WO2016021918A1 - 자기장을 이용한 동력전달장치 - Google Patents

자기장을 이용한 동력전달장치 Download PDF

Info

Publication number
WO2016021918A1
WO2016021918A1 PCT/KR2015/008149 KR2015008149W WO2016021918A1 WO 2016021918 A1 WO2016021918 A1 WO 2016021918A1 KR 2015008149 W KR2015008149 W KR 2015008149W WO 2016021918 A1 WO2016021918 A1 WO 2016021918A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
module
magnetic field
driver module
rotor
Prior art date
Application number
PCT/KR2015/008149
Other languages
English (en)
French (fr)
Inventor
한승주
한병호
한종택
Original Assignee
한승주
한병호
한종택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한승주, 한병호, 한종택 filed Critical 한승주
Priority to CN201580025809.2A priority Critical patent/CN106489028B/zh
Priority to JP2016568947A priority patent/JP6649277B2/ja
Priority to US15/315,030 priority patent/US10389221B2/en
Priority to GB1700521.6A priority patent/GB2542313B/en
Publication of WO2016021918A1 publication Critical patent/WO2016021918A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/104Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element
    • H02K49/108Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element with an axial air gap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/026Units comprising pumps and their driving means with a magnetic coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/01Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/06Dynamo-electric clutches; Dynamo-electric brakes of the synchronous type
    • H02K49/065Dynamo-electric clutches; Dynamo-electric brakes of the synchronous type hysteresis type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • F02B33/40Engines with pumps other than of reciprocating-piston type with rotary pumps of non-positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/12Drives characterised by use of couplings or clutches therein

Definitions

  • the present invention relates to a power transmission device that transmits power by increasing rotational force by making rotational force by a magnetic field made by receiving rotational power.
  • heat fluid energy is converted into mechanical energy using a heat engine such as an internal combustion engine or an external combustion engine, or electric power is converted into mechanical energy using an electric motor to obtain power and directly supply the power to the drive body.
  • a heat engine such as an internal combustion engine or an external combustion engine
  • electric power is converted into mechanical energy using an electric motor to obtain power and directly supply the power to the drive body.
  • linkages such as gears or belts, to power the linkage system.
  • fuel is combusted to drive a turbine using thermal cycles to obtain rotational power, or to generate rotational power using natural energy such as wind or flowing water to generate power by driving a generator. have.
  • the devices are driven with the rotational power or the generated power thus obtained and used for various purposes according to the purpose.However, the amount of work obtained for the amount of energy input due to thermal fluid loss and friction loss during energy conversion We mark this as efficiency and try to increase efficiency by reducing losses.
  • heat fluid loss and friction loss occur in the electric air cooler of a cooler, the electric air cooler of an air conditioner, the electric air accelerator of a vacuum cleaner, and the electric air supply of a fuel cell vehicle. .
  • the natural intake internal combustion engine that inhales air in the intake stroke and supplies air to the combustion chamber has a limit in output increase because the intake resistance in the intake pipe does not actually fill the air corresponding to the exhaust amount, thereby improving the filling efficiency.
  • a ram charging system using an inertia pressurized supercharge system using a vehicle speed is applied.
  • the inertial pressure supercharging method is limited to some vehicles because it is possible to increase the efficiency of filling by increasing the air density of the upwind only in high speed driving.
  • a supercharger such as a turbocharger of a turbocharger is mounted on the exhaust manifold exit face of the internal combustion engine to drive the turbine wheel using the exhaust gas energy that increases according to the load of the internal combustion engine, and to drive the compressor wheel directly connected to the turbine wheel. It is an air supply device that improves the output of the internal combustion engine by compressing the intake air and increasing the air density to supply the intake pipe of the internal combustion engine to increase the filling efficiency.
  • the turbocharged supercharged vehicle has the advantage of obtaining sufficient boost pressure in the high speed operating area, while the low exhaust gas energy in the low speed operating area does not allow the desired boost to be obtained due to the decrease in efficiency.
  • a hybrid turbocharger is applied to various turbochargers, two-stage turbocharger systems, twin-chargers, an integrated electric assisted turbocharger system, and a complex sequential turbocharger system to obtain necessary boost pressure and increase filling efficiency.
  • the supercharger such as the centrifugal supercharger of the supercharged vehicle, rotates the gear set using the friction force of the pulley connected to the rotational power of the internal combustion engine and drives the engine to increase the rotational speed of the impeller by using the gear ratio to suck the internal combustion engine.
  • Compressed air is supplied to the intake pipe to increase the filling efficiency, thereby increasing the output of the internal combustion engine.
  • the compressor since the compressor is driven in proportion to the crankshaft rotation speed, the response characteristic of the vehicle is excellent when the load of the internal combustion engine changes, while in low speed operation, the acceleration of the internal combustion engine driving the impeller is low, so the supercharge pressure is delayed to delay the acceleration.
  • the crank shaft rotation speed increases, the driving loss of the internal combustion engine increases due to the increase in the load of the pulley driving the gear, the noise of the connector increases, and thus, the fuel consumption is high and the operating cost is high.
  • the natural intake internal combustion engine that inhales air in the intake stroke and supplies air to the combustion chamber has a limit in output increase because the intake resistance in the intake pipe does not actually fill the air corresponding to the displacement amount, thereby improving the filling efficiency.
  • the diameter of the intake pipe to increase the flow passage or smooth the surface to reduce the frictional resistance or to create a vortex to increase the inertial force in some cases.
  • This is to reduce or use the loss of inertia energy of the air flowing in the intake pipe, and the change of air flow alone does not change the increase of the inertia energy, and thus high filling efficiency cannot be obtained.
  • the device for generating the vortex also acts as a resistance in some operating areas.
  • the air is cooled or water-cooled between the supercharger outlet and the intake pipe of the internal combustion engine in order to lower the temperature of the compressed air supplied to the combustion chamber from the supercharger to increase the air density and increase the supercharge efficiency.
  • Cooling device is installed, but when the vehicle is stopped or slowing, the cooling performance is lowered, so knocking or filling efficiency is less likely to be increased.
  • increasing the size of the cooling device to increase the cooling performance is limited in mounting, there is a limit to increase the cooling efficiency by mounting an electric fan to the cooling device or by increasing the cooling fins and is an increase in cost.
  • the present invention is to solve the problems of the prior art as described above, a variety of power transmission devices-for example, the electric air cooling device of the air conditioner and the electric air cooling device of the air conditioner and the electric air accelerator of the vacuum cleaner and the electric motor of the fuel cell vehicle Applied to the air supply device, the induction magnetic field created by the rotational power of the electric motor makes the rotational force accelerated and rotates to increase the rotational power to transmit power to the expander or impeller. It is an object of the present invention to provide a variable power transmission apparatus without cost.
  • the purpose of the present invention is to provide a power transmission device that has a simple structure that transmits power to an expander or impeller by increasing rotational power by accelerating rotational force, and has low driving loss and driving noise, and is durable and does not have a separate driving cost.
  • Another object of the present invention by applying to the air cooling device of the natural intake vehicle to create a rotational force by the rotating magnetic field made by the power of the air flow by the suction pressure to accelerate the rotation to increase the rotational force is simple and drive the structure It is to provide a power transmission device with low loss and driving noise, durability and no extra driving cost.
  • the rotating magnetic field made by the power of the air flow by the boost pressure creates a rotational force and accelerates the rotational force to increase the rotational force to transmit power to the expander. It is to provide a power transmission device that is durable and does not have a separate driving cost.
  • Still another object of the present invention is to generate a rotational force by a combination of an induction magnetic field and a rotating magnetic field that is made by receiving the power of a driving body to be powered or powered by a driving body to accelerate and rotate to increase the rotational force to receive power
  • power transmission system that has simple structure to transmit power to the target, low driving loss and driving noise, high durability, no extra driving cost, and low energy consumption, which can reduce the emission of greenhouse gas such as carbon dioxide.
  • the rotor module is mounted to the driving body for applying power
  • the front driver module is mounted to the rotating shaft of the driving body for applying power
  • the ruler module is mounted on the rotor module and receives power from the driving body applying power.
  • the rotational force is supplied by the induction magnetic field produced by the front driver module, the rotating magnetic field produced by the rotor module, and the rotating magnetic field created by the rotor module with the rear driver module by the rotational power supplied from the driving body applying the power. It is characterized by the acceleration and rotation to increase the rotational force to transmit power to the subject being powered.
  • the rotor module has a shape in which 2n (hereinafter n is an integer) permanent magnet buried holes at equal intervals in accordance with a reference point on the circumferential axis of the body consisting of a disk-shaped hole formed in the center of the body through the rotating shaft through hole And a permanent magnet having 2 n magnetic fluxes attached to the permanent magnet buried holes alternately embedded in the permanent magnet embedding holes in accordance with the reference point of the rotary plate, respectively, in the axial direction or the direction perpendicular to the axis of rotation. .
  • the front driver module and the rear driver module is formed around the rotor module in accordance with the reference point on the circumferential axis of the body formed of a cylindrical shape or a disk shape with a rotating shaft through hole in the center of the body and one side is closed N pole and 2n permanent magnet buried holes formed at regular intervals in the circumferential direction of 2n or 3n (n is an integer greater than or equal to 2) permanent magnet embedding holes, and 2n permanent magnet buried holes in accordance with the reference point of the stator.
  • the rotor module is mounted to a driving body that is powered to mount a rotating body of the driving body powered by the front driver module and the rear
  • the driver module is mounted on the rotor module and receives power from the driven body.
  • Rotating power supplied from a powered drive body causes the rotor module to generate a rotational force with a rotating magnetic field created by the front driver module and the rear driver module to accelerate the rotational power to transmit power to the powered drive body. It is characteristic to doing.
  • the rotor module is mounted to the driving body for applying power and the front driver module is mounted to the rotating shaft of the driving body for applying power It is powered by a driving body that applies
  • Rotational power supplied from the driving body that applies the power to generate the rotational force by the induction magnetic field produced by the front driver module and the rotational magnetic field produced by the rotor module to accelerate the rotational power to increase the rotational power to transfer the power to the subject There is a characteristic.
  • the rotor module is mounted to a driving body that is powered to mount the rotating body of the driving body powered by the rear driver module is Mounted on the rotor module and powered by a powered drive body,
  • Rotating power supplied from a powered drive body creates a rotational force with a rotating magnetic field that the rotor module makes with the rear driver module, accelerates and rotates to increase rotational force, and transmits rotational power and power of the rotating magnetic field to the powered drive body. It is characteristic to doing.
  • the rotor module is mounted to the driving body for applying power and the rear driver module is mounted to the rotor module for driving power Powered by
  • the present invention is applied to the electric air cooling device of the cooler, the electric air cooling device of the air conditioner, the electric air supply device of the fuel cell vehicle, and the electric air accelerator of the vacuum cleaner as a rotary power of the electric motor using low power Induction magnetic field made by the front driver module and rotating magnetic field made by the rotor module and the rotating module make the rotating force by the rotating magnetic field made by the rear driver module and rotate it to increase the rotational force to transmit power to the expander or impeller. Simple, low drive loss, low drive noise, high durability and no additional driving cost can be realized.
  • the electric expansion air charging device of the natural intake vehicle and the electric air charging device of the supercharged vehicle is applied to the electric expansion air charging device of the natural intake vehicle and the electric air charging device of the supercharged vehicle, and the induction magnetic field made by the front driver module and the rotating magnetic field made by the rotor module by the rotational power of the electric motor using low power.
  • the rotor module creates a rotating force with the rotating magnetic field created by the rear driver module and accelerates the rotation to increase the rotational force to transmit power to the impeller or expander.
  • the structure is simple, the driving loss and driving noise are small, the durability is high, and there is no extra driving cost.
  • a power train can be implemented.
  • the rotating magnetic field and the rotor module made by the induction magnetic field and the rotor module, which are applied to the mechanical air charging device of the supercharged vehicle are driven by the rotational power of the idle pulley driven by being mounted on the belt drive system of the internal combustion engine. It is a simple structure that transmits power to the impeller by creating a rotational force by using a rotating magnetic field made with this rear driver module to increase the rotational force to increase the rotational force, and has low driving loss and driving noise, durability, and no additional driving cost. Can be implemented.
  • the rotor module is driven by the front driver module and the rear drive by the power of air flow by suction pressure or the power of air flow by boost pressure of the internal combustion engine.
  • the magnetic module and the rotating magnetic field make the rotor module generate the rotational force and accelerate the rotation to increase the rotational force to transmit power to the expander, and the power transmission device has low driving loss, low driving noise, high durability and no extra driving cost. Can be implemented.
  • the electric air cooler of the cooler is designed to transmit power to the expander or impeller by increasing the rotational force by making the rotational force by the induction magnetic field made by the front driver module and the rotational magnetic field made by the rotor module with the rotational power of the motor using low power. Simple, low drive loss, low drive noise, high durability and no additional driving cost can be realized.
  • the rotor module is rotated with the rear driver module by the power of the air flow by the suction pressure or the air flow by the boost pressure of the internal combustion engine.
  • the rotor module uses the magnetic field to generate rotational force and accelerates rotation to increase the rotational force to transmit rotational power to the expander and to generate power by transmitting the power of the rotating magnetic field to the power generating device.
  • a power train can be implemented without a separate driving cost.
  • the self-driving air cooler of the cooler the self-driving air cooler of the air conditioner, the self-driving air accelerator of the vacuum cleaner, the self-driving air supply of the fuel cell vehicle, and the self-driving air of the natural intake vehicle. It is applied to the charging device and the charging vehicle's self-driven air charging device, and the rotating magnetic field made by the rotor module and the rotating magnetic field made by the rotor module by the power of the induction magnetic field supplied by the low-power magnetic generator. It is possible to realize a power transmission device that has a simple structure that transmits power to an expander or impeller by increasing rotational force by accelerating rotation by increasing rotational force, and has low driving loss and driving noise, durability, and no additional driving cost.
  • the induction magnetic field produced by the front driver module and the rotating magnetic field and the rotor module generated by the front driver module are supplied with the power of the driving driver or the driven driver.
  • the combination of the module and the rotating magnetic field to create the rotational force to accelerate the rotational power to increase the rotational force, the structure is simple to transmit power to the driven body and the object, the driving loss and driving noise is small, durable, no extra driving cost, low energy It is possible to implement a power transmission device that can reduce the emission of greenhouse gases such as carbon dioxide by increasing the transmission efficiency with consumption.
  • FIG. 1 is a perspective view showing an example in which a power transmission device using a magnetic field according to the first embodiment is applied to an electric air cooling device of a cold air conditioner, an electric air cooling device of an air conditioner, and an electric expansion air charging device of a natural intake vehicle.
  • FIG. 3 is a perspective view of the front driver module and the rear driver module.
  • FIG. 4 is a perspective view showing an example in which the power transmission device using the magnetic field according to the first embodiment is applied to the electric air accelerator of the vacuum cleaner.
  • FIG 5 is a perspective view showing an example in which the power transmission device using the magnetic field according to the first embodiment is applied to the electric air charging device of the supercharged vehicle, the electric air supply device of the fuel cell vehicle.
  • FIG. 6 is a perspective view showing an example in which the power transmission device using the magnetic field according to the first embodiment is applied to a mechanical air charging device of a supercharged vehicle.
  • FIG. 7 is a perspective view showing an example in which a power transmission device using a magnetic field according to the second embodiment is applied to an air cooling device of a natural intake vehicle and a supercharged vehicle.
  • FIG. 8 is a power transmission device using a magnetic field according to the third embodiment of the present invention, an electric air cooling device of a cold air conditioner, an electric air cooling device of an air conditioner, an electric air accelerator of a vacuum cleaner, an electric air supply device of a fuel cell vehicle, and a natural intake vehicle.
  • FIG. 9 is a perspective view showing an example in which a power transmission device using a magnetic field according to the fourth embodiment is applied to an air cooling device of a natural intake vehicle and a supercharged vehicle.
  • FIG. 10 is a power transmission device using a magnetic field according to the fifth embodiment of the present invention includes a magnetically driven air cooling device of a cold air conditioner, a magnetically driven air cooling device of an air conditioner, a magnetically driven air accelerator of a vacuum cleaner and a fuel cell vehicle; A perspective view showing an example applied to a self-driven expansion air charging device of a natural air supply device, a natural intake vehicle, and a self-driving air charging device of a supercharged vehicle.
  • 11 is a permanent magnet arrangement of the rotor module and the driver module.
  • the power transmission device 101 is the front and rear of the rotor module 210 and the rotor module 210.
  • a front driver module 310 and a rear driver module 350 disposed to form a magnetic field around the rotor module 210 to the driving body 110 for powering the rotor module 210.
  • the rear driver module 350 is mounted on the rotor module 210, and the rear driver module 350 is mounted on the rotating shaft of the driving body 110 that applies the power to the front driver module 310.
  • the power train 101 is disposed at the front and rear of the rotor module 210 and the rotor module 210 to form a magnetic field around the rotor module 210.
  • the rear driver module 350 the rotor module 210 is mounted to the driving body 110 that applies power, and the front driver module 310 rotates the driving body 110 that applies power. It is mounted on the shaft and the rear driver module 350 is characterized in that mounted to the rotor module (210).
  • the rotor module 210 is permanently equidistantly aligned with a reference point 211 on the circumferential axis of the body, which has a disk shape having a rotating shaft through hole formed at the center of the body.
  • Permanent magnets 216 are alternately embedded with the N pole and the S pole in accordance with the reference point 211 to the permanent magnet embedding holes 213 of the rotating plate 212 having a shape in which the magnet embedding hole 213 is formed. will be.
  • the magnetic flux direction of the permanent magnets 216 is the direction of the magnetic flux in the axial direction or the perpendicular direction of the axis of rotation.
  • the rotor module 210 permanently has 2n (hereinafter, n is an integer) permanently equidistantly aligned with the reference point 211 on the circumferential axis of the body, which has a disk-shape through-rotation hole formed at the center of the body.
  • N and S poles are alternately embedded in the rotating plate 212 having a shape in which the magnet embedding hole 213 is formed and the permanent magnet embedding holes 213 in accordance with the reference point 211 of the rotating plate 212.
  • the direction of one 2n magnetic flux is characterized by including a permanent magnet 216 directed in the axial direction or the axis perpendicular direction of the rotation axis.
  • the front driver module 310 and the rear driver module 350 form a rotating shaft through hole in the center of the body and have a cylindrical shape or a disk shape in which one side is closed.
  • Permanent magnet embedding of stator 312 formed permanent magnet embedding hole 313 at equal intervals at regular intervals in the circumferential direction around the rotor module 210 in accordance with the reference point 311 on the circumferential axis of the body Permanent magnets 316 to the holes 313 in accordance with the reference point 311 is attached to the N-pole and S-pole alternately to buy or attached in three phase arrangement.
  • the magnetic flux direction of the permanent magnets 316 is a direction of the magnetic flux in a direction perpendicular to the permanent magnets 216 of the rotor module 210.
  • the front driver module 310 and the rear driver module 350 form a rotating shaft through-hole in the center of the body and have a reference point on the circumferential axis of the body, which is formed in a cylindrical shape or a disk shape in which one side is closed.
  • N poles and S poles are alternately attached to the 2n permanent magnet embedding holes 313 in accordance with the reference point 311 of the fixing stand 312, or three-phase arrangement is performed on the 3n permanent magnet embedding holes 313.
  • the permanent magnets 216 of the rotor modules 210 and the 2n or 3n rotor modules 210 attached and embedded therein are characterized in that they include permanent magnets 316 having a perpendicular direction.
  • the induction magnetic field generated by the front driver module 310 rotates with the rotational power supplied by the driving body 110 applying the power and the rotor magnetic field generated by the rotor module 210.
  • 210 is a rotational magnetic field created by the rear driver module 350 and the rotating magnetic field to accelerate the rotation to increase the rotational force to transmit power to the object 120 is powered.
  • the induction magnetic field generated by the front driver module 310 and the rotating magnetic field generated by the rotor module 210 and the rotor module 210 are provided by the rotational power supplied from the driving body 110 to apply power.
  • the rear driver module 350 and the rotating magnetic field to create a rotational force to rotate to increase the rotational force is characterized in that for transmitting power to the object 120 is powered.
  • 2n permanent magnets 216 of the rotor module 210 are disposed on the circumferential axis of the rotor plate 212 by alternately alternating the N pole and the S pole (n is an integer), and the front driver module 310.
  • 2n permanent magnets 316 of the rear driver module 350 alternately rotate the N pole and the S pole of the rotor module 210 in the circumferential direction of the stator 312.
  • the permanent magnets 316 of the front driver module 310 and the rear driver module 350 are arranged in three phases of the N pole and the S pole in three phases, and thus the rotor module 210 in the circumferential direction of the stator 312. ) Is placed around.
  • This permanent magnet of the rotor module 210 in the magnetic field formed around the front driver module 310 and the rear driver module 350 facing each other at right angles with a certain gap with the rotor module 210.
  • the magnetic flux of the 216 creates a virtual magnetic field rotation moment axis, and the rotational force is generated by the interaction of the attraction force and the repulsive force with the permanent magnets 316 of the front driver module 310 and the rear driver module 350.
  • the front driver module 310 when the rotating shaft of the driving body 110 that applies power rotates, the front driver module 310 generates an induction magnetic field in the rotor module 210 so that the rotor module 210 rotates in the rotating magnetic field and rotates.
  • the electronic module 210 generates a rotational force by the interaction between the rear driver module 350 and the attraction force and the repulsive force to accelerate the rotation to increase the rotational power to transmit power to the object 120 that is powered.
  • the output of the rotor module 210 is determined by the product of the rotation moment and the number of revolutions, the magnetic density of the permanent magnets of the rotor module 210, the front driver module 310, and the rear driver module 350 is increased. It is desirable to determine the maximum rotational force by adjusting the contact area of the magnetic field and the gap between the permanent magnets perpendicular to the mounting diameter pitch of the permanent magnets. Of course, the maximum rotational force is managed in real time by adjusting the rotational power supplied by the driving body 110 applying the power.
  • an electric or electronic clutch is mounted on the driving unit 110 to apply power to adjust the gap between the rotor module 210 and the front driver module 310 to adjust the strength of the magnetic field or to act as a connection or a short circuit of the magnetic field. More preferably.
  • an electric air cooling device 601 including the present invention 101, a low-power electric motor 410, an expander 511, and an expander case 515 in a cold air conditioner is provided.
  • Expander 511 sucks air into the expander case 515, expands or accelerates it to produce cooling air, increases flow rate and flow rate, lowers the temperature below a certain level, blows cold air into the blower, and reduces power consumption. will be.
  • the front driver module 310 is mounted on the rotating shaft of the motor 410
  • the rear driver module 350 is mounted on the rotor module 210
  • the rotor module 210 is mounted on the motor 410.
  • the expander 511 is mounted on the rotating shaft of the rotor module 210
  • the expander case 515 is mounted on the rotor module 210.
  • the front driver module 310 generates an induction rotational force on the rotor module 210 by the rotational power of the low-power electric motor 410, and the rotor module 210 rotates and the rotor module 210 is rotated.
  • the power supply of the electric motor 410 may be controlled to change and manage rotational power of the front driver module 310.
  • electric air including the present invention 101, a low power electric motor 410, an expander 511, and an expander case 515 between a heat exchanger and a blower in an air conditioner.
  • the expander 511 sucks cold air from the heat exchanger into the expander case 515 and expands or accelerates it to produce cooling air, thereby lowering the temperature to increase air density and increasing flow rate and flow rate. And reduce power consumption.
  • the front driver module 310 is mounted on the rotating shaft of the motor 410
  • the rear driver module 350 is mounted on the rotor module 210
  • the rotor module 210 is mounted on the motor 410.
  • the expander 511 is mounted on the rotating shaft of the rotor module 210
  • the expander case 515 is mounted on the rotor module 210.
  • the present invention accelerates the expander 511 by transmitting power to the expander 511 by increasing the rotational force by increasing the rotational force by making the rotational force as in the above example by the rotational power of the low-power electric motor 410.
  • the power supply of the electric motor 410 may be controlled to change and manage rotational power of the front driver module 310.
  • the axial expander 511 and the expander case in which the present invention 101, the low-power electric motor 410, and air are sucked and expanded in the intake pipe. Equipped with an electric air accelerator 611 including an 515, the axial expander 511 sucks air into the expander case 515 to create a vacuum, and separates the sucked air, dust and dust with a filter to remove only air. Emissions and reduce power consumption.
  • the front driver module 310 is mounted on the rotating shaft of the motor 410
  • the rear driver module 350 is mounted on the rotor module 210
  • the rotor module 210 is mounted on the motor 410.
  • the expander 511 is mounted on the rotating shaft of the rotor module 210
  • the expander case 515 is mounted on the rotor module 210.
  • the present invention accelerates the axial expander 511 by transmitting power to the axial expander 511 by increasing the rotational force by increasing the rotational force by making the rotational force as in the above example by the rotational power of the low-power electric motor 410. .
  • the centrifugal expander 511 it is more preferable to apply the centrifugal expander 511 to increase the degree of vacuum and to use a wide range of air amount.
  • an electric motor 410, an impeller 521, and an impeller case (101) using the present invention 101 and low power between an air filter and a fuel cell ( The electric air supply device 623 including the 525 is mounted so that the impeller 521 sucks air into the impeller case 525 and compresses or pressurizes the air to produce a boost pressure which increases the air density, thereby providing a wide range of air volume in the fuel cell. Supply power and reduce power consumption.
  • the front driver module 310 is mounted on the rotating shaft of the motor 410
  • the rear driver module 350 is mounted on the rotor module 210
  • the rotor module 210 is mounted on the motor 410.
  • the impeller 521 is mounted on the rotating shaft of the rotor module 210
  • the impeller case 525 is mounted on the rotor module 210.
  • the present invention accelerates the impeller 521 by transmitting power to the impeller 521 by increasing the rotational force by increasing the rotational force by making the rotational force as in the above example by the rotational power of the low-power electric motor 410.
  • the power supply of the electric motor 410 may be controlled to change and manage rotational power of the front driver module 310.
  • an electric motor 410, an expander 510, and an expander case using the present invention 101 and low power between an air filter and an intake pipe ( The electric expansion air charging device 605 including the 515 is mounted so that the expander 511 sucks the air into the expander case 515 and expands or accelerates it to produce cooling air, lowers the temperature, increases the air density, and fills the air. Increasing efficiency increases output and improves acceleration.
  • the front driver module 310 is mounted on the rotating shaft of the motor 410
  • the rear driver module 350 is mounted on the rotor module 210
  • the rotor module 210 is mounted on the motor 410.
  • the expander 511 is mounted on the rotating shaft of the rotor module 210
  • the expander case 515 is mounted on the rotor module.
  • the present invention accelerates the expander 511 by transmitting power to the expander 511 by increasing the rotational force by increasing the rotational force by making the rotational force as in the above example by the rotational power of the low-power electric motor 410.
  • the power supply of the electric motor 410 may be controlled to change and manage rotational power of the front driver module 310 and the rear driver module 350.
  • the electric motor 410, the impeller 521, and the impeller case 525 using the present invention 101 and low power between the air filter and the intake pipe.
  • the electric air charging device 621 including the impeller 521 sucks the air into the impeller case 525 to compress or pressurize the air supply to supply the boost pressure to increase the air density to increase the filling efficiency to increase the output and high speed
  • Lower back pressure in the area reduces the load on the internal combustion engine and shortens the spool up time to improve acceleration performance.
  • the front driver module 310 is mounted on the rotating shaft of the motor 410
  • the rear driver module 350 is mounted on the rotor module 210
  • the rotor module 210 is mounted on the motor 410.
  • the impeller 521 is mounted on the rotating shaft of the rotor module 210
  • the impeller case 525 is mounted on the rotor module 210.
  • the present invention accelerates the impeller 521 by transmitting power to the impeller 521 by increasing the rotational force by increasing the rotational force by making the rotational force as in the above example by the rotational power of the low-power electric motor 410.
  • the power supply of the electric motor 410 may be controlled to change and manage rotational power of the driver module 310.
  • the combined force of of.
  • the belt drive system of the internal combustion engine in the supercharged vehicle includes the present invention 101, an idle pulley 420, an impeller 521, and an impeller case 525. It is equipped with a mechanical air filling device (631) impeller 521 sucks air into the impeller case (525) to compress or pressurize the air supply to increase the air density to increase the filling efficiency to increase the output and improve the acceleration performance The frictional force of the pulley is reduced to reduce noise and reduce the load on the internal combustion engine.
  • a mechanical air filling device 631
  • impeller 521 sucks air into the impeller case (525) to compress or pressurize the air supply to increase the air density to increase the filling efficiency to increase the output and improve the acceleration performance
  • the frictional force of the pulley is reduced to reduce noise and reduce the load on the internal combustion engine.
  • the front driver module 310 is mounted on the rotation axis of the idle pulley 420
  • the rear driver module 350 is mounted on the rotor module 210
  • the rotor module 210 is mounted on the idle pulley 420. It is mounted on the fixture of the impeller 521 is mounted on the rotating shaft of the rotor module 210 and the impeller case 525 is mounted on the rotor module 210.
  • the present invention is to rotate the idle pulley 420 by the rotational power of the internal combustion engine to create a rotational force as described above to accelerate the rotation to increase the rotational force to transfer the power to the impeller 521 to accelerate the impeller 521.
  • the power transmission device 102 is the rotor module 210, the front driver module 310 and the rear driver module 350 of the first embodiment
  • the rotor module 210 is mounted on the powered drive body 120 to mount the rotor of the powered drive body 120 and includes the front driver module 310 and the rear driver.
  • the module 350 is mounted on the rotor module 210.
  • the power transmission device 102 includes the rotor module 210, the front driver module 310, and the rear driver module 350 of the first embodiment.
  • the rotating body of the driven body 120 is powered and the front driver module 310 and the rear driver module 350 is the rotor module 210 It is characterized in that mounted on.
  • the rotor module 210 makes a rotational force by the magnetic field created by the rotor module 210 and the front driver module 310 and the rear driver module 350 by the rotational power supplied by the driving body 120 powered by the configuration. By accelerating rotation to increase the rotational force is to transmit power to the driven body 120.
  • the rotor module 210 generates rotational force by using a rotating magnetic field which is generated by the rotor module 210 and the front driver module 310 and the rear driver module 350 by the rotational power supplied from the driven body 120.
  • By accelerating rotation to increase the rotational force is characterized in that for transmitting power to the drive body 120 is powered.
  • 2n permanent magnets 216 of the rotor module 210 are disposed on the circumferential axis of the rotor plate 212 by alternately alternating the N pole and the S pole (n is an integer), and the front driver module 310.
  • 2n permanent magnets 316 of the rear driver module 350 alternately rotate the N pole and the S pole of the rotor module 210 in the circumferential direction of the stator 312.
  • the permanent magnets 316 of the front driver module 310 and the rear driver module 350 are arranged in three phases of the N pole and the S pole in three phases, and thus the rotor module 210 in the circumferential direction of the stator 312. ) Is placed around.
  • This permanent magnet of the rotor module 210 in the magnetic field formed around the front driver module 310 and the rear driver module 350 facing each other at right angles with a certain gap with the rotor module 210.
  • the magnetic flux of the 216 creates a virtual magnetic field rotation moment axis, and the rotational force is generated by the interaction of the attraction force and the repulsive force with the permanent magnets 316 of the front driver module 310 and the rear driver module 350.
  • the rotor module 210 rotates, and the rotor module 210 includes the front driver module 310 and the rear driver module 350.
  • the rotation force is created by the interaction between the attraction force and the repulsive force to accelerate the rotation to increase the rotational power to transmit power to the driving body 120 is powered.
  • an air cooling device 641 including the present invention 102, an expander 511, and an expander case 515 between an air filter and an intake pipe of an internal combustion engine in a natural intake vehicle.
  • Expander 511 sucks the air into the expander case 515 to expand or accelerate to produce cooling air to lower the temperature to increase the air density to increase the filling efficiency to improve the output.
  • an arrow with an oblique pattern represents warm air
  • an arrow with a checkered pattern means cold air, respectively.
  • the front driver module 310 and the rear driver module 350 are mounted on the rotor module 210, and the expander 511 is mounted on the rotation axis of the rotor module 210, and the expander case 515 is mounted. It is mounted on the rotor module (210).
  • the present invention rotates the expander 511 and the rotor module 210 by the power of the air flow by the suction negative pressure or the suction pressure of the internal combustion engine, the rotor module 210 is the front driver module 310 and the rear
  • the rotation of the driver module 350 and the magnetic force of the magnetic flux and the repulsive force creates a rotational force to increase the rotational force to transmit power to the expander 511 to accelerate the expander 511.
  • the present invention 102, the expander 511 and the expander case 515 are provided between the cooling device and the intake pipe in a turbocharger or a supercharged vehicle equipped with a supercharger.
  • the air cooler 643 is installed so that the expander 511 sucks compressed air from the cooler into the expander case 515, expands or accelerates it, produces cooling air, lowers the temperature, increases the air density, and supplies the internal combustion engine. It is to increase the filling efficiency.
  • the front driver module 310 and the rear driver module 350 are mounted on the rotor module 210, and the expander 511 is mounted on the rotation axis of the rotor module 210, and the expander case 515 is mounted. It is mounted on the rotor module (210).
  • the present invention accelerates the expander 511 by transmitting the power to the expander 511 by increasing the rotational force by increasing the rotational force by rotating the power as the power of the air flow by the boost pressure of the internal combustion engine as in the above example.
  • the power transmission device 103 includes the rotor module 210 and the front driver module 310 of the first embodiment.
  • the 210 is mounted on the driving body 110 that applies power
  • the front driver module 310 is mounted on the rotation shaft of the driving body 110 that applies power.
  • the power transmission device 103 includes the rotor module 210 and the front driver module 310 of the first embodiment, so that the rotor module 210 is provided to the driving body 110 that applies power.
  • the front driver module 310 is mounted, characterized in that mounted on the rotation axis of the drive body 110 for applying power.
  • an arrow with an oblique pattern denotes warm air
  • an arrow with a checkered pattern means cold air, respectively.
  • the rotational force is generated by the rotational force supplied by the driving body 110 applying the power as described above, and the rotational force by the induction magnetic field generated by the front driver module 310 and the rotational magnetic field generated by the rotor module 210. Raise the power to deliver power to the target object 120.
  • the rotational force is generated by the rotational force generated by the induction magnetic field produced by the front driver module 310 and the rotational magnetic field produced by the rotor module 210 by the rotational power supplied from the driving body 110 applying the power. It is characterized by transmitting power to the object 120 to be powered up.
  • 2n permanent magnets 216 of the rotor module 210 are disposed on the circumferential axis of the rotor plate 212 by alternately alternating the N pole and the S pole (n is an integer), and the front driver module 310.
  • 2n permanent magnets (316) are disposed around the rotor module 210 in the circumferential direction of the fixing table 312 by alternating the N pole and the S pole (hereinafter n is an integer of 2 or more).
  • the permanent magnets 316 of the front driver module 310 is arranged in the circumferential direction of the stator 312 in the circumferential direction of the stator 312 in a three-phase arrangement of the three poles of the north pole and the south pole.
  • the magnetic flux of the permanent magnets 216 of the rotor module 210 is virtual in a magnetic field formed around the front driver module 310 at right angles to the rotor module 210 at a predetermined gap.
  • the rotational force is generated by the interaction between the attraction force and the repulsive force with the permanent magnets 316 of the front driver module 310 by making the magnetic field rotation moment axis.
  • the front driver module 310 when the rotating shaft of the driving body 110 that applies power rotates, the front driver module 310 generates an induction magnetic field in the rotor module 210 so that the rotor module 210 rotates in the rotating magnetic field to rotate the rotating force. It is made to accelerate the rotation to increase the rotational power is to transmit power to the object 120 receives the power.
  • the present invention 103 is applied to the electric air supply device 623 of the fuel cell vehicle, the electric expansion air charging device 605 of the natural intake vehicle, the electric air charging device 621 and the mechanical air charging device 631 of the supercharged vehicle. It is applied.
  • the power transmission device 104 includes the rotor module 210 and the rear driver module 350 of the first embodiment.
  • the rotor 210 is mounted on the driven body 120 to be powered, and the rear driver module 350 is mounted to the rotor module 210.
  • the power transmission device 104 includes the rotor module 210 and the rear driver module 350 of the first embodiment, so that the rotor module 210 is connected to the driven body 120.
  • Mount the rotating body of the drive body 120 is powered and the rear driver module 350 is characterized in that mounted to the rotor module (210).
  • an arrow with an oblique pattern represents warm air
  • an arrow with a checkered pattern means cold air, respectively.
  • the rotor module 210 By the rotational power supplied by the driving body 120, which is powered by the above configuration, the rotor module 210 generates a rotational force by using a magnetic field made with the rear driver module 350, rotates and accelerates the rotational force to receive power. It is to transfer the rotational power and the power of the rotating magnetic field to the drive body (120).
  • the rotor module 210 generates a rotational force by using a rotating magnetic field made by the rear driver module 350 by the rotational power supplied from the driven body 120, and accelerates and rotates to increase power. It is characterized by transmitting the rotational power and the power of the rotating magnetic field to the drive body (120).
  • 2n permanent magnets 216 of the rotor module 210 are disposed on the circumferential axis of the rotor plate 212 alternately with the N pole and the S pole (n is an integer), and the rear driver module 350 is disposed.
  • 2n permanent magnets (316) are disposed around the rotor module 210 in the circumferential direction of the fixing table 312 by alternating the N pole and the S pole (hereinafter n is an integer of 2 or more).
  • the permanent magnets 316 of the rear driver module 350 are arranged around the rotor module 210 in the circumferential direction of the stator 312 by arranging 3n N-poles and S-poles in three phases.
  • the magnetic flux of the permanent magnets 216 of the rotor module 210 is virtual in a magnetic field formed around the rear driver module 350 at a right angle with the rotor module 210 at a predetermined gap.
  • the rotational force is generated by the interaction between the attraction force and the repulsive force with the permanent magnets 316 of the rear driver module 350 by making the magnetic field rotation moment axis.
  • the rotor module 210 rotates, and the rotor module 210 rotates between the rear driver module 350 and the attraction force and the repulsive force.
  • the rotational force to accelerate the rotation to increase the rotational power is driven to transmit the rotational power and the power of the rotating magnetic field to the powered drive body 120.
  • the present invention 104, the expander 511, and the expander case 515 between an air filter and an intake pipe of an internal combustion engine in a natural intake vehicle that is an application example of the second embodiment.
  • the air cooling device 641 including the generator 530 expands or accelerates by expanding the air by expanding the air into the expander case 515 to produce cooling air and lowering the temperature to increase air density. To increase the filling efficiency and to develop.
  • the rear driver module 350 is mounted on the rotor module 210
  • the expander 511 is mounted on the rotation axis of the rotor module 210
  • the expander case 515 and the generator are mounted on the rotor module 210.
  • 530 is installed.
  • the expander 511 and the rotor module 210 rotate with the suction negative pressure or the suction pressure of the internal combustion engine, and the rotor module 210 rotates the rear driver module 350 and the magnetic flux.
  • the rotational force is created by the interaction between the attraction force and the repulsive force to accelerate the rotational force to increase the rotational force to transfer the power to the expander 511 to accelerate the expander 511 to expand or accelerate the intake air and the power of the rotating magnetic field to the generator 530 It can be delivered to produce power and used where it is useful.
  • the present invention 104 the expander 511, and the expander between the cooling device and the intake pipe in a turbocharger or a supercharger equipped with a supercharger, which is an application example of the second embodiment.
  • the air cooling device 643 including the case 515 and the generator 530 is mounted so that the expander 511 expands or accelerates the compressed air from the cooling device to the expander case 515 to produce cooling air. By lowering the temperature, the air density is increased to increase the filling efficiency of the internal combustion engine and to generate electricity.
  • the rear driver module 350 is mounted on the rotor module 210
  • the expander 511 is mounted on the rotation axis of the rotor module 210
  • the expander case 515 and the generator are mounted on the rotor module 210.
  • 530 is installed.
  • the present invention creates a rotational force by the power of the air flow by the boost pressure of the internal combustion engine to accelerate the rotation by increasing the rotational force to increase the rotational force to accelerate the expander 511 to accelerate the compressed air to expand the compressed air Or by accelerating and transferring the power of the rotating magnetic field to the generator 530 it can be used to produce power and useful.
  • the power transmission device 105 includes the rotor module 210 and the rear driver module 350 of the first embodiment.
  • the 210 is mounted on the driving body 110 that applies power
  • the rear driver module 350 is mounted on the rotor module 210.
  • the power transmission device 105 includes the rotor module 210 and the rear driver module 350 of the first embodiment, so that the rotor module 210 is applied to the driving body 110 that applies power.
  • the rear driver module 350 is mounted to the rotor module 210.
  • an arrow with an oblique line designates warm air
  • an arrow with a checkered pattern means cold air flow, respectively.
  • the magnetic field generated by the rotor module 210 and the rotor module 210 are formed with the rear driver module 350 by the power of an induction magnetic field supplied by the driving body 110 applying the power.
  • the rotational magnetic field to rotate to accelerate the rotation to increase the rotational power is to transmit power to the target object 120.
  • a rotating magnetic field made by the rotor module 210 and a rotation made by the rotor module 210 with the rear driver module 350 by the power of an induction magnetic field supplied by the driving body 110 to apply power It is characterized by transmitting power to the object 120 receives the power by increasing the rotational force by making a rotational force by rotating the magnetic field.
  • 2n permanent magnets 216 of the rotor module 210 are disposed on the circumferential axis of the rotor plate 212 alternately with the N pole and the S pole (n is an integer), and the rear driver module 350 is disposed.
  • 2n permanent magnets (316) are disposed around the rotor module 210 in the circumferential direction of the fixing table 312 by alternating the N pole and the S pole (hereinafter n is an integer of 2 or more).
  • the permanent magnets 316 of the rear driver module 350 are arranged around the rotor module 210 in the circumferential direction of the stator 312 by arranging 3n N-poles and S-poles in three phases.
  • the driving body 110 for applying power to the rear driver module 350 faces the rotor module 210 in a direction perpendicular to the rotor module 210 with a predetermined gap therebetween.
  • the magnetic flux of the permanent magnets 216 creates a virtual magnetic field rotation moment axis, and the rotational force is the interaction between the induced magnetic field and the attraction force and the repulsive force of the driving body 110 that powers the permanent magnets 316 of the rear driver module 350. This will occur.
  • the rotor module 210 rotates and the rotor module 210 rotates by the interaction between the rear driver module 350 and the attraction force and the repulsive force. It is made to accelerate the rotation to increase the rotational power is to transmit power to the object 120 receives the power.
  • the electric air cooling device 601 of the cold air the electric air cooling device 603 of the air conditioner, the electric air accelerator 611 of the vacuum cleaner and the application of the first embodiment
  • the present invention 105 and the magnetic generator 450 may be replaced with the electric air supply device 623 of the fuel cell vehicle, the electric expansion air charging device 605 of the natural intake vehicle, and the electric air charging device 621 of the supercharged vehicle. It is installed by magnetic drive method.
  • the present invention can be applied to the power transmission device technology used in air conditioners or vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

본 발명은 회전자 모듈과 전방 구동자 모듈과 후방 구동자 모듈을 포함하거나 전방 구동자 모듈과 후방 구동자 모듈 중 어느 하나와 회전자 모듈을 포함하여 동력을 가하는 구동체의 동력이나 동력을 받는 구동체의 동력을 공급받아 전방 구동자 모듈이 만드는 유도 자기장과 회전자 모듈이 만드는 회전 자기장과 회전자 모듈이 전방 구동자 모듈과 후방 구동자 모듈과 만드는 회전 자기장의 조합으로 회전력을 만들어 가속 회전하여 회전력을 높여 동력을 받는 구동체와 대상물에 동력을 전달하는 자기장을 이용한 동력전달장치에 관한 것으로서, 구조가 간단하고 구동 손실과 구동 소음이 적고 내구성이 좋고 별도의 구동 비용이 없으며 저에너지 소비로 전달 효율을 높여 이산화 탄소와 같은 온실가스의 배출을 줄일 수 있다.

Description

자기장을 이용한 동력전달장치
본 발명은 회전 동력을 받아 만들어지는 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 동력을 전달하는 동력전달장치에 관한 것이다.
일반적으로 구동체에 동력을 공급하는 수단으로 내연기관이나 외연기관 같은 열기관을 이용하여 열유체 에너지를 기계 에너지로 변환하거나 전동기를 사용하여 전기 에너지를 기계 에너지로 변환하여 동력을 얻어 구동체에 직접 공급하거나 또는 기어나 벨트와 같은 연결구를 사용하여 연계 시스템에 동력을 공급하게 된다.
또한, 전력을 생산하는 수단으로 연료를 연소시켜 열 사이클을 이용하여 터빈을 구동하여 회전 동력을 얻거나 풍력이나 흐르는 물과 같은 자연 에너지를 이용하여 회전 동력을 얻어 발전장치를 구동하여 전력을 생산하고 있다.
이와 같이 얻어지는 회전 동력이나 발전 전력으로 장치들을 구동하여 목적에 맞게 여러 가지 용도로 사용하고 있으나 에너지 변환 과정에 열유체 손실과 마찰 손실 등이 발생하여 투입한 에너지의 양에 대하여 얻은 일의 양으로 하여 이를 효율로 표시하고 손실을 줄여 효율을 높이기 위해 노력하고 있다.
예컨대, 냉풍기의 전동식 공기냉각장치, 에어컨의 전동식 공기냉각장치, 진공청소기의 전동식 공기가속장치, 그리고 연료전지차량의 전동식 공기공급장치에서 열유체 손실과 마찰 손실이 발생하고 있어 효율 개선 노력이 필요하다.
한편, 자연흡기차량에 있어서 흡입 행정에서 공기를 흡입하여 연소실로 공기를 공급하는 자연흡기 내연기관은 흡입관 내의 흡입 저항에 의해 실제로 배기량에 준하는 공기가 충진되지 않기 때문에 출력 증대에 한계가 있어 충진 효율을 증가시키기 위해 차속을 이용한 관성 가압과급 급기방식의 램 차징 시스템을 적용하는 경우가 있다. 그러나, 관성 가압과급 급기방식은 고속주행의 경우에만 맞바람의 공기 밀도를 높여 충진 효율을 증가시키는 효과를 얻을 수 있어 일부 차량에 제한적으로 적용되고 있다.
그리고, 과급차량의 터보차저와 같은 과급기는 내연기관의 배기 매니폴드 출구 면에 장착하여 내연기관의 부하에 따라 높아지는 배기가스 에너지를 이용하여 터빈 휠을 구동하고 터빈 휠과 직결된 컴프레서 휠을 구동하여 흡입 공기를 압축하여 공기 밀도를 높여 내연기관의 흡기관으로 공급하여 충진 효율을 증가시켜 내연기관의 출력을 향상시키는 급기장치이다. 그러나, 터보차저를 장착한 과급차량은 고속 운전영역에서 충분한 과급압을 얻는 장점이 있는 반면에 저속 운전영역에서 배기가스 에너지가 낮아 효율 저하로 원하는 부스트를 얻을 수 없어 이로 인해 저속 운전영역과 역동 구간에서 부하 변동 시 차량의 응답 시간 지체가 발생하고 배기 열로부터 보호하기 위해 오일 공급 장치가 설치되어야 하고 고속영역에서 배압의 증가로 내연기관의 부하가 증가하는 단점이 있다. 이를 해결하기 위해 가변식 터보차저와 2단 터보차저 시스템과, 트윈차저와 일체형 전기 보조 터보차저 시스템과 복합 순차식 과급 시스템을 다양하게 적용하여 필요한 과급압을 얻어 충진 효율을 증가시키는 복합 과급장치들이 개발되어 적용되고 있지만 이와 관련한 부품수의 증가로 구조가 복잡하고 제어 시스템의 추가로 비용의 증가 요인이 되고 있다.
그리고, 과급차량의 원심형 슈퍼차저와 같은 과급기는 내연기관의 회전 동력을 벨트로 연결된 풀리의 마찰력을 이용하여 기어 세트를 회전시키고 기어비를 이용하여 임펠러의 회전수를 높여 구동하여 내연 기관으로 흡입하는 공기를 압축하여 흡기관에 공급하여 충진 효율을 높여 내연기관의 출력을 높이게 된다. 그러나, 크랭크 축 회전수에 비례하여 압축기를 구동시키므로 내연기관의 부하 변동 시 차량의 응답 특성이 우수한 장점이 있는 반면에 저속운전에서는 임펠러를 구동하는 내연기관의 회전수가 낮아 과급압 형성이 늦어 가속 지연이 있고 크랭크 축 회전수가 증가함에 따라 기어를 구동하는 풀리의 부하의 증가로 내연기관의 구동 손실이 증가하고 연결구의 소음이 커지며 이로 인해 연료 소모가 많아 운전 비용이 많이 드는 단점이 있다.
또한, 자연흡기차량에 있어서 흡입 행정에서 공기를 흡입하여 연소실로 공기를 공급하는 자연흡기 내연기관은 흡입관 내의 흡입저항에 의해 실제로 배기량에 준하는 공기가 충진되지 않기 때문에 출력 증대에 한계가 있어 충진 효율을 증가시키기 위해 흡기관의 직경을 키워 유량 통로를 넓히거나 표면을 매끄럽게 하여 마찰 저항을 줄이거나 와류를 생성시켜 관성력을 높이는 장치를 적용하는 경우가 있다. 그러나, 이는 흡기관 내부를 흐르는 공기의 관성 에너지의 손실을 줄이거나 이용하는 것으로 공기 유동의 변화 만으로는 관성 에너지의 증가 변화가 거의 없어 높은 충진 효율을 얻을 수 없었다. 또한 와류를 생성시키는 장치는 일부 운전영역에서 저항으로 작용한다.
그리고, 터보차저나 슈퍼차저를 장착한 과급차량에 있어서 과급장치에서 연소실에 공급하는 압축공기의 온도를 낮추어 공기 밀도를 높여 과급 효율을 높이기 위해 과급기 출구와 내연기관의 흡기관 사이에 공냉식 또는 수냉식의 냉각 장치를 장착하고 있으나 차량의 정지 시나 서행의 경우에는 냉각 성능이 낮아져 노킹이 발생하거나 충진 효율이 떨어지기 쉬우므로 전 운전 영역에 걸쳐 냉각 용량을 키워 대폭 낮출 필요가 있다. 그러나, 냉각장치의 크기를 키워 냉각 성능을 높이는 데는 장착 상의 제약이 있고 냉각장치에 전동 팬을 장착하거나 냉각 핀들을 늘려 냉각 효율을 높이는 데는 한계가 있고 비용의 증가 요인이 되고 있다.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로서, 다양한 동력전달장치 - 예컨대, 냉풍기의 전동식 공기냉각장치와 에어컨의 전동식 공기냉각장치와 진공청소기의 전동식 공기가속장치와 연료전지차량의 전동식 공기공급장치에 적용하여 전동기의 회전 동력으로 만들어지는 유도 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 익스팬더나 임펠러에 동력을 전달하는 구조가 간단하고 구동 손실과 구동 소음이 적고 내구성이 좋고 별도의 구동 비용이 없는 가변동력전달장치를 제공하는 것을 목적으로 한다.
그리고, 과급차량의 전동식 공기충전장치와 자연흡기차량의 전동식 확장공기충전장치에 적용하여 전동기의 회전 동력으로 만들어지는 유도 자기장과 내연기관의 흡입압으로 회전력을 만들어 가속 회전하여 회전력을 높여 익스팬더나 임펠러에 동력을 전달하는 구조가 간단하고 구동 손실과 구동 소음이 적고 내구성이 좋고 구동 비용이 없는 동력전달장치를 제공하는 것을 목적으로 한다.
그리고, 과급차량의 기계식 공기충전장치와 자연흡기차량의 기계식 확장공기충전장치에 적용하여 내연기관의 벨트 구동 시스템에 장착하여 구동되는 아이들 풀리의 회전 동력으로 만들어지는 유도 자기장과 내연기관의 흡입압으로 회전력을 만들어 가속 회전하여 회전력을 높여 익스팬더나 임펠러에 동력을 전달하는 구조가 간단하고 구동 손실과 구동 소음이 적고 내구성이 좋고 별도의 구동 비용이 없는 동력전달장치를 제공하는 것을 목적으로 한다.
본 발명의 다른 목적은, 자연흡기차량의 공기냉각장치에 적용하여 흡입압에 의한 공기 흐름의 동력으로 만들어지는 회전 자기장으로 회전력를 만들어 가속 회전하여 회전력을 높여 익스팬더에 동력을 전달하는 구조가 간단하고 구동 손실과 구동 소음이 적고 내구성이 좋고 별도의 구동 비용이 없는 동력전달장치를 제공하는 것이다.
그리고, 과급차량의 공기냉각장치에 적용하여 과급압에 의한 공기 흐름의 동력으로 만들어지는 회전 자기장으로 회전력를 만들어 가속 회전하여 회전력을 높여 익스팬더에 동력을 전달하는 구조가 간단하고 구동 손실과 구동 소음이 적고 내구성이 좋고 별도의 구동 비용이 없는 동력전달장치를 제공하는 것이다.
본 발명의 또 다른 목적은, 동력을 가하는 구동체의 동력이나 동력을 받는 구동체의 동력을 공급받아 만들어지는 유도 자기장과 회전 자기장의 조합으로 회전력을 만들어 가속 회전하여 회전력을 높여 동력을 받는 구동체와 대상물에 동력을 전달하는 구조가 간단하고 구동 손실과 구동 소음이 적고 내구성이 좋고 별도의 구동 비용이 없으며 저에너지 소비로 전달 효율을 높여 이산화 탄소와 같은 온실가스의 배출을 줄일 수 있는 동력전달장치를 제공하는 것이다.
이러한 목적을 달성하기 위하여 본 발명의 일 실시예에 의한 동력전달장치는 회전자 모듈은 동력을 가하는 구동체에 장착되고, 전방 구동자 모듈은 동력을 가하는 구동체의 회전 축에 장착되고, 후방 구동자 모듈은 상기 회전자 모듈에 장착되어 동력을 가하는 구동체에서 동력을 공급받는다.
이때, 동력을 가하는 구동체에서 공급되는 회전 동력으로 상기 전방 구동자 모듈에서 만들어지는 유도 자기장과 상기 회전자 모듈이 만드는 회전 자기장과 상기 회전자 모듈이 상기 후방 구동자 모듈과 만드는 회전 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 동력을 받는 대상물에 동력을 전달하는 것에 특징이 있다.
한편, 상기 회전자 모듈은 몸체의 중심에 회전 축 관통 구멍을 형성한 원반 형상으로 이루어진 몸체의 원주 축선 상에 기준점에 맞추어 등 간격으로 2n개의 (이하 n은 정수) 영구자석 매입 구멍을 형성한 형상을 가진 회전판과, 상기 회전판의 기준점에 맞추어 영구자석 매입 구멍들에 N극과 S극을 교대로 매입하여 부착한 2n개의 자속의 방향이 회전 축의 축선 방향 또는 축선 직각 방향으로 향한 영구자석을 포함한다.
한편, 상기 전방 구동자 모듈과 상기 후방 구동자 모듈은 몸체의 중심에 회전 축 관통 구멍을 형성하고 한쪽 면이 닫힌 원통 형상 또는 원반 형상으로 이루어진 몸체의 원주 축선 상에 기준점에 맞추어 상기 회전자 모듈 주위의 원주 방향으로 일정 간극을 두고 등 간격으로 2n개 또는 3n개의 (이하 n은 2 이상 정수) 영구자석 매입 구멍을 형성한 고정대와, 상기 고정대의 기준점에 맞추어 2n개의 영구자석 매입 구멍에 N극과 S극을 교대로 매입하여 부착하거나 3n개의 영구자석 매입 구멍에 3상 배열하여 매입하여 부착한 2n개 또는 3n개의 상기 회전자 모듈의 영구자석들과 자속의 방향이 직각으로 향한 영구자석을 포함한다.
한편, 본 발명의 다른 실시예에 의한 자기장을 이용한 동력전달장치는, 상기 회전자 모듈은 동력을 받는 구동체에 장착되어 동력을 받는 구동체의 회전체를 장착하고 상기 전방 구동자 모듈과 상기 후방 구동자 모듈은 상기 회전자 모듈에 장착되어 동력을 받는 구동체에서 동력을 공급받으며,
동력을 받는 구동체에서 공급되는 회전 동력으로 상기 회전자 모듈이 상기 전방 구동자 모듈과 상기 후방 구동자 모듈과 만드는 회전 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 동력을 받는 구동체에 동력을 전달하는 것에 특징이 있다.
한편, 본 발명의 또 다른 실시예에 의한 자기장을 이용한 동력전달장치는, 상기 회전자 모듈은 동력을 가하는 구동체에 장착되고 상기 전방 구동자 모듈은 동력을 가하는 구동체의 회전 축에 장착되어 동력을 가하는 구동체에서 동력을 공급받으며,
동력을 가하는 구동체에서 공급되는 회전 동력으로 상기 전방 구동자 모듈에서 만들어지는 유도 자기장과 상기 회전자 모듈이 만드는 회전 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 동력을 받는 대상물에 동력을 전달하는 것에 특징이 있다.
한편, 본 발명의 또 다른 실시예에 의한 자기장을 이용한 동력전달장치는, 상기 회전자 모듈은 동력을 받는 구동체에 장착되어 동력을 받는 구동체의 회전체를 장착하고 상기 후방 구동자 모듈은 상기 회전자 모듈에 장착되어 동력을 받는 구동체에서 동력을 공급받으며,
동력을 받는 구동체에서 공급되는 회전 동력으로 상기 회전자 모듈이 상기 후방 구동자 모듈과 만드는 회전 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 동력을 받는 구동체에 회전 동력과 회전 자기장의 동력을 전달하는 것에 특징이 있다.
한편, 본 발명의 또 다른 실시예에 의한 자기장을 이용한 동력전달장치는, 상기 회전자 모듈은 동력을 가하는 구동체에 장착되고 상기 후방 구동자 모듈은 상기 회전자 모듈에 장착되어 동력을 가하는 구동체에서 동력을 공급받으며,
동력을 가하는 구동체에서 공급되는 유도 자기장의 동력으로 상기 회전자 모듈이 만드는 회전 자기장과 상기 회전자 모듈이 상기 후방 구동자 모듈과 만드는 회전 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 동력을 받는 대상물에 동력을 전달하는 것에 특징이 있다.
이상과 같이 본 발명에 의하면, 냉풍기의 전동식 공기냉각장치와 에어컨의 전동식 공기냉각장치와 연료전지차량의 전동식 공기공급장치와 진공청소기의 전동식 공기가속장치에 적용하여 저전력을 사용하는 전동기의 회전 동력으로 전방 구동자 모듈에서 만들어지는 유도 자기장과 회전자 모듈이 만드는 회전 자기장과 회전자 모듈이 후방 구동자 모듈과 만드는 회전 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 익스팬더나 임펠러에 동력을 전달하는 구조가 간단하고 구동 손실과 구동 소음이 적고 내구성이 좋고 별도의 구동 비용이 없는 동력전달장치를 구현할 수 있다.
그리고, 자연흡기차량의 전동식 확장공기충전장치와 과급차량의 전동식 공기충전장치에 적용하여 저 전력을 사용하는 전동기의 회전 동력으로 전방 구동자 모듈에서 만들어지는 유도 자기장과 회전자 모듈이 만드는 회전 자기장과 회전자 모듈이 후방 구동자 모듈과 만드는 회전 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 임펠러나 익스팬더에 동력을 전달하는 구조가 간단하고 구동 손실과 구동 소음이 적고 내구성이 좋고 별도의 구동 비용이 없는 동력전달장치를 구현할 수 있다.
그리고, 과급차량의 기계식 공기충전장치에 적용하여 내연기관의 벨트 구동 시스템에 장착하여 구동되는 아이들 풀리의 회전 동력으로 전방 구동자 모듈에서 만들어지는 유도 자기장과 회전자 모듈이 만드는 회전 자기장과 회전자 모듈이 후방 구동자 모듈과 만드는 회전 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 임펠러에 동력을 전달하는 구조가 간단하고 구동 손실과 구동 소음이 적고 내구성이 좋고 별도의 구동 비용이 없는 가변동력전달장치를 구현할 수 있다.
또한, 자연흡기차량의 공기냉각장치와 과급차량의 공기냉각장치에 적용하여 흡입압에 의한 공기 흐름 동력이나 내연기관의 과급압에 의한 공기 흐름의 동력으로 회전자 모듈이 전방 구동자 모듈과 후방 구동자 모듈과 만드는 회전 자기장으로 회전자 모듈이 회전력을 만들어 가속 회전하여 회전력을 높여 익스팬더에 동력을 전달하는 구조가 간단하고 구동 손실과 구동 소음이 적고 내구성이 좋고 별도의 구동 비용이 없는 동력전달장치를 구현할 수 있다.
또한, 냉풍기의 전동식 공기냉각장치와 에어컨의 전동식 공기냉각장치와 진공청소기의 전동식 공기가속장치와 연료전지차량의 전동식 공기공급장치와 자연흡기차량의 전동식 확장공기충전장치와 과급차량의 전동식 공기충전장치에 적용하여 저 전력을 사용하는 전동기의 회전 동력으로 전방 구동자 모듈에서 만들어지는 유도 자기장과 회전자 모듈이 만드는 회전 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 익스팬더나 임펠러에 동력을 전달하는 구조가 간단하고 구동 손실과 구동 소음이 적고 내구성이 좋고 별도의 구동 비용이 없는 동력전달장치를 구현할 수 있다.
또한, 자연흡기차량의 공기냉각장치와 과급차량의 공기냉각장치에 적용하여 흡입압에 의한 공기 흐름 동력이나 내연기관의 과급압에 의한 공기 흐름의 동력으로 회전자 모듈이 후방 구동자 모듈과 만드는 회전 자기장으로 회전자 모듈이 회전력을 만들어 가속 회전하여 회전력을 높여 익스팬더에 회전 동력을 전달하고 발전장치에 회전 자기장의 동력을 전달하여 전력을 생산하는 구조가 간단하고 구동 손실과 구동 소음이 적고 내구성이 좋고 별도의 구동 비용이 없는 동력전달장치를 구현할 수 있다.
또한, 냉풍기의 자기구동식 공기냉각장치와 에어컨의 자기구동식 공기냉각장치와 진공청소기의 자기구동식 공기가속장치와 연료전지차량의 자기구동식 공기공급장치와 자연흡기차량의 자기구동식 확장공기충전장치와 과급차량의 자기구동식 공기충전장치에 적용하여 저 전력을 사용하는 자기발생기가 공급하는 유도 자기장의 동력으로 회전자 모듈이 만드는 회전 자기장과 회전자 모듈이 후방 구동자 모듈과 만드는 회전 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 익스팬더나 임펠러에 동력을 전달하는 구조가 간단하고 구동 손실과 구동 소음이 적고 내구성이 좋고 별도의 구동 비용이 없는 동력전달장치를 구현할 수 있다.
또한, 동력을 가하는 구동체의 동력이나 동력을 받는 구동체의 동력을 공급받아 전방 구동자 모듈에서 만들어지는 유도 자기장과 회전자 모듈이 만드는 회전 자기장과 회전자 모듈이 전방 구동자 모듈과 후방 구동자 모듈과 만드는 회전 자기장의 조합으로 회전력을 만들어 가속 회전하여 회전력을 높여 동력을 받는 구동체와 대상물에 동력을 전달하는 구조가 간단하고 구동 손실과 구동 소음이 적고 내구성이 좋고 별도의 구동 비용이 없으며 저에너지 소비로 전달 효율을 높여 이산화 탄소와 같은 온실가스의 배출을 줄일 수 있는 동력전달장치를 구현할 수 있다.
도 1은 제 1 실시 예에 따른 자기장을 이용한 동력전달장치가 냉풍기의 전동식 공기냉각장치, 에어컨의 전동식 공기냉각장치, 자연흡기차량의 전동식 확장공기충전장치에 적용된 예를 도시한 사시도.
도 2는 회전자 모듈을 도시한 단면 사시도.
도 3은 전방 구동자 모듈과 후방 구동자 모듈을 도시한 사시도.
도 4는 제 1 실시 예에 따른 자기장을 이용한 동력전달장치가 진공청소기의 전동식 공기가속장치에 적용된 예를 도시한 사시도.
도 5는 제 1 실시 예에 따른 자기장을 이용한 동력전달장치가 과급차량의 전동식 공기충전장치, 연료전지차량의 전동식 공기공급장치에 적용된 예를 도시한 사시도.
도 6은 제 1 실시 예에 따른 자기장을 이용한 동력전달장치가 과급차량의 기계식 공기충전장치에 적용된 예를 도시한 사시도.
도 7은 제 2 실시 예에 따른 자기장을 이용한 동력전달장치가 자연흡기차량과 과급차량의 공기냉각장치에 적용된 예를 도시한 사시도.
도 8은 제 3 실시 예에 따른 자기장을 이용한 동력전달장치가 냉풍기의 전동식 공기냉각장치와 에어컨의 전동식 공기냉각장치와 진공청소기의 전동식 공기가속장치와 연료전지차량의 전동식 공기공급장치와 자연흡기차량의 전동식 확장공기충전장치와 과급차량의 전동식 공기충전장치와 기계식 공기충전장치에 적용된 예를 도시한 사시도.
도 9는 제 4 실시 예에 따른 자기장을 이용한 동력전달장치가 자연흡기차량과 과급차량의 공기냉각장치에 적용된 예를 도시한 사시도.
도 10은 제 5 실시 예에 따른 자기장을 이용한 동력전달장치가 냉풍기의 자기구동식 공기냉각장치와 에어컨의 자기구동식 공기냉각장치와 진공청소기의 자기구동식 공기가속장치와 연료전지차량의 자기구동식 공기공급장치와 자연흡기차량의 자기구동식 확장공기충전장치와 과급차량의 자기구동식 공기충전장치에 적용된 예를 도시한 사시도.
도 11은 회전자 모듈과 구동자 모듈의 영구자석 배치도.
이하, 첨부된 도면을 참조하여 본 발명에 의한 실시 예에 따라 그 구성요소들과 작용 및 작동에 대해 상세히 설명한다.
제 1 실시 예의 구성요소들과 작용 및 작동에 대해 설명한다.
먼저, 구성요소들에 대해 설명한다.
도 1과 도 4와 도 5와 도 6과 도 11에 도시한 바와 같이, 본 발명에 의한 동력전달장치(101)는 회전자 모듈(210)과 상기 회전자 모듈(210)의 앞쪽과 뒤쪽에 배치되어 상기 회전자 모듈(210) 주위에 자기장을 형성하는 전방 구동자 모듈(310)과 후방 구동자 모듈(350)을 포함하여 상기 회전자 모듈(210)을 동력을 가하는 구동체(110)에 장착하고 상기 전방 구동자 모듈(310)을 동력을 가하는 구동체(110)의 회전 축에 장착하고 상기 후방 구동자 모듈(350)을 상기 회전자 모듈(210)에 장착한 것이다.
상세하게는 동력전달장치(101)는 회전자 모듈(210)과 상기 회전자 모듈(210)의 앞쪽과 뒤쪽에 배치되어 상기 회전자 모듈(210) 주위에 자기장을 형성하는 전방 구동자 모듈(310)과 후방 구동자 모듈(350)을 포함하여 상기 회전자 모듈(210)은 동력을 가하는 구동체(110)에 장착되고 상기 전방 구동자 모듈(310)은 동력을 가하는 구동체(110)의 회전 축에 장착되고 상기 후방 구동자 모듈(350)은 상기 회전자 모듈(210)에 장착된 것을 특징으로 한다.
상기 회전자 모듈(210)은 도 1과 도 2에 도시한 바와 같이, 몸체의 중심에 회전 축 관통 구멍을 형성한 원반 형상으로 이루어진 몸체의 원주 축선 상에 기준점(211)에 맞추어 등 간격으로 영구자석 매입 구멍(213)을 형성한 형상을 가진 회전판(212)의 영구자석 매입 구멍(213)들에 기준점(211)에 맞추어 영구자석(216)들을 N극과 S극을 교대로 매입하여 부착한 것이다.
상기 영구자석(216)들의 자속 방향은 회전 축의 축선 방향 또는 축선 직각 방향으로 자속의 방향이 향한 것이다.
상세하게는 상기 회전자 모듈(210)은 몸체의 중심에 회전 축 관통 구멍을 형성한 원반 형상으로 이루어진 몸체의 원주 축선 상에 기준점(211)에 맞추어 등 간격으로 2n개의 (이하 n은 정수) 영구자석 매입 구멍(213)을 형성한 형상을 가진 회전판(212)과, 상기 회전판(212)의 기준점(211)에 맞추어 영구자석 매입 구멍(213)들에 N극과 S극을 교대로 매입하여 부착한 2n개의 자속의 방향이 회전 축의 축선 방향 또는 축선 직각 방향으로 향한 영구자석(216)을 포함하는 것을 특징으로 한다.
상기 전방 구동자 모듈(310)과 상기 후방 구동자 모듈(350)은 도 1과 도 3에 도시한 바와 같이, 몸체의 중심에 회전 축 관통 구멍을 형성하고 한쪽 면이 닫힌 원통 형상 또는 원반 형상으로 이루어진 몸체의 원주 축선 상에 기준점(311)에 맞추어 상기 회전자 모듈(210) 주위의 원주 방향으로 일정 간극을 두고 등 간격으로 영구자석 매입 구멍(313)을 형성한 고정대(312)의 영구자석 매입 구멍(313)들에 기준점(311)에 맞추어 영구자석(316)들을 N극과 S극을 교대로 매입하여 부착하거나 3상 배열하여 매입하여 부착한 것이다.
상기 영구자석(316)들의 자속 방향은 상기 회전자 모듈(210)의 영구자석(216)들과 직각 방향으로 자속의 방향이 향한 것이다.
상세하게는 상기 전방 구동자 모듈(310)과 상기 후방 구동자 모듈(350)은 몸체의 중심에 회전 축 관통 구멍을 형성하고 한쪽 면이 닫힌 원통 형상 또는 원반 형상으로 이루어진 몸체의 원주 축선 상에 기준점(311)에 맞추어 상기 회전자 모듈(210) 주위의 원주 방향으로 일정 간극을 두고 등 간격으로 2n개 또는 3n개의 (이하 n은 2 이상 정수) 영구자석 매입 구멍(313)을 형성한 고정대(312)와, 상기 고정대(312)의 기준점(311)에 맞추어 2n개의 영구자석 매입 구멍(313)에 N극과 S극을 교대로 매입하여 부착하거나 3n개의 영구자석 매입 구멍(313)에 3상 배열하여 매입하여 부착한 2n개 또는 3n개의 상기 회전자 모듈(210)의 영구자석(216)들과 자속의 방향이 직각 방향으로 향한 영구자석(316)을 포함하는 것을 특징으로 한다.
다음으로, 작용 및 작동에 대해 설명한다.
상기 구성으로 하여 동력을 가하는 구동체(110)가 공급하는 회전 동력으로 회전하는 상기 전방 구동자 모듈(310)이 만드는 유도 자기장과 상기 회전자 모듈(210)이 만드는 회전 자기장과 상기 회전자 모듈(210)이 상기 후방 구동자 모듈(350)과 만드는 회전 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 동력을 받는 대상물(120)에 동력을 전달하는 것이다.
상세하게는 동력을 가하는 구동체(110)에서 공급되는 회전 동력으로 상기 전방 구동자 모듈(310)에서 만들어지는 유도 자기장과 상기 회전자 모듈(210)이 만드는 회전 자기장과 상기 회전자 모듈(210)이 상기 후방 구동자 모듈(350)과 만드는 회전 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 동력을 받는 대상물(120)에 동력을 전달하는 것을 특징으로 한다.
상기 구성으로 하면 회전자 모듈(210)의 영구자석(216)들은 2n개가 (n은 정수) N극과 S극을 교대로 하여 회전판(212)의 원주 축선 상에 배치되고 전방 구동자 모듈(310)과 후방 구동자 모듈(350)의 영구자석(316)들은 2n개가 (이하 n은 2 이상 정수) N극과 S극을 교대로 하여 고정대(312)의 원주 방향으로 회전자 모듈(210)의 주위에 배치된다. 또한, 전방 구동자 모듈(310)과 후방 구동자 모듈(350)의 영구자석(316)들은 3n개를 N극과 S극을 3상 배열하여 고정대(312)의 원주 방향으로 회전자 모듈(210)의 주위에 배치한 것이다.
이렇게 하면 전방 구동자 모듈(310)과 후방 구동자 모듈(350)이 회전자 모듈(210)과 일정한 간극을 두고 직각 방향으로 마주보며 주위에 형성한 자기장 내에서 회전자 모듈(210)의 영구자석(216)들의 자속이 가상의 자기장 회전 모멘트 축을 만들어 전방 구동자 모듈(310)과 후방 구동자 모듈(350)의 영구자석(316)들과 인력과 척력의 상호 작용으로 회전력이 발생하게 된다.
따라서, 동력을 가하는 구동체(110)의 회전 축이 회전하게 되면 전방 구동자 모듈(310)이 회전자 모듈(210)에 유도 자기장을 발생시켜 회전자 모듈(210)이 회전 자기장으로 회전하고 회전자 모듈(210)은 후방 구동자 모듈(350)과 인력과 척력의 상호 작용으로 회전력을 만들어 가속 회전하여 회전 동력을 높여 동력을 받는 대상물(120)에 동력을 전달하게 된다.
또한, 회전자 모듈(210)의 출력은 회전 모멘트와 회전수의 곱으로 결정되므로 회전자 모듈(210)과 전방 구동자 모듈(310)과 후방 구동자 모듈(350)의 영구자석들의 자기밀도와 자기장의 접촉 면적과 영구자석들의 장착 지름 피치와 직각으로 마주보는 영구자석들 간의 간극을 조정하여 최대 회전력을 결정하는 것이 바람직하다. 동력을 가하는 구동체(110)가 공급하는 회전 동력을 조정하여 최대 회전력를 실시간으로 관리하는 것은 물론이다.
또한, 동력을 가하는 구동체(110)에 전기식 또는 전자식 클러치를 장착하여 회전자 모듈(210)과 전방 구동자 모듈(310)의 간극을 조정하여 자기장의 세기를 조정하거나 자기장의 연결 또는 단락 역할을 하도록 하는 것은 더욱 바람직하다.
또한, 영구자석들의 인력과 척력의 상호작용으로 회전력을 만들어 자기 회전력으로 구동하기 때문에 구동 손실이 적고 높은 구동 효율로 소음 발생이 거의 발생하지 않으며 내구성이 좋고 별도의 구동 비용이 없다.
예를 들면, 도 1에 도시한 바와 같이, 냉풍기에 있어서 본 발명(101)과 저 전력의 전동기(410)와 익스팬더(511)와 익스팬더 케이스(515)를 포함하는 전동식 공기냉각장치(601)를 장착하여 익스팬더(511)가 공기를 익스팬더 케이스(515)로 흡입하여 확장 또는 가속하여 냉각공기를 생산하여 유량과 유속을 늘리고 온도를 일정 이하로 낮추어 송풍기로 찬 공기를 불어내어 공급하고 소비 전력을 줄이는 것이다.
즉, 전방 구동자 모듈(310)을 전동기(410)의 회전 축에 장착하고 후방 구동자 모듈(350)을 회전자 모듈(210)에 장착하고 회전자 모듈(210)을 전동기(410)에 장착하고 익스팬더(511)를 회전자 모듈(210)의 회전 축에 장착하고 익스팬더 케이스(515)를 회전자 모듈(210)에 장착한 것이다.
이렇게 하면 본 발명은 저 전력의 전동기(410)의 회전 동력으로 전방 구동자 모듈(310)이 회전자 모듈(210)에 유도 회전력을 발생시켜 회전자 모듈(210)이 회전하고 회전자 모듈(210)은 후방 구동자 모듈(350)과 인력과 척력의 상호 작용으로 회전력을 만들어 가속 회전하여 회전력을 높여 익스팬더(511)에 동력을 전달하여 익스팬더(511)를 가속하게 된다. 이때 전동기(410)의 공급 전력을 제어하여 전방 구동자 모듈(310)의 회전 동력을 변경하여 관리할 수 있다.
다른 예를 들면, 도 1에 도시한 바와 같이, 에어컨에 있어서 열교환기와 송풍기 사이에 본 발명(101)과 저 전력의 전동기(410)와 익스팬더(511)와 익스팬더 케이스(515)를 포함하는 전동식 공기냉각장치(603)를 장착하여 익스팬더(511)가 열교환기에 나오는 찬 공기를 익스팬더 케이스(515)로 흡입하여 확장 또는 가속하여 냉각 공기를 생산하여 온도를 더 낮추어 공기 밀도를 높이고 유량과 유속을 늘려 공급하고 소비 전력을 줄이는 것이다.
즉, 전방 구동자 모듈(310)을 전동기(410)의 회전 축에 장착하고 후방 구동자 모듈(350)을 회전자 모듈(210)에 장착하고 회전자 모듈(210)을 전동기(410)에 장착하고 익스팬더(511)를 회전자 모듈(210)의 회전 축에 장착하고 익스팬더 케이스(515)를 회전자 모듈(210)에 장착한 것이다.
이렇게 하면 본 발명은 저 전력의 전동기(410)의 회전 동력으로 상기 예와 같이 회전력을 만들어 가속 회전하여 회전력을 높여 익스팬더(511)에 동력을 전달하여 익스팬더(511)를 가속하게 된다. 이때 전동기(410)의 공급 전력을 제어하여 전방 구동자 모듈(310)의 회전 동력을 변경하여 관리할 수 있다.
또 다른 예를 들면, 도 4에 도시한 바와 같이, 진공청소기에 있어서 흡기관에 본 발명(101)과 저 전력의 전동기(410)와 공기를 흡입하여 확장하는 축류형 익스팬더(511)와 익스팬더 케이스(515)를 포함하는 전동식 공기가속장치(611)를 장착하여 축류형 익스팬더(511)가 공기를 익스팬더 케이스(515)로 흡입하여 진공을 만들고 흡입한 공기와 먼지·티끌을 여과기로 분리하여 공기만을 배출시키고 소비 전력을 줄이는 것이다.
즉, 전방 구동자 모듈(310)을 전동기(410)의 회전 축에 장착하고 후방 구동자 모듈(350)을 회전자 모듈(210)에 장착하고 회전자 모듈(210)을 전동기(410)에 장착하고 익스팬더(511)를 회전자 모듈(210)의 회전 축에 장착하고 익스팬더 케이스(515)를 회전자 모듈(210)에 장착한 것이다.
이렇게 하면 본 발명은 저 전력의 전동기(410)의 회전 동력으로 상기 예와 같이 회전력을 만들어 가속 회전하여 회전력을 높여 축류형 익스팬더(511)에 동력을 전달하여 축류형 익스팬더(511)를 가속하게 된다. 그리고 도 1에 도시한 바와 같이, 원심형 익스팬더(511)를 적용하여 진공도를 높이고 넓은 범위의 공기량을 사용하는 것은 더욱 바람직하다.
또 다른 예를 들면, 도 5에 도시한 바와 같이, 연료전지차량에 있어서 공기 여과기와 연료전지 사이에 본 발명(101)과 저 전력을 사용하는 전동기(410)와 임펠러(521)와 임펠러 케이스(525)를 포함하는 전동식 공기공급장치(623)를 장착하여 임펠러(521)가 공기를 임펠러 케이스(525)로 흡입하여 압축 또는 가압하여 공기 밀도를 높인 과급압을 생산하여 연료전지에 넓은 범위의 공기량을 공급하고 전력의 소모를 줄이는 것이다.
즉, 전방 구동자 모듈(310)을 전동기(410)의 회전 축에 장착하고 후방 구동자 모듈(350)을 회전자 모듈(210)에 장착하고 회전자 모듈(210)을 전동기(410)에 장착하고 임펠러(521)을 회전자 모듈(210)의 회전 축에 장착하고 임펠러 케이스(525)를 회전자 모듈(210)에 장착한 것이다.
이렇게 하면 본 발명은 저 전력의 전동기(410)의 회전 동력으로 상기 예와 같이 회전력을 만들어 가속 회전하여 회전력을 높여 임펠러(521)에 동력을 전달하여 임펠러(521)를 가속하게 된다. 이때 전동기(410)의 공급 전력을 제어하여 전방 구동자 모듈(310)의 회전 동력을 변경하여 관리할 수 있다.
또 다른 예를 들면, 도 1에 도시한 바와 같이, 자연흡기차량에 있어서 공기 여과기와 흡기관 사이에 본 발명(101)과 저 전력을 사용하는 전동기(410)와 익스팬더(510)와 익스팬더 케이스(515)를 포함하는 전동식 확장공기충전장치(605)를 장착하여 익스팬더(511)가 공기를 익스팬더 케이스(515)로 흡입하여 확장 또는 가속하여 냉각공기를 생산하여 온도를 낮추어 공기 밀도를 높여 공급하여 충진 효율을 높여 출력을 높이고 가속 성능을 개선하는 것이다.
즉, 전방 구동자 모듈(310)을 전동기(410)의 회전 축에 장착하고 후방 구동자 모듈(350)을 회전자 모듈(210)에 장착하고 회전자 모듈(210)을 전동기(410)에 장착하고 익스팬더(511)를 회전자 모듈(210)의 회전 축에 장착하고 익스팬더 케이스(515)를 회전자 모듈에 장착한 것이다.
이렇게 하면 본 발명은 저 전력의 전동기(410)의 회전 동력으로 상기 예와 같이 회전력을 만들어 가속 회전하여 회전력을 높여 익스팬더(511)에 동력을 전달하여 익스팬더(511)를 가속하게 된다. 이때 전동기(410)의 공급 전력을 제어하여 전방 구동자 모듈(310)과 후방 구동자 모듈(350)의 회전 동력을 변경하여 관리할 수 있다. 여기에 내연기관의 부하에 따라 변동하는 흡입 부압 또는 흡입압과 연동하여 익스팬더(511)에 가해지는 공기 유동에 의한 회전 모멘트와 이로 인해 동시에 회전하는 회전자 모듈(210)의 자기 회전력에 따른 회전 모멘트의 합력이 더해지는 것은 물론이다.
또 다른 예를 들면, 도 5에 도시한 바와 같이, 과급차량에 있어서 공기 여과기와 흡기관 사이에 본 발명(101)과 저 전력을 사용하는 전동기(410)와 임펠러(521)와 임펠러 케이스(525)를 포함하는 전동식 공기충전장치(621)를 장착하여 임펠러(521)가 공기를 임펠러 케이스(525)로 흡입하여 압축 또는 가압하여 공기 밀도를 높인 과급압을 공급하여 충진 효율을 높여 출력을 높이고 고속영역에서 배압을 낮추어 내연기관의 부하를 줄이고 스풀 업 시간을 단축하여 가속 성능을 개선하는 것이다.
즉, 전방 구동자 모듈(310)을 전동기(410)의 회전 축에 장착하고 후방 구동자 모듈(350)을 회전자 모듈(210)에 장착하고 회전자 모듈(210)을 전동기(410)에 장착하고 임펠러(521)을 회전자 모듈(210)의 회전 축에 장착하고 임펠러 케이스(525)를 회전자 모듈(210)에 장착한 것이다.
이렇게 하면 본 발명은 저 전력의 전동기(410)의 회전 동력으로 상기 예와 같이 회전력을 만들어 가속 회전하여 회전력을 높여 임펠러(521)에 동력을 전달하여 임펠러(521)를 가속하게 된다. 이때 전동기(410)의 공급 전력을 제어하여 구동자 모듈(310)의 회전 동력을 변경하여 관리할 수 있다. 여기에 내연기관의 부하에 따라 변동하는 흡입 부압 또는 흡입압과 연동하여 임펠러(521)에 가해지는 공기 유동에 의한 회전 모멘트와 이로 인해 동시에 회전하는 회전자 모듈(210)의 자기 회전력에 따른 회전 모멘트의 합력이 더해지는 것은 물론이다.
또 다른 예를 들면, 도 6에 도시한 바와 같이, 과급차량에 있어서 내연기관의 벨트 구동 시스템에 본 발명(101)과 아이들 풀리(420)와 임펠러(521)와 임펠러 케이스(525)를 포함하는 기계식 공기충전장치(631)를 장착하여 임펠러(521)가 공기를 임펠러 케이스(525)로 흡입하여 압축 또는 가압하여 공기 밀도를 높인 과급압을 공급하여 충진 효율을 높여 출력을 높이고 가속 성능을 개선하고 풀리의 마찰력을 작게 하여 소음을 줄이고 내연기관의 부하를 줄이는 것이다.
즉, 전방 구동자 모듈(310)을 아이들 풀리(420)의 회전 축에 장착하고 후방 구동자 모듈(350)을 회전자 모듈(210)에 장착하고 회전자 모듈(210)을 아이들 풀리(420)의 고정구에 장착하고 임펠러(521)을 회전자 모듈(210)의 회전 축에 장착하고 임펠러 케이스(525)를 회전자 모듈(210)에 장착한 것이다.
이렇게 하면 본 발명은 내연기관의 회전 동력으로 아이들 풀리(420)가 회전하여 상기 예와 같이 회전력을 만들어 가속 회전하여 회전력을 높여 임펠러(521)에 동력을 전달하여 임펠러(521)를 가속하게 된다. 여기에 내연기관의 부하에 따라 변동하는 흡입 부압 또는 흡입압과 연동하여 임펠러(521)에 가해지는 공기 유동에 의한 회전 모멘트와 이로 인해 동시에 회전하는 회전자 모듈(210)의 자기 회전력에 따른 회전 모멘트의 합력이 더해지는 것은 물론이다.
제 2 실시 예의 구성요소들과 작용 및 작동에 대해 설명한다.
먼저, 구성요소들에 대해 설명한다.
도 7과 도 11에 도시한 바와 같이, 본 발명에 의한 동력전달장치(102)는 제 1 실시 예의 상기 회전자 모듈(210)과 상기 전방 구동자 모듈(310)과 상기 후방 구동자 모듈(350)을 포함하여 상기 회전자 모듈(210)을 동력을 받는 구동체(120)에 장착하여 동력을 받는 구동체(120)의 회전체를 장착하고 상기 전방 구동자 모듈(310)과 상기 후방 구동자 모듈(350)을 상기 회전자 모듈(210)에 장착한 것이다.
상세하게는 동력전달장치(102)는 제 1 실시 예의 상기 회전자 모듈(210)과 상기 전방 구동자 모듈(310)과 상기 후방 구동자 모듈(350)을 포함하여 상기 회전자 모듈(210)은 동력을 받는 구동체(120)에 장착되어 동력을 받는 구동체(120)의 회전체를 장착하고 상기 전방 구동자 모듈(310)과 상기 후방 구동자 모듈(350)은 상기 회전자 모듈(210)에 장착된 것을 특징으로 한다.
다음으로, 작용 및 작동에 대해 설명한다.
상기 구성으로 하여 동력을 받는 구동체(120)가 공급하는 회전 동력으로 상기 회전자 모듈(210)이 상기 전방 구동자 모듈(310)과 상기 후방 구동자 모듈(350)과 만드는 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 동력을 받는 구동체(120)에 동력을 전달하는 것이다.
상세하게는 동력을 받는 구동체(120)에서 공급되는 회전 동력으로 상기 회전자 모듈(210)이 상기 전방 구동자 모듈(310)과 상기 후방 구동자 모듈(350)과 만드는 회전 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 동력을 받는 구동체(120)에 동력을 전달하는 것을 특징으로 한다.
상기 구성으로 하면 회전자 모듈(210)의 영구자석(216)들은 2n개가 (n은 정수) N극과 S극을 교대로 하여 회전판(212)의 원주 축선 상에 배치되고 전방 구동자 모듈(310)과 후방 구동자 모듈(350)의 영구자석(316)들은 2n개가 (이하 n은 2 이상 정수) N극과 S극을 교대로 하여 고정대(312)의 원주 방향으로 회전자 모듈(210)의 주위에 배치된다. 또한, 전방 구동자 모듈(310)과 후방 구동자 모듈(350)의 영구자석(316)들은 3n개를 N극과 S극을 3상 배열하여 고정대(312)의 원주 방향으로 회전자 모듈(210)의 주위에 배치한 것이다.
이렇게 하면 전방 구동자 모듈(310)과 후방 구동자 모듈(350)이 회전자 모듈(210)과 일정한 간극을 두고 직각 방향으로 마주보며 주위에 형성한 자기장 내에서 회전자 모듈(210)의 영구자석(216)들의 자속이 가상의 자기장 회전 모멘트 축을 만들어 전방 구동자 모듈(310)과 후방 구동자 모듈(350)의 영구자석(316)들과 인력과 척력의 상호 작용으로 회전력이 발생하게 된다.
따라서, 동력을 받는 구동체(120)가 회전 동력을 받아 회전하게 되면 회전자 모듈(210)이 회전하고 회전자 모듈(210)은 전방 구동자 모듈(310)과 후방 구동자 모듈(350)과 인력과 척력의 상호 작용으로 회전력을 만들어 가속 회전하여 회전 동력을 높여 동력을 받는 구동체(120)에 동력을 전달하게 된다.
예를 들면 도 7에 도시한 바와 같이, 자연흡기차량에 있어서 공기여과기와 내연기관의 흡기관 사이에 본 발명(102)과 익스팬더(511)와 익스팬더 케이스(515)를 포함하는 공기냉각장치(641)를 장착하여 익스팬더(511)가 공기를 익스팬더 케이스(515)로 흡입하여 확장 또는 가속하여 냉각공기를 생산하여 온도를 낮추어 공기 밀도를 높여 공급하여 충진 효율을 높여 출력을 향상시키는 것이다.
도 7의 예에서 사선 무늬가 그려진 화살표는 온기류를, 체크무늬가 그려진 화살표는 냉기류를 각각 의미한다.
즉, 전방 구동자 모듈(310)과 후방 구동자 모듈(350)을 회전자 모듈(210)에 장착하고 익스팬더(511)를 회전자 모듈(210)의 회전 축에 장착하고 익스팬더 케이스(515)를 회전자 모듈(210)에 장착한 것이다.
이렇게 하면 본 발명은 내연기관의 흡입 부압 또는 흡입압에 의한 공기 흐름의 동력으로 익스팬더(511)와 회전자 모듈(210)이 회전하고 회전자 모듈(210)은 전방 구동자 모듈(310)과 후방 구동자 모듈(350)과 자속의 인력과 척력의 상호 작용으로 회전력을 만들어 가속 회전하여 회전력을 높여 익스팬더(511)에 동력을 전달하여 익스팬더(511)를 가속하게 된다.
다른 예를 들면 도 7에 도시한 바와 같이, 터보차저나 슈퍼차저를 장착한 과급차량에 있어서 냉각장치와 흡기관 사이에 본 발명(102)과 익스팬더(511)와 익스팬더 케이스(515)를 포함하는 공기냉각장치(643)를 장착하여 익스팬더(511)가 냉각장치에서 나오는 압축공기를 익스팬더 케이스(515)로 흡입하여 확장 또는 가속하여 냉각공기를 생산하여 온도를 낮추어 공기 밀도를 높여 공급하여 내연기관의 충진 효율을 높이는 것이다.
즉, 전방 구동자 모듈(310)과 후방 구동자 모듈(350)을 회전자 모듈(210)에 장착하고 익스팬더(511)를 회전자 모듈(210)의 회전 축에 장착하고 익스팬더 케이스(515)를 회전자 모듈(210)에 장착한 것이다.
이렇게 하면 본 발명은 내연기관의 과급압에 의한 공기 흐름의 동력으로 상기 예와 같이 회전력을 만들어 가속 회전하여 회전력을 높여 익스팬더(511)에 동력을 전달하여 익스팬더(511)를 가속하게 된다.
제 3 실시 예의 구성요소들과 작용 및 작동에 대해 설명한다.
먼저, 구성요소들에 대해 설명한다.
도 8과 도 11에 도시한 바와 같이, 본 발명에 따른 동력전달장치(103)는 제 1 실시 예의 상기 회전자 모듈(210)과 상기 전방 구동자 모듈(310)을 포함하여 상기 회전자 모듈(210)을 동력을 가하는 구동체(110)에 장착하고 상기 전방 구동자 모듈(310)을 동력을 가하는 구동체(110)의 회전 축에 장착한 것이다.
상세하게는 동력전달장치(103)는 제 1 실시 예의 상기 회전자 모듈(210)과 상기 전방 구동자 모듈(310)을 포함하여 상기 회전자 모듈(210)은 동력을 가하는 구동체(110)에 장착되고 상기 전방 구동자 모듈(310)은 동력을 가하는 구동체(110)의 회전 축에 장착된 것을 특징으로 한다.
도 8에서 사선 무늬가 그려진 화살표는 온기류를, 체크무늬가 그려진 화살표는 냉기류를 각각 의미한다.
다음으로, 작용 및 작동에 대해 설명한다.
상기 구성으로 하여 동력을 가하는 구동체(110)가 공급하는 회전 동력으로 상기 전방 구동자 모듈(310)이 만드는 유도 자기장과 상기 회전자 모듈(210)이 만드는 회전 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 동력을 받는 대상물(120)에 동력을 전달하는 것이다.
상세하게는 동력을 가하는 구동체(110)에서 공급되는 회전 동력으로 상기 전방 구동자 모듈(310)에서 만들어지는 유도 자기장과 상기 회전자 모듈(210)이 만드는 회전 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 동력을 받는 대상물(120)에 동력을 전달하는 것을 특징으로 한다.
상기 구성으로 하면 회전자 모듈(210)의 영구자석(216)들은 2n개가 (n은 정수) N극과 S극을 교대로 하여 회전판(212)의 원주 축선 상에 배치되고 전방 구동자 모듈(310)의 영구자석(316)들은 2n개가 (이하 n은 2 이상 정수) N극과 S극을 교대로 하여 고정대(312)의 원주 방향으로 회전자 모듈(210)의 주위에 배치된다. 또한, 전방 구동자 모듈(310)의 영구자석(316)들은 3n개를 N극과 S극을 3상 배열하여 고정대(312)의 원주 방향으로 회전자 모듈(210)의 주위에 배치한 것이다.
이렇게 하면 전방 구동자 모듈(310)이 회전자 모듈(210)과 일정한 간극을 두고 직각 방향으로 마주보며 주위에 형성한 자기장 내에서 회전자 모듈(210)의 영구자석(216)들의 자속이 가상의 자기장 회전 모멘트 축을 만들어 전방 구동자 모듈(310)의 영구자석(316)들과 인력과 척력의 상호 작용으로 회전력이 발생하게 된다.
따라서, 동력을 가하는 구동체(110)의 회전 축이 회전하게 되면 전방 구동자 모듈(310)이 회전자 모듈(210)에 유도 자기장을 발생시켜 회전자 모듈(210)이 회전 자기장으로 회전하여 회전력을 만들어 가속 회전하여 회전 동력을 높여 동력을 받는 대상물(120)에 동력을 전달하게 된다.
예를 들면, 도 8에 도시한 바와 같이, 상기 제 1 실시 예의 실시 예인 냉풍기의 전동식 공기냉각장치(601)와 에어컨의 전동식 공기냉각장치(603)와 진공청소기의 전동식 공기가속장치(611)와 연료전지차량의 전동식 공기공급장치(623)와 자연흡기차량의 전동식 확장공기충전장치(605)와 과급차량의 전동식 공기충전장치(621)와 기계식 공기충전장치(631)에 본 발명(103)을 적용한 것이다.
제 4 실시 예의 구성요소들과 작용 및 작동에 대해 설명한다.
먼저, 구성요소들에 대해 설명한다.
도 9와 도 11에 도시한 바와 같이, 본 발명에 따른 동력전달장치(104)는 제 1 실시 예의 상기 회전자 모듈(210)과 상기 후방 구동자 모듈(350)을 포함하여 상기 회전자 모듈(210)을 동력을 받는 구동체(120)에 장착하여 동력을 받는 구동체(120)의 회전체를 장착하고 상기 후방 구동자 모듈(350)을 상기 회전자 모듈(210)에 장착한 것이다.
상세하게는 동력전달장치(104)는 제 1 실시 예의 상기 회전자 모듈(210)과 상기 후방 구동자 모듈(350)을 포함하여 상기 회전자 모듈(210)은 동력을 받는 구동체(120)에 장착되어 동력을 받는 구동체(120)의 회전체를 장착하고 상기 후방 구동자 모듈(350)은 상기 회전자 모듈(210)에 장착된 것을 특징으로 한다.
도 9에서 사선 무늬가 그려진 화살표는 온기류를, 체크무늬가 그려진 화살표는 냉기류를 각각 의미한다.
다음으로, 작용 및 작동에 대해 설명한다.
상기 구성으로 하여 동력을 받는 구동체(120)가 공급하는 회전 동력으로 상기 회전자 모듈(210)이 상기 후방 구동자 모듈(350)과 만드는 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 동력을 받는 구동체(120)에 회전 동력과 회전 자기장의 동력을 전달하는 것이다.
상세하게는 동력을 받는 구동체(120)에서 공급되는 회전 동력으로 상기 회전자 모듈(210)이 상기 후방 구동자 모듈(350)과 만드는 회전 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 동력을 받는 구동체(120)에 회전 동력과 회전 자기장의 동력을 전달하는 것을 특징으로 한다.
상기 구성으로 하면 회전자 모듈(210)의 영구자석(216)들은 2n개가 (n은 정수) N극과 S극을 교대로 하여 회전판(212)의 원주 축선 상에 배치되고 후방 구동자 모듈(350)의 영구자석(316)들은 2n개가 (이하 n은 2 이상 정수) N극과 S극을 교대로 하여 고정대(312)의 원주 방향으로 회전자 모듈(210)의 주위에 배치된다. 또한, 후방 구동자 모듈(350)의 영구자석(316)들은 3n개를 N극과 S극을 3상 배열하여 고정대(312)의 원주 방향으로 회전자 모듈(210)의 주위에 배치한 것이다.
이렇게 하면 후방 구동자 모듈(350)이 회전자 모듈(210)과 일정한 간극을 두고 직각 방향으로 마주보며 주위에 형성한 자기장 내에서 회전자 모듈(210)의 영구자석(216)들의 자속이 가상의 자기장 회전 모멘트 축을 만들어 후방 구동자 모듈(350)의 영구자석(316)들과 인력과 척력의 상호 작용으로 회전력이 발생하게 된다.
따라서, 동력을 받는 구동체(120)의 회전 축이 회전 동력을 받아 회전하게 되면 회전자 모듈(210)이 회전하고 회전자 모듈(210)은 후방 구동자 모듈(350)과 인력과 척력의 상호 작용으로 회전력을 만들어 가속 회전하여 회전 동력을 높여 동력을 받는 구동체(120)에 회전 동력과 회전 자기장의 동력을 전달하게 된다.
예를 들면, 도 9에 도시한 바와 같이, 상기 제 2 실시 예의 적용 예인 자연흡기차량에 있어서 공기여과기와 내연기관의 흡기관 사이에 본 발명(104)과 익스팬더(511)와 익스팬더 케이스(515)와 발전기(530)를 포함하는 공기냉각장치(641)를 장착하여 익스팬더(511)가 공기를 익스팬더 케이스(515)로 흡입하여 확장 또는 가속하여 냉각공기를 생산하여 온도를 낮추어 공기 밀도를 높여 공급하여 충진 효율을 높이고 발전을 하도록 한 것이다.
즉, 후방 구동자 모듈(350)을 회전자 모듈(210)에 장착하고 회전자 모듈(210)의 회전 축에 익스팬더(511)를 장착하고 회전자 모듈(210)에 익스팬더 케이스(515)와 발전기(530)를 장착한 것이다.
이렇게 하면 본 발명은 내연기관의 흡입 부압 또는 흡입압에 의한 공기 흐름의 동력으로 익스팬더(511)와 회전자 모듈(210)이 회전하고 회전자 모듈(210)은 후방 구동자 모듈(350)과 자속의 인력과 척력의 상호 작용으로 회전력을 만들어 가속 회전하여 회전력을 높여 익스팬더(511)에 동력을 전달하여 익스팬더(511)를 가속하여 흡입공기를 확장 또는 가속하고 발전기(530)에 회전 자기장의 동력을 전달하여 전력을 생산하여 유용한 곳에 사용할 수 있다.
다른 예를 들면 도 9에 도시한 바와 같이, 상기 제 2 실시 예의 적용 예인 터보차저나 슈퍼차저를 장착한 과급차량에 있어서 냉각장치와 흡기관 사이에 본 발명(104)과 익스팬더(511)와 익스팬더 케이스(515)와 발전기(530)를 포함하는 공기냉각장치(643)를 장착하여 익스팬더(511)가 냉각장치에서 나오는 압축공기를 익스팬더 케이스(515)로 흡입하여 확장 또는 가속하여 냉각공기를 생산하여 온도를 낮추어 공기 밀도를 높여 공급하여 내연기관의 충진 효율을 높이고 발전을 하도록 한 것이다.
즉, 후방 구동자 모듈(350)을 회전자 모듈(210)에 장착하고 회전자 모듈(210)의 회전 축에 익스팬더(511)를 장착하고 회전자 모듈(210)에 익스팬더 케이스(515)와 발전기(530)를 장착한 것이다.
이렇게 하면 본 발명은 내연기관의 과급압에 의한 공기 흐름의 동력으로 상기 예와 같이 회전력을 만들어 가속 회전하여 회전력을 높여 익스팬더(511)에 동력을 전달하여 익스팬더(511)를 가속하여 압축공기를 확장 또는 가속하고 발전기(530)에 회전 자기장의 동력을 전달하여 전력을 생산하여 유용한 곳에 사용할 수 있다.
제 5 실시 예의 구성요소들과 작용 및 작동에 대해 설명한다.
먼저, 구성요소들에 대해 설명한다.
도 10와 도 11에 도시한 바와 같이, 본 발명에 따른 동력전달장치(105)는 제 1 실시 예의 상기 회전자 모듈(210)과 상기 후방 구동자 모듈(350)을 포함하여 상기 회전자 모듈(210)을 동력을 가하는 구동체(110)에 장착하고 상기 후방 구동자 모듈(350)을 상기 회전자 모듈(210)에 장착한 것이다.
상세하게는 동력전달장치(105)는 제 1 실시 예의 상기 회전자 모듈(210)과 상기 후방 구동자 모듈(350)을 포함하여 상기 회전자 모듈(210)은 동력을 가하는 구동체(110)에 장착되고 상기 후방 구동자 모듈(350)은 상기 회전자 모듈(210)에 장착된 것을 특징으로 한다.
한편, 도 10에서 사선 무늬가 그려진 화살표는 온기류를, 체크무늬가 그려진 화살표는 냉기류를 각각 의미한다.
다음으로, 작용 및 작동에 대해 설명한다.
상기 구성으로 하여 동력을 가하는 구동체(110)가 공급하는 유도 자기장의 동력으로 상기 회전자 모듈(210)이 만드는 회전 자기장과 상기 회전자 모듈(210)이 상기 후방 구동자 모듈(350)과 만드는 회전 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 동력을 받는 대상물(120)에 동력을 전달하는 것이다.
상세하게는 동력을 가하는 구동체(110)가 공급하는 유도 자기장의 동력으로 상기 회전자 모듈(210)이 만드는 회전 자기장과 상기 회전자 모듈(210)이 상기 후방 구동자 모듈(350)과 만드는 회전 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 동력을 받는 대상물(120)에 동력을 전달하는 것을 특징으로 한다.
상기 구성으로 하면 회전자 모듈(210)의 영구자석(216)들은 2n개가 (n은 정수) N극과 S극을 교대로 하여 회전판(212)의 원주 축선 상에 배치되고 후방 구동자 모듈(350)의 영구자석(316)들은 2n개가 (이하 n은 2 이상 정수) N극과 S극을 교대로 하여 고정대(312)의 원주 방향으로 회전자 모듈(210)의 주위에 배치된다. 또한, 후방 구동자 모듈(350)의 영구자석(316)들은 3n개를 N극과 S극을 3상 배열하여 고정대(312)의 원주 방향으로 회전자 모듈(210)의 주위에 배치한 것이다.
이렇게 하면 후방 구동자 모듈(350)과 동력을 가하는 구동체(110)가 회전자 모듈(210)과 일정한 간극을 두고 직각 방향으로 마주보며 주위에 형성한 유도 자기장 내에서 회전자 모듈(210)의 영구자석(216)들의 자속이 가상의 자기장 회전 모멘트 축을 만들어 후방 구동자 모듈(350)의 영구자석(316)들과 동력을 가하는 구동체(110)의 유도 자기장과 인력과 척력의 상호 작용으로 회전력이 발생하게 된다.
따라서, 동력을 가하는 구동체(110)가 유도 자기장을 형성하게 되면 회전자 모듈(210)이 회전하고 회전자 모듈(210)은 후방 구동자 모듈(350)과 인력과 척력의 상호 작용으로 회전력을 만들어 가속 회전하여 회전 동력을 높여 동력을 받는 대상물(120)에 동력을 전달하게 된다.
예를 들면, 도 10에 도시한 바와 같이, 상기 제 1 실시 예의 적용 예인 냉풍기의 전동식 공기냉각장치(601)와 에어컨의 전동식 공기냉각장치(603)와 진공청소기의 전동식 공기가속장치(611)와 연료전지차량의 전동식 공기공급장치(623)와 자연흡기차량의 전동식 확장공기충전장치(605)와 과급차량의 전동식 공기충전장치(621)에 전동기 대신 본 발명(105)과 자기발생기(450)를 장착하여 자기구동방식으로 적용한 것이다.
본 발명은 냉난방기나 차량 등에 사용되는 동력전달장치 기술에 적용될 수 있다.

Claims (7)

  1. 회전자 모듈은 동력을 가하는 구동체에 장착되고, 전방 구동자 모듈은 동력을 가하는 구동체의 회전 축에 장착되고, 후방 구동자 모듈은 상기 회전자 모듈에 장착되어 동력을 가하는 구동체에서 동력을 공급받는 자기장을 이용한 동력전달장치에 있어서,
    동력을 가하는 구동체에서 공급되는 회전 동력으로 상기 전방 구동자 모듈에서 만들어지는 유도 자기장과 상기 회전자 모듈이 만드는 회전 자기장과 상기 회전자 모듈이 상기 후방 구동자 모듈과 만드는 회전 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 동력을 받는 대상물에 동력을 전달하는 것을 특징으로 하는 자기장을 이용한 동력전달장치.
  2. 청구항 1에 있어서,
    상기 회전자 모듈은 몸체의 중심에 회전 축 관통 구멍을 형성한 원반 형상으로 이루어진 몸체의 원주 축선 상에 기준점에 맞추어 등 간격으로 2n개의 (이하 n은 정수) 영구자석 매입 구멍을 형성한 형상을 가진 회전판과, 상기 회전판의 기준점에 맞추어 영구자석 매입 구멍들에 N극과 S극을 교대로 매입하여 부착한 2n개의 자속의 방향이 회전 축의 축선 방향 또는 축선 직각 방향으로 향한 영구자석을 포함하는 것을 특징으로 하는 자기장을 이용한 동력전달장치.
  3. 청구항 1에 있어서,
    상기 전방 구동자 모듈과 상기 후방 구동자 모듈은 몸체의 중심에 회전 축 관통 구멍을 형성하고 한쪽 면이 닫힌 원통 형상 또는 원반 형상으로 이루어진 몸체의 원주 축선 상에 기준점에 맞추어 상기 회전자 모듈 주위의 원주 방향으로 일정 간극을 두고 등 간격으로 2n개 또는 3n개의 (이하 n은 2 이상 정수) 영구자석 매입 구멍을 형성한 고정대와, 상기 고정대의 기준점에 맞추어 2n개의 영구자석 매입 구멍에 N극과 S극을 교대로 매입하여 부착하거나 3n개의 영구자석 매입 구멍에 3상 배열하여 매입하여 부착한 2n개 또는 3n개의 상기 회전자 모듈의 영구자석들과 자속의 방향이 직각으로 향한 영구자석을 포함하는 것을 특징으로 하는 자기장을 이용한 동력전달장치.
  4. 회전자 모듈은 동력을 가하는 구동체에 장착되고, 전방 구동자 모듈은 동력을 가하는 구동체의 회전 축에 장착되고, 후방 구동자 모듈은 상기 회전자 모듈에 장착되어 동력을 가하는 구동체에서 동력을 공급받는 자기장을 이용한 동력전달장치에 있어서,
    상기 회전자 모듈은 동력을 받는 구동체에 장착되어 동력을 받는 구동체의 회전체를 장착하고 상기 전방 구동자 모듈과 상기 후방 구동자 모듈은 상기 회전자 모듈에 장착되어 동력을 받는 구동체에서 동력을 공급받으며,
    동력을 받는 구동체에서 공급되는 회전 동력으로 상기 회전자 모듈이 상기 전방 구동자 모듈과 상기 후방 구동자 모듈과 만드는 회전 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 동력을 받는 구동체에 동력을 전달하는 것을 특징으로 하는 자기장을 이용한 동력전달장치.
  5. 회전자 모듈은 동력을 가하는 구동체에 장착되고, 전방 구동자 모듈은 동력을 가하는 구동체의 회전 축에 장착되고, 후방 구동자 모듈은 상기 회전자 모듈에 장착되어 동력을 가하는 구동체에서 동력을 공급받는 자기장을 이용한 동력전달장치에 있어서,
    상기 회전자 모듈은 동력을 가하는 구동체에 장착되고 상기 전방 구동자 모듈은 동력을 가하는 구동체의 회전 축에 장착되어 동력을 가하는 구동체에서 동력을 공급받으며,
    동력을 가하는 구동체에서 공급되는 회전 동력으로 상기 전방 구동자 모듈에서 만들어지는 유도 자기장과 상기 회전자 모듈이 만드는 회전 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 동력을 받는 대상물에 동력을 전달하는 것을 특징으로 하는 자기장을 이용한 동력전달장치.
  6. 회전자 모듈은 동력을 가하는 구동체에 장착되고, 전방 구동자 모듈은 동력을 가하는 구동체의 회전 축에 장착되고, 후방 구동자 모듈은 상기 회전자 모듈에 장착되어 동력을 가하는 구동체에서 동력을 공급받는 자기장을 이용한 동력전달장치에 있어서,
    상기 회전자 모듈은 동력을 받는 구동체에 장착되어 동력을 받는 구동체의 회전체를 장착하고 상기 후방 구동자 모듈은 상기 회전자 모듈에 장착되어 동력을 받는 구동체에서 동력을 공급받으며,
    동력을 받는 구동체에서 공급되는 회전 동력으로 상기 회전자 모듈이 상기 후방 구동자 모듈과 만드는 회전 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 동력을 받는 구동체에 회전 동력과 회전 자기장의 동력을 전달하는 것을 특징으로 하는 자기장을 이용한 동력전달장치.
  7. 회전자 모듈은 동력을 가하는 구동체에 장착되고, 전방 구동자 모듈은 동력을 가하는 구동체의 회전 축에 장착되고, 후방 구동자 모듈은 상기 회전자 모듈에 장착되어 동력을 가하는 구동체에서 동력을 공급받는 자기장을 이용한 동력전달장치에 있어서,
    상기 회전자 모듈은 동력을 가하는 구동체에 장착되고 상기 후방 구동자 모듈은 상기 회전자 모듈에 장착되어 동력을 가하는 구동체에서 동력을 공급받으며,
    동력을 가하는 구동체에서 공급되는 유도 자기장의 동력으로 상기 회전자 모듈이 만드는 회전 자기장과 상기 회전자 모듈이 상기 후방 구동자 모듈과 만드는 회전 자기장으로 회전력을 만들어 가속 회전하여 회전력을 높여 동력을 받는 대상물에 동력을 전달하는 것을 특징으로 하는 자기장을 이용한 동력전달장치.
PCT/KR2015/008149 2014-08-06 2015-08-04 자기장을 이용한 동력전달장치 WO2016021918A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580025809.2A CN106489028B (zh) 2014-08-06 2015-08-04 利用磁场的动力传动装置
JP2016568947A JP6649277B2 (ja) 2014-08-06 2015-08-04 磁場を利用した動力伝達装置
US15/315,030 US10389221B2 (en) 2014-08-06 2015-08-04 Power transmission apparatus using magnetic field
GB1700521.6A GB2542313B (en) 2014-08-06 2015-08-04 Power transmission apparatus using magnetic field

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0100927 2014-08-06
KR1020140100927A KR20160017437A (ko) 2014-08-06 2014-08-06 자기장을 이용한 동력전달장치

Publications (1)

Publication Number Publication Date
WO2016021918A1 true WO2016021918A1 (ko) 2016-02-11

Family

ID=55264122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008149 WO2016021918A1 (ko) 2014-08-06 2015-08-04 자기장을 이용한 동력전달장치

Country Status (6)

Country Link
US (1) US10389221B2 (ko)
JP (1) JP6649277B2 (ko)
KR (1) KR20160017437A (ko)
CN (1) CN106489028B (ko)
GB (1) GB2542313B (ko)
WO (1) WO2016021918A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160004876A (ko) * 2014-07-05 2016-01-13 한승주 가변동력전달장치
US10690045B2 (en) * 2017-03-05 2020-06-23 Southwest Research Institute Intake air boost system for two-cycle engine having roots blowers
KR101971190B1 (ko) * 2017-08-22 2019-08-27 주식회사 카펙발레오 하이브리드 및 전기차용 전자기 토크 컨버터
CN109873518A (zh) * 2019-03-19 2019-06-11 乌木马科技(天津)有限公司 用于发电厂的大功率电机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280779A (ja) * 1993-03-30 1994-10-04 Terumo Corp 液体ポンプ装置
JPH09313600A (ja) * 1996-05-28 1997-12-09 Terumo Corp 遠心式液体ポンプ装置
KR20100052772A (ko) * 2008-11-11 2010-05-20 캄텍주식회사 차량용 워터펌프
KR101237023B1 (ko) * 2010-05-19 2013-02-25 주식회사 아모텍 완전 방수구조를 갖는 유체 펌프
KR20140088581A (ko) * 2011-10-31 2014-07-10 엠 펌프스 에스알엘 회전자기장을 이용한 동력전달장치

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5191644U (ko) * 1975-01-18 1976-07-22
JP4013487B2 (ja) * 2001-02-28 2007-11-28 株式会社日立製作所 回転電機及びそれを搭載した車両
JP3904470B2 (ja) * 2002-04-26 2007-04-11 株式会社日立産機システム 磁気カップリング装置及びこれを用いた流体機械
JP2008535462A (ja) * 2005-04-08 2008-08-28 アンドリュー ボイド フレンチ 磁気駆動装置
JP4681625B2 (ja) * 2008-02-22 2011-05-11 三菱重工業株式会社 血液ポンプおよびポンプユニット
KR100981925B1 (ko) * 2008-06-04 2010-09-13 주식회사 천인 동력전달장치
WO2010101107A1 (ja) * 2009-03-06 2010-09-10 Ntn株式会社 遠心式ポンプ装置
JP2010209963A (ja) * 2009-03-09 2010-09-24 Railway Technical Res Inst 磁気カップリングクラッチ付きフライホイール装置
CN103185010B (zh) * 2013-03-14 2016-01-13 北京工业大学 一种气动磁力泵

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280779A (ja) * 1993-03-30 1994-10-04 Terumo Corp 液体ポンプ装置
JPH09313600A (ja) * 1996-05-28 1997-12-09 Terumo Corp 遠心式液体ポンプ装置
KR20100052772A (ko) * 2008-11-11 2010-05-20 캄텍주식회사 차량용 워터펌프
KR101237023B1 (ko) * 2010-05-19 2013-02-25 주식회사 아모텍 완전 방수구조를 갖는 유체 펌프
KR20140088581A (ko) * 2011-10-31 2014-07-10 엠 펌프스 에스알엘 회전자기장을 이용한 동력전달장치

Also Published As

Publication number Publication date
KR20160017437A (ko) 2016-02-16
GB201700521D0 (en) 2017-03-01
GB2542313B (en) 2020-08-19
CN106489028B (zh) 2019-05-07
CN106489028A (zh) 2017-03-08
US20170201169A1 (en) 2017-07-13
GB2542313A (en) 2017-03-15
JP2017531412A (ja) 2017-10-19
JP6649277B2 (ja) 2020-02-19
US10389221B2 (en) 2019-08-20

Similar Documents

Publication Publication Date Title
WO2016021918A1 (ko) 자기장을 이용한 동력전달장치
KR101429846B1 (ko) 자기 구동 공기충전장치
US6085527A (en) Magnet assemblies for motor-assisted turbochargers
CN1682023A (zh) 喷气发动机或涡轮发动机
WO1998002652A1 (en) Motor-assisted supercharging devices for internal combustion engines
GB2354553A (en) Electric motor driven turbocharger.
KR101429848B1 (ko) 자기 구동 확장공기충전장치
WO2023163319A1 (ko) 선박용 하이브리드 전기추진시스템
WO2012076751A1 (en) Turbocharging arrangement and method for operating an internal combustion engine
KR101891548B1 (ko) 스플릿 슈퍼차저
KR101884574B1 (ko) 스플릿 터보차저
WO2016006877A1 (ko) 가변동력전달장치
KR101814939B1 (ko) 자기장을 이용한 동력전달장치
WO2017122968A1 (ko) 고속 발전장치
WO2017069478A1 (ko) 가속장치를 부착한 터보차저
WO2017057890A1 (ko) 스플릿 터보차저
WO2017043840A1 (ko) 냉각공기 공급장치
KR101930139B1 (ko) 동력전달장치
KR20170121138A (ko) 가속장치를 부착한 터보차저
KR101873892B1 (ko) 냉각공기 공급장치
WO2017030401A1 (ko) 스플릿 슈퍼차저
SU1260546A1 (ru) Силова установка транспортного средства
JPS61201827A (ja) 内燃機関の過給装置
KR20050040495A (ko) 전동기식 슈퍼차저
KR19980046248A (ko) 과급기 인터쿨러의 냉각성능 향상장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016568947

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15315030

Country of ref document: US

ENP Entry into the national phase

Ref document number: 201700521

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150804

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15830576

Country of ref document: EP

Kind code of ref document: A1