equation group according to the calculation result.
  • the real number solution, the real number solution is output, and the real number solution is used as the position coordinate of the power source, which solves the problem that the positioning failure is easily caused in the prior art when there is a certain time error.
  • the determining unit 50 includes: an obtaining module, configured to obtain a real part of the calculation result; and a discrete module, configured to discretize the preset range area around the real part of the calculation result into N grids to form N grid vertices,
  • N is a preset value
  • a second calculating module is configured to calculate a propagation time of the electromagnetic wave from the N mesh vertices to the sensor of the four array elements
  • a third calculating module is configured to use the position coordinates of the N mesh vertices, The propagation time and the coordinates of the sensor are calculated by the time-distance difference equations to obtain N sets of 2-norm arrays; and the fourth calculation module is used to calculate the minimum value of the N sets of 2-norm arrays, and the minimum value is the real number solution.
  • the foregoing obtaining module, the discrete module, the second calculating module, the third calculating module, and the fourth calculating module may be run in the computer terminal as part of the device, and may be in the computer terminal.
  • the processor is configured to perform the functions implemented by the above modules, and the computer terminal may also be a smart phone (such as an Android phone, an iOS phone, etc.), a tablet computer, an applause computer, and a mobile Internet device (MID), a PAD, and the like.
  • the real part of the calculation result is obtained, and the optimal solution in the real number domain is calculated according to the grid search algorithm in the surrounding range region around it.
  • the preset range area around the real part of the calculation result is discretized into N grids to form N grid vertices, wherein each grid of the N grids has one grid vertice, and N is a preset value. , can be adjusted as needed.
  • the search area is firstly dispersed into a plurality of meshes to form N mesh vertices; if a partial discharge fault occurs in the vertices Pn(x n , y n , z n ) of any one of the meshes, the point can be calculated.
  • the propagation time ⁇ i0 of the sensor the coordinates of the point, the propagation time and sensor coordinates of the reference sensor, and the measured time delay are substituted into the (2-) equation to obtain the 2-norm of each function value, namely:
  • the complex domain Newton iteration-grid search joint localization algorithm solves the local convergence and divergence problems in the existing Newton iterative algorithm in the real number domain, thus realizing the calculation of the optimal solution of the equations in the real number domain, which can improve the detection accuracy.
  • Power units reduce a large amount of material consumption, financial consumption and human consumption, and improve economic efficiency.
  • the first calculation module further includes: a setting module, configured to set an error estimation value of the electromagnetic wave propagation time value, to obtain an interval of the electromagnetic wave propagation time value a fifth calculation module, configured to perform an iterative operation on the linear equations according to the propagation time value interval to form three spaces; and a sixth calculation module, configured to calculate a center position of the three spatial intersections, that is, The calculation result of the complex field.
  • the above-mentioned setting module, the fifth calculating module and the sixth calculating module may be run in a computer terminal as part of the device, and the functions implemented by the above module may be executed by a processor in the computer terminal, the computer terminal It can also be a smart phone (such as an Android phone, an iOS phone, etc.), a tablet computer, an applause computer, and a mobile Internet device (MID), a PAD, and the like.
  • the disclosed apparatus may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the various functional units provided by the embodiments of the present application may be operated in a mobile terminal, a computer terminal, or the like, or may be stored as part of a storage medium.
  • embodiments of the present invention may provide a computer terminal, which may be any computer terminal device in a group of computer terminals.
  • a computer terminal may also be replaced with a terminal device such as a mobile terminal.
  • the computer terminal may execute a program code for the following steps in the positioning method for the transformer partial discharge power source: reading the start time of the electromagnetic wave signal detected by each sensor in the sensor array of four array elements, wherein The electromagnetic wave signal is an electromagnetic wave signal generated by a discharge source of partial discharge of the transformer; a time-distance difference equation group for propagating the electromagnetic wave signal is established according to the start time, and the time-distance difference equation group is used to reflect the four-array The relationship between the time when the sensor of the element receives the electromagnetic wave signal and the distance of the sensor of the four-element element to the discharge source; using the Newton iterative positioning algorithm for the time-distance difference equation group within a preset confidence interval Performing a calculation to obtain a calculation result in a complex field, where the calculation result is used to reflect the position of the discharge source; and determining whether the calculation result is a plural form, wherein the plural form includes a real part and an imaginary part; If the calculation result is the plural form, the grid search algorithm is used to
  • the computer terminal can include: one or more processors, memory, and transmission means.
  • the memory can be used to store a software program and a module, such as a positioning method for a transformer partial discharge power source and a program instruction/module corresponding to a positioning method device for a transformer partial discharge power source in the embodiment of the present invention, and the processor runs through the storage The software program and module in the memory, thereby performing various functional applications and data processing, that is, implementing the above-described positioning method for the transformer partial discharge power source.
  • the memory may include a high speed random access memory, and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • the memory can further include memory remotely located relative to the processor, which can be connected to the terminal over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the above transmission device is for receiving or transmitting data via a network.
  • Specific examples of the above network may include a wired network and a wireless network.
  • the transmission device includes a Network Interface Controller (NIC) that can be connected to other network devices and routers via a network cable to communicate with the Internet or a local area network.
  • the transmission device is a Radio Frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • the memory is used to store preset action conditions and information of the preset rights user, and an application.
  • the processor can call the memory stored information and the application by the transmitting device to execute the program code of the method steps of each of the alternative or preferred embodiments of the above method embodiments.
  • the computer terminal can also be a smart phone (such as an Android phone, an iOS phone, etc.), a tablet computer, an applause computer, and a mobile Internet device (MID), a PAD, and the like.
  • a smart phone such as an Android phone, an iOS phone, etc.
  • a tablet computer such as an iPad, Samsung Galaxy Tab, Samsung Galaxy Tab, etc.
  • MID mobile Internet device
  • PAD PAD
  • the foregoing storage medium may be located in any one of the computer terminal groups in the computer network, or in any one of the mobile terminal groups.
  • the storage medium is configured to store program code for performing the following steps: reading a start time of an electromagnetic wave signal detected by each sensor in the sensor array of four elements, wherein the electromagnetic wave The signal is an electromagnetic wave signal generated by a discharge source of partial discharge of the transformer; a time-distance difference equation group for propagating the electromagnetic wave signal is established according to the start time, and the time-distance difference equation group is used to reflect the four-array element a relationship between a time when the sensor receives the electromagnetic wave signal and a distance from the sensor of the four-element element to the discharge source; calculating the time-distance difference equation group in a preset confidence interval by using a Newton iterative positioning algorithm Obtaining a calculation result in a complex field, the calculation result is used to reflect a position of the power release source; determining whether the calculation result is a plural form, wherein the complex form includes a real part and an imaginary part; if it is determined to be a calculation The result is the plural form, and the grid-based
  • the storage medium may also be arranged to store program code for performing various preferred or optional method steps provided by the positioning method for the transformer partial discharge source.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the portion contributing to or contributing to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for causing a computer device All or part of the steps of the method of the various embodiments of the present invention may be performed (for a personal computer, mobile terminal, server or network device, etc.).
  • the foregoing storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种用于变压器局部放电源的定位方法和装置,解决了现有技术中在存在一定时间误差、距离测量误差的情况下容易导致定位失败的问题。其中,定位方法包括:读取四阵元的传感器阵列中各传感器检测到电磁波信号的起始时刻(S102);根据起始时刻建立电磁波信号传播的时间-距离差方程组(S104);利用牛顿迭代定位算法在预设的置信区间内对时间-距离差方程组进行计算,得到复数域内的计算结果(S106);判断计算结果是否为复数形式(S108);如果判断出计算结果为复数形式,则根据计算结果利用网格搜索算法确定时间-距离差方程组的实数解(S110);以及输出实数解,将实数解作为放电源的位置坐标(S112)。

Description

用于变压器局部放电源的定位方法和装置 技术领域
本发明涉及放电源定位领域,具体而言,涉及一种用于变压器局部放电源的定位方法和装置。
背景技术
目前,在变压器局部放电源的定位测量中,通常采用特高频定位技术进行定位,其中,特高频定位技术利用四阵元的传感器阵列检测局部放电电磁波信号,通过读取每路信号的起始时刻并做差值,就可以得到三个相对传播时间值(即传播时间差),以此为基础建立传播时间-距离差方程组,也称时间差方程组。通过对该方程组利用牛顿迭代定位算法进行求解计算,即可得到放电源的位置坐标。
然而,在实际现场定位中,由于存在时间测量误差和距离测量误差,常常会导致定位双曲面之间无交点,方程组在实数域内无解,导致定位失败。在此情况下,如何计算方程组在实数域内的最优解是定位算法需要解决的问题。
在真实变压器上开展定位测量,由于真实变压器结构、内部局部放电射频电磁波信号传播机理的复杂性以及背景噪声水平等因素均不利于传播时间值的准确测量,而特高频电磁波传播速度极快,微小的传播时间测量误差和距离误差将极易导致定位失败,这就导致了传统的定位算法对时间差测量和距离测量的精度要求非常高。如果传播时间值存在细微误差(1ns误差以内)或尺寸测量存在微小误差,很可能导致实数域内无解或是计算结果误差很大。
现有的定位方案中,通常是在三维空间内,利用双曲面时间差方程组求取局部放电的位置,然而在一定时间误差下,往往导致定位失败,其原因主要在于存在时间误差的情况下,会出现双曲面之间无交点,即方程组在实数域内无解。
针对现有技术中在存在一定时间误差的情况下容易导致定位失败的问题,目前尚未提出有效的解决方案。
发明内容
本发明的主要目的在于提供一种用于变压器局部放电源的定位方法和装置,以解决现有技术中在存在一定时间误差的情况下容易导致定位失败的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种用于变压器局部放电源的定位方法。根据本发明的定位方法包括:读取四阵元的传感器阵列中各传感器检测到电磁波信号的起始时刻,其中,电磁波信号为变压器局部放电的放电源产生的电磁波信号;根据起始时刻建立电磁波信号传播的时间-距离差方程组,时间-距离差方程组用于反映四阵元的传感器接收到电磁波信号的时间与四阵元的传感器到放电源的距离的关系;利用牛顿迭代定位算法在预设的置信区间内对时间-距离差方程组进行计算,得到复数域内的计算结果,计算结果用于反映放电源的位置;判断计算结果是否为复数形式,其中,复数形式包括实部和虚部;如果判断出计算结果为复数形式,则根据计算结果利用网格搜索算法确定时间-距离差方程组的实数解;以及输出实数解,将实数解作为放电源的位置坐标。
进一步地,根据起始时刻建立电磁波信号传播的时间-距离差方程组包括:确定四阵元的传感器阵列中各传感器的位置坐标;以及以放电源的位置坐标为变量,根据电磁波信号的传播时间与四阵元的传感器到放电源的距离的关系建立时间-距离差方程组。
进一步地,利用牛顿迭代定位算法对时间-距离差方程组进行计算包括:通过函数的泰勒级数将非线性方程线性化,形成迭代序列;将迭代序列转化为线性方程组;选取复数域内的初值对线性方程组进行迭代运算,得到复数域的计算结果。
进一步地,根据计算结果利用网格搜索算法确定时间-距离差方程组的实数解包括:获取计算结果的实部;将计算结果的实部周围预设范围区域离散为N个网格,形成N个网格顶点,N为预设值;计算N个网格顶点达到四阵元的传感器的传播时间;利用N个网格顶点的位置坐标、传播时间、传感器的坐标通过时间-距离差方程组计算得到N组2-范数数组;以及计算N组2-范数数组中最小值,将最小值最为实数解。
为了实现上述目的,根据本发明的另一方面,提供了一种用于变压器局部放电源的定位装置。根据本发明的定位装置包括:读取单元,用于读取四阵元的传感器阵列中各传感器检测到电磁波信号的起始时刻,其中,电磁波信号为变压器局部放电的放电源产生的电磁波信号;建立单元,用于根据起始时刻建立电磁波信号传播的时间-距离差方程组,时间-距离差方程组用于反映四阵元的传感器接收到电磁波信号的时间与四阵元的传感器到放电源的距离的关系;计算单元,用于利用牛顿迭代定位算法在预设的置信区间内对时间-距离差方程组进行计算,得到复数域内的计算结果,计算结果用于反映放电源的位置;判断单元,用于判断计算结果是否为复数形式,其中,复数形式包括实部和虚部;确定单元,用于如果判断出是计算结果为复数形式,则根据 计算结果利用网格搜索算法确定时间-距离差方程组的实数解;以及输出单元,用于输出实数解,将实数解作为放电源的位置坐标。
进一步地,建立单元包括:确定模块,用于确定四阵元的传感器阵列中各传感器的位置坐标;以及建立模块,用于以放电源的位置坐标为变量根据电磁波信号的传播时间与四阵元的传感器到放电源的距离的关系建立时间-距离差方程组。
进一步地,计算单元包括:第一转化模块,用于通过函数的泰勒级数将非线性方程线性化,形成迭代序列;第二转化模块,用于将迭代序列转化为线性方程组;第一计算模块,用于选取复数域内的初值对线性方程组进行迭代运算,得到复数域的计算结果。
进一步地,确定单元包括:获取模块,用于获取计算结果的实部;离散模块,用于将计算结果的实部周围预设范围区域离散为N个网格,形成N个网格顶点,N为预设值;第二计算模块,用于计算N个网格顶点达到四阵元的传感器的传播时间;第三计算模块,用于利用N个网格顶点的位置坐标、传播时间、传感器的坐标通过时间-距离差方程组计算得到N组2-范数数组;以及第四计算模块,用于计算N组2-范数数组中最小值,将最小值最为实数解。
根据本发明实施例,通过读取四阵元的传感器阵列中各传感器检测到电磁波信号的起始时刻,根据起始时刻建立电磁波信号传播的时间-距离差方程组,利用牛顿迭代定位算法在预设的置信区间内对时间-距离差方程组进行计算,得到复数域内的计算结果,判断计算结果是否为复数形式,如果判断出是计算结果为复数形式,则根据计算结果利用网格搜索算法确定时间-距离差方程组的实数解,输出实数解,将实数解作为放电源的位置坐标,解决了现有技术中在存在一定时间误差的情况下容易导致定位失败的问题。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的用于变压器局部放电源的定位方法的流程图;
图2是根据本发明实施例的放电源与传感器的位置关系示意图;
图3是根据本发明实施例的时间差定位算法的几何原理图;
图4是根据本发明实施例的二维定位原理的示意图;以及
图5是根据本发明实施例的用于变压器局部放电源的定位装置的示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明实施例提供了一种用于变压器局部放电源的定位方法。
图1是根据本发明实施例的用于变压器局部放电源的定位方法的流程图。如图1所示,该定位方法包括步骤如下:
步骤S102,读取四阵元的传感器阵列中各传感器检测到电磁波信号的起始时刻,其中,电磁波信号为变压器局部放电的放电源产生的电磁波信号。四阵元的传感器阵列包括四个传感器,利用四个传感器来检测电磁波信号。读取各传感器检测到电磁波信号的起始时刻,用以计算各传感器与放电源之间的距离。
步骤S104,根据起始时刻建立电磁波信号传播的时间-距离差方程组,时间-距离差方程组用于反映四阵元的传感器接收到电磁波信号的时间与四阵元的传感器到放电源的距离的关系。以读取到各传感器检测到电磁波信号的起始时刻为基础,建立时间-距离差方程组即时间差方程组。
优选地,根据起始时刻建立电磁波信号传播的时间-距离差方程组可以包括:确定四阵元的传感器阵列中各传感器的位置坐标;以及以放电源的位置坐标为变量,根据电磁波信号的传播时间与四阵元的传感器到放电源的距离之间的关系,建立时间-距离差方程组。
可以以四阵元的传感器阵列中任意一个传感器作为参考传感器。
具体地,变压器内任意给定点P(x,y,z)作为放电辐射源,即放电点,放电点P辐射出的电磁波以球面波形式向四周传播,被固定安装在外壳上的特高频传感器Si(xi,yi,zi)接收。图2所示为放电点P跟传感器的相对位置。
设放电辐射源P(即放电点)到传感器S1的传播时间为t1,则放电点P到S1的距离r1满足:
Figure PCTCN2014093194-appb-000001
其中c为电磁波的波速。
设信号到达参考传感器S1与传感器Si(xi,yi,zi)的相对时差为τ1i=ti-t1,i=1,2,3,4,则辐射源P与各传感器之间满足下面的关系:
Figure PCTCN2014093194-appb-000002
可归纳为:
Figure PCTCN2014093194-appb-000003
测出各个传感器相对于参考传感器S1的相对时差τ1i,已知波速c和各传感器的坐标,由式1-2即可求出辐射源的位置坐标。
从几何意义上来说,式1-2表示的为双曲面方程,因此时间差定位算法也称之为双曲面算法。如果把三维空间问题简化为二维平面问题,可以将时间差定位算法的几何原理用图3来表示。局部放电源P为两双曲线的交点。
式1-2可写成如下的形式:
f1(x,y,z,t1)=(x-x1)2+(y-y1)2+(z-z1)2-c2t1 2=0
f2(x,y,z,t1)=(x-x2)2+(y-y2)2+(z-z2)2-c2(t112)2=0
f3(x,y,z,t1)=(x-x3)2+(y-y3)2+(z-z3)2-c2(t113)2=0
f4(x,y,z,t1)=(x-x4)2+(y-y4)2+(z-z4)2-c2(t114)2=0        (1-4)
即:
fi(x,y,z,t1)=(x-xi)2+(y-yi)2+(z-zi)2-c2(t11i)2=0        (1-5)
上式为四元二次方程组。
步骤S106,利用牛顿迭代定位算法在预设的置信区间内对时间-距离差方程组进行计算,得到复数域内的计算结果,计算结果用于反映放电源的位置。
在利用牛顿迭代定位算法在预设的置信区间内对时间-距离差方程组进行求解的过程中,可以对该时间-距离差方程组进行转化,然后再进行求解计算,由于在存在一定时间误差的时候,该时间-距离差方程组在实数范围内无解,因此本发明实施例中,在计算时间-距离差方程组时,需要引入误差估算,给计算结果一个置信区间,能够保证得到结果。
优选地,利用牛顿迭代定位算法对时间-距离差方程组进行计算包括:通过函数的泰勒级数将非线性方程线性化,形成迭代序列;将迭代序列转化为线性方程组;选取复数域内的初值对线性方程组进行迭代运算,得到复数域的计算结果。
具体地,牛顿迭代法通过函数的泰勒级数将非线性方程线性化,形成迭代序列。
(1-5)式方程可以编写为如下形式:
Figure PCTCN2014093194-appb-000004
令函数向量f=(f0,f1,f2,f3)T,其自变量为向量X=(x,y,z,T)T,方程组(2-1)可写为:
f(X)=0          (2-2)
假设(2-1)式的解向量为X*=(x*,y*,z*,T*)T,X0=(x0,y0,z0,T0)T是其附近向量,则f(X)可在X0点按照泰勒公式展开,忽略余项后得到线性方程组:
Figure PCTCN2014093194-appb-000005
表示为牛顿迭代形式,有:
X1=X0-J-1f(X0)          (2-4)
其中J为雅可比矩阵:
Figure PCTCN2014093194-appb-000006
适当选取一组复数作为初值(x0,y0,z0,T0)进行迭代运算,设定好误差约束δ,同时在相邻两次迭代误差的模小于定位精度约束ε时,即满足预设的置信区间(2-6)式的条件时,迭代结束,所得结果P1(x1,y1,z1)即为复数域牛顿迭代结果。
Figure PCTCN2014093194-appb-000007
其中,在置信区间内对方程组进行计算如下:
为了清楚起见,首先以二维平面定位为例进行原理说明。二维定位原理方程组如下所示:
Figure PCTCN2014093194-appb-000008
易知,方程组代表两条双曲线。两双曲线的交点即为方程组的解。考虑到传播时间测量误差,两双曲线可能出现以下三种情况:即有唯一解、无解和多解。以无解情况为例,不妨设此时的传播时间测量值为(τ1213),根据工程测量经验,可以知道测量 误差一般不会大于er,因此理论传播时间值肯定存在于区间[τ12±er,τ13±er]内。以τ12为基础可以构成一个双曲线(如图4所示的τ12双曲线),那么以[τ12-er,τ12+er]为基础可以构成一系列无穷多的双曲线,这些双曲线围成的公共区间称之为S12(如图4中标出的S12空间)。理论传播时间值肯定存在于区间[τ12-er,τ12+er]中,因此理论局部放电点肯定存在于空间S12中。同理,可以确定出空间S13(如4图中标出的S13空间),且可知理论放电点肯定存在于空间S13中。则理论局部放电点必然存在于S12和S13的交集空间中(如图4中的交叉区域所示)。
三维空间定位的基本原理和二维定位类似。方程组(2-2)几何意义上代表三个双曲面。基于误差估计er值,最终也可以形成三个空间S12、S13和S14。理论局部放电点肯定存在于S12、S13、S14的交集空间中。本方法取交集空间的中心位置作为最终的定位结果。
步骤S108,判断计算结果是否为复数形式,其中,复数形式包括实部和虚部。该复数形式的计算结果为包括实部和虚部的复数结果。
步骤S110,如果判断出计算结果为复数形式,则根据计算结果利用网格搜索算法确定时间-距离差方程组的实数解。如果判断出计算结果不为复数形式,则时间-距离差方程组在实数域内无解。
步骤S112,输出实数解,将实数解作为放电源的位置坐标。
具体地,如果迭代结果为实数,则P1(x1,y1,z1)即为定位结果。如果迭代结果是复数形式,迭代结果将不能代表几何空间中的坐标,而且迭代结果的实部也不一定是实数域内的近似解;在此情况下,取复数域牛顿迭代结果的实部,在其周围一定区域内按照网格搜索算法计算实数域内的最优解。
根据本发明实施例,通过读取四阵元的传感器阵列中各传感器检测到电磁波信号的起始时刻,根据起始时刻建立电磁波信号传播的时间-距离差方程组,利用牛顿迭代定位算法对时间-距离差方程组进行计算,得到复数域内的计算结果,判断计算结果是否为复数形式,如果判断出计算结果为复数形式,则根据计算结果利用网格搜索算法确定时间-距离差方程组的实数解,输出实数解,将实数解作为放电源的位置坐标,解决了现有技术中在存在一定时间误差的情况下容易导致定位失败的问题。
优选地,根据计算结果利用网格搜索算法确定时间-距离差方程组的实数解包括:获取计算结果的实部;将计算结果的实部周围的预设范围区域离散为N个网格,形成N个网格顶点,其中,N为预设值;计算电磁波从N个网格顶点到达四阵元的传感器 的传播时间;利用N个网格顶点的位置坐标、传播时间、传感器的坐标通过时间-距离差方程组计算得到N组2-范数数组;以及计算N组2-范数数组中最小值,将最小值最为实数解。
在计算结果为复数形式时,获取该计算结果的实部,在其周围预设范围区域内按照网格搜索算法计算实数域内的最优解。具体地,将计算结果的实部周围预设范围区域离散为N个网格,形成N各网格顶点,其中,N个网格中每个网格具有一个网格顶点,N为预设值,可以根据需要进行调整。
具体地,首先将搜索区域离散为若干个网格,形成N个网格顶点;假定任意一个网格的顶点Pn(xn,yn,zn)发生局部放电故障,可以计算出该点到达参考传感器的传播时间τi0;将该点的坐标、到达参考传感器的传播时间和传感器坐标、实测时延依次代入(1-5)式求取各项函数值的2-范数,即:
Figure PCTCN2014093194-appb-000009
便形成了包含N个元素的2-范数数组(A1,A2……AN);求数组中的最小值,并取最小值对应的网格顶点坐标为最优解。为了提高计算精度和计算速度,网格尺寸(L×H×W)为:1×1×1cm3;对于体积(L×H×W)为:1×1×1m3的搜索空间;网格的顶点的个数N约为106个。
本发明实施例中,通过设置传播时间差误差,来统计出传播时间差误差内所有可能出现的实数解,有效的减小了定位误差。仿真结果表明:传播时间测量误差小于1ns时,定位误差保持在30cm以内。
复数域牛顿迭代-网格搜索联合定位算法解决了现有实数域内牛顿迭代算法中存在的局部收敛和发散问题,从而实现了方程组在实数域内最优解的计算,可使得检测精度提高,为电力单位减少大量的物力消耗、财力消耗和人力消耗,提高经济效益。
本发明实施例还提供了一种用于变压器局部放电源的定位装置。该装置可以通过用于变压器局部放电源的定位实现其功能。需要说明的是,本发明实施例的用于变压器局部放电源的装置可以用于执行本发明实施例所提供的用于变压器局部放电源的定位方法,本发明实施例的用于变压器局部放电源的定位方法也可以通过本发明实施例所提供的用于变压器局部放电源的定位装置来执行。
图5是根据本发明实施例的用于变压器局部放电源的定位装置的示意图。如图5所示,该定位装置包括:读取单元10、建立单元20、计算单元30、判断单元40、确定单元50和输出单元60。
读取单元10用于读取四阵元的传感器阵列中各传感器检测到电磁波信号的起始时刻,其中,电磁波信号为变压器局部放电的放电源产生的电磁波信号。
建立单元20用于根据起始时刻建立电磁波信号传播的时间-距离差方程组,时间-距离差方程组用于反映四阵元的传感器接收到电磁波信号的时间与四阵元的传感器到放电源的距离之间的关系。四阵元的传感器阵列包括四个传感器,利用四个传感器来检测电磁波信号。读取各传感器检测到电磁波信号的起始时刻,用以计算各传感器与放电源之间的距离。
优选地,建立单元20包括:确定模块,用于确定四阵元的传感器阵列中各传感器的位置坐标;以及建立模块,用于以放电源的位置坐标为变量,根据电磁波信号的传播时间与四阵元的传感器到放电源的距离之间的关系,建立时间-距离差方程组。
此处需要说明的是,上述确定模块以及建立模块可以作为装置的一部分运行在计算机终端中,可以通过计算机终端中的处理器来执行上述模块实现的功能,计算机终端也可以是智能手机(如Android手机、iOS手机等)、平板电脑、掌声电脑以及移动互联网设备(Mobile Internet Devices,MID)、PAD等终端设备。
可以以四阵元的传感器阵列中任意一个传感器作为参考传感器。
具体地,变压器内任意给定点P(x,y,z)作为放电辐射源,即放电点,放电点P辐射出的电磁波以球面波形式向四周传播,被固定安装在外壳上的特高频传感器Si(xi,yi,zi)接收。图2所示为放电点P跟传感器的相对位置。
设放电辐射源P(即放电点)到传感器S1的传播时间为t1,则放电点P到S1的距离r1满足:
Figure PCTCN2014093194-appb-000010
其中c为电磁波的波速。
设信号到达参考传感器S1与传感器Si(xi,yi,zi)的相对时差为τ1i=ti-t1,i=1,2,3,4,则辐射源P与各传感器之间满足下面的关系:
Figure PCTCN2014093194-appb-000011
可归纳为:
Figure PCTCN2014093194-appb-000012
测出各个传感器相对于参考传感器S1的相对时差τ1i,已知波速c和各传感器的坐标,由式1-2即可求出辐射源的位置坐标。
从几何意义上来说,式1-2表示的为双曲面方程,因此时间差定位算法也称之为双曲面算法。如果把三维空间问题简化为二维平面问题,可以将时间差定位算法的几何原理用图3来表示。局部放电源P为两双曲线的交点。
式1-2可写成如下的形式:
f1(x,y,z,t1)=(x-x1)2+(y-y1)2+(z-z1)2-c2t1 2=0
f2(x,y,z,t1)=(x-x2)2+(y-y2)2+(z-z2)2-c2(t112)2=0
f3(x,y,z,t1)=(x-x3)2+(y-y3)2+(z-z3)2-c2(t113)2=0
f4(x,y,z,t1)=(x-x4)2+(y-y4)2+(z-z4)2-c2(t114)2=0    (1-4)
即:
fi(x,y,z,t1)=(x-xi)2+(y-yi)2+(z-zi)2-c2(t11i)2=0       (1-5)
上式为四元二次方程组。
计算单元30用于利用牛顿迭代定位算法在预设的置信区间内对时间-距离差方程组进行计算,得到复数域内的计算结果,计算结果用于反映放电源的位置。
在利用牛顿迭代定位算法在预设的置信区间内对时间-距离差方程组进行求解的过程中,可以对该时间-距离差方程组进行转化,然后再进行求解计算,由于在存在一定时间误差的时候,该时间-距离差方程组在实数范围内无解,因此本发明实施例中,在计算时间-距离差方程组时,需要引入误差估算,给计算结果一个置信区间,能够保证得到结果。
优选地,计算单元30包括:第一转化模块,用于通过函数的泰勒级数将非线性方程线性化,形成迭代序列;第二转化模块,用于将迭代序列转化为线性方程组;第一计算模块,用于选取复数域内的初值对线性方程组进行迭代运算,得到复数域的计算结果。
此处需要说明的是,上述第一转化模块、第二转化模块和第一计算模块可以作为装置的一部分运行在计算机终端中,可以通过计算机终端中的处理器来执行上述模块实现的功能,计算机终端也可以是智能手机(如Android手机、iOS手机等)、平板电脑、掌声电脑以及移动互联网设备(Mobile Internet Devices,MID)、PAD等终端设备。
具体地,牛顿迭代法通过函数的泰勒级数将非线性方程线性化,形成迭代序列。
(1-5)式方程可以编写为如下形式:
Figure PCTCN2014093194-appb-000013
令函数向量f=(f0,f1,f2,f3)T,其自变量为向量X=(x,y,z,T)T,方程组(2-1)可写为:
f(X)=0       (2-2)
假设(2-1)式的解向量为X*=(x*,y*,z*,T*)T,X0=(x0,y0,z0,T0)T是其附近向量,则f(X)可在X0点按照泰勒公式展开,忽略余项后得到线性方程组:
Figure PCTCN2014093194-appb-000014
表示为牛顿迭代形式,有:
X1=X0-J-1f(X0)         (2-4)
其中J为雅可比矩阵:
Figure PCTCN2014093194-appb-000015
适当选取一组复数作为初值(x0,y0,z0,T0)进行迭代运算,设定好误差约束δ,同时在相邻两次迭代误差的模小于定位精度约束ε时,即满足预设的置信区间(2-6)式的条件时,迭代结束,所得结果P1(x1,y1,z1)即为复数域牛顿迭代结果。
Figure PCTCN2014093194-appb-000016
其中,在置信区间内对方程组进行计算如下:
为了清楚起见,首先以二维平面定位为例进行原理说明。二维定位原理方程组如下所示:
Figure PCTCN2014093194-appb-000017
易知,方程组代表两条双曲线。两双曲线的交点即为方程组的解。考虑到传播时间测量误差,两双曲线可能出现以下三种情况:即有唯一解、无解和多解。以无解情况为例,不妨设此时的传播时间测量值为(τ1213),根据工程测量经验,可以知道测量误差一般不会大于er,因此理论传播时间值肯定存在于区间[τ12±er,τ13±er]内。以τ12为基础可以构成一个双曲线(如图4所示的τ12双曲线),那么以[τ12-er,τ12+er]为基础可以构成一系列无穷多的双曲线,这些双曲线围成的公共区间称之为S12(如图4中标出的S12空间)。理论传播时间值肯定存在于区间[τ12-er,τ12+er]中,因此理论局部放电点肯定存在于空间S12中。同理,可以确定出空间S13(如4图中标出的S13空间),且可知理论放电点肯定存在于空间S13中。则理论局部放电点必然存在于S12和S13的交集空间中(如图4中的交叉区域所示)。
三维空间定位的基本原理和二维定位类似。方程组(2-2)几何意义上代表三个双曲面。基于误差估计er值,最终也可以形成三个空间S12、S13和S14。理论局部放 电点肯定存在于S12、S13、S14的交集空间中。本装置取交集空间的中心位置作为最终的定位结果。
判断单元40用于判断计算结果是否为复数形式,其中,复数形式包括实部和虚部。
确定单元50用于当判断出计算结果为复数形式时,根据计算结果利用网格搜索算法确定时间-距离差方程组的实数解。
输出单元60用于输出实数解,将实数解作为放电源的位置坐标。
具体地,如果迭代结果为实数,则P1(x1,y1,z1)即为定位结果。如果迭代结果是复数,迭代结果将不能代表几何空间中的坐标,而且迭代结果的实部也不一定是实数域内的近似解;在此情况下,取复数域牛顿迭代结果的实部,在其周围一定区域内按照网格搜索算法计算实数域内的最优解。
根据本发明实施例,通过读取四阵元的传感器阵列中各传感器检测到电磁波信号的起始时刻,根据起始时刻建立电磁波信号传播的时间-距离差方程组,利用牛顿迭代定位算法对时间-距离差方程组进行计算,得到复数域内的计算结果,判断计算结果是否为复数形式,如果判断出是计算结果为复数形式,则根据计算结果利用网格搜索算法确定时间-距离差方程组的实数解,输出实数解,将实数解作为放电源的位置坐标,解决了现有技术中在存在一定时间误差的情况下容易导致定位失败的问题。
此处需要说明的是,上述读取单元10、建立单元20、计算单元30、判断单元40、确定单元50和输出单元60可以作为装置的一部分运行在计算机终端中,可以通过计算机终端中的处理器来执行上述模块实现的功能,计算机终端也可以是智能手机(如Android手机、iOS手机等)、平板电脑、掌声电脑以及移动互联网设备(Mobile Internet Devices,MID)、PAD等终端设备。
优选地,确定单元50包括:获取模块,用于获取计算结果的实部;离散模块,用于将计算结果实部周围的预设范围区域离散为N个网格,形成N个网格顶点,其中,N为预设值;第二计算模块,用于计算电磁波从N个网格顶点到达四阵元的传感器的传播时间;第三计算模块,用于利用N个网格顶点的位置坐标、传播时间、传感器的坐标通过时间-距离差方程组计算得到N组2-范数数组;以及第四计算模块,用于计算N组2-范数数组中最小值,将最小值最为实数解。
此处需要说明的是,上述获取模块、离散模块、第二计算模块、第三计算模块和第四计算模块可以作为装置的一部分运行在计算机终端中,可以通过计算机终端中的 处理器来执行上述模块实现的功能,计算机终端也可以是智能手机(如Android手机、iOS手机等)、平板电脑、掌声电脑以及移动互联网设备(Mobile Internet Devices,MID)、PAD等终端设备。
在计算结果为复数形式时,获取该计算结果的实部,在其周围预设范围区域内按照网格搜索算法计算实数域内的最优解。具体地,将计算结果的实部周围预设范围区域离散为N个网格,形成N各网格顶点,其中,N个网格中每个网格具有一个网格顶点,N为预设值,可以根据需要进行调整。
具体地,首先将搜索区域离散为若干个网格,形成N个网格顶点;假定任意一个网格的顶点Pn(xn,yn,zn)发生局部放电故障,可以计算出该点到达参考传感器的传播时间τi0;将该点的坐标、到达参考传感器的传播时间和传感器坐标、实测时延依次代入(1-5)式求取各项函数值的2-范数,即:
Figure PCTCN2014093194-appb-000018
便形成了包含N个元素的2-范数数组(A1,A2……AN);求数组中的最小值,并取最小值对应的网格顶点坐标为最优解。为了提高计算精度和计算速度,网格尺寸(L×H×W)为:1×1×1cm3;对于体积(L×H×W)为:1×1×1m3的搜索空间;网格的顶点的个数N约为106个。
本发明实施例中,通过设置传播时间差误差,来统计出传播时间差误差内所有可能出现的实数解,有效的减小了定位误差。仿真结果表明:传播时间测量误差小于1ns时,定位误差保持在30cm以内。
复数域牛顿迭代-网格搜索联合定位算法解决了现有实数域内牛顿迭代算法中存在的局部收敛和发散问题,从而实现了方程组在实数域内最优解的计算,可使得检测精度提高,为电力单位减少大量的物力消耗、财力消耗和人力消耗,提高经济效益。
在本发明的一个或者多个实施方式中,所述第一计算模块还包括:设定模块,用于设定所述电磁波传播时间值的误差估计值,得到所述电磁波的传播时间值的区间;第五计算模块,用于根据所述传播时间值区间,对所述线性方程组进行迭代运算,形成三个空间;第六计算模块,用于计算三个空间交集的中心位置,即为所述复数域的计算结果。
此处需要说明的是,上述设定模块、第五计算模块和第六计算模块可以作为装置的一部分运行在计算机终端中,可以通过计算机终端中的处理器来执行上述模块实现的功能,计算机终端也可以是智能手机(如Android手机、iOS手机等)、平板电脑、掌声电脑以及移动互联网设备(Mobile Internet Devices,MID)、PAD等终端设备。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本申请实施例所提供的各个功能单元可以在移动终端、计算机终端或者类似的运算装置中运行,也可以作为存储介质的一部分进行存储。
由此,本发明的实施例可以提供一种计算机终端,该计算机终端可以是计算机终端群中的任意一个计算机终端设备。可选地,在本实施例中,上述计算机终端也可以替换为移动终端等终端设备。
可选地,在本实施例中,上述计算机终端可以位于计算机网络的多个网络设备中的至少一个网络设备。
在本实施例中,上述计算机终端可以执行用于变压器局部放电源的定位方法中以下步骤的程序代码:读取四阵元的传感器阵列中各传感器检测到电磁波信号的起始时刻,其中,所述电磁波信号为变压器局部放电的放电源产生的电磁波信号;根据所述起始时刻建立所述电磁波信号传播的时间-距离差方程组,所述时间-距离差方程组用于反映所述四阵元的传感器接收到所述电磁波信号的时间与所述四阵元的传感器到所述放电源的距离的关系;利用牛顿迭代定位算法在预设的置信区间内对所述时间-距离差方程组进行计算,得到复数域内的计算结果,所述计算结果用于反映所述放电源的位置;判断所述计算结果是否为复数形式,其中,所述复数形式包括实部和虚部;如果判断出是计算结果为所述复数形式,则根据所述计算结果利用网格搜索算法确定所述时间-距离差方程组的实数解;以及,输出所述实数解,将所述实数解作为所述放电源的位置坐标。
可选地,该计算机终端可以包括:一个或多个处理器、存储器、以及传输装置。
其中,存储器可用于存储软件程序以及模块,如本发明实施例中的用于变压器局部放电源的定位方法和用于变压器局部放电源的定位方法装置对应的程序指令/模块,处理器通过运行存储在存储器内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的用于变压器局部放电源的定位方法。存储器可包括高速随机存储器,还可以包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器可进一步包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
上述的传输装置用于经由一个网络接收或者发送数据。上述的网络具体实例可包括有线网络及无线网络。在一个实例中,传输装置包括一个网络适配器(Network Interface Controller,NIC),其可通过网线与其他网络设备与路由器相连从而可与互联网或局域网进行通讯。在一个实例中,传输装置为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。
其中,具体地,存储器用于存储预设动作条件和预设权限用户的信息、以及应用程序。
处理器可以通过传输装置调用存储器存储的信息及应用程序,以执行上述方法实施例中的各个可选或优选实施例的方法步骤的程序代码。
本领域普通技术人员可以理解,计算机终端也可以是智能手机(如Android手机、iOS手机等)、平板电脑、掌声电脑以及移动互联网设备(Mobile Internet Devices,MID)、PAD等终端设备。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令终端设备相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以用于保存上述方法实施例和装置实施例所提供的用于变压器局部放电源的定位方法和用于变压器局部放电源的定位装置所执行的程序代码。
可选地,在本实施例中,上述存储介质可以位于计算机网络中计算机终端群中的任意一个计算机终端中,或者位于移动终端群中的任意一个移动终端中。
可选地,在本实施例中,存储介质被设置为存储用于执行以下步骤的程序代码:读取四阵元的传感器阵列中各传感器检测到电磁波信号的起始时刻,其中,所述电磁波信号为变压器局部放电的放电源产生的电磁波信号;根据所述起始时刻建立所述电磁波信号传播的时间-距离差方程组,所述时间-距离差方程组用于反映所述四阵元的传感器接收到所述电磁波信号的时间与所述四阵元的传感器到所述放电源的距离的关系;利用牛顿迭代定位算法在预设的置信区间内对所述时间-距离差方程组进行计算,得到复数域内的计算结果,所述计算结果用于反映所述放电源的位置;判断所述计算结果是否为复数形式,其中,所述复数形式包括实部和虚部;如果判断出是计算结果为所述复数形式,则根据所述计算结果利用网格搜索算法确定所述时间-距离差方程组的实数解;以及,输出所述实数解,将所述实数解作为所述放电源的位置坐标。
可选地,在本实施例中,存储介质还可以被设置为存储用于执行用于变压器局部放电源的定位方法提供的各种优选地或可选的方法步骤的程序代码。
如上参照附图以示例的方式描述了根据本发明的用于变压器局部放电源的定位方法和装置。但是,本领域技术人员应当理解,对于上述本发明所提出的用于变压器局部放电源的定位方法和装置,还可以在不脱离本发明内容的基础上做出各种改进。因此,本发明的保护范围应当由所附的权利要求书的内容确定。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质 上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、移动终端、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (14)

  1. 一种用于变压器局部放电源的定位方法,其特征在于,包括:
    读取四阵元的传感器阵列中各传感器检测到电磁波信号的起始时刻,其中,所述电磁波信号为变压器局部放电的放电源产生的电磁波信号;
    根据所述起始时刻建立所述电磁波信号传播的时间-距离差方程组,所述时间-距离差方程组用于反映所述四阵元的传感器接收到所述电磁波信号的时间与所述四阵元的传感器到所述放电源的距离的关系;
    利用牛顿迭代定位算法在预设的置信区间内对所述时间-距离差方程组进行计算,得到复数域内的计算结果,所述计算结果用于反映所述放电源的位置;
    判断所述计算结果是否为复数形式,其中,所述复数形式包括实部和虚部;
    如果判断出是计算结果为所述复数形式,则根据所述计算结果利用网格搜索算法确定所述时间-距离差方程组的实数解;以及
    输出所述实数解,将所述实数解作为所述放电源的位置坐标。
  2. 根据权利要求1所述的定位方法,其特征在于,根据所述起始时刻建立所述电磁波信号传播的时间-距离差方程组包括:
    确定所述四阵元的传感器阵列中各传感器的位置坐标;以及
    以所述放电源的位置坐标为变量根据所述电磁波信号的传播时间与所述四阵元的传感器到所述放电源的距离的关系建立所述时间-距离差方程组。
  3. 根据权利要求1所述的定位方法,其特征在于,利用牛顿迭代定位算法对所述时间-距离差方程组进行计算包括:
    通过函数的泰勒级数将非线性方程线性化,形成迭代序列;
    将所述迭代序列转化为线性方程组;
    选取复数域内的初值对所述线性方程组进行迭代运算,得到所述复数域的计算结果。
  4. 根据权利要求3所述的定位方法,其特征在于,所述置信区间包括两次迭代误差的模的置信区间,和时间-距离差方程组线性化后4个函数向量2-范数之和的置信区间;
    所述两次迭代误差的模的置信区间,为能容忍的两次迭代的误差的模的最大值所确定的范围;
    所述时间-距离差方程组线性化后4个函数向量2-范数之和的置信区间,为能容忍的所述4个函数向量2-范数之和的最大值所确定的范围。
  5. 根据权利要求3所述的方法,其特征在于,选取复数域内的初值对所述线性方程组进行迭代运算时,所述方法还包括:
    设定所述电磁波传播时间值的误差估计值,得到所述电磁波的传播时间值的区间;
    根据所述传播时间值区间,对所述线性方程组进行迭代运算,形成三个空间;
    三个空间交集的中心位置,即为所述复数域的计算结果。
  6. 根据权利要求1所述的定位方法,其特征在于,根据所述计算结果利用网格搜索算法确定所述时间-距离差方程组的实数解包括:
    获取所述计算结果的实部;
    将所述计算结果的实部周围预设范围区域离散为N个网格,形成N个网格顶点,所述N为预设值;
    计算所述N个网格顶点达到所述四阵元的传感器的传播时间;
    利用所述N个网格顶点的位置坐标、所述传播时间、所述传感器的坐标通过所述时间-距离差方程组计算得到N组2-范数数组;以及
    计算所述N组2-范数数组中最小值,将所述最小值最为所述实数解。
  7. 一种用于变压器局部放电源的定位装置,其特征在于,包括:
    读取单元,用于读取四阵元的传感器阵列中各传感器检测到电磁波信号的起始时刻,其中,所述电磁波信号为变压器局部放电的放电源产生的电磁波信号;
    建立单元,用于根据所述起始时刻建立所述电磁波信号传播的时间-距离差方程组,所述时间-距离差方程组用于反映所述四阵元的传感器接收到所述电磁波信号的时间与所述四阵元的传感器到所述放电源的距离的关系;
    计算单元,用于利用牛顿迭代定位算法对所述时间-距离差方程组进行计算,得到复数域内的计算结果,所述计算结果用于反映所述放电源的位置;
    判断单元,用于判断所述计算结果是否为复数形式,其中,所述复数形式包括实部和虚部;
    确定单元,用于如果判断出是计算结果为所述复数形式,则根据所述计算结果利用网格搜索算法确定所述时间-距离差方程组的实数解;以及
    输出单元,用于输出所述实数解,将所述实数解作为所述放电源的位置坐标。
  8. 根据权利要求7所述的定位装置,其特征在于,所述建立单元包括:
    确定模块,用于确定所述四阵元的传感器阵列中各传感器的位置坐标;以及
    建立模块,用于以所述放电源的位置坐标为变量根据所述电磁波信号的传播时间与所述四阵元的传感器到所述放电源的距离的关系建立所述时间-距离差方程组。
  9. 根据权利要求7所述的定位装置,其特征在于,所述计算单元包括:
    第一转化模块,用于通过函数的泰勒级数将非线性方程线性化,形成迭代序列;
    第二转化模块,用于将所述迭代序列转化为线性方程组;
    第一计算模块,用于选取复数域内的初值对所述线性方程组进行迭代运算,得到所述复数域的计算结果。
  10. 根据权利要求9所述的定位装置,其特征在于,所述置信区间包括两次迭代误差的模的置信区间,和时间-距离差方程组线性化后4个函数向量2-范数之和的置信区间;
    所述两次迭代误差的模的置信区间,为能容忍的两次迭代的误差的模的最大值所确定的范围;
    所述时间-距离差方程组线性化后4个函数向量2-范数之和的置信区间,为能容忍的所述4个函数向量2-范数之和的最大值所确定的范围。
  11. 根据权利要求9所述的定位装置,其特征在于,所述第一计算模块还包括:
    设定模块,用于设定所述电磁波传播时间值的误差估计值,得到所述电磁波的传播时间值的区间;
    第五计算模块,用于根据所述传播时间值区间,对所述线性方程组进行迭代运算,形成三个空间;
    第六计算模块,用于计算三个空间交集的中心位置,即为所述复数域的计算结果。
  12. 根据权利要求7所述的定位装置,其特征在于,所述确定单元包括:
    获取模块,用于获取所述计算结果的实部;
    离散模块,用于将所述计算结果的实部周围预设范围区域离散为N个网格,形成N个网格顶点,所述N为预设值;
    第二计算模块,用于计算所述N个网格顶点达到所述四阵元的传感器的传播时间;
    第三计算模块,用于利用所述N个网格顶点的位置坐标、所述传播时间、所述传感器的坐标通过所述时间-距离差方程组计算得到N组2-范数数组;以及
    第四计算模块,用于计算所述N组2-范数数组中最小值,将所述最小值最为所述实数解。
  13. 一种计算机终端,用于执行所述权利要求1所述的用于变压器局部放电源的定位方法提供的步骤的程序代码。
  14. 一种存储介质,用于保存所述权利要求1所述的用于变压器局部放电源的定位方法所执行的程序代码。
PCT/CN2014/093194 2014-08-11 2014-12-05 用于变压器局部放电源的定位方法和装置 WO2016023308A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410392435.5 2014-08-11
CN201410392435.5A CN105403814A (zh) 2014-08-11 2014-08-11 用于变压器局部放电源的定位方法和装置

Publications (1)

Publication Number Publication Date
WO2016023308A1 true WO2016023308A1 (zh) 2016-02-18

Family

ID=55303848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093194 WO2016023308A1 (zh) 2014-08-11 2014-12-05 用于变压器局部放电源的定位方法和装置

Country Status (2)

Country Link
CN (1) CN105403814A (zh)
WO (1) WO2016023308A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108896893A (zh) * 2018-09-13 2018-11-27 国网安徽省电力有限公司电力科学研究院 一种电气设备中的局部放电源的定位系统及定位方法
CN112763868A (zh) * 2020-12-26 2021-05-07 广东电网有限责任公司电力科学研究院 一种基于免疫粒子群的局部放电源定位方法和系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10782115B2 (en) 2016-09-02 2020-09-22 Hossein Karami Porzani Detection of radial deformations of transformers
CN106896342A (zh) * 2017-04-17 2017-06-27 国网江苏省电力公司电力科学研究院 基于uwb测距模块的变压器表面特征点定位装置及方法
CN107589352A (zh) * 2017-09-05 2018-01-16 浙江群力电气有限公司 一种局部放电源的定位方法及装置
CN107329066A (zh) * 2017-09-05 2017-11-07 浙江群力电气有限公司 一种局部放电源的定位方法及装置
CN107765152A (zh) * 2017-10-23 2018-03-06 南京联能电力检测研究所有限公司 采用相关系数和牛顿拉夫逊法进行局部放电定位的方法
CN108398632A (zh) * 2018-04-28 2018-08-14 中国电子技术标准化研究院 笔压模拟测试装置
CN113092956A (zh) * 2021-03-16 2021-07-09 国网宁夏电力有限公司电力科学研究院 一种基于梯度逼近式干式电抗器pd源定位算法
CN113768541B (zh) * 2021-10-27 2024-02-13 之江实验室 一种复杂曲面超声阵列换能器阵元位置误差校正方法
CN115575770B (zh) * 2022-11-23 2023-03-24 南方电网数字电网研究院有限公司 局放信号定位方法、装置、终端和存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4439723A (en) * 1981-05-11 1984-03-27 Loftness Marvin O Ultrasonic and VHF locator of electrical systems defects
WO1994028566A1 (en) * 1993-05-20 1994-12-08 University Of Technology, Sydney Partial discharge passive monitor
JP2001281291A (ja) * 1999-11-29 2001-10-10 General Electric Co <Ge> たわみ継手部を含むpda継手
CN101551434A (zh) * 2009-05-13 2009-10-07 中南大学 基于超高频检测技术的变压器局部放电定位方法
CN101581745A (zh) * 2009-05-21 2009-11-18 华北电力大学 变压器局部放电故障源的定位方法
CN101702000A (zh) * 2009-11-26 2010-05-05 华北电力大学(保定) 变压器局部放电的相控超声定位方法及系统
CN102879715A (zh) * 2012-09-20 2013-01-16 广州供电局有限公司 变压器局部放电检测定位方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0412717D0 (en) * 2004-06-08 2004-07-07 Sp Electric Ltd A method and a device for determining the location of a partial discharge (PD)
CN100535677C (zh) * 2006-07-27 2009-09-02 华北电力大学 变压器局部放电超宽带传感器阵列定位系统及其方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4439723A (en) * 1981-05-11 1984-03-27 Loftness Marvin O Ultrasonic and VHF locator of electrical systems defects
WO1994028566A1 (en) * 1993-05-20 1994-12-08 University Of Technology, Sydney Partial discharge passive monitor
JP2001281291A (ja) * 1999-11-29 2001-10-10 General Electric Co <Ge> たわみ継手部を含むpda継手
CN101551434A (zh) * 2009-05-13 2009-10-07 中南大学 基于超高频检测技术的变压器局部放电定位方法
CN101581745A (zh) * 2009-05-21 2009-11-18 华北电力大学 变压器局部放电故障源的定位方法
CN101702000A (zh) * 2009-11-26 2010-05-05 华北电力大学(保定) 变压器局部放电的相控超声定位方法及系统
CN102879715A (zh) * 2012-09-20 2013-01-16 广州供电局有限公司 变压器局部放电检测定位方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108896893A (zh) * 2018-09-13 2018-11-27 国网安徽省电力有限公司电力科学研究院 一种电气设备中的局部放电源的定位系统及定位方法
CN108896893B (zh) * 2018-09-13 2024-04-26 国网安徽省电力有限公司电力科学研究院 一种电气设备中的局部放电源的定位系统及定位方法
CN112763868A (zh) * 2020-12-26 2021-05-07 广东电网有限责任公司电力科学研究院 一种基于免疫粒子群的局部放电源定位方法和系统

Also Published As

Publication number Publication date
CN105403814A (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
WO2016023308A1 (zh) 用于变压器局部放电源的定位方法和装置
Wielandt et al. Indoor multipath assisted angle of arrival localization
Cao et al. Sensor network localization with imprecise distances
US20170115376A1 (en) Method for effectively estimating three-dimensional location by using trilateration in wireless network, and recording medium in which program is recorded for carrying out same
US20170077586A1 (en) Method and Device for Obtaining Antenna Engineering Parameter and System
Bjelić et al. Microphone array geometry optimization for traffic noise analysis
US11789134B2 (en) Location determination using acoustic models
JP6300485B2 (ja) 無線ネットワーク置局設計装置及び無線ネットワーク置局設計システム
WO2013043664A1 (en) Hybrid positioning system based on time difference of arrival (tdoa) and time of arrival (toa)
WO2013043685A1 (en) Positioning system based on time - difference - of -arrival (tdoa)
US20140274128A1 (en) Indoor localization method and system
CN104535998A (zh) 旋转镜像综合孔径辐射计及测量方法
Sun et al. Array geometry calibration for underwater compact arrays
Spencer Closed-form analytical solutions of the time difference of arrival source location problem for minimal element monitoring arrays
Tovkach et al. Recurrent algorithm for TDOA localization in sensor networks
Menounou et al. Analytical model for predicting edge diffraction in the time domain
JP5300797B2 (ja) 形状推定システム、角度推定方法及び対象物数推定方法
CN111641921A (zh) 基于uwb的管廊定位方法、终端设备及存储介质
CN115061124A (zh) 辐射源定位方法、装置、计算机设备和存储介质
US20160286362A1 (en) Method and system to obtain position estimation using a hybrid process
Zhang et al. A node three-dimensional localization algorithm based on RSSI and LSSVR parameters optimization
CN114423079A (zh) 无线信号源的定位方法、装置、设备及介质
Aouina et al. 2D‐DOA estimation performance using split vertical linear and circular arrays
Chen et al. An indoor item finder with active RFID tags
CN104111053A (zh) 一种基于系数矩阵qr分解计算法分析抛物面天线反射面精度的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14899627

Country of ref document: EP

Kind code of ref document: A1