WO2016021998A1 - Metal alloy powder for 3d printer - Google Patents
Metal alloy powder for 3d printer Download PDFInfo
- Publication number
- WO2016021998A1 WO2016021998A1 PCT/KR2015/008320 KR2015008320W WO2016021998A1 WO 2016021998 A1 WO2016021998 A1 WO 2016021998A1 KR 2015008320 W KR2015008320 W KR 2015008320W WO 2016021998 A1 WO2016021998 A1 WO 2016021998A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- gas
- water
- stainless
- pressure
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
Definitions
- the powder shape is mainly made of a spherical powder as the cooling rate is slower than water.
- the disadvantage of this method is that the manufacturing cost is higher than the moisture content due to the use of a large amount of gas in the manufacturing process, and the nitrogen content in the powder is so high that the mechanical and physical properties required for the final product may not be realized. There is this.
- the nitrogen content in the powder is less than 1,500ppm, stainless and titanium alloy powder that can be reduced to 1/3 or less than the same composition of stainless and titanium alloy powder prepared by the conventional gas injection method and a method for producing the same It aims to provide.
- FIG. 1 Schematic diagram of the composite spray nozzle device
- Example 2 The same procedure as in Example 1 was conducted except that 400 kg was dissolved by high frequency dissolution to obtain a typical Fe 71 Cr 19 Ni 10 alloy composition (wt%) of the ST304L composition.
- the properties of the powder prepared according to Example 3 are shown in Table 1.
- Example 1 It carried out similarly to Example 1 except having set the pressure of the gas of Example 1 to 10 bar, respectively.
- Table 1 shows the properties of the powder prepared according to Example 5.
- FIG. 2 (a) 1/10, (b) 1/20, (c) 1/40, (d) 1/80, respectively, are fine powders according to the composition ratio of the injection amount (liter / min) of water and gas. A diagram showing tissue change.
- the composition ratio of the injection amount (liter / min) of water and gas is 1/40-1/80
- the composition ratio of gas and water pressure (kg / cm 2 ) shall be at least 1/2.
- the composition ratio of water and gas injection amount (liter / min) should be in the range of 1/20 to 1/40, and the pressure of gas and water (kg / The composition ratio for cm 2 ) shall not be less than 1/2.
- the composite spraying method of the present invention is made of stainless and titanium alloy powder. It can be applied to the production of metal powders such as iron, nickel, and cobalt, as well as to the production of 3D printers and MIM (mold injection molding) requiring high purity with low oxygen and nitrogen content. It is possible.
Landscapes
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
A stainless and titanium alloy powder prepared by a complex atomizing method developed in the present invention has 1/3 or less lower oxygen content in the powder compared with a powder prepared by a conventional water atomizing method and has approximately three times higher oxygen content and 1/4 or less lower nitrogen content in the powder compared with a powder prepared by a gas atomizing method, and thus can be applied to a special use such as a 3D printer and mold injection molding (MIM) requiring a high purity of low oxygen and nitrogen contents. In addition, there is an advantage of enabling the manufacture of a powder having various shapes such as irregular, oval and spherical shapes by varying the ratio of gas and water during complex atomizing, and the manufacturing cost is low compared with a gas atomizing method.
Description
본 발명은 물 및 가스의 복합 분사(complex atomizing)법을 적용함에 의하여 고순도를 요구하는 3D 프린터 및 MIM(mold injection molding)등의 특수용도에 적용이 가능한 미립의 스테인레스 및 티타늄합금 분말 및 그 제조방법에 관한 것이다. The present invention is a fine powder of stainless and titanium alloys applicable to special applications such as 3D printers and MIM (mold injection molding) requiring high purity by applying a complex atomizing method of water and gas, and a manufacturing method thereof. It is about.
일반적으로 스테인레스 및 티티늄 합금분말은 가스분사(gas atomizing)법 및 수분사(water atomizing)법에 의하여 제조된다. 수분사법은 용탕을 수분사시에 물의 압력 및 분사량에 따라 초미립의 제조가 가능하지만 형상이 불규칙적이고 또한 분말 표면에 산소함량이 높다는 단점이 있다. 이 방법에 의하여 제조된 금속 합금분말은 일반적인 자동차 구조용 부품제조에 많이 적용이 되어 제조부품완료시에 환원 열처리공정이 필수적이다. In general, stainless steel and titanium alloy powder is produced by gas atomization and water atomization. The water injection method enables the production of ultra-fine particles in accordance with the pressure and the injection amount of water in the water injection of the molten metal, but has the disadvantage of irregular shape and high oxygen content on the powder surface. Metal alloy powder produced by this method is widely applied to the production of general automotive structural parts, the reduction heat treatment process is essential when the production parts are completed.
따라서 수분사법에 의하여 제조된 금속 합금분말은 고순도를 요구하는 3D 프린터 및 MIM용 등의 특수용도로는 적용이 불가능하다. 반면에 가스분사법에 의하여 제조된 금속 합금분말은 분사물질로서 주로 비활성의 질소 가스를 사용하여 용탕을 분쇄 및 냉각매체로 적용함에 의하여 제조되며, 제조된 스테인레스 및 티타늄 합금 분말표면에 산소함량은 크게 감소되지만, 반면에 분말내에 질소함량이 과대하게 높아지는 단점이 있다. Therefore, the metal alloy powder prepared by the water spray method is not applicable to special applications such as 3D printer and MIM that require high purity. On the other hand, the metal alloy powder prepared by the gas injection method is prepared by applying molten metal as a pulverization and cooling medium using inert nitrogen gas mainly as a spraying material, and oxygen content on the surface of the manufactured stainless steel and titanium alloy powder is large. While reduced, on the other hand, there is a disadvantage in that the nitrogen content in the powder is excessively high.
또한 분말 형상은 물보다 냉각속도가 느림에 따라 구형의 분말이 주로 만들어진다. 이 방법의 단점은 제조시에 가스를 다량으로 사용함에 따라서 수분사벙에 비하여 제조비용이 높아지고, 또한 분말내부에 질소함량이 매우 높아져서 최종 제품에서 요구하는 기계적, 물리적 특성이 구현되지 않을 수 있다는 단점이 있다.In addition, the powder shape is mainly made of a spherical powder as the cooling rate is slower than water. The disadvantage of this method is that the manufacturing cost is higher than the moisture content due to the use of a large amount of gas in the manufacturing process, and the nitrogen content in the powder is so high that the mechanical and physical properties required for the final product may not be realized. There is this.
본 발명은 상기와 같은 문제점을 해결하기 위하여 창안된 것으로서, 본 발명에서는 분말형상도 다양화할 수 있고, 산소함량을 극력 낮추는 미립의 스테인레스 및 티타늄 합금분말과 그것을 제조하는 방법을 제공하는 것을 목적으로 한다. The present invention was devised to solve the above problems, and an object of the present invention is to provide a fine powder of stainless and titanium alloy and a method for producing the same, which can vary the powder shape and lower the oxygen content as much as possible. .
본 발명에 사용된 제조기술을 이용함으로써 다양한 종류의 산소함량이 낮은 스테인레스 및 티타늄 분말을 제조할 수 있으며, 본 발명에 의하여 제조된 금속 분말내의 산소함량이 1,000ppm이하이었으며, 이는 수분사법에 비하여 산소함량이 1/3이하로 획기적으로 줄일 수 있는 스테인레스 및 티타늄 합금분말과 그것을 제조하는 방법을 제공하는 것을 목적으로 한다. By using the manufacturing technique used in the present invention, it is possible to produce various kinds of stainless steel and titanium powder with low oxygen content, and the oxygen content in the metal powder produced by the present invention was 1,000 ppm or less, which is compared with the water spray method. It is an object of the present invention to provide a stainless and titanium alloy powder and a method for producing the same, which can be significantly reduced to less than 1/3.
또한, 분말내의 질소 함량도 1,500ppm이하로서, 종전의 가스 분사법에 의하여 제조한 동일조성의 스테인레스 및 티타늄합금 분말에 비하여 1/3이하로 줄일 수 있는 스테인레스 및 티타늄 합금분말과 그것을 제조하는 방법을 제공하는 것을 목적으로 한다. In addition, the nitrogen content in the powder is less than 1,500ppm, stainless and titanium alloy powder that can be reduced to 1/3 or less than the same composition of stainless and titanium alloy powder prepared by the conventional gas injection method and a method for producing the same It aims to provide.
본 발명은 스테인레스 및 티타늄합금 분말표면에 산소함량을 낮추기 위하여 가스와 물을 동시에 분사할 수 있는 복합노즐을 제작하여, 가스 및 물의 함량 및 압력의 변화를 줌으로써 금속분말 표면에 산소함량이 1,000ppm이하이고 질소함량은 1,500ppm이하이면서, 분말형상은 구형에서 타원형으로 변화를 줄 수 있는 제조기술을 발명하였다.The present invention is to produce a composite nozzle capable of simultaneously injecting gas and water in order to lower the oxygen content on the surface of stainless and titanium alloy powder, oxygen content on the surface of the metal powder less than 1,000ppm by changing the gas and water content and pressure The nitrogen content is less than 1,500ppm, while the powder shape has been invented a manufacturing technology that can change from spherical to elliptical.
본 발명의 물 및 가스의 복합분사방식의 적용에 의하여 종래의 수분사법에 의하여 제조가 불가했던 타원형에서 구형의 스테인레스 및 티타늄 분말제조가 가능하고, 또한 수분사법에 비하여 산소함량을 1/4이상 획기적으로 줄일수 있음에 따라 3D printer 및 MIM용 등의 특수용도에 적용이 가능하게 되었다. The application of the composite water and gas injection method of the present invention enables the production of spherical stainless steel and titanium powder, which was not manufactured by the conventional water spraying method, and also has an oxygen content of more than 1/4 compared to the water spraying method. It can be applied to special purposes such as 3D printer and MIM.
또한 가스 단독을 사용하는 가스분사법에 비해서도 산소함량은 약 2.5배로 높지만 상대적으로 질소함량이 1/4이하로 낮아져서 새로운 분야에 용도 창출도 고려할 수가 있을 것으로 판단되며, 가스 분사법의 단점인 형상제어를 해결할 수가 있으며, 가스 분사법에 비하여 제조가격 경쟁력도 높일 수 있다.In addition, the oxygen content is about 2.5 times higher than the gas injection method using gas alone, but the nitrogen content is lowered to less than 1/4, so it may be considered to be used in new fields. It can solve the problem, and also increase the manufacturing price competitiveness compared to the gas injection method.
본 복합분사방식은 스테인레스 및 티타늄합금 분말의 제조뿐만 아니라 다른 철계, 니켈계, 코발트계 등의 금속분말의 제조에도 적용이 가능하다. This composite spray method is applicable to the production of metal powders, such as iron, nickel, cobalt, as well as the production of stainless and titanium alloy powder.
도 1. 복합분사 노즐장치의 개략도Figure 1. Schematic diagram of the composite spray nozzle device
도 2. 복합분사시에 물 및 가스의 분사량(liter/min)의 구성비에 따른 분말의 미세조직 변화도Figure 2. Changes in the microstructure of the powder according to the composition ratio of the injection amount (liter / min) of water and gas during the composite injection
본 발명에 사용한 복합분사 노즐장치의 개략도를 도 1에 나타내었다. 분말의 제조내용을 간단히 기술하면, 대기 분위기하에서 용해된 용탕을 턴디쉬(1)에 따르면, 턴디쉬 하단의 직경 6-10mm의 노즐을 통하여 용탕이 노즐직경이 50mm인 노즐본체(2)에 떨어지고, 이는 곧 아토마이져 노즐본체내의 고압의 물노즐(3)과 가스노즐(4)를 통하여 각각 물과 가스가 분사되어 용탕을 미립으로 분쇄 및 급냉시켜 아토마이져 본체(5)내부로 떨어진 다음, 필터링 및 건조를 거쳐 미립의 스테인레스 분말이 제조된다.The schematic diagram of the composite injection nozzle apparatus used for this invention is shown in FIG. Briefly describing the preparation of the powder, according to the tundish 1, the molten metal dissolved in the air atmosphere is dropped into the nozzle body 2 having a nozzle diameter of 50 mm through a nozzle having a diameter of 6-10 mm at the bottom of the tundish. The water and gas are sprayed through the high pressure water nozzle 3 and the gas nozzle 4 in the atomizer nozzle body, and the molten metal is pulverized and quenched into fine particles to fall into the inside of the atomizer main body 5. After filtering, drying, fine stainless powder is produced.
상기 분말의 형상은 물과 가스의 압력 및 토출량비에 의하여 결정되는데, 타원형에서 구형의 분말을 제조하기 위해서는 물 분사량(liter/min)과 가스 분사량(liter/min)의 구성비가 1/20-1/100의 범위가 적당하며, 가스의 압력(kg/cm2)과 물압력(kg/cm2)에 대한 구성비는 1/2-1/100의 범위가 적당하다.The shape of the powder is determined by the pressure and the discharge rate ratio of water and gas. In order to manufacture spherical powder in the elliptical shape, the composition ratio of water injection amount (liter / min) and gas injection amount (liter / min) is 1 / 20-1. The range of / 100 is suitable, and the composition ratio of gas pressure (kg / cm 2) and water pressure (kg / cm 2 ) is appropriately in the range of 1 / 2-1 / 100.
물과 가스의 분사량비가 1/20이상일 때는 제조된 분말내에 산소함량이 급격히 높아지고 더불어 분말의 형상이 불규칙이 된다. 1/100보다 높아지면, 분말내의 질소함량이 급격히 높아지며, 분말제조시에 가스비용이 높아진다.When the injection ratio of water and gas is 1/20 or more, the oxygen content in the powder is rapidly increased and the shape of the powder becomes irregular. When it is higher than 1/100, the nitrogen content in the powder is sharply increased, and the gas cost at the time of powder production is high.
상기의 제조방식에 있어서, 물의 압력은 50 - 300bar가 적당하며, 50bar이하에서는 분말의 평균입경이 100㎛이하를 제조하기 어렵고, 300bar보다 높아지면 가스보다 물의 영향력이 너무 커져서 불규칙형상의 분말이 제조된다. 또 물분사시에 물의 토출량은 50 - 500liter/min이 적당하다. 50liter/min이하가 되면, 분사시에 냉각속도가 느려져 분말표면에 산소함량이 급증하게 되며, 500liter/min이상이 되면 분말의 냉각속도가 너무 빨라져 분말 형사이 불규칙으로 변한다. In the above production method, the water pressure is 50-300bar is suitable, below 50bar, the average particle diameter of the powder is difficult to produce less than 100㎛, when it is higher than 300bar, the influence of water is too much greater than gas to produce irregular powder do. In addition, the amount of water discharged at the time of water injection is suitable at 50-500liter / min. If it is less than 50liter / min, the cooling rate is slowed at the time of injection, and the oxygen content on the surface of the powder is rapidly increased. If it is more than 500liter / min, the cooling rate of the powder is so fast that the powder detective becomes irregular.
가스의 압력은 10 - 50bar 정도가 적당하며, 10bar이하에서는 가스의 영향이 너무 적어서 분말형상이 불규칙형상이 되고, 50bar보다 높아지면 고압의 가스의 장치비용이 급격히 커지고, 또한 가스 소모량이 너무 커져서 경제성이 떨어진다.The pressure of the gas is about 10-50bar, and under 10bar, the influence of the gas is so small that the powder becomes irregular, and when the pressure is higher than 50bar, the device cost of the high pressure gas is rapidly increased, and the gas consumption is too large, resulting in economical efficiency. Falls.
이하, 본 발명의 실시예를 상세히 설명한다. Hereinafter, embodiments of the present invention will be described in detail.
(실시예 1)(Example 1)
ST316L조성의 대표적인 Fe67.5Cr17Ni13.5Mo2 합금조성(중량%)이 되도록 고주파용해에 의하여 400kg를 용해한 다음, 직경 6mm의 턴디쉬 노즐을 통하여 용탕을 아토마이져 노즐상부에 연속으로 떨어뜨린다. After dissolving 400 kg by high frequency melting to obtain a typical Fe 67.5 Cr 17 Ni 13.5 Mo 2 alloy composition (wt%) of the ST316L composition, the molten metal was continuously dropped on the atomizer nozzle through a 6 mm diameter tundish nozzle.
이때 아토마이져 본체 내부의 물과 질소 가스의 분사량의 구성비를 각각 1/80이며, 물과 가스 압력은 각각 200bar 및 25bar이었다. 아토마이져 본체내부로 떨어진 혼합용액을 필터링 및 150℃의 대기분위기하에서 건조하였다. 이상과 같은 실시예 1에 따른 제조된 분말의 제특성은 표 1에 나타내었고, 조직사진은 도 2에 나타내었다.At this time, the composition ratio of the injection amount of water and nitrogen gas in the atomizer main body was 1/80, respectively, and the water and gas pressure were 200 bar and 25 bar, respectively. The mixed solution which fell into the atomizer main body was filtered and dried in 150 degreeC atmosphere. Various properties of the powder prepared according to Example 1 are shown in Table 1, and the tissue photograph is shown in FIG.
여기서 제조된 분말의 평균입경은 입도분석기에 의해서 측정하였고, 분말의 형상 및 조직은 주사전자현미경(SEM)에 의하여 조사하였고, 종횡비(aspect ratio)는 SEM조직사진에서 보여준 분말의 가로와 세로의 길이를 재어서 계산하였으며, 겉보기 밀도는 200메쉬 통과한 분말에 대하여 겉보기 밀도 측정기에 의해서 측정하였으며, 분말내의 산소 및 질소함량은 산소/수소/질소분석기로서 측정하였다.The average particle diameter of the prepared powder was measured by a particle size analyzer, the shape and structure of the powder were investigated by scanning electron microscopy (SEM), the aspect ratio was the length and width of the powder shown in the SEM image The apparent density was measured by the apparent density meter for the powder passed through 200 mesh, the oxygen and nitrogen content in the powder was measured by an oxygen / hydrogen / nitrogen analyzer.
(실시예 2) (Example 2)
물과 질소 가스의 분사량의 구성비를 각각 1/60, 1/40, 1/20으로 하는 것 이외에는 실시예 1과 동일하게 실시하였다. 실시예 2에 따른 제조된 분말의 제 특성을 표 1에 나타내었고, 조직사진은 도 2에 나타내었다. It carried out similarly to Example 1 except having set the composition ratio of the injection amount of water and nitrogen gas to 1/60, 1/40, 1/20, respectively. The properties of the powder prepared according to Example 2 are shown in Table 1, and the tissue photograph is shown in FIG.
(실시예 3) (Example 3)
ST304L조성의 대표적인 Fe71Cr19Ni10합금조성(중량%)이 되도록 고주파용해에 의하여 400kg를 용해하는 것 이외에는 실시예 1과 동일하게 실시하였다. 실시예 3에 따른 제조된 분말의 제 특성을 표 1에 나타내었다. The same procedure as in Example 1 was conducted except that 400 kg was dissolved by high frequency dissolution to obtain a typical Fe 71 Cr 19 Ni 10 alloy composition (wt%) of the ST304L composition. The properties of the powder prepared according to Example 3 are shown in Table 1.
(실시예 4) (Example 4)
실시예1의 물의 압력을 각각 50 및 300bar로 하는 것 이외에는 실시예 1과 동일하게 실시하였다. 실시예 4에 따른 제조된 분말의 제 특성을 표 1에 나타내었다. It carried out similarly to Example 1 except having set the water pressure of Example 1 to 50 and 300 bar, respectively. Table 1 shows the properties of the powder prepared according to Example 4.
(실시예 5) (Example 5)
실시예1의 가스의 압력을 각각 10bar로 하는 것 이외에는 실시예 1과 동일하게 실시하였다. 실시예 5에 따른 제조된 분말의 제 특성을 표 1에 나타내었다. It carried out similarly to Example 1 except having set the pressure of the gas of Example 1 to 10 bar, respectively. Table 1 shows the properties of the powder prepared according to Example 5.
(실시예 6) (Example 6)
티타늄합금의 대표적인 조성인 Ti90Al6V4합금조성(중량%)의 인곳트를 고주파용해에 의하여 400kg를 용해하는 것 이외에는 실시예 1과 동일하게 실시하였다. 실시예 6에 따른 제조된 분말의 제 특성을 표 1에 나타내었다. An ingot of Ti 90 Al 6 V 4 alloy composition (wt%), which is a typical composition of titanium alloy, was carried out in the same manner as in Example 1 except that 400 kg was dissolved by high frequency dissolution. Table 1 shows the properties of the powder prepared according to Example 6.
(비교예 1) (Comparative Example 1)
아토마이징시에 물만을 사용하고 이때의 물압력은 300bar로 하는 것 이외에는 실시예 1과 동일하게 실시하였다. 비교예 1에 따른 제조된 분말의 제 특성을 표 1에 나타낸다. Only water was used for atomizing and the water pressure was 300 bar, in the same manner as in Example 1. Table 1 shows the properties of the powder prepared according to Comparative Example 1.
(비교예 2) (Comparative Example 2)
용해재로서 Ti90Al6V4합금을 용해재로 사용하는 것이 외에는 비교예 1과 동일하게 실시하였다. 비교예 2에 따른 제조된 분말의 제 특성을 표 1에 나타낸다. Except that a soluble material using the alloy V 4 Ti 90 Al 6 to re-dissolution was performed in the same manner as in Comparative Example 1. Table 1 shows the properties of the powder prepared according to Comparative Example 2.
(비교예 3) (Comparative Example 3)
아토마이징시에 질소가스만을 사용하고 이때의 가스압력은 30bar로 하는 것 이외에는 실시예 1과 동일하게 실시하였다. 비교예 3에 따른 제조된 분말의 제 특성을 표 1에 나타낸다. At the time of atomizing, only nitrogen gas was used, and the gas pressure was 30 bar in the same manner as in Example 1. Table 1 shows the properties of the powder prepared according to Comparative Example 3.
(비교예4) (Comparative Example 4)
용해재로서 Ti90Al6V4합금을 용해재로 사용하는 것이 외에는 비교예 3과 동일하게 실시하였다. 비교예 4에 따른 제조된 분말의 제 특성을 표 1에 나타낸다. Except that a soluble material using a Ti 90 Al 6 V 4 as a dissolved material alloy was performed in the same manner as in Comparative Example 3. Table 1 shows the properties of the powder prepared according to Comparative Example 4.
(비교예 5) (Comparative Example 5)
물과 가스의 분사량비가 1/10로 하는 것 이외에는 실시예 1과 동일하게 실시하였다. 비교예 5에 따른 제조된 분말의 제 특성을 표 1에 나타낸다. It carried out similarly to Example 1 except having set the injection ratio of water and gas to 1/10. Table 1 shows the properties of the powder prepared according to Comparative Example 5.
(비교예 6) (Comparative Example 6)
가스의 압력은 5bar로 하는 것 이외에는 실시예 1과 동일하게 실시하였다. 비교예 6에 따른 제조된 분말의 제 특성을 표 1에 나타낸다. The pressure of the gas was carried out in the same manner as in Example 1 except that the pressure was 5 bar. Table 1 shows the properties of the powder prepared according to Comparative Example 6.
도 2에서 (a) 1/10, (b) 1/20, (c) 1/40, (d) 1/80, 각각은 물 및 가스의 분사량(liter/min)의 구성비에 따른 분말의 미세조직 변화를 나타낸 도면이다. In Fig. 2, (a) 1/10, (b) 1/20, (c) 1/40, (d) 1/80, respectively, are fine powders according to the composition ratio of the injection amount (liter / min) of water and gas. A diagram showing tissue change.
표 1
Table 1
조건번호 | 합금계 | 물/가스분사량비 | 분사압력(bar) | 분말형상 | Aspect Ratio(%) | 평균입경(㎛) | 겉보기밀도(g/cm3) | 산소 및 질소 함량(ppm) | ||
물 | 가스 | 산소 | 질소 | |||||||
실시예1 | STS316L | 1/80 | 200 | 25 | 구형 | 92-100 | 45 | 4.0 | 753 | 1,397 |
실시예2 | STS316L | 1/60 | 200 | 25 | 구형 | 82-93 | 39 | 3.9 | 905 | 1,311 |
1/40 | 200 | 25 | 구형+타원형 | 70-85 | 37 | 3.7 | 1107 | 1,248 | ||
1/20 | 200 | 25 | 타원형 | 30-50 | 30 | 3.5 | 1,350 | 1,195 | ||
실시예3 | STS304L | 1/80 | 200 | 25 | 구형 | 94-100 | 38 | 3.9 | 847 | 1,365 |
실시예4 | STS316L | 1/80 | 50 | 25 | 구형 | 95-105 | 98 | 3.5 | 672 | 1,250 |
300 | 25 | 타원형+불규칙 | 20-30 | 16 | 3.3 | 648 | 1,105 | |||
실시예5 | STS316L | 1/80 | 200 | 10 | 타원형+불규칙 | 20-30 | 55 | 2.7 | 784 | 1,180 |
실시예6 | Ti-6Al-4V | 1/80 | 200 | 25 | 구형 | 92-100 | 35 | 2.3 | 654 | 1,235 |
비교예1 | STS316L | 100/0 | 300 | - | 불규칙 | - | 23 | 2.7 | 3,003 | 1,168 |
비교예2 | Ti-6Al-4V | 100/0 | 300 | - | 불규칙 | - | 19 | 1.6 | 2,355 | 1,246 |
비교예3 | STS316L | 0/100 | - | 30 | 구형 | 95-100 | 170 | 4.0 | 206 | 4,449 |
비교예4 | Ti-6Al-4V | 0/100 | - | 30 | 구형 | 95-100 | 165 | 2.4 | 157 | 3,743 |
비교예5 | STS316L | 1/10 | 200 | 25 | 불규칙 | - | 74 | 2.8 | 1,453 | 1,225 |
비교예6 | STS316L | 1/80 | 200 | 5 | 불규칙 | - | 86 | 2.8 | 1,355 | 1,345 |
Condition number | Alloy | Water / gas injection ratio | Injection pressure (bar) | Powder shape | Aspect Ratio (%) | Average particle size (㎛) | Apparent density (g / cm 3 ) | Oxygen and Nitrogen Content (ppm) | ||
water | gas | Oxygen | nitrogen | |||||||
Example 1 | STS316L | 1/80 | 200 | 25 | rectangle | 92-100 | 45 | 4.0 | 753 | 1,397 |
Example 2 | STS316L | 1/60 | 200 | 25 | rectangle | 82-93 | 39 | 3.9 | 905 | 1,311 |
1/40 | 200 | 25 | Spherical + oval | 70-85 | 37 | 3.7 | 1107 | 1,248 | ||
1/20 | 200 | 25 | Oval | 30-50 | 30 | 3.5 | 1,350 | 1,195 | ||
Example 3 | STS304L | 1/80 | 200 | 25 | rectangle | 94-100 | 38 | 3.9 | 847 | 1,365 |
Example 4 | STS316L | 1/80 | 50 | 25 | rectangle | 95-105 | 98 | 3.5 | 672 | 1,250 |
300 | 25 | Oval + Irregular | 20-30 | 16 | 3.3 | 648 | 1,105 | |||
Example 5 | STS316L | 1/80 | 200 | 10 | Oval + Irregular | 20-30 | 55 | 2.7 | 784 | 1,180 |
Example 6 | Ti-6Al-4V | 1/80 | 200 | 25 | rectangle | 92-100 | 35 | 2.3 | 654 | 1,235 |
Comparative Example 1 | STS316L | 100/0 | 300 | - | irregular | - | 23 | 2.7 | 3,003 | 1,168 |
Comparative Example 2 | Ti-6Al-4V | 100/0 | 300 | - | irregular | - | 19 | 1.6 | 2,355 | 1,246 |
Comparative Example 3 | STS316L | 0/100 | - | 30 | rectangle | 95-100 | 170 | 4.0 | 206 | 4,449 |
Comparative Example 4 | Ti-6Al-4V | 0/100 | - | 30 | rectangle | 95-100 | 165 | 2.4 | 157 | 3,743 |
Comparative Example 5 | STS316L | 1/10 | 200 | 25 | irregular | - | 74 | 2.8 | 1,453 | 1,225 |
Comparative Example 6 | STS316L | 1/80 | 200 | 5 | irregular | - | 86 | 2.8 | 1,355 | 1,345 |
여기서, 표 1의 실시예와 도 2에서 보여주는 바와 같이, 물 및 가스의 복합분사방식에 의하여 구형의 분말 제조시에는 물과 가스의 분사량(liter/min)의 구성비가 1/40 - 1/80의 범위내에 있어야 하며, 가스와 물의 압력(kg/cm2)에 대한 구성비는 1/2이상이 되어야 한다. Here, as shown in the embodiment of Table 1 and Figure 2, when manufacturing the spherical powder by the composite injection method of water and gas, the composition ratio of the injection amount (liter / min) of water and gas is 1/40-1/80 The composition ratio of gas and water pressure (kg / cm 2 ) shall be at least 1/2.
한편, 물 및 가스의 복합분사방식에 의하여 타원형의 분말제조시에는 물과 가스의 분사량(liter/min)의 구성비가 1/20 - 1/40의 범위내에 있어야 하며, 가스와 물의 압력(kg/cm2)에 대한 구성비는 1/2이상이 되어야 한다. On the other hand, in the case of elliptical powder production by the composite injection method of water and gas, the composition ratio of water and gas injection amount (liter / min) should be in the range of 1/20 to 1/40, and the pressure of gas and water (kg / The composition ratio for cm 2 ) shall not be less than 1/2.
상기 다양한 실시예에서 보여주는 산소함량은 수분사 단독으로 사용하여 분말을 제조(비교예1)한 것에 비하여 산소함량이 1/4이상으로 획기적으로 낮아졌고, 질소함량은 유사한 수준을 보이고 있다. 또한 가스분사 단독으로 사용하여 분말을 제조(비교예2)한 것에 비해서는 산소함량이 약 2.5배 높지만, 질소함량이 1/3이하로 획기적으로 낮음을 알 수 있다.Oxygen content shown in the various examples is significantly lower than the oxygen content to 1/4 or more, compared to the powder prepared by using the water sand alone (Comparative Example 1), the nitrogen content is showing a similar level. In addition, although the oxygen content is about 2.5 times higher than that of powders prepared using gas injection alone (Comparative Example 2), it can be seen that the nitrogen content is significantly lower than 1/3.
본 발명의 물 및 가스의 복합분사방식의 적용에 의하여 종래의 수분사법에 의하여 제조가 불가했던 타원형에서 구형의 스테인레스 및 티타늄 분말제조가 가능하고, 또한 본 발명의 복합분사방식은 스테인레스 및 티타늄합금 분말의 제조뿐만 아니라 다른 철계, 니켈계, 코발트계 등의 금속분말의 제조에도 적용이 가능하기 때문에 산소 및 질소함량이 낮은 고순도를 요구하는 3D 프린터 및 MIM(mold injection molding) 등의 특수용도로 적용이 가능하다.It is possible to manufacture spherical stainless steel and titanium powder in the elliptical shape which was not manufactured by the conventional water spraying method by applying the composite spraying method of water and gas of the present invention, and the composite spraying method of the present invention is made of stainless and titanium alloy powder. It can be applied to the production of metal powders such as iron, nickel, and cobalt, as well as to the production of 3D printers and MIM (mold injection molding) requiring high purity with low oxygen and nitrogen content. It is possible.
(도면 부호의 설명)(Explanation of reference numerals)
1. 턴디쉬, 2. 분사노즐본체, 1. tundish, 2. spray nozzle body,
3. 수분사 노즐, 4. 가스노즐, 3. Water spray nozzle, 4. Gas nozzle,
5. 아토마이져본체5. Atomizer Body
ppm: 용액의 농도 단위로서 100만분의 1ppm: one millionth of a solution's concentration unit
bar: 기압의 단위bar: unit of pressure
Claims (3)
- 물 및 비활성 가스의 복합분사법의 적용에 의하여 분말의 형상이 타원형에서 구형으로 제조되며, 분말의 평균입경이 100㎛이하의 스테인레스 및 티타늄합금 분말The powder is made from oval to spherical shape by applying the composite injection method of water and inert gas, and the powder of stainless and titanium alloys with an average particle diameter of 100㎛ or less
- 청구항 1에 있어서, 상기 제조되는 스테인레스 및 티타늄합금 분말내의 산소함량이 1,000ppm이하이며, 질소함량이 1,500ppm이하인 것을 특징으로 하는 스테인레스 및 티타늄합금 분말의 제조방법The method of claim 1, wherein the oxygen content in the prepared stainless and titanium alloy powder is 1,000 ppm or less, and the nitrogen content is 1,500 ppm or less.
- 청구항 1에 있어서, 복합분사법의 적용조건은 물과 가스의 분사량(liter/min) 및 압력(kg/cm2))의 구성비가 각각 1/20 - 1/8 및 1/2-1/100이며, 물 및 가스의 압력은 50-300bar 및 10-50bar인 것을 특징으로 스테인레스 및 티타늄합금 분말의 제조방법The method according to claim 1, wherein the application conditions of the composite injection method is that the composition ratio of the injection amount (liter / min) and pressure (kg / cm 2 ) of water and gas is 1/20-1/8 and 1 / 2-1 / 100, respectively The pressure of the water and gas is 50-300bar and 10-50bar, characterized in that the production method of stainless and titanium alloy powder
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140101638A KR20160024401A (en) | 2014-08-07 | 2014-08-07 | Metal alloy powders for 3d-printer |
KR10-2014-0101638 | 2014-08-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016021998A1 true WO2016021998A1 (en) | 2016-02-11 |
Family
ID=55264185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/008320 WO2016021998A1 (en) | 2014-08-07 | 2015-08-07 | Metal alloy powder for 3d printer |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20160024401A (en) |
WO (1) | WO2016021998A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106623952A (en) * | 2016-12-19 | 2017-05-10 | 南京理工大学 | Preparation method of titanium or titanium alloy powder with micro-hydrogenated surface |
CN107790734A (en) * | 2017-09-29 | 2018-03-13 | 武汉钢铁有限公司 | A kind of process for preparing powder of stainless steel |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2953659T3 (en) * | 2017-03-14 | 2023-11-15 | Vbn Components Ab | Cobalt-based alloys with high carbon content |
KR102197302B1 (en) | 2018-02-07 | 2021-01-04 | 한국재료연구원 | Method of Producing Metal Alloy using wires of different kind of metals |
KR102202390B1 (en) * | 2018-12-13 | 2021-01-13 | 한국표준과학연구원 | Hydrogen embrittlement resistive stainless steel agglomerated parts and powder reformed by gas treatment |
KR20230011757A (en) | 2021-07-14 | 2023-01-25 | 현대자동차주식회사 | Metal powder for 3d printer |
KR102651086B1 (en) | 2022-01-07 | 2024-03-25 | 이언식 | Apparatus and Method for Manufacturing Metal Powder Using Non-oxidizing Water Jetting |
KR102597563B1 (en) | 2022-01-27 | 2023-11-02 | 이언식 | Apparatus for Manufacturing Metal Powder Using Fluid Spray |
KR20230129084A (en) | 2022-02-28 | 2023-09-06 | 이언식 | Gas Spraying Apparatus for Manufacturing Metal and Alloy Powders and Apparatus for Manufacturing Metal Powder Using the Same |
KR20230129083A (en) | 2022-02-28 | 2023-09-06 | 이언식 | Apparatus for Manufacturing Metal Powder Using Gas Spray of High Pressure Chamber Type |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950005300B1 (en) * | 1993-06-18 | 1995-05-23 | 주식회사창성 | Method and device for metal powder |
JPH09256004A (en) * | 1996-03-25 | 1997-09-30 | Daido Steel Co Ltd | Metal powder and its production |
WO1999011407A1 (en) * | 1997-08-29 | 1999-03-11 | Pacific Metals Co., Ltd. | Method of producing metal powder by atomizing and apparatus therefor |
JP3598844B2 (en) * | 1998-09-29 | 2004-12-08 | Jfeスチール株式会社 | Method and apparatus for producing metal powder |
KR101426008B1 (en) * | 2014-02-12 | 2014-08-05 | 공주대학교 산학협력단 | Multiplex atomization nozzle and manufacturing apparatus of powder for the same |
-
2014
- 2014-08-07 KR KR1020140101638A patent/KR20160024401A/en active Search and Examination
-
2015
- 2015-08-07 WO PCT/KR2015/008320 patent/WO2016021998A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950005300B1 (en) * | 1993-06-18 | 1995-05-23 | 주식회사창성 | Method and device for metal powder |
JPH09256004A (en) * | 1996-03-25 | 1997-09-30 | Daido Steel Co Ltd | Metal powder and its production |
WO1999011407A1 (en) * | 1997-08-29 | 1999-03-11 | Pacific Metals Co., Ltd. | Method of producing metal powder by atomizing and apparatus therefor |
JP3598844B2 (en) * | 1998-09-29 | 2004-12-08 | Jfeスチール株式会社 | Method and apparatus for producing metal powder |
KR101426008B1 (en) * | 2014-02-12 | 2014-08-05 | 공주대학교 산학협력단 | Multiplex atomization nozzle and manufacturing apparatus of powder for the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106623952A (en) * | 2016-12-19 | 2017-05-10 | 南京理工大学 | Preparation method of titanium or titanium alloy powder with micro-hydrogenated surface |
CN107790734A (en) * | 2017-09-29 | 2018-03-13 | 武汉钢铁有限公司 | A kind of process for preparing powder of stainless steel |
Also Published As
Publication number | Publication date |
---|---|
KR20160024401A (en) | 2016-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016021998A1 (en) | Metal alloy powder for 3d printer | |
KR20090053941A (en) | Metal powder | |
Cheon et al. | Inkjet printing using copper nanoparticles synthesized by electrolysis | |
CN109014211A (en) | A kind of inexpensive MIM manufacturing process of the high nitrogen without magnetic high strength stainless steel part | |
CN105256306B (en) | The preparation method of high-compactness cold spraying metal deposit body based on mixed-powder | |
CN109988940A (en) | A kind of rare earth modified 3D printing hyperoxia titanium valve and preparation method | |
CN111500942B (en) | High-nitrogen-content non-magnetic stainless steel powder and preparation method thereof | |
EP3670028A1 (en) | Silver powder and production method thereof | |
CN105127436A (en) | Preparation method of titanium and titanium alloy spherical powder by vacuum induction melting gas atomization | |
US20090053132A1 (en) | Process for preparing powder of niobium suboxides or niobium | |
CN105618771A (en) | Radio frequency plasma preparation method and device for micro spherical titanium powder | |
CN109877343A (en) | A kind of preparation method of the high-quality sized spherical titanium powder suitable for 3D printing | |
CN110947976A (en) | Low-oxygen spherical tantalum powder and preparation method thereof | |
CN105112711A (en) | Manufacturing method for spherical alloy material for 3D printing | |
CN111496264B (en) | Alloy powder preparation device and method | |
JP2022507703A (en) | Manufacturing method of metal powder by water spray method | |
CN111118321A (en) | Aluminum alloy chromium additive and preparation method thereof | |
CN109865833B (en) | Powder metallurgy preparation method of titanium or titanium alloy product, and titanium or titanium alloy product | |
CN106938331B (en) | Mesoporous dusty materials of NiAl and preparation method thereof | |
CN212857768U (en) | Alloy powder preparation facilities | |
CN101637824A (en) | Preparation method of ultrafine cobalt powder | |
CN111250721A (en) | Method for producing Fe-Mn-Pt-based medical 3D printing metal material | |
FI87895B (en) | FOERFARANDE FOER FRAMSTAELLNING AV METALLPULVER | |
CN113020605B (en) | Special in-situ toughening high-performance spherical tungsten powder for laser 3D printing and preparation method thereof | |
CN102703918A (en) | Borax oxide remover for internal surface of hot continuous rolled steel pipe and method for preparing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15830432 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC 8 EPO FORM 1205A DATED 19-05-2017 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15830432 Country of ref document: EP Kind code of ref document: A1 |