WO2016021873A1 - 데이터 수신 방법 및 장치 - Google Patents

데이터 수신 방법 및 장치 Download PDF

Info

Publication number
WO2016021873A1
WO2016021873A1 PCT/KR2015/007975 KR2015007975W WO2016021873A1 WO 2016021873 A1 WO2016021873 A1 WO 2016021873A1 KR 2015007975 W KR2015007975 W KR 2015007975W WO 2016021873 A1 WO2016021873 A1 WO 2016021873A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
code block
modulation order
order
wireless device
Prior art date
Application number
PCT/KR2015/007975
Other languages
English (en)
French (fr)
Inventor
안준기
김기준
이윤정
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/501,617 priority Critical patent/US10142057B2/en
Publication of WO2016021873A1 publication Critical patent/WO2016021873A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method for receiving data and a device using the same in a wireless communication system in which a plurality of cells are configured.
  • Typical examples include 3D beam forming, massive multiple input multiple output (MIMO), heterogeneous networks, or small cells.
  • MIMO massive multiple input multiple output
  • the present invention provides a method for receiving data in a wireless communication system in which a plurality of cells are configured, and an apparatus using the same.
  • a method of receiving data in a wireless communication system includes receiving a code block from one cell of a plurality of cells in which a wireless device is configured, and if a decoding error of the code block is detected, the wireless device determines the code block. Storing some or all in the receive buffer. The number of coded bits of the codeblock stored in the receive buffer is determined based on the maximum modulation order supported by the cell in which the codeblock is received.
  • the set plurality of cells may include at least one high order cell supporting a modulation order higher than a reference modulation order and at least one low order cell supporting a modulation order less than or equal to the reference modulation order.
  • the cell in which the code block is received may be the high order cell.
  • the number of coded bits of the codeblock may be determined based on the maximum modulation order supported by the cell in which the codeblock is received and the number of the at least one high order cell.
  • an apparatus for receiving data in a wireless communication system includes a radio frequency (RF) unit for transmitting and receiving a radio signal, and a processor coupled to the RF unit.
  • the processor receives a code block from one of a plurality of configured cells, and when a decoding error of the code block is detected, stores the part or all of the code block in a reception buffer.
  • the number of coded bits of the codeblock stored in the receive buffer is determined based on the maximum modulation order supported by the cell in which the codeblock is received.
  • a wireless device in which a plurality of cells is set may efficiently operate a reception buffer.
  • FIG. 1 illustrates a wireless communication system in which an embodiment of the present invention is implemented.
  • FIG. 2 is a flowchart illustrating a DL data transmission method according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a method of receiving DL data according to an embodiment of the present invention.
  • FIG. 4 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • FIG. 1 illustrates a wireless communication system in which an embodiment of the present invention is implemented.
  • the wireless device 110 may be fixed or mobile, and the user equipment (UE) may be a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), or a PDA (PDA). It may be called other terms such as personal digital assistant, wireless modem, handheld device.
  • the wireless device 110 may be a device that supports only data communication, such as a machine-type communication (MTC) device.
  • MTC machine-type communication
  • a base station (BS) 120 generally refers to a fixed station for communicating with a wireless device, and includes other evolved-NodeBs (eNBs), base transceiver systems (BTSs), and access points (Access Points). It may be called a term.
  • eNBs evolved-NodeBs
  • BTSs base transceiver systems
  • Access Points access points
  • the present invention is applied based on 3GPP long term evolution (LTE) based on 3rd Generation Partnership Project (3GPP) Technical Specification (TS).
  • LTE long term evolution
  • 3GPP 3rd Generation Partnership Project
  • TS Technical Specification
  • one subframe has a length of 1 ms, which is called a transmission time interval (TTI).
  • TTI transmission time interval
  • a radio frame includes 10 subframes, and one subframe may include two consecutive slots.
  • the subframe may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols.
  • OFDM symbol is only for representing one symbol period in the time domain, since 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink (DL), multiple access scheme or name There is no limit on.
  • the OFDM symbol may be called another name such as a single carrier-frequency division multiple access (SC-FDMA) symbol, a symbol period, and the like.
  • SC-FDMA single carrier-frequency division multiple access
  • one subframe includes 14 OFDM symbols in a normal cyclic prefix (CP), and one subframe includes 12 OFDM symbols in an extended CP.
  • the wireless device may be served by a plurality of serving cells.
  • Each serving cell may be defined as a downlink (DL) component carrier (CC) or a pair of DL CC and UL (uplink) CC.
  • DL downlink
  • CC downlink component carrier
  • uplink uplink
  • the serving cell may be divided into a primary cell and a secondary cell.
  • the primary cell is a cell that operates at the primary frequency, performs an initial connection establishment process, initiates a connection reestablishment process, or is designated as a primary cell in a handover process.
  • the primary cell is also called a reference cell.
  • the secondary cell operates at the secondary frequency, may be established after a Radio Resource Control (RRC) connection is established, and may be used to provide additional radio resources.
  • RRC Radio Resource Control
  • At least one primary cell is always configured, and the secondary cell may be added / modified / released by higher layer signaling (eg, radio resource control (RRC) message).
  • the cell index (CI) of the primary cell may be fixed. For example, the lowest CI may be designated as the CI of the primary cell.
  • the CI of the primary cell is 0, and the CI of the secondary cell is sequentially assigned from 1.
  • the wireless device 110 provides capability information to the base station 120.
  • the capabilities of wireless devices are classified into categories.
  • the following table shows the categories for DL capability of wireless devices in 3GPP LTE.
  • Table 1 category Maximum number of bits of a DL transport block bits received within a TTI Total number of soft channel bits Maximum number of supported layers for spatial multiplexing Category 1 10296 250368 One Category 2 51024 1237248 2 Category 3 75376 1237248 2 Category 4 75376 1827072 2 Category 5 149776 3667200 4 Category 6 149776 (4layers), 75376 (2layers) 3654144 2 or 4 Category 7 149776 (4layers), 75376 (2layers) 3654144 2 or 4 Category 8 299856 3598270 8 Category 9 149776 (4layers), 75376 (2layers) 5481216 2 or 4 Category 10 149776 (4layers), 75376 (2layers) 5481216 2 or 4
  • the following table shows the categories for UL capability of wireless devices in 3GPP LTE.
  • a wireless device signals a band combination for each band that supports 'maximum number of supported layers for spatial multiplexing'. For example, suppose a wireless device supports band A and band B. The wireless device may signal that band A and band B each support four layers. Alternatively, the wireless device may signal that it supports 4 layers for band A and 2 layers for band B in a CA environment where band A and band B are combined.
  • Z be the maximum number of bits for DL processing for one layer in a band.
  • the ability of a wireless device to handle up to 4Z bits means that it supports up to four layers for band A.
  • the ability of a wireless device to handle up to 6Z bits means that 4Z + 2Z for two band combinations can support 4 layers for band A and 2 layers for band B, even if it supports up to 4 layers for one band A. It means that there is.
  • 3GPP LTE currently supports up to 64-QAM (6 variants). If a modulation scheme with 256-QAM or higher modulation order is introduced, the maximum number of bits that should be supported for the same number of layers may vary.
  • a wireless device capable of processing up to 4Z bits can process up to 2 layers per band with 2Z + 2Z in a combination of band A and band B for 64-QAM.
  • 4x2xZ / 3 + 4x2xZ / 3 has a different number of bits that can be processed for each band.
  • the wireless device may support the maximum MO capability and the number of processing bits corresponding to the maximum MO capability for a band and / or a combination of bands that support a specific maximum MO capability. That is, if the wireless device supports 256-QAM / 4 layer + 256-QAM / 2 layer for band A + band B, it can be said that it supports 4x4xZ / 3 + 4x2xZ / 3 bits.
  • the wireless device may support a maximum number of processing bits (e.g., number of QAM symbols or number of resource elements (RE) per layer) and / or a maximum total band (e.g., resource block) number that can support the maximum MO capability. Or information on the number of CCs) can be provided to the base station.
  • the competency can be fixedly defined for the category of the device. For example, if the wireless device signals that it can support up to Y 256-QAM symbols, the network may adjust the number of 256-QAM symbols scheduled in one subframe according to the modulation order and MIMO layer set to the wireless device not to exceed Y. Can be.
  • FIG. 2 is a flowchart illustrating a DL data transmission method according to an embodiment of the present invention.
  • the base station encodes the input information bits (210).
  • the channel coding scheme There is no limitation on the channel coding scheme, but well-known turbo coding may be applied.
  • the base station determines the soft buffer size for the wireless device (220).
  • the base station determines the soft buffer size for rate matching because it prevents mismatches because the number of soft bits used to determine the DL channel exceeds the receiver's maximum soft buffer size, and the redundancy bits of hybrid automatic repeat request (HARQ) operations. It is to efficiently operate the redundancy bit.
  • HARQ hybrid automatic repeat request
  • the base station performs rate matching according to the determined soft buffer size, and the rate matched coded transport block is mapped to a resource (230) and transmitted to the wireless device.
  • the soft buffer size N IR is determined as follows.
  • N soft is the total number of soft channel bits in Table 1
  • K MIMO is a parameter that depends on whether MIMO is transmitted
  • M DL_HARQ is the maximum number of DL HARQ processes
  • M limit is a constant.
  • N soft 3654144 bits
  • TBS transport block size
  • this is a result of assuming 64-QAM, and the maximum TBS that a wireless device supporting 256-QAM should support per layer is about 100,000 bits, which is 4/3 of 75376 bits, and the code rate is about 0.87. This results in a smaller number of N IR bits that can be supported.
  • the N IR of a cell supporting 256-QAM can be adjusted to be larger than the N IR of a cell supporting a modulation order lower than 256-QAM.
  • FIG. 3 is a flowchart illustrating a method of receiving DL data according to an embodiment of the present invention. This may be an example in which the wireless device performs DL HARQ. A plurality of cells may be set in the wireless device.
  • the wireless device receives a code block of a transport block on one of a plurality of serving cells on a DL data channel (310).
  • the wireless device attempts to decode the received code block and determines whether an error occurs (320). If the decoding succeeds, the wireless device transmits an ACK to the base station (330). If decoding fails, the wireless device stores some or all of the code block in the reception buffer (340). In operation 350, the wireless device transmits a NACK reporting a decoding failure and requests retransmission.
  • the size n SB of channel bits stored in the reception buffer is determined as follows.
  • N DL cells is the number of cells configured for the wireless device
  • Ncb is the number of coded bits of the corresponding code block.
  • K MIMO , N soft , M DL_HARQ and M limit are defined in Table 1.
  • a plurality of cells configured for the wireless device may support various modulation orders.
  • a cell supporting a modulation order larger than a reference modulation order among a plurality of cells is called a high order cell, and a cell supporting a modulation order less than or equal to a reference modulation order is called a low order cell.
  • the reference modulation order is six.
  • a cell supporting a modulation scheme of up to 64-QAM or less is a low-order cell, and a cell supporting up to 256-QAM is a high-order cell.
  • Q is a parameter in consideration of the modulation scheme supported by the corresponding cell.
  • Q may be referred to as a value that depends on the maximum modulation order that the cell supports. The higher the modulation order, the larger Q can be. Or, the Q of the low order cell is smaller than the Q of the high order cell.
  • Q may be defined as follows.
  • Q For low order cells, Q may be defined as follows.
  • m h is the maximum modulation order supported by the higher order cell
  • m l is the maximum modulation order supported by the lower order cell
  • N h is the number of higher order cells
  • N 1 is the number of low order cells.
  • 3GPP LTE uses one category to indicate DL capability and UL capability at once.
  • categories 6 and 7 represent the same DL capability but different UL capabilities.
  • various UL capabilities such as the number of configurable cells, configurable UL modulation orders, and the number of configurable UL MIMO layers, are introduced, the type of UL capabilities that can correspond to one DL capability may increase. This will define too many new categories, resulting in increased complexity.
  • the DL category may be limited to a category that supports the number of DL MIMO layers equal to or greater than the maximum number of UL MIMO layers supported by the UL category.
  • the DL category may be limited to a category that supports DL TBS that is greater than or equal to the maximum UL TBS supported by the UL category.
  • a wireless device supporting an existing UL category may be regarded as supporting DL capability (eg, TBS, MIMO coefficient or more) equal to or greater than the DL category corresponding to the corresponding UL category.
  • the considered DL capability may be supported even if it exceeds the capability of the DL category provided by the wireless device.
  • a wireless device supporting an existing DL category may be considered to support UL capability (eg, more than the number of TBS, MIMO coefficients) equal to or greater than the UL category corresponding to the corresponding DL category.
  • the considered UL capability may be supported even if it exceeds the capability of the UL category provided by the wireless device.
  • FIG. 4 is a block diagram illustrating a wireless communication system in which an embodiment of the present invention is implemented.
  • the base station 50 includes a processor 51, a memory 52, and an RF unit 53.
  • the memory 52 is connected to the processor 51 and stores various instructions for driving the processor 51.
  • the RF unit 53 is connected to the processor 51 and transmits and / or receives a radio signal.
  • the processor 51 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the base station may be implemented by the processor 51.
  • the wireless device 60 includes a processor 61, a memory 62, and an RF unit 63.
  • the memory 62 is connected to the processor 61 and stores various instructions for driving the processor 61.
  • the RF unit 63 is connected to the processor 61 and transmits and / or receives a radio signal.
  • the processor 61 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the wireless device may be implemented by the processor 61.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 데이터 수신 방법 및 이를 이용한 장치가 제공된다. 장치가 설정된 복수의 셀 중 하나의 셀로부터 코드블록을 수신한다. 상기 코드블록의 디코딩 오류가 검출되면, 상기 장치가 상기 코드블록 일부 또는 전부를 수신 버퍼에 저장한다. 상기 수신 버퍼에 저장되는 상기 코드블록의 코딩된 비트의 개수는 상기 코드블록이 수신되는 셀에 의해 지원되는 최대 변조 차수를 기반으로 결정된다.

Description

데이터 수신 방법 및 장치
본 발명은 무선 통신에 관한 것으로, 더욱 상세하게는 복수의 셀이 설정되는 무선 통신 시스템에서 데이터를 수신하는 방법 및 이를 이용한 장치에 관한 것이다.
모바일 기술의 발달과 함께 데이터 트래픽 사용량이 가파르게 증가하고 있다. 한정된 무선 자원을 이용하여 좀 더 빠르고 많은 데이터 트래픽을 처리하기 위해 여러 방면에서 표준화 작업 및 기술 개발이 진행 중이다. 3D 빔 포밍(Beam Forming), 매시브(Massive) MIMO(multiple input multiple output), 이종 네트워크(heterogeneous network) 또는 스몰셀(Small Cell) 등이 그 대표적인 예라고 할 수 있다.
통신 시스템이 발달함에 따라서 단말 별로 지원 가능한 변조 차수(modulation order) (예, 64-QAM(Quadrature Amplitude Modulation) 등), 지원가능한 계층(layer)의 갯수, 지원가능한 서빙셀의 갯수 등 다양한 역량(capability)이 도입되고 있다. 이에 따라, 단말이 네트워크에게 전달해야 하는 역량들의 조합이 늘어나고, 각 역량 조합에 따른 동작도 다양해지게 된다.
다양한 역량에 관한 정보를 전달하는 방법 및 이에 따른 단말의 동작이 제안된다.
본 발명은 복수의 셀이 설정되는 무선 통신 시스템에서 데이터를 수신하는 방법 및 이를 이용한 장치를 제공한다.
일 양태에서, 무선 통신 시스템에서 데이터 수신 방법은 무선기기가 설정된 복수의 셀 중 하나의 셀로부터 코드블록을 수신하는 단계, 및 상기 코드블록의 디코딩 오류가 검출되면, 상기 무선기기가 상기 코드블록의 일부 또는 전부를 수신 버퍼에 저장하는 단계를 포함한다. 상기 수신 버퍼에 저장되는 상기 코드블록의 코딩된 비트의 개수는 상기 코드블록이 수신되는 셀에 의해 지원되는 최대 변조 차수를 기반으로 결정된다.
상기 설정된 복수의 셀은 기준 변조 차수보다 더 높은 변조 차수를 지원하는 적어도 하나의 고차수 셀과 상기 기준 변조 차수 이하의 변조 차수를 지원하는 적어도 하나의 저차수 셀을 포함할 수 있다.
상기 코드블록이 수신되는 셀은 상기 고차수 셀일 수 있다.
상기 코드블록의 코딩된 비트의 개수는 상기 코드블록이 수신되는 셀에 의해 지원되는 최대 변조 차수 및 상기 적어도 하나의 고차수 셀의 개수를 기반으로 결정될 수 있다.
다른 양태에서, 무선 통신 시스템에서 데이터를 수신하는 장치는 무선 신호를 송신 및 수신하는 RF(radio frequency)부, 및 상기 RF부와 연결되는 프로세서를 포함한다. 상기 프로세서는 설정된 복수의 셀 중 하나의 셀로부터 코드블록을 수신하고, 및 상기 코드블록의 디코딩 오류가 검출되면, 상기 코드블록의 일부 또는 전부를 수신 버퍼에 저장한다. 상기 수신 버퍼에 저장되는 상기 코드블록의 코딩된 비트의 개수는 상기 코드블록이 수신되는 셀에 의해 지원되는 최대 변조 차수를 기반으로 결정된다.
무선기기의 다양한 역량에 관한 정보를 기지국에게 알려줄 수 있다. 복수의 셀이 설정된 무선기기가 수신 버퍼를 효율적으로 운영할 수 있다.
도 1은 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸다.
도 2는 본 발명의 일 실시예에 따른 DL 데이터 전송 방법을 나타낸 흐름도이다.
도 3은 본 발명의 일 실시예에 따른 DL 데이터 수신 방법을 나타낸 흐름도이다.
도 4는 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
도 1은 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸다.
무선기기(wireless device)(110)는 고정되거나 이동성을 가질 수 있으며, UE(User Equipment)은 MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 또는, 무선기기(110)는 MTC(Machine-Type Communication) 기기와 같이 데이터 통신만을 지원하는 기기일 수 있다.
기지국(base station, BS)(120)은 일반적으로 무선기기와 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
이하에서는 3GPP(3rd Generation Partnership Project) TS(Technical Specification)을 기반으로 하는 3GPP LTE(long term evolution)를 기반으로 본 발명이 적용되는 것을 기술한다. 이는 예시에 불과하고 본 발명은 다양한 무선 통신 네트워크에 적용될 수 있다.
3GPP LTE는 서브프레임(subframe) 단위로 스케줄링이 수행된다. 예를 들어, 하나의 서브프레임의 길이는 1ms이고, 이를 TTI(transmission time interval)라 한다. 무선 프레임(radio frame)은 10개의 서브프레임을 포함하고, 하나의 서브프레임(subframe)은 2개의 연속적인 슬롯을 포함할 수 있다. 서브프레임은 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함할 수 있다. OFDM 심벌은 3GPP LTE가 하향링크(downlink, DL)에서 OFDMA(orthogonal frequency division multiple access)를 사용하므로, 시간 영역에서 하나의 심벌 구간(symbol period)을 표현하기 위한 것에 불과할 뿐, 다중 접속 방식이나 명칭에 제한을 두는 것은 아니다. 예를 들어, OFDM 심벌은 SC-FDMA(single carrier-frequency division multiple access) 심벌, 심벌 구간 등 다른 명칭으로 불릴 수 있다. 3GPP LTE에 의하면, 정규 CP(Cyclic Prefix)에서 1 서브프레임은 14 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 서브프레임은 12 OFDM 심벌을 포함한다.
CA(carrier aggregation) 환경 또는 이중 접속(dual connectivity) 환경에서 무선기기는 복수의 서빙셀에 의해 서빙될 수 있다. 각 서빙셀은 DL(downlink) CC(component carrier) 또는 DL CC와 UL(uplink) CC의 쌍으로 정의될 수 있다.
서빙셀은 1차셀(primary cell)과 2차셀(secondary cell)로 구분될 수 있다. 1차셀은 1차 주파수에서 동작하고, 초기 연결 확립 과정을 수행하거나, 연결 재확립 과정을 개시하거나, 핸드오버 과정에서 1차셀로 지정된 셀이다. 1차셀은 기준 셀(reference cell)이라고도 한다. 2차셀은 2차 주파수에서 동작하고, RRC(Radio Resource Control) 연결이 확립된 후에 설정될 수 있으며, 추가적인 무선 자원을 제공하는데 사용될 수 있다. 항상 적어도 하나의 1차셀이 설정되고, 2차셀은 상위 계층 시그널링(예, RRC(radio resource control) 메시지)에 의해 추가/수정/해제될 수 있다. 1차셀의 CI(cell index)는 고정될 수 있다. 예를 들어, 가장 낮은 CI가 1차 셀의 CI로 지정될 수 있다. 이하에서는 1차 셀의 CI는 0이고, 2차 셀의 CI는 1부터 순차적으로 할당된다고 한다.
무선기기(110)는 기지국(120)으로 역량 정보(capability information)을 제공한다. 3GPP LTE에서 무선기기의 역량은 카테고리(category)로 구분된다.
다음 표는 3GPP LTE에서 무선기기의 DL 역량을 위한 카테고리를 보여준다.
표 1
카테고리 TTI내 수신될 최대 DL 전송 블록 크기(maximum number of bits of a DL transport block bits received within a TTI) 소프트 채널 비트의 총 개수(total number of soft channel bits) 공간 다중화를 위한 지원되는 계층의 최대 수(maximum number of supported layers for spatial multiplexing)
카테고리 1 10296 250368 1
카테고리 2 51024 1237248 2
카테고리 3 75376 1237248 2
카테고리 4 75376 1827072 2
카테고리 5 149776 3667200 4
카테고리 6 149776 (4layers), 75376 (2layers) 3654144 2 or 4
카테고리 7 149776 (4layers), 75376 (2layers) 3654144 2 or 4
카테고리 8 299856 3598270 8
카테고리 9 149776 (4layers), 75376 (2layers) 5481216 2 or 4
카테고리 10 149776 (4layers), 75376 (2layers) 5481216 2 or 4
다음 표는 3GPP LTE에서 무선기기의 UL 역량을 위한 카테고리를 보여준다.
표 2
카테고리 TTI내 전송될 최대 UL 전송 블록 크기(maximum number of bits of a UL transport block bits transmitted within a TTI) UL 64-QAM 지원 (Support for 64-QAM in UL)
카테고리 1 5160 No
카테고리 2 25456 No
카테고리 3 51024 No
카테고리 4 51024 No
카테고리 5 75376 Yes
카테고리 6 51024 No
카테고리 7 102048 No
카테고리 8 1497760 Yes
카테고리 9 51024 No
카테고리 10 102048 No
3GPP LTE에서 무선기기는 '공간 다중화를 위한 지원되는 계층의 최대 수'를 지원하는 밴드 조합에 대해 각 밴드별로 시그널링한다. 예를 들어, 무선기기가 밴드 A와 밴드 B를 지원한다고 하자. 무선기기는 밴드 A와 밴드 B가 각각 4 계층을 지원한다고 시그널링할 수 있다. 또는, 무선기기는 밴드 A와 밴드 B가 조합되는 CA 환경에서는 밴드 A에 대해 4 계층, 밴드 B에 대해 2 계층을 지원한다고 시그널링할 수 있다.
무선기기가 한 밴드에서 하나의 계층에 대해 DL 프로세싱이 가능한 최대 비트 수를 Z라 하자. 무선기기가 최대 4Z 비트를 처리할 수 있다는 것은 밴드 A에 대해 최대 4 계층을 지원한다는 것을 의미한다. 무선기기가 최대 6Z 비트를 처리할 수 있다는 것은, 하나의 밴드 A에 대해 최대 4 계층을 지원하더라도 두 밴드 조합에 대해서는 4Z+2Z로 밴드 A에 대해 4 계층, 밴드 B에 대해 2 계층을 지원할 수 있음을 의미한다.
한편, 현재 3GPP LTE는 최대 64-QAM (변조차수 6) 까지 지원한다. 256-QAM 혹은 더 높은 변조 차수를 갖는 변조 방식가 도입된다면, 동일한 수의 계층에 대해 지원해야 하는 최대 비트 수가 달라질 수 있다.
예를 들어서, 64-QAM에 대한 하나의 계층을 위해 Z 비트 프로세싱이 요구된다면, 256-QAM에 대해서는 4Z/3 비트 프로세싱이 필요하다. 예를 들어서, 최대 4Z 비트 프로세싱이 가능한 무선기기는 64-QAM에 대해서는 밴드 A와 밴드 B의 조합에서 2Z + 2Z로 각 밴드 별로 2 계층까지 프로세싱이 가능하다. 하지만, 256-QAM에 대해서는 4x2xZ/3 + 4x2xZ/3로 각 밴드 별로 프로세싱할 수 있는 비트 수가 달라진다.
이 경우에 MO(modulation order) 역량과 MIMO(multiple input multiple output) 역량의 조합을 밴드 조합(band combination) 별로 정의하고 시그널링할 경우, 너무 많은 시그널링 조합으로 인해 시그널링 부담이 커진다. 또한, 하나의 셀에 다양한 역량을 갖는 무선기기가 존재할 수 있어서 네트워크 운영의 복잡도도 증가할 수 있다.
일 실시예에서, 무선기기는 특정 최대 MO 역량을 지원하는 밴드 및/또는 밴드 조합에 대하여 지원하는 최대 MO 역량과 상기 최대 MO 역량에 해당하는 프로세싱 비트 수를 지원할 수 있다. 즉, 무선기기가 밴드 A + 밴드 B에 대해 256-QAM/4계층 + 256-QAM/2계층을 지원한다면, 4x4xZ/3 + 4x2xZ/3 비트를 지원한다고 할 수 있다.
다른 실시예에서, 무선기기는 최대 MO 역량을 지원할 수 있는 최대 프로세싱 비트 수(예, QAM 심벌 개수 또는 계층 별 RE(resource element) 수) 및/또는 최대 총 대역(예, RB(resource block) 개수 혹은 CC의 개수)에 관한 정보를 기지국에 제공할 수 있다. 혹은 해당 역량은 기기의 카테고리에 대하여 고정적으로 정의될 수 있다. 예를 들어서 무선기기가 최대 Y개의 256-QAM 심벌을 지원할 수 있다고 시그널링하면 네트워크는 상기 무선기기에게 설정된 변조차수, MIMO 계층에 따라서 한 서브프레임에 스케줄되는 256-QAM 심벌 수가 Y개를 넘지 않도록 조정할 수 있다.
이제 무선기기에게 할당되는 소프트 버퍼의 크기를 조정하는 방법을 제안한다.
도 2는 본 발명의 일 실시예에 따른 DL 데이터 전송 방법을 나타낸 흐름도이다.
먼저, 기지국은 입력되는 정보 비트를 인코딩한다(210). 채널 코딩 방식에는 제한이 없으나, 잘 알려진 터보 코딩(turbo coding)이 적용될 수 있다.
기지국은 해당 무선기기를 위한 소프트 버퍼 크기를 결정한다(220). 기지국이 레이트 매칭을 위한 소프트 버퍼 크기를 결정하는 이유는 DL 채널을 정하는데 사용되는 소프트 비트 수가 수신기의 최대 소프트 버퍼 크기를 초과함으로 인한 미스매치를 막고, HARQ(hybrid automatic repeat request) 동작의 리던던시 비트(redundancy bit)을 효율적으로 운영하기 위한 것이다.
기지국은 결정된 소프트 버퍼 크기에 따라 레이트 매칭을 수행하고, 레이트 매칭된 코딩된 전송블록은 자원에 맵핑되어(230), 무선기기로 전송된다.
3GPP TS 36.212 V11.4.0 (2013-12)의 5.1.4.1.2절에 의하면, 소프트 버퍼 크기 NIR은 다음과 같이 결정된다.
수학식 1
Figure PCTKR2015007975-appb-M000001
여기서, Nsoft는 표 1의 소프트 채널 비트의 총 개수, KMIMO는 MIMO 전송 여부에 따라 달라지는 파라미터, MDL_HARQ는 DL HARQ 프로세스의 최대 갯수, Mlimit은 상수(constant)이다.
KC는 목표하는 셀의 개수에 따라 설정될 수 있다. 예를 들어, CA를 지원하지 않는 기기의 카테고리(예, 카테고리 1~5)의 경우는 KC=1로 설정된다. 2개의 셀을 지원하는 기기의 카테고리(예, 카테고리 6,7)가 최대 2 계층까지 지원할 경우는 KC=2로 설정된다. 이는 기기의 총 비트 버퍼링 디코딩 역량을 2개의 셀로 나누어 사용하는 것을 가정하여 각 셀당 최대 소프트 버퍼 사이즈를 결정하는 것을 의미한다. 2개의 셀을 지원하는 기기라도 최대 4 계층을 지원하면, 각 셀 별로 충분한 코드율(code rate)을 지원하기 위하여 KC=1로 설정하고, 서로 다른 셀 간에 해당 비트 프로세싱 능력을 적절히 공유할 것을 가정한다.
표 1에 의하면, 카테고리 6 또는 7에 대응하는 무선기기는 Nsoft=3654144 비트이고, 하나의 셀의 하나의 계층에서 지원 가능한 최대 TBS(transport block size)는 75376 비트이다. 따라서, 하나의 셀에서 75376 비트 TB(transport block)에 대하여 지원되는 HARQ 코딩된(coded) 비트 수 NIR=3654144/(2x2x8)=114192로서, 이때에 지원되는 코드율은 약 0.66이 된다. 하지만, 이는 64-QAM을 가정했을 경우의 결과이며, 256-QAM을 지원하는 무선기기가 계층 당 지원해야 하는 최대 TBS는 75376비트의 4/3인 약 100000 비트이고, 이때 코드율은 약 0.87가 되어, 지원할 수 있는 NIR 비트 수가 작아지게 된다.
더 높은 변조 차수를 지원하기 위해, 256-QAM을 지원하는 무선기기는 KC를 2 보다 작은 수(예,1)로 설정할 수 있다. 또는, 256-QAM이 설정되면 셀당 지원되는 코드율이 지나치게 작아지는 카테고리(예, 카테고리 6, 7, 9, 10)를 갖는 무선기기는 KC를 2 보다 작은 수(예,1)로 설정할 수 있다. 무선기기에게 복수의 셀이 설정되고, 그 중 256-QAM을 지원하는 셀에 대해서만 KC를 2 보다 작은 수(예, KC=1)로 설정할 수 있다.
256-QAM을 지원하는 셀의 NIR은 256-QAM 보다 낮은 변조 차수를 지원하는 셀의 NIR 보다 더 커지도록 조정할 수 있다.
도 3은 본 발명의 일 실시예에 따른 DL 데이터 수신 방법을 나타낸 흐름도이다. 이는 무선기기가 DL HARQ을 수행하는 일 예일 수 있다. 무선기기에게는 복수의 셀이 설정될 수 있다.
무선기기는 복수의 서빙셀 중 하나로부터 DL 데이터 채널 상으로 전송블록의 코드블록(code block)을 수신한다(310). 무선기기는 수신된 코드블록의 디코딩을 시도하여, 오류가 발생하는지 여부를 판단한다(320). 디코딩에 성공하면, 무선기기는 기지국으로 ACK을 전송한다(330). 디코딩에 실패하면, 무선기기는 상기 코드블록의 일부 또는 전부를 수신 버퍼에 저장한다(340). 그리고, 무선기기는 디코딩 실패를 보고하는 NACK을 전송하여 재전송을 요청한다(350).
3GPP TS 36.213 V11.6.0 (2014-03)의 7.1.8절에 의하면, 각 서빙셀에 대하여, 수신버퍼에 저장하는 채널 비트의 크기 nSB는 다음과 같이 결정된다.
수학식 2
Figure PCTKR2015007975-appb-M000002
여기서, C는 상기 전송블록을 위한 코드블록의 개수, NDL cells는 무선기기에게 설정된 셀의 개수, Ncb는 해당 코드블록의 코딩된 비트(coded bit) 수이다. KMIMO, Nsoft, MDL_HARQ, Mlimit는 표 1에서 정의된다.
무선기기에게 설정된 복수의 셀은 다양한 변조 차수를 지원할 수 있다. 복수의 셀 중 기준 변조 차수 보다 큰 변조 차수를 지원하는 셀을 고차수 셀(high order cell), 기준 변조 차수 이하의 변조 차수를 지원하는 셀을 저차수 셀(low order cell)이라 한다. 예를 들어, 기준 변조 차수를 6 이라고 하자. 최대 64-QAM 이하의 변조 방식을 지원하는 셀이 저차수 셀이고, 최대 256-QAM을 지원하는 셀은 고차수셀이다.
고차수 셀에서는 저차수 셀에 비해 상대적으로 더 큰 최대 코딩된 비트 수를 갖는 코드 블록이 수신될 수 있으므로, 더 큰 수신 버퍼를 제공하는 것을 제안한다. 이는 보다 구체적으로 다음과 같은 수식으로 구현될 수 있다.
수학식 3
Figure PCTKR2015007975-appb-M000003
여기서, Q는 해당 셀에 의해 지원되는 변조 방식을 고려한 파라미터이다. Q는 해당 셀이 지원되는 최대 변조 차수에 따라서 달라지는 값이라 할 수 있다. 더 높은 변조 차수를 지원할수록 Q는 커질 수 있다. 또는, 고차수 셀의 Q 보다 저차수 셀의 Q가 더 작다.
고차수 셀의 경우, Q는 다음과 같이 정의될 수 있다.
수학식 4
Figure PCTKR2015007975-appb-M000004
저차수 셀의 경우, Q는 다음과 같이 정의될 수 있다.
수학식 5
Figure PCTKR2015007975-appb-M000005
여기서, mh는 고차수 셀에 의해 지원되는 최대 변조 차수, ml는 저차수 셀에 의해 지원되는 최대 변조 차수, Nh는 고차수 셀의 개수, Nl은 저차수 셀의 개수이다.
표 1 및 표 2에 나타난 바와 같이, 3GPP LTE에서는 하나의 카테고리를 이용하여 DL 역량과 UL 역량을 한번에 나타낸다. 예를 들어, 카테고리 6과 7은 동일한 DL 역량을 나타내지만, 서로 다른 UL 역량을 나타낸다. 하지만, 설정가능한 셀의 개수, 설정가능한 UL 변조 차수, 설정가능한 UL MIMO 계층의 개수 등 다양한 UL 역량이 도입됨에 따라, 하나의 DL 역량에 대응될 수 있는 UL 역량의 종류가 많아질 수 있다. 이는 지나치게 많은 새로운 카테코리를 정의하게 되어, 증가된 복잡도를 야기할 수 있다.
따라서, 무선기기의 카테고리를 DL 역량과 UL 역량을 구분하여 시그널링하되, 무선기기가 시그널링할 수 있는 DL 카테고리와 UL 카테고리의 조합에 제한을 두는 것을 제안한다.
DL 카테고리는 UL 카테고리에서 지원 가능한 최대 UL MIMO 계층의 개수 이상의 DL MIMO 계층의 개수를 지원하는 카테고리로 제한될 수 있다.
DL 카테고리는 UL 카테고리에서 지원 가능한 최대 UL TBS 이상의 DL TBS를 지원하는 카테고리로 제한될 수 있다.
기존의 UL 카테고리를 지원하는 무선기기는 해당 UL 카테고리에 대응하는 DL 카테고리 이상의 DL 역량(예, TBS, MIMO 계수의 수 이상)을 지원하는 것으로 간주될 수 있다. 상기 간주되는 DL 역량은 상기 무선기기가 제공하는 DL 카테고리의 역량을 초과하더라도 지원될 수 있다.
기존의 DL 카테고리를 지원하는 무선기기는 해당 DL 카테고리에 대응하는 UL 카테고리 이상의 UL 역량(예, TBS, MIMO 계수의 수 이상)을 지원하는 것으로 간주될 수 있다. 상기 간주되는 UL 역량은 상기 무선기기가 제공하는 UL 카테고리의 역량을 초과하더라도 지원될 수 있다.
도 4는 본 발명의 실시예가 구현되는 무선통신 시스템을 나타낸 블록도이다.
기지국(50)은 프로세서(processor, 51), 메모리(memory, 52) 및 RF부(RF(radio frequency) unit, 53)을 포함한다. 메모리(52)는 프로세서(51)와 연결되어, 프로세서(51)를 구동하기 위한 다양한 명령어를 저장한다. RF부(53)는 프로세서(51)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(51)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 기지국의 동작은 프로세서(51)에 의해 구현될 수 있다.
무선기기(60)는 프로세서(61), 메모리(62) 및 RF부(63)을 포함한다. 메모리(62)는 프로세서(61)와 연결되어, 프로세서(61)를 구동하기 위한 다양한 명령어를 저장한다. RF부(63)는 프로세서(61)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(61)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시예에서 무선기기의 동작은 프로세서(61)에 의해 구현될 수 있다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (11)

  1. 무선 통신 시스템에서 데이터 수신 방법에 있어서,
    무선기기가 설정된 복수의 셀 중 하나의 셀로부터 코드블록을 수신하는 단계; 및
    상기 코드블록의 디코딩 오류가 검출되면, 상기 무선기기가 상기 코드블록의 일부 또는 전부를 수신 버퍼에 저장하는 단계를 포함하되,
    상기 수신 버퍼에 저장되는 상기 코드블록의 코딩된 비트의 개수는 상기 코드블록이 수신되는 셀에 의해 지원되는 최대 변조 차수를 기반으로 결정되는 것을 특징으로 하는 데이터 수신 방법.
  2. 제 1 항에 있어서,
    상기 설정된 복수의 셀은 기준 변조 차수보다 더 높은 변조 차수를 지원하는 적어도 하나의 고차수 셀과 상기 기준 변조 차수 이하의 변조 차수를 지원하는 적어도 하나의 저차수 셀을 포함하는 것을 특징으로 하는 데이터 수신 방법.
  3. 제 2 항에 있어서,
    상기 코드블록이 수신되는 셀은 상기 고차수 셀인 것을 특징으로 하는 데이터 수신 방법.
  4. 제 3 항에 있어서,
    상기 코드블록의 코딩된 비트의 개수는 상기 코드블록이 수신되는 셀에 의해 지원되는 최대 변조 차수 및 상기 적어도 하나의 고차수 셀의 개수를 기반으로 결정되는 것을 특징으로 하는 데이터 수신 방법.
  5. 제 2 항에 있어서,
    상기 기준 변조 차수는 6 인 것을 특징으로 하는 데이터 수신 방법.
  6. 제 1 항에 있어서,
    상기 코드블록의 디코딩 오류를 보고하는 NACK을 전송하는 단계를 더 포함하는 것을 특징으로 하는 데이터 수신 방법.
  7. 제 1 항에 있어서,
    상기 코드블록의 디코딩 오류가 검출되지 않으면, 상기 무선기기가 ACK을 전송하는 단계를 더 포함하는 것을 특징으로 하는 데이터 수신 방법.
  8. 무선 통신 시스템에서 데이터를 수신하는 장치에 있어서,
    무선 신호를 송신 및 수신하는 RF(radio frequency)부; 및
    상기 RF부와 연결되는 프로세서를 포함하되, 상기 프로세서는
    설정된 복수의 셀 중 하나의 셀로부터 코드블록을 수신하고; 및
    상기 코드블록의 디코딩 오류가 검출되면, 상기 코드블록의 일부 또는 전부를 수신 버퍼에 저장하되,
    상기 수신 버퍼에 저장되는 상기 코드블록의 코딩된 비트의 개수는 상기 코드블록이 수신되는 셀에 의해 지원되는 최대 변조 차수를 기반으로 결정되는 것을 특징으로 하는 장치.
  9. 제 8 항에 있어서,
    상기 설정된 복수의 셀은 기준 변조 차수보다 더 높은 변조 차수를 지원하는 적어도 하나의 고차수 셀과 상기 기준 변조 차수 이하의 변조 차수를 지원하는 적어도 하나의 저차수 셀을 포함하는 것을 특징으로 하는 장치.
  10. 제 9 항에 있어서,
    상기 코드블록이 수신되는 셀은 상기 고차수 셀인 것을 특징으로 하는 장치.
  11. 제 10 항에 있어서,
    상기 코드블록의 코딩된 비트의 개수는 상기 코드블록이 수신되는 셀에 의해 지원되는 최대 변조 차수 및 상기 적어도 하나의 고차수 셀의 개수를 기반으로 결정되는 것을 특징으로 하는 장치.
PCT/KR2015/007975 2014-08-04 2015-07-30 데이터 수신 방법 및 장치 WO2016021873A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/501,617 US10142057B2 (en) 2014-08-04 2015-07-30 Method and device for receiving data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462032641P 2014-08-04 2014-08-04
US62/032,641 2014-08-04

Publications (1)

Publication Number Publication Date
WO2016021873A1 true WO2016021873A1 (ko) 2016-02-11

Family

ID=55264086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007975 WO2016021873A1 (ko) 2014-08-04 2015-07-30 데이터 수신 방법 및 장치

Country Status (2)

Country Link
US (1) US10142057B2 (ko)
WO (1) WO2016021873A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10687209B2 (en) 2017-09-13 2020-06-16 Qualcomm Incorporated UE capability constraint indications for high order modulation
US11259203B2 (en) * 2018-01-07 2022-02-22 Htc Corporation Device and method of handling communication device capabilities
US11202277B2 (en) * 2018-07-23 2021-12-14 Qualcomm Incorporated Overbooking handling for multiple transceiver nodes
CN111917510B (zh) * 2019-05-08 2023-05-09 中国移动通信有限公司研究院 数据处理、指示数据处理的方法、终端及网络设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130039700A (ko) * 2011-10-12 2013-04-22 삼성전자주식회사 이동통신 시스템에서 역방향 제어 신호를 전송하는 방법 및 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7606575B2 (en) * 1988-08-04 2009-10-20 Broadcom Corporation Remote radio data communication system with data rate switching
WO2010071334A2 (en) * 2008-12-16 2010-06-24 Lg Electronics Inc. Method and apparatus for performing harq in wireless communication system
US8543867B2 (en) * 2010-04-02 2013-09-24 Sharp Laboratories Of America, Inc. Transmission of acknowledgement and negative acknowledgement in a wireless communication system
CN103348618A (zh) * 2011-01-26 2013-10-09 捷讯研究有限公司 Crc分量码的软解码

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130039700A (ko) * 2011-10-12 2013-04-22 삼성전자주식회사 이동통신 시스템에서 역방향 제어 신호를 전송하는 방법 및 장치

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BLACKBERRY UK LIMITED: "On UE Category/Capability Handling to Support 256 QAM", R1-142354, 3GPP TSG RAN WG1 MEETING #77, 10 May 2014 (2014-05-10), Seoul, Korea *
ERICSSON: "On 256QAM UE category handling", R1-140756, 3GPP TSG RAN WG1 MEETING #76, 1 February 2014 (2014-02-01), Prague, Czech Republic *
ERICSSON: "On 256QAM UE category handling", R1-141638, 3GPP TSG RAN WG1 MEETING #76BIS, 22 March 2014 (2014-03-22), Shenzhen, China *
HUAWEI ET AL.: "Discussion on UE category with introduction of 256QAM", R1-140036, 3GPP TSG RAN WG1 MEETING #76, 1 February 2014 (2014-02-01), Prague, Czech Republic *

Also Published As

Publication number Publication date
US10142057B2 (en) 2018-11-27
US20170237524A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
US11122555B2 (en) Data transmission method, terminal device, and base station system
CN107432015B (zh) 用户终端、无线基站以及无线通信方法
US10862654B2 (en) Method and apparatus for transmitting uplink control information (UCI) in wireless communication system
WO2018226033A1 (ko) 무선 통신 시스템에서 단말에 의해 수행되는 하향링크 제어 채널 수신 방법 및 상기 방법을 이용하는 단말
WO2019216588A1 (ko) 무선 셀룰라 통신 시스템에서 제어 정보 송수신 방법 및 장치
CN110402606B (zh) 终端设备、基站设备、通信方法和存储介质
US11190324B2 (en) Multiplexing uplink control channel signalling
US10470167B2 (en) Method of transmitting and receiving UCI in wireless communication system and apparatus therefor
WO2021020865A1 (en) Scheduling for services with multiple priority types
WO2014098520A1 (en) Inter-enb coordination methods to support inter-enb carrier aggregation for lte-advanced
WO2017014613A1 (ko) 무선 셀룰러 통신 시스템에서 협대역 신호 전송을 위한 방법 및 장치
EP3132633A1 (en) Method and apparatus for processing aperiodic channel state information in wireless communication system
JP5777222B2 (ja) リソースインデックス情報を決定するための方法及び装置
WO2017146527A1 (en) Uplink non-orthogonal multiple access scheme and joint reception supporting scheme
WO2016143996A1 (en) Method and apparatus for performing network cooperative communication to distribute traffic in a wireless communication system
WO2018009037A1 (en) Method and apparatus for signaling ue capability for new radio access technology in wireless communication system
WO2019098710A1 (ko) 무선 통신 시스템에서 상향링크 캐리어를 통해 데이터를 송수신하기 위한 방법 및 장치
WO2015142008A1 (ko) 복수의 서빙셀을 지원하는 통신 방법 및 이를 이용한 장치
WO2015142045A1 (ko) 데이터 수신 방법 및 이를 이용한 장치
WO2016003216A1 (ko) Ack/nack 전송 방법 및 장치
WO2017188486A1 (ko) 2d 채널 기반의 전송 방식을 이용한 데이터 수신 방법 및 이를 위한 장치
WO2016021873A1 (ko) 데이터 수신 방법 및 장치
CN111615193A (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2016182242A1 (ko) 채널 상태 정보 보고 방법 및 이를 이용한 장치
CN116368884A (zh) 利用朝向多个trp的时隙内重复的pucch增强的系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829501

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15501617

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15829501

Country of ref document: EP

Kind code of ref document: A1