WO2016023185A1 - 一种故障分析方法及设备 - Google Patents

一种故障分析方法及设备 Download PDF

Info

Publication number
WO2016023185A1
WO2016023185A1 PCT/CN2014/084252 CN2014084252W WO2016023185A1 WO 2016023185 A1 WO2016023185 A1 WO 2016023185A1 CN 2014084252 W CN2014084252 W CN 2014084252W WO 2016023185 A1 WO2016023185 A1 WO 2016023185A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency domain
amplitude
domain response
channel
corrected
Prior art date
Application number
PCT/CN2014/084252
Other languages
English (en)
French (fr)
Inventor
张小龙
吕捷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14899608.5A priority Critical patent/EP3163313A4/en
Priority to PCT/CN2014/084252 priority patent/WO2016023185A1/zh
Priority to CN201480007230.9A priority patent/CN105829901B/zh
Publication of WO2016023185A1 publication Critical patent/WO2016023185A1/zh
Priority to US15/429,491 priority patent/US10257018B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0631Management of faults, events, alarms or notifications using root cause analysis; using analysis of correlation between notifications, alarms or events based on decision criteria, e.g. hierarchy, tree or time analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25751Optical arrangements for CATV or video distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing
    • H04B3/48Testing attenuation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2801Broadband local area networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0677Localisation of faults

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a fault analysis method and device.
  • Hybrid Fiber-Coaxial is usually composed of three parts: a fiber trunk line, a coaxial cable branch line and a user wiring network.
  • the program signal from the cable TV station first becomes an optical signal transmitted on the fiber trunk line; After the user area is turned into an electrical signal, it is distributed by the distributor and sent to the user through the coaxial cable.
  • a typical HFC network includes equipment such as coaxial cable office access equipment (CMTS, Cable)
  • CMTS coaxial cable office access equipment
  • Modem Terminal System cable modem (CM, Cable Modem), optical station, etc., devices (amplifiers, attenuators, splitters, splitters) and fiber (fiber), coaxial cable (cable), etc., present in HFC networks
  • CM cable modem
  • CM Cable Modem
  • optical station etc.
  • devices amplifiers, attenuators, splitters, splitters
  • fiber fiber
  • coaxial cable coaxial cable
  • DOCSIS 3.0 defines a pre-equalizer (pre-equalizatio n). Each CMTS/CM has a pre-equalizer that allows the signal to be back-compensated before the CMTS/CM transmits a signal.
  • the pre-equalizer defined in DOCSIS 3.0 is a linear filter with 24 tap coefficients. These 24 coefficients are called pre-equalization coefficients.
  • the pre-equalizer processing structure has a delay of 1 symbol per tap coefficient ( Symbol ), each tap coefficient has a different amplitude.
  • the pre-equalization coefficient can temporarily alleviate the fault distortion in the line from the perspective of data processing, but the fault (such as cable breakage, etc.) is still in the line.
  • the fault such as cable breakage, etc.
  • the fault deteriorates to a certain extent, it will affect the user's service experience. Therefore, it is necessary to perform network maintenance on the faults (especially minor faults) on the line.
  • the pre-equalizer In order to compensate for the distortion on the Cable line, the frequency domain response is complementary to the channel response of the line. Therefore, the pre-equalization coefficient contains the information of the line fault, and the pre-equalization coefficient can be analyzed to detect the fault in the Cable network in advance. And locate the fault, this method of fault diagnosis by monitoring the pre-equalization coefficient of each CMTS/CM is called PNM using Pre-equalization (PNMP). In PNMP, the pre-equalization coefficient is analyzed by algorithm.
  • the time domain tap coefficient and the frequency domain response can be obtained according to the pre-equalization coefficient.
  • the method of fault analysis based on the pre-equalization coefficient is relatively simple, so that the calculated parameters cannot be obtained. Accurate and detailed reflection of the actual physical circuit, resulting in inaccurate fault analysis. Summary of the invention
  • the embodiment of the invention provides a fault analysis method and device, which enriches the channel fault analysis method and makes the channel fault analysis more accurate.
  • a first aspect of the embodiments of the present invention provides a fault analysis method, including:
  • the acquiring a frequency domain response range from the hybrid optical fiber coaxial cable network HFC includes:
  • a frequency domain response amplitude is obtained according to the frequency domain response.
  • the performing channel fault analysis according to the channel slope value includes:
  • the channel quality is analyzed based on the channel slope value, wherein the channel slope value is inversely proportional to the channel quality.
  • the effective part of the frequency domain response amplitude is linear. Fit, determine the channel slope value, including:
  • the FmagB is an effective portion of the frequency domain response amplitude
  • the method further includes determining that the fitting amplitude is Y;
  • the method further includes:
  • Channel failure analysis is performed according to the corrected frequency domain response amplitude.
  • the performing fault analysis according to the corrected frequency domain response amplitude includes:
  • TDR A t * v / 2.
  • the frequency domain response phase is obtained according to the frequency domain response
  • a second aspect of the embodiments of the present invention provides a fault analysis apparatus, including:
  • a first obtaining unit configured to acquire a frequency domain response amplitude of the channel from the hybrid optical fiber coaxial network HFC;
  • a first determining unit configured to linearly fit an effective portion of the frequency domain response amplitude to determine a channel slope value
  • the first fault analysis unit is configured to perform channel fault analysis according to the channel slope value.
  • the first acquiring unit includes: a first acquiring module, configured to acquire a time domain according to a pre-equalization coefficient acquired from an HFC network device Tap coefficient
  • a second acquiring module configured to acquire a frequency domain response by performing time-frequency conversion on the time domain tap coefficient
  • a third acquiring module configured to acquire a frequency domain response amplitude according to the frequency domain response
  • the first fault analysis unit includes:
  • a fault analysis module configured to analyze channel quality according to the channel slope value, wherein the channel slope value is inversely proportional to the channel quality.
  • the first determining unit includes:
  • the first determining module is configured to determine a channel slope value.
  • the first determining unit further includes:
  • a second determining module configured to determine a fitting range of Y
  • the device also includes
  • a second acquiring unit configured to subtract the frequency of the frequency domain response from the fitting amplitude to obtain a corrected effective amplitude
  • a third acquiring unit configured to perform interpolation on the amplitude other than the corrected effective amplitude according to the corrected effective amplitude, and obtain a corrected frequency domain response amplitude
  • the second failure analysis unit further includes:
  • An obtaining module configured to obtain, according to the corrected frequency domain response amplitude, a frequency difference ⁇ f between consecutive two amplitude extreme points in the frequency domain response amplitude curve, where the two amplitude extreme points are two amplitudes a value point or two amplitude minimum points;
  • the device further includes:
  • a fourth acquiring unit configured to acquire a frequency domain response phase according to the frequency domain response
  • a fifth obtaining unit configured to obtain a corrected frequency domain response by using the corrected frequency domain response amplitude and the frequency domain response phase
  • a sixth obtaining unit configured to convert the corrected frequency domain response over time to obtain a corrected time domain tap coefficient
  • a third fault analysis unit configured to perform channel fault analysis according to the corrected time domain tap coefficients.
  • the embodiments of the present invention have the following advantages:
  • the fault analysis is performed according to the obtained channel slope value. Since the channel slope value is a new fault analysis parameter, the channel failure analysis method is enriched, and the channel fault analysis is more accurate.
  • FIG. 1 is a schematic diagram of an embodiment of a fault analysis method in an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of another embodiment of a fault analysis method in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of another embodiment of a fault analysis method in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another embodiment of a fault analysis method in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another embodiment of a fault analysis method according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another embodiment of a fault analysis method in an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of another embodiment of a fault analysis method in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an embodiment of a fault analysis apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another embodiment of a fault analysis apparatus according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another embodiment of a fault analysis apparatus according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of another embodiment of a fault analysis device according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of another embodiment of a fault analysis apparatus according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of another embodiment of a fault analysis apparatus according to an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of another embodiment of a fault analysis apparatus according to an embodiment of the present invention.
  • 15 is a schematic diagram of another embodiment of a fault analysis device in an embodiment of the present invention. detailed description
  • the embodiment of the invention provides a fault analysis method and device, which enriches the channel fault analysis method and makes the channel fault analysis more accurate.
  • an embodiment of a fault analysis method in an embodiment of the present invention includes:
  • the frequency domain response amplitude of the channel can be directly obtained from the HFC network, and the frequency domain response amplitude of the channel can be directly obtained by means of a network analyzer or the like to directly obtain the subcarrier frequency in the communication channel. .. , f n , and the amplitude value corresponding to each frequency, the amplitude-frequency curve composed of each sub-carrier frequency and its corresponding amplitude value is the frequency-domain response amplitude of the channel.
  • the frequency domain response amplitude of the direct acquisition channel can also be used in other ways.
  • a pre-equalization is defined, and the pre-equalizer is used.
  • the pre-equalizer is a linear filter with multiple tap coefficients. These tap coefficients are called pre-equalization coefficients, and the pre-equalization coefficients are a string, due to the frequency domain equalization used by the pre-equalizer.
  • the tap coefficients of the set of HFC network devices with pre-equalizers can directly obtain the frequency domain response amplitude. As long as the frequency domain response amplitude can be obtained directly, the specific method is not limited herein. 102. Perform linear fitting on the effective part of the frequency domain response amplitude to determine the channel slope value. It should be noted that the frequency domain response of the edge channel with the slope has the following two rules:
  • This phenomenon is related to the characteristics of the line device: For example, the attenuation loss of the cable is linear with the frequency; to compensate for the slope characteristic caused by cable attenuation, the amplifier can set the gain slope, and the gain slope also shows the linear relationship between amplitude and frequency. .
  • the attenuation slope negative value
  • the gain slope positive value
  • the in-band frequency domain response of the entire channel exhibits a linear relationship with the frequency.
  • the part of the frequency domain response amplitude that exhibits a linear relationship is called the effective part of the frequency domain response amplitude.
  • This phenomenon is related to the number of time domain tap coefficients. The more the number of tap coefficients, the two extreme values of the frequency response curve. The more the point is translated to both sides, the wider the linear area. To make the entire frequency domain linear with amplitude, the time domain tap coefficients are required to be infinite.
  • the effective portion of the frequency domain response amplitude can be determined according to the frequency domain response amplitude, and the effective portion of the frequency domain response amplitude is specifically a portion in which the frequency domain response amplitude exhibits a linear relationship.
  • the channel slope value can be determined by linear fitting (or linear regression) on the effective part of the frequency domain response amplitude, and the channel slope value is the effective part of the frequency domain response amplitude of the channel. The slope value after linear fitting.
  • the channel slope value can reflect the true condition of some aspects of the channel, and channel failure analysis can be performed based on the channel slope value.
  • the fault analysis is performed according to the obtained channel slope value. Since the channel slope value is a new fault analysis parameter, the channel fault analysis means is enriched, and the channel fault analysis is more accurate.
  • the manner of obtaining the frequency domain response amplitude from the hybrid fiber coaxial cable network HFC may also be obtained indirectly according to the pre-equalization coefficient.
  • another embodiment of the fault analysis method of the present invention includes :
  • the pre-equalization coefficients can be converted to obtain time-domain tap coefficients. For the parameters such as ringing, the delay of each time domain tap coefficient is 1 symbol (Symbol), and each time domain tap coefficient has a different amplitude.
  • the HFC network device is an H internally provided with the foregoing pre-equalizer.
  • the HFC network device may be a CMTS (Cable Modem Terminal System) or a Cable Modem (CM), which is not limited herein.
  • CMTS Cable Modem Terminal System
  • CM Cable Modem
  • all pre-equalization coefficients of the pre-equalizer can be pre-aggregated from the HFC network device in the local area network or the wide area network, and all time-domain tap coefficients can be obtained from the pre-equalization coefficients.
  • a time-frequency transform of all time domain tap coefficients results in a frequency domain response of the channel.
  • the linear filter has fewer time-domain tap coefficients, generally only 24, and each time-domain tap coefficient corresponds to one time-domain point.
  • the number of points in the time domain can be increased.
  • the following complements 0 to a certain length (such as 256) into a new coefficient, and then converts to a frequency domain response, so that the number of frequency domain response points is more, for example, when the number of field tap coefficients is 24, and the frequency domain points are 2 56,
  • the amplitude of the frequency domain response of the channel can be obtained.
  • the effective part of the frequency domain response amplitude and the frequency domain response may be determined according to the frequency domain response amplitude.
  • the effective part of the amplitude is specifically the part of the frequency domain response amplitude that exhibits a linear relationship.
  • the channel slope value can be determined by linear fitting (or linear regression) on the effective part of the frequency domain response amplitude.
  • the channel slope value is the channel frequency.
  • the channel slope value can reflect the true situation of some aspects of the channel, and channel fault analysis can be performed based on the channel slope value.
  • the frequency domain response amplitude of the channel is obtained by transforming the time domain tap coefficients, and the channel slope value obtained according to the frequency domain response amplitude of the channel is used for fault analysis. Since the channel slope value is a new fault analysis parameter, the channel is enriched. The means of fault analysis makes channel failure analysis more accurate.
  • the channel quality can be analyzed according to the channel slope value, wherein the channel slope value is inversely proportional to the channel quality, and the following is based on the channel.
  • the slope value analysis channel quality is taken as an example to illustrate the process of performing fault analysis.
  • another embodiment of the fault analysis method of the present invention includes:
  • the pre-equalization coefficients can be converted to obtain time-domain tap coefficients, in-band frequency response and other parameters. The delay of each time-domain tap coefficient. For 1 symbol (Symbol), each time domain tap coefficient has a different amplitude.
  • the HFC network device is an H internally provided with the foregoing pre-equalizer.
  • the FC network device and the HFC network device may be CMTS or CM, etc., and are not limited herein.
  • all pre-equalization coefficients of the pre-equalizer can be pre-aggregated from the HFC network device in the local area network or the wide area network, and all time-domain tap coefficients can be obtained from the pre-equalization coefficients.
  • a time-frequency transform of all time domain tap coefficients results in a frequency domain response of the channel.
  • the linear filter has fewer time-domain tap coefficients, generally only 24, and each time-domain tap coefficient corresponds to one time-domain point.
  • the number of points in the time domain can be increased.
  • the following complements 0 to a certain length (such as 256) into a new coefficient, and then converts to a frequency domain response, so that the number of frequency domain response points is more, for example, when the number of field tap coefficients is 24, and the frequency domain points are 2 56,
  • the amplitude of the frequency domain response of the channel can be obtained.
  • the effective part of the frequency domain response amplitude and the frequency domain response may be determined according to the frequency domain response amplitude.
  • the effective part of the amplitude is specifically the part of the frequency domain response amplitude that exhibits a linear relationship.
  • the channel slope value can be determined by linear fitting (or linear regression) on the effective part of the frequency domain response amplitude, and the channel slope value is the effective part of the frequency domain response amplitude of the channel. The slope value after linear fitting.
  • the channel quality can be determined according to the channel slope value.
  • the channel slope value is inversely proportional to the channel quality. The larger the channel slope value, the more uneven the channel, the more the bit error rate will be, and the lower the channel quality.
  • the channel quality is analyzed based on the channel slope value as an example. It can be understood that in practical applications, channel fault analysis based on the channel slope value can also be other.
  • the method for example: can also combine the network topology structure, compare and analyze the channel slope values of multiple different user channels, find the position and cause of the channel tilt, and repair, for example, find the channel slope value of all users under an amplifier. They are relatively large, and can be inferred to be caused by improper adjustment of the gain slope of the amplifier.
  • the channel slope value can be compensated accordingly, so that the channel slope is zeroed and the in-band frequency domain response is flat, thereby improving the signal transmission quality.
  • the channel fault analysis is performed according to the channel slope value, and the fault analysis may be performed by using a plurality of methods for performing channel fault analysis based on the channel slope value, which is not limited herein.
  • the specific method for performing fault analysis according to the channel slope value is also applicable to the embodiment of directly acquiring the frequency domain response amplitude, which is not limited herein.
  • the frequency domain response amplitude of the channel is obtained by transforming the time domain tap coefficients, and the channel slope value obtained according to the frequency domain response amplitude of the channel is used for fault analysis. Since the channel slope value is a new fault analysis parameter, the channel is enriched. Means of fault analysis, making channel fault analysis more accurate, and at the same time The specific means of fault analysis based on the channel slope value is further described to make the implementation more specific.
  • FIG. 4 another embodiment of the fault analysis method of the present invention includes:
  • the cable data service interface specification DOCSIS 3.0 defines a pre-equalizer (pre-equalizatio n), and the pre-equalizer defined in DOCSIS 3.0 is A linear filter with 24 tap coefficients. These 24 coefficients are called pre-equalization coefficients.
  • the pre-equalization coefficients can be converted to obtain time-domain tap coefficients, in-band frequency response and other parameters. The delay of each time-domain tap coefficient. For 1 symbol (Symbol), each time domain tap coefficient has a different amplitude.
  • the HFC network device is an HFC network device that is internally provided with the pre-equalizer.
  • the HFC network device may be a CMTS or a CM, and is not limited herein.
  • all pre-equalization coefficients of the pre-equalizer can be pre-aggregated from the HFC network device in the local area network or the wide area network, and all time-domain tap coefficients can be obtained from the pre-equalization coefficients.
  • a time-frequency transform of all time domain tap coefficients results in a frequency domain response of the channel.
  • the linear filter has fewer time-domain tap coefficients, generally only 24, and each time-domain tap coefficient corresponds to one time-domain point.
  • the number of points in the time domain can be increased.
  • the following complements 0 to a certain length (such as 256) into a new coefficient, and then converts to a frequency domain response, so that the number of frequency domain response points is more, for example, when the number of field tap coefficients is 24, and the frequency domain points are 2 56,
  • the amplitude of the frequency domain response of the channel can be obtained.
  • the effective portion of the frequency domain response amplitude is specifically a portion in which the frequency domain response amplitude exhibits a linear relationship. According to the effective portion of the frequency domain response amplitude, the amplitude curve of the effective portion of the frequency domain response amplitude can be queried.
  • the channel slope value can be determined by linear fitting (or linear regression) on the effective part of the frequency domain response amplitude, and the channel slope value is the effective frequency domain response amplitude of the channel. The slope value after a partial linear fit.
  • the channel slope value can reflect the real situation of some aspects of the channel, and the channel fault analysis can be performed according to the channel slope value.
  • the method for fault analysis according to the channel slope value can be the same as that in the embodiment shown in FIG. 3, and details are not described herein again.
  • the frequency domain response amplitude of the channel is obtained by transforming the time domain tap coefficients, and the channel slope value obtained according to the frequency domain response amplitude of the channel is used for fault analysis. Since the channel slope value is a new fault analysis parameter, the channel is enriched.
  • the method of fault analysis makes the channel fault analysis more accurate, and further describes the specific method of linearly fitting the effective part of the frequency domain response amplitude and determining the channel slope value, so that the implementation mode is more specific.
  • the band of the HFC network device such as CMTS or CM
  • the uplink edge channel for example, a channel centered at 8 MHz, 38 MHz, etc.
  • the band of the HFC network device such as CMTS or CM
  • the obtained frequency domain response amplitude will have a steep slope characteristic, and the pre-equalization coefficient will also compensate for these unevenness.
  • the slope characteristic of the filter or channel dominates the pre-equalization coefficient, it will affect the fault analysis of the channel, resulting in fault misjudgment, inaccurate fault location, etc., so when obtaining the frequency domain response amplitude from the time domain tap coefficient transform,
  • the obtained time domain tap coefficients are subjected to slope correction, and the fault analysis is performed according to the parameters obtained after the correction (such as the corrected frequency domain response amplitude, the corrected time domain tap coefficient, etc.), which will be described below by way of specific embodiments.
  • another embodiment of the fault analysis method of the present invention includes:
  • the cable data service interface specification DOCSIS 3.0 defines a pre-equalizer (pre-equalizatio n), and the pre-equalizer defined in DOCSIS 3.0 is A linear filter with 24 tap coefficients. These 24 coefficients are called pre-equalization coefficients.
  • the pre-equalization coefficients can be converted to obtain time-domain tap coefficients, in-band frequency response and other parameters. The delay of each time-domain tap coefficient. For 1 symbol (Symbol), each time domain tap coefficient has a different amplitude.
  • the HFC network device is an HFC network device that is internally provided with the pre-equalizer.
  • the HFC network device may be a CMTS or a CM, and is not limited herein.
  • all pre-equalization coefficients of the pre-equalizer can be pre-aggregated from the HFC network device in the local area network or the wide area network, and all time-domain tap coefficients can be obtained from the pre-equalization coefficients.
  • a time-frequency transform of all time domain tap coefficients results in a frequency domain response of the channel.
  • the linear filter has fewer time-domain tap coefficients, generally only 24, and each time-domain tap coefficient corresponds to one time-domain point.
  • the number of points in the time domain can be increased.
  • the amplitude of the frequency domain response of the channel can be obtained.
  • the domain responds to F to find the magnitude
  • the frequency domain response amplitude of the channel Fmag (Fmagl, ..., Fmag 256) is available.
  • the effective portion of the frequency domain response amplitude is specifically a portion in which the frequency domain response amplitude exhibits a linear relationship. According to the effective portion of the frequency domain response amplitude, the amplitude curve of the effective portion of the frequency domain response amplitude can be queried.
  • the channel slope value can be determined by linear fitting (or linear regression) on the effective part of the frequency domain response amplitude, and the channel slope value is the effective frequency domain response amplitude of the channel. The slope value after a partial linear fit.
  • the channel slope value can reflect the real situation of some aspects of the channel, and the channel fault analysis can be performed according to the channel slope value.
  • the method for fault analysis according to the channel slope value can be the same as that in the embodiment shown in FIG. 3, and details are not described herein again.
  • the slope characteristic can be removed from the channel frequency domain response, and the corrected effective amplitude can be obtained.
  • the amplitude other than the corrected effective amplitude is interpolated, and the interpolation method can be interpolated by using MATLAB, and the amplitude of the frequency domain after correction can be obtained.
  • the specific means for performing interpolation is prior art, which is not limited herein.
  • the frequency domain amplitude after correction can reflect the real situation of some aspects of the channel, and the channel fault analysis can be performed according to the channel slope value.
  • the frequency difference between any two points in the frequency domain response amplitude curve can be determined. Therefore, according to the corrected frequency domain response amplitude, two consecutive amplitudes in the frequency domain response amplitude curve can be obtained.
  • the corrected frequency domain response amplitude can also be used to calculate the micro-reflection level MRLevel.
  • the magnitude of the corrected post-frequency i or the response amplitude fluctuation that is, the maximum amplitude and The difference between the minimum amplitudes can be calculated by MRLevel, which is used to estimate the severity of the line micro-reflection.
  • the MRLevel is related to the fluctuation of the channel frequency-domain response amplitude curve. The larger the amplitude fluctuation, the larger the MRLevel value and the more serious the fault.
  • the network status of the CM is divided into three levels according to the size of the MRLevel, as shown in Table 1.
  • Table 1 defines the network status of three CMs according to the size of the MRLevel.
  • the fault After calculating the MRLevel according to the difference between the maximum value and the minimum amplitude of the frequency domain response after correction, the fault can be discovered, located, and repaired in advance when the network is in sub-health (ie, before the fault affects the service), thereby improving the user experience. .
  • the content of the frequency domain response amplitude after the correction is obtained, and the fault analysis according to the corrected frequency domain response amplitude is also applicable to the embodiment for directly acquiring the frequency domain response amplitude, which is not limited herein. .
  • the frequency domain response amplitude of the channel is obtained by transforming the time domain tap coefficients, and the channel slope value obtained according to the frequency domain response amplitude of the channel is used for fault analysis. Since the channel slope value is a new fault analysis parameter, the channel is enriched. Means of fault analysis, making channel fault analysis more accurate and at the same time The corrected frequency domain response amplitude is obtained, which avoids the problem of inaccurate channel fault analysis caused by fault analysis directly using the frequency domain response amplitude.
  • FIG. 6 another embodiment of the fault analysis method of the present invention includes:
  • the cable network data service interface specification DOCSIS 3.0 defines a pre-equalizer (pre-equalizatio n), and the pre-equalizer defined in DOCSIS 3.0 is A linear filter with 24 tap coefficients. These 24 coefficients are called pre-equalization coefficients.
  • the pre-equalization coefficients can be converted to obtain time-domain tap coefficients, in-band frequency response and other parameters. The delay of each time-domain tap coefficient. For 1 symbol (Symbol), each time domain tap coefficient has a different amplitude.
  • the HFC network device is an HFC network device that is internally provided with the pre-equalizer.
  • the HFC network device may be a CMTS or a CM, and is not limited herein.
  • all pre-equalization coefficients of the pre-equalizer can be pre-aggregated from the HFC network device in the local area network or the wide area network, and all time-domain tap coefficients can be obtained from the pre-equalization coefficients.
  • a time-frequency transform of all time domain tap coefficients results in a frequency domain response of the channel.
  • the linear filter has fewer time-domain tap coefficients, generally only 24, and each time-domain tap coefficient corresponds to one time-domain point. In order to improve the accuracy, the number of points in the time domain can be increased.
  • the amplitude of the frequency domain response of the channel can be obtained.
  • the line Y kX+b.
  • the effective portion of the frequency domain response amplitude is specifically a portion in which the frequency domain response amplitude exhibits a linear relationship. According to the effective portion of the frequency domain response amplitude, the amplitude curve of the effective portion of the frequency domain response amplitude can be queried.
  • the channel slope value can be determined by linear fitting (or linear regression) on the effective part of the frequency domain response amplitude, and the channel slope value is the effective frequency domain response amplitude of the channel. The slope value after a partial linear fit.
  • k is the channel slope value, and the fitting range is Y.
  • the channel slope value can reflect the real situation of some aspects of the channel, and the channel fault analysis can be performed according to the channel slope value.
  • the method for fault analysis according to the channel slope value can be the same as that in the embodiment shown in FIG. 3, and details are not described herein again.
  • the slope characteristic can be removed from the channel frequency domain response, and the corrected effective amplitude can be obtained.
  • the amplitude other than the corrected effective amplitude is interpolated, and the interpolation method can be interpolated by using MATLAB, and the amplitude of the frequency domain response after correction can be obtained.
  • the specific means for interpolating the amplitude is prior art. This is not a limitation.
  • the frequency domain amplitude after correction can reflect the real situation of some aspects of the channel, and channel failure analysis can be performed according to the channel slope value.
  • the method for performing channel failure analysis using the corrected frequency domain response amplitude is the same as that in the embodiment shown in FIG. 5, and details are not described herein again.
  • the phase of the frequency domain response is obtained, and the phase of the frequency domain response is obtained.
  • step 611 Obtain a corrected post-frequency i or response by using the corrected post-frequency i or the response amplitude and the frequency i or the response phase.
  • the corrected frequency domain response amplitude and the frequency domain response phase obtained in step 610 can be used to calculate the corrected frequency domain. response.
  • the corrected frequency domain response is converted by frequency
  • obtain the corrected time domain tap coefficient After the corrected frequency domain response is converted by frequency, obtain the corrected time domain tap coefficient; and after the corrected frequency domain response is converted by frequency, for example, inverse Fourier transform, the corrected time domain tap coefficient can be obtained.
  • one or more of the channel-derived parameters in Table 2 below can be calculated, and fault analysis is performed based on the calculated channel-derived parameters.
  • the meaning and calculation method of the specific channel-derived parameters can be found in the PNMP white paper.
  • the content of the corrected time domain tap coefficient and the fault analysis according to the corrected time domain tap coefficient can also be applied to the embodiment for directly acquiring the frequency domain response amplitude, which is not limited herein. .
  • FIG. 7 Another embodiment of the fault analysis method of the present invention includes:
  • the HFC network device is used as an example for the CM. It can be understood that the HFC network device is an HFC network device with the above pre-equalizer, such as a HFC network device, and the like, and is not limited herein. .
  • a time-frequency transform of all time domain tap coefficients results in a frequency domain response of the channel.
  • the linear filter Since the linear filter has less time domain tap coefficients in the CM, the linear filter has fewer time-domain tap coefficients, generally only 24, and each time domain tap coefficient corresponds to one time domain point. In order to improve the accuracy, the time domain points can be increased. The following complements 0 to a certain length (such as 256) into a new coefficient, and then converts to a frequency domain response, so that the frequency domain response points are more, for example, when the number of field tap coefficients is 24, and the frequency domain points are 256, the time is set.
  • a certain length such as 256
  • the frequency domain response amplitude of the channel can be obtained.
  • the effective portion FmagB of the frequency domain response amplitude Fmag is specifically a portion in which the frequency domain response amplitude Fmag exhibits a linear relationship, and according to the effective portion FmagB of the frequency domain response amplitude Fmag, the frequency domain response amplitude Fmag can be queried.
  • the amplitude curve of the effective part FmagB is similar
  • k is the channel slope value, and the fitting range is Y.
  • the channel slope value can reflect the real situation of some aspects of the channel, and the channel fault analysis can be performed according to the channel slope value.
  • the method for fault analysis according to the channel slope value can be the same as that in the embodiment shown in FIG. 3, and details are not described herein again.
  • the slope characteristic can be removed from the channel frequency domain response, and the corrected effective amplitude can be obtained.
  • the original amplitude Fmag is subtracted from the fitting amplitude Y to obtain the corrected effective amplitude FmagB':
  • the amplitude other than the corrected effective amplitude is interpolated, and the interpolation method can be interpolated by using MATLAB, and the amplitude of the frequency domain response after correction can be obtained.
  • the specific means for interpolating the amplitude is prior art. This is not a limitation.
  • the method for performing channel failure analysis using the corrected frequency domain response amplitude is the same as that in the embodiment shown in FIG. 5, and details are not described herein again.
  • the frequency domain response phase Fpha (Fphal, ..., Fpha256) can be obtained.
  • the corrected frequency domain response F, ( F 1, , ... , F256') can be obtained from the corrected frequency domain response amplitude Fmag, and the phase Fpha.
  • the corrected frequency domain response F′ is converted by frequency
  • obtain the corrected time domain tap coefficient C′′ ; in this embodiment, perform time-frequency transform on F′, such as inverse Fourier transform, to obtain a time domain series.
  • the corrected time domain tap coefficients can be used to calculate one or more of the channel derived parameters in Table 2 above.
  • the fault analysis is performed based on the calculated channel derived parameters.
  • the meaning and calculation method of the specific channel derived parameters can be found in the PNMP white paper.
  • an embodiment of the fault analysis device in the embodiment of the present invention includes:
  • a first obtaining unit 801 configured to acquire a frequency domain response amplitude of the channel from the hybrid optical fiber coaxial network HFC;
  • a first determining unit 802 configured to perform linear fitting on an effective portion of the frequency domain response amplitude to determine a channel slope value
  • the first fault analyzing unit 803 is configured to perform channel fault analysis according to the channel slope value.
  • the first fault analysis unit 803 performs fault analysis according to the channel slope value determined by the first determining unit 802. Since the channel slope value is a new fault analysis parameter, the channel fault analysis method is enriched, and the channel fault analysis is more accurate.
  • another embodiment of the fault analysis device in the embodiment of the present invention includes: a first obtaining unit 901, configured to acquire a frequency domain response amplitude of a channel from a hybrid fiber coaxial cable network HFC;
  • the first determining unit 902 is configured to perform linear fitting on the effective portion of the frequency domain response amplitude to determine a channel slope value.
  • the first fault analysis unit 903 is configured to perform channel fault analysis according to the channel slope value.
  • the first obtaining unit 901 may further include: a first obtaining module 9011, configured to acquire a time domain tap coefficient according to a pre-equalization coefficient acquired from the HFC network device;
  • the second obtaining module 9012 is configured to perform time-frequency conversion on the time domain tap coefficients to obtain a frequency domain response.
  • the third obtaining module 9013 is configured to obtain a frequency domain response amplitude according to the frequency domain response.
  • the first fault analysis unit 903 performs fault analysis according to the channel slope value determined by the first determining unit 902. Since the channel slope value is a new fault analysis parameter, the channel fault analysis method is enriched, and the channel fault analysis is more accurate. Secondly, the structural setting of the first obtaining unit 901 is further described, so that the device structure setting of the present invention is more flexible.
  • another embodiment of the fault analysis device in the embodiment of the present invention includes: a first acquiring unit 1001, configured to acquire a frequency domain response amplitude of a channel from a hybrid optical fiber coaxial cable network HFC;
  • a first determining unit 1002 configured to perform linear fitting on an effective portion of the frequency domain response amplitude, and determine a channel slope value
  • the first fault analyzing unit 1003 is configured to perform channel fault analysis according to the channel slope value.
  • the first fault analysis unit 1003 may further include: a fault analysis module 10031, configured to analyze channel quality according to a channel slope value, where the channel slope value is inversely proportional to the channel quality.
  • the first fault analysis unit 1003 may be further configured to perform other fault analysis according to the channel slope value.
  • the first fault analysis unit 1003 may perform channel fault analysis according to the channel slope value, for example, for example, for example, : It can also be combined with the network topology structure to compare and analyze the channel slope values of multiple different user channels, find the location and cause of the channel tilt, and repair it. For example, it is found that all users under a certain amplifier have larger channel slope values. It can be inferred that it is caused by improper adjustment of the gain slope of the amplifier, and can be compensated according to the slope value of the channel, so that the letter The channel slope is zeroed, and the in-band frequency domain response is flat, thereby improving the signal transmission quality.
  • the first obtaining unit 1001 may further include:
  • the first obtaining module 10011 is configured to obtain a time domain tap coefficient according to the pre-equalization coefficient obtained from the HFC network device.
  • the second obtaining module 10012 is configured to perform time-frequency conversion on the time domain tap coefficients to obtain a frequency domain response.
  • the third obtaining module 10013 is configured to obtain a frequency domain response amplitude according to the frequency domain response.
  • the first fault analysis unit 1003 performs fault analysis according to the channel slope value determined by the first determining unit 1002. Since the channel slope value is a new fault analysis parameter, the channel fault analysis method is enriched, and the channel fault analysis is more accurate. Next, the structural configuration of the first fault analysis unit 1001 is further described, so that the device configuration of the present invention is more flexible.
  • another embodiment of the fault analysis device in the embodiment of the present invention includes: a first acquiring unit 1101, configured to acquire a frequency domain response amplitude of a channel from a hybrid optical fiber coaxial cable network HFC;
  • a first determining unit 1102 configured to perform linear fitting on an effective portion of the frequency domain response amplitude, and determine a channel slope value
  • the first fault analyzing unit 1103 is configured to perform channel fault analysis according to the channel slope value.
  • the first determining module 11022 is configured to determine a channel slope value.
  • the first acquiring unit 1101 and the first fault analyzing unit 1103 may further describe the structure according to the first acquiring unit and the first fault analyzing unit described in the embodiments shown in FIG. 9 and FIG. There is no limit.
  • the first fault analysis unit 1103 performs fault analysis according to the channel slope value determined by the first determining unit 1102. Since the channel slope value is a new fault analysis parameter, the channel fault analysis method is enriched, and the channel fault analysis is more accurate.
  • the structural arrangement of the first determining unit 1102 is further described, so that the device configuration of the present invention is more flexible.
  • the first obtaining unit 1201 is configured to acquire a frequency domain response amplitude of the channel from the hybrid fiber coaxial cable network HFC;
  • a first determining unit 1202 configured to perform linear fitting on an effective portion of the frequency domain response amplitude, and determine a channel slope value
  • the first fault analyzing unit 1203 is configured to perform channel fault analysis according to the channel slope value.
  • the first determining unit 1202 further includes:
  • the first determining module 12022 is configured to determine a channel slope value.
  • the first determining unit 1202 may further include: a second determining module 12023, configured to determine that the fitting range is Y;
  • the method further includes:
  • the second obtaining unit 1204 is configured to subtract the fitting range from the frequency domain response amplitude to obtain the effective amplitude after the correction;
  • the third obtaining unit 1205 is configured to perform interpolation on the amplitude other than the corrected effective amplitude according to the corrected effective amplitude, and obtain the corrected frequency domain response amplitude;
  • the second fault analysis unit 1206 is configured to perform channel fault according to the corrected frequency domain response amplitude.
  • the first fault analysis unit 1203 performs fault analysis according to the channel slope value determined by the first determining unit 1202, because the channel slope value is new.
  • the fault analysis parameters which enrich the channel fault analysis method, make the channel fault analysis more accurate.
  • the structure of the fault analysis of the corrected frequency domain response amplitude is added to make the fault analysis more accurate.
  • another embodiment of the fault analysis device in the embodiment of the present invention includes: a first acquiring unit 1301, configured to acquire a frequency domain response amplitude of a channel from a hybrid fiber coaxial cable network HFC;
  • a first determining unit 1302 configured to perform linear fitting on an effective portion of the frequency domain response amplitude, and determine a channel slope value
  • the first fault analysis unit 1303 is configured to perform channel fault analysis according to the channel slope value.
  • the first determining unit 1302 further includes:
  • the first determining module 13022 is configured to determine a channel slope value.
  • the first determining unit 1302 may further include: a second determining module 13023, configured to determine that the fitting range is Y;
  • a second obtaining unit 1304, configured to subtract a fitting range from the frequency domain response amplitude, and obtain a corrected effective amplitude
  • the third obtaining unit 1305 is configured to perform interpolation on the amplitude other than the corrected effective amplitude according to the corrected effective amplitude, and obtain the corrected frequency domain response amplitude;
  • the second fault analysis unit 1306 is configured to perform the channel fault according to the corrected frequency domain response amplitude.
  • the second fault analysis unit 1306 may further include: an obtaining module 13061, configured to use the corrected frequency domain The amplitude of the response is obtained, and the frequency difference ⁇ f between consecutive two extreme amplitude points in the frequency domain response amplitude curve is obtained, and the two amplitude extreme points are two amplitude maximum points or two amplitude minimum points;
  • the first fault analysis unit 1303 performs fault analysis according to the channel slope value determined by the first determining unit 1302. Since the channel slope value is a new fault analysis parameter, the channel fault analysis method is enriched, and the channel fault analysis is more accurate. Secondly, the structure of fault analysis for the frequency domain response after correction is added, and the specific structure of the second fault analysis unit is described in detail to make the fault analysis more accurate.
  • another embodiment of the fault analysis apparatus in the embodiment of the present invention includes: a first obtaining unit 1401, configured to acquire a frequency domain response amplitude of a channel from a hybrid optical fiber coaxial cable network HFC;
  • a first determining unit 1402 configured to linearly fit an effective portion of the frequency domain response amplitude, and determine a channel slope value
  • the first fault analysis unit 1403 is configured to perform channel fault analysis according to the channel slope value.
  • the first determining unit 1402 further includes:
  • the first determining module 14022 is configured to determine a channel slope value.
  • the first determining unit 1402 may further include: a second determining module 14023, configured to determine that the fitting range is Y;
  • a second obtaining unit 1404 configured to subtract a fitting range from the frequency domain response amplitude to obtain a corrected effective amplitude
  • the third obtaining unit 1405 is configured to perform interpolation on the amplitude other than the corrected effective amplitude according to the corrected effective amplitude, and obtain the corrected frequency domain response amplitude;
  • the second fault analysis unit 1406 is configured to perform channel fault analysis according to the corrected frequency domain response amplitude.
  • the second fault analysis unit 1406 further includes: an obtaining module 14061, configured to obtain a frequency difference between consecutive two amplitude extreme points in the frequency domain response amplitude curve according to the corrected frequency domain response amplitude.
  • an obtaining module 14061 configured to obtain a frequency difference between consecutive two amplitude extreme points in the frequency domain response amplitude curve according to the corrected frequency domain response amplitude.
  • two amplitude extreme points are two amplitude maximum points or two amplitude minimum points;
  • a fourth acquiring unit 1407 configured to acquire a frequency domain response phase according to the frequency domain response
  • the fifth obtaining unit 1408 is configured to obtain the corrected frequency domain response by using the corrected frequency domain response amplitude and the frequency domain response phase;
  • a sixth obtaining unit 1409 configured to convert the corrected frequency domain response over time to obtain a corrected time domain tap coefficient
  • a third fault analysis unit 1410 configured to perform channel fault division according to the corrected time domain tap coefficient
  • the third fault analysis unit 1410 may calculate one or more of the channel-derived parameters in the above Table 2 by using the corrected time-domain tap coefficients, perform fault analysis according to the calculated channel-derived parameters, and meaning and calculation method of the specific channel-derived parameters. See the PNMP white paper.
  • the present embodiment further increases the acquisition of the corrected tap coefficients and the structure of the fault analysis based on the corrected time domain tap coefficients, so that the channel failure analysis is more accurate.
  • the first obtaining unit 1401 obtains a frequency domain response amplitude of the channel from the hybrid fiber coaxial cable network HFC;
  • the first determining unit 1402 linearly fits the effective portion of the frequency domain response amplitude to determine a channel slope value
  • the first failure analysis unit 1403 performs channel failure analysis based on the channel slope value.
  • the first determining unit 1402 linearly fits the effective portion of the frequency domain response amplitude, and the specific internal process of determining the channel slope value may be as follows:
  • the query module 14021 queries the target line with the highest similarity of the amplitude curve of the effective portion of the frequency domain response amplitude and the smallest square error ⁇ (FmagB - Y) 2 according to the effective portion of the frequency domain response amplitude.
  • the first determining module 14022 determines that the channel slope value is k.
  • the fault analysis device of the present invention obtains the corrected frequency domain response amplitude to perform a fault analysis process as follows:
  • the second determining module 14023 in the first determining unit 1402 determines that the fitting amplitude is Y;
  • the second obtaining unit 1404 subtracts the fitting range from the frequency domain response amplitude to obtain the corrected effective amplitude.
  • the third acquiring unit 1405 interpolates the amplitude other than the corrected effective amplitude according to the corrected effective amplitude, and obtains the corrected frequency domain. Response amplitude
  • the second failure analysis unit 1406 performs channel failure analysis based on the corrected frequency domain response amplitude.
  • the second fault analysis unit 1406 performs the channel failure analysis process as follows:
  • the obtaining module 14061 obtains the frequency difference A f between consecutive two amplitude extreme points in the frequency domain response amplitude curve according to the corrected frequency domain response amplitude, and the two amplitude extreme points are two amplitude maximum points or two amplitudes. Minimum point;
  • the fourth obtaining unit 1407 acquires a frequency domain response phase according to the frequency domain response
  • the fifth obtaining unit 1408 obtains the corrected frequency domain response by using the corrected frequency domain response amplitude and the frequency domain response phase;
  • the sixth obtaining unit 1409 converts the corrected frequency domain response over time to obtain the corrected time domain tap coefficient
  • FIG. 15 is a schematic structural diagram of a server according to an embodiment of the present invention.
  • the server 1500 may have a large difference due to different configurations or performances, and may include one or more central processing units (CPUs) 1522 (for example, , one or more processors) and memory 1532, one or more storage media 1530 that store application 1542 or data 1544 (eg, one or one storage device in Shanghai).
  • the memory 1532 and the storage medium 1530 may be short-term storage or persistent storage.
  • the program stored on storage medium 1530 may include one or more modules (not shown), each of which may include a series of instruction operations in the server.
  • the central processor 1522 can be configured to communicate with the storage medium 1530 to perform a series of instruction operations in the storage medium 1530 on the server 1800.
  • Server 1500 may also include one or more power supplies 1526, one or more wired or wireless network interfaces 1550, one or more input and output interfaces 1558, and/or one or more operating systems 1541, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM and more. Structure.
  • operating systems 1541 such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM and more. Structure.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative
  • the division of the unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or may be integrated into another system, or some features may be ignored. Or not.
  • the mutual coupling or direct connection or communication connection shown or discussed may be an indirect engagement or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
  • the components displayed by the unit may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mathematical Physics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本发明实施例公开了一种故障分析方法及设备,本发明实施例方法包括:从混合光纤同轴电缆网HFC获取信道的频域响应幅度;对所述频域响应幅度的有效部分进行线性拟合,确定信道斜率值;根据所述信道斜率值进行信道故障分析。根据获得的信道斜率值进行故障分析,由于信道斜率值为新的故障分析参数,这样丰富了信道故障分析的手段,使信道故障分析更加准确。

Description

一种故障分析方法及设备 技术领域
本发明涉及通讯技术领域, 尤其涉及一种故障分析方法及设备。
背景技术
混合光纤同轴电缆网 (HFC, Hybrid Fiber-Coaxial )通常由光纤干线、 同 轴电缆支线和用户配线网络三部分组成,从有线电视台出来的节目信号先变成 光信号在光纤干线上传输; 到用户区域后把光信号转换成电信号, 经分配器分 配后通过同轴电缆送到用户。
一个典型的 HFC网络包括设备,如同轴电缆局端接入设备( CMTS, Cable
Modem Terminal System ), 电缆调制解调器(CM , Cable Modem ), 光站等, 器件(放大器, 衰减器, 分支器, 分配器)和光缆(fiber )、 同轴电缆(cable ) 等, HFC 网络中存在的每个设备、 器件, 每段电缆都有可能出现问题, 从而 使 HFC网络的上行信号受到各种线路失真的影响, 如群时延、 微反射等。
有线电缆数据服务接口规范 DOCSIS3.0定义了预均衡器 ( pre-equalizatio n ),每个 CMTS/CM内部都有一个预均衡器,可以使信号在 CMTS/CM发射信 号前就得到反向补偿。 DOCSIS3.0中定义的预均衡器为一个具有 24个抽头系 数的线性滤波器, 这 24个系数则称为预均衡系数, 预均衡器处理结构, 每个 抽头系数的时延为 1个符号 (Symbol ), 每个抽头系数有不同的幅度。
预均衡系数可以从数据处理的角度暂时緩解了线路中的故障失真,但是故 障(如电缆破损等)依然于线路中, 当故障恶化到一定的程度时, 将会影响到 用户的业务体验。 所以很有必要对线路出现的故障(特别是小故障)进行网络 运维 ( Network Maintenance )。
由于传统的网络运维是由用户的投诉触发,是被动式的,为了更好的处理、 定位和排除故障, 需要进行主动式网络维护(PNM, Proactive Network Maint enance ), 由上可知,预均衡器是为了补偿 Cable线路上的失真, 其频域响应跟 线路的信道响应反向互补, 所以预均衡系数里包含有线路故障的信息, 可对预 均衡系数进行分析, 预先发现 Cable网络中的故障, 并定位故障, 这种通过监 测每个 CMTS/CM的预均衡系数进行故障诊断的方法称为 PNM using Pre-equ alization ( PNMP )。 PNMP中对预均衡系数进行算法分析,如可以根据预均衡系数得到时域抽 头系数和频域响应等参数进行故障分析,但是根据预均衡系数进行故障分析的 手段比较单一,使计算得到的参数不能准确细致反映实际物理线路的情况, 导 致故障分析不准确。 发明内容
本发明实施例提供了一种故障分析方法及设备,丰富了信道故障分析的手 段, 使信道故障分析更加准确。
本发明实施例第一方面提供了一种故障分析方法, 包括:
从混合光纤同轴电缆网 HFC获取信道的频域响应幅度;
对所述频域响应幅度的有效部分进行线性拟合, 确定信道斜率值; 根据所述信道斜率值进行信道故障分析。
结合本发明实施例的第一方面,本发明实施例的第一方面的第一种实现方 式中, 所述从混合光纤同轴电缆网 HFC获取频域响应幅度包括:
根据从 HFC网络设备获取的预均衡系数, 获取时域抽头系数;
对所述时域抽头系数进行时频转换获取频域响应;
根据所述频域响应获取频域响应幅度。
结合本发明实施例的第一方面或第一方面的第一种实现方式,本发明实施 例的第一方面的第二种实现方式中,所述根据所述信道斜率值进行信道故障分 析包括:
根据所述信道斜率值分析信道质量, 其中, 所述信道斜率值与所述信道质 量成反比。
结合本发明实施例的第一方面或第一方面的第一种实现方式,本发明实施 例的第一方面的第三种实现方式中,所述对所述频域响应幅度的有效部分进行 线性拟合, 确定信道斜率值, 包括:
根据所述频域响应幅度的有效部分,查询与所述频域响应幅度的有效部分 的幅度曲线相似度最高, 且平方误差 (FmagB - Y)2值最小的目标直线 Y=kX+b, 所述 FmagB为所述频域响应幅度的有效部分;
确定信道斜率值为 k。
结合本发明实施例的第一方面的第三种实现方式,本发明实施例的第一方 面的第四种实现方式中, 所述对所述频域响应幅度的有效部分进行线性拟合 后, 还包括确定拟合幅度为 Y;
所述方法还包括:
将所述频域响应幅度减去所述拟合幅度, 获取矫正后有效幅度; 根据所述矫正后有效幅度, 对除所述矫正后有效幅度外的幅度进行插值, 获取矫正后频域响应幅度;
根据所述矫正后频域响应幅度进行信道故障分析。
结合本发明实施例的第一方面的第四种实现方式,本发明实施例的第一方 面的第五种实现方式中, 所述根据所述矫正后频域响应幅度进行故障分析包 括:
根据所述矫正后频域响应幅度,获取频域响应幅度曲线中连续的两个幅度 极值点间频率差 A f, 所述两个幅度极值点为两个幅度极大值点或两个幅度极 小值点;
根据△ t=l/△ f计算微反射时延△ t;
根据所述 At和信号的传输速度 v, 计算两个故障点之间的距离 TDR=A t*v/2。
结合本发明实施例的第一方面的第四种实现方式,本发明实施例的第一方 面的第六种实现方式中, 根据所述频域响应获取频域响应相位;
利用所述矫正后频域响应幅度和所述频域响应相位, 获取矫正后频域响 应;
将所述矫正后频域响应经频时转换, 获取矫正后时域抽头系数; 根据所述矫正后时域抽头系数进行信道故障分析。
本发明实施例的第二方面提供了一种故障分析设备, 包括:
第一获取单元, 用于从混合光纤同轴电缆网 HFC获取信道的频域响应幅 度;
第一确定单元, 用于对所述频域响应幅度的有效部分进行线性拟合,确定 信道斜率值;
第一故障分析单元, 用于根据所述信道斜率值进行信道故障分析。
结合第二方面, 在第一种可能的实现方式中, 所述第一获取单元包括: 第一获取模块, 用于根据从 HFC网络设备获取的预均衡系数, 获取时域 抽头系数;
第二获取模块, 用于对所述时域抽头系数进行时频转换获取频域响应; 第三获取模块, 用于根据所述频域响应获取频域响应幅度。
结合第二方面或第二方面的第一种实现方式,本发明实施例的第二方面的 第二种实现方式中, 所述第一故障分析单元包括:
故障分析模块, 用于根据所述信道斜率值分析信道质量, 其中, 所述信道 斜率值与所述信道质量成反比。
结合第二方面或第二方面的第一种实现方式,本发明实施例的第二方面的 第三种实现方式中, 所述第一确定单元包括:
查询模块, 用于根据所述频域响应幅度的有效部分, 查询与所述频域响应 幅度的有效部分的幅度曲线相似度最高,且平方误差 (FmagB - Y)2值最小的目标 直线 Y=kX+b, 所述 FmagB为所述频域响应幅度的有效部分;
第一确定模块, 用于确定信道斜率值为 。
结合第二方面的第三种实现方式,本发明实施例的第二方面的第四种实现 方式中, 所述第一确定单元还包括:
第二确定模块, 用于确定拟合幅度为 Y;
所述设备还包括,
第二获取单元, 用于将所述频域响应幅度减去所述拟合幅度, 获取矫正后 有效幅度;
第三获取单元, 用于根据所述矫正后有效幅度,对除所述矫正后有效幅度 外的幅度进行插值, 获取矫正后频域响应幅度;
第二故障分析单元, 用于根据所述矫正后频域响应幅度进行信道故障分 结合第二方面的第四种实现方式,本发明实施例的第二方面的第五种实现 方式中, 所述第二故障分析单元还包括:
获取模块, 用于根据所述矫正后频域响应幅度, 获取频域响应幅度曲线中 连续的两个幅度极值点间频率差△ f, 所述两个幅度极值点为两个幅度极大值 点或两个幅度极小值点;
第一计算模块, 用于根据 Δ t=l/ Δ f计算微反射时延△ t;
第二计算模块, 用于根据所述 A t和信号的传输速度 v, 计算两个故障点 之间的距离 TDR= Δ t* v/2。
结合第二方面的第四种实现方式,本发明实施例的第二方面的第六种实现 方式中, 所述设备还包括:
第四获取单元, 用于根据所述频域响应获取频域响应相位;
第五获取单元, 用于利用所述矫正后频域响应幅度和所述频域响应相位, 获取矫正后频域响应;
第六获取单元, 用于将所述矫正后频域响应经频时转换, 获取矫正后时域 抽头系数;
第三故障分析单元, 用于根据所述矫正后时域抽头系数进行信道故障分 析。
从以上技术方案可以看出, 本发明实施例具有以下优点:
根据获得的信道斜率值进行故障分析,由于信道斜率值为新的故障分析参 数, 这样丰富了信道故障分析的手段, 使信道故障分析更加准确。 附图说明
图 1是本发明实施例中故障分析方法的一个实施例示意图;
图 2是本发明实施例中故障分析方法的另一个实施例示意图;
图 3是本发明实施例中故障分析方法的另一个实施例示意图;
图 4是本发明实施例中故障分析方法的另一个实施例示意图;
图 5是本发明实施例中故障分析方法的另一个实施例示意图;
图 6是本发明实施例中故障分析方法的另一个实施例示意图;
图 7是本发明实施例中故障分析方法的另一个实施例示意图;
图 8是本发明实施例中故障分析设备的一个实施例示意图;
图 9是本发明实施例中故障分析设备的另一个实施例示意图;
图 10是本发明实施例中故障分析设备的另一个实施例示意图;
图 11是本发明实施例中故障分析设备的另一个实施例示意图;
图 12是本发明实施例中故障分析设备的另一个实施例示意图;
图 13是本发明实施例中故障分析设备的另一个实施例示意图;
图 14是本发明实施例中故障分析设备的另一个实施例示意图;
图 15是本发明实施例中故障分析设备的另一个实施例示意图。 具体实施方式
本发明实施例提供了一种故障分析方法及设备,丰富了信道故障分析的手 段, 使信道故障分析更加准确。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施 例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所 描述的实施例仅仅是本发明一部分的实施例, 而不是全部的实施例。基于本发 明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所 有其他实施例, 都应当属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语"第一"、 "第二 "等(如 果存在)是用于区别类似的对象, 而不必用于描述特定的顺序或先后次序。 应 该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以 除了在这里图示或描述的内容以外的顺序实施。 此外, 术语 "包括"和 "具有" 以及他们的任何变形, 意图在于覆盖不排他的包含, 例如, 包含了一系列步骤 或单元的过程、 方法、 系统、 产品或设备不必限于清楚地列出的那些步骤或单 元, 而是可包括没有清楚地列出的或对于这些过程、 方法、 产品或设备固有的 其它步骤或单元。
请参阅图 1, 本发明实施例中故障分析方法的一个实施例包括:
101、 从混合光纤同轴电缆网 HFC获取信道的频域响应幅度;
在故障分析时, 可以从 HFC网络中直接获取信道的频域响应幅度, 直接 获取信道的频域响应幅度的方式可以是通过网络分析仪等仪器直接对信道测 试获得通信信道中各子载波频率 ... , fn, 和各频率对应的幅度值, 由各子 载波频率和其对应幅度值组成的幅频曲线即信道的频域响应幅度。
在实际应用中, 直接获取信道的频域响应幅度也可以釆用其他方式,如在 有线电缆数据服务接口规范 DOCSIS3.1中,定义了预均衡器( re-equalization ), 该预均衡器釆用频域均衡, 预均衡器为一个具有多个抽头系数的线性滤波器, 这些抽头系数则称为预均衡系数,预均衡系数为一个字符串, 由于预均衡器釆 用的频域均衡, 由从内部设有预均衡器的 HFC网络设备中釆集的抽头系数可 以直接获得频域响应幅度, 只要能够直接釆集获得频域响应幅度即可, 具体方 式此处不作限定。 102、 对频域响应幅度的有效部分进行线性拟合, 确定信道斜率值; 需要说明的是, 存在斜率的边缘信道的频域响应存在如下两个规律:
1 )获得信道的带内频域响应,将幅度单位换算成其对数单位(如 dB或 B ) 后, 频率和幅度成线性关系;
这个现象的产生跟线路器件的特性有关: 如, 电缆的衰减损耗跟频率成线 性关系; 为了补偿电缆衰减引起的斜率特性, 放大器可设置增益斜率, 而增益 斜率体现的也是幅度与频率的线性关系。 当衰减斜率(负值)跟增益斜率(正 值)存在偏差时, 则整个信道的带内频域响应跟频率表现出线性关系。
2 )只有中间约 80%的频域响应幅度表现出线性关系, 左右 10%的幅度出 现归零现象。
一般来说,频域响应幅度表现出线性关系的部分称为频域响应幅度的有效 部分, 这个现象跟时域抽头系数的数量有关系, 抽头系数数量越多, 频响曲线 的两个极值点就越向两边平移, 线性区域则越宽。要使整个频域都与幅度都成 线性, 则要求时域抽头系数为无穷多个。
本实施例中, 获得频域响应幅度后, 即可根据频域响应幅度确定频域响应 幅度有效部分,频域响应幅度的有效部分具体即为频域响应幅度表现出线性关 系的部分。
由于频域响应幅度的有效部分表现出线性关系,对频域响应幅度的有效部 分进行线性拟合(或线性回归)即可确定信道斜率值, 信道斜率值即信道的频 域响应幅度的有效部分经线性拟合后的斜率值。
103、 根据信道斜率值进行信道故障分析。
信道斜率值能反应信道的一些方面的真实情况,根据信道斜率值能够进行 信道故障分析。
本实施例根据获得的信道斜率值进行故障分析,由于信道斜率值为新的故 障分析参数, 这样丰富了信道故障分析的手段, 使信道故障分析更加准确。
图 1所示的实施例中, 从混合光纤同轴电缆网 HFC获取频域响应幅度的 方式也可以是根据预均衡系数间接获取, 请参阅图 2, 本发明故障分析方法的 另一个实施例包括:
201、 根据从 HFC网络设备获取的预均衡系数, 获取时域抽头系数; 有线电缆数据服务接口规范 DOCSIS3.0定义了预均衡器 ( pre-equalizatio n ), DOCSIS3.0中定义的预均衡器为一个具有 24个抽头系数的线性滤波器, 这 24个系数则称为预均衡系数,根据预均衡系数可以转换获得时域抽头系数, 带内频响等参数, 每个时域抽头系数的时延为 1个符号 (Symbol ), 每个时域 抽头系数有不同的幅度。
需要说明的是,本实施例中, HFC网络设备为内部设有上述预均衡器的 H
FC网络设备, HFC网络设备可以为同轴电缆局端接入设备( CMTS, Cable Modem Terminal System )或电缆调制解调器 (CM , Cable Modem )等, 此 处不作限定。
在故障分析时, 可以在局域网或者广域网中从 HFC网络设备中预先釆集 获取预均衡器的所有预均衡系数, 由预均衡系数可以获得所有时域抽头系数。
202、 对时域抽头系数进行时频转换获取频域响应;
对所有时域抽头系数进行时频变换,如傅立叶变换, 可得到信道的频域响 应。
由于目前内部设有预均衡器的 HFC网络设备中, 线性滤波器时域抽头系 数较少, 一般只有 24个, 每个时域抽头系数对应一个时域点数, 为了提高精 度, 可在时域点数后面补 0至一定长度(如 256 )成新的系数, 再转化到频域 响应, 使频域响应点数更多, 例如, 当时域抽头系数个数为 24, 频域点数为 2 56时, 设时域抽头系数为 C=(C1, C24), 后面补 256-24=232个 0获得新的 系数为 C'=(C1, C24, 0, 0),对其进行时频变换可得到频域响应 F=FFT(C') =(F1, ... , F256)。
203、 根据频域响应获取频域响应幅度;
对步骤 202中得到的频域响应求幅度, 可以获得信道的频域响应的幅度, 例如步骤 202中得到频域响应 F=FFT(C')=(F1, ... , F256), 对频域响应 F求幅 度, 可获得信道的频域响应幅度 Fmag=(Fmagl,…, Fmag256)。
204、 对频域响应幅度的有效部分进行线性拟合, 确定信道斜率值; 本实施例中,获得频域响应幅度后, 即可根据频域响应幅度确定频域响应 幅度有效部分,频域响应幅度的有效部分具体即为频域响应幅度表现出线性关 系的部分。
由于频域响应幅度的有效部分表现出线性关系,对频域响应幅度的有效部 分进行线性拟合(或线性回归)即可确定信道斜率值, 信道斜率值即信道的频 域响应幅度的有效部分经线性拟合后的斜率值。
205、 根据信道斜率值进行信道故障分析;
信道斜率值能反映信道一些方面的真实情况,根据信道斜率值能够进行信 道故障分析。
本实施例中,信道的频域响应幅度从时域抽头系数变换获得,根据信道的 频域响应幅度获得的信道斜率值进行故障分析,由于信道斜率值为新的故障分 析参数, 这样丰富了信道故障分析的手段, 使信道故障分析更加准确。
图 1或图 2所示的实施例中,根据信道斜率值进行信道故障分析有多种方 式, 如根据信道斜率值可以分析信道质量, 其中, 信道斜率值与信道质量成反 比, 下面以根据信道斜率值分析信道质量为例说明进行故障分析的过程。
请参阅图 3, 本发明故障分析方法的另一个实施例包括:
301、 根据从 HFC网络设备获取的预均衡系数, 获取时域抽头系数; 有线电缆数据服务接口规范 DOCSIS3.0定义了预均衡器 ( pre-equalizatio n ), DOCSIS3.0中定义的预均衡器为一个具有 24个抽头系数的线性滤波器, 这 24个系数则称为预均衡系数,根据预均衡系数可以转换获得时域抽头系数, 带内频响等参数, 每个时域抽头系数的时延为 1个符号 (Symbol ), 每个时域 抽头系数有不同的幅度。
需要说明的是,本实施例中, HFC网络设备为内部设有上述预均衡器的 H
FC网络设备, HFC网络设备可以为 CMTS或 CM等, 此处不作限定。
在故障分析时, 可以在局域网或者广域网中从 HFC网络设备中预先釆集 获取预均衡器的所有预均衡系数, 由预均衡系数可以获得所有时域抽头系数。
302、 对时域抽头系数进行时频转换获取频域响应;
对所有时域抽头系数进行时频变换,如傅立叶变换, 可得到信道的频域响 应。
由于目前内部设有预均衡器的 HFC网络设备中, 线性滤波器时域抽头系 数较少, 一般只有 24个, 每个时域抽头系数对应一个时域点数, 为了提高精 度, 可在时域点数后面补 0至一定长度(如 256 )成新的系数, 再转化到频域 响应, 使频域响应点数更多, 例如, 当时域抽头系数个数为 24, 频域点数为 2 56时, 设时域抽头系数为 C=(C1, C24), 后面补 256-24=232个 0获得新的 系数为 C'=(C1, ... , C24,0, ... , 0),对其进行时频变换可得到频域响应 F=FFT(C') =(F1, ... , F256)。
303、 根据频域响应获取频域响应幅度;
对步骤 302中得到的频域响应求幅度, 可以获得信道的频域响应的幅度, 例如步骤 302中得到频域响应 F=FFT(C')=(F1,... ,F256),对频域响应 F求幅度, 可获得信道的频域响应幅度 Fmag=(Fmagl,...,Fmag256)。
304、 对频域响应幅度的有效部分进行线性拟合, 确定信道斜率值; 本实施例中,获得频域响应幅度后, 即可根据频域响应幅度确定频域响应 幅度有效部分,频域响应幅度的有效部分具体即为频域响应幅度表现出线性关 系的部分。
由于频域响应幅度的有效部分表现出线性关系,对频域响应幅度的有效部 分进行线性拟合(或线性回归)即可确定信道斜率值, 信道斜率值即信道的频 域响应幅度的有效部分经线性拟合后的斜率值。
305、 根据信道斜率值分析信道质量;
根据信道斜率值可以确定信道质量,信道斜率值与信道质量成反比,信道 斜率值越大, 信道越不平坦, 将会导致越多的误码率, 信道质量即越低。
根据信道斜率值进行故障分析有多种方式,此处仅以根据信道斜率值分析 信道质量为例进行说明, 可以理解的是, 在实际应用中, 根据信道斜率值进行 信道故障分析也可以为其他方式, 例如: 也可结合网络拓朴结构, 对比分析多 个不同用户信道的信道斜率值,寻找导致信道倾斜的位置和原因,并进行修复, 如,发现某放大器下的所有用户的信道斜率值都比较大, 可以推断是由于放大 器的增益斜率调整不当导致的, 可根据信道的斜率值进行相应的补偿,使得信 道斜率归零, 带内频域响应平坦, 从而提高信号的传输质量。
需要说明的是根据信道斜率值进行信道故障分析,也可以结合釆用多种根 据信道斜率值进行信道故障分析的手段进行故障分析, 此处不作限定。
可以理解的是, 本实施例中, 更更进一步描述了根据信道斜率值进行故障 分析的具体手段同样可以应用于直接获取频域响应幅度的实施例中,此处不作 限定。
本实施例中,信道的频域响应幅度从时域抽头系数变换获得,根据信道的 频域响应幅度获得的信道斜率值进行故障分析,由于信道斜率值为新的故障分 析参数, 这样丰富了信道故障分析的手段, 使信道故障分析更加准确, 同时更 进一步描述了根据信道斜率值进行故障分析的具体手段, 使实现方式更加具 体。
下面以一具体实施例对频域响应幅度的有效部分进行线性拟合,确定信道 斜率值的具体过程进行描述, 请参阅图 4, 本发明故障分析方法的另一个实施 例包括:
401、 根据从 HFC网络设备获取的预均衡系数, 获取时域抽头系数; 有线电缆数据服务接口规范 DOCSIS3.0定义了预均衡器( pre-equalizatio n ), DOCSIS3.0中定义的预均衡器为一个具有 24个抽头系数的线性滤波器, 这 24个系数则称为预均衡系数,根据预均衡系数可以转换获得时域抽头系数, 带内频响等参数, 每个时域抽头系数的时延为 1个符号 (Symbol ), 每个时域 抽头系数有不同的幅度。
需要说明的是,本实施例中, HFC网络设备为内部设有上述预均衡器的 H FC网络设备, HFC网络设备可以为 CMTS或 CM等, 此处不作限定。
在故障分析时, 可以在局域网或者广域网中从 HFC网络设备中预先釆集 获取预均衡器的所有预均衡系数, 由预均衡系数可以获得所有时域抽头系数。
402、 对时域抽头系数进行时频转换获取频域响应;
对所有时域抽头系数进行时频变换,如傅立叶变换, 可得到信道的频域响 应。
由于目前内部设有预均衡器的 HFC网络设备中, 线性滤波器时域抽头系 数较少, 一般只有 24个, 每个时域抽头系数对应一个时域点数, 为了提高精 度, 可在时域点数后面补 0至一定长度(如 256 )成新的系数, 再转化到频域 响应, 使频域响应点数更多, 例如, 当时域抽头系数个数为 24, 频域点数为 2 56时, 设时域抽头系数为 C=(C1, C24), 后面补 256-24=232个 0获得新的 系数为 C'=(C1, ... , C24,0, ... , 0),对其进行时频变换可得到频域响应 F=FFT(C') =(F1, ... , F256)。
403、 根据频域响应获取频域响应幅度;
对步骤 402中得到的频域响应求幅度, 可以获得信道的频域响应的幅度, 例如步骤 402中得到频域响应 F=FFT(C')=(F1, ... , F256), 对频域响应 F求幅 度, 可获得信道的频域响应幅度 Fmag=(Fmagl, Fmag256)。
404、 根据频域响应幅度的有效部分, 查询与频域响应幅度的有效部分的 幅度曲线相似度最高, 且平方误差 (FmagB -Y)2值最小的目标直线 Y=kX+b; 线性拟合, 或线性回归, 就是寻找一条与幅度曲线 FmagB相似度最高, 使平方误差 最小的直线 Y=kX+b。
本实施例中,频域响应幅度的有效部分具体即为频域响应幅度表现出线性 关系的部分,根据频域响应幅度的有效部分, 即可查询与频域响应幅度的有效 部分的幅度曲线相似度最高, 且平方误差 (FmagB -Y)2值最小的目标直线
Y=kX+b, 其中, FmagB为频域响应幅度的有效部分;
上述线性拟合中如何求得参数 k和 b, 使得误差最小, 可以釆用最常用的 Excel, Origin, MATLAB等, 直接由频域响应幅度的有效部分 FmagB获得 k 和 b, 此处不作限定, 在算得参数 k和 b后斜率值 。
由于频域响应幅度的有效部分表现出线性关系,对频域响应幅度的有效部 分进行线性拟合后(或线性回归)即可确定信道斜率值, 信道斜率值即信道的 频域响应幅度的有效部分经线性拟合后的斜率值。
405、 确定信道斜率值为 k;
根据步骤 404中得到的目标直线 Y=kX+b, 即可确定 k为信道斜率值。
406、 根据信道斜率值进行信道故障分析;
信道斜率值能反映信道一些方面的真实情况,根据信道斜率值能够进行信 道故障分析,根据信道斜率值进行故障分析的方法可以与图 3所示实施例中相 同, 此处不再赘述。
可以理解的是, 本实施例中, 更进一步描述了对频域响应幅度的有效部分 进行线性拟合,确定信道斜率值的具体手段同样可以应用于直接获取频域响应 幅度的实施例中, 此处不作限定。
本实施例中,信道的频域响应幅度从时域抽头系数变换获得,根据信道的 频域响应幅度获得的信道斜率值进行故障分析,由于信道斜率值为新的故障分 析参数, 这样丰富了信道故障分析的手段, 使信道故障分析更加准确, 同时更 进一步描述了对频域响应幅度的有效部分进行线性拟合,确定信道斜率值的具 体手段, 使实现方式更加具体。
在从时域抽头系数变换获取频域响应幅度时, 由于在上行边缘信道(如, 以 8MHz、 38MHz等为中心频点的信道), CMTS或 CM等 HFC网络设备的带 宽滤波器边缘效应很明显, 因此获取的频域响应幅度会有很陡的斜率特性,预 均衡系数也会对这些不平坦进行补偿。当滤波器或信道自身斜率特性主导预均 衡系数时, 就会影响对信道的故障分析, 导致故障误判、 故障定位不准确等, 因此在从时域抽头系数变换获取频域响应幅度时,可以对获取的时域抽头系数 进行斜率矫正, 根据矫正后获得的参数(如矫正后频域响应幅度, 矫正后时域 抽头系数等)进行故障分析, 下面以具体实施例进行描述。
请参阅图 5, 本发明故障分析方法的另一个实施例包括:
501、 根据从 HFC网络设备获取的预均衡系数, 获取时域抽头系数; 有线电缆数据服务接口规范 DOCSIS3.0定义了预均衡器 ( pre-equalizatio n ), DOCSIS3.0中定义的预均衡器为一个具有 24个抽头系数的线性滤波器, 这 24个系数则称为预均衡系数,根据预均衡系数可以转换获得时域抽头系数, 带内频响等参数, 每个时域抽头系数的时延为 1个符号 (Symbol ), 每个时域 抽头系数有不同的幅度。
需要说明的是,本实施例中, HFC网络设备为内部设有上述预均衡器的 H FC网络设备, HFC网络设备可以为 CMTS或 CM等, 此处不作限定。
在故障分析时, 可以在局域网或者广域网中从 HFC网络设备中预先釆集 获取预均衡器的所有预均衡系数, 由预均衡系数可以获得所有时域抽头系数。
502、 对时域抽头系数进行时频转换获取频域响应;
对所有时域抽头系数进行时频变换,如傅立叶变换, 可得到信道的频域响 应。
由于目前内部设有预均衡器的 HFC网络设备中, 线性滤波器时域抽头系 数较少, 一般只有 24个, 每个时域抽头系数对应一个时域点数, 为了提高精 度, 可在时域点数后面补 0至一定长度(如 256 )成新的系数, 再转化到频域 响应, 使频域响应点数更多, 例如, 当时域抽头系数个数为 24, 频域点数为 2 56时, 设时域抽头系数为 C=(C1,... ,C24), 后面补 256-24=232个 0获得新的 系数为 C'=(C1 , ... , C24,0, ... , 0),对其进行时频变换可得到频域响应?=??^〇') =(F1 , ... , F256)。
503、 根据频域响应获取频域响应幅度;
对步骤 502中得到的频域响应求幅度, 可以获得信道的频域响应的幅度, 例如步骤 502中得到频域响应 F=FFT(C')=(F1,... ,F256),对频域响应 F求幅度, 可获得信道的频域响应幅度 Fmag=(Fmagl, ... ,Fmag256)。
504、 根据频域响应幅度的有效部分, 查询与频域响应幅度的有效部分的 幅度曲线相似度最高, 且平方误差 (FmagB -Y)2值最小的目标直线 Y=kX+b;
线性拟合, 或线性回归, 就是寻找一条与幅度曲线 FmagB相似度最高, 使平方误差 最小的直线 Y=kX+b。
本实施例中,频域响应幅度的有效部分具体即为频域响应幅度表现出线性 关系的部分,根据频域响应幅度的有效部分, 即可查询与频域响应幅度的有效 部分的幅度曲线相似度最高, 且平方误差 (FmagB -Y)2值最小的目标直线
Y=kX+b, 其中, FmagB为频域响应幅度的有效部分;
上述线性拟合中如何求得参数 k和 b, 使得误差最小, 可以釆用最常用的
Excel, Origin, MATLAB等, 直接由频域响应幅度的有效部分 FmagB获得 k 和 b, 此处不作限定, 在算得参数 k和 b后斜率值 。
由于频域响应幅度的有效部分表现出线性关系,对频域响应幅度的有效部 分进行线性拟合后(或线性回归)即可确定信道斜率值, 信道斜率值即信道的 频域响应幅度的有效部分经线性拟合后的斜率值。
505、 确定信道斜率值为 k, 拟合幅度为 Y;
根据步骤 504中得到的目标直线 Y=kX+b, 即可确定 k为信道斜率值, 拟 合幅度为 Y。
506、 根据信道斜率值进行信道故障分析;
信道斜率值能反应信道的一些方面的真实情况,根据信道斜率值能够进行 信道故障分析,根据信道斜率值进行故障分析的方法可以与图 3所示实施例中 相同, 此处不再赘述。
507、 将频域响应幅度减去拟合幅度, 获取矫正后有效幅度;
将频域响应幅度数值减去拟合幅度数值,即可从信道频域响应中去除斜率 特性, 获得矫正后有效幅度。
508、 根据矫正后有效幅度, 对除矫正后有效幅度外的幅度进行插值, 获 取矫正后频域响应幅度;
根据矫正后有效幅度,对除矫正后有效幅度外的幅度进行插值, 进行插值 的方式可以釆用 MATLAB进行插值, 可以获得矫正后频域响应幅度, 对幅度 进行插值的具体手段为现有技术, 此处不作限定。
509、 根据矫正后频域响应幅度进行故障分析。
矫正后频域响幅度可以反映信道一些方面的真实情况,根据信道斜率值能 够进行信道故障分析。
通过分析矫正后频域响应幅度曲线可以确定频域响应幅度曲线中任意两 点间的频率差, 因此, 根据矫正后频域响应幅度, 可以获得频域响应幅度曲线 中连续的两个幅度极大值点间或两个幅度极小值点的频率差△ f;才艮据 Δ f计算 微反射时延, 微反射的时延为频率点差值的倒数, 即 At=l/Af; 根据 At和信 号的传输速度 v, 计算两个故障点之间的距离 TDR=At*v/2, 知道两个故障点 之间的距离, 可以反映故障信息, 进行故障定位。
需要说明的是, 矫正后频域响应幅度还可以用于计算微反射水平 MRLevel, 通过分析矫正后频 i或响应幅度曲线, 可以知道矫正后频 i或响应幅度 起伏的大小, 即幅度最大值与幅度最小值的差, 可以计算出 MRLevel, 用于评 估线路微反射的严重程度, MRLevel 大小跟信道频域响应幅度曲线的波动有 关, 幅度波动越大, MRLevel值则越大, 故障越严重。 通常根据 MRLevel的 大小, 将 CM的网络状态分为三个级别, 见表 1。
表 1 根据 MRLevel的大小, 定义三种 CM的网络状态
Figure imgf000016_0001
在根据矫正后频域响应幅度最大值与幅度最小值的差, 计算出 MRLevel 后, 可在网络处于亚健康时(即故障影响业务之前), 就预先发现、 定位和修 复故障, 从而提高用户体验。
可以理解的是, 本实施例中, 获取矫正后频域响应幅度, 并根据矫正后频 域响应幅度进行故障分析的内容同样可以应用于直接获取频域响应幅度的实 施例中, 此处不作限定。
本实施例中,信道的频域响应幅度从时域抽头系数变换获得,根据信道的 频域响应幅度获得的信道斜率值进行故障分析,由于信道斜率值为新的故障分 析参数, 这样丰富了信道故障分析的手段, 使信道故障分析更加准确, 同时获 得了矫正后频域响应幅度,避免了直接使用频域响应幅度进行故障分析导致的 信道故障分析不准确的问题。
在图 5所示实施例的基础上,还可以进一步获得矫正后时域抽头系数,根 据矫正后时域抽头系数进行故障分析, 请参阅图 6, 本发明故障分析方法的另 一个实施例包括:
601、 根据从 HFC网络设备获取的预均衡系数, 获取时域抽头系数; 有线电缆数据服务接口规范 DOCSIS3.0定义了预均衡器( pre-equalizatio n ), DOCSIS3.0中定义的预均衡器为一个具有 24个抽头系数的线性滤波器, 这 24个系数则称为预均衡系数,根据预均衡系数可以转换获得时域抽头系数, 带内频响等参数, 每个时域抽头系数的时延为 1个符号 (Symbol ), 每个时域 抽头系数有不同的幅度。
需要说明的是,本实施例中, HFC网络设备为内部设有上述预均衡器的 H FC网络设备, HFC网络设备可以为 CMTS或 CM等, 此处不作限定。
在故障分析时, 可以在局域网或者广域网中从 HFC网络设备中预先釆集 获取预均衡器的所有预均衡系数, 由预均衡系数可以获得所有时域抽头系数。
602、 对时域抽头系数进行时频转换获取频域响应;
对所有时域抽头系数进行时频变换,如傅立叶变换, 可得到信道的频域响 应。
由于目前内部设有预均衡器的 HFC网络设备中, 线性滤波器时域抽头系 数较少, 一般只有 24个, 每个时域抽头系数对应一个时域点数, 为了提高精 度, 可在时域点数后面补 0至一定长度(如 256 )成新的系数, 再转化到频域 响应, 使频域响应点数更多, 例如, 当时域抽头系数个数为 24, 频域点数为 2 56时, 设时域抽头系数为 C=(C1,...,C24), 后面补 256-24=232个 0获得新的 系数为 C'=(C1,...,C24,0,... ,0), 对其进行时频变换可得到频域响应 F=FFT(C') =(F1,...,F256)。
603、 根据频域响应获取频域响应幅度;
对步骤 602中得到的频域响应求幅度, 可以获得信道的频域响应的幅度, 例如步骤 602中得到频域响应 F=FFT(C')=(F1,... ,F256),对频域响应 F求幅度, 可获得信道的频域响应幅度 Fmag=(Fmagl, ... ,Fmag256)。
604、 根据频域响应幅度的有效部分, 查询与频域响应幅度的有效部分的 幅度曲线相似度最高, 且平方误差 (FmagB -Y)2值最小的目标直线 Y=kX+b; 线性拟合, 或线性回归, 就是寻找一条与幅度曲线 FmagB相似度最高, 使平方误差 最小的直线 Y=kX+b。
本实施例中,频域响应幅度的有效部分具体即为频域响应幅度表现出线性 关系的部分,根据频域响应幅度的有效部分, 即可查询与频域响应幅度的有效 部分的幅度曲线相似度最高, 且平方误差 (FmagB -Y)2值最小的目标直线
Y=kX+b, 其中, FmagB为频域响应幅度的有效部分;
上述线性拟合中如何求得参数 k和 b, 使得误差最小, 可以釆用最常用的 Excel, Origin, MATLAB等, 直接由频域响应幅度的有效部分 FmagB获得 k 和 b, 此处不作限定, 在算得参数 k和 b后斜率值 。
由于频域响应幅度的有效部分表现出线性关系,对频域响应幅度的有效部 分进行线性拟合后(或线性回归)即可确定信道斜率值, 信道斜率值即信道的 频域响应幅度的有效部分经线性拟合后的斜率值。
605、 确定信道斜率值为 k, 拟合幅度为 Y;
根据步骤 604中得到的目标直线 Y=kX+b, 即可确定 k为信道斜率值, 拟 合幅度为 Y。
606、 根据信道斜率值进行信道故障分析;
信道斜率值能反应信道的一些方面的真实情况,根据信道斜率值能够进行 信道故障分析,根据信道斜率值进行故障分析的方法可以与图 3所示实施例中 相同, 此处不再赘述。
607、 将频域响应幅度减去拟合幅度, 获取矫正后有效幅度;
将频域响应幅度数值减去拟合幅度数值,即可从信道频域响应中去除斜率 特性, 获得矫正后有效幅度。
608、 根据矫正后有效幅度, 对除矫正后有效幅度外的幅度进行插值, 获 取矫正后频域响应幅度;
根据矫正后有效幅度,对除矫正后有效幅度外的幅度进行插值, 进行插值 的方式可以釆用 MATLAB进行插值, 可以获得矫正后频域响应幅度, 对幅度 进行插值的具体手段为现有技术, 此处不作限定。
609、 根据矫正后频域响应幅度进行故障分析。 矫正后频域响幅度可以反映信道一些方面的真实情况,根据信道斜率值能 够进行信道故障分析。
利用矫正后频域响应幅度进行信道故障分析的方法与图 5 所示的实施例 中相同, 此处不再赘述。
610、 根据频域响应获取频域响应相位;
对频域响应求相位, 可获得频域响应相位。
611、 利用矫正后频 i或响应幅度和频 i或响应相位, 获取矫正后频 i或响应; 利用矫正后频域响应幅度和步骤 610中获得的频域响应相位,可以计算得 到矫正后频域响应。
612、 将矫正后频域响应经频时转换, 获取矫正后时域抽头系数; 将矫正后频域响应经频时转换, 例如反傅立叶变换, 可以获取矫正后时域 抽头系数。
613根据矫正后时域抽头系数进行信道故障分析。
利用矫正后的时域抽头系数可以计算如下表 2 中的信道衍生参数的一个 或多个,根据计算的信道衍生参数进行故障分析, 具体信道衍生参数的含义和 计算方法见 PNMP白皮书。
表 2信道衍生参数
Figure imgf000019_0001
可以理解的是, 本实施例中, 获取矫正后时域抽头系数, 并根据矫正后时 域抽头系数进行故障分析的内容同样可以应用于直接获取频域响应幅度的实 施例中, 此处不作限定。
为了便于更好的理解技术,下面以一个具体的应用场景对发明实施例作出 具体说明, 请参阅图 7, 本发明故障分析方法的另一个实施例包括:
701、 根据从 CM获取的预均衡系数, 获取时域抽头系数 C;
本实施例中,以 HFC网络设备为 CM为例进行说明,可以理解的是, HFC 网络设备为内部设有上述预均衡器的 HFC 网络设备, 如 HFC 网络设备还可 CMTS等, 此处不作限定。
在故障分析时, 可以在局域网或者广域网中从 HFC网络设备中预先釆集 获取预均衡器的所有预均衡系数, 由预均衡系数可以获得所有时域抽头系数, 如线性滤波器时域抽头系数为 24个, 设时域抽头系数为 C=(C1,... ,C24)。
702、 对时域抽头系数 C进行时频转换获取频域响应 F;
对所有时域抽头系数进行时频变换,如傅立叶变换, 可得到信道的频域响 应。
由于目前 CM中线性滤波器时域抽头系数较少,线性滤波器时域抽头系数 较少, 一般只有 24个, 每个时域抽头系数对应一个时域点数, 为了提高精度, 可在时域点数后面补 0至一定长度(如 256 )成新的系数,再转化到频域响应, 使频域响应点数更多, 例如, 当时域抽头系数个数为 24, 频域点数为 256时, 设时域抽头系数为 C=(C1 , C24), 后面补 256-24=232个 0获得新的系数为 C'=(C1, ... , C24,0, ... , 0), 对其进行时频变换可得到频域响应 F=FFT(C')=(F1, ... , F256)。
703、 根据频域响应 F获取频域响应幅度 Fmag;
对步骤 702 中得到的频域响应求幅度, 可以获得信道的频域响应幅度
Fmag, 例如步骤 702中得到频域响应 F=FFT(C')=(F1, ... , F256), 对频域响应 F求幅度, 可获得信道的频域响应幅度 Fmag=(Fmagl, ... , Fmag256)。
704、 根据频域响应幅度 Fmag的有效部分 FmagB, 查询与频域响应幅度 Fmag的有效部分 FmagB幅度曲线相似度最高, 且平方误差 (FmagB - γ)2值最小 的目标直线 Y=kX+b;
线性拟合, 或线性回归, 就是寻找一条与幅度曲线 FmagB相似度最高, 使平方误差 最小的直线 Y=kX+b。
本实施例中, 频域响应幅度 Fmag的有效部分 FmagB具体即为频域响应 幅度 Fmag表现出线性关系的部分, 根据频域响应幅度 Fmag 的有效部分 FmagB , 即可查询与频域响应幅度 Fmag的有效部分 FmagB的幅度曲线相似 度最高, 且平方误差 (FmagB -Y)2值最小的目标直线 Y=kX+b;
上述线性拟合中如何求得参数 k和 b, 使得误差最小, 可以釆用最常用的
Excel, Origin, MATLAB等, 直接由频域响应幅度 Fmag的有效部分 FmagB 获得 k和 b, 此处不作限定, 在算得参数 k和 b后斜率值 。
本实施例中, 如频域响应幅度的有效部分 FmagB 为幅度中间的 80%, FmagB=(Fmag27, ... , Fmag230), 则对 FmagB进行 Y=kX+b的线性拟合, 可获 得斜率 k, 和拟合幅度 Υ, Υ=(Υ27, ... , Υ230), 其中 X为频率点系列, 本实施 例中 Χ=(27,— , 230)/256。
705、 确定信道斜率值为 k, 拟合幅度为 Y;
根据步骤 704中得到的目标直线 Y=kX+b, 即可确定 k为信道斜率值, 拟 合幅度为 Y。
706、 根据信道斜率值 k进行信道故障分析;
信道斜率值能反应信道的一些方面的真实情况,根据信道斜率值能够进行 信道故障分析,根据信道斜率值进行故障分析的方法可以与图 3所示实施例中 相同, 此处不再赘述。
707、 将频域响应幅度 Fmag 减去拟合幅度 Y, 获取矫正后有效幅度 FmagB';
将频域响应幅度数值减去拟合幅度数值,即可从信道频域响应中去除斜率 特性, 获得矫正后有效幅度。
本实施例中, 将原始幅度 Fmag减去拟合幅度 Y, 获得矫正后有效幅度 FmagB' :
FmagB '=(Fmag27 ' , ■·· , Fmag230')=FmagB-Y=(Fmag27-Y27, ■·· , Fmag230- Υ230)。
708、 根据矫正后有效幅度 FmagB', 对除矫正后有效幅度外的幅度进行 插值, 获取矫正后频域响应幅度 Fmag';
根据矫正后有效幅度,对除矫正后有效幅度外的幅度进行插值, 进行插值 的方式可以釆用 MATLAB进行插值, 可以获得矫正后频域响应幅度, 对幅度 进行插值的具体手段为现有技术, 此处不作限定。
本实施例中, 如频域响应幅度的有效部分 FmagB为幅度中间的 80%, 根 据矫正后的有效幅度 FmagB', 插值获得左右两边 10%的幅度值分别为 FmagA' = ( Fmagl ', . . . ,Fmag26' )和 FmagC'=(Fmag231 ', . . . ,Fmag256'), 贝1 J矫正 后频域响应幅度: Fmag'=( FmagA', FmagB', FmagC')=(Fmagl ', . . . ,Fmag256' )。
709、 根据矫正后频域响应幅度 Fmag, 进行故障分析。
利用矫正后频域响应幅度进行信道故障分析的方法与图 5 所示的实施例 中相同, 此处不再赘述。
710、 4艮据频 i或响应获取频 i或响应相位 Fpha;
对频域响应 F求相位, 可获得频域响应相位 Fpha=(Fphal , ... ,Fpha256)。
711、 利用矫正后频域响应幅度 Fmag, 和频域响应相位 Fpha, 获取矫正 后频 i或响应 F';
本实施例中, 由矫正后频域响应幅度 Fmag, 和相位 Fpha可获得矫正后的 频域响应 F,=( F 1, , ... , F256') 。
712、 将矫正后频域响应 F'经频时转换, 获取矫正后时域抽头系数 C" ; 本实施例中, 对 F'进行时频变换, 如反傅里叶变换, 可获得时域系列 C" =(CV , ... , C256,),取前面 24个系数,则为矫正后的时域抽头系数 C=(C1,, ..., C24,)。
713、 根据矫正后时域抽头系数 C"进行信道故障分析。
利用矫正后的时域抽头系数可以计算如上表 2 中的信道衍生参数的一个 或多个,根据计算的信道衍生参数进行故障分析, 具体信道衍生参数的含义和 计算方法见 PNMP白皮书。
下面介绍本发明实施例中的故障分析设备的实施例, 请参阅图 8, 本发明 实施例中的故障分析设备的一个实施例包括:
第一获取单元 801, 用于从混合光纤同轴电缆网 HFC获取信道的频域响 应幅度;
第一确定单元 802, 用于对频域响应幅度的有效部分进行线性拟合, 确定 信道斜率值;
第一故障分析单元 803, 用于根据信道斜率值进行信道故障分析。
本实施例第一故障分析单元 803根据第一确定单元 802确定的信道斜率值 进行故障分析, 由于信道斜率值为新的故障分析参数, 这样丰富了信道故障分 析的手段, 使信道故障分析更加准确。 请参阅图 9, 本发明实施例中的故障分析设备的另一个实施例包括: 第一获取单元 901, 用于从混合光纤同轴电缆网 HFC获取信道的频域响 应幅度;
第一确定单元 902, 用于对频域响应幅度的有效部分进行线性拟合, 确定 信道斜率值;
第一故障分析单元 903, 用于根据信道斜率值进行信道故障分析。
本实施例故障分析设备中, 第一获取单元 901还可以进一步包括: 第一获取模块 9011, 用于根据从 HFC网络设备获取的预均衡系数, 获取 时域抽头系数;
第二获取模块 9012, 用于对时域抽头系数进行时频转换获取频域响应; 第三获取模块 9013, 用于根据频域响应获取频域响应幅度。
本实施例第一故障分析单元 903根据第一确定单元 902确定的信道斜率值 进行故障分析, 由于信道斜率值为新的故障分析参数, 这样丰富了信道故障分 析的手段, 使信道故障分析更加准确, 其次, 更进一步的描述了第一获取单元 901的结构设置, 使本发明设备结构设置更加灵活。
请参阅图 10, 本发明实施例中的故障分析设备的另一个实施例包括: 第一获取单元 1001, 用于从混合光纤同轴电缆网 HFC获取信道的频域响 应幅度;
第一确定单元 1002, 用于对频域响应幅度的有效部分进行线性拟合, 确 定信道斜率值;
第一故障分析单元 1003, 用于根据信道斜率值进行信道故障分析。
本实施例故障分析设备中, 第一故障分析单元 1003还可以进一步包括: 故障分析模块 10031, 用于根据信道斜率值分析信道质量, 其中, 信道斜 率值与信道质量成反比。
需要说明的是, 第一故障分析单元 1003还可以用于根据信道斜率值进行 其他故障分析, 在实际应用中, 第一故障分析单元 1003根据信道斜率值进行 信道故障分析也可以为其他方式, 例如: 也可结合网络拓朴结构, 对比分析多 个不同用户信道的信道斜率值,寻找导致信道倾斜的位置和原因,并进行修复, 如,发现某放大器下的所有用户的信道斜率值都比较大, 可以推断是由于放大 器的增益斜率调整不当导致的, 可根据信道的斜率值进行相应的补偿,使得信 道斜率归零, 带内频域响应平坦, 从而提高信号的传输质量。
可选的, 本实施例故障分析设备中, 第一获取单元 1001还可以进一步包 括:
第一获取模块 10011, 用于根据从 HFC 网络设备获取的预均衡系数, 获 取时域抽头系数;
第二获取模块 10012, 用于对时域抽头系数进行时频转换获取频域响应; 第三获取模块 10013, 用于根据频域响应获取频域响应幅度。
本实施例第一故障分析单元 1003根据第一确定单元 1002确定的信道斜率 值进行故障分析, 由于信道斜率值为新的故障分析参数, 这样丰富了信道故障 分析的手段, 使信道故障分析更加准确, 其次, 更进一步的描述了第一故障分 析单元 1001的结构设置, 使本发明设备结构设置更加灵活。
请参阅图 11, 本发明实施例中的故障分析设备的另一个实施例包括: 第一获取单元 1101, 用于从混合光纤同轴电缆网 HFC获取信道的频域响 应幅度;
第一确定单元 1102, 用于对频域响应幅度的有效部分进行线性拟合, 确 定信道斜率值;
第一故障分析单元 1103, 用于根据信道斜率值进行信道故障分析。
本实施例故障分析设备中, 第一确定单元 1102还可以进一步包括: 查询模块 11021, 用于根据频域响应幅度的有效部分, 查询与频域响应幅 度的有效部分的幅度曲线相似度最高,且平方误差 (FmagB -Y)2值最小的目标直 线 Y=kX+b, FmagB为频域响应幅度的有效部分;
第一确定模块 11022, 用于确定信道斜率值为 。
本实施例中, 第一获取单元 1101、 第一故障分析单元 1103也可以按照图 9、 图 10所示的实施例中所描述的第一获取单元、第一故障分析单元进行进一 步结构描述, 此处不作限定。
本实施例第一故障分析单元 1103根据第一确定单元 1102确定的信道斜率 值进行故障分析, 由于信道斜率值为新的故障分析参数, 这样丰富了信道故障 分析的手段, 使信道故障分析更加准确, 其次, 更进一步的描述了第一确定单 元 1102的结构设置, 使本发明设备结构设置更加灵活。
请参阅图 12, 本发明实施例中的故障分析设备的另一个实施例包括: 第一获取单元 1201, 用于从混合光纤同轴电缆网 HFC获取信道的频域响 应幅度;
第一确定单元 1202, 用于对频域响应幅度的有效部分进行线性拟合, 确 定信道斜率值;
第一故障分析单元 1203, 用于根据信道斜率值进行信道故障分析。
本实施例故障分析设备中, 第一确定单元 1202进一步包括:
查询模块 12021, 用于根据频域响应幅度的有效部分, 查询与频域响应幅 度的有效部分的幅度曲线相似度最高,且平方误差 (FmagB -Y)2值最小的目标直 线 Y=kX+b, FmagB为频域响应幅度的有效部分;
第一确定模块 12022, 用于确定信道斜率值为 。
本实施例故障分析设备中, 第一确定单元 1202还可以进一步包括: 第二确定模块 12023, 用于确定拟合幅度为 Y;
本实施例故障分析设备中, 还可以进一步包括:
第二获取单元 1204, 用于将频域响应幅度减去拟合幅度, 获取矫正后有 效幅度;
第三获取单元 1205, 用于根据矫正后有效幅度, 对除矫正后有效幅度外 的幅度进行插值, 获取矫正后频域响应幅度;
第二故障分析单元 1206, 用于根据矫正后频域响应幅度进行信道故障分 本实施例第一故障分析单元 1203根据第一确定单元 1202确定的信道斜率 值进行故障分析, 由于信道斜率值为新的故障分析参数, 这样丰富了信道故障 分析的手段, 使信道故障分析更加准确, 其次, 增加了对矫正后频域响应幅度 进行故障分析的结构, 使故障分析更加准确。
请参阅图 13, 本发明实施例中的故障分析设备的另一个实施例包括: 第一获取单元 1301, 用于从混合光纤同轴电缆网 HFC获取信道的频域响 应幅度;
第一确定单元 1302, 用于对频域响应幅度的有效部分进行线性拟合, 确 定信道斜率值;
第一故障分析单元 1303, 用于根据信道斜率值进行信道故障分析。
本实施例故障分析设备中, 第一确定单元 1302进一步包括: 查询模块 13021, 用于根据频域响应幅度的有效部分, 查询与频域响应幅 度的有效部分的幅度曲线相似度最高,且平方误差 (FmagB -Y)2值最小的目标直 线 Y=kX+b, FmagB为频域响应幅度的有效部分;
第一确定模块 13022, 用于确定信道斜率值为 。
本实施例故障分析设备中, 第一确定单元 1302还可以进一步包括: 第二确定模块 13023, 用于确定拟合幅度为 Y;
本实施例故障分析设备进一步包括:
第二获取单元 1304, 用于将频域响应幅度减去拟合幅度, 获取矫正后有 效幅度;
第三获取单元 1305, 用于根据矫正后有效幅度, 对除矫正后有效幅度外 的幅度进行插值, 获取矫正后频域响应幅度;
第二故障分析单元 1306, 用于根据矫正后频域响应幅度进行信道故障分 本实施例故障分析设备中, 第二故障分析单元 1306还可以进一步包括: 获取模块 13061, 用于根据矫正后频域响应幅度, 获取频域响应幅度曲线 中连续的两个幅度极值点间频率差△ f, 两个幅度极值点为两个幅度极大值点 或两个幅度极小值点;
第一计算模块 13062, 用于根据 =l/Af计算微反射时延 ;
第二计算模块 13063,用于根据 At和信号的传输速度 v,计算两个故障点 之间的距离 TDR= Δ t* v/2。
本实施例第一故障分析单元 1303根据第一确定单元 1302确定的信道斜率 值进行故障分析, 由于信道斜率值为新的故障分析参数, 这样丰富了信道故障 分析的手段, 使信道故障分析更加准确, 其次, 增加了对矫正后频域响应幅度 进行故障分析的结构, 并细化描述了第二故障分析单元的具体结构,使故障分 析更加准确。
请参阅图 14, 本发明实施例中的故障分析设备的另一个实施例包括: 第一获取单元 1401, 用于从混合光纤同轴电缆网 HFC获取信道的频域响 应幅度;
第一确定单元 1402, 用于对频域响应幅度的有效部分进行线性拟合, 确 定信道斜率值; 第一故障分析单元 1403, 用于根据信道斜率值进行信道故障分析。
本实施例故障分析设备中, 第一确定单元 1402进一步包括:
查询模块 14021, 用于根据频域响应幅度的有效部分, 查询与频域响应幅 度的有效部分的幅度曲线相似度最高,且平方误差 (FmagB -Y)2值最小的目标直 ϊ\ Y=kX+b, FmagB为频域响应幅度的有效部分;
第一确定模块 14022, 用于确定信道斜率值为 。
本实施例故障分析设备中, 第一确定单元 1402还可以进一步包括: 第二确定模块 14023, 用于确定拟合幅度为 Y;
本实施例故障分析设备进一步包括:
第二获取单元 1404, 用于将频域响应幅度减去拟合幅度, 获取矫正后有 效幅度;
第三获取单元 1405, 用于根据矫正后有效幅度, 对除矫正后有效幅度外 的幅度进行插值, 获取矫正后频域响应幅度;
第二故障分析单元 1406, 用于根据矫正后频域响应幅度进行信道故障分 析。
本实施例故障分析设备中, 第二故障分析单元 1406进一步包括: 获取模块 14061, 用于根据矫正后频域响应幅度, 获取频域响应幅度曲线 中连续的两个幅度极值点间频率差△ f, 两个幅度极值点为两个幅度极大值点 或两个幅度极小值点;
第一计算模块 14062, 用于根据 At=l/Af计算微反射时延 ;
第二计算模块 14063,用于根据 At和信号的传输速度 v,计算两个故障点 之间的距离 TDR= Δ t* v/2。
本实施例故障分析设备还可以进一步包括:
第四获取单元 1407, 用于根据频域响应获取频域响应相位;
第五获取单元 1408, 用于利用矫正后频域响应幅度和频域响应相位, 获 取矫正后频域响应;
第六获取单元 1409, 用于将矫正后频域响应经频时转换, 获取矫正后时 域抽头系数;
第三故障分析单元 1410, 用于根据矫正后时域抽头系数进行信道故障分 第三故障分析单元 1410可以利用矫正后的时域抽头系数可以计算如上表 2中的信道衍生参数的一个或多个, 根据计算的信道衍生参数进行故障分析, 具体信道衍生参数的含义和计算方法见 PNMP白皮书。
本实施例在图 13所示实施例的基础上, 进一步增加了获取矫正后抽头系 数, 以及根据对矫正后时域抽头系数进行故障分析的结构,使信道故障分析更 加准确。
为便于理解, 下面以一具体应用场景为例,对本实施例中的故障分析设备 的内部运作流程进行描述:
第一获取单元 1401从混合光纤同轴电缆网 HFC获取信道的频域响应幅 度;
第一确定单元 1402对频域响应幅度的有效部分进行线性拟合, 确定信道 斜率值;
第一故障分析单元 1403根据信道斜率值进行信道故障分析。
第一确定单元 1402对频域响应幅度的有效部分进行线性拟合, 确定信道 斜率值内部具体流程可以如下:
查询模块 14021根据频域响应幅度的有效部分,查询与频域响应幅度的有 效部分的幅度曲线相似度最高, 且平方误差 (FmagB -Y)2值最小的目标直线
Y=kX+b, FmagB为频域响应幅度的有效部分;
第一确定模块 14022确定信道斜率值为 k。
本发明故障分析设备获取矫正后频域响应幅度进行故障分析流程如下: 第一确定单元 1402中的第二确定模块 14023确定拟合幅度为 Y;
第二获取单元 1404将频域响应幅度减去拟合幅度,获取矫正后有效幅度; 第三获取单元 1405根据矫正后有效幅度, 对除矫正后有效幅度外的幅度 进行插值, 获取矫正后频域响应幅度;
第二故障分析单元 1406根据矫正后频域响应幅度进行信道故障分析。 其中, 第二故障分析单元 1406进行信道故障分析流程如下:
获取模块 14061根据矫正后频域响应幅度,获取频域响应幅度曲线中连续 的两个幅度极值点间频率差 A f, 两个幅度极值点为两个幅度极大值点或两个 幅度极小值点;
第一计算模块 14062根据 =l/Af计算微反射时延 At; 第二计算模块 14063根据 At和信号的传输速度 v, 计算两个故障点之间 的距离 TDR= At*v/2。
本实施例故障分析设备获取矫正后时域抽头系数进行故障分析的流程如 下:
第四获取单元 1407根据频域响应获取频域响应相位;
第五获取单元 1408利用矫正后频域响应幅度和频域响应相位, 获取矫正 后频域响应;
第六获取单元 1409将矫正后频域响应经频时转换, 获取矫正后时域抽头 系数;
第三故障分析单元 1410根据矫正后时域抽头系数进行信道故障分析。 图 15是本发明实施例提供的一种服务器结构示意图,该服务器 1500可因 配置或性能不同而产生比较大的差异, 可以包括一个或一个以上中央处理器 ( central processing units, CPU ) 1522 (例如, 一个或一个以上处理器)和存 储器 1532, 一个或一个以上存储应用程序 1542或数据 1544的存储介质 1530 (例如一个或一个以上海量存储设备)。 其中, 存储器 1532和存储介质 1530 可以是短暂存储或持久存储。 存储在存储介质 1530的程序可以包括一个或一 个以上模块(图示没标出),每个模块可以包括对服务器中的一系列指令操作。 更进一步地, 中央处理器 1522可以设置为与存储介质 1530通信, 在服务器 1800上执行存储介质 1530中的一系列指令操作。
服务器 1500还可以包括一个或一个以上电源 1526, 一个或一个以上有线 或无线网络接口 1550, 一个或一个以上输入输出接口 1558, 和 /或, 一个或一 个以上操作系统 1541, 例如 Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM等等。 器结构。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描述 的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置和方 法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性 的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另 外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个系统, 或 一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或直 接辆合或通信连接可以是通过一些接口, 装置或单元的间接辆合或通信连接, 可以是电性, 机械或其它的形式。 单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者 也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部 单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元 中。上述集成的单元既可以釆用硬件的形式实现,也可以釆用软件功能单元的 形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售 或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发 明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全 部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储 介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前述 的存储介质包括: U盘、 移动硬盘、 只读存储器( ROM, Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可以 存储程序代码的介质。
以上所述, 以上实施例仅用以说明本发明的技术方案, 而非对其限制; 尽 管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理 解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分 技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的本质脱 离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求
1、 一种故障分析方法, 其特征在于, 包括:
从混合光纤同轴电缆网 HFC获取信道的频域响应幅度;
对所述频域响应幅度的有效部分进行线性拟合, 确定信道斜率值; 根据所述信道斜率值进行信道故障分析。
2、 根据权利要求 1所述的方法, 其特征在于, 所述从混合光纤同轴电缆 网 HFC获取频域响应幅度包括:
根据从 HFC网络设备获取的预均衡系数, 获取时域抽头系数;
对所述时域抽头系数进行时频转换获取频域响应;
根据所述频域响应获取频域响应幅度。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述根据所述信道斜 率值进行信道故障分析包括:
根据所述信道斜率值分析信道质量, 其中, 所述信道斜率值与所述信道质 量成反比。
4、 根据权利要求 1至 2所述的方法, 其特征在于, 所述对所述频域响应 幅度的有效部分进行线性拟合, 确定信道斜率值, 包括:
根据所述频域响应幅度的有效部分,查询与所述频域响应幅度的有效部分 的幅度曲线相似度最高, 且平方误差 (FmagB - Y)2值最小的目标直线 Y=kX+b, 所述 FmagB为所述频域响应幅度的有效部分;
确定信道斜率值为 k。
5、 根据权利要求 4所述的方法, 其特征在于, 所述对所述频域响应幅度 的有效部分进行线性拟合后, 还包括确定拟合幅度为 Y;
所述方法还包括:
将所述频域响应幅度减去所述拟合幅度, 获取矫正后有效幅度; 根据所述矫正后有效幅度, 对除所述矫正后有效幅度外的幅度进行插值, 获取矫正后频域响应幅度;
根据所述矫正后频域响应幅度进行信道故障分析。
6、 根据权利要求 5所述的方法, 其特征在于, 所述根据所述矫正后频域 响应幅度进行故障分析包括:
根据所述矫正后频域响应幅度,获取频域响应幅度曲线中连续的两个幅度 极值点间频率差 A f, 所述两个幅度极值点为两个幅度极大值点或两个幅度极 小值点;
根据△ t=l/△ f计算微反射时延△ t;
根据所述 A t和信号的传输速度 v, 计算两个故障点之间的距离 TDR=A t*v/2。
7、 根据权利要求 5所述的方法, 其特征在于, 所述方法还包括: 才艮据所述频 i或响应获取频 i或响应相位;
利用所述矫正后频域响应幅度和所述频域响应相位, 获取矫正后频域响 应;
将所述矫正后频域响应经频时转换, 获取矫正后时域抽头系数; 根据所述矫正后时域抽头系数进行信道故障分析。
8、 一种故障分析设备, 其特征在于, 包括:
第一获取单元, 用于从混合光纤同轴电缆网 HFC获取信道的频域响应幅 度;
第一确定单元, 用于对所述频域响应幅度的有效部分进行线性拟合,确定 信道斜率值;
第一故障分析单元, 用于根据所述信道斜率值进行信道故障分析。
9、 根据权利要求 8所述的设备, 其特征在于, 所述第一获取单元包括: 第一获取模块, 用于根据从 HFC网络设备获取的预均衡系数, 获取时域 抽头系数;
第二获取模块, 用于对所述时域抽头系数进行时频转换获取频域响应; 第三获取模块, 用于根据所述频域响应获取频域响应幅度。
10、 根据权利要求 8或 9所述的设备, 其特征在于, 所述第一故障分析单 元包括:
故障分析模块, 用于根据所述信道斜率值分析信道质量, 其中, 所述信道 斜率值与所述信道质量成反比。
11、 根据权利要求 8或 9所述的设备, 其特征在于, 所述第一确定单元包 括:
查询模块, 用于根据所述频域响应幅度的有效部分, 查询与所述频域响应 幅度的有效部分的幅度曲线相似度最高,且平方误差 (FmagB - Y)2值最小的目标 直线 Y=kX+b, 所述 FmagB为所述频域响应幅度的有效部分;
第一确定模块, 用于确定信道斜率值为 。
12、 根据权利要求 11所述的设备, 其特征在于, 所述第一确定单元还包 括:
第二确定模块, 用于确定拟合幅度为 Y;
所述设备还包括,
第二获取单元, 用于将所述频域响应幅度减去所述拟合幅度, 获取矫正后 有效幅度;
第三获取单元, 用于根据所述矫正后有效幅度,对除所述矫正后有效幅度 外的幅度进行插值, 获取矫正后频域响应幅度;
第二故障分析单元, 用于根据所述矫正后频域响应幅度进行信道故障分
13、 根据权利要求 12所述的设备, 其特征在于, 所述第二故障分析单元 还包括:
获取模块, 用于根据所述矫正后频域响应幅度, 获取频域响应幅度曲线中 连续的两个幅度极值点间频率差△ f, 所述两个幅度极值点为两个幅度极大值 点或两个幅度极小值点;
第一计算模块, 用于根据 Δ t=l/ Δ f计算微反射时延△ t;
第二计算模块, 用于根据所述 At和信号的传输速度 v, 计算两个故障点 之间的距离 TDR= Δ t* v/2。
14、 根据权利要求 12所述的设备, 其特征在于, 所述设备还包括: 第四获取单元, 用于根据所述频域响应获取频域响应相位;
第五获取单元, 用于利用所述矫正后频域响应幅度和所述频域响应相位, 获取矫正后频域响应;
第六获取单元, 用于将所述矫正后频域响应经频时转换, 获取矫正后时域 抽头系数;
第三故障分析单元, 用于根据所述矫正后时域抽头系数进行信道故障分
PCT/CN2014/084252 2014-08-13 2014-08-13 一种故障分析方法及设备 WO2016023185A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14899608.5A EP3163313A4 (en) 2014-08-13 2014-08-13 Fault analysis method and device
PCT/CN2014/084252 WO2016023185A1 (zh) 2014-08-13 2014-08-13 一种故障分析方法及设备
CN201480007230.9A CN105829901B (zh) 2014-08-13 2014-08-13 一种故障分析方法及设备
US15/429,491 US10257018B2 (en) 2014-08-13 2017-02-10 Failure analysis method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/084252 WO2016023185A1 (zh) 2014-08-13 2014-08-13 一种故障分析方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/429,491 Continuation US10257018B2 (en) 2014-08-13 2017-02-10 Failure analysis method and device

Publications (1)

Publication Number Publication Date
WO2016023185A1 true WO2016023185A1 (zh) 2016-02-18

Family

ID=55303789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084252 WO2016023185A1 (zh) 2014-08-13 2014-08-13 一种故障分析方法及设备

Country Status (4)

Country Link
US (1) US10257018B2 (zh)
EP (1) EP3163313A4 (zh)
CN (1) CN105829901B (zh)
WO (1) WO2016023185A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110324066A (zh) * 2019-07-09 2019-10-11 北京市天元网络技术股份有限公司 一种基于cm预均衡值的hfc网络故障分析方法以及装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170026206A1 (en) * 2014-12-30 2017-01-26 Ikanos Communications, Inc. System and method for preventing phantom data communication links
WO2020232289A1 (en) * 2019-05-15 2020-11-19 Fluke Corporation Methods and devices for measurement of cables having improperly terminated far end
CN110569812B (zh) * 2019-09-12 2022-11-01 天津工业大学 一种故障信号的包络解调方法及包络解调系统
US10958485B1 (en) * 2019-12-11 2021-03-23 Viavi Solutions Inc. Methods and systems for performing analysis and correlation of DOCSIS 3.1 pre-equalization coefficients
CN115267408B (zh) * 2022-09-26 2023-01-20 华能辛店发电有限公司 基于人工智能的配电开关设备故障精准定位系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1993181A2 (en) * 2007-05-14 2008-11-19 General Electric Company Arc detector
CN102175917A (zh) * 2011-01-19 2011-09-07 西安交通大学 在线式非线性频谱分析与故障诊断仪
WO2012009757A1 (en) * 2010-07-21 2012-01-26 Kaelus Pty Ltd Method and apparatus for locating faults in communications networks
CN103969554A (zh) * 2014-05-30 2014-08-06 智友光电技术发展有限公司 高压电缆线路在线故障定位装置及其定位方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040073664A1 (en) * 2002-10-01 2004-04-15 Bestermann John R. Method and system for monitoring DOCSIS RF networks
US7769090B2 (en) * 2006-03-31 2010-08-03 Texas Instruments Incorporated Active link cable diagnostics
CN101309152A (zh) * 2008-06-20 2008-11-19 杭州圣茂科技有限公司 基于有线电视线传输网的以太网交换系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1993181A2 (en) * 2007-05-14 2008-11-19 General Electric Company Arc detector
WO2012009757A1 (en) * 2010-07-21 2012-01-26 Kaelus Pty Ltd Method and apparatus for locating faults in communications networks
CN102175917A (zh) * 2011-01-19 2011-09-07 西安交通大学 在线式非线性频谱分析与故障诊断仪
CN103969554A (zh) * 2014-05-30 2014-08-06 智友光电技术发展有限公司 高压电缆线路在线故障定位装置及其定位方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3163313A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110324066A (zh) * 2019-07-09 2019-10-11 北京市天元网络技术股份有限公司 一种基于cm预均衡值的hfc网络故障分析方法以及装置

Also Published As

Publication number Publication date
CN105829901B (zh) 2019-06-21
EP3163313A1 (en) 2017-05-03
US20170155541A1 (en) 2017-06-01
EP3163313A4 (en) 2017-06-14
CN105829901A (zh) 2016-08-03
US10257018B2 (en) 2019-04-09

Similar Documents

Publication Publication Date Title
WO2016023185A1 (zh) 一种故障分析方法及设备
JP5504327B2 (ja) 漏話推定の効率を高めるための補間方法および装置
US8526485B2 (en) Using equalization coefficients of end devices in a cable television network to determine and diagnose impairments in upstream channels
US20180270143A1 (en) Spectrum analysis capability in network and/or system communication devices
US20090110044A1 (en) Method and Apparatus for Deciding a Channel Impulse Response
US20070230555A1 (en) Active link cable diagnostics
US8817865B2 (en) Linear distortion and interference estimation using decision feedback equalizer coefficients
US20060029148A1 (en) Method and apparatus for training using variable transmit signal power levels
US9015786B2 (en) Noise ingress detection
US9203664B2 (en) Measurement of intermodulation products of digital signals
CA2888181C (en) Microreflection delay estimation in a catv network
US11456899B2 (en) Methods and systems for performing analysis and correlation of DOCSIS 3.1 pre-equalization coefficients
JP2010525731A (ja) マルチパスチャネルの遅延スプレッドを推定する方法及び装置
US9184878B2 (en) Non-disruptive network noise measurement
US10476737B2 (en) Hybrid fiber coaxial (HFC) network fault locating method, apparatus, and system
EP3584945B1 (en) Echo cancellation to alleviate timing varying channels
US20150110227A1 (en) Pilot-Less Noise Estimation
WO2015077941A1 (zh) 一种功率调整设备和方法
US20160198478A1 (en) Channel bandwidth switching method and network equipment
US9237040B1 (en) Pre-equalization enhancement for telecommunication networks
US10320489B2 (en) Channel estimation using intra-symbol frequency domain averaging
CN110574336B (zh) 网络拓扑结构的确定方法、装置和系统
US11552831B1 (en) Systems and methods for equalizer correction
KR102576386B1 (ko) 자기간섭 신호 제거 장치 및 방법
TWI612775B (zh) 用於離散多頻帶傳輸之方法及裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899608

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014899608

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014899608

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE