KR20160024401A - Metal alloy powders for 3d-printer - Google Patents

Metal alloy powders for 3d-printer Download PDF

Info

Publication number
KR20160024401A
KR20160024401A KR1020140101638A KR20140101638A KR20160024401A KR 20160024401 A KR20160024401 A KR 20160024401A KR 1020140101638 A KR1020140101638 A KR 1020140101638A KR 20140101638 A KR20140101638 A KR 20140101638A KR 20160024401 A KR20160024401 A KR 20160024401A
Authority
KR
South Korea
Prior art keywords
powder
gas
water
injection
less
Prior art date
Application number
KR1020140101638A
Other languages
Korean (ko)
Inventor
김규진
Original Assignee
티엠나노테크 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 티엠나노테크 주식회사 filed Critical 티엠나노테크 주식회사
Priority to KR1020140101638A priority Critical patent/KR20160024401A/en
Priority to PCT/KR2015/008320 priority patent/WO2016021998A1/en
Publication of KR20160024401A publication Critical patent/KR20160024401A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

In a stainless and titanium alloy powder manufactured by complex atomizing in accordance with the present invention, the content of oxygen in the powder is lower by 1/3 or less than that of powder manufactured by an existing water injection method; and the content of oxygen is higher, about three times, than that of powder manufactured by gas injection while the content of nitrogen is lower by 1/4 or less. Accordingly, the powder is able to be applied to special purposes of a three-dimensional printer and a mold injection molding (MIM) requiring high purity with low contents of oxygen and nitrogen. In addition, an advantage of possibly manufacturing various metal alloy powders with various shapes such as an elliptical shape, circular shape, and irregular shape by varying the ratio of gas and water at the time of complex injection is achieved, and the manufacturing costs is lower than that of using with a gas injection.

Description

3D 프린터용 금속합금 분말 {Metal alloy powders for 3d-printer}METAL ALLOY POWDERS FOR 3D PRINTERS

본 발명은 물 및 가스의 복합 분사(complex atomizing)법을 적용함에 의하여 고순도를 요구하는 3D 프린터 및 MIM(mold injection molding)등의 특수용도에 적용이 가능한 미립의 스테인레스 및 티타늄합금 분말 및 그 제조방법에 관한 것이다.
The present invention relates to a particulate stainless steel and titanium alloy powder applicable to special applications such as a 3D printer and a MIM (mold injection molding) requiring high purity by applying a complex atomizing method of water and gas, and a method of manufacturing the same .

일반적으로 스테인레스 및 티티늄 합금분말은 가스분사(gas atomizing)법 및 수분사(water atomizing)법에 의하여 제조된다. 수분사법은 용탕을 수분사시에 물의 압력 및 분사량에 따라 초미립의 제조가 가능하지만 형상이 불규칙적이고 또한 분말 표면에 산소함량이 높다는 단점이 있다. 이 방법에 의하여 제조된 금속 합금분말은 일반적인 자동차 구조용 부품제조에 많이 적용이 되어 제조부품완료시에 환원 열처리공정이 필수적이다. 따라서 수분사법에 의하여 제조된 금속 합금분말은 고순도를 요구하는 3D 프린터 및 MIM용 등의 특수용도로는 적용이 불가능하다. 반면에 가스분사법에 의하여 제조된 금속 합금분말은 분사물질로서 주로 비활성의 질소 가스를 사용하여 용탕을 분쇄 및 냉각매체로 적용함에 의하여 제조되며, 제조된 스테인레스 및 티타늄 합금 분말의 표면에 산소함량은 크게 감소되지만, 반면에 분말내에 질소함량이 과대하게 높아지는 단점이 있다. 또한 분말 형상은 물보다 냉각속도가 느림에 따라 구형의 분말이 주로 만들어진다. 이 방법의 단점은 제조시에 가스를 다량으로 사용함에 따라서 수분사법에 비하여 제조비용이 높아지고, 또한 분말내부에 질소함량이 매우 높아져서 최종 제품에서 요구하는 기계적, 물리적 특성이 구현되지 않을 수 있다는 단점이 있다.
In general, stainless steel and titanium alloy powders are produced by a gas atomizing method and a water atomizing method. The water dispersion method has a disadvantage in that it can produce ultrafine particles according to the pressure of water and the amount of injected water at the time of taking off the water, but the shape is irregular and the oxygen content is high on the surface of the powder. The metal alloy powder produced by this method is widely applied to general automobile structural parts manufacturing, and a reduction heat treatment process is essential at the completion of manufacturing parts. Therefore, it is impossible to apply the metal alloy powder produced by the water dispersion method for special purpose such as 3D printer and MIM which require high purity. On the other hand, the metal alloy powder produced by the gas spraying method is manufactured by applying the inert gas as the pulverizing and cooling medium mainly using the inert gas as the injection material, and the oxygen content on the surface of the produced stainless steel and titanium alloy powder is It is disadvantageous in that the nitrogen content in the powder is excessively increased. In addition, as the cooling rate of the powder is slower than that of water, spherical powder is mainly produced. The disadvantage of this method is that the use of a large amount of gas at the time of manufacture leads to a higher production cost than the water-dispersion method, and the nitrogen content in the powder is so high that the mechanical and physical properties required by the final product may not be realized have.

따라서 본 발명에서는 상기 발명에서의 단점을 해결하고, 분말형상도 다양화할 수 있고, 산소함량을 극력 낮추는 미립의 스테인레스 및 티타늄 합금분말과 그것을 제조하는 방법을 제공하는 것을 목적으로 한다.
Accordingly, it is an object of the present invention to provide fine-grained stainless steel and titanium alloy powders capable of solving the disadvantages of the above-described invention and capable of diversifying the powder shape and minimizing the oxygen content, and a method of manufacturing the same.

본 발명은 스테인레스 및 티타늄합금 분말표면에 산소함량을 낮추기 위하여 가스와 물을 동시에 분사할 수 있는 복합노즐을 제작하여, 가스 및 물의 함량 및 압력의 변화를 줌으로써 금속분말 표면에 산소함량이 1,000ppm이하이고 질소함량은 1,500ppm이하이면서, 분말형상은 구형에서 타원형으로 변화를 줄 수 있는 제조기술을 발명하였다.  In order to lower the oxygen content on the surface of the stainless steel and titanium alloy powder, a composite nozzle capable of simultaneously spraying gas and water is manufactured. By changing the content and pressure of gas and water, the oxygen content of the metal powder surface is 1,000 ppm or less , A nitrogen content of less than 1,500 ppm, and a powder shape of spherical to elliptical shape.

본 발명에 사용된 제조기술을 적용함으로써 다양한 종류의 산소함량이 낮은 스테인레스 및 티타늄 분말을 제조할 수 있으며, 이는 수분사법에 비하여 산소함량이 1/3이하로 획기적으로 줄었다. 또한, 분말내의 질소 함량도 종전의 가스 분사법에 의하여 제조한 동일조성의 스테인레스 및 티타늄합금 분말에 비하여 1/3이하로 낮았다.   By applying the manufacturing technique used in the present invention, various kinds of stainless steel and titanium powder having a low oxygen content can be produced, and the oxygen content is drastically reduced to 1/3 or less as compared with the water sand method. Also, the nitrogen content in the powder was lower than 1/3 of that of the stainless steel and titanium alloy powder of the same composition prepared by the conventional gas spraying method.

본 발명에 사용한 복합분사노즐장치는 제1도에 나타내었다. 분말의 제조내용을 간단히 기술하면, 대기 분위기하에서 용해된 용탕을 턴디쉬(1)에 따르면, 턴디쉬 하단의 직경 6-10mm의 노즐을 통하여 용탕이 노즐직경이 50mm인 노즐본체(2)에 떨어지고, 이는 곧 아토마이져 노즐본체내의 고압의 물노즐(3)과 가스노즐(4)를 통하여 각각 물과 가스가 분사되어 용탕을 미립으로 분쇄 및 급냉시켜 아토마이져 본체(5)내부로 떨어진 다음, 필터링 및 건조를 거쳐 미립의 스테인레스 분말이 제조된다. 분말의 형상은 물과 가스의 압력 및 토출량비에 의하여 결정되는데, 타원형에서 구형의 분말을 제조하기 위해서는 물 분사량(liter/min)과 가스 분사량(liter/min)의 구성비가 1/20-1/100의 범위가 적당하며, 가스의 압력(kg/cm2)과 물압력(kg/cm2)에 대한 구성비는 1/2-1/100의 범위가 적당하다. 물과 가스의 분사량비가 1/20이상일 때는 제조된 분말내에 산소함량이 급격히 높아지고 더불어 분말의 형상이 불규칙이 된다. 1/100보다 높아지면, 분말내의 질소함량이 급격히 높아지며, 분말제조시에 가스비용이 높아진다.  The composite spray nozzle apparatus used in the present invention is shown in FIG. The molten metal dissolved in the atmospheric air is introduced into the tundish 1 through the nozzle having a diameter of 6-10 mm at the lower end of the tundish to the nozzle body 2 having the nozzle diameter of 50 mm , Which is sprayed with water and gas through the high-pressure water nozzle 3 and the gas nozzle 4 in the atomizer nozzle main body, respectively, so that the molten metal is pulverized and quenched into fine particles to fall inside the atomizer main body 5 , Filtered and dried to produce a fine-grained stainless steel powder. The shape of the powder is determined by the pressure and discharge ratio of water and gas. In order to produce spherical powder in elliptical shape, the ratio of water injection amount (liter / min) and gas injection amount (liter / min) 100, and the ratio of the gas pressure (kg / cm 2) to the water pressure (kg / cm 2) is preferably in the range of 1 / 2-1 / 100. When the injection ratio of water to gas is 1/20 or more, the oxygen content rapidly increases in the produced powder and the shape of the powder becomes irregular. When it is higher than 1/100, the nitrogen content in the powder is drastically increased, and the gas cost is increased in the production of the powder.

상기의 제조방식에 있어서, 물의 압력은 50 - 300bar가 적당하며, 50bar이하에서는 분말의 평균입경이 100㎛이하를 제조하기 어렵고, 300bar보다 높아지면 가스보다 물의 영향력이 너무 커져서 불규칙형상의 분말이 제조된다. 또 물분사시에 물의 토출량은 50 - 500liter/min이 적당하다. 50liter/min이하가 되면, 분사시에 냉각속도가 느려져 분말표면에 산소함량이 급증하게 되며, 500liter/min이상이 되면 분말의 냉각속도가 너무 빨라져 분말 형사이 불규칙으로 변한다. 가스의 압력은 10 - 50bar 정도가 적당하며, 10bar이하에서는 가스의 영향이 너무 적어서 분말형상이 불규칙형상이 되고, 50bar보다 높아지면 고압의 가스 장치비용이 급격히 커지고, 또한 가스 소모량이 너무 커져서 경제성이 떨어진다.
In the above production method, the pressure of water is suitably in the range of 50-300 bar, the average particle diameter of the powder is less than 100 탆 at a pressure of 50 bar or less, and when the pressure is higher than 300 bar, the influence of water is much greater than the gas, do. When the water is sprayed, the discharge amount of water is 50-500 liters / min. When it is less than 50 liter / min, the cooling rate slows down at the time of spraying, and the oxygen content rapidly increases at the surface of the powder. When it exceeds 500 liter / min, the cooling rate of the powder becomes too fast. The pressure of the gas is suitably in the range of 10 to 50 bar, and when the pressure is less than 10 bar, the influence of the gas is too small to make the powder shape irregular. When the pressure is higher than 50 bar, the cost of the high-pressure gas device sharply increases and the gas consumption becomes too large. Falls.

본 발명의 물 및 가스의 복합분사방식의 적용에 의하여 종래의 수분사법에 의하여 제조가 불가했던 타원형에서 구형의 스테인레스 및 티타늄 분말제조가 가능하고, 또한 수분사법에 비하여 산소함량을 1/4이상 으로 획기적으로 줄일 수 있음에 따라 3D printer 및 MIM용 등의 특수용도에 적용이 가능하게 되었다. 또한 가스 단독을 사용하는 가스분사법에 비해서도 산소함량은 약 2.5배로 높지만 상대적으로 질소함량이 1/4이하로 낮아져서 새로운 분야로의 용도 창출도 고려할 수가 있을 것으로 판단되며, 가스 분사법의 단점인 형상제어를 해결할 수가 있으며, 가스 분사법에 비하여 제조가격 경쟁력도 높일 수 있다.    By applying the combined spraying method of water and gas according to the present invention, spherical stainless steel and titanium powder can be produced which can not be produced by the conventional waterproofing method, and the oxygen content is 1/4 or more It can be applied to special applications such as 3D printer and MIM. In addition, the oxygen content is about 2.5 times higher than the gas spraying method using gas alone, but the nitrogen content is relatively lowered to 1/4 or less, so it is considered that the use of the new field can be considered. Control can be solved, and the manufacturing cost competitiveness can be enhanced as compared with the gas injection method.

본 발명에 의하여 발명된 복합분사방식은 스테인레스 및 티타늄합금 분말의 제조뿐만 아니라 다른 철계, 니켈계, 코발트계 등의 금속분말의 제조에도 적용이 가능하다.
The complex spraying method invented by the present invention can be applied not only to the production of stainless steel and titanium alloy powder but also to the production of other metal powders such as iron, nickel, cobalt and the like.

제1도는 복합노즐장치의 개략도
(1)턴디쉬,(2)분사노즐본체,(3)수분사 노즐,(4)가스노즐, (5)아토마이져 본체 제2도는 복합분사시에 물 및 가스의 분사량(liter/min)의 구성비에 따른 분말의 미세조직 변화
(a) 1/10, (b) 1/20, (c) 1/40, (d) 1/80
1 is a schematic view of a composite nozzle device
(1) Tundish, (2) Injection nozzle body, (3) Water injection nozzle, (4) Gas nozzle, (5) Atomizer main body In figure 2, Microstructural change of powder according to composition ratio
(a) 1/10, (b) 1/20, (c) 1/40, (d) 1/80

(실시예 1)(Example 1)

ST316L조성의 대표적인 Fe67 .5Cr17Ni13 .5Mo2 합금조성(중량%)이 되도록 고주파용해에 의하여 400kg를 용해한 다음, 직경 6mm의 턴디쉬 노즐을 통하여 용탕을 아토마이져 노즐상부에 연속으로 떨어뜨린다. 이때 아토마이져 본체내부의 물과 질소 가스의 분사량의 구성비를 각각 1/80이며, 물과 가스 압력은 각각 200bar 및 25bar이었다. 아토마이져 본체내부로 떨어진 혼합용액을 필터링 및 150℃의 대기분위기하에서 건조하였다. 제조된 분말의 제특성은 표1에 나타내었고, 조직사진은 도2에 나타내었다. 여기서 제조된 분말의 평균입경은 입도분석기에 의해서 측정하였고, 분말의 형상 및 조직은 주사전자현미경(SEM)에 의하여 조사하였고, 종횡비(aspect ratio)는 SEM조직사진에서 보여준 분말의 가로와 세로의 길이를 재어서 계산하였으며, 겉보기 밀도는 200메쉬 통과한 분말에 대하여 겉보기 밀도 측정기에 의해서 측정하였으며, 분말내의 산소 및 질소함량은 산소/수소/질소분석기로서 측정하였다.
Representative of Fe 67 Cr 17 Ni 13 ST316L composition .5 .5 2 Mo alloy composition obtained by dissolving a 400kg by a high-frequency melting to be (% by weight), and then, the molten metal becomes ATO Mai through a tundish nozzle having a diameter of 6mm to successive upper nozzles . At this time, the composition ratio of water and nitrogen gas in the atomizer body was 1/80, respectively, and the water and gas pressures were 200 bar and 25 bar, respectively. The mixed solution, which fell into the inside of the atomizer, was filtered and dried under atmospheric conditions at 150 ° C. The properties of the powders produced are shown in Table 1, and the photographs of the tissues are shown in FIG. The average particle size of the powders prepared herein was measured by a particle size analyzer. The shape and texture of the powders were examined by scanning electron microscope (SEM), and the aspect ratio was determined by measuring the length and length of the powder The apparent density of the powders having passed through 200 mesh was measured by an apparent density meter. The oxygen and nitrogen contents in the powders were measured using an oxygen / hydrogen / nitrogen analyzer.

(실시예 2)(Example 2)

물과 질소 가스의 분사량의 구성비를 각각 1/60, 1/40, 1/20으로 하는 것 이외에는 실시예 1과 동일하게 실시하였다. 제조된 분말의 제 특성을 표 1에 나타내었고, 조직사진은 제 2도에 나타내었다.
The same procedure as in Example 1 was carried out except that the composition ratios of the amounts of water and nitrogen gas injected were 1/60, 1/40, and 1/20, respectively. The properties of the powder thus prepared are shown in Table 1, and a photograph of the structure is shown in FIG. 2.

(실시예 3)(Example 3)

ST304L조성의 대표적인 Fe71Cr19Ni10 합금조성(중량%)이 되도록 고주파용해에 의하여 400kg를 용해하는 것 이외에는 실시예 1과 동일하게 실시하였다. 제조된 분말의 제 특성을 표 1에 나타내었다.
Representative Fe 71 Cr 19 Ni 10 < RTI ID = 0.0 > Except that 400 kg was dissolved by high-frequency melting so as to have an alloy composition (wt%). Table 1 shows the properties of the powders produced.

(실시예 4)(Example 4)

실시예1의 물의 압력을 각각 50 및 300bar로 하는 것 이외에는 실시예 1과 동일하게 실시하였다. 제조된 분말의 제 특성을 표 1에 나타내었다.
The procedure of Example 1 was repeated except that the water pressure of Example 1 was 50 and 300 bar, respectively. Table 1 shows the properties of the powders produced.

(실시예 5)(Example 5)

실시예1의 가스의 압력을 각각 10bar로 하는 것 이외에는 실시예 1과 동일하게 실시하였다. 제조된 분말의 제 특성을 표 1에 나타내었다.
The procedure of Example 1 was repeated except that the pressure of the gas of Example 1 was 10 bar. Table 1 shows the properties of the powders produced.

(실시예 6)(Example 6)

티타늄합금의 대표적인 조성인 Ti90Al6V4 합금조성(중량%)의 인곳트를 고주파용해에 의하여 400kg를 용해하는 것 이외에는 실시예 1과 동일하게 실시하였다. 제조된 분말의 제 특성을 표 1에 나타내었다.
Ti 90 Al 6 V 4 , which is a typical composition of the titanium alloy The same procedure as in Example 1 was carried out except that 400 kg of the phosphorus composition (wt%) was dissolved by high frequency dissolution. Table 1 shows the properties of the powders produced.

(비교예 1)(Comparative Example 1)

아토마이징시에 물만을 사용하고 이때의 물압력은 300bar로 하는 것 이외에는 실시예 1과 동일하게 실시하였다. 제조된 분말의 제 특성을 표 1에 나타낸다.
The procedure of Example 1 was repeated except that only water was used at the time of atomization and the water pressure at this time was 300 bar. Table 1 shows the properties of the powders produced.

(비교예 2)(Comparative Example 2)

용해재로서 Ti90Al6V4 합금을 용해재로 사용하는 것이 외에는 비교예 1과 동일하게 실시하였다. 제조된 분말의 제 특성을 표 1에 나타낸다.
As a dissolving material, Ti 90 Al 6 V 4 Alloy was used as a dissolving material. Table 1 shows the properties of the powders produced.

(비교예 3)(Comparative Example 3)

아토마이징시에 질소가스만을 사용하고 이때의 가스압력은 30bar로 하는 것 이외에는 실시예 1과 동일하게 실시하였다. 제조된 분말의 제 특성을 표 1에 나타낸다.
The procedure of Example 1 was repeated except that only nitrogen gas was used for atomization and the gas pressure at this time was 30 bar. Table 1 shows the properties of the powders produced.

(비교예4)(Comparative Example 4)

용해재로서 Ti90Al6V4 합금을 용해재로 사용하는 것이 외에는 비교예 3과 동일하게 실시하였다. 제조된 분말의 제 특성을 표 1에 나타낸다.
As a dissolving material, Ti 90 Al 6 V 4 Alloy was used as a dissolution material. Table 1 shows the properties of the powders produced.

(비교예 5)(Comparative Example 5)

물과 가스의 분사량비가 1/10로 하는 것 이외에는 실시예 1과 동일하게 실시하였다. 제조된 분말의 제 특성을 표 1에 나타낸다.
The same procedure as in Example 1 was carried out except that the injection ratio of water to gas was 1/10. Table 1 shows the properties of the powders produced.

(비교예 6)(Comparative Example 6)

가스의 압력은 5bar로 하는 것 이외에는 실시예 1과 동일하게 실시하였다.The same procedure as in Example 1 was carried out except that the gas pressure was 5 bar.

제조된 분말의 제 특성을 표 1에 나타낸다.
Table 1 shows the properties of the powders produced.

조건
번호
Condition
number
합금계Alloy system 물/가스
분사량비
Water / gas
Injection amount ratio
분사압력
(bar)
Injection pressure
(bar)
분말
형상
powder
shape
Aspect Ratio(%)Aspect Ratio (%) 평균입경
()
Average particle diameter
()
겉보기
밀도
(g/cm3)
surface
density
(g / cm 3)
산소 및 질소 함량(ppm)Oxygen and nitrogen content (ppm)
water 가스gas 산소Oxygen 질소nitrogen 실시예1Example 1 STS316LSTS316L 1/801/80 200200 2525 구형rectangle 92-10092-100 4545 4.04.0 753753 1,3971,397 실시예2Example 2 STS316LSTS316L 1/601/60 200200 2525 구형rectangle 82-9382-93 3939 3.93.9 905905 1,3111,311 1/401/40 200200 2525 구형+
타원형
Spherical +
Oval
70-8570-85 3737 3.73.7 11071107 1,2481,248
1/201/20 200200 2525 타원형Oval 30-5030-50 3030 3.53.5 1,3501,350 1,1951,195 실시예3Example 3 STS304LSTS304L 1/801/80 200200 2525 구형rectangle 94-10094-100 3838 3.93.9 847847 1,3651,365 실시예4Example 4 STS316LSTS316L 1/801/80 5050 2525 구형rectangle 95-10595-105 9898 3.53.5 672672 1,2501,250 300300 2525 타원형+불규칙Oval + irregular 20-3020-30 1616 3.33.3 648648 1,1051,105 실시예5Example 5 STS316LSTS316L 1/801/80 200200 1010 타원형+불규칙Oval + irregular 20-3020-30 5555 2.72.7 784784 1,1801,180 실시예6Example 6 Ti-6Al-4VTi-6Al-4V 1/801/80 200200 2525 구형rectangle 92-10092-100 3535 2.32.3 654654 1,2351,235 비교예1Comparative Example 1 STS316LSTS316L 100/0100/0 300300 -- 불규칙irregular -- 2323 2.72.7 3,0033,003 1,1681,168 비교예2Comparative Example 2 Ti-6Al-4VTi-6Al-4V 100/0100/0 300300 -- 불규칙irregular -- 1919 1.61.6 2,3552,355 1,2461,246 비교예3Comparative Example 3 STS316LSTS316L 0/1000/100 -- 3030 구형rectangle 95-10095-100 170170 4.04.0 206206 4,4494,449 비교예4Comparative Example 4 Ti-6Al-4VTi-6Al-4V 0/1000/100 -- 3030 구형rectangle 95-10095-100 165165 2.42.4 157157 3,7433,743 비교예5Comparative Example 5 STS316LSTS316L 1/101/10 200200 2525 불규칙irregular -- 7474 2.82.8 1,4531,453 1,2251,225 비교예6Comparative Example 6 STS316LSTS316L 1/801/80 200200 55 불규칙irregular -- 8686 2.82.8 1,3551,355 1,3451,345

여기서, 표1의 실시예와 제 2도에서 보여주는 바와 같이, 물 및 가스의 복합분사방식에 의하여 구형의 분말 제조시에는 물과 가스의 분사량(liter/min)의 구성비가 1/40 - 1/80의 범위내에 있어야 하며, 가스와 물의 압력(kg/cm2)에 대한 구성비는 1/2이상이 되어야 한다. As shown in the examples of Table 1 and FIG. 2, when the spherical powder is produced by the combined spraying method of water and gas, the composition ratio of water and gas injection amount (liter / min) is 1/40 - 80, and the composition ratio for gas and water pressure (kg / cm 2 ) shall be not less than 1/2.

한편, 물 및 가스의 복합분사방식에 의하여 타원형의 분말제조시에는 물과 가스의 분사량(liter/min)의 구성비가 1/20 - 1/40의 범위내에 있어야 하며, 가스와 물의 압력(kg/cm2)에 대한 구성비는 1/2이상이 되어야 한다. 실시예에서 보여주는 산소함량은 수분사 단독으로 사용하여 분말을 제조(비교예1)한 것에 비하여 산소함량이 1/4이상으로 획기적으로 낮아졌고, 질소함량은 유사한 수준을 보이고 있다. 또한 가스분사 단독으로 사용하여 분말을 제조(비교예2)한 것에 비해서는 산소함량이 약 2.5배 높지만, 질소함량이 1/3이하로 획기적으로 낮음을 알 수 있다.
On the other hand, when making elliptical powder by the combined injection method of water and gas, the composition ratio of water and gas injection (liter / min) should be in the range of 1/20 - 1/40, and the pressure of gas and water (kg / cm 2 ) should be at least 1/2. The oxygen content shown in the examples was remarkably lowered to 1/4 or more, and the nitrogen content was comparable to that obtained when the powders were prepared by using water alone (Comparative Example 1). Further, it can be seen that the oxygen content is about 2.5 times higher than that in the case of using the gas injection alone to prepare the powder (Comparative Example 2), but the nitrogen content is remarkably low to 1/3 or less.

ppm: 용액의 농도 단위로서 100만분의 1
bar: 기압의 단위
ppm: the concentration of the solution in units of one millionth
bar: unit of barometric pressure

Claims (3)

물 및 비활성 가스의 복합분사법의 적용에 의하여 분말의 형상이 타원형에서 구형으로 제조되며, 분말의 평균입경이 100㎛이하의 스테인레스 및 티타늄합금 분말
A powder of stainless steel and titanium alloy powder having an average particle diameter of 100 탆 or less is produced by applying the composite spraying method of water and an inert gas in the shape of ellipse to spherical powder
제 1항에 있어서, 제조되는 스테인레스 및 티타늄합금 분말내의 산소함량이 1,000ppm이하이며, 질소함량이 1,500ppm이하인 것을 특징으로 하는 스테인레스 및 티타늄합금 분말의 제조방법
The method for producing a stainless steel and titanium alloy powder according to claim 1, wherein the produced stainless steel and titanium alloy powder have an oxygen content of 1,000 ppm or less and a nitrogen content of 1,500 ppm or less
제 1항에 있어서, 복합분사법의 적용 조건은 물과 가스의 분사량(liter/min) 및 압력(kg/cm2))의 구성비가 각각 1/20 - 1/8 및 1/2-1/100이며, 물 및 가스의 압력은 50-300bar 및 10-50bar인 것을 특징으로 스테인레스 및 티타늄합금 분말의 제조방법

The method of claim 1, wherein the composition ratio of water / gas injection (liter / min) and pressure (kg / cm 2 ) is 1/20 - 1/8 and 1 / 2-1 / 100, and the pressures of water and gas are 50-300 bar and 10-50 bar, respectively, and the production method of stainless and titanium alloy powder

KR1020140101638A 2014-08-07 2014-08-07 Metal alloy powders for 3d-printer KR20160024401A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020140101638A KR20160024401A (en) 2014-08-07 2014-08-07 Metal alloy powders for 3d-printer
PCT/KR2015/008320 WO2016021998A1 (en) 2014-08-07 2015-08-07 Metal alloy powder for 3d printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140101638A KR20160024401A (en) 2014-08-07 2014-08-07 Metal alloy powders for 3d-printer

Publications (1)

Publication Number Publication Date
KR20160024401A true KR20160024401A (en) 2016-03-07

Family

ID=55264185

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140101638A KR20160024401A (en) 2014-08-07 2014-08-07 Metal alloy powders for 3d-printer

Country Status (2)

Country Link
KR (1) KR20160024401A (en)
WO (1) WO2016021998A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190100514A (en) 2018-02-07 2019-08-29 한국기계연구원 Method of Producing Metal Alloy using wires of different kind of metals
KR20190127823A (en) * 2017-03-14 2019-11-13 브이비엔 컴포넌츠 에이비 High carbon content cobalt based alloy
KR20200072876A (en) * 2018-12-13 2020-06-23 한국표준과학연구원 Hydrogen embrittlement resistive stainless steel agglomerated parts and powder reformed by gas treatment
KR20230011757A (en) 2021-07-14 2023-01-25 현대자동차주식회사 Metal powder for 3d printer
KR20230107439A (en) 2022-01-07 2023-07-17 이언식 Apparatus and Method for Manufacturing Metal Powder Using Non-oxidizing Water Jetting
KR20230116124A (en) 2022-01-27 2023-08-04 이언식 Apparatus for Manufacturing Metal Powder Using Fluid Spray
KR20230129083A (en) 2022-02-28 2023-09-06 이언식 Apparatus for Manufacturing Metal Powder Using Gas Spray of High Pressure Chamber Type
KR20230129084A (en) 2022-02-28 2023-09-06 이언식 Gas Spraying Apparatus for Manufacturing Metal and Alloy Powders and Apparatus for Manufacturing Metal Powder Using the Same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106623952B (en) * 2016-12-19 2018-12-14 南京理工大学 A kind of titanium of the micro- hydrogenation in surface or the preparation method of titanium alloy powder
CN107790734B (en) * 2017-09-29 2020-09-08 武汉钢铁有限公司 Process method for preparing stainless steel powder

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950005300B1 (en) * 1993-06-18 1995-05-23 주식회사창성 Method and device for metal powder
JPH09256004A (en) * 1996-03-25 1997-09-30 Daido Steel Co Ltd Metal powder and its production
DE19881316B4 (en) * 1997-08-29 2006-08-17 Seiko Epson Corp. Method and device for producing metal powder by atomization
JP3598844B2 (en) * 1998-09-29 2004-12-08 Jfeスチール株式会社 Method and apparatus for producing metal powder
KR101426008B1 (en) * 2014-02-12 2014-08-05 공주대학교 산학협력단 Multiplex atomization nozzle and manufacturing apparatus of powder for the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190127823A (en) * 2017-03-14 2019-11-13 브이비엔 컴포넌츠 에이비 High carbon content cobalt based alloy
KR20190100514A (en) 2018-02-07 2019-08-29 한국기계연구원 Method of Producing Metal Alloy using wires of different kind of metals
KR20200072876A (en) * 2018-12-13 2020-06-23 한국표준과학연구원 Hydrogen embrittlement resistive stainless steel agglomerated parts and powder reformed by gas treatment
KR20230011757A (en) 2021-07-14 2023-01-25 현대자동차주식회사 Metal powder for 3d printer
KR20230107439A (en) 2022-01-07 2023-07-17 이언식 Apparatus and Method for Manufacturing Metal Powder Using Non-oxidizing Water Jetting
KR20230116124A (en) 2022-01-27 2023-08-04 이언식 Apparatus for Manufacturing Metal Powder Using Fluid Spray
KR20230129083A (en) 2022-02-28 2023-09-06 이언식 Apparatus for Manufacturing Metal Powder Using Gas Spray of High Pressure Chamber Type
KR20230129084A (en) 2022-02-28 2023-09-06 이언식 Gas Spraying Apparatus for Manufacturing Metal and Alloy Powders and Apparatus for Manufacturing Metal Powder Using the Same

Also Published As

Publication number Publication date
WO2016021998A1 (en) 2016-02-11

Similar Documents

Publication Publication Date Title
KR20160024401A (en) Metal alloy powders for 3d-printer
KR101134501B1 (en) method for manufacture of high purity copper powder use of plasma
CN109877329B (en) Preparation of titanium and titanium alloy powder for 3D printing based on fluidized bed jet mill technology
CN111534765B (en) Spherical amorphous alloy powder preparation device and method
KR20090053941A (en) Metal powder
CN104001924B (en) A kind of metal injection moulding ferrous alloy premix
CN105057664B (en) A kind of 3D printing powder and 3D printing method
CN108907212A (en) A method of Maraging steel is prepared based on injection moulding
CN109988940A (en) A kind of rare earth modified 3D printing hyperoxia titanium valve and preparation method
WO2020133680A1 (en) Super short period nickel-aluminum-bronze alloy having high-strength and high-ductility, and preparation method therefor
CN110153434A (en) A kind of fast preparation method of ultra-fine Ni-Ti-Y multicomponent compound metal nano powder
KR20170038274A (en) Zr or Zr-based alloy powders for Production Method and thereof Zr or Zr-based alloy powders
CN104004970A (en) Prealloyed powder for diamond sawing tools
CN105127436A (en) Preparation method of titanium and titanium alloy spherical powder by vacuum induction melting gas atomization
CN109877343A (en) A kind of preparation method of the high-quality sized spherical titanium powder suitable for 3D printing
CN109897980B (en) Powder injection molding method of titanium or titanium alloy powder and titanium or titanium alloy product
CN105195750A (en) Preparation method of micro low-oxygen titanium hydride powder
EP3670028A1 (en) Silver powder and production method thereof
TW201718901A (en) Method for preparing porous spherical iron-based alloy powder by reduction reaction, powders and sintered body thereof having the advantages of low cost, high fluidity, high compressibility and excellent sintering property.
CN110280760B (en) Activation sintering preparation method of high-density titanium product
CN112893854A (en) Method for preparing metal and alloy powder by atomizing metal or alloy melt with ammonia water
CN111118321A (en) Aluminum alloy chromium additive and preparation method thereof
CN212857768U (en) Alloy powder preparation facilities
JPS6330364B2 (en)
CN111496264B (en) Alloy powder preparation device and method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
E601 Decision to refuse application
N231 Notification of change of applicant
AMND Amendment
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2016101002460; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20160426

Effective date: 20170123