WO2016021833A1 - Semiconductor light-emitting element - Google Patents

Semiconductor light-emitting element Download PDF

Info

Publication number
WO2016021833A1
WO2016021833A1 PCT/KR2015/006638 KR2015006638W WO2016021833A1 WO 2016021833 A1 WO2016021833 A1 WO 2016021833A1 KR 2015006638 W KR2015006638 W KR 2015006638W WO 2016021833 A1 WO2016021833 A1 WO 2016021833A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
light emitting
branch
semiconductor
semiconductor layer
Prior art date
Application number
PCT/KR2015/006638
Other languages
French (fr)
Korean (ko)
Inventor
진근모
전수근
김태현
이성찬
Original Assignee
주식회사 세미콘라이트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140101775A external-priority patent/KR20160018924A/en
Priority claimed from KR1020140101774A external-priority patent/KR101617225B1/en
Priority claimed from KR1020140115581A external-priority patent/KR101628239B1/en
Priority claimed from KR1020140153693A external-priority patent/KR101626905B1/en
Priority claimed from KR1020150044279A external-priority patent/KR20160117682A/en
Priority claimed from KR1020150049720A external-priority patent/KR101635908B1/en
Priority claimed from KR1020150051787A external-priority patent/KR101635907B1/en
Application filed by 주식회사 세미콘라이트 filed Critical 주식회사 세미콘라이트
Publication of WO2016021833A1 publication Critical patent/WO2016021833A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes

Definitions

  • the present disclosure relates to a semiconductor light emitting device as a whole, and more particularly to a semiconductor light emitting device having improved light extraction efficiency.
  • the present invention also relates to a semiconductor light emitting device in which a plurality of light emitting parts are arranged compactly while suppressing a reduction in light emitting area.
  • the present invention also relates to a semiconductor light emitting device having a reduced light emitting area.
  • the present invention relates to a semiconductor light emitting device which reduces light absorption loss due to metal in a small sized device and ensures uniformity of light emission.
  • the present invention also relates to a semiconductor light emitting device having an electrode structure for reducing light loss.
  • the semiconductor light emitting device refers to a semiconductor optical device that generates light through recombination of electrons and holes, for example, a group III nitride semiconductor light emitting device.
  • the group III nitride semiconductor consists of a compound of Al (x) Ga (y) In (1-x-y) N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • GaAs type semiconductor light emitting elements used for red light emission, etc. are mentioned.
  • the group III nitride semiconductor light emitting device includes a substrate 10 (eg, a sapphire substrate), a buffer layer 20 grown on the substrate 10, an n-type group III nitride semiconductor layer 30 grown on the buffer layer 20, and an n-type 3 A transparent conductive film formed on the active layer 40 grown on the group nitride semiconductor layer 30, the p-type group III nitride semiconductor layer 50 grown on the active layer 40, and the p-type group III nitride semiconductor layer 50 ( 60, the n-type III-nitride semiconductor layer 30 in which the p-side bonding pad 70, the p-type III-nitride semiconductor layer 50 and the active layer 40 formed on the light-transmissive conductive film 60 are mesa-etched and exposed. ) And an n-side bonding pad 80 and a passivation layer 90 formed on the substrate.
  • a substrate 10 eg, a sapphire substrate
  • a buffer layer 20 grown on the substrate 10
  • the buffer layer 20 is to overcome the difference in lattice constant and thermal expansion coefficient between the substrate 10 and the n-type group III nitride semiconductor layer 30.
  • US Pat. No. 5,122,845 discloses a sapphire substrate at 380 ⁇ to 800 ⁇ .
  • a technique for growing an AlN buffer layer having a thickness of 100 kPa to 500 kPa at a temperature is described.
  • US Pat. A technique for growing a 1-x) N (0 ⁇ x ⁇ 1) buffer layer is described, and US Patent Publication No. 2006/154454 discloses growing a SiC buffer layer (seed layer) at a temperature of 600 ° C. to 990 ° C.
  • the undoped GaN layer is grown prior to the growth of the n-type Group III nitride semiconductor layer 30, which may be viewed as part of the buffer layer 20 or as part of the n-type Group III nitride semiconductor layer 30. .
  • the transparent conductive film 60 is provided in order to supply current well to the entire p-type group III nitride semiconductor layer 50.
  • the transparent conductive film 60 is formed over almost the entire surface of the p-type group III nitride semiconductor layer 50, and is formed of a transparent conductive film using, for example, ITO, ZnO or Ni and Au, or by using Ag. It may be formed of a reflective conductive film.
  • the p-side bonding pad 70 and the n-side bonding pad 80 are metal electrodes for supplying current and wire bonding to the outside, for example, nickel, gold, silver, chromium, titanium, platinum, palladium, and rhodium. And iridium, aluminum, tin, indium, tantalum, copper, cobalt, iron, ruthenium, zirconium, tungsten, molybdenum, or any combination thereof.
  • the passivation layer 90 is formed of a material such as silicon dioxide and may be omitted.
  • FIG. 2 is a view showing an example of a series-connected LED (A, B) disclosed in US Patent No. 6,547,249. Due to various advantages, as shown in FIG. 2, a plurality of LEDs A and B are used in series. For example, connecting a plurality of LEDs A and B in series reduces the number of external circuits and wire connections, and reduces the light absorption loss due to the wires. In addition, since the operating voltage of the series-connected LEDs A and B all rises, the power supply circuit can be further simplified.
  • the interconnector 34 is deposited to connect the p-side electrode 32 and the n-side electrode 32 of the neighboring LEDs (A, B).
  • a plurality of semiconductor layers must be etched to expose the sapphire substrate 20 in an isolation process for electrically insulating the plurality of LEDs (A, B), because the etch depth is long and takes a long time and the step is large. It is difficult to form the interconnector 34.
  • the interconnector 34 is formed to have a gentle inclination as shown in FIG. 2 by using the insulator 30, the spacing between the LEDs A and B increases, which causes a problem in improving the degree of integration.
  • FIG. 3 is a view showing another example of a series-connected LED disclosed in US Patent No. 6,547,249.
  • Another method of isolating the plurality of LEDs (A, B) is ion implantation without etching the lower semiconductor layer 22 (for example, n-type nitride semiconductor layer) between the plurality of LEDs (A, B). Insulation between the plurality of LEDs A and B by ion implantation reduces the level of the interconnector 34.
  • it is difficult to implant ions deeply into the lower semiconductor layer 22 and a long process time is a problem.
  • FIG. 4 is a diagram illustrating an example of an LED array disclosed in US Patent No. 7,417,259, in which a two-dimensional LED array is formed on an insulating substrate for driving a high drive voltage and a low current.
  • a sapphire monolithically substrate was used, and two LED arrays were connected in parallel in a reverse direction on the substrate. Therefore, AC power can be used as the direct drive power.
  • FIG. 5 is a view illustrating an example of a semiconductor light emitting device including a plurality of light emitting units connected in series on a conventional single substrate.
  • a plurality of light emitting units A A semiconductor light emitting element in which B) is connected in series is used.
  • the plurality of light emitting units A and B are connected in series on a single substrate, the number of wires for connection with an external circuit is reduced, and thus the light absorption loss due to the wires is reduced.
  • the power supply circuit may be simplified.
  • the area occupied is small, so that the installation density can be improved, and therefore, miniaturization is possible when constructing a lighting device or the like including the semiconductor light emitting devices.
  • a center connection electrode electrically connecting the center light emitting unit and the peripheral light emitting unit.
  • a semiconductor light emitting device including a first light emitting unit and a second light emitting unit formed on a single substrate, the first light emitting unit and the second light emitting unit Each part is interposed between a first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, and a first semiconductor layer and a second semiconductor layer, and emitting light through recombination of electrons and holes.
  • a first electrode including a plurality of semiconductor layers having an active layer to be generated, and electrically communicating with the first semiconductor layer of the first light emitting unit and supplying one of electrons and holes;
  • a second electrode in electrical communication with a second semiconductor layer of the second light emitting part and supplying the other one of electrons and holes;
  • an extending type electrode part extending over the second semiconductor layer of the first light emitting part and extending to the side of the first light emitting part, between the first light emitting part and the second light emitting part, and to the side of the second light emitting part;
  • a connection electrode having a point type electrode portion formed on an edge of the first semiconductor layer of the second light emitting portion and connected to the extended electrode portion.
  • the first semiconductor layer having a first conductivity generating light through recombination of electrons and holes
  • a plurality of semiconductor layers in which an active layer and a second semiconductor layer having a second conductivity different from the first conductivity are sequentially stacked; two long edges facing each other and two short edges facing each other ( a plurality of semiconductor layers having short edges);
  • a first electrode provided on one side of the long edge side to be in electrical communication with the first semiconductor layer and supplying one of electrons and holes;
  • a first semiconductor layer having a first conductivity and a second conductivity having a second conductivity different from the first conductivity A plurality of semiconductor layers having a second semiconductor layer and an active layer interposed between the first semiconductor layer and the second semiconductor layer and generating light by recombination of electrons and holes; A first electrode part in electrical communication with the first semiconductor layer and supplying one of electrons and holes; A second electrode part in electrical communication with the second semiconductor layer and supplying the other one of electrons and holes; And a nonconductive reflecting film formed over the plurality of semiconductor layers and reflecting light from the active layer, wherein at least one of the first electrode part and the second electrode part comprises: a first upper electrode formed on the nonconductive reflecting film; A first branch electrode extending below the first upper electrode and out of the first upper electrode; A first electrical connection penetrating the non-conductive reflective film and connecting the first upper electrode and the first branch electrode; And a second electrical connection penetrating the non-conductive reflecting film and electrical
  • a first semiconductor layer having a first conductivity and a second conductivity having a second conductivity different from the first conductivity A plurality of semiconductor layers comprising a second semiconductor layer and an active layer interposed between the first semiconductor layer and the second semiconductor layer and generating light by recombination of electrons and holes; A plurality of semiconductor layers having another short side, a long edge, and the other long side opposite to the long side; A nonconductive reflecting film formed over the plurality of semiconductor layers and reflecting light from the active layer; A first upper electrode and a second upper electrode formed on the non-conductive reflective film, the first upper electrode provided on the short side and the second upper electrode provided on the other short side; A first electrical connection and a second electrical connection respectively passing through the non-conductive reflecting film to electrically connect the first semiconductor layer and the first upper electrode; wherein the first electrical connection is located farther from the long side than the first electrical connection; Electrical connection and second electrical connection; A third electrical connection and a fourth electrical connection respectively passing through the
  • a first branch electrode connected to the first electrical connection and extending from the bottom of the first upper electrode to the bottom of the first upper electrode on which the second semiconductor layer and the active layer are etched and exposed; And a second branch electrode connected to the third electrical connection and extending from the bottom of the second upper electrode to the bottom of the first upper electrode between the second long side semiconductor layer and the light reflection layer.
  • a semiconductor light emitting element wherein there is no branch electrode formed between the fourth electrical connection in the direction from the short side to the other short side and in the direction from the other short side to the short side.
  • a first semiconductor layer having a first conductivity, an agent having a second conductivity different from the first conductivity A plurality of semiconductor layers interposed between the second semiconductor layer, the first semiconductor layer, and the second semiconductor layer, the active layers generating light through recombination of electrons and holes, and grown using a growth substrate; A nonconductive reflecting film bonded to the plurality of semiconductor layers on the opposite side of the growth substrate; And a first electrode and a second electrode electrically connected to the plurality of semiconductor layers and formed to face each other on the non-conductive reflective film, wherein at least one connection portion connecting the plurality of sub electrodes and the plurality of sub electrodes to each other.
  • the semiconductor light emitting device includes a first electrode and a second electrode having a width smaller than that of each sub-electrode connected by each connection part based on a direction perpendicular to the connection direction.
  • a first semiconductor layer having a first conductivity and a second conductivity having a second conductivity different from the first conductivity A plurality of semiconductor layers having a second semiconductor layer and an active layer interposed between the first semiconductor layer and the second semiconductor layer to generate light by recombination of electrons and holes; A nonconductive reflecting film formed over the plurality of semiconductor layers to reflect light from the active layer; A first electrode formed on the non-conductive reflecting film and having a pad portion and a protrusion projecting from the pad portion; A second electrode formed on the non-conductive reflecting film and facing the protrusion; A first branch electrode formed on the first semiconductor layer and extending between the first electrode and the second electrode under the protrusion; A first electrical connector penetrating the non-conductive reflective film to connect the protrusion and the first branch electrode; And a second electrical connection part penetrating the non-conductive reflective film to electrically connect the second electrode and the second semiconductor layer.
  • a first semiconductor layer having a first conductivity and a second conductivity having a second conductivity different from the first conductivity A plurality of semiconductor layers having a second semiconductor layer and an active layer interposed between the first semiconductor layer and the second semiconductor layer to generate light by recombination of electrons and holes; A nonconductive reflecting film formed over the plurality of semiconductor layers to reflect light from the active layer; A first electrode and a second electrode formed to be separated from the non-conductive reflecting film; At least one first electrical connection penetrating the non-conductive reflective film to electrically connect the first electrode and the first semiconductor layer; At least one second electrical connection penetrating the non-conductive reflective film to electrically connect the second electrode and the second semiconductor layer; A first branch electrode formed on the first semiconductor layer to be connected to the at least one first electrical connection portion, the first branch electrode extending between the first electrode and the second electrode from below a corner adjacent to the second electrode of the diagonal corners of the first electrode; 1 electrode; And a second branch electrode formed on the first semiconductor layer to be connected to the at least one first electrical connection portion
  • FIG. 1 is a view showing an example of a conventional group III nitride semiconductor light emitting device
  • FIG. 5 is a view showing an example of a semiconductor light emitting device including a plurality of light emitting units connected in series on a conventional single substrate;
  • FIG. 6 is a diagram illustrating an example of a semiconductor light emitting device according to the present disclosure.
  • FIG. 7 is a view showing an example of a cut plane taken along the line A-A of FIG. 6,
  • FIG. 8 is a view illustrating an improvement in light extraction efficiency of a semiconductor light emitting device according to the present disclosure
  • FIG. 10 is a view showing a semiconductor light emitting device of Comparative Example 2.
  • FIG. 11 is a view showing another example of a semiconductor light emitting device according to the present disclosure.
  • FIG. 12 is a view showing still another example of a semiconductor light emitting device according to the present disclosure.
  • FIG. 13 is a view showing still another example of a semiconductor light emitting device according to the present disclosure.
  • the connecting electrode includes two stranded wires
  • FIG. 15 is a view showing still another example of a semiconductor light emitting device according to the present disclosure.
  • FIG. 16 illustrates another example of the semiconductor light emitting device according to the present disclosure
  • FIG. 17 illustrates another example of a semiconductor light emitting device according to the present disclosure
  • FIG 18 illustrates another example of the semiconductor light emitting device according to the present disclosure.
  • FIG. 19 is a view showing still another example of a semiconductor light emitting device according to the present disclosure.
  • FIG. 20 is a view showing still another example of a cut plane taken along the line A-A of FIG. 19,
  • 21 is a view showing a semiconductor light emitting device of Comparative Example
  • FIG. 23 is a view showing still another example of a semiconductor light emitting device according to the present disclosure.
  • FIG. 24 is a view showing still another example of the semiconductor light emitting device according to the present disclosure.
  • 25 is a view showing still another example of a semiconductor light emitting device according to the present disclosure.
  • 26 is a view for explaining another example of a semiconductor light emitting device according to the present disclosure.
  • FIG. 27 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
  • FIG. 28 is a view for explaining another example of a cut plane taken along the line B-B in FIG. 27;
  • 29 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
  • FIG. 30 is a view showing an example of a semiconductor light emitting device disclosed in US Patent No. 7,262,436;
  • 31 is a view showing an example of a semiconductor light emitting device disclosed in Japanese Laid-Open Patent Publication No. 2006-20913;
  • 32 is a view showing an example of a semiconductor light emitting device shown in US Patent No. 6,650,044;
  • 35 is a view showing an example of a section taken along the line A-A of FIG. 34,
  • FIG. 37 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
  • FIG. 38 is a view showing an example of a cross section taken along the line B-B in FIG. 37,
  • 39 and 40 are diagrams for describing usage examples of the semiconductor light emitting device according to the present disclosure.
  • 41 is a view for explaining an example of a method of manufacturing a plate
  • FIG. 43 is a view for explaining another example of a method of using the semiconductor light emitting device according to the present disclosure.
  • 46 is a view showing still another example of a semiconductor light emitting device according to the present disclosure.
  • FIG. 47 is a view for explaining an example of a cross section taken along a line A-A in FIG. 46;
  • 49 is a view for explaining other examples of the semiconductor light emitting device according to the present disclosure.
  • FIG. 50 is a view for explaining still another example of a semiconductor light emitting device according to the present disclosure.
  • 51 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
  • FIG. 52 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
  • 53 is a view for explaining still another example of the semiconductor light emitting device according to the present disclosure.
  • FIG. 54 is a light emitting photograph of the semiconductor light emitting device shown in FIG. 53;
  • 55 is a view for explaining still another example of the semiconductor light emitting device according to the present disclosure.
  • 57 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
  • FIG. 58 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
  • FIG. 59 is a view showing an example of a cross section taken along the line A-A of FIG. 58,
  • 60 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
  • 61 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
  • FIG. 62 is a view showing an example of a section taken along the line B-B in FIG. 61,
  • FIG. 63 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
  • 64 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
  • 65 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
  • 66 and 67 are views for explaining use examples of the semiconductor light emitting device according to the present disclosure.
  • FIG. 68 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
  • FIG. 69 is a view for explaining an example of a cross section taken along a line A-A of FIG. 68;
  • 70A is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
  • 71 is a view for explaining still another example of the semiconductor light emitting device according to the present disclosure.
  • FIG. 72 is a view for explaining still another example of a semiconductor light emitting device according to the present disclosure.
  • 73 is a diagram for explaining the relationship between the area of an electrode and the luminance of a semiconductor light emitting element
  • 74 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
  • 76 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
  • 77 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
  • FIG. 78 is a view for explaining an example of a cross section taken along a line A-A in FIG. 77;
  • 79 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
  • 81 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
  • FIG. 6 is a diagram illustrating an example of a semiconductor light emitting device according to the present disclosure
  • FIG. 7 is a diagram illustrating an example of a cut plane taken along line A-A of FIG. 6.
  • the semiconductor light emitting device includes a center light emitting unit 101, a peripheral light emitting unit 201, center connecting electrodes 92 and 93, a peripheral connecting electrode 94, a first electrode 80, and a second electrode 70. .
  • the central light emitting unit 101 and the peripheral light emitting unit 201 are formed on the same substrate 10 and each includes a plurality of semiconductor layers formed on the substrate 10.
  • Sapphire, SiC, Si, GaN and the like are mainly used as the substrate 10.
  • the present example may be applied to a semiconductor light emitting device in which an electrode is formed on the first semiconductor layer 30 side or the conductive substrate 10 side from which the substrate 10 is removed when the substrate 10 is removed or has conductivity. It can also be applied to flip chips.
  • the positions of the first semiconductor layer 30 and the second semiconductor layer 50 may be changed, and are mainly made of GaN in the group III nitride semiconductor light emitting device.
  • the plurality of semiconductor layers may include a buffer layer 20 formed on the substrate 10, a first semiconductor layer 30 having a first conductivity (for example, Si-doped GaN), and a second semiconductor layer having a second conductivity different from the first conductivity. (Eg, Mg-doped GaN) and an active layer 40 interposed between the first semiconductor layer 30 and the second semiconductor layer 50 to generate light through recombination of electrons and holes (eg, InGaN / ( In) GaN multi-quantum well structure).
  • Each of the semiconductor layers 30, 40, and 50 may be formed in multiple layers, and the buffer layer 20 may be omitted.
  • the transparent conductive film 60 is provided.
  • the transparent conductive film 60 may be formed to have a light transmissive shape and substantially cover the second semiconductor layer 50, but may be formed only in part.
  • the current spreading ability is inferior, and in the case where the p-type semiconductor layer 50 is made of GaN, most of the transparent conductive film 60 should be assisted.
  • materials such as ITO and Ni / Au may be used as the transparent conductive film 60.
  • a passivation layer (not shown) may be formed to cover the plurality of light emitting parts 101, 102, 201 and the connection electrodes 92, 93, and 94.
  • the plurality of light emitting parts 101, 102, and 201 are electrically isolated from each other by a method of etching a semiconductor layer, such as a trench.
  • An insulating film may be provided between the plurality of light emitting parts 101, 102, and 201 as an electrical separation method, or a method such as ion implantation may be used in the substrate 10, or a semiconductor layer may be formed and insulated.
  • the peripheral light emitting unit 201 is provided around the central light emitting unit 101, and has a shape different from that of the central light emitting unit 101 when viewed in a top view, and faces the central light emitting unit 101.
  • the side surface 215 (hereinafter, the first side surface) is formed along the outline of the central light emitting portion 101.
  • the center connection electrodes 92 and 93 electrically connect the center light emitting unit 101 and the peripheral light emitting unit 201.
  • a plurality of peripheral light emitting parts 201 are included, and each of the peripheral light emitting parts 201 has a side surface 214 connected to the first side surface 215 and facing the other peripheral light emitting parts 201.
  • the side surface of the central light emitting unit 101 is formed so as not to be parallel to the other side surface 214 of the peripheral light emitting unit 201 other than the first side surface 215 of the peripheral light emitting unit.
  • the central light emitting part 101 is circular, and the first side surface 215 of the peripheral light emitting part 201 is concave.
  • the first side 215 is formed so as not to be parallel with the other side which is approximately 90 degrees connected to each other.
  • the plurality of light emitting parts 101, 102, and 201 are compactly disposed, and the trapping of light due to total internal reflection is reduced due to the first side surface 215 of the peripheral light emitting part 201, resulting in improved luminance. This is further described below.
  • the semiconductor light emitting device includes a first center light emitting unit 101, a second center light emitting unit 102, a plurality of peripheral light emitting units 201, a plurality of center connecting electrodes 92 and 93, and a plurality of peripheral connections. Electrode 94 is included. Two central light emitting units 101 and 102 are disposed, and four peripheral light emitting units 201 are disposed around the central light emitting units 101 and 102, respectively.
  • the peripheral light emitting part 201 has a shape of a portion of a substantially quadrangular shape except for the side of the first side surface 215.
  • the central light emitting part 101 is formed at a position where a plurality of peripheral light emitting parts 201 are in contact, a tangent or a boundary where the peripheral light emitting parts 201 meet.
  • the peripheral light emitting part 201 does not become a quadrangle, and thus the first side surface 215 is formed. It is formed concave along the outline of the central light emitting part 101.
  • the central light emitting unit 101 and the peripheral light emitting unit 201 are electrically connected (eg, in series or parallel) by the connection electrodes 92, 93, and 94.
  • the connection electrodes 92, 93, and 94 are peripheral connection electrodes 94 that connect the peripheral light emitters 201 to each other, and center connection electrodes 92, 93 that connect the peripheral light emitter 201 and the central light emitter 101. There is).
  • the central light emitting portion 101 and the peripheral light emitting portion 201 are electrically connected in series.
  • One end of the peripheral connection electrode 94 is formed on the transparent conductive film 60 of one peripheral light emitting part 201, and the other end of the peripheral connection electrode 94 is formed of the adjacent peripheral light emitting part 201.
  • the semiconductor layer 50 and the active layer 40 are etched and placed in the exposed first semiconductor layer (n-contact region).
  • One end of the center connection electrode 92 is formed on the n-contact region of one peripheral light emitting part 201, and the other end is formed on the translucent conductive film of the center light emitting part 101.
  • One end of the other center connection electrode 93 is formed on the n-contact area of the central light emitting part 101, and the other end is formed on the translucent conductive film 60 of the other peripheral light emitting part 201.
  • the insulating layer 95 may be formed between the light emitting units 101, 102, and 201 so that the remaining portions except the ends of the connection electrodes 92, 93, and 94 are insulated from the semiconductor layers 30, 40, and 50.
  • the plurality of peripheral light emitters 201 are disposed symmetrically with respect to each center light emitter 101.
  • the center connection electrodes 92 and 93 may be formed in a diagonal direction from one peripheral light emitting part 201 toward the peripheral light emitting part 201 on the opposite side.
  • the first center light emitting unit 101 and the peripheral light emitting unit 201 around the first center light emitting unit 101 are electrically connected in series, and the second center light emitting unit 102 and the second center light emitting unit are connected.
  • Peripheral light emitting portions 201 around the periphery are electrically connected in series, and one peripheral light emitting portion 201 around the first central light emitting portion 101 and one peripheral portion around the second central light emitting portion 102.
  • the light emitting unit 201 is electrically connected.
  • the order of the serial connections can be varied.
  • the first electrode 80 is formed in the n-contact region of the peripheral light emitting unit 201 positioned at one end of the series connection to supply electrons.
  • the second electrode 70 is formed on the transmissive conductive film 30 of the peripheral light emitting unit 201 positioned at the other end of the series connection to supply holes.
  • FIG. 8 is a view illustrating an improvement in light extraction efficiency of a semiconductor light emitting device according to the present disclosure.
  • a substantially square shape is illustrated. Has One corner of the square shape is concave due to the central light emitting portion 101 to have a shape as shown in FIG. 6. If the peripheral light emitting part 201 has a rectangular shape as an extension line indicated by a dotted line, the light L11 and L12 incident on the extension line at an angle greater than or equal to the critical angle are reflected in the peripheral light emitting part 201 and are trapped or moved outward. The number of reflections increases until extraction, thereby increasing the light loss.
  • the first side surface 215 is formed concave along the contour of the central light emitting portion 101 so as not to be parallel to the other side surface. Accordingly, the light having a critical angle with respect to the extension line has no incident angle with respect to the first side surface 215. Therefore, when the light is incident on the first side surface 215 before entering the extension line, the light may be better extracted (L21, L22). Therefore, the light extraction efficiency is improved, and as a result, the brightness is improved.
  • FIG. 9 is a view showing the semiconductor light emitting device of Comparative Example 1, wherein there is no central light emitting portion, and a plurality of light emitting portions 205 having the same shape are all connected in series.
  • Each light emitting portion 205 is substantially rectangular, so that the sides are parallel or perpendicular to each other. Thus, some of the light that is totally reflected and trapped on one side has a high probability or distribution of total reflection again on the other side.
  • the central light emitting part 101 and the peripheral light emitting part 201 have different shapes, and the first side surface 215 of the central light emitting part 101 is the peripheral light emitting part 201. Not parallel to the other side of 214. Therefore, the light incident on the reflection or total reflection first side 215 at one side of the peripheral light emitting unit 201 is better extracted outside than the comparison 1. As a result, the brightness is improved.
  • FIG. 10 is a view showing the semiconductor light emitting device of Comparative Example 2, in which two triangular light emitting parts are divided in a rectangular device.
  • the semiconductor light emitting device of this example has advantages over the semiconductor light emission of Comparative Example 2.
  • the sharp shape of Comparative Example 2 reduces the margin to the tolerance of the mask pattern in the manufacturing process, resulting in poor yield.
  • the inner angle of the corners of the light emitting portion is larger than that of Comparative Example 2, and the corners are rounded, so that defects in the manufacturing process are small.
  • the planar area of the peripheral light emitting unit 201 and the central light emitting unit 101 is formed to be substantially similar for uniformity of power consumed in each light emitting unit and uniformity of light emission.
  • the central light emitting part 101 is circular
  • the peripheral light emitting part 201 has a substantially rectangular shape when viewed as an extension line except for the first side surface 215.
  • the diameter of the central light emitting part 101, the length of the sides of the peripheral light emitting part 201, and the distance between the center of the central light emitting part 101 and the center of the peripheral light emitting part 201 are variables as variables.
  • the semiconductor light emitting device of this example suppresses an unnecessary increase in the size of the device by compactly disposing the central light emitting part 101 and the peripheral light emitting part 201 having different shapes, and connects a plurality of light emitting parts in series to high voltage.
  • a semiconductor light emitting device operating in is provided.
  • 10 light emitting units are used in this example, it is of course also possible to connect a plurality of sets in series by using the 10 as one set. At this time, the serial connection allows for arranging the set in the horizontal and vertical directions. It is of course also possible to parallel-connect sets in series.
  • the semiconductor light emitting device of this example has a structure that is very suitable for compactly arranging odd number of light emitting parts (for example, the first central light emitting part 101 and four peripheral light emitting parts 201).
  • FIG. 11 is a diagram illustrating another example of a semiconductor light emitting device according to the present disclosure, in which a central light emitting unit 101 has a square shape, and an edge of the central light emitting unit 101 is positioned on a line in contact with peripheral light emitting units 201. do.
  • the edge of the central light emitting part 101 is separated from the center line connecting the center of the central light emitting part 101 and the peripheral light emitting part 201.
  • the peripheral light emitting part 201 is symmetrically formed around the central light emitting part 101.
  • the first side surface 215 (the side of the peripheral light emitting unit 201 facing the central light emitting unit 101) is formed not to be parallel to the other side in the peripheral light emitting unit 201. Therefore, the same effects as those described in FIGS. 6 to 11 are obtained.
  • FIG. 12 is a view illustrating another example of the semiconductor light emitting device according to the present disclosure, in which the central light emitting unit 101 has a square shape, and corners of the central light emitting unit 101 are the central light emitting unit 101 and the peripheral light emitting unit. It is outside the center line connecting the center of 201, and is also separated from the line which the adjacent center light-emitting part 101 contact
  • the peripheral light emitting unit 201 has a polygonal shape different from that of the embodiment of FIG. 11 in plan view, and has an effect of varying the types of the side surfaces. Due to this, as described above, the light extraction efficiency is further improved.
  • FIG. 13 is a diagram illustrating still another example of the semiconductor light emitting device according to the present disclosure, wherein the central light emitting unit 101 has a semicircular shape, and the peripheral light emitting unit 201 has an arc-shaped side surface of the central light emitting unit 101. An opposite concave side 215.
  • the central light emitting portion 101 has an arc-shaped side surface and a straight side surface, there is an effect that the kind of the side direction varies. Due to this, as described above, the light extraction efficiency is further improved.
  • connection electrodes 92 and 93 are formed to have two connection lines 92a, 92b, 93a, and 93b, respectively, so that one connection line (eg, 92a, 93a) remains the same even if a problem such as disconnection occurs. Due to one connection line (eg, 92b and 93b), the series connection is maintained as it is, so that the yield of the semiconductor light emitting device is improved, which is advantageous for high current driving. As such, forming the connection electrode with two or more connection lines may be applied to all the embodiments of the present disclosure described with reference to FIGS. 6 to 15. 14 illustrates various examples in which the connecting electrode has two stranded wires 92a and 92b.
  • 14A and 14B have an advantage that the light emitting unit is connected even when one of the connection lines is disconnected.
  • the length of the electrode is reduced to reduce the light absorption.
  • the area of mesa etching is reduced.
  • FIG. 15 is a diagram illustrating still another example of the semiconductor light emitting device according to the present disclosure, wherein the central light emitting unit 101 has an elongated rectangular shape, and the peripheral light emitting unit 201 has a corner side and a long side of the central light emitting unit 101. It is arrange
  • the variation in the direction of the side of the peripheral light emitting portion 201 is smaller than the above-described embodiment, but it is advantageous to form the central light emitting portion 101 to make an elongated chip, and to emit a plurality of light in a small area in a compact arrangement. It is suitable for forming a part.
  • connection electrode 92 electrically connects the central light emitting part 101 and the first semiconductor layer 30 and the second semiconductor layer 50 of the peripheral light emitting part 201 which face each other.
  • One end of the connection electrode 92 is in electrical communication with the first semiconductor layer 30 exposed by etching the second semiconductor layer 50 and the active layer 40, and the other end of the connection electrode 92 is It is provided between the second semiconductor layer 50 and the reflective layer (R).
  • An insulator 97 is formed between the central light emitting unit and the peripheral light emitting unit, and the connection electrode 92 is formed on the insulator.
  • the first electrode 80 is in electrical communication with the first semiconductor layer 30 through the first electrical connection 81 on the reflective layer R of the peripheral light emitting part
  • the second electrode 70 is a reflective layer of the other peripheral light emitting part ( R) is in electrical communication with the second semiconductor layer 50 via the second electrical connection 71.
  • the ohmic electrodes 72 and 82 may be interposed between the electrical connections 71 and 81 and the plurality of semiconductor layers to reduce contact resistance and improve stability of the electrical connection.
  • An auxiliary pad 93 is formed on the reflective layer R of the central light emitting unit 101 for heat radiation or support.
  • connection electrode 92 is formed on the reflective layer R covering the transparent conductive film 60.
  • the connection electrode 92 is electrically connected to the first semiconductor layer of the peripheral light emitting part by the first electrical connection 81 passing through the reflective layer R, and to the second electrical connection 71 passing through the reflective layer R.
  • the second semiconductor layer is electrically connected to the central light emitting unit.
  • FIG. 18 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure, and an example applied to a flip chip is shown.
  • the openings formed in the reflective layer R are exposed to the periphery of the ohmic electrodes 72 and 82, and the electrical connection 71 is provided.
  • 81 may be formed to surround the ohmic electrodes 72 and 82.
  • the reflective layer can have a single layer or a multilayer structure.
  • the reflective layer can have a single layer or a multilayer structure.
  • the reflective layer R is formed of a non-conductive material to reduce light absorption by the metal reflective film, and may include one of a distributed bragg reflector and an omni-directional reflector (ODR).
  • An example of the multilayer structure includes a dielectric film 91b, a distributed Bragg reflector 91a, and a clad film 91c.
  • the dielectric film 91b may reduce the height difference to stably manufacture the distributed Bragg reflector 91a and may also help to reflect light.
  • SiO 2 is a suitable material for the dielectric film 91b.
  • the distributed Bragg reflector 91a is formed on the dielectric film 91b.
  • the distribution Bragg reflector 91a may be composed of repeated stacking of materials having different reflectances, for example, SiO 2 / TiO 2 , SiO 2 / Ta 2 O 2 , or SiO 2 / HfO.
  • SiO 2 / TiO 2 has good reflection efficiency, and for UV light, SiO 2 / Ta 2 O 2 , or SiO 2 / HfO will have good reflection efficiency.
  • the clad film 91c may be made of a metal oxide such as Al 2 O 3 , a dielectric film 91b such as SiO 2 , SiON, MgF, CaF, or the like.
  • FIG. 19 is a diagram illustrating still another example of the semiconductor light emitting device according to the present disclosure
  • FIG. 20 is a diagram illustrating an example of a cut plane taken along line A-A of FIG. 19.
  • the semiconductor light emitting device includes a first light emitting unit 101, a second light emitting unit 201, a first electrode 80, a second electrode 70, and a connection electrode 90.
  • the first light emitting unit 101 and the second light emitting unit 201 are formed on the same or single substrate 10, and each includes a plurality of semiconductor layers formed on the substrate 10.
  • the connection electrode 90 includes an extending type electrode portion 91 and a point type electrode portion 93.
  • Sapphire, SiC, Si, GaN and the like are mainly used as the substrate 10.
  • This example may also be applied to a semiconductor light emitting device in which an electrode is formed on the first semiconductor layer 30 side or the conductive substrate 10 side from which the substrate 10 is removed when the substrate 10 is removed or has conductivity.
  • the positions of the first semiconductor layer 30 and the second semiconductor layer 50 may be changed, and are mainly made of GaN in the group III nitride semiconductor light emitting device.
  • the plurality of semiconductor layers may include a buffer layer 20 formed on the substrate 10, a first semiconductor layer 30 having a first conductivity (for example, Si-doped GaN), and a second semiconductor layer having a second conductivity different from the first conductivity. (Eg, Mg-doped GaN) and an active layer 40 interposed between the first semiconductor layer 30 and the second semiconductor layer 50 to generate light through recombination of electrons and holes (eg, InGaN / ( In) GaN multi-quantum well structure).
  • Each of the semiconductor layers 30, 40, and 50 may be formed in multiple layers, and the buffer layer 20 may be omitted.
  • the transparent conductive film 60 is provided.
  • the transparent conductive film 60 may be formed to have a light transmissive shape and substantially cover the second semiconductor layer 50, but may be formed only in part.
  • the current spreading ability is inferior, and in the case where the p-type semiconductor layer 50 is made of GaN, most of the transparent conductive film 60 should be assisted.
  • materials such as ITO and Ni / Au may be used as the transparent conductive film 60.
  • the first electrode 80 is formed in the first semiconductor layer (n-contact region) where the second semiconductor layer 50 and the active layer 40 of the first light emitting unit 101 are etched and exposed to supply electrons.
  • the second electrode 70 is formed on the transparent conductive film 30 of the second light emitting part 201 to supply holes.
  • the connection electrode 90 electrically connects the first light emitting part 101 and the second light emitting part 201.
  • the connecting electrode 90 is further described below.
  • a passivation layer (not shown) may be formed to cover the first light emitting unit 101, the second light emitting unit 201, and the connection electrode 90.
  • the first light emitting part 101 and the second light emitting part 201 are electrically isolated from each other by a method of etching a semiconductor layer, such as a trench 105.
  • An insulating film may be provided between the first light emitting part 101 and the second light emitting part 201 as an electrical separation method, or a method such as ion implantation may be used in the substrate 10, or a semiconductor layer may be formed and insulated. It may be.
  • the first light emitting part 101 and the second light emitting part 201 are provided to face each other, and the first light emitting part 101 and the second light emitting part 201 are separated by the separation. Opposite edges 107 and 207 are formed obliquely with respect to the other edges of the first light emitting portion 101 and the second light emitting portion 201. If the edges 107 and 207 of the first light emitting part 101 and the second light emitting part 201 which face each other are not formed diagonally, the first light emitting part 101 and the second light emitting part 201 are rectangular in shape. In the comparative example (see FIG.
  • the light incident at critical angles on the edges 107 and 207 facing each other is reflected and increases the number of reflections until it is trapped or extracted to the outside, thereby increasing the light loss.
  • the edges 107 and 207 that face each other of the first light emitting part 101 and the second light emitting part 201 are different edges of the first light emitting part 101 and the second light emitting part 201. It is formed obliquely with respect to the oblique line. Therefore, the light incident at the critical angle in the comparative example is such that the incident angle is not the critical angle with respect to the diagonally formed edges 107 and 207. Thus, the light can be better extracted to the outside. Therefore, the light extraction efficiency is improved, and as a result, the brightness is improved.
  • the connection electrode 90 electrically connects the first light emitting unit 101 and the second light emitting unit 201 in series.
  • the connection electrode 90 includes an extended electrode portion 91 and a point electrode portion 93.
  • the extended electrode part 91 extends over the transmissive conductive film 60 of the first light emitting part 101, and has a side surface of the first light emitting part 101, the first light emitting part 101 and the second light emitting part 201. And extend to the side of the second light emitting part 201.
  • the extended electrode part 91 and the plurality of semiconductor layers are provided on the side of the first light emitting part 101, between the first light emitting part 101 and the second light emitting part 201 and on the side of the second light emitting part 201.
  • the insulating film 95 may be formed to insulate the 30, 40, and 50.
  • the extended electrode portion 91 includes a connecting line 92 and a branch 98.
  • the connection line 92 is formed on the side of the first light emitting part 101, between the first light emitting part 101 and the second light emitting part 201, and on the side of the second light emitting part 201, and the branch 98. Is branched from the connecting line 92 on the transparent conductive film 60 of the first light emitting part 101.
  • the embodiment in which the connection line 92 extends on the transparent conductive film 60 without branching like the branch 98 is also possible.
  • the branches 98 extend along the edges on the transmissive conductive film 60 and extend around the first electrode 80 formed adjacent to the edges opposite the diagonal edges 107, 207.
  • the viscous electrode portion 93 is formed on the edge of the first semiconductor layer where the n-contact region of the second light emitting portion 201 is formed and is connected to the connection line 92 of the extended electrode portion 91.
  • the point electrode portion 93 may have one of circular and polygonal shapes, and in this example, the point electrode portion 93 is circular and preferably has a width greater than or equal to that of the extended electrode portion 91. . In this example, the point electrode 93 has a larger width than the extended electrode 91.
  • the pointed electrode portion 93 and the extended electrode portion 91 may be formed together as one body in the same process. In this case, the connection line 92 of the extended electrode portion 91 is connected to the side surface of the point electrode portion 93.
  • the point electrode portion 93 may be formed first, and the end of the connecting line 92 of the extended electrode portion 91 may be formed over the point electrode portion 93.
  • an end portion of the connection line 92 of the extended electrode portion 91 is first formed in the n-contact region of the second light emitting portion 201, and the point electrode portion 93 covers the end portion of the connection line 92.
  • the embodiment to be formed is also possible.
  • FIG. 21 is a view showing a semiconductor light emitting device according to a comparative example, in which connection electrodes 98 and 92 extend across both the first light emitting portion 101 and the second light emitting portion 201.
  • connection electrodes 98 and 92 extend across both the first light emitting portion 101 and the second light emitting portion 201.
  • the connecting electrodes 92 extend in the second light emitting part 201 and the plurality of light emitting parts 101 and 201 are provided in a limited area
  • the structure of the connecting electrode 98 and 92 is compact.
  • the structure is restricted and the light emitting area is reduced.
  • the connecting electrode extends along the edge of the second light emitting part 201 in a band shape, the mesa etching area is also increased to reduce the light emitting area.
  • connection electrode 90 is simply formed of the point electrode portion 93 with little or no elongated portion on the second light emitting portion 201.
  • the pointed electrode portion 93 extends along the diagonal edge 207 of the second light emitting portion 201 in a band shape or does not extend long inside the second light emitting portion 201. Therefore, it is not necessary to form the n-contact region long by mesa etching, thereby preventing the emission area from being reduced.
  • the point electrode portion 93 is formed on the n side where current spreads better than the p side in terms of current spreading, and the second electrode 70 has a pad portion for bonding with the outside. It is preferable to include the branch portion 78 extending from the pad portion to the periphery of the point electrode portion 93 to improve the uniformity of current spreading.
  • the extended electrode part 91 may have the branches 98 as described above, and thus, the current-transmitting conductive film 60 may be sufficiently spread.
  • the semiconductor light emitting device of the present example is suitable for the compact structure in which a plurality of light emitting parts are provided in a limited area, has a structure for sufficiently spreading current, and has a structure in which the light emitting area is reduced.
  • FIG. 22 is a view showing another example of the semiconductor light emitting device according to the present disclosure, in which the shape of the point connection electrode 90 is formed in a quadrangular shape.
  • the viscous electrode portion 93 is formed in the n-contact region of the second light emitting portion 201, and the n-contact region of the second light emitting portion 201 is opened toward the diagonal edge 207.
  • the pointed electrode portion 93 is located adjacent to the diagonal edge 207 to suppress an unnecessary increase in the n-contact area.
  • the point electrode 93 may be changed into various shapes such as a triangle in addition to a quadrangle.
  • FIG. 23 is a diagram illustrating still another example of the semiconductor light emitting device according to the present disclosure. It is also possible that the point electrode 93 is formed to be substantially similar to the width of the connection line 92 to form a smaller n-contact region.
  • the semiconductor light emitting device includes a plurality of first light emitting parts 101 and a plurality of second light emitting parts 201, and the first light emitting part.
  • the 101 and the second light emitting units 201 are alternately arranged and connected in series.
  • the first electrode 80 is formed at the first light emitting part 101 at one end of the series connection
  • the second electrode 70 is formed at the second light emitting part 201 at the other end of the series connection.
  • the connecting electrodes 91 and 93 are connected to the n-contact region of the second light emitting part 201 on the transmissive conductive film 60 of the first light emitting part 101, and the additional connecting electrodes 91-2 and 93-are provided. 2) is connected to the n-contact region of the first light emitting portion 101 on the transparent conductive film 60 of the second light emitting portion 201.
  • the connecting electrode consisting of the branch 98, the connecting line 92 and the point electrode portion 93, and the additional connecting electrodes 91-2 and 93-2 are current spreading. While sufficiently achieving this, it is possible to suppress the emission area reduction and to have a structure suitable for compact arrangement.
  • FIG. 25 is a diagram illustrating still another example of the semiconductor light emitting device according to the present disclosure, in which a plurality of rows in which the first light emitting units 101 and 102 and the second light emitting units 201 and 202 are alternately arranged on the same or single substrate 10 is provided. It is formed. It is also possible to connect a plurality of serial arrays in parallel with each other. In addition, the separation lines 107 and 207 of each of the first light emitting units 101 and the second light emitting units 201 that face each other have different sides of the first light emitting units 101 and the second light emitting units 201. It is formed by diagonal lines.
  • Such a light emitting device can be driven at high voltage, including a plurality of light emitting units, and has the advantage of simplifying a complicated electric device or a circuit configuration for reducing a commercial AC voltage.
  • connection electrode 90 includes an extended electrode portion 91 and a point electrode portion 93.
  • the extended electrode portion 91 includes a connecting line 92 and a branch 98.
  • the connection line 92 is formed on the side of the first light emitting part 101, between the first light emitting part 101 and the second light emitting part 201, and on the side of the second light emitting part 201. It can be formed larger than (98) to improve the reliability of the electrical connection.
  • the width of the point electrode portion 93 is formed to be substantially the same as the connecting line 92.
  • FIG. 27 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure
  • FIG. 28 is a view for explaining an example of a cut plane taken along line BB of FIG. 27, and an example applied to a flip chip is shown.
  • Each light emitting part has a shape having a long side and a short side, the short side is formed in a V shape, and the V type short sides face each other.
  • the reflective film R is formed to cover the connection electrode 90 and the transparent conductive film 60.
  • the reflecting film reflects light from the active layer to the substrate side.
  • the connection electrode 90 electrically connects the first light emitting part 101 and the first semiconductor layer 30 and the second semiconductor layer 50 of the second light emitting part 201 facing the V-shaped edge.
  • the point electrode part 93 is formed adjacent to the edge of the first semiconductor layer 30 which is exposed by etching the first light emitting part, the extended electrode part is connected to the point electrode part, and the branch 98 of the extended electrode part is It extends on the translucent conductive film 60 of a 2nd light emitting part.
  • An insulator 97 is formed between the first light emitting part and the second light emitting part, and a connection line 92 of the extended electrode part is formed on the insulator 97.
  • the connecting electrode is formed at one side edge of the semiconductor light emitting device.
  • the first electrode 80 is electrically connected to the first semiconductor layer 30 through the first electrical connection 81 on the reflective layer R of the first light emitting part, and the second electrode 70 is a reflective layer of the second light emitting part.
  • (R) is in electrical communication with the second semiconductor layer 50 via the second electrical connection 71.
  • the ohmic electrodes 72 and 82 may be interposed between the electrical connections 71 and 81 and the plurality of semiconductor layers.
  • the reflective layer can have a single layer or a multilayer structure.
  • the reflective layer R is formed of a non-conductive material to reduce light absorption by the metal reflective film, and may include one of a distributed bragg reflector and an omni-directional reflector (ODR).
  • An example of the multilayer structure includes a dielectric film 91b, a distributed Bragg reflector 91a, and a clad film 91c.
  • the dielectric film 91b may reduce the height difference to stably manufacture the distributed Bragg reflector 91a and may also help to reflect light.
  • SiO 2 is a suitable material for the dielectric film 91b.
  • the distributed Bragg reflector 91a is formed on the dielectric film 91b.
  • the distribution Bragg reflector 91a may be composed of repeated stacking of materials having different reflectances, for example, SiO 2 / TiO 2 , SiO 2 / Ta 2 O 2 , or SiO 2 / HfO.
  • SiO 2 / TiO 2 has good reflection efficiency, and for UV light, SiO 2 / Ta 2 O 2 , or SiO 2 / HfO will have good reflection efficiency.
  • the clad film 91c may be made of a metal oxide such as Al 2 O 3 , a dielectric film 91b such as SiO 2 , SiON, MgF, CaF, or the like.
  • Each light emitting part has a shape having a long side and a short side, the short side is formed in a V shape, and the V type short sides face each other.
  • the connecting electrode is formed in approximately the center of the V-shaped short side, the point electrode portion 93 is formed adjacent to the V-shaped short side, the connecting line 92 extends above the light emitting portion, and the branch 98 branches at the end of the connecting line. .
  • FIG. 30 is a view showing an example of a semiconductor light emitting device disclosed in US Patent No. 7,262,436, wherein the semiconductor light emitting device is a substrate 100, an n-type semiconductor layer 300 is grown on the substrate 100, Active layers 400 grown on the n-type semiconductor layer 300, p-type semiconductor layers 500 grown on the active layer 400, electrodes 901, 902, 903 functioning as reflective films formed on the p-type semiconductor layer 500, and etching And an n-side bonding pad 800 formed on the exposed n-type semiconductor layer 300.
  • a chip having such a structure that is, a chip in which both the electrodes 901, 902, 903 and the electrode 800 are formed on one side of the substrate 100, and the electrodes 901, 902, 903 function as a reflective film is called a flip chip.
  • the electrodes 901, 902 and 903 may include a high reflectance electrode 901 (eg Ag), an electrode 903 (eg Au) for bonding, and an electrode 902 which prevents diffusion between the electrode 901 material and the electrode 903 material; Example: Ni).
  • This metal reflective film structure has a high reflectance and has an advantage in current spreading, but has a disadvantage of light absorption by metal.
  • the metal reflecting film is an electrode and can be a heat dissipation passage, there are many limitations in that the metal reflecting film is an electrode and has a good heat dissipation structure.
  • FIG. 31 is a diagram illustrating an example of a semiconductor light emitting device disclosed in Japanese Laid-Open Patent Publication No. 2006-20913.
  • the semiconductor light emitting device includes a substrate 100, a buffer layer 200, and a buffer layer 200 grown on the substrate 100. It is formed on the n-type semiconductor layer 300, the active layer 400 is grown on the n-type semiconductor layer 300, the p-type semiconductor layer 500, the p-type semiconductor layer 500 is grown on the active layer 400 And a transmissive conductive film 600 having a current spreading function, a p-side bonding pad 700 formed on the transmissive conductive film 600, and an n-side bonding pad formed on the etched and exposed n-type semiconductor layer 300 ( 800).
  • the distributed Bragg reflector 900 (DBR: Distributed Bragg Reflector) and the metal reflecting film 904 are provided on the transparent conductive film 600. According to this configuration, the light absorption by the metal reflective film 904 is reduced, but there is a disadvantage in that current spreading is not smoother than using the electrodes 901, 902, 903.
  • DBR Distributed Bragg Reflector
  • FIG. 32 is a view showing an example of the semiconductor light emitting device shown in US Patent No. 6,650,044, the semiconductor light emitting device in the form of a flip chip, having a first conductivity on the substrate 100, the substrate 100
  • the first semiconductor layer 300, an active layer 400 that generates light through recombination of electrons and holes, and a second semiconductor layer 500 having a second conductivity different from the first conductivity are sequentially deposited thereon.
  • a reflective film 950 for reflecting light toward the substrate 100 is formed, and an electrode 800 serving as a bonding pad is formed on the first semiconductor layer 300 that is etched and exposed, and the substrate 100 and The encapsulant 1000 is formed to surround the semiconductor layers 300, 400, and 500.
  • the reflective film 950 may be formed of a metal layer as shown in FIG.
  • the semiconductor light emitting device is mounted on a printed circuit board (PCB) 1200 having electrical wires 820 and 960 through conductive adhesives 830 and 970.
  • the encapsulant 1000 mainly contains phosphors. Since the semiconductor light emitting device includes the encapsulation material 1000, the semiconductor light emitting device portion except for the encapsulation material 1000 may be referred to as a semiconductor light emitting chip for the purpose of classification. In this manner, the encapsulant 1000 may be applied to the semiconductor light emitting chip as illustrated in FIG. 32.
  • FIG. 33 is a view illustrating an example of a semiconductor light emitting device disclosed in US Patent Application Publication No. 2012/0171789.
  • An insulator 7 is interposed between the light emitting element electrodes. In terms of heat dissipation, the heat dissipation passage through the electrode and the terminal of the circuit board is very limited, and the heat dissipation area is small.
  • FIG. 34 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure
  • FIG. 35 is a diagram illustrating an example of a cross section taken along a line A-A of FIG. 34.
  • the semiconductor light emitting device includes at least one of the plurality of semiconductor layers 30, 40, 50, the first branch electrode 85, and the second branch electrode 75, the non-conductive reflective film R, the first electrode 80, and The second electrode 70 is included.
  • the plurality of semiconductor layers may include a first semiconductor layer 30 having a first conductivity sequentially stacked, an active layer 40 for generating light through recombination of electrons and holes, and a second conductivity different from the first conductivity. 2 semiconductor layer 50 is included.
  • the plurality of semiconductor layers have long edges facing each other and two short edges facing each other.
  • the first branch electrode 85 extends from the one long edge to the other long edge on the exposed first semiconductor layer 30 by removing the second semiconductor layer 50 and the active layer 40.
  • the second branch electrode 75 extends from the other long edge toward the one long edge on the second semiconductor layer 50.
  • the nonconductive reflective film R is formed to cover the plurality of semiconductor layers, the first branch electrodes 85, and the second branch electrodes 75, and reflects light from the active layer 40.
  • At least one of the first electrode 80 and the second electrode 70 is provided on the opposite side of the plurality of semiconductor layers with respect to the non-conductive reflective film R, and the non-conductive reflective film R It is a flip chip that is in electrical communication with the plurality of semiconductor layers by an electrical connection through the (). 34 and 35, the first electrode 80 is provided on one side of the long edge side non-conductive reflective film R to electrically communicate with the first semiconductor layer 30, and supplies one of electrons and holes.
  • the second electrode 70 is provided on the other long edge side non-conductive reflective film R so as to be in electrical communication with the second semiconductor layer 50, and supplies the other one of electrons and holes.
  • group III nitride semiconductor light emitting element will be described as an example.
  • Sapphire, SiC, Si, GaN and the like are mainly used as the substrate 10, and the substrate 10 may be finally removed.
  • the positions of the first semiconductor layer 30 and the second semiconductor layer 50 may be changed, and are mainly made of GaN in the group III nitride semiconductor light emitting device.
  • the plurality of semiconductor layers may include a buffer layer 20 formed on the substrate 10, a first semiconductor layer 30 having a first conductivity (for example, Si-doped GaN), and a second semiconductor layer having a second conductivity different from the first conductivity. (Eg, Mg-doped GaN) and an active layer 40 interposed between the first semiconductor layer 30 and the second semiconductor layer 50 to generate light through recombination of electrons and holes (eg, InGaN / ( In) GaN multi-quantum well structure).
  • Each of the semiconductor layers 30, 40, and 50 may be formed in multiple layers, and the buffer layer 20 may be omitted.
  • the plurality of semiconductor layers have a substantially rectangular shape, and when viewed from above, have long edges (long sides) facing each other and short edges (short sides) facing each other.
  • the second semiconductor layer 50 and the active layer 40 are etched to form an n-contact region 65 through which the first semiconductor layer is exposed.
  • a first branch electrode 85 is formed in the n-contact region 65. As described above, the first branch electrode 85 extends from the vicinity of one long edge to a direction toward the other long edge.
  • the transparent conductive film 60 (eg, ITO, Ni / Au) is formed between the second semiconductor layer 50 and the reflective layer R.
  • the first semiconductor layer 30, the active layer 40, the second semiconductor layer 50, and the transparent conductive film 60 are formed on the substrate 10, and mesa-etched to form the n-contact region 65 described above. Can be formed. Mesa etching may be performed before or after the transparent conductive layer 60 is formed.
  • the transparent conductive film 60 may be omitted.
  • the second branch electrode 75 extends from the vicinity of the other long edge on the light-transmissive conductive film 60 in a direction toward the one long edge.
  • the plurality of first branch electrodes 85 and the plurality of second branch electrodes 75 may be alternately provided.
  • the first branch electrode 85 and the second branch electrode 75 may be formed of a plurality of metal layers, and the contact layer and the light reflectivity having good electrical contact with the first semiconductor layer 30 or the transparent conductive layer 60 may be formed. A good reflective layer can be provided.
  • the non-conductive reflective film R is formed to cover the transparent conductive film 60, the first branch electrode 85, and the second branch electrode 75, and reflects light from the active layer 40 toward the substrate 10. do.
  • the non-conductive reflecting film R is formed of an insulating material to reduce light absorption by the metal reflecting film, and may preferably have a multilayer structure including a distributed bragg reflector (DBR) or an omni-directional reflector (ODR). .
  • DBR distributed bragg reflector
  • ODR omni-directional reflector
  • the first electrode 80 and the second electrode 70 are provided on the non-conductive reflective film R, and the edges facing each other of the first electrode 80 and the second electrode 70 are on one side. It extends from the vicinity of the short edge toward the other short edge.
  • the first electrical connection 81 penetrates the non-conductive reflective film R to connect the first electrode 80 and the first branch electrode 85.
  • the first branch electrode 85 is also provided for the current diffusion, but may reduce the contact resistance between the first electrical connection 81 and the first semiconductor layer 30 and may be interposed therebetween for stability of the electrical connection.
  • the second electrical connection 71 penetrates the non-conductive reflective film R to electrically connect the second electrode 70 and the transparent conductive film 60.
  • the second branch electrode 75 is also provided for the current diffusion, but may reduce the contact resistance between the second electrical connection 71 and the transparent conductive film 60 and may be interposed therebetween for stability of the electrical connection.
  • the first branch electrode 85 extends below the second electrode 70 from below the first electrode 80, and the second branch electrode 75 extends from the bottom of the second electrode 70 to the first electrode 80. Stretches down).
  • the first electrode 80 and the second electrode 70 are electrodes for electrical connection with the external electrode, and may also be eutectic bonded, soldered, or wire bonded with the external electrode.
  • the external electrode may be a conductive portion provided in the submount, a lead frame of the package, an electrical pattern formed on the PCB, and the like, and the external electrode may be provided independently of the semiconductor light emitting device.
  • FIG. 36 is a view for explaining the semiconductor light emitting device of the comparative example, in which the first branch electrode 85 and the second branch electrode 75 extend along a long side.
  • the n-contact region 65 is much longer than the example shown in FIGS. 34 and 35. Therefore, the active layer 40 is removed more by that much, and the light emitting area is further reduced. That is, in the devices shown in FIGS. 34 and 35, when the first branch electrodes 85 are formed in one direction from the one long edge to the other long edge or in the opposite direction, the emission area decreases and the luminance is reduced. Is improved. Further, the lengths of the first branch electrode 85 and the second branch electrode 75 are shorter in the examples shown in FIGS. 34 and 35 than in the comparative example shown in FIG. 36.
  • the example of the device shown in FIGS. 34 and 35 has advantages over the comparative example shown in FIG. 36 even when mounted on an external electrode. This is further described below.
  • FIG. 37 is a diagram for describing another example of the semiconductor light emitting device according to the present disclosure
  • FIG. 38 is a diagram illustrating an example of a cross section taken along a line B-B of FIG. 37.
  • island type ohmic electrodes 72 and 82 and a light absorption prevention film 41 are added, and the first electrode 80 and the second electrode 70 are connected to the branch electrodes 75 and 85.
  • they are formed in plurality apart from each other.
  • an example of the multilayer structure of the non-conductive reflective film R is shown.
  • Branch electrodes 75 and 85 extend toward the long edges and are formed shorter than the short edges.
  • the first island-type ohmic electrode 82 is interposed between the first semiconductor layer 30 and the first electrical connection 81 to reduce contact resistance and improve stability of the electrical connection.
  • the second island-type ohmic electrode 72 is interposed between the transparent conductive film 60 and the second electrical connection 71 to reduce contact resistance and improve stability of the electrical connection.
  • the electrical connections 71 and 81 are formed to surround the island-type ohmic electrodes 72 and 82 to achieve a more stable electrical connection.
  • the island-like ohmic electrodes 72 and 82 do not extend differently from the branch electrodes 75 and 85, and are formed in a circular or polygonal dot shape.
  • a branch electrode is provided for current spreading, but in addition to reducing the length of the branch electrode by forming the branch electrode parallel to the short edge, for example, parallel to the short edge, the island-type ohmic electrode 72, By supplying current through 82, the branch electrodes 75, 85 are prevented from unnecessarily lengthening. Therefore, the light absorption loss caused by the branch electrodes 75 and 85 can be further reduced.
  • the n-contact region 65 portions corresponding to the first branch electrodes 85 and the first island-type ohmic electrodes 82 are formed separately from each other. Therefore, unnecessary elongation of the n-contact region 65 is prevented, and it is possible to further reduce the light emitting area reduction.
  • the light absorption prevention film 41 corresponds to the second branch electrode 75 and the second island-type ohmic electrode 72 between the second semiconductor layer 50 and the transparent conductive film 60 using SiO 2 , TiO 2 , or the like. Can be formed.
  • the light absorption prevention film 41 may have only a function of reflecting a part or all of the light generated in the active layer 40, and a current flows directly below the second branch electrode 75 and the second island-type ohmic electrode 72. It may have only a function that prevents flow, or may have both functions.
  • the nonconductive reflecting film R includes, as an example of a multilayer structure, a dielectric film 91b, a distributed Bragg reflector 91a, and a clad film 91c.
  • the dielectric film 91b may reduce the height difference to stably manufacture the distributed Bragg reflector 91a and may also help to reflect light.
  • SiO 2 is a suitable material for the dielectric film 91b.
  • the distributed Bragg reflector 91a is formed on the dielectric film 91b.
  • the distribution Bragg reflector 91a may be composed of repeated stacking of materials having different reflectances, for example, SiO 2 / TiO 2 , SiO 2 / Ta 2 O 2 , or SiO 2 / HfO.
  • the clad film 91c may be made of a metal oxide such as Al 2 O 3 , a dielectric film 91b such as SiO 2 , SiON, MgF, CaF, or the like.
  • the electrodes 70 and 80 When the electrodes 70 and 80 are positioned on the non-conductive reflective film 91 such as DBR, light is absorbed by the electrodes 70 and 80, but the electrodes 70 and 80 have a high reflectance such as Ag and Al. It has been known that the reflectance can be increased in the case of a metal. In addition, the electrodes 70 and 80 should also function for heat dissipation of the bonding pad and the semiconductor light emitting device, and thus, the size of the electrodes 70 and 80 should be determined in consideration of these factors. However, the present inventors have found that when the non-conductive reflecting film R such as DBR is used, the light reflectance by the non-conductive reflecting film 91 increases as the size of the electrodes 70 and 80 placed thereon is reduced. Experimental results provided an instrument capable of reducing the size of the electrodes 70 and 80 to a range that could not be omitted in the prior art.
  • first electrode 80 and the second electrode 70 are elongated from the vicinity of one short edge toward the other short edge, a plurality of first electrodes corresponding to each branch electrode is provided. 80 and the plurality of second electrodes 70 are formed apart from each other. Therefore, the light absorption loss by the electrode is reduced, and the reflectance of the nonconductive reflecting film R is higher.
  • the plate 200 includes a first conductive portion 201, a second conductive portion 202, and an insulating portion 203.
  • the first electrode 80 and the second electrode 70 of the semiconductor light emitting device 101 are bonded to the first conductive portion 201 and the second conductive portion 202, respectively.
  • the insulating portion 203 is interposed between the first conductive portion 201 and the second conductive portion 202, and corresponds between the first electrode 80 and the second electrode 70.
  • the first conductive portion 201 and the second conductive portion 202 are exposed up and down, and the insulating portion 203 does not cover the conductive portions 201 and 202 up and down, which is very effective for heat dissipation.
  • the first conductive portion 201 and the second conductive portion 202 are alternately formed, and the first electrode 80 and the second electrode 70 of neighboring semiconductor light emitting devices are bonded to each conductive portion to form a plurality of semiconductors.
  • the light emitting elements 101, 102, 103 are connected in series. Of course, parallel connection is also possible.
  • the semiconductor light emitting device illustrated in FIG. 38 includes a first electrode 80 and a second electrode 70 near one side and the other long edge, respectively, and the branch electrode 75. 85 extend in a direction from one long edge to the other long edge, or vice versa. 39 and 40, the direction of the series connection is the direction in which the branch electrodes 75 and 85 extend, which is more compact in the direction of the series connection to the plate 200 than in the case of connecting a plurality of elements of the comparative example shown in FIG. Can be implemented.
  • FIG. 41 is a view for explaining an example of a method of manufacturing a plate, and bonding a plurality of conductive plates 201 and 202 (for example, Al / Cu / Al) using an insulating material such as an insulating adhesive 203 (for example, epoxy) or the like.
  • the laminate was prepared by repeating lamination in the manner as described above.
  • a plate 200 is formed, as shown in FIGS. 39 and 40.
  • the plate may be formed long in a band shape, or may be formed as wide as a checker board.
  • the width of the conductive parts 201 and 202 and the width of the insulating part 203 may be adjusted by changing the thicknesses of the conductive plate and the insulating adhesive.
  • FIG. 42 is a view for explaining another example of a method of using a semiconductor light emitting device according to the present disclosure.
  • the plurality of semiconductor light emitting devices mounted on the plate 200 may be covered with an encapsulant 210.
  • the encapsulant 210 may be formed by printing by a screen printing method, conformal coating, or by providing and curing a liquid resin.
  • the encapsulant 210 may include a liquid transparent resin material such as silicone and the phosphor.
  • a package as shown in FIG. 42 may be manufactured by cutting the cured encapsulant and plate 110 together along a predetermined boundary (indicated by dotted lines) of the semiconductor light emitting device on a plane.
  • a dam 250 is formed around a plurality of semiconductor light emitting devices, and an encapsulant 210 is formed on the dam 250. Can be used to fill.
  • the dam 250 may be formed by printing, dispensing, and curing the white resin on the plate 200.
  • Dam 250 is formed only as necessary on the upper surface of the plate 200, there is no unnecessary extension to the lower surface of the plate 200. Therefore, the plate 200 becomes a good heat sink with power transfer.
  • the semiconductor light emitting device has a structure that is advantageous to be compactly mounted on the plate 200, so that the entire package may be more compact.
  • FIG. 44 is a view showing an example of an electrode structure disclosed in US Patent No. 6,307,218.
  • the p-side bonding pad 700 according to the large area of the light emitting device (for example, 1000um / 1000um in width and length).
  • the branch electrodes having the same spacing at the n-side electrode 800 functioning as the n-side bonding pad, thereby improving current spreading, and in addition, the p-side bonding pad 700 and the n-side electrode for sufficient current supply.
  • the introduction of the plurality of branch electrodes 710 and 810 includes a reverse function of reducing the light emitting area and thus reducing the light emitting efficiency.
  • FIG. 45 is a view showing an example of the electrode structure disclosed in US Patent Publication No. 2007-0096115.
  • the branch electrode 710 and the branch electrode 810 are provided in each of the p-side bonding pad 700 and the n-side electrode 800 that functions as the n-side bonding pad.
  • FIG. 46 is a diagram illustrating an example of a semiconductor light emitting device according to the present disclosure
  • FIG. 47 is a diagram illustrating an example of a cross section taken along line A-A in FIG. 46.
  • FIG. 46B is a light emission test photograph of the semiconductor light emitting device shown in FIG. 46A.
  • the semiconductor light emitting device includes a plurality of semiconductor layers 30, 40, 50, first electrode portions 80, 85, 81a, 81b, second electrode portions 70, 75, 71a, 71b, and a non-conductive reflective film R. ).
  • the plurality of semiconductor layers 30, 40, and 50 may include a first semiconductor layer 30 having a first conductivity, a second semiconductor layer 50 having a second conductivity different from the first conductivity, and a first semiconductor layer 30.
  • an active layer 40 interposed between the second semiconductor layer 50 and generating light by recombination of electrons and holes.
  • the first electrode portions 80, 85, 81a, and 81b are in electrical communication with the first semiconductor layer 30 and supply one of electrons and holes
  • the second electrode portions 70, 75, 71a, and 71b are made of 2 is in electrical communication with the semiconductor layer 50 and supplies the other one of electrons and holes.
  • the non-conductive reflecting film R is formed on the plurality of semiconductor layers 30, 40, 50 and reflects light from the active layer 40.
  • At least one of the first electrode portion and the second electrode portion includes an upper electrode formed on the non-conductive reflective film R, a branch electrode extending from the upper electrode to the outside of the upper electrode, and a non-conductive reflective film R, when viewed from above.
  • Such arrangement of the branch electrode and the electrical connection may be applied to only one of the first electrode portions 80, 85, 81a, 81b and the second electrode portions 70, 75, 71a, 71b, but in this example, the first electrode The electrode portions 80, 85, 81a, 81b and the second electrode portions 70, 75, 71a, 71b all have this configuration.
  • the semiconductor light emitting device is a flip chip in which the upper electrode is provided on the opposite side of the plurality of semiconductor layers 30, 40, and 50 with respect to the non-conductive reflective film R.
  • the first electrode portions 80, 85, 81a, 81b include a first upper electrode 80, a first branch electrode 85, a first electrical connection 81a, and a second electrical connection 81b.
  • the second electrode portions 70, 75, 71a, and 71b include a second upper electrode 70, a second branch electrode 75, a third electrical connection 71a, and a fourth electrical connection 71b.
  • the semiconductor light emitting device according to the present disclosure is similar in width and length, or one of the width and length is longer than the other and is not particularly limited.
  • the semiconductor light emitting device according to the present example is a structure for improving light extraction efficiency, and is particularly effective in a small device.
  • the plurality of semiconductor layers 30, 40, and 50 have a short edge 110, the other short side 110 opposite to the short side 112, a long edge 111, and a long side 110.
  • 111 has the other long side 113 opposite.
  • the short side 112 may be smaller than the size 300 ⁇ m described in FIG. 45.
  • the short side 112 may be 200 ⁇ m or less, and the size of the short side 112 is not excluded.
  • the second electrical connection 81b is located farther from the long side 111 and closer to the short side 112 than the first electrical connection 81a.
  • the distance between the long side 111 and the second electrical connection 81b is longer than the distance between the long side 111 and the first electrical connection 81a, and the distance between the short side 112 and the second electrical connection 81b is short side 112.
  • the fourth electrical connection 71b is located farther from the other long side 113 and closer to the other short side 110 than the third electrical connection 71a.
  • the distance between the other long side 113 and the fourth electrical connection 71b is longer than the distance between the other long side 113 and the third electrical connection 71a, and the distance between the other short side 110 and the fourth electrical connection 71b is It is shorter than the distance between the other short side 110 and the third electrical connection 71a.
  • group III nitride semiconductor light emitting element will be described as an example.
  • the semiconductor layers 30, 405, and 80 are formed on the substrate 10, and sapphire, SiC, Si, GaN, and the like are mainly used as the substrate 10, and the substrate 10 may be finally removed.
  • the positions of the first semiconductor layers 30 and 30 and the second semiconductor layer 50 may be changed, and are mainly made of GaN in the group III nitride semiconductor light emitting device.
  • the plurality of semiconductor layers 30, 40, and 50 may include a buffer layer 20 formed on the substrate 10, a first semiconductor layer 30 having a first conductivity (eg, Si-doped GaN), and a second different from the first conductivity.
  • a conductive second semiconductor layer 50 eg, Mg-doped GaN
  • an active layer interposed between the first semiconductor layer 30 and the second semiconductor layer 50 to generate light through recombination of electrons and holes ( 40; e.g., InGaN / (In) GaN multi-quantum well structure).
  • Each of the semiconductor layers 30, 40, and 50 may be formed in multiple layers, and the buffer layer 20 may be omitted.
  • a transparent conductive film 60 (eg, ITO, Ni / Au) is provided on the second semiconductor layer 50.
  • the non-conductive reflective film R is formed to cover the transparent conductive film 60, the first branch electrode 85, and the second branch electrode 75, and reflects light from the active layer 40 toward the substrate 10. do.
  • the non-conductive reflecting film R is formed of an insulating material to reduce light absorption by the metal reflecting film, and may preferably have a multilayer structure including a distributed bragg reflector (DBR) or an omni-directional reflector (ODR). .
  • the nonconductive reflecting film R includes a dielectric film 91b, a DBR 91a, and a clad film 91c sequentially stacked.
  • the first upper electrode 80 and the second upper electrode 70 are disposed on the short side 112 side and the other short side 110 side, respectively, on the non-conductive reflective film R.
  • the first upper electrode 80 and the second upper electrode 70 may be directly bonded to the outside or wire bonded.
  • the first branch electrode 85 is provided on the first semiconductor layer 30 on the long side 111 side where the second semiconductor layer 50 and the active layer 40 are etched and exposed, and in this example, along the long side 111. Stretched.
  • the first electrical connection 81a penetrates the non-conductive reflective film R to connect one end of the first upper electrode 80 and the first branch electrode 85 to each other. Alternatively, it may be considered that the first electrical connection 81a is connected to a portion other than the end of the first branch electrode 85.
  • the second electrical connection 81b penetrates the non-conductive reflective film R to connect the exposed first semiconductor layer 30 by being etched with the first upper electrode 80.
  • the first ohmic electrode 82 may be interposed between the first semiconductor layer 30 and the second electrical connection 81b to reduce contact resistance and improve stability of the connection.
  • the second electrical connection 81b is off the extension of the first branch electrode 85.
  • the extension line means an imaginary line extending along the shape of the branch electrode.
  • the extension line is a line coinciding with the straight line, and is an imaginary line toward the corner of the semiconductor light emitting device. Will be the line of
  • the second branch electrode 75 is provided between the transparent conductive film 60 and the non-conductive reflective film R, and extends along the other long side 113 in this example.
  • the third electrical connection 71a penetrates through the non-conductive reflective film R to connect one end of the second upper electrode 70 and the second branch electrode 75. Alternatively, it may be considered that the third electrical connection 71a is connected to a portion other than the end of the second branch electrode 75.
  • the fourth electrical connection 71b penetrates the non-conductive reflective film R to connect the second upper electrode 70 and the transparent conductive film 60.
  • the second ohmic electrode 72 may be interposed between the transparent conductive film 60 and the fourth electrical connection 71b to reduce contact resistance and improve stability of the connection.
  • the fourth electrical connection 71b is out of an extension line of the second branch electrode 75.
  • the light absorption prevention layer 41 may be provided between the second semiconductor layer 50 and the transparent conductive layer 60 to correspond to the second branch electrode 75 and the second ohmic electrode 72, respectively.
  • the light absorption prevention layer 41 may be formed of SiO 2 , TiO 2, or the like, and may have only a function of reflecting some or all of the light generated from the active layer 40, and the second branch electrode 75 and the second It may have only a function of preventing current from flowing directly down from the ohmic electrode 72, or may have both functions.
  • the first branch electrode 85 and the second branch electrode 75 may be formed of a plurality of metal layers, and the contact layer and the light reflectivity having good electrical contact with the first semiconductor layer 30 or the transparent conductive layer 60 may be formed.
  • a good reflective layer can be provided.
  • the semiconductor light emitting device is advantageous in reducing light absorption loss due to metal than the flip chip shown in FIGS. 30 and 31 by using the non-conductive reflecting film R instead of the metal reflecting film, without extending the branch electrode unnecessarily, Island-shaped electrical connections 81b and 71b are suitably provided at positions necessary for improving current supply or uniformity of light emission.
  • a method of forming a plurality of branch electrodes and extending the branch electrodes along a corner or a magnetic field is generally used for uniformity of current supply or light emission.
  • the semiconductor light emitting device of the present example reduces the number and length of the branch electrodes to reduce the light absorption loss caused by the metal, but forms the electrical connection with the branch electrodes to achieve uniformity of current supply or light emission. We made a good composition of location, number, and so on.
  • the configuration presented in this example is smaller in size and more effective for devices operating at low current.
  • the semiconductor light emitting device includes only one first branch electrode 85 and one second branch electrode 75, and the length thereof does not extend to the short side 112 or the other short side 110.
  • the provision of only one by one is presented as a good example of a configuration in which the number of branch electrodes is as small as possible, and includes two or more first branch electrodes 85 and / or two or more second branch electrodes 75. This does not mean to exclude the same configuration.
  • the first semiconductor layer eg, Si-doped GaN
  • the second semiconductor layer eg, Mg-doped GaN
  • the first semiconductor layer eg, Si-doped GaN
  • the first semiconductor layer is designed in consideration of this.
  • the first branch electrode 85 and the second branch electrode 75 are provided on the long side 111 and the other long side 113, respectively.
  • the gap between the branch electrode 85 and the second branch electrode 75 is secured.
  • the first branch electrode 85 is connected to the first electrical connection 81a under the first upper electrode 80 on the long side 111 side, and the second upper electrode 70 adjacent to the first upper electrode 80. It extends shortly underneath).
  • the second branch electrode 75 is connected to the third electrical connection 71a under the second upper electrode 70 on the other long side 113 side, and the first branch electrode below the first upper electrode 80. It extends longer than 85 but does not extend to the short side 112, but extends to about the middle of the first upper electrode 80 to suppress unnecessary extension.
  • the second branch electrode 75 may be formed as short as the first branch electrode 85.
  • the first branch electrode 85 and the second branch electrode 75 do not extend along the corner or the side so that the light absorption loss due to the metal is reduced.
  • the first branch electrode 85 which needs to mesa-etch the second semiconductor layer 50 and the active layer 40, it is provided on the long side 111 side rather than the inside of the device to reduce the active layer area due to mesa etching. Reduce the degree
  • the second electrical connection 81b and the fourth electrical connection 71b have an island shape when viewed from above, and a small number is used, and in this example, one each is provided.
  • the island form means a shape such as a circle, a polygon, and the like, rather than extending to one side like a branch electrode. In this way, a limited number of positions of the second electrical connection 81b and the fourth electrical connection 71b are provided at a more preferable position for improving the uniformity of the current supply, and as a result, they are located out of the extension line.
  • the second electrical connection 81b is located approximately midway on the short side 112 side, and the fourth electrical connection 71b is located slightly away from the other short side 110.
  • the second electrical connection 81b is positioned off the extension of the first branch electrode 85
  • the fourth electrical connection 71b is positioned off the extension of the second branch electrode 75.
  • the second electrical connection 81b deviates from the extension of the second branch electrode 75
  • the fourth electrical connection 71b deviates from the extension of the first branch electrode 85.
  • the second electrical connection 81b is located farther from the long side 111 and closer to the short side 112 than the first electrical connection 81a
  • the fourth electrical connection 71b is It is located farther from the other long side 113 and closer to the other short side 110 than the third electrical connection 71a.
  • the degree of light emission is not largely large in the semiconductor light emitting device under conditions such as 200 ⁇ m of the short side 112, 800 ⁇ m of the long side 111, and 20 mA.
  • the two branch electrodes 85 and 75 and the two island-type electrical connections 81b and 71b have a simple configuration and ensure uniformity of current supply, and light loss due to metal is also greatly reduced. In particular, it is an effective structure for small size devices operating at relatively low current.
  • FIG. 48 is a view for explaining another example of a method of manufacturing a semiconductor light emitting device according to the present disclosure.
  • the first semiconductor on the substrate 10 is illustrated.
  • a transparent conductive film 60 e.g., ITO
  • mesa etching exposes a portion of the first semiconductor layer 30.
  • Mesa etching may be performed before the transparent conductive film 60 is formed.
  • the transparent conductive film 60 may be omitted.
  • a first branch electrode 85, a second branch electrode 75, and an ohmic electrode may be disposed on the exposed first semiconductor layer 30 and the transparent conductive film 60, respectively. 72,82).
  • the ohmic electrodes 72 and 82 may be omitted, the ohmic electrodes 72 and 82 are preferably provided to suppress an increase in operating voltage and to provide stable electrical contact.
  • the reflective layer R is formed on the transparent conductive film 60.
  • the reflective layer R is formed of an insulating material to reduce light absorption by the metal reflective film, and may preferably have a multilayer structure including a distributed bragg reflector (DBR) or an omni-directional reflector (ODR).
  • DBR distributed bragg reflector
  • ODR omni-directional reflector
  • the dielectric film 91b, the distributed Bragg reflector 91a, and the clad film 91f are formed to form the non-conductive reflective film R.
  • the dielectric film 91b or the clad film 91f may be omitted.
  • the distributed Bragg reflector 91a is formed by stacking a pair of SiO 2 and TiO 2 a plurality of times, for example.
  • the distribution Bragg reflector 91a may be formed of a combination of a high refractive index material such as Ta 2 O 5 , HfO, ZrO, SiN, and a dielectric thin film (typically SiO 2 ) having a lower refractive index.
  • the non-conductive reflective film R may have a thickness of about several ⁇ m (eg, 1 to 8 ⁇ m).
  • an opening is formed in the non-conductive reflecting film R by a method such as dry etching, and the first electrical connection 81a, the second electrical connection 81b, the third electrical connection 71a, and the first through the opening. 4 Form the electrical connection 71b.
  • the first upper electrode 80 and the second upper electrode 70 are formed on the non-conductive reflective film R.
  • the electrical connections 71 and 81 and the upper electrodes 70 and 80 may be formed separately, but may be integrally formed in one process.
  • second and fourth electrical connections 81b and 81c and 71b and 71c may be formed in a semiconductor light emitting device. Plural can be provided.
  • the plurality of second electrical connections 81b and 81c deviate from an extension line of the first branch electrode 85.
  • the distance from the long side 111 increases in the order of the two second electrical connections 81b and 81c away from the first electrical connection 81a and approaches the short side 112.
  • the plurality of fourth electrical connections 71b and 71c deviate from an extension line of the second branch electrode 75.
  • the distance from the other long side 113 increases in order of the two fourth electrical connections 71b and 71c away from the third electrical connection 71a and approaches the other short side 110.
  • the number of fourth electrical connections 71b and 71c is changed to the second electrical connection. It can be provided more than the number of 81b.
  • the two fourth electrical connections 71b and 71c deviate from the extension of the second branch electrode 75.
  • One fourth electrical connection 71b is located on the other short side 110 side, and the other fourth electrical connection 71c is located on the long side 111 side.
  • an end of the first branch electrode 85 may be disposed under the second upper electrode 70. It is bent toward the fourth electrical connection 71b, and the end of the second branch electrode 75 is bent toward the second electric connection 81b under the first upper electrode 80.
  • the fourth electrical connections 71b and 71c are larger than the number of the second electrical connections 81b, the ends of the first branch electrodes 85 are bent, and the ends of the second branch electrodes 75. Bends below the first upper electrode 80 toward the long side 111 side corner. Accordingly, the first electrical connection 81a and the second electrical connection 81b are located on opposite sides with respect to the second branch electrode 75.
  • the fourth electrical connection 71b may include It is located at a distance similar to the third electrical connection 71a from the other short side 110 and is out of an extension line of the second branch electrode 75.
  • FIG. 52 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
  • the second electrical connection 81b is deleted, and the first branch electrode 85 is formed. It is formed only below the first upper electrode 80, and the first electrical connection 81a is provided at the short side corner.
  • FIG. 53 is a view for explaining still another example of the semiconductor light emitting device according to the present disclosure
  • FIG. 54 is a light emission photograph of the semiconductor light emitting device shown in FIG. 53.
  • the first branch electrode 85 is deleted, and for the embodiment shown in FIG. 53B, the first branch electrode 85 is deleted, and 4 Electrical connection 71c is added.
  • FIG. 55 is a view for explaining still another example of the semiconductor light emitting device according to the present disclosure
  • FIG. 56 is a light emission photograph of the semiconductor light emitting device shown in FIG. 55.
  • the first branch electrode 85 is deleted, the second branch electrode 75 extends from the center of the emitting surface, and the second electrical connection ( 81b) is added.
  • the first branch electrode 85 is deleted, the second branch electrode 75 extends at the center of the emission surface, and the first branch electrode 85 extends along the short side.
  • the second electrical connection 81b is deleted.
  • FIG. 57 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure. Compared to the embodiment of FIG. 46, the second branch electrode 75 is deleted, and the fourth electrical connection 71c is removed. It is added.
  • FIG. 58 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure
  • FIG. 60 is a diagram illustrating an example of a cross section taken along the line A-A of FIG. 59.
  • the semiconductor light emitting device includes at least one of the plurality of semiconductor layers 30, 40, 50, the first branch electrode 85, and the second branch electrode 75, the non-conductive reflective film R, the first electrode 80, and
  • the second electrode 70 is included.
  • the first electrode 80 includes a plurality of sub-electrodes 80a and at least one connecting portion 80b for connecting the plurality of sub-electrodes 80a.
  • the second electrode 70 includes at least one connecting portion 70b connecting the plurality of sub electrodes 70a and the plurality of sub electrodes 70a.
  • the bonding strength of the electrodes 80 and 70 with the non-conductive reflecting film R may be reduced during long time use or during a manufacturing process.
  • the electrodes 80, 70 are segmented into a plurality of sub-electrodes 80a, 70a, and are connected by the connecting portions 80b, 70b, so that each sub-electrode 80a, 70a is subjected to thermal expansion.
  • the electrodes 80 and 70 are not formed as a single cylinder, and are connected to each other by the connecting portions 80b and 70b, which is advantageous for reducing the area of the electrodes 80 and 70 as a whole.
  • the inventors have found that the luminance improves as the area of (80,70) decreases.
  • group III nitride semiconductor light emitting element will be described as an example.
  • Sapphire, SiC, Si, GaN and the like are mainly used as the substrate 10, and the substrate 10 may be finally removed.
  • the positions of the first semiconductor layer 30 and the second semiconductor layer 50 may be changed, and are mainly made of GaN in the group III nitride semiconductor light emitting device.
  • the plurality of semiconductor layers 30, 40, and 50 may include a buffer layer 20 formed on the substrate 10, a first semiconductor layer 30 having a first conductivity (eg, Si-doped GaN), and a second different from the first conductivity.
  • a conductive second semiconductor layer 50 eg, Mg-doped GaN
  • an active layer interposed between the first semiconductor layer 30 and the second semiconductor layer 50 to generate light through recombination of electrons and holes ( 40; e.g., InGaN / (In) GaN multi-quantum well structure).
  • Each of the semiconductor layers 30, 40, and 50 may be formed in multiple layers, and the buffer layer 20 may be omitted.
  • the plurality of semiconductor layers 30, 40 and 50 have a substantially rectangular shape and when viewed from above, have long edges facing each other and two short edges facing each other.
  • the second semiconductor layer 50 and the active layer 40 are etched to form an n-contact region 65 through which the first semiconductor layer is exposed.
  • a first branch electrode 85 is formed in the n-contact region 65. As described above, the first branch electrode 85 extends from the vicinity of one long edge to a direction toward the other long edge.
  • the second branch electrode 75 extends from the other long edge toward the one long edge on the second semiconductor layer 50.
  • a transparent conductive film 60 (eg, ITO, Ni / Au) is formed between the second semiconductor layer 50 and the non-conductive reflective film R.
  • the first semiconductor layer 30, the active layer 40, the second semiconductor layer 50, and the transparent conductive film 60 are formed on the substrate 10, and mesa-etched to form the n-contact region 65 described above. Can be formed. Mesa etching may be performed before or after the transparent conductive layer 60 is formed.
  • the transparent conductive film 60 may be omitted.
  • the second branch electrode 75 extends from the vicinity of the other long edge on the light-transmissive conductive film 60 in a direction toward the one long edge.
  • the plurality of first branch electrodes 85 and the plurality of second branch electrodes 75 are alternately provided.
  • the first branch electrode 85 and the second branch electrode 75 may be formed of a plurality of metal layers, and the contact layer and the light reflectivity having good electrical contact with the first semiconductor layer 30 or the transparent conductive layer 60 may be formed.
  • a good reflective layer can be provided.
  • the first branch electrode 85 avoids the region not covered by the buffer region R70 of the second electrode 70, that is, the connection portion 70b between the sub-electrodes 70a, and thus, the second electrode ( 70) stretched down.
  • the second branch electrode 75 avoids the region not covered by the buffer region R80 of the first electrode 80, that is, the connection portion 80b between the sub-electrodes 80a, and thus, the first electrode 80. Stretched down.
  • the non-conductive reflective film R is formed to cover the transparent conductive film 60, the first branch electrode 85, and the second branch electrode 75, and reflects light from the active layer 40 toward the substrate 10. do.
  • the non-conductive reflector R is formed of an insulating material to reduce light absorption by the metal reflector, and is preferably a distributed Bragg reflector, an omni-directional reflector, or the like. It may be a multilayer structure comprising a.
  • the first electrode 80 and the second electrode 70 are provided on the nonconductive reflecting film R.
  • the metal reflective film is provided on the second semiconductor layer 50
  • the second electrode 70 is provided on the metal reflective film
  • the first semiconductor layer 30 and the first electrode 80 exposed by mesa etching. ) May be communicated.
  • the first electrical connection 81 connects the first electrode 80 and the first branch electrode 85 through the non-conductive reflective film R.
  • the second electrical connection 71 penetrates the non-conductive reflective film R to electrically connect the second electrode 70 and the transparent conductive film 60.
  • the first electrode 80 is provided on one side of the long edge side non-conductive reflective film R
  • the second electrode 70 is provided on the other side of the long edge side non-conductive reflective film R.
  • the first electrode 80 and the second electrode 70 each include a plurality of sub electrodes 80a and 70a and at least one connection part 80b and 70b.
  • the plurality of sub-electrodes 80a are arranged in a line along the one long edge and are connected by the plurality of connecting portions 80b.
  • the plurality of sub-electrodes 70a are arranged in a line along the other long edge and are connected by a plurality of connecting portions 70b.
  • each connecting portion 80b and 70b is smaller in width than the respective sub-electrodes 80a and 70a connected by the connecting portions 80b and 70b.
  • the connecting portions 80b and 70b may be viewed as bridges connecting the plurality of sub electrodes 80a and 70a. Therefore, the non-conductive reflective film R is exposed in the buffer regions R80 and R70 not covered by the connecting portions 80b and 70b between the adjacent sub-electrodes 80a and 70a.
  • each of the connection portions 80b and 70b when viewed in a direction orthogonal to the connection direction, each of the connection portions 80b and 70b is located approximately at the center of each of the sub-electrodes 80a and 70a to be connected.
  • each of the connecting portions 80b and 70b enters inward from the edges of the respective sub-electrodes 80a and 70a to be connected.
  • each of the connecting portions 80b and 70b may be located at the edge or the edge of each of the sub-electrodes 80a and 70a.
  • the first electrode 80 and the second electrode 70 are electrodes for electrical connection with the external electrode, and may also be eutectic bonded, soldered, or wire bonded with the external electrode.
  • the external electrode may be a conductive portion provided in the submount, a lead frame of the package, an electrical pattern formed on the PCB, and the like, and the external electrode may be provided independently of the semiconductor light emitting device.
  • the stress is applied between the non-conductive reflecting film R and the electrode due to heat, so that the electrode may be peeled off from the non-conductive reflecting film R and the bonding force may be lowered.
  • the buffer regions R80 and R70 which are not covered by the connecting portions 80b and 70b are formed between the sub electrodes 80a and 70a. As a result, the peeling or the lowering of the bonding force can be suppressed or prevented.
  • the thermal expansion difference may be a problem, in this case, as shown in the present example, the electrode is divided into a plurality of sub-electrodes (80a, 70a), the connection portion 80b The configuration connected by 70b can solve the above problem.
  • the n-contact region 65 becomes much longer than in this example. Therefore, the active layer 40 is removed more by that much, and the light emitting area is further reduced. That is, in the devices shown in FIGS. 58 and 59, when the first branch electrodes 85 are formed in one direction from the one long edge to the other long edge or vice versa, the emission area decreases and the luminance is reduced. Is improved. In addition, the lengths of the first branch electrode 85 and the second branch electrode 75 may be shorter. Therefore, the light absorption loss by metals such as the branch electrodes 75 and 85 can also be reduced, so that the luminance is improved. In addition, the example of the device illustrated in FIGS. 58 and 59 has advantages over the device in which the branch electrode extends along a long side even when mounted on the external electrode.
  • the embodiment may be considered to have a width of 1/2 or more of the connection portions 80b and 70b.
  • FIG. 61 is a diagram for describing another example of the semiconductor light emitting device according to the present disclosure
  • FIG. 62 is a diagram illustrating an example of a cross section taken along a line B-B of FIG. 61.
  • island type ohmic electrodes 72 and 82, and light absorption prevention film 41 are added, and an example of the multilayer structure of the non-conductive reflecting film R is shown.
  • the distance between the sub electrodes 80a and 70a is further increased, and the area of the buffer regions R80 and R70 is increased compared to the connecting portions 80b and 70b.
  • the first branch electrode 85 extends below the connecting portion 70b of the second electrode 70, and the second branch electrode 75 also under the connecting portion 80b of the first electrode 80. As laid out.
  • Branch electrodes 75 and 85 extend toward the long edges and are formed shorter than the short edges.
  • the first island-type ohmic electrode 82 is interposed between the first semiconductor layer 30 and the first electrical connection 81 to reduce contact resistance and improve stability of the electrical connection.
  • the second island-type ohmic electrode 72 is interposed between the transparent conductive film 60 and the second electrical connection 71 to reduce contact resistance and improve stability of the electrical connection.
  • the electrical connections 71 and 81 are formed to surround the island-type ohmic electrodes 72 and 82 to achieve a more stable electrical connection.
  • the island-type ohmic electrodes 72 and 82 are formed in a point shape such as a circle or a polygon without extending, unlike the branch electrodes 75 and 85, and prevent the branch electrodes 75 and 85 from being unnecessarily long.
  • the light absorption prevention film 41 corresponds to the second branch electrode 75 and the second island-type ohmic electrode 72 between the second semiconductor layer 50 and the transparent conductive film 60 using SiO 2 , TiO 2 , or the like. Can be formed.
  • the light absorption prevention film 41 may have only a function of reflecting a part or all of the light generated in the active layer 40, and a current flows directly below the second branch electrode 75 and the second island-type ohmic electrode 72. It may have only a function that prevents flow, or may have both functions.
  • the nonconductive reflecting film R includes, as an example of a multilayer structure, a dielectric film 91b, a distributed Bragg reflector 91a, and a clad film 91c.
  • the dielectric film 91b may reduce the height difference to stably manufacture the distributed Bragg reflector 91a and may also help to reflect light.
  • SiO 2 is a suitable material for the dielectric film 91b.
  • the distributed Bragg reflector 91a is formed on the dielectric film 91b.
  • the distribution Bragg reflector 91a may be composed of repeated stacking of materials having different reflectances, for example, SiO 2 / TiO 2 , SiO 2 / Ta 2 O 2 , or SiO 2 / HfO.
  • the clad film 91c may be made of a metal oxide such as Al 2 O 3 , a dielectric film 91b such as SiO 2 , SiON, MgF, CaF, or the like.
  • the electrodes 70 and 80 When the electrodes 70 and 80 are positioned on the non-conductive reflective film 91 such as DBR, light is absorbed by the electrodes 70 and 80, but the electrodes 70 and 80 have a high reflectance such as Ag and Al. It has been known that the reflectance can be increased in the case of a metal. In addition, since the electrodes 70 and 80 must also function to dissipate the bonding pads and the semiconductor light emitting device, the size of the electrodes 70 and 80 should be determined in consideration of these factors. However, the present inventors have found that when the non-conductive reflecting film R such as DBR is used, the light reflectance by the non-conductive reflecting film 91 increases as the size of the electrodes 70 and 80 placed thereon is reduced. Experimental results provided an instrument capable of reducing the size of the electrodes 70 and 80 to a range that could not be omitted in the prior art.
  • the first electrode 80 and the second electrode 70 are divided into a plurality of sub-electrodes 80a and 70a, which is advantageous in reducing the electrode area, and using the connecting portions 80b and 70b to form a plurality of electrodes.
  • the sub-electrodes 80a and 70a are connected to each other to prevent the electrical connection from being biased.
  • the buffer regions R80 and R70 formed by the connecting portions 80b and 70b are formed, thereby preventing the peeling and the like due to the relaxation of the stress during thermal expansion.
  • FIG. 63 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
  • the first electrode 80 and the second electrode 70 each include a plurality of sub-electrodes 80a and 70a and these. It includes a plurality of connecting parts (80b, 70b) for connecting.
  • the first branch electrode 85 extends to correspond to the buffer portion of the second electrode 70 without passing under the connection portion 70b of the second electrode 70.
  • the second branch electrode 75 does not pass under the connecting portion 80b of the first electrode 80 but extends to correspond to the buffer region R80 of the first electrode 80.
  • branch electrodes 85 and 75 may be formed under the buffer regions R80 and R70 to reduce the occurrence of irregularities in the first electrode 80 and the second electrode 70 by the branch electrodes 85 and 75. have.
  • the 64 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
  • the first electrode 80 and the second electrode 70 are divided into a plurality of sub-electrodes 80a and 70a, respectively.
  • the plurality of sub-electrodes 80a and 70a are arranged along the long side and connected by the connecting portions 80b and 70b.
  • the first branch electrode 85 does not extend below the second electrode 70, but has a branch 85b extending along an approximately long side and a branch 85a connected to the electrical connection 81.
  • the second branch electrode 75 has a branch 75a extending along the short side and a branch 75b extending along the long side.
  • FIG. 65 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure, in which a plurality of sub electrodes 75a are arranged along a long side, and a plurality of connection portions 75b are used to define the plurality of sub electrodes 75a. Connected but arranged in a zigzag pattern.
  • the plurality of sub-electrodes 75a are arranged in a zigzag manner when the plurality of sub-electrodes 75a are thermally expanded, it helps to relieve the stress that causes the plurality of the sub-electrodes 75a to peel off from the non-conductive reflecting film R. Can be.
  • 66 and 67 are diagrams for describing a use example of a semiconductor light emitting device according to the present disclosure, and a plurality of semiconductor light emitting devices 101, 102, and 103 are mounted on a plate 200.
  • the plate 200 includes a first conductive portion 201, a second conductive portion 202, and an insulating portion 203.
  • the first electrode 80 and the second electrode 70 of the semiconductor light emitting device 101 are bonded to the first conductive portion 201 and the second conductive portion 202, respectively.
  • the insulating portion 203 is interposed between the first conductive portion 201 and the second conductive portion 202, and corresponds between the first electrode 80 and the second electrode 70.
  • the first conductive portion 201 and the second conductive portion 202 are exposed up and down, and the insulating portion 203 does not cover the conductive portions 201 and 202 up and down, which is very effective for heat dissipation.
  • the first conductive portion 201 and the second conductive portion 202 are alternately formed, and the first electrode 80 and the second electrode 70 of neighboring semiconductor light emitting devices are bonded to each conductive portion to form a plurality of semiconductors.
  • the light emitting elements 101, 102, 103 are connected in series. Of course, parallel connection is also possible.
  • the first electrode 80 and the second electrode 70 are provided on one side and the other side near the long edge of the plurality of semiconductor light emission
  • the plate 200 may be more compactly mounted in the direction of the series connection.
  • FIG. 68 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
  • FIG. 69 is a view for explaining an example of a cross section along the line AA of FIG. 68, and the semiconductor light emitting device may include a plurality of semiconductor layers ( 30, 40, 50, non-conductive reflective film R, first electrode 80, second electrode 70, first branch electrode 85, second branch electrode 75, first electrical connection 81 ), And a second electrical connection 71.
  • the plurality of semiconductor layers 30, 40, and 50 may include a first semiconductor layer 30 having a first conductivity, a second semiconductor layer 50 having a second conductivity different from the first conductivity, and a first semiconductor layer 30.
  • the non-conductive reflecting film R is formed on the plurality of semiconductor layers 30, 40, and 50 to reflect light from the active layer 40.
  • the first electrode 80 is formed on the non-conductive reflective film R and has a pad portion 83 and a protrusion 88 protruding from the pad portion 83.
  • the second electrode 70 is formed on the non-conductive reflective film R to face the protrusion 88.
  • the first branch electrode 85 is formed on the second semiconductor layer 50 and the first semiconductor layer 30 to which the active layer 40 is etched and exposed. The first branch electrode 85 extends between the first electrode 80 and the second electrode 70 under the protrusion 88.
  • the second branch electrode 75 is formed to extend under the first electrode 80 under the second electrode 70 between the second semiconductor layer 50 and the non-conductive reflective film R.
  • the second branch electrode 75 may be omitted.
  • the first electrical connection portion 81 penetrates the non-conductive reflective film R to connect the protrusion 88 and the first branch electrode 85.
  • the other first electrical connection 81 electrically communicates the first semiconductor layer 30 and the first electrode 80 without the first branch electrode 85.
  • the second electrical connector 71 penetrates the non-conductive reflective film R to electrically communicate the second electrode 70 and the second semiconductor layer 50.
  • the other second electrical connection 71 electrically connects the second semiconductor layer 50 and the second electrode 70 without the second branch electrode 75.
  • the second branch electrode 75 is provided at both sides of the first branch electrode 85, and each second electrical connection 71 connected to the second branch electrode 75 is formed to face the first electrode 80. It is located adjacent to the edge of the two electrodes 70.
  • the first electrical connection portion 81 may intersect the edge of the pad portion 83 of the first electrode 80, and the protrusion 88 may correspond to the first electrical connection portion 81. It protrudes from 83.
  • the first branch electrode 85 extends long from the center of the first electrode 80 to the bottom of the second electrode 70.
  • the first branch electrode 85 extends slightly below the second electrode 70, and the protruding portion 88 in which one end of the first branch electrode 85 protrudes from the pad portion 83. It is located below. That is, the first branch electrode 85 does not extend under the pad portion 83 of the first electrode 80. Therefore, in this example, the area of mesa etching is much reduced compared to the comparative example. Uniformity of current supply is also achieved by providing electrical connections 81 and 71 which are not connected to branch electrodes 85 and 75.
  • the semiconductor light emitting device it is necessary to mount the semiconductor light emitting device on a substrate such as a PCB or to distinguish between the p-side (eg, the second electrode) and the n-side (eg, the first electrode) during inspection.
  • 88 can be easily identified from the external appearance of the semiconductor light emitting element, and can be used as a means for distinguishing the p side and the n side.
  • group III nitride semiconductor light emitting element will be described as an example.
  • Sapphire, SiC, Si, GaN and the like are mainly used as the substrate 10, and the substrate 10 may be finally removed.
  • the positions of the first semiconductor layer 30 and the second semiconductor layer 50 may be changed, and are mainly made of GaN in the group III nitride semiconductor light emitting device.
  • the plurality of semiconductor layers 30, 40, and 50 may include a buffer layer 20 formed on the substrate 10, a first semiconductor layer 30 having a first conductivity (eg, Si-doped GaN), and a second different from the first conductivity.
  • a conductive second semiconductor layer 50 eg, Mg-doped GaN
  • an active layer interposed between the first semiconductor layer 30 and the second semiconductor layer 50 to generate light through recombination of electrons and holes ( 40; e.g., InGaN / (In) GaN multi-quantum well structure).
  • Each of the semiconductor layers 30, 40, and 50 may be formed in multiple layers, and the buffer layer 20 may be omitted.
  • a transparent conductive film 60 (eg, ITO, Ni / Au) is formed on the second semiconductor layer 50.
  • the first semiconductor layer 30, the active layer 40, the second semiconductor layer 50, and the transparent conductive film 60 are formed on the substrate 10, and mesa-etched to form the n-contact region 35 described above. Can be formed. Mesa etching may be performed before or after the transparent conductive layer 60 is formed.
  • the transparent conductive film 60 may be omitted.
  • the second branch electrode 75 is formed on the transparent conductive film 60.
  • the first branch electrode 85 and the second branch electrode 75 may be formed of a plurality of metal layers, and the contact layer and the light reflectivity having good electrical contact with the first semiconductor layer 30 or the transparent conductive layer 60 may be formed.
  • a good reflective layer can be provided.
  • the light absorption prevention film 41 is formed between the second semiconductor layer 50 and the transparent conductive film 60 by using SiO 2 , TiO 2, or the like. It is formed corresponding to (71).
  • the light absorption prevention film 41 may have only a function of reflecting some or all of the light generated in the active layer 40, and no current flows directly from the second branch electrode 75 and the second electrical connection 71. It may have only a function that prevents it, or may have both functions.
  • the non-conductive reflective film R is formed to cover the transparent conductive film 60, the first branch electrode 85, and the second branch electrode 75, and reflects light from the active layer 40 toward the substrate 10. do.
  • the non-conductive reflector R is formed of an insulating material to reduce light absorption by the metal reflector, and is preferably a distributed Bragg reflector, an omni-directional reflector, or the like. It may be a multilayer structure comprising a.
  • the nonconductive reflecting film R may include, for example, a dielectric film 91b, a distributed Bragg reflector 91a, and a clad film 91c.
  • the dielectric film 91b may reduce the height difference to stably manufacture the distributed Bragg reflector 91a and may also help to reflect light.
  • SiO 2 is a suitable material for the dielectric film 91b.
  • the distributed Bragg reflector 91a is formed on the dielectric film 91b.
  • the distribution Bragg reflector 91a may be composed of repeated stacking of materials having different reflectances, for example, SiO 2 / TiO 2 , SiO 2 / Ta 2 O 2 , or SiO 2 / HfO.
  • the clad film 91c may be made of a metal oxide such as Al 2 O 3 , a dielectric film 91b such as SiO 2 , SiON, MgF, CaF, or the like.
  • An opening is formed in the non-conductive reflective film R, an electrical connection is formed in the opening, and the first electrode 80 and the second electrode 70 may be formed together with the electrical connection.
  • the first electrode 80 may include a pad portion 83 and a protrusion 88 protruding from the pad portion 83.
  • the second electrode 70 includes a pad portion 73 and a protrusion 78 protruding from the pad portion 73 between the first electrode 80 and the second electrode 70.
  • the second branch electrode 75 extends below the first electrode 80 between the second semiconductor layer 50 and the nonconductive reflective film R under the protrusion 78 of the second electrode 70.
  • the second electrical connection 71 connects the protrusion 78 of the second electrode 70 and the second branch electrode 75.
  • the second branch electrodes 75 are provided at both sides of the first branch electrode 85, respectively, and each protrusion 78 from the pad portion 73 of the second electrode 70 in correspondence with each of the second branch electrodes 75. ) Is formed.
  • the second branch electrode 75 does not extend below the pad portion 73 of the second electrode 70 under the protrusion 78.
  • Both the first electrode 80 and the second electrode 70 have protrusions 88 and 78, and the branch electrodes 85 and 75 do not extend below the pad portions 83 and 73, so that light absorption loss due to metal is lost. This decreases, and the area of mesa etching is also reduced to suppress the decrease in the amount of emitted light.
  • FIG. 71 is a view illustrating still another example of the semiconductor light emitting device according to the present disclosure.
  • the second branch electrodes 75 are provided at both sides of the first branch electrode 85, respectively, and each second branch electrode 75 is provided. The ends are bent toward each other. By bending as described above, the difference between the positions of the first branch electrodes 85 and the second branch electrodes 75 may be reduced according to positions, and the uniformity of current supply or light emission may be improved.
  • the semiconductor light emitting device has a rectangular shape when viewed in plan view, and the first branch electrode 85 is formed from the long sides and the short sides of the rectangular shape approximately in the center of the rectangular shape due to the protrusion 88 of the first electrode 80. It may be placed in an even position.
  • Each second branch electrode 75 also extends along each long side, and the tip is bent as described above, and the second branch electrodes 75 are symmetrically arranged with respect to the first branch electrode 85. Therefore, it has a very symmetrical structure and is a good structure for improving uniformity. In this way, the protrusions 88 also contribute to the improvement of uniformity or uniformity of electrode arrangement.
  • the first branch electrode 85 is located only between the first electrode 80 and the second electrode 70 without extending below the second electrode 70.
  • the area of mesa etching can be further reduced, and symmetry or uniformity is further improved.
  • FIG. 72 is a view illustrating still another example of the semiconductor light emitting device according to the present disclosure.
  • the second branch electrodes 75 are provided at both sides of the first branch electrode 85, respectively.
  • Each of the second branch electrodes 75 on both sides of the electrode 85 is connected to each other under at least one of the first electrode 80 and the second electrode 70 to form one branch electrode.
  • the second branch electrodes 75 on both sides are connected under the second electrode 70.
  • the second branch electrodes 75 on both sides under the first electrode 80 and the second electrode 70 are connected to each other. 75) is connected to form a closed loop.
  • FIG. 73 is a view for explaining the relationship between the area of the electrode and the luminance of the semiconductor light emitting element.
  • the electrodes 70 and 80 are positioned on the non-conductive reflective film R such as DBR, Although light is absorbed, it has been known that the reflectance can be increased when the electrodes 70 and 80 are made of a metal having high reflectance such as Ag and Al.
  • the electrodes 70 and 80 since the electrodes 70 and 80 must also function to dissipate the bonding pads and the semiconductor light emitting device, the size of the electrodes 70 and 80 should be determined in consideration of these factors.
  • the present inventors have found that when the non-conductive reflective film R such as DBR is used, the light reflectance by the non-conductive reflective film R increases as the size of the electrodes 70 and 80 placed thereon is reduced.
  • Experimental results provided an instrument capable of reducing the size of the electrodes 70 and 80 to a range that could not be omitted in the prior art.
  • the electrodes had protrusions 88 and 78, it was possible to suppress the increase in the length of the branch electrodes while reducing the area of the electrodes.
  • the distribution Bragg reflector 91a reflects better as light closer to the vertical direction reflects light of approximately 99% or more. However, the light incident at an angle passes through the distribution Bragg reflector 91a and enters the upper surface of the clad film 91c or the non-conductive reflecting film R, and the light is almost not covered by the electrodes 80 and 70. Although reflected, part of the light incident on the electrodes 80 and 70 is absorbed.
  • luminance was tested by changing the gap G and the area ratio between the electrodes 80 and 70.
  • the distance G is changed to 150 um (FIG. 73A), 300 um (FIG. 73B), 450 um (FIG. 73C) and 600 um (FIG. 73D), and the gap between the outer edge of the semiconductor light emitting element and the outer edge of the electrodes 80 and 70 Is constant.
  • the distance (W) between the edges of the semiconductor light emitting element in the direction in which the electrodes 80, 70 face each other is 1200um
  • the vertical length (c) is 600um
  • the width (B) of the electrodes 80, 70 is 485,410,335,260um
  • the length A of the electrodes 80 and 70 is constant at 520 um.
  • the area ratio of the planar area of the semiconductor light emitting element to the electrodes 80 and 70 is 0.7, 0.59, 0.48 and 0.38, respectively. If the distance between the electrodes 80 and 70 is 80 um, the area ratio is 0.75. When the areas of the electrodes 80 and 70 are the same, it is found that there is no significant difference in luminance even when the distance between the electrodes 80 and 70 changes.
  • the upper graph in FIG. 73 is a graph showing the results of the described experimental examples.
  • the reference luminance is 100, 106.79 (FIG. 73A), 108.14 (FIG. 73B), 109.14 (FIG. 73C), and 111.30 (FIG. 73D).
  • the luminance of was confirmed. It can be seen that the increase in luminance is considerably high. If the area ratio of the electrodes 80 and 70 is smaller than 0.38, there may be further increase in luminance.
  • the 74 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
  • the pad portions 83 and 73 and the protrusions 88 and 78 of the first electrode 80 and the second electrode 70, respectively, are illustrated. Include.
  • the first electrical connection 81 is spaced apart from the edge of the pad portion 83 of the first electrode 80 toward the second electrode 70, and the protrusion 88 is formed of the first electrode 80. After extending from the pad portion 83 toward the second electrode 70, the distal end of the protrusion 88 is connected to the first electrical connection 81.
  • the pad portion 83 of the first electrode 80 and the pad portion 73 of the second electrode 70 are smaller than the area indicated by the dotted lines, so that light absorption by the metal is reduced as described with reference to FIG. 73. The brightness is improved.
  • the area of the electrodes 80 and 70 is reduced in this manner, when the first electrical connection portion 81 connected to the first branch electrode 85 moves along the pad portion 83 side of the first electrode 80, The length of the first branch electrode 85 is increased and the mesa etching area is increased.
  • the protrusion 88 is formed long, the first electrical connection 81 is connected at the end of the protrusion 88, thereby increasing the length of the first branch electrode 85 and increasing the area of the mesa etching.
  • the plurality of semiconductor layers 30, 40, 50 have etched or cut side surfaces.
  • the circumferences of the plurality of semiconductor layers 30, 40, and 50 have mesa-etched edges.
  • the distance E between the first electrode 80 and the second electrode 70 and the side surfaces of the plurality of semiconductor layers 30, 40, and 50 is 50 ⁇ m.
  • the bond material may be prevented from rising to the side surfaces of the plurality of semiconductor layers 30, 40, and 50.
  • FIG. 75 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure. Since the protrusion 88 is long and the first electrical connection 81 is connected to the end of the protrusion 88, an electrode area Even if this decreases, the first branch electrodes 85 do not become long. In addition, the first branch electrode 85 is formed so as not to extend below the second electrode 70, and the second branch electrodes 75 on both sides of the first branch electrode 85 are bent toward each other. Therefore, uniformity or symmetry is improved.
  • FIG. 76 is a diagram for describing another example of the semiconductor light emitting device according to the present disclosure.
  • a plurality of first branch electrodes 85 and a plurality of second branch electrodes 75 are alternately disposed, and a first electrode ( 80 has protrusions 88 corresponding to each first branch electrode 85, and second electrode 70 has protrusions 88 corresponding to each second branch electrode 75.
  • the number, shape, and position of the first branch electrode 85 and the second branch electrode 75 can be changed according to the size or shape of the semiconductor light emitting element, and the length of the protrusion 88 can be changed.
  • FIG. 77 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure
  • FIG. 78 is a view for explaining an example of a cross section taken along line AA in FIG. 77, wherein the semiconductor light emitting device is a plurality of semiconductors; Layers 30, 40 and 50, non-conductive reflective film R, first electrode 80, second electrode 70, first electrical connections 81a and 81b, second electrical connections 71a and 71b, The first branch electrode 85 and the second branch electrode 75 are included.
  • the plurality of semiconductor layers 30, 40, and 50 may include a first semiconductor layer 30 having a first conductivity, a second semiconductor layer 50 having a second conductivity different from the first conductivity, and a first semiconductor layer 30.
  • the first branch electrode 85 is formed on the second semiconductor layer 50 and the first semiconductor layer 30 to which the active layer 40 is etched and exposed.
  • the second branch electrode 75 is formed on the second semiconductor layer 50.
  • the non-conductive reflective film R is formed on the plurality of semiconductor layers 30, 40, and 50 to cover the first branch electrode 85 and the second branch electrode 75 to reflect light from the active layer 40.
  • the first electrode 80 and the second electrode 70 are formed apart from each other on the non-conductive reflective film R.
  • the first electrical connection 81a penetrates the non-conductive reflecting film R to electrically communicate the first electrode 80 and the first branch electrode 85, and the first electrical connection 81b is connected to the first electrode 80.
  • the first semiconductor layer 30 are in electrical communication.
  • the second electrical connection 71a penetrates the non-conductive reflecting film R to electrically communicate the second electrode 70 and the second branch electrode 75, and the second electrical connections 71b and 71c connect the second electrode. 70 and the second semiconductor layer 50 are in electrical communication with each other.
  • the first electrode 80 and the second electrode 70 face each other, each having a plurality of corners.
  • the first electrical connections 81a and 81b are formed at opposite corners of the first electrode 80 in the diagonal direction D11 of the first electrode 80, respectively.
  • the diagonal direction D11 of the first electrode 80 means a diagonal direction of one of the diagonals of the quadrangle when the first electrode 80 is substantially rectangular.
  • the second electrical connection 71a is formed at one of the corners facing each other in the diagonal direction D11 of the second electrode 70, and the second electrical connection 71b is formed slightly apart from the other corners. have.
  • the second electrical connection part 71c is formed at a corner of another diagonal direction D44 of the second electrode 70.
  • the square may have a diagonal direction D33 and a diagonal direction D44.
  • the first branch electrode 85 extends between two second electrical connections 71a and 71b located approximately in the diagonal direction D33, towards the second electrical connection 71c located at the other corner. It is curved.
  • the second branch electrode 75 extends between two first electrical connections 81a and 81b positioned approximately diagonally D11 and is bent toward another corner of the first electrode 80.
  • the first electrical connection 81a connected to the first branch electrode 85 is located at a corner of the first electrode 80 adjacent to the second electrode 70.
  • the first branch electrode 85 does not extend unnecessarily long below the first electrode 80, thereby preventing an unnecessary increase in the area of the etching etching.
  • the second electrical connection 71a connected to the second branch electrode 75 is located at the corner of the second electrode 70 adjacent to the first electrode 80. Therefore, the second branch electrode 75 does not extend unnecessarily long below the second electrode 70, so that light absorption by the metal is reduced.
  • the configuration of the branch electrode extending between the electrical connections can be applied only to one of the p-side branch electrode and the n-side branch electrode.
  • both the p-side branch electrode and the n-side branch electrode have such a configuration.
  • the semiconductor light emitting device according to the present disclosure is similar in width and length, or one of the width and length is longer than the other and is not particularly limited.
  • the semiconductor light emitting device according to the present example is a structure for improving light extraction efficiency, and is particularly effective in a small device.
  • the semiconductor light emitting device illustrated in FIGS. 44 and 45 a method of forming a plurality of branch electrodes and extending the branch electrodes along a corner or a magnetic field is generally used for uniformity of current supply or light emission. .
  • the semiconductor light emitting device of the present example reduces the number and unnecessary lengths of the branch electrodes, thereby greatly reducing the light absorption loss due to the metal. It made a good composition of form, location and number.
  • the configuration presented in this example can be more effective for devices that are small in size and operate at low current.
  • the plurality of semiconductor layers 30, 40, and 50 have two short edges facing each other and two long edges facing each other.
  • the short side may be smaller than the size 300 ⁇ m described in FIG. 45.
  • the short side may be 200 ⁇ m or less, and does not exclude more sizes.
  • the semiconductor light emitting device includes only one first branch electrode 85 and one second branch electrode 75.
  • the provision of only one by one is presented as a good example of a configuration in which the number of branch electrodes is as small as possible, and includes two or more first branch electrodes 85 and / or two or more second branch electrodes 75. This does not mean to exclude the same configuration.
  • the first semiconductor layer 30 eg, Si-doped GaN
  • the second semiconductor layer 50 eg, Mg-doped GaN
  • the first branch electrode 85 and the second branch electrode 75 are provided on the long side and the other long side, respectively, to secure a gap between the first branch electrode 85 and the second branch electrode 75. .
  • the first branch electrode 85 and the second branch electrode 75 do not extend along the corner or side, the light absorption loss due to the metal is reduced.
  • the second electrical connectors 71b and 71c and the first electrical connectors 81b have an island shape when viewed from above, but a small number is formed.
  • the island form means a shape such as a circle, a polygon, and the like, rather than extending to one side like a branch electrode.
  • the limited number of second electrical connections 71a, 71b, 71c and the first electrical connections 81a, 81b are provided at a more preferable position for improving the uniformity of the current supply.
  • Second electrical connectors 71a and 71b are positioned at both sides of the electrode 85, and first electrical connectors 85a and 85b are positioned at both sides of the second branch electrode 75. Referring to FIG.
  • the number of the second electrical connectors 71a, 71b, and 71c is determined by the first. More than the number of electrical connections (81a, 81b) can be provided.
  • group III nitride semiconductor light emitting element will be described as an example.
  • Sapphire, SiC, Si, GaN and the like are mainly used as the substrate 10, and the substrate 10 may be finally removed.
  • the positions of the first semiconductor layer 30 and the second semiconductor layer 50 may be changed, and are mainly made of GaN in the group III nitride semiconductor light emitting device.
  • the plurality of semiconductor layers 30, 40, and 50 may include a buffer layer 20 formed on the substrate 10, a first semiconductor layer 30 having a first conductivity (eg, Si-doped GaN), and a second different from the first conductivity.
  • a conductive second semiconductor layer 50 eg, Mg-doped GaN
  • an active layer interposed between the first semiconductor layer 30 and the second semiconductor layer 50 to generate light through recombination of electrons and holes ( 40; e.g., InGaN / (In) GaN multi-quantum well structure).
  • Each of the semiconductor layers 30, 40, and 50 may be formed in multiple layers, and the buffer layer 20 may be omitted.
  • the plurality of semiconductor layers 30, 40 and 50 have a substantially rectangular shape and when viewed from above, have long edges facing each other and two short edges facing each other.
  • the second semiconductor layer 50 and the active layer 40 are etched to form an n-contact region 35 through which the first semiconductor layer 30 is exposed.
  • the first branch electrode 85 is formed in the n-contact region 35.
  • a transparent conductive film 60 (eg, ITO, Ni / Au) is formed on the second semiconductor layer 50.
  • the first semiconductor layer 30, the active layer 40, the second semiconductor layer 50, and the transparent conductive film 60 are formed on the substrate 10, and mesa-etched to form the n-contact region 35 described above. Can be formed. Mesa etching may be performed before or after the transparent conductive layer 60 is formed.
  • the transparent conductive film 60 may be omitted.
  • the second branch electrode 75 is formed on the transparent conductive film 60.
  • the first branch electrode 85 and the second branch electrode 75 may be formed of a plurality of metal layers, and the contact layer and the light reflectivity having good electrical contact with the first semiconductor layer 30 or the transparent conductive layer 60 may be formed.
  • a good reflective layer can be provided.
  • the light absorption prevention layer 41 is formed between the second branch electrode 75 and the second electrical connection 71a between the second semiconductor layer 50 and the transparent conductive film 60 using SiO 2 , TiO 2, or the like. 71b, 71c).
  • the light absorption prevention film 41 may have only a function of reflecting some or all of the light generated in the active layer 40, and is directly below the second branch electrode 75 and the second electrical connections 71a, 71b, and 71c.
  • the furnace may have only a function of preventing a current from flowing, or may have both functions.
  • the non-conductive reflective film R is formed to cover the transparent conductive film 60, the first branch electrode 85, and the second branch electrode 75, and reflects light from the active layer 40 toward the substrate 10. do.
  • the non-conductive reflector R is formed of an insulating material to reduce light absorption by the metal reflector, and is preferably a distributed Bragg reflector, an omni-directional reflector, or the like. It may be a multilayer structure comprising a.
  • the nonconductive reflecting film R includes, as an example of a multilayer structure, a dielectric film 91b, a distributed Bragg reflector 91a, and a clad film 91c.
  • the dielectric film 91b may reduce the height difference to stably manufacture the distributed Bragg reflector 91a and may also help to reflect light.
  • SiO 2 is a suitable material for the dielectric film 91b.
  • the distributed Bragg reflector 91a is formed on the dielectric film 91b.
  • the distribution Bragg reflector 91a may be composed of repeated stacking of materials having different reflectances, for example, SiO 2 / TiO 2 , SiO 2 / Ta 2 O 2 , or SiO 2 / HfO.
  • the clad film 91c may be made of a metal oxide such as Al 2 O 3 , a dielectric film 91b such as SiO 2 , SiON, MgF, CaF, or the like.
  • FIG. 79 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure, in which the second branch electrode 75 is disposed at approximately the diagonal direction D11 (see FIG. 77) of the first electrode 80. It extends between the first electrical connections 81a, 81b.
  • the first branch electrode 85 extends along an edge between the first electrode 80 and the second electrode 70 below the corner of the first electrode 80 but does not extend below the second electrode 70. In this manner, the length of the first branch electrode 85 can be made shorter.
  • the semiconductor light emitting device has a rectangular shape having two long sides and two short sides when viewed in plan view, and the first electrode 80. ) Is provided on one short side, and the second electrode 70 is provided on the other short side, and the edges facing each other of the first electrode 80 and the second electrode 70 are formed on a rectangular long side. Are formed so as to be diagonal to each other.
  • the first branch electrode 85 is connected to the first electrical connection 81a at the corner of the first electrode 80 closer to the short side where the second electrode 70 is located among the plurality of corners of the first electrode 80. do.
  • the second branch electrode 75 is connected to the second electrical connection 71a at the corner of the second electrode 70 closer to the short side where the first electrode 80 is located among the plurality of corners of the second electrode 70. do.
  • the first branch electrode 85 extends from under the corner of the first electrode 80 to between the second electrical connections 71a and 71b formed at the corners of the diagonal D33 of the second electrode 70, respectively.
  • the second branch electrode 75 extends from below the corner of the second electrode 70 to the first electrical connections 81a and 81b formed at the corners of the diagonal D11 of the first electrode 80, respectively.
  • the second branch electrode 75 includes a first branch 75a and a second branch 75b.
  • the first branch 75a extends along one side of the long side between the first electrode 80 and the second electrode 70.
  • the second branch 75b is bent from the first branch 75a and extends between the first electrical connections 81a and 81b formed at the corners of the diagonal D11 of the first electrode 80, respectively.
  • the second branch 75b may extend along another diagonal direction D22 of the first electrode 80.
  • the first branch electrode 85 includes a third branch 85a and a fourth branch 85b.
  • the third branch 85a faces the first branch 75a between the first electrode 80 and the second electrode 70 and extends along the other long side.
  • the fourth branch 85b is bent from the third branch 85a and extends between the second electrical connections 71a and 71b formed at the corners of the diagonal D33 of the second electrode 70, respectively.
  • the fourth branch 85b may extend along another diagonal direction D44 of the second electrode 70.
  • the two first electrical connections 81a and 81b located in the diagonal direction D11 and the two second electrical connections 71a and 71b located in the diagonal direction D11 may be positioned at approximately vertices of a quadrilateral shape.
  • the first branch 75a of the second branch electrode 75 and the third branch 85a of the first branch electrode 85 may be parallel to each other, and the second branch 75b of the second branch electrode 75 may be parallel to each other. And the fourth branch 85b of the first branch electrode 85 may be parallel to each other.
  • edges facing each other of the first electrode 80 and the second electrode 70 are formed diagonally with respect to the sides (or edges) of the plurality of semiconductor layers.
  • some of the corners of the electrodes 80 and 70 may be located closer to the center than when the opposite edges are parallel or perpendicular to the sides of the plurality of semiconductor layers 30, 40 and 50.
  • one of the corners of the first electrode 80 moves further toward the opposite second electrode 70, and one of the corners of the second electrode 70 moves further toward the opposite first electrode 80.
  • branch electrodes 85 and 75 are formed from the corners closer to the center or further moved to the opposite electrode side, the lengths of the branch electrodes 85 and 75 can be further reduced by that, and light absorption by metal Can be reduced.
  • the space between the electrical connections 71a, 71b, 71c, 81a, and 81b is further adjusted.
  • FIG. 81 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
  • the first branch electrode 85 may include a first electrode 80 and a second electrode under a corner of the first electrode 80. 70, but not below the second electrode 70, the length of the first branch electrode 85 is shorter than the examples described above.
  • the active layer due to mesa etching is provided at the edge, edge, or side rather than inside of the device. Reduce the extent of area reduction.
  • Opposite edges of the first electrode 80 and the second electrode 70 are diagonally formed, which causes the first electrical connection 81a and the second electrical connection 71a to be closer to the center of the semiconductor light emitting device. , The length of the branch electrodes 85, 75 is further reduced.
  • a semiconductor light emitting device comprising: a first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, and interposed between the first semiconductor layer and the second semiconductor layer and having electrons and holes
  • a central light emitting unit including a plurality of semiconductor layers having an active layer generating light through recombination of the semiconductor light emitting unit;
  • a peripheral light emitting part provided around the central light emitting part, the peripheral light emitting part having a shape different from that of the central light emitting part when viewed in a top view, and a side facing the central light emitting part is formed along the outline of the central light emitting part; Ambient light emitting unit;
  • a center connection electrode electrically connecting the center light emitting unit and the peripheral light emitting unit.
  • a semiconductor light emitting device comprising a plurality of peripheral light emitting parts, each peripheral light emitting part having a side facing the central light emitting part and having a side facing another peripheral light emitting part.
  • the semiconductor light emitting element characterized in that the side surface of the central light emitting portion is not parallel with other side surfaces of the peripheral light emitting portion other than the side facing the center light emitting portion.
  • a semiconductor light emitting element characterized in that the side facing the center light emitting portion is concave.
  • a semiconductor light emitting element comprising a circular shape on a plan view of a central light emitting unit.
  • a semiconductor light emitting element characterized in that the shape on the top view of the central light emitting unit is rectangular.
  • a semiconductor light emitting element wherein the shape on the top view of the central light emitting unit is a semicircle.
  • the edge of the central light emitting part is a semiconductor light emitting element, characterized in that located outside the line connecting the center of the central light emitting portion and the center of the peripheral light emitting portion.
  • a plurality of peripheral light emitting units are arranged symmetrically with respect to each of the central light emitting units, wherein the plurality of central light emitting units and the plurality of peripheral light emitting units are electrically connected in series.
  • a semiconductor light emitting element characterized in that at least one of the center connection electrode and the peripheral connection electrode includes a plurality of connection lines.
  • a semiconductor light emitting element wherein the center connection electrode is formed in a diagonal direction from one of the peripheral light emitting parts toward the opposite light emitting part.
  • the plurality of central light emitting parts include a first central light emitting part and a second central light emitting part, and are in electrical communication with the first semiconductor layer of the peripheral light emitting part of one of the peripheral light emitting parts surrounding the first central light emitting part to be electron and hole A first electrode supplying one of the first electrodes; And a first electrode in electrical communication with a second semiconductor layer of one of the peripheral light emitting parts around the second central light emitting part to supply the other one of electrons and holes.
  • the peripheral light emitting part around the first center light emitting part is electrically connected in series, and the peripheral light emitting part around the second center light emitting part and the second central light emitting part is electrically connected in series, and with one peripheral light emitting part around the first central light emitting part.
  • the peripheral light emitting part of the periphery of the second central light emitting part is electrically connected.
  • center light emitting units may be further increased to the third center light emitting unit, the fourth center light emitting unit, and the like.
  • a reflective layer including a plurality of peripheral light emitting parts, covering the central light emitting part, the peripheral light emitting part, and the center connection electrode and reflecting light generated in the active layer; A first electrode electrically connected to the first semiconductor layer of the plurality of peripheral light emitting parts; A second electrode electrically connected to the second semiconductor layer of the other peripheral light emitting part; And an electrical connection electrically connecting at least one of the first electrode and the second electrode to the plurality of semiconductor layers, wherein at least one of the first electrode and the second electrode is formed on the reflective layer, A semiconductor light emitting device, characterized in that connected to the electrical connection through the reflective layer.
  • the reflective layer includes: a semiconductor light emitting element comprising one of a distributed Bragg reflector and an omni-directional reflector (ODR).
  • a semiconductor light emitting element comprising one of a distributed Bragg reflector and an omni-directional reflector (ODR).
  • a semiconductor light emitting device comprising a first light emitting portion and a second light emitting portion formed on a single substrate, wherein the first light emitting portion and the second light emitting portion are respectively: a first semiconductor layer having a first conductivity, and different from the first conductivity; And a plurality of semiconductor layers having a second semiconductor layer having a second conductivity and an active layer interposed between the first semiconductor layer and the second semiconductor layer and generating light through recombination of electrons and holes.
  • a semiconductor light emitting element characterized in that the point electrode portion has a width greater than or equal to that of the extended electrode portion.
  • a semiconductor light emitting element characterized in that the point electrode portion has one of circular and polygonal shapes.
  • the extended electrode portion includes: a connecting line formed on the side of the first light emitting portion, between the first light emitting portion and the second light emitting portion, and on the side of the second light emitting portion; And a branch branched from a connection line on the second semiconductor layer of the first light emitting unit.
  • the edge electrode portion has an edge of the first semiconductor layer exposed by etching the second semiconductor layer and the active layer on the edge side of the second light emitting portion due to a trench for isolating the first light emitting portion and the second light emitting portion.
  • the semiconductor is formed to have a width greater than or equal to that of the extended electrode, and the trench forms oblique lines with respect to the other edges of the first light emitting part and the second light emitting part when viewed in top view. Light emitting element.
  • the extended electrode portion includes: a connecting line formed on the side of the first light emitting portion, between the first light emitting portion and the second light emitting portion, and on the side of the second light emitting portion; And a branch branched from a connection line on the second semiconductor layer of the first light emitting part, wherein the second electrode comprises: a pad part; And branch portions extending from the pad portion to both sides of the point electrode portion.
  • first electrode is a first light emitting portion at one end of the series connection
  • second electrode is formed on the second light emitting part of the other end of the series connection, extends over the second semiconductor layer of the second light emitting part, and is located between the side of the second light emitting part, between the second light emitting part and the first light emitting part, and An additional extending type electrode portion extending to the side of the first light emitting portion;
  • an additional connection electrode formed on an edge of the first semiconductor layer of the first light emitting part, the additional connecting electrode having an additional point type electrode part connected to the additional extended electrode part.
  • a plurality of rows in which the first light emitting portion and the second light emitting portion are alternately arranged, and the separation lines of each of the first light emitting portion and each of the second light emitting portions that face each other are each of the first light emitting portion and each of the second light emitting portions.
  • a semiconductor light emitting element characterized in that formed on an oblique side to the other side.
  • a reflection layer covering the plurality of semiconductor layers and the connection electrode and reflecting light generated in the active layer, the reflection layer having at least one of the first electrode and the second electrode formed on the reflection layer; And an electrical connection electrically connecting at least one of the first electrode and the second electrode formed on the reflective layer and the plurality of semiconductor layers through the reflective layer.
  • the reflecting layer includes: a semiconductor light emitting element comprising one of a distributed Bragg reflector and an omni-directional reflector (ODR).
  • a semiconductor light emitting element comprising one of a distributed Bragg reflector and an omni-directional reflector (ODR).
  • a first semiconductor layer having a first conductivity, an active layer for generating light through recombination of electrons and holes, and a second semiconductor layer having a second conductivity different from the first conductivity are sequentially stacked.
  • a plurality of semiconductor layers comprising: a plurality of semiconductor layers having two long edges facing each other and two short edges facing each other; A first branch electrode extending from one side long edge to the other long edge on the exposed first semiconductor layer with the second semiconductor layer and the active layer removed, and from the other long edge to the one long edge on the second semiconductor layer At least one of the extended second branch electrodes; A non-conductive reflecting film formed to cover the plurality of semiconductor layers, the first branch electrode and the second branch electrode, and reflecting light from the active layer; A first electrode provided on one side of the long edge side to be in electrical communication with the first semiconductor layer and supplying one of electrons and holes; And a second electrode provided at the other long edge side to be in electrical communication with the second semiconductor layer, the second electrode supplying the other one of electrons and holes.
  • At least one of the first electrode and the second electrode is provided on the opposite side of the plurality of semiconductor layers with respect to the non-conductive reflective film, and is electrically connected to the plurality of semiconductor layers by an electrical connection passing through the reflective layer.
  • the semiconductor light emitting device characterized in that the flip chip (flip chip) communicated with.
  • the first electrode and the second electrode are provided on the non-conductive reflective film, and the edges facing each other of the first electrode and the second electrode extend from one short edge toward the other short edge. .
  • the first electrode and the second electrode are provided on the nonconductive reflecting film, the first branch electrode extends from below the first electrode to the bottom of the second electrode, and the second branch electrode extends from the bottom of the second electrode to the first.
  • a semiconductor light emitting device characterized in that extending below the electrode.
  • First and second opposing edges of the first electrode and the second electrode extend from one short edge toward the other short edge, penetrate the non-conductive reflective film, and connect the first electrode and the first branch electrode to each other. connect; And a second electrical connection penetrating the non-conductive reflecting film and connecting the second electrode and the second branch electrode to the semiconductor light emitting device.
  • a first electrical connection provided with a plurality of first electrodes and a plurality of second electrodes spaced apart from each other on the reflective layer, penetrating the non-conductive reflective film, and connecting each first electrode and each first branch electrode; And a second electrical connection penetrating through the non-conductive reflecting film and connecting each second electrode and each second branch electrode to the semiconductor light emitting device.
  • a plate having a first conductive portion joined to the first electrode, a second conductive portion joined to the second electrode, and an insulating portion interposed between the first conductive portion and the second conductive portion; And a plate in which the conductive portion and the second conductive portion are exposed up and down.
  • the first branch electrode extends from the first conductive portion side toward the second conductive portion side
  • the second branch electrode extends from the second conductive portion side toward the first conductive portion side
  • the first electrode and the second electrode are characterized in that the insulating portion.
  • a semiconductor light emitting device comprising: a first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, and interposed between the first semiconductor layer and the second semiconductor layer And a plurality of semiconductor layers having an active layer that generates light by recombination of holes; A first electrode part in electrical communication with the first semiconductor layer and supplying one of electrons and holes; A second electrode part in electrical communication with the second semiconductor layer and supplying the other one of electrons and holes; And a nonconductive reflecting film formed over the plurality of semiconductor layers and reflecting light from the active layer, wherein at least one of the first electrode part and the second electrode part comprises: a first upper electrode formed on the nonconductive reflecting film; A first branch electrode extending below the first upper electrode and out of the first upper electrode; A first electrical connection penetrating the non-conductive reflective film and connecting the first upper electrode and the first branch electrode; And a second electrical connection penetrating the non-conductive reflective film and electrically communicating with the first upper electrode and the plurality of semiconductor layers
  • the first electrode portion includes: a first upper electrode; A first branch electrode formed on the exposed first semiconductor layer by etching the second semiconductor layer and the active layer; A first electrical connection for electrically connecting the first upper electrode and the first branch electrode; And a second electrical connection electrically connecting the first upper electrode and the first semiconductor layer, wherein the second electrode part comprises: a second upper electrode formed away from the first upper electrode on the non-conductive reflective film; A second branch electrode extending out of the second upper electrode between the second semiconductor layer and the non-conductive reflecting film below the second upper electrode; A third electrical connection penetrating the non-conductive reflective film and connecting the second upper electrode and the second branch electrode; And a fourth electrical connection penetrating the non-conductive reflecting film and electrically communicating the second upper electrode and the second semiconductor layer, but deviating from an extension line of the second branch electrode.
  • a semiconductor light emitting device comprising only one first branch electrode and one second branch electrode.
  • the plurality of semiconductor layers have a short edge, the other short side opposite to the short side, a long edge, and the other long side opposite to the long side, and the first upper electrode is provided on the short side,
  • the second upper electrode is provided on the other short side, and the first branch electrode extends under the first upper electrode below the second upper electrode, and the second branch electrode extends under the second upper electrode and below the first upper electrode.
  • a second electrical connection is located far from the long side and closer to the short side than the first electrical connection, and the fourth electrical connection is located farther from the other side and closer to the other side than the third electrical connection.
  • At least one of the first branch electrode and the second branch electrode is a semiconductor light emitting element, characterized in that the opposite end of the side connected to the first electrical connection and the third electrical connection is bent.
  • a semiconductor light emitting device comprising: a first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, and interposed between the first semiconductor layer and the second semiconductor layer And a plurality of semiconductor layers including an active layer that generates light by recombination of holes, comprising: a plurality of short edges, another short side opposite to the short side, long edges, and the other long side opposite to the long side; Semiconductor layer; A nonconductive reflecting film formed over the plurality of semiconductor layers and reflecting light from the active layer; A first upper electrode and a second upper electrode formed on the non-conductive reflective film, the first upper electrode provided on the short side and the second upper electrode provided on the other short side; A first electrical connection and a second electrical connection respectively passing through the non-conductive reflecting film to electrically connect the first semiconductor layer and the first upper electrode; wherein the first electrical connection is located farther from the long side than the first electrical connection; Electrical connection and second electrical connection; A third electrical connection and a fourth electrical connection respectively passing through the non-conductive
  • a first branch electrode connected to the first electrical connection and extending from the bottom of the first upper electrode to the bottom of the first upper electrode on which the second semiconductor layer and the active layer are etched and exposed; And a second branch electrode connected to the third electrical connection and extending from the bottom of the second upper electrode to the bottom of the first upper electrode between the second long side semiconductor layer and the light reflection layer. There is no branch electrode formed between the fourth electrical connection in the direction from the short side to the other short side and the direction from the other short side to the short side.
  • a branch light emitting device comprising only one first branch electrode and one second branch electrode.
  • a semiconductor light emitting device comprising: a first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, and interposed between the first semiconductor layer and the second semiconductor layer and having electrons and holes A plurality of semiconductor layers having an active layer for generating light through recombination of and grown using a growth substrate; A nonconductive reflecting film bonded to the plurality of semiconductor layers on the opposite side of the growth substrate; And a first electrode and a second electrode electrically connected to the plurality of semiconductor layers and formed to face each other on the non-conductive reflective film, wherein at least one connection portion connecting the plurality of sub electrodes and the plurality of sub electrodes to each other.
  • the semiconductor light emitting device comprising: a first electrode and a second electrode having a width smaller than that of each sub-electrode connected by each connection part based on a direction perpendicular to the connection direction.
  • each connecting portion is spaced apart in the orthogonal direction from opposite edges of each sub-electrode facing each other.
  • a semiconductor light emitting element wherein both the first electrode and the second electrode have a plurality of sub-electrodes and at least one connection portion.
  • each sub-electrode has a width larger than that of the connection portion.
  • a semiconductor light emitting element wherein regions not covered by the connecting portion between the sub-electrodes are formed on both sides of the connecting portion, respectively.
  • a semiconductor light emitting device characterized in that provided between the sub-electrodes.
  • a semiconductor light emitting device characterized in that extending between the sub-electrodes.
  • the plurality of semiconductor layers have two long edges facing each other and two short edges facing each other, and the plurality of sub-electrodes of the first electrode have one long edge. And a plurality of sub-electrodes of the second electrode are arranged along the other long edge, and are electrically connected to the first electrode on the exposed first semiconductor layer by removing the second semiconductor layer and the active layer.
  • a first branch electrode extending below the second electrode; And a second branch electrode electrically connected to the second electrode on the second semiconductor layer and extending below the first electrode under the second electrode.
  • the plurality of semiconductor layers have two long edges facing each other and two short edges facing each other, and the plurality of sub-electrodes of the first electrode have one long edge. And a plurality of sub-electrodes of the second electrode are arranged along the other long edge, and the first branch electrode is electrically connected to the first electrode on the exposed first semiconductor layer by removing the second semiconductor layer and the active layer.
  • a first branch electrode extending between the first electrode and the second electrode without overlapping with the second electrode in a plan view.
  • a plurality of sub-electrodes are connected by a plurality of connecting portions, wherein the plurality of connecting portions are arranged in a zigzag form.
  • a semiconductor light emitting element comprising: a first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, and interposed between the first semiconductor layer and the second semiconductor layer And a plurality of semiconductor layers having an active layer that generates light by recombination of holes; A nonconductive reflecting film formed over the plurality of semiconductor layers to reflect light from the active layer; A first electrode formed on the non-conductive reflecting film and having a pad portion and a protrusion projecting from the pad portion; A second electrode formed on the non-conductive reflecting film and facing the protrusion; A first branch electrode formed on the first semiconductor layer and extending between the first electrode and the second electrode under the protrusion; A first electrical connector penetrating the non-conductive reflective film to connect the protrusion and the first branch electrode; And a second electrical connection part penetrating the non-conductive reflective film to electrically connect the second electrode and the second semiconductor layer.
  • the first branch electrode may be an n-side branch electrode, or may be a p-side branch electrode.
  • the second electrode includes: a pad portion and a protrusion protruding from the pad portion between the first electrode and the second electrode, and between the plurality of semiconductor layers and the nonconductive reflecting film, the first electrode under the protrusion of the second electrode. And a second branch electrode extending downward, wherein the second electrical connection unit connects the protrusion of the second electrode and the second branch electrode.
  • the first branch electrode is formed on the second semiconductor layer and the first semiconductor layer where the active layer is etched and exposed, and does not extend below the pad portion of the first electrode and the second electrode. device.
  • a second branch electrode connected to the second electrode by a second electrical connection between the plurality of semiconductor layers and the non-conductive reflective film, the second branch electrode extending below the first electrode below the second electrode; Are respectively provided on both sides of the first branch electrode, and each second electrical connection part is positioned adjacent to an edge of the second electrode facing the first electrode.
  • the first electrical connection portion intersects the edge of the pad portion of the first electrode, and the protrusion portion protrudes from the pad portion corresponding to the first electrical connection.
  • the first electrical connection is spaced from the edge of the pad portion of the first electrode to the second electrode side, the protrusion extends from the pad portion of the first electrode toward the second electrode, and then the distal end of the protrusion is A semiconductor light emitting device, characterized in that connected to the first electrical connection.
  • a semiconductor light emitting element wherein the second branch electrodes are provided on both sides of the first branch electrode, respectively, and each protrusion is formed from the pad portion of the second electrode in correspondence with each of the second branch electrodes.
  • each second branch electrode is a semiconductor light emitting device, characterized in that the ends are bent toward each other.
  • a second branch electrode connected to the second electrode by a second electrical connection between the plurality of semiconductor layers and the non-conductive reflective film, the second branch electrode extending below the first electrode below the second electrode; Are respectively provided on both sides of the first branch electrode, and each of the second branch electrodes on both sides of the first branch electrode is connected to each other under at least one of the first electrode and the second electrode.
  • a semiconductor light emitting device characterized in that the first branch electrode does not extend under the pad portion of the first electrode and the second branch electrode does not extend under the pad portion of the second electrode.
  • a semiconductor light emitting device comprising: a first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, and an electron interposed between the first semiconductor layer and the second semiconductor layer; And a plurality of semiconductor layers having an active layer that generates light by recombination of holes; A nonconductive reflecting film formed over the plurality of semiconductor layers to reflect light from the active layer; A first electrode and a second electrode formed to be separated from the non-conductive reflecting film; At least one first electrical connection penetrating the non-conductive reflective film to electrically connect the first electrode and the first semiconductor layer; At least one second electrical connection penetrating the non-conductive reflective film to communicate the second electrode and the second semiconductor layer; A first branch electrode formed on the first semiconductor layer to be connected to the at least one first electrical connection portion, the first branch electrode extending between the first electrode and the second electrode from below a corner adjacent to the second electrode of the diagonal corners of the first electrode; 1 electrode; And a second branch electrode formed between the plurality of semiconductor layers and the
  • the present disclosure discloses a case where a first branch electrode is an n-side branch electrode, a second branch electrode is a p-side branch electrode, a first branch electrode is a p-side branch electrode, and a second branch electrode is an n-side branch electrode. It includes everything.
  • the at least one first electrical connection includes two first electrical connections respectively formed at diagonal corners of the first electrode, the second branch electrode being at least below a corner of the second electrode adjacent to the first electrode.
  • the semiconductor light emitting device is connected to one second electrical connection, and extends to pass between the two first electrical connection.
  • the at least one second electrical connection includes two second electrical connections respectively formed at diagonal corners of the second electrode, the first branch electrode being at least below a corner of the first electrode adjacent to the second electrode.
  • the first branch electrode extends near one edge of the plurality of semiconductor layers between the first electrode and the second electrode, and the second branch electrode extends near the other edge of the plurality of semiconductor layers between the first electrode and the second electrode.
  • a semiconductor light emitting device characterized in that extending from.
  • the semiconductor light emitting device has a rectangular shape having two long sides and two short sides when viewed in plan view, the first electrode is located on one short side, and the second electrode is located on the other short side. And only one first branch electrode and one second branch electrode are formed.
  • edges facing each other of the first electrode and the second electrode are formed to be inclined or oblique lines with respect to the edges of the plurality of semiconductor layers, respectively, and diagonal corners of the first electrode are shown. Includes a corner closer to the second electrode side and a corner located diagonally to the second electrode side due to the oblique edge of the first electrode, wherein the first branch electrode is closer to the second electrode side of the diagonal corners of the first electrode.
  • a light emitting element is connected to the at least one first electrical connection below the corner, wherein the diagonal corners of the second electrode comprise a corner closer to the first electrode side and a corner located diagonally to the first electrode due to the diagonal edge of the second electrode;
  • the second branch electrode is connected with at least one second electrical connection below a corner closer to the first electrode side of the diagonal corners of the second electrode.
  • the at least one first electrical connection includes two first electrical connections respectively formed at diagonal corners of the first electrode, and the at least one second electrical connection is respectively at the diagonal corners of the second electrode. And two second electrical connections formed, wherein the second branch electrode extends to pass between the two first electrical connections.
  • the second branch electrode includes: a first branch extending from one side edge of the plurality of semiconductor layers between the first electrode and the second electrode; And a second branch that is bent from the first branch and extends between the two first electrical connections, wherein the first branch electrode includes: a third branch extending from the other edge of the plurality of semiconductor layers between the first electrode and the second electrode; ; And a fourth branch, which is bent from the third branch and extends between the two second electrical connections.
  • the second branch electrode includes: a first branch extending from one side edge of the plurality of semiconductor layers between the first electrode and the second electrode; And a second branch that is bent from the first branch and extends between the two first electrical connections, wherein the first branch electrode includes: a second branch extending from the other edge of the plurality of semiconductor layers between the first electrode and the second electrode; 2.
  • a semiconductor light emitting device characterized in that it does not extend below the electrode.
  • a semiconductor light emitting device having improved luminance is provided.
  • a plurality of light emitting parts may be compactly included in a limited area.
  • the corners of the light emitting portion are rounded to improve the yield.
  • the light emitting area is reduced while achieving sufficient current spreading.
  • a semiconductor light emitting device which suppresses the above and has a compact arrangement.
  • a semiconductor light emitting device having a relatively small n-contact region and having branch electrodes for current diffusion is provided.
  • a semiconductor light emitting device having a branch electrode for current diffusion and having a relatively short length of the branch electrode, thereby reducing light absorption loss.
  • a package including a plurality of semiconductor light emitting devices can be compactly formed.
  • a package including a plurality of semiconductor light emitting devices can be compactly formed.
  • the light absorption loss due to the metal is reduced.
  • a semiconductor light emitting device in which light absorption by metal is reduced and light emission area decreases by mesa etching is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

The present disclosure pertains to a semiconductor light-emitting element comprising: a plurality of semiconductor layers having two long edges that face each other and two short edges that face each other; at least one of a first branch electrode extending over a first semiconductor layer, which is exposed by removal of a second semiconductor layer and an active layer, from a long edge on one side towards a long edge on the other side and a second branch electrode extending over the second semiconductor layer from the long edge on the other side towards the long edge on one side; a non-conductive reflective film, which is formed to cover the plurality of semiconductor layers and the first and second branch electrodes, and which reflects light from the active layer; a first electrode provided on the long edge on one side so as to electrically connect with the first semiconductor layer; and a second electrode provided on the long edge on the other side so as to electrically connect with the second semiconductor layer.

Description

반도체 발광소자Semiconductor light emitting device
본 개시(Disclosure)는 전체적으로 반도체 발광소자{SEMICONDUCTOR LIGHT EMITTING DEVICE}에 관한 것으로, 특히 광추출 효율이 향상된 반도체 발광소자에 관한 것이다. The present disclosure relates to a semiconductor light emitting device as a whole, and more particularly to a semiconductor light emitting device having improved light extraction efficiency.
또한, 발광면적 감소를 억제하며 복수의 발광부가 콤팩트하게 배열된 반도체 발광소자에 관한 것이다.The present invention also relates to a semiconductor light emitting device in which a plurality of light emitting parts are arranged compactly while suppressing a reduction in light emitting area.
또한, 발광면적의 감소를 줄인 반도체 발광소자에 관한 것이다.The present invention also relates to a semiconductor light emitting device having a reduced light emitting area.
또한, 작은 사이즈의 소자에서 금속에 의한 광흡수 손실을 줄이고, 발광의 균일성을 확보한 반도체 발광소자에 관한 것이다.In addition, the present invention relates to a semiconductor light emitting device which reduces light absorption loss due to metal in a small sized device and ensures uniformity of light emission.
또한, 열팽창 차이에 의한 손상을 방지한 반도체 발광소자에 관한 것이다.Moreover, it is related with the semiconductor light emitting element which prevented the damage by the thermal expansion difference.
또한, 빛손실을 줄이는 전극 구조를 가지는 반도체 발광소자에 관한 것이다.The present invention also relates to a semiconductor light emitting device having an electrode structure for reducing light loss.
여기서, 반도체 발광소자는 전자와 정공의 재결합을 통해 빛을 생성하는 반도체 광소자를 의미하며, 3족 질화물 반도체 발광소자를 예로 들 수 있다. 3족 질화물 반도체는 Al(x)Ga(y)In(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)로 된 화합물로 이루어진다. 이외에도 적색 발광에 사용되는 GaAs계 반도체 발광소자 등을 예로 들 수 있다.Here, the semiconductor light emitting device refers to a semiconductor optical device that generates light through recombination of electrons and holes, for example, a group III nitride semiconductor light emitting device. The group III nitride semiconductor consists of a compound of Al (x) Ga (y) In (1-x-y) N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1). In addition, GaAs type semiconductor light emitting elements used for red light emission, etc. are mentioned.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).This section provides background information related to the present disclosure which is not necessarily prior art.
도 1은 종래의 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면이다. 3족 질화물 반도체 발광소자는 기판(10; 예; 사파이어 기판), 기판(10) 위에 성장되는 버퍼층(20), 버퍼층(20) 위에 성장되는 n형 3족 질화물 반도체층(30), n형 3족 질화물 반도체층(30) 위에 성장되는 활성층(40), 활성층(40) 위에 성장되는 p형 3족 질화물 반도체층(50), p형 3족 질화물 반도체층(50) 위에 형성되는 투광성 도전막(60), 투광성 도전막(60) 위에 형성되는 p측 본딩 패드(70), p형 3족 질화물 반도체층(50)과 활성층(40)이 메사 식각되어 노출된 n형 3족 질화물 반도체층(30) 위에 형성되는 n측 본딩 패드(80), 그리고 보호막(90)을 포함한다.1 is a view showing an example of a conventional group III nitride semiconductor light emitting device. The group III nitride semiconductor light emitting device includes a substrate 10 (eg, a sapphire substrate), a buffer layer 20 grown on the substrate 10, an n-type group III nitride semiconductor layer 30 grown on the buffer layer 20, and an n-type 3 A transparent conductive film formed on the active layer 40 grown on the group nitride semiconductor layer 30, the p-type group III nitride semiconductor layer 50 grown on the active layer 40, and the p-type group III nitride semiconductor layer 50 ( 60, the n-type III-nitride semiconductor layer 30 in which the p-side bonding pad 70, the p-type III-nitride semiconductor layer 50 and the active layer 40 formed on the light-transmissive conductive film 60 are mesa-etched and exposed. ) And an n-side bonding pad 80 and a passivation layer 90 formed on the substrate.
버퍼층(20)은 기판(10)과 n형 3족 질화물 반도체층(30) 사이의 격자상수 및 열팽창계수의 차이를 극복하기 위한 것이며, 미국특허 제5,122,845호에는 사파이어 기판 위에 380℃에서 800℃의 온도에서 100Å에서 500Å의 두께를 가지는 AlN 버퍼층을 성장시키는 기술이 기재되어 있으며, 미국특허 제5,290,393호에는 사파이어 기판 위에 200℃에서 900℃의 온도에서 10Å에서 5000Å의 두께를 가지는 Al(x)Ga(1-x)N (0≤x<1) 버퍼층을 성장시키는 기술이 기재되어 있고, 미국공개특허공보 제2006/154454호에는 600℃에서 990℃의 온도에서 SiC 버퍼층(씨앗층)을 성장시킨 다음 그 위에 In(x)Ga(1-x)N (0<x≤1) 층을 성장시키는 기술이 기재되어 있다. 바람직하게는 n형 3족 질화물 반도체층(30)의 성장에 앞서 도핑되지 않는 GaN층이 성장되며, 이는 버퍼층(20)의 일부로 보아도 좋고, n형 3족 질화물 반도체층(30)의 일부로 보아도 좋다.The buffer layer 20 is to overcome the difference in lattice constant and thermal expansion coefficient between the substrate 10 and the n-type group III nitride semiconductor layer 30. US Pat. No. 5,122,845 discloses a sapphire substrate at 380 캜 to 800 캜. A technique for growing an AlN buffer layer having a thickness of 100 kPa to 500 kPa at a temperature is described. US Pat. A technique for growing a 1-x) N (0 ≦ x <1) buffer layer is described, and US Patent Publication No. 2006/154454 discloses growing a SiC buffer layer (seed layer) at a temperature of 600 ° C. to 990 ° C. Techniques for growing an In (x) Ga (1-x) N (0 <x≤1) layer thereon have been described. Preferably, the undoped GaN layer is grown prior to the growth of the n-type Group III nitride semiconductor layer 30, which may be viewed as part of the buffer layer 20 or as part of the n-type Group III nitride semiconductor layer 30. .
투광성 도전막(60)은 p형 3족 질화물 반도체층(50) 전체로 전류가 잘 공급되도록 하기 위해 구비된다. 투광성 도전막(60)은 p형 3족 질화물 반도체층(50)의 거의 전면에 걸쳐서 형성되며, 예를 들어, ITO, ZnO 또는 Ni 및 Au를 사용하여 투광성 도전막으로 형성되거나, Ag를 사용하여 반사형 전도막으로 형성될 수 있다.The transparent conductive film 60 is provided in order to supply current well to the entire p-type group III nitride semiconductor layer 50. The transparent conductive film 60 is formed over almost the entire surface of the p-type group III nitride semiconductor layer 50, and is formed of a transparent conductive film using, for example, ITO, ZnO or Ni and Au, or by using Ag. It may be formed of a reflective conductive film.
p측 본딩 패드(70)와 n측 본딩 패드(80)는 전류의 공급과 외부로의 와이어 본딩을 위한 메탈 전극으로서, 예를 들어, 니켈, 금, 은, 크롬, 티타늄, 백금, 팔라듐, 로듐, 이리듐, 알루미늄, 주석, 인듐, 탄탈륨, 구리, 코발트, 철, 루테늄, 지르코늄, 텅스텐, 몰리브덴으로 이루어진 군으로부터 선택된 어느 하나 또는 이들의 조합을 사용하여 형성될 수 있다.The p-side bonding pad 70 and the n-side bonding pad 80 are metal electrodes for supplying current and wire bonding to the outside, for example, nickel, gold, silver, chromium, titanium, platinum, palladium, and rhodium. And iridium, aluminum, tin, indium, tantalum, copper, cobalt, iron, ruthenium, zirconium, tungsten, molybdenum, or any combination thereof.
보호막(90)은 이산화규소와 같은 물질로 형성되며, 생략될 수도 있다.The passivation layer 90 is formed of a material such as silicon dioxide and may be omitted.
도 2는 미국 등록특허공보 제6,547,249호에 개시된 직렬연결된 LED(A,B)의 일 예를 나타내는 도면이다. 여러 가지 장점 때문에 도 2에 도시된 것과 같이 복수의 LED(A,B)가 직렬연결되어 사용된다. 예를 들어, 복수의 LED(A,B)를 직렬연결하면 외부 회로와 와이어 연결의 개수가 감소하며, 와이어로 인한 광흡수 손실이 감소된다. 또한, 직렬연결된 LED(A,B) 전체의 동작전압이 상승하기 때문에 전원 공급 회로가 보다 단순화될 수 있다.2 is a view showing an example of a series-connected LED (A, B) disclosed in US Patent No. 6,547,249. Due to various advantages, as shown in FIG. 2, a plurality of LEDs A and B are used in series. For example, connecting a plurality of LEDs A and B in series reduces the number of external circuits and wire connections, and reduces the light absorption loss due to the wires. In addition, since the operating voltage of the series-connected LEDs A and B all rises, the power supply circuit can be further simplified.
한편, 복수의 LED(A,B)를 직렬연결하기 위해서 인터커넥터(34)를 증착하여 이웃한 LED(A,B)의 p측 전극(32)과 n측 전극(32)을 연결한다. 그러나 복수의 LED (A,B)를 전기적으로 절연하는 분리(isolation) 공정에서 사파이어 기판(20)이 노출되도록 복수의 반도체층을 식각해야 하는데, 그 식각 깊이가 깊어서 시간이 오래 걸리고 단차가 크기 때문에 인터커넥터(34)를 형성하기가 어렵다. 절연체(30)를 사용하여 도 2에 도시된 것과 같이 인터커넥터(34)를 완만한 경사를 이루도록 형성하는 경우 LED(A,B)들 사이 간격이 증가하여 집적도 향상에 문제가 있다.Meanwhile, in order to connect the plurality of LEDs (A, B) in series, the interconnector 34 is deposited to connect the p-side electrode 32 and the n-side electrode 32 of the neighboring LEDs (A, B). However, a plurality of semiconductor layers must be etched to expose the sapphire substrate 20 in an isolation process for electrically insulating the plurality of LEDs (A, B), because the etch depth is long and takes a long time and the step is large. It is difficult to form the interconnector 34. When the interconnector 34 is formed to have a gentle inclination as shown in FIG. 2 by using the insulator 30, the spacing between the LEDs A and B increases, which causes a problem in improving the degree of integration.
도 3은 미국 등록특허공보 제6,547,249호에 개시된 직렬연결된 LED의 다른 예를 나타내는 도면이다. 복수의 LED(A,B)를 절연(isolation)하는 다른 방법으로 복수의 LED(A,B) 사이의 하부 반도체층(22; 예를 들어, n형 질화물 반도체층)을 식각하지 않고 이온 주입(ion implantation)을 하여 복수의 LED(A,B) 사이를 절연하면 인터커넥터(34)의 단차가 감소된다. 그러나 하부 반도체층(22)에 깊게 이온 주입하는 것이 어렵고 공정 시간이 길어서 문제가 된다.3 is a view showing another example of a series-connected LED disclosed in US Patent No. 6,547,249. Another method of isolating the plurality of LEDs (A, B) is ion implantation without etching the lower semiconductor layer 22 (for example, n-type nitride semiconductor layer) between the plurality of LEDs (A, B). Insulation between the plurality of LEDs A and B by ion implantation reduces the level of the interconnector 34. However, it is difficult to implant ions deeply into the lower semiconductor layer 22 and a long process time is a problem.
도 4는 미국 등록특허공보 제7,417,259호에 개시된 엘이디 어레이의 일 예를 나타내는 도면으로서, 고전압(high drive voltage), 저전류 구동을 위해 절연기판 위에 2차원 배열된 엘이디 어레이가 형성되어 있다. 절연기판은 사파이어 모노리식(monolithically) 기판이 사용되었고, 기판 위에 2개의 엘이디 어레이가 역방향으로 병렬연결되어 있다. 따라서, AC 전원이 직접 구동전원으로 사용될 수 있다.FIG. 4 is a diagram illustrating an example of an LED array disclosed in US Patent No. 7,417,259, in which a two-dimensional LED array is formed on an insulating substrate for driving a high drive voltage and a low current. As the insulating substrate, a sapphire monolithically substrate was used, and two LED arrays were connected in parallel in a reverse direction on the substrate. Therefore, AC power can be used as the direct drive power.
도 5는 종래의 단일 기판 위에 직렬연결된 복수의 발광부를 포함하는 반도체 발광소자의 일 예를 나타내는 도면으로서, 여러 가지 장점 때문에, 도 5에 도시된 것과 같이, 단일 기판 위에 복수의 발광부(A,B)가 직렬로 연결된 반도체 발광소자가 사용된다. 단일 기판 위에 복수의 발광부(A,B)를 직렬연결하면 외부 회로와의 연결을 위한 와이어의 개수가 감소하며, 따라서 와이어로 인한 광흡수 손실이 감소된다. 또한, 직렬연결된 발광부(A,B) 전체의 동작전압이 상승하기 때문에 전원 공급 회로가 보다 단순화될 수 있다. 더불어, 개별적인 반도체 발광소자를 직렬로 연결하는 것과 비교했을 때, 점유하는 면적이 작아 설치 밀도를 향상시킬 수 있고, 따라서, 반도체 발광소자를 포함하는 조명 장치 등을 구성할 때 소형화가 가능하다.FIG. 5 is a view illustrating an example of a semiconductor light emitting device including a plurality of light emitting units connected in series on a conventional single substrate. As illustrated in FIG. 5, a plurality of light emitting units A, A semiconductor light emitting element in which B) is connected in series is used. When the plurality of light emitting units A and B are connected in series on a single substrate, the number of wires for connection with an external circuit is reduced, and thus the light absorption loss due to the wires is reduced. In addition, since the operating voltage of the entire series of light emitting units A and B increases, the power supply circuit may be simplified. In addition, compared with connecting individual semiconductor light emitting devices in series, the area occupied is small, so that the installation density can be improved, and therefore, miniaturization is possible when constructing a lighting device or the like including the semiconductor light emitting devices.
이에 대하여 '발명의 실시를 위한 형태'의 후단에 기술한다.This will be described later in the section on Embodiments of the Invention.
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all, provided that this is a summary of the disclosure. of its features).
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 반도체 발광소자에 있어서, 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층 및 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 통해 빛을 생성하는 활성층을 가지는 복수의 반도체층;을 포함하는 중심 발광부; 중심 발광부의 둘레에 구비된 주변 발광부;로서, 평면도(top view) 상으로 관찰할 때 중심 발광부와 다른 형상을 가지며, 중심 발광부와 마주하는 측면이 중심 발광부의 윤곽(outline)을 따라 형성된 주변 발광부; 그리고 중심 발광부 및 주변 발광부를 전기적으로 연결하는 중심 연결 전극;을 포함하는 것을 특징으로 하는 반도체 발광소자가 제공된다.According to one aspect of the present disclosure, in a semiconductor light emitting device, a first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, and A plurality of semiconductor layers interposed between the first semiconductor layer and the second semiconductor layer and having a plurality of active layers generating light through recombination of electrons and holes; A peripheral light emitting part provided around the central light emitting part, the peripheral light emitting part having a shape different from that of the central light emitting part when viewed in a top view, and a side facing the central light emitting part is formed along the outline of the central light emitting part; Ambient light emitting unit; And a center connection electrode electrically connecting the center light emitting unit and the peripheral light emitting unit.
본 개시에 따른 다른 하나의 태양에 의하면(According to another aspect of the present disclosure), 단일 기판에 형성된 제1 발광부 및 제2 발광부를 포함하는 반도체 발광소자에 있어서, 제1 발광부 및 제2 발광부는 각각: 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층 및 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 통해 빛을 생성하는 활성층을 가지는 복수의 반도체층;을 포함하며, 제1 발광부의 제1 반도체층과 전기적으로 연통하며 전자와 정공 중 하나를 공급하는 제1 전극; 제2 발광부의 제2 반도체층과 전기적으로 연통하며 전자와 정공 중 나머지 하나를 공급하는 제2 전극; 그리고 제1 발광부의 제2 반도체층 위에서 뻗으며 제1 발광부의 측면, 제1 발광부와 제2 발광부의 사이 및 제2 발광부의 측면으로 연장된 연장형(extending type) 전극부; 그리고 제2 발광부의 제1 반도체층 가장자리 위에 형성되며 연장형 전극부와 연결되는 점형(point type) 전극부;를 구비하는 연결 전극;을 포함하는 것을 특징으로 하는 반도체 발광소자가 제공된다.According to another aspect of the present disclosure (According to another aspect of the present disclosure), a semiconductor light emitting device including a first light emitting unit and a second light emitting unit formed on a single substrate, the first light emitting unit and the second light emitting unit Each part is interposed between a first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, and a first semiconductor layer and a second semiconductor layer, and emitting light through recombination of electrons and holes. A first electrode including a plurality of semiconductor layers having an active layer to be generated, and electrically communicating with the first semiconductor layer of the first light emitting unit and supplying one of electrons and holes; A second electrode in electrical communication with a second semiconductor layer of the second light emitting part and supplying the other one of electrons and holes; And an extending type electrode part extending over the second semiconductor layer of the first light emitting part and extending to the side of the first light emitting part, between the first light emitting part and the second light emitting part, and to the side of the second light emitting part; And a connection electrode having a point type electrode portion formed on an edge of the first semiconductor layer of the second light emitting portion and connected to the extended electrode portion.
본 개시에 따른 또 다른 하나의 태양에 의하면(According to still another aspect of the present disclosure), 반도체 발광소자에 있어서, 제1 도전성을 가지는 제1 반도체층, 전자와 정공의 재결합을 통해 빛을 생성하는 활성층 및 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층이 순차로 적층된 복수의 반도체층;으로서, 서로 대향하는 2개의 긴 에지들(long edges)과 서로 대향하는 2개의 짧은 에지들(short edges)을 가지는 복수의 반도체층; 제2 반도체층 및 활성층이 제거되어 노출된 제1 반도체층 위에서 일 측 긴 에지로부터 타 측 긴 에지를 향하여 뻗는 제1 가지 전극과, 제2 반도체층 위에서 타 측 긴 에지로부터 일 측 긴 에지를 향하여 뻗은 제2 가지 전극 중 적어도 하나; 복수의 반도체층과 제1 가지 전극 및 제2 가지 전극을 덮도록 형성되며, 활성층으로부터의 빛을 반사하는 비도전성 반사막; 제1 반도체층과 전기적으로 연통하도록 일 측 긴 에지 측에 구비되며, 전자와 정공 중 하나를 공급하는 제1 전극; 그리고 제2 반도체층과 전기적으로 연통하도록 타 측 긴 에지 측에 구비되며, 전자와 정공 중 나머지 하나를 공급하는 제2 전극;을 포함하는 것을 특징으로 하는 반도체 발광소자가 제공된다.According to another aspect according to the present disclosure (According to still another aspect of the present disclosure), in the semiconductor light emitting device, the first semiconductor layer having a first conductivity, generating light through recombination of electrons and holes A plurality of semiconductor layers in which an active layer and a second semiconductor layer having a second conductivity different from the first conductivity are sequentially stacked; two long edges facing each other and two short edges facing each other ( a plurality of semiconductor layers having short edges); A first branch electrode extending from one side long edge to the other long edge on the exposed first semiconductor layer with the second semiconductor layer and the active layer removed, and from the other long edge to the one long edge on the second semiconductor layer At least one of the extended second branch electrodes; A non-conductive reflecting film formed to cover the plurality of semiconductor layers, the first branch electrode and the second branch electrode, and reflecting light from the active layer; A first electrode provided on one side of the long edge side to be in electrical communication with the first semiconductor layer and supplying one of electrons and holes; And a second electrode provided at the other long edge side to be in electrical communication with the second semiconductor layer and supplying the other one of electrons and holes.
본 개시에 따른 또 다른 하나의 태양에 의하면(According to still another aspect of the present disclosure), 반도체 발광소자에 있어서, 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 및 제1 반도체층과 제2 반도체층의 사이에 개재되며 전자와 정공의 재결합에 의해 빛을 생성하는 활성층을 가지는 복수의 반도체층; 제1 반도체층과 전기적으로 연통하며 전자와 정공 중 하나를 공급하는 제1 전극부; 제2 반도체층과 전기적으로 연통하며 전자와 정공 중 나머지 하나를 공급하는 제2 전극부; 그리고 복수의 반도체층 위에 형성되며, 활성층으로부터의 빛을 반사하는 비도전성 반사막;을 포함하며, 제1 전극부와 제2 전극부 중 적어도 하나는: 비도전성 반사막 위에 형성된 제1 상부 전극; 제1 상부 전극 아래에서 제1 상부 전극 바깥으로 뻗는 제1 가지 전극; 비도전성 반사막을 관통하며 제1 상부 전극과 제1 가지 전극을 연결하는 제1 전기적 연결; 그리고 비도전성 반사막을 관통하며 제1 상부 전극과 복수의 반도체층을 전기적으로 연통하되, 제1 가지 전극의 연장선상에서 벗어나 있는 제2 전기적 연결;을 포함하는 것을 특징으로 하는 반도체 발광소자가 제공된다.According to still another aspect of the present disclosure, in a semiconductor light emitting device, a first semiconductor layer having a first conductivity and a second conductivity having a second conductivity different from the first conductivity. A plurality of semiconductor layers having a second semiconductor layer and an active layer interposed between the first semiconductor layer and the second semiconductor layer and generating light by recombination of electrons and holes; A first electrode part in electrical communication with the first semiconductor layer and supplying one of electrons and holes; A second electrode part in electrical communication with the second semiconductor layer and supplying the other one of electrons and holes; And a nonconductive reflecting film formed over the plurality of semiconductor layers and reflecting light from the active layer, wherein at least one of the first electrode part and the second electrode part comprises: a first upper electrode formed on the nonconductive reflecting film; A first branch electrode extending below the first upper electrode and out of the first upper electrode; A first electrical connection penetrating the non-conductive reflective film and connecting the first upper electrode and the first branch electrode; And a second electrical connection penetrating the non-conductive reflecting film and electrically communicating the first upper electrode and the plurality of semiconductor layers, but deviating from an extension line of the first branch electrode.
본 개시에 따른 또 다른 하나의 태양에 의하면(According to still another aspect of the present disclosure), 반도체 발광소자에 있어서, 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 및 제1 반도체층과 제2 반도체층의 사이에 개재되며 전자와 정공의 재결합에 의해 빛을 생성하는 활성층을 포함하는 복수의 반도체층;으로서, 단변(short edge), 단변에 대향하는 타 단변, 장변(long edge), 및 장변에 대향하는 타 장변을 가지는 복수의 반도체층; 복수의 반도체층 위에 형성되며, 활성층으로부터의 빛을 반사하는 비도전성 반사막; 비도전성 반사막 위에 형성된 제1 상부 전극 및 제2 상부 전극;으로서, 단변 측에 구비된 제1 상부 전극, 타 단변 측에 구비된 제2 상부 전극; 각각 비도전성 반사막을 관통하여 제1 반도체층과 제1 상부 전극을 전기적으로 연통하는 제1 전기적 연결 및 제2 전기적 연결;로서, 제2 전기적 연결이 제1 전기적 연결보다 장변으로부터 멀리 위치하는 제1 전기적 연결 및 제2 전기적 연결; 각각 비도전성 반사막을 관통하여 제2 반도체층과 제2 상부 전극을 전기적으로 연통하는 제3 전기적 연결 및 제4 전기적 연결;로서, 제4 전기적 연결이 제3 전기적 연결보다 타 장변으로부터 멀리 위치하는 제3 전기적 연결 및 제4 전기적 연결; 제1 전기적 연결과 연결되며, 제2 반도체층 및 활성층이 식각되어 노출된 장변 측 제1 반도체층 위에서 제1 상부 전극의 아래로부터 제2 상부 전극의 아래로 뻗는 제1 가지 전극; 그리고 제3 전기적 연결과 연결되며, 타 장변 측 제2 반도체층과 광 반사층 사이에서 제2 상부 전극의 아래로부터 제1 상부 전극의 아래로 뻗는 제2 가지 전극;을 포함하며, 제2 전기적 연결과 제4 전기적 연결의 사이에는 단변으로부터 타 단변을 향하는 방향 및 타 단변으로부터 단변을 향하는 방향으로 형성된 가지 전극이 없는 것을 특징으로 하는 반도체 발광소자가 제공된다.According to still another aspect of the present disclosure, in a semiconductor light emitting device, a first semiconductor layer having a first conductivity and a second conductivity having a second conductivity different from the first conductivity. A plurality of semiconductor layers comprising a second semiconductor layer and an active layer interposed between the first semiconductor layer and the second semiconductor layer and generating light by recombination of electrons and holes; A plurality of semiconductor layers having another short side, a long edge, and the other long side opposite to the long side; A nonconductive reflecting film formed over the plurality of semiconductor layers and reflecting light from the active layer; A first upper electrode and a second upper electrode formed on the non-conductive reflective film, the first upper electrode provided on the short side and the second upper electrode provided on the other short side; A first electrical connection and a second electrical connection respectively passing through the non-conductive reflecting film to electrically connect the first semiconductor layer and the first upper electrode; wherein the first electrical connection is located farther from the long side than the first electrical connection; Electrical connection and second electrical connection; A third electrical connection and a fourth electrical connection respectively passing through the non-conductive reflecting film to electrically connect the second semiconductor layer and the second upper electrode; wherein the fourth electrical connection is located farther from the other side than the third electrical connection. 3 electrical connections and fourth electrical connections; A first branch electrode connected to the first electrical connection and extending from the bottom of the first upper electrode to the bottom of the first upper electrode on which the second semiconductor layer and the active layer are etched and exposed; And a second branch electrode connected to the third electrical connection and extending from the bottom of the second upper electrode to the bottom of the first upper electrode between the second long side semiconductor layer and the light reflection layer. There is provided a semiconductor light emitting element, wherein there is no branch electrode formed between the fourth electrical connection in the direction from the short side to the other short side and in the direction from the other short side to the short side.
본 개시에 따른 또 다른 하나의 태양에 의하면(According to still another aspect of the present disclosure), 반도체 발광소자에 있어서, 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는제2 반도체층, 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 통해 빛을 생성하는 활성층을 구비하며, 성장 기판을 이용하여 성장되는 복수의 반도체층; 성장 기판의 반대 측에서 복수의 반도체층에 결합되는 비도전성 반사막; 그리고 복수의 반도체층과 전기적으로 연결되며, 비도전성 반사막 위에 서로 대향하게 형성되는 제1 전극 및 제2 전극;으로서, 적어도 하나가 복수의 서브 전극과 복수의 서브 전극을 연결하는 적어도 하나의 연결부를 가지며, 연결 방향과 직교하는 방향을 기준으로 각 연결부는 각 연결부에 의해 연결되는 각 서브 전극보다 작은 폭을 가지는 제1 전극 및 제2 전극;을 포함하는 것을 특징으로 하는 반도체 발광소자가 제공된다.According to another aspect of the present disclosure (According to still another aspect of the present disclosure), in a semiconductor light emitting device, a first semiconductor layer having a first conductivity, an agent having a second conductivity different from the first conductivity A plurality of semiconductor layers interposed between the second semiconductor layer, the first semiconductor layer, and the second semiconductor layer, the active layers generating light through recombination of electrons and holes, and grown using a growth substrate; A nonconductive reflecting film bonded to the plurality of semiconductor layers on the opposite side of the growth substrate; And a first electrode and a second electrode electrically connected to the plurality of semiconductor layers and formed to face each other on the non-conductive reflective film, wherein at least one connection portion connecting the plurality of sub electrodes and the plurality of sub electrodes to each other. The semiconductor light emitting device includes a first electrode and a second electrode having a width smaller than that of each sub-electrode connected by each connection part based on a direction perpendicular to the connection direction.
본 개시에 따른 또 다른 하나의 태양에 의하면(According to still another aspect of the present disclosure), 반도체 발광소자에 있어서, 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 및 제1 반도체층과 제2 반도체층의 사이에 개재되어 전자와 정공의 재결합에 의해 빛을 생성하는 활성층을 가지는 복수의 반도체층; 복수의 반도체층 위에 형성되어 활성층으로부터의 빛을 반사하는 비도전성 반사막; 비도전성 반사막 위에 형성되며, 패드부와 패드부로부터 돌출된 돌출부를 가지는 제1 전극; 비도전성 반사막 위에 형성되며 돌출부와 마주하도록 형성된 제2 전극; 제1 반도체층 위에 형성되며, 돌출부 아래에서 제1 전극과 제2 전극 사이로 뻗는 제1 가지 전극; 비도전성 반사막을 관통하여 돌출부와 제1 가지 전극을 연결하는 제1 전기적 연결부; 그리고 비도전성 반사막을 관통하여 제2 전극과 제2 반도체층을 전기적으로 연통하는 제2 전기적 연결부;를 포함하는 것을 특징으로 하는 반도체 발광소자가 제공된다.According to still another aspect of the present disclosure, in a semiconductor light emitting device, a first semiconductor layer having a first conductivity and a second conductivity having a second conductivity different from the first conductivity. A plurality of semiconductor layers having a second semiconductor layer and an active layer interposed between the first semiconductor layer and the second semiconductor layer to generate light by recombination of electrons and holes; A nonconductive reflecting film formed over the plurality of semiconductor layers to reflect light from the active layer; A first electrode formed on the non-conductive reflecting film and having a pad portion and a protrusion projecting from the pad portion; A second electrode formed on the non-conductive reflecting film and facing the protrusion; A first branch electrode formed on the first semiconductor layer and extending between the first electrode and the second electrode under the protrusion; A first electrical connector penetrating the non-conductive reflective film to connect the protrusion and the first branch electrode; And a second electrical connection part penetrating the non-conductive reflective film to electrically connect the second electrode and the second semiconductor layer.
본 개시에 따른 또 다른 하나의 태양에 의하면(According to still another aspect of the present disclosure), 반도체 발광소자에 있어서, 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 및 제1 반도체층과 제2 반도체층의 사이에 개재되어 전자와 정공의 재결합에 의해 빛을 생성하는 활성층을 가지는 복수의 반도체층; 복수의 반도체층 위에 형성되어 활성층으로부터의 빛을 반사하는 비도전성 반사막; 비도전성 반사막 위에 떨어져 형성된 제1 전극, 및 제2 전극; 비도전성 반사막을 관통하여 제1 전극과 제1 반도체층을 전기적으로 연통하는 적어도 하나의 제1 전기적 연결부; 비도전성 반사막을 관통하여 제2 전극과 제2 반도체층을 전기적으로 연통하는 적어도 하나의 제2 전기적 연결부; 적어도 하나의 제1 전기적 연결부와 연결되도록 제1 반도체층 위에 형성된 제1 가지 전극;으로서, 제1 전극의 대각방향 코너들 중 제2 전극과 인접한 코너 아래로부터 제1 전극과 제2 전극 사이로 뻗는 제1 가지 전극; 그리고 적어도 하나의 제2 전기적 연결부와 연결되도록 복수의 반도체층과 비도전성 반사막 사이에 형성된 제2 가지 전극;으로서, 제2 전극의 대각방향 코너들 중 제1 전극과 인접한 코너 아래로부터 제1 전극의 대각방향 코너들 사이를 향하여 뻗는 제2 가지 전극;을 포함하는 것을 특징으로 하는 반도체 발광소자가 제공된다.According to still another aspect of the present disclosure, in a semiconductor light emitting device, a first semiconductor layer having a first conductivity and a second conductivity having a second conductivity different from the first conductivity. A plurality of semiconductor layers having a second semiconductor layer and an active layer interposed between the first semiconductor layer and the second semiconductor layer to generate light by recombination of electrons and holes; A nonconductive reflecting film formed over the plurality of semiconductor layers to reflect light from the active layer; A first electrode and a second electrode formed to be separated from the non-conductive reflecting film; At least one first electrical connection penetrating the non-conductive reflective film to electrically connect the first electrode and the first semiconductor layer; At least one second electrical connection penetrating the non-conductive reflective film to electrically connect the second electrode and the second semiconductor layer; A first branch electrode formed on the first semiconductor layer to be connected to the at least one first electrical connection portion, the first branch electrode extending between the first electrode and the second electrode from below a corner adjacent to the second electrode of the diagonal corners of the first electrode; 1 electrode; And a second branch electrode formed between the plurality of semiconductor layers and the non-conductive reflecting film so as to be connected to the at least one second electrical connection part, wherein the second branch electrode is formed from below a corner adjacent to the first electrode of the diagonal corners of the second electrode. There is provided a semiconductor light emitting device, including a second branch electrode extending toward between diagonal corners.
이에 대하여 '발명의 실시를 위한 형태'의 후단에 기술한다.This will be described later in the section on Embodiments of the Invention.
도 1은 종래의 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면,1 is a view showing an example of a conventional group III nitride semiconductor light emitting device,
도 2는 미국 특허 제6,547,249호에 개시된 직렬연결된 LED의 일 예를 나타내는 도면,2 illustrates an example of a series-connected LED disclosed in US Pat. No. 6,547,249;
도 3은 미국 특허 제6,547,249호에 개시된 직렬연결된 LED의 다른 예를 나타내는 도면,3 illustrates another example of a series-connected LED disclosed in US Pat. No. 6,547,249;
도 4는 미국 등록특허공보 제7,417,259호에 개시된 엘이디 어레이의 일 예를 나타내는 도면,4 is a view showing an example of the LED array disclosed in US Patent No. 7,417,259;
도 5는 종래의 단일 기판 위에 직렬연결된 복수의 발광부를 포함하는 반도체 발광소자의 일 예를 나타내는 도면,5 is a view showing an example of a semiconductor light emitting device including a plurality of light emitting units connected in series on a conventional single substrate;
도 6은 본 개시에 따른 반도체 발광소자의 일 예를 나타내는 도면,6 is a diagram illustrating an example of a semiconductor light emitting device according to the present disclosure;
도 7은 도 6의 A-A선을 따라 취한 절단면의 일 예를 나타내는 도면,7 is a view showing an example of a cut plane taken along the line A-A of FIG. 6,
도 8은 본 개시에 따른 반도체 발광소자의 광추출 효율 향상을 설명하는 도면,8 is a view illustrating an improvement in light extraction efficiency of a semiconductor light emitting device according to the present disclosure;
도 9는 비교예1의 반도체 발광소자를 나타내는 도면,9 is a view showing a semiconductor light emitting device of Comparative Example 1;
도 10은 비교예2의 반도체 발광소자를 나타내는 도면,10 is a view showing a semiconductor light emitting device of Comparative Example 2;
도 11은 본 개시에 따른 반도체 발광소자의 다른 예를 나타내는 도면,11 is a view showing another example of a semiconductor light emitting device according to the present disclosure;
도 12는 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면,12 is a view showing still another example of a semiconductor light emitting device according to the present disclosure;
도 13은 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면,13 is a view showing still another example of a semiconductor light emitting device according to the present disclosure;
도 14는 연결 전극이 2개의 연선을 구비하는 다양한 예들을 설명하기 위한 도면,14 is a view for explaining various examples in which the connecting electrode includes two stranded wires;
도 15는 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면,15 is a view showing still another example of a semiconductor light emitting device according to the present disclosure;
도 16은 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면,16 illustrates another example of the semiconductor light emitting device according to the present disclosure;
도 17은 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면,17 illustrates another example of a semiconductor light emitting device according to the present disclosure;
도 18은 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면.18 illustrates another example of the semiconductor light emitting device according to the present disclosure.
도 19는 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면,19 is a view showing still another example of a semiconductor light emitting device according to the present disclosure;
도 20은 도 19의 A-A선을 따라 취한 절단면의 또 다른 예를 나타내는 도면,20 is a view showing still another example of a cut plane taken along the line A-A of FIG. 19,
도 21은 비교예의 반도체 발광소자를 나타내는 도면,21 is a view showing a semiconductor light emitting device of Comparative Example;
도 22는 본 개시에 따른 반도체 발광소자의 다른 예를 나타내는 도면,22 illustrates another example of the semiconductor light emitting device according to the present disclosure;
도 23은 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면,23 is a view showing still another example of a semiconductor light emitting device according to the present disclosure;
도 24는 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면,24 is a view showing still another example of the semiconductor light emitting device according to the present disclosure;
도 25는 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면,25 is a view showing still another example of a semiconductor light emitting device according to the present disclosure;
도 26은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면,26 is a view for explaining another example of a semiconductor light emitting device according to the present disclosure;
도 27은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면,27 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure;
도 28은 도 27의 B-B 선을 따라 취한 절단면의 또 다른 예를 설명하는 도면,28 is a view for explaining another example of a cut plane taken along the line B-B in FIG. 27;
도 29는 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면,29 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure;
도 30은 미국 등록특허공보 제7,262,436호에 개시된 반도체 발광소자의 일 예를 나타내는 도면,30 is a view showing an example of a semiconductor light emitting device disclosed in US Patent No. 7,262,436;
도 31은 일본 공개특허공보 제2006-20913호에 개시된 반도체 발광소자의 일 예를 나타내는 도면,31 is a view showing an example of a semiconductor light emitting device disclosed in Japanese Laid-Open Patent Publication No. 2006-20913;
도 32는 미국 등록특허공보 제6,650,044호에 도시된 반도체 발광소자의 일 예를 나타내는 도면,32 is a view showing an example of a semiconductor light emitting device shown in US Patent No. 6,650,044;
도 33은 미국 공개특허공보 제2012/0171789에 개시된 반도체 발광소자의 일 예를 나타내는 도면,33 is a view showing an example of a semiconductor light emitting device disclosed in US Patent Publication No. 2012/0171789;
도 34는 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면,34 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure;
도 35는 도 34의 A-A 선을 따라 취한 단면의 일 예를 나타내는 도면,35 is a view showing an example of a section taken along the line A-A of FIG. 34,
도 36은 비교예의 반도체 발광소자를 설명하기 위한 도면,36 is a view for explaining the semiconductor light emitting device of the comparative example;
도 37은 본 개시에 따른 반도체 발광소자의 다른 예를 설명하기 위한 도면,37 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure;
도 38은 도 37의 B-B 선을 따라 취한 단면의 일 예를 나타내는 도면,38 is a view showing an example of a cross section taken along the line B-B in FIG. 37,
도 39 및 도 40은 본 개시에 따른 반도체 발광소자의 사용 예들을 설명하기 위한 도면,39 and 40 are diagrams for describing usage examples of the semiconductor light emitting device according to the present disclosure;
도 41은 플레이트를 제조하는 방법의 일 예를 설명하는 도면,41 is a view for explaining an example of a method of manufacturing a plate;
도 42는 본 개시에 따른 반도체 발광소자의 사용 방법의 다른 예를 설명하기 위한 도면,42 is a view for explaining another example of the method of using the semiconductor light emitting device according to the present disclosure;
도 43은 본 개시에 따른 반도체 발광소자의 사용 방법의 또 다른 예를 설명하기 위한 도면,43 is a view for explaining another example of a method of using the semiconductor light emitting device according to the present disclosure;
도 44는 미국 등록특허공보 제6,307,218호에 개시된 전극 구조의 일 예를 나타내는 도면44 is a view showing an example of an electrode structure disclosed in US Patent No. 6,307,218.
도 45는 미국공개특허공보 제2007-0096115호에 개시된 전극 구조의 일 예를 나타내는 도면,45 is a view showing an example of an electrode structure disclosed in US Patent Publication No. 2007-0096115,
도 46은 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면,46 is a view showing still another example of a semiconductor light emitting device according to the present disclosure;
도 47은 도 46에서 A-A 선을 따라 절단한 단면의 일 예를 설명하는 도면,FIG. 47 is a view for explaining an example of a cross section taken along a line A-A in FIG. 46;
도 48은 본 개시에 따른 반도체 발광소자의 제조 방법의 다른 예를 설명하기 위한 도면,48 is a view for explaining another example of the method of manufacturing the semiconductor light emitting device according to the present disclosure;
도 49는 본 개시에 따른 반도체 발광소자의 다른 예들을 설명하기 위한 도면,49 is a view for explaining other examples of the semiconductor light emitting device according to the present disclosure;
도 50은 본 개시에 따른 반도체 발광소자의 또 다른 예들을 설명하기 위한 도면,50 is a view for explaining still another example of a semiconductor light emitting device according to the present disclosure;
도 51은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면,51 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure;
도 52는 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면,52 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure;
도 53은 본 개시에 따른 반도체 발광소자의 또 다른 예들을 설명하기 위한 도면,53 is a view for explaining still another example of the semiconductor light emitting device according to the present disclosure;
도 54는 도 53에 제시된 반도체 발광소자의 발광 사진,54 is a light emitting photograph of the semiconductor light emitting device shown in FIG. 53;
도 55는 본 개시에 따른 반도체 발광소자의 또 다른 예들을 설명하기 위한 도면,55 is a view for explaining still another example of the semiconductor light emitting device according to the present disclosure;
도 56은 도 55에 제시된 반도체 발광소자의 발광 사진,56 is a light emitting photograph of the semiconductor light emitting device shown in FIG. 55;
도 57은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면,57 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure;
도 58은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면,58 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure;
도 59는 도 58의 A-A 선을 따라 취한 단면의 일 예를 나타내는 도면,59 is a view showing an example of a cross section taken along the line A-A of FIG. 58,
도 60은 본 개시에 따른 반도체 발광소자의 다른 예를 설명하기 위한 도면,60 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure;
도 61은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면,61 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure;
도 62는 도 61의 B-B 선을 따라 취한 단면의 일 예를 나타내는 도면,62 is a view showing an example of a section taken along the line B-B in FIG. 61,
도 63은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면,63 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure;
도 64는 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면,64 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure;
도 65는 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면,65 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure;
도 66 및 도 67은 본 개시에 따른 반도체 발광소자의 사용 예들을 설명하기 위한 도면들,66 and 67 are views for explaining use examples of the semiconductor light emitting device according to the present disclosure;
도 68은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면,68 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure;
도 69는 도 68의 A-A 선을 따른 단면의 일 예를 설명하기 위한 도면,FIG. 69 is a view for explaining an example of a cross section taken along a line A-A of FIG. 68;
도 70a는 본 개시에 따른 반도체 발광소자의 다른 예를 설명하기 위한 도면,70A is a view for explaining another example of the semiconductor light emitting device according to the present disclosure;
도 71은 본 개시에 따른 반도체 발광소자의 또 다른 예들을 설명하기 위한 도면,71 is a view for explaining still another example of the semiconductor light emitting device according to the present disclosure;
도 72는 본 개시에 따른 반도체 발광소자의 또 다른 예들을 설명하기 위한 도면,72 is a view for explaining still another example of a semiconductor light emitting device according to the present disclosure;
도 73은 전극의 면적과 반도체 발광소자의 휘도의 관계를 설명하기 위한 도면,73 is a diagram for explaining the relationship between the area of an electrode and the luminance of a semiconductor light emitting element;
도 74는 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면,74 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure;
도 75는 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면,75 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure;
도 76은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면,76 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure;
도 77은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면,77 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure;
도 78은 도 77에서 A-A 선을 따라 절단한 단면의 일 예를 설명하는 도면,FIG. 78 is a view for explaining an example of a cross section taken along a line A-A in FIG. 77;
도 79는 본 개시에 따른 반도체 발광소자의 다른 예를 설명하기 위한 도면,79 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure;
도 80은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면,80 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure;
도 81은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면.81 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure.
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)). The present disclosure will now be described in detail with reference to the accompanying drawing (s).
도 6은 본 개시에 따른 반도체 발광소자의 일 예를 나타내는 도면이고, 도 7은 도 6의 A-A선을 따라 취한 절단면의 일 예를 나타내는 도면이다.6 is a diagram illustrating an example of a semiconductor light emitting device according to the present disclosure, and FIG. 7 is a diagram illustrating an example of a cut plane taken along line A-A of FIG. 6.
반도체 발광소자는 중심 발광부(101), 주변 발광부(201), 중심 연결 전극(92,93), 주변 연결 전극(94), 제1 전극(80) 및 제2 전극(70)을 포함한다. 중심 발광부(101) 및 주변 발광부(201)는 동일한 기판(10)에 형성되며, 각각 기판(10) 위에 형성된 복수의 반도체층을 포함한다. The semiconductor light emitting device includes a center light emitting unit 101, a peripheral light emitting unit 201, center connecting electrodes 92 and 93, a peripheral connecting electrode 94, a first electrode 80, and a second electrode 70. . The central light emitting unit 101 and the peripheral light emitting unit 201 are formed on the same substrate 10 and each includes a plurality of semiconductor layers formed on the substrate 10.
기판(10)으로 주로 사파이어, SiC, Si, GaN 등이 이용된다. 본 예는 기판(10)이 제거되거나 도전성을 가지는 경우에 전극이 기판(10)이 제거된 제1 반도체층(30) 측 또는 도전성 기판(10) 측에 형성되는 반도체 발광소자에도 적용될 수 있으며, 플립칩(flip chip)에도 적용될 수 있다. 제1 반도체층(30)과 제2 반도체층(50)은 그 위치가 바뀔 수 있으며, 3족 질화물 반도체 발광소자에 있어서 주로 GaN으로 이루어진다. Sapphire, SiC, Si, GaN and the like are mainly used as the substrate 10. The present example may be applied to a semiconductor light emitting device in which an electrode is formed on the first semiconductor layer 30 side or the conductive substrate 10 side from which the substrate 10 is removed when the substrate 10 is removed or has conductivity. It can also be applied to flip chips. The positions of the first semiconductor layer 30 and the second semiconductor layer 50 may be changed, and are mainly made of GaN in the group III nitride semiconductor light emitting device.
복수의 반도체층은 기판(10) 위에 형성된 버퍼층(20), 제1 도전성을 가지는 제1 반도체층(30; 예: Si 도핑된 GaN), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(50; 예: Mg 도핑된 GaN) 및 제1 반도체층(30)과 제2 반도체층(50) 사이에 개재되며 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(40; 예: InGaN/(In)GaN 다중양자우물구조)을 포함한다. 복수의 반도체층(30,40,50) 각각은 다층으로 이루어질 수 있고, 버퍼층(20)은 생략될 수 있다. The plurality of semiconductor layers may include a buffer layer 20 formed on the substrate 10, a first semiconductor layer 30 having a first conductivity (for example, Si-doped GaN), and a second semiconductor layer having a second conductivity different from the first conductivity. (Eg, Mg-doped GaN) and an active layer 40 interposed between the first semiconductor layer 30 and the second semiconductor layer 50 to generate light through recombination of electrons and holes (eg, InGaN / ( In) GaN multi-quantum well structure). Each of the semiconductor layers 30, 40, and 50 may be formed in multiple layers, and the buffer layer 20 may be omitted.
바람직하게는 투광성 도전막(60)이 구비된다. 투광성 도전막(60)은 투광성을 가지며 대략 제2 반도체층(50)을 전체적으로 덮도록 형성될 수 있지만, 일부에만 형성될 수도 있다. 특히 p형 GaN의 경우에 전류 확산 능력이 떨어지며, p형 반도체층(50)이 GaN으로 이루어지는 경우에, 대부분 투광성 도전막(60)의 도움을 받아야 한다. 예를 들어, ITO, Ni/Au와 같은 물질이 투광성 도전막(60)으로 사용될 수 있다.Preferably, the transparent conductive film 60 is provided. The transparent conductive film 60 may be formed to have a light transmissive shape and substantially cover the second semiconductor layer 50, but may be formed only in part. In particular, in the case of p-type GaN, the current spreading ability is inferior, and in the case where the p-type semiconductor layer 50 is made of GaN, most of the transparent conductive film 60 should be assisted. For example, materials such as ITO and Ni / Au may be used as the transparent conductive film 60.
복수의 발광부(101,102,201) 및 연결 전극(92,93,94)을 덮는 보호막(도시되지 않음)이 형성될 수 있다.A passivation layer (not shown) may be formed to cover the plurality of light emitting parts 101, 102, 201 and the connection electrodes 92, 93, and 94.
복수의 발광부(101,102,201)는 트렌치(trench)와 같이 반도체층을 식각하는 방법 등에 의해 서로 전기적으로 분리(isolation)되어 있다. 전기적 분리 방법으로 복수의 발광부(101,102,201) 사이에 절연막이 구비될 수 있고, 또는 기판(10)에 이온 주입 등의 방법이 사용되거나, 반도체층을 형성하여 절연할 수도 있다.The plurality of light emitting parts 101, 102, and 201 are electrically isolated from each other by a method of etching a semiconductor layer, such as a trench. An insulating film may be provided between the plurality of light emitting parts 101, 102, and 201 as an electrical separation method, or a method such as ion implantation may be used in the substrate 10, or a semiconductor layer may be formed and insulated.
주변 발광부(201)는 중심 발광부(101)의 둘레에 구비되며, 평면도(top view) 상으로 관찰할 때 중심 발광부(101)와 다른 형상을 가지며, 중심 발광부(101)와 마주하는 측면(215; 이하 제1 측면)이 중심 발광부(101)의 윤곽(outline)을 따라 형성된다. 중심 연결 전극(92,93)은 중심 발광부(101) 및 주변 발광부(201)를 전기적으로 연결한다. The peripheral light emitting unit 201 is provided around the central light emitting unit 101, and has a shape different from that of the central light emitting unit 101 when viewed in a top view, and faces the central light emitting unit 101. The side surface 215 (hereinafter, the first side surface) is formed along the outline of the central light emitting portion 101. The center connection electrodes 92 and 93 electrically connect the center light emitting unit 101 and the peripheral light emitting unit 201.
본 예에서, 복수의 주변 발광부(201)를 포함하며, 각 주변 발광부(201)는 제1 측면(215)과 이어지며 다른 주변 발광부(201)와 마주하는 측면(214)을 구비한다. 중심 발광부(101)의 측면은 주변 발광부의 제1 측면(215) 이외의 주변 발광부(201)의 다른 측면(214)과 나란하지 않도록 형성된다. 평면도 상으로 볼 때, 중심 발광부(101)는 원형이며, 주변 발광부(201)의 제1 측면(215)이 오목하게 형성된다. 제1 측면(215)은 대략 서로 90도로 연결되는 다른 측면과 나란하지 않게 형성된다. 본 예에 의하면, 복수의 발광부(101,102,201)가 콤팩트하게 배치되며, 주변 발광부(201)의 제1 측면(215)으로 인해 내부 전반사에 의한 빛의 갇힘이 줄어들어 결과적으로 휘도가 향상된다. 이에 대해서는 더 후술된다.In this example, a plurality of peripheral light emitting parts 201 are included, and each of the peripheral light emitting parts 201 has a side surface 214 connected to the first side surface 215 and facing the other peripheral light emitting parts 201. . The side surface of the central light emitting unit 101 is formed so as not to be parallel to the other side surface 214 of the peripheral light emitting unit 201 other than the first side surface 215 of the peripheral light emitting unit. In the plan view, the central light emitting part 101 is circular, and the first side surface 215 of the peripheral light emitting part 201 is concave. The first side 215 is formed so as not to be parallel with the other side which is approximately 90 degrees connected to each other. According to the present example, the plurality of light emitting parts 101, 102, and 201 are compactly disposed, and the trapping of light due to total internal reflection is reduced due to the first side surface 215 of the peripheral light emitting part 201, resulting in improved luminance. This is further described below.
본 예에서, 반도체 발광소자는 제1 중심 발광부(101), 제2 중심 발광부(102), 복수의 주변 발광부(201), 복수의 중심 연결 전극(92,93) 및 복수의 주변 연결 전극(94)을 포함한다. 중심 발광부(101,102) 2개가 배치되며, 중심 발광부(101,102) 둘레에 각각 주변 발광부(201) 4개씩 배치되어 있다. 주변 발광부(201)는 제1 측면(215) 측을 제외하고는 대략 4각형의 일부의 형상을 가진다. 중심 발광부(101)는 복수의 주변 발광부(201)가 만나는 접점, 접선 또는 경계가 되는 위치에 형성되며, 이로 인해 주변 발광부(201)는 사각형이 되지 못하고, 제1 측면(215)이 중심 발광부(101)의 윤곽을 따라 오목하게 형성되어 있다.In this example, the semiconductor light emitting device includes a first center light emitting unit 101, a second center light emitting unit 102, a plurality of peripheral light emitting units 201, a plurality of center connecting electrodes 92 and 93, and a plurality of peripheral connections. Electrode 94 is included. Two central light emitting units 101 and 102 are disposed, and four peripheral light emitting units 201 are disposed around the central light emitting units 101 and 102, respectively. The peripheral light emitting part 201 has a shape of a portion of a substantially quadrangular shape except for the side of the first side surface 215. The central light emitting part 101 is formed at a position where a plurality of peripheral light emitting parts 201 are in contact, a tangent or a boundary where the peripheral light emitting parts 201 meet. Thus, the peripheral light emitting part 201 does not become a quadrangle, and thus the first side surface 215 is formed. It is formed concave along the outline of the central light emitting part 101.
중심 발광부(101) 및 주변 발광부(201)는 연결 전극(92,93,94)에 의해 전기적으로 연결(예: 직렬, 병렬)되어 있다. 연결 전극(92,93,94)은 주변 발광부(201) 끼리 연결하는 주변 연결 전극(94)과, 주변 발광부(201)와 중심 발광부(101)를 연결하는 중심 연결 전극(92,93)이 있다. 본 예에서, 중심 발광부(101) 및 주변 발광부(201)는 전기적으로 직렬연결되어 있다. 주변 연결 전극(94)의 일 측 단은 하나의 주변 발광부(201)의 투광성 도전막(60) 위에 형성되며, 주변 연결 전극(94)의 타측 단은 이웃한 주변 발광부(201)의 제2 반도체층(50) 및 활성층(40)이 식각되어 노출된 제1 반도체층(n-contact 영역)에 놓인다. 중심 연결 전극(92)의 일 측 단은 하나의 주변 발광부(201)의 n-contact 영역 위에 형성되며, 타측 단은 중심 발광부(101)의 투광성 도전막 위에 형성된다. 다른 중심 연결 전극(93)의 일 측 단은 중심 발광부(101)의 n-contact 영역 위에 형성되며, 타측 단은 다른 주변 발광부(201)의 투광성 도전막(60) 위에 형성된다. 발광부(101,102,201) 사이 및 측면에 연결 전극(92,93,94)의 단부를 제외한 나머지 부분이 복수의 반도체층(30,40,50)과 절연되도록 절연막(95)이 형성될 수 있다.The central light emitting unit 101 and the peripheral light emitting unit 201 are electrically connected (eg, in series or parallel) by the connection electrodes 92, 93, and 94. The connection electrodes 92, 93, and 94 are peripheral connection electrodes 94 that connect the peripheral light emitters 201 to each other, and center connection electrodes 92, 93 that connect the peripheral light emitter 201 and the central light emitter 101. There is). In this example, the central light emitting portion 101 and the peripheral light emitting portion 201 are electrically connected in series. One end of the peripheral connection electrode 94 is formed on the transparent conductive film 60 of one peripheral light emitting part 201, and the other end of the peripheral connection electrode 94 is formed of the adjacent peripheral light emitting part 201. 2, the semiconductor layer 50 and the active layer 40 are etched and placed in the exposed first semiconductor layer (n-contact region). One end of the center connection electrode 92 is formed on the n-contact region of one peripheral light emitting part 201, and the other end is formed on the translucent conductive film of the center light emitting part 101. One end of the other center connection electrode 93 is formed on the n-contact area of the central light emitting part 101, and the other end is formed on the translucent conductive film 60 of the other peripheral light emitting part 201. The insulating layer 95 may be formed between the light emitting units 101, 102, and 201 so that the remaining portions except the ends of the connection electrodes 92, 93, and 94 are insulated from the semiconductor layers 30, 40, and 50.
본 예에서, 복수의 주변 발광부(201)는 각 중심 발광부(101)를 기준으로 대칭적으로(symmetrically) 배치되어 있다. 중심 연결 전극(92,93)은 어느 하나의 주변 발광부(201)로부터 반대측의 주변 발광부(201)를 향하는 대각 방향으로 형성될 수 있다. 예를 들어, 제1 중심 발광부(101) 및 제1 중심 발광부(101) 둘레의 주변 발광부(201)가 전기적으로 직렬연결되고, 제2 중심 발광부(102) 및 제2 중심 발광부(102) 둘레의 주변 발광부(201)가 전기적으로 직렬연결되며, 제1 중심 발광부(101) 둘레의 하나의 주변 발광부(201)와 제2 중심 발광부(102) 둘레의 하나의 주변 발광부(201)가 전기적으로 연결된다. 직렬연결의 순서는 다양하게 변경가능하다. In this example, the plurality of peripheral light emitters 201 are disposed symmetrically with respect to each center light emitter 101. The center connection electrodes 92 and 93 may be formed in a diagonal direction from one peripheral light emitting part 201 toward the peripheral light emitting part 201 on the opposite side. For example, the first center light emitting unit 101 and the peripheral light emitting unit 201 around the first center light emitting unit 101 are electrically connected in series, and the second center light emitting unit 102 and the second center light emitting unit are connected. Peripheral light emitting portions 201 around the periphery are electrically connected in series, and one peripheral light emitting portion 201 around the first central light emitting portion 101 and one peripheral portion around the second central light emitting portion 102. The light emitting unit 201 is electrically connected. The order of the serial connections can be varied.
제1 전극(80)은 직렬연결의 일측 끝에 위치하는 주변 발광부(201)의 n-contact 영역에 형성되어 전자를 공급한다. 제2 전극(70)은 직렬연결의 타측 끝에 위치하는 주변 발광부(201)의 투광성 도전막(30) 위에 형성되어 정공을 공급한다.The first electrode 80 is formed in the n-contact region of the peripheral light emitting unit 201 positioned at one end of the series connection to supply electrons. The second electrode 70 is formed on the transmissive conductive film 30 of the peripheral light emitting unit 201 positioned at the other end of the series connection to supply holes.
도 8은 본 개시에 따른 반도체 발광소자의 광추출 효율 향상을 설명하는 도면으로서, 평면도 상으로는 주변 발광부(201) 제1 측면(215)에 연결된 다른 측면들(214)을 연장하면, 대략 사각 형상을 가진다. 사각 형상의 일 측 모서리가 중심 발광부(101)로 인해 오목하게 형성되어 도 6에 도시된 것과 같은 형상을 가진다. 만약, 주변 발광부(201)가 점선으로 표시된 연장선과 같이 사각 형상을 가진다면, 임계각 이상의 각으로 연장선에 입사하는 광(L11,L12)은 주변 발광부(201) 내에서 반사되며 갇히거나 외부로 추출되기까지 반사 회수가 증가하며, 이로 인해 광손실이 증가한다. 본 예에서는 제1 측면(215)이 중심 발광부(101)의 윤곽을 따라 오목하게 형성되어 다른 측면과 나란하지 않게 형성되어 있다. 따라서, 연장선에 대해 임계각인 광은 제1 측면(215)에 대해서는 입사각이 임계각이 아니게 된다. 따라서, 상기 광은 연장선에 입사하기 전에 제1 측면(215)에 입사하면 외부로 더 잘 추출(L21,L22)될 수 있다. 따라서, 광추출효율이 향상되며, 그 결과 휘도가 향상된다.FIG. 8 is a view illustrating an improvement in light extraction efficiency of a semiconductor light emitting device according to the present disclosure. When the other side surfaces 214 connected to the first side surface 215 of the peripheral light emitting unit 201 are extended on a plan view, a substantially square shape is illustrated. Has One corner of the square shape is concave due to the central light emitting portion 101 to have a shape as shown in FIG. 6. If the peripheral light emitting part 201 has a rectangular shape as an extension line indicated by a dotted line, the light L11 and L12 incident on the extension line at an angle greater than or equal to the critical angle are reflected in the peripheral light emitting part 201 and are trapped or moved outward. The number of reflections increases until extraction, thereby increasing the light loss. In this example, the first side surface 215 is formed concave along the contour of the central light emitting portion 101 so as not to be parallel to the other side surface. Accordingly, the light having a critical angle with respect to the extension line has no incident angle with respect to the first side surface 215. Therefore, when the light is incident on the first side surface 215 before entering the extension line, the light may be better extracted (L21, L22). Therefore, the light extraction efficiency is improved, and as a result, the brightness is improved.
도 9는 비교예1의 반도체 발광소자를 나타내는 도면으로서, 중심 발광부가 없고, 모두 동일한 형상의 복수의 발광부(205)를 직렬로 연결하고 있다. 각 발광부(205)는 대략 직사각형이어서, 측면들이 서로 나란하거나 직각을 이룬다. 따라서, 한 측면에서 전반사되어 갇힌 빛의 일부는 다른 측면에서 다시 전반사될 확률 또는 분포가 높다. 반면, 본 예에 따른 반도체 발광소자에서는 중심 발광부(101)와 주변 발광부(201)가 서로 다른 형상을 가지고, 중심 발광부(101)의 제1 측면(215)이 주변 발광부(201)의 다른 측면(214)과 나란하지 않다. 따라서, 주변 발광부(201)의 일 측면에서 반사 또는 전반사 제1 측면(215)에 입사한 광은 비교에1 보다 외부로 더 잘 추출된다. 결과적으로 휘도가 향상된다.9 is a view showing the semiconductor light emitting device of Comparative Example 1, wherein there is no central light emitting portion, and a plurality of light emitting portions 205 having the same shape are all connected in series. Each light emitting portion 205 is substantially rectangular, so that the sides are parallel or perpendicular to each other. Thus, some of the light that is totally reflected and trapped on one side has a high probability or distribution of total reflection again on the other side. On the other hand, in the semiconductor light emitting device according to the present example, the central light emitting part 101 and the peripheral light emitting part 201 have different shapes, and the first side surface 215 of the central light emitting part 101 is the peripheral light emitting part 201. Not parallel to the other side of 214. Therefore, the light incident on the reflection or total reflection first side 215 at one side of the peripheral light emitting unit 201 is better extracted outside than the comparison 1. As a result, the brightness is improved.
도 10은 비교예2의 반도체 발광소자를 나타내는 도면으로서, 직사각 소자 내에 삼각형의 2개의 발광부가 분할되어 있다. 이로 인해 삼각형 발광부에서 직각 모서리를 제외한 모서리 측은 각이 작고, 뾰족한 형상이 된다. 본 예의 반도체 발광소자는 비교예2의 반도체 발광조사에 비해 장점을 가진다. 예를 들어, 비교예2의 뾰족한 형상은 제조공정상 마스크패턴의 허용오차에 여유를 줄여서 결국 수율이 좋지 않게 된다. 반면, 본 예의 반도체 발광소자는 발광부의 모서리의 내각이 비교예2보다 크고, 또한 모서리가 라운드져서 제조공정상 불량이 작다.10 is a view showing the semiconductor light emitting device of Comparative Example 2, in which two triangular light emitting parts are divided in a rectangular device. As a result, the corners of the triangular light emitting portion except for the right angle corners have a small angle and have a sharp shape. The semiconductor light emitting device of this example has advantages over the semiconductor light emission of Comparative Example 2. For example, the sharp shape of Comparative Example 2 reduces the margin to the tolerance of the mask pattern in the manufacturing process, resulting in poor yield. On the other hand, in the semiconductor light emitting device of this example, the inner angle of the corners of the light emitting portion is larger than that of Comparative Example 2, and the corners are rounded, so that defects in the manufacturing process are small.
한편, 각 발광부에서 소비되는 전력의 균일성과 발광의 균일성 등을 위해서 주변 발광부(201)와 중심 발광부(101)의 평면적이 대략 비슷하게 형성되는 것이 바람직하다. 본 예에서 중심 발광부(101)는 원형이고, 주변 발광부(201)는 상기 제1 측면(215)을 제외하고, 연장선으로 보면 대략 사각 형상을 가진다. 중심 발광부(101)의 직경, 주변 발광부(201)의 변의 길이, 중심 발광부(101)의 중심과 주변 발광부(201)의 중심 간의 거리를 변수로 하여 중심 발광부(101)와 주변 발광부(201)의 면적이 대략 대등하게 형성할 수 있다. 예를 들어, 중심 발광부(101)의 면적=주변 발광부(201)의 면적으로 방정식을 만들고, 상기 변수 중 2개를 정하면, 나머지 하나가 결정될 수 있다.On the other hand, it is preferable that the planar area of the peripheral light emitting unit 201 and the central light emitting unit 101 is formed to be substantially similar for uniformity of power consumed in each light emitting unit and uniformity of light emission. In the present example, the central light emitting part 101 is circular, and the peripheral light emitting part 201 has a substantially rectangular shape when viewed as an extension line except for the first side surface 215. The diameter of the central light emitting part 101, the length of the sides of the peripheral light emitting part 201, and the distance between the center of the central light emitting part 101 and the center of the peripheral light emitting part 201 are variables as variables. The area of the light emitting portion 201 can be formed approximately equal. For example, if the equation is made by the area of the central light emitting unit 101 = the area of the peripheral light emitting unit 201 and two of the variables are determined, the other one may be determined.
본 예의 반도체 발광소자는 형상이 다른 중심 발광부(101)와 주변 발광부(201)를 콤팩트하게 배치하여 소자의 사이즈가 불필요하게 증가되는 것을 억제하며, 다수의 발광부를 직렬연결하여 고전압(high voltage)으로 동작하는 반도체 발광소자를 제공한다. 본 예에서 발광부는 10개이지만, 이 10개를 하나의 세트로 하여 복수의 세트를 직렬연결하는 것도 물론 가능하다. 이때, 직렬연결은 가로 및 세로 방향으로 상기 세트를 배열하는 것을 허용한다. 또한, 직렬연결된 세트들을 병렬연결하는 것도 물론 가능하다. 본 예의 반도체 발광소자는 홀수의 발광부(예: 제1 중심 발광부(101)와 4개의 주변 발광부(201))를 콤팩트하게 배치하기에 매우 적합한 구조를 가진다.The semiconductor light emitting device of this example suppresses an unnecessary increase in the size of the device by compactly disposing the central light emitting part 101 and the peripheral light emitting part 201 having different shapes, and connects a plurality of light emitting parts in series to high voltage. Provided is a semiconductor light emitting device operating in). Although 10 light emitting units are used in this example, it is of course also possible to connect a plurality of sets in series by using the 10 as one set. At this time, the serial connection allows for arranging the set in the horizontal and vertical directions. It is of course also possible to parallel-connect sets in series. The semiconductor light emitting device of this example has a structure that is very suitable for compactly arranging odd number of light emitting parts (for example, the first central light emitting part 101 and four peripheral light emitting parts 201).
도 11은 본 개시에 따른 반도체 발광소자의 다른 예를 나타내는 도면으로서, 중심 발광부(101)가 사각 형상을 가지며, 중심 발광부(101)의 모서리는 주변 발광부(201)들이 접하는 선상에 위치한다. 중심 발광부(101)의 모서리는 중심 발광부(101)와 주변 발광부(201)의 중심을 연결하는 중심선으로부터 벋어나 있다. 주변 발광부(201)는 중심 발광부(101) 둘레로 대칭적으로 형성되어 있다. 제1 측면(215;중심 발광부(101)와 마주하는 주변 발광부(201)의 측면)은 그 주변 발광부(201)에서 다른 측면과 나란하지 않게 형성되어 있다. 따라서, 도 6 내지 도 11에서 설명된 효과와 동일유사한 효과를 가진다.FIG. 11 is a diagram illustrating another example of a semiconductor light emitting device according to the present disclosure, in which a central light emitting unit 101 has a square shape, and an edge of the central light emitting unit 101 is positioned on a line in contact with peripheral light emitting units 201. do. The edge of the central light emitting part 101 is separated from the center line connecting the center of the central light emitting part 101 and the peripheral light emitting part 201. The peripheral light emitting part 201 is symmetrically formed around the central light emitting part 101. The first side surface 215 (the side of the peripheral light emitting unit 201 facing the central light emitting unit 101) is formed not to be parallel to the other side in the peripheral light emitting unit 201. Therefore, the same effects as those described in FIGS. 6 to 11 are obtained.
도 12는 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면으로서, 중심 발광부(101)가 사각 형상을 가지며, 중심 발광부(101)의 모서리는 중심 발광부(101)와 주변 발광부(201)의 중심을 연결하는 중심선의 바깥에 있으며, 이웃한 중심 발광부(101)가 접하는 선상으로부터도 벋어나 있다. 이와 같이 형성하면, 주변 발광부(201)는 평면상으로 도 11의 실시예와는 또 다른 다각형 형상을 가지며, 측면의 방향의 종류가 다양해지는 효과가 있다. 이로 인해, 전술된 것과 같이, 광추출 효율이 더 향상된다.12 is a view illustrating another example of the semiconductor light emitting device according to the present disclosure, in which the central light emitting unit 101 has a square shape, and corners of the central light emitting unit 101 are the central light emitting unit 101 and the peripheral light emitting unit. It is outside the center line connecting the center of 201, and is also separated from the line which the adjacent center light-emitting part 101 contact | connects. When formed in this way, the peripheral light emitting unit 201 has a polygonal shape different from that of the embodiment of FIG. 11 in plan view, and has an effect of varying the types of the side surfaces. Due to this, as described above, the light extraction efficiency is further improved.
도 13은 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면으로서, 중심 발광부(101)가 반원 형상을 가지며, 주변 발광부(201)는 중심 발광부(101)의 호 형상의 측면과 마주하여 오목한 측면(215)을 구비한다. 주변 발광부(201)의 제1 측면에 더하여, 중심 발광부(101)가 호 형상의 측면과 직선형 측면을 구비하여 측면의 방향의 종류가 다양해지는 효과가 있다. 이로 인해, 전술된 것과 같이, 광추출 효율이 더 향상된다.FIG. 13 is a diagram illustrating still another example of the semiconductor light emitting device according to the present disclosure, wherein the central light emitting unit 101 has a semicircular shape, and the peripheral light emitting unit 201 has an arc-shaped side surface of the central light emitting unit 101. An opposite concave side 215. In addition to the first side surface of the peripheral light emitting portion 201, the central light emitting portion 101 has an arc-shaped side surface and a straight side surface, there is an effect that the kind of the side direction varies. Due to this, as described above, the light extraction efficiency is further improved.
또한, 중심 연결 전극(92,93)이 각각 2개의 연결선(92a,92b,93a,93b)을 구비하도록 형성되어 있어서, 1개의 연결선(예; 92a, 93a)이 단선 등의 문제가 발생해도 나머지 1개의 연결선(예;92b, 93b)로 인해 직렬연결이 그대로 유지되어 반도체 발광소자의 수율이 향상되며, high current driving에 유리하다. 이와 같이 연결 전극을 2개 이상의 연결선을 구비하도록 형성하는 것은 도 6내지 도 15에서 설명된 본 개시의 실시예들에 모두 적용될 수 있다. 도 14는 연결 전극이 2개의 연선(92a,92b)을 구비하는 다양한 예들이 예시되어 있다. 도 14a, 도 14b의 경우 연결선 중 하나가 단선되어도 발광부 위에서 연결되어 있는 장점이 있다. 도 14b, 도 14d의 경우 전극의 길이가 감소되어 빛흡수량이 감소되는 이점이 있다. 도 14, 도 14d의 경우 메사식각의 면적이 감소되는 이점이 있다. In addition, the center connection electrodes 92 and 93 are formed to have two connection lines 92a, 92b, 93a, and 93b, respectively, so that one connection line (eg, 92a, 93a) remains the same even if a problem such as disconnection occurs. Due to one connection line (eg, 92b and 93b), the series connection is maintained as it is, so that the yield of the semiconductor light emitting device is improved, which is advantageous for high current driving. As such, forming the connection electrode with two or more connection lines may be applied to all the embodiments of the present disclosure described with reference to FIGS. 6 to 15. 14 illustrates various examples in which the connecting electrode has two stranded wires 92a and 92b. 14A and 14B have an advantage that the light emitting unit is connected even when one of the connection lines is disconnected. In the case of FIGS. 14B and 14D, the length of the electrode is reduced to reduce the light absorption. 14 and 14D, the area of mesa etching is reduced.
도 15는 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면으로서, 중심 발광부(101)가 길쭉한 직사각 형상을 가지며, 주변 발광부(201)는 중심 발광부(101)의 모서리측과 장변측에 각각 배치되어 있다. 주변 발광부(201)의 측면의 방향의 다양성은 전술된 실시예보다는 작지만, 중심 발광부(101)를 길게 형성하여 길쭉한 칩을 제조하는 데에 유리하며, 콤팩트한 배열로 좁은 면적에 다수의 발광부를 형성하기에 적합하다.FIG. 15 is a diagram illustrating still another example of the semiconductor light emitting device according to the present disclosure, wherein the central light emitting unit 101 has an elongated rectangular shape, and the peripheral light emitting unit 201 has a corner side and a long side of the central light emitting unit 101. It is arrange | positioned at the side, respectively. The variation in the direction of the side of the peripheral light emitting portion 201 is smaller than the above-described embodiment, but it is advantageous to form the central light emitting portion 101 to make an elongated chip, and to emit a plurality of light in a small area in a compact arrangement. It is suitable for forming a part.
도 16은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면으로서, 플립칩에 적용된 예가 제시되어 있다. 연결 전극(92) 및 투광성 도전막(60)을 덮도록 반사막(R)이 형성되어 있다. 반사막은 활성층으로부터의 빛을 기판 측으로 반사한다. 연결 전극(92)은 서로 마주하는 중심 발광부(101)와 주변 발광부(201)의 제1 반도체층(30)과 제2 반도체층(50)을 전기적으로 연결한다. 연결 전극(92)의 일 측 끝은 제2 반도체층(50) 및 활성층(40)이 식각되어 노출된 제1 반도체층(30)과 전기적으로 연통되며, 연결 전극(92)의 타 측 끝은 제2 반도체층(50)과 반사층(R) 사이에 구비된다. 중심 발광부와 주변 발광부의 사이에는 절연체(97)가 형성되며, 연결 전극(92)은 절연체 위에 형성된다. 제1 전극(80)은 주변 발광부의 반사층(R) 위에서 제1 전기적 연결(81)을 통해 제1 반도체층(30)에 전기적으로 연통되고, 제2 전극(70)은 다른 주변 발광부의 반사층(R) 위에서 제2 전기적 연결(71)을 통해 제2 반도체층(50)에 전기적으로 연통된다. 접촉저항을 줄이고 전기적 접속의 안정성을 향상하기 전기적 연결(71,81)과 복수의 반도체층 사이에 오믹 전극(72,82)을 개재시킬 수 있다. 중심 발광부(101)의 반사층(R) 위에는 방열 또는 지지 등을 위한 보조패드(93)가 형성되어 있다.16 is a view for explaining another example of a semiconductor light emitting device according to the present disclosure, an example applied to a flip chip is presented. The reflective film R is formed to cover the connecting electrode 92 and the transparent conductive film 60. The reflecting film reflects light from the active layer to the substrate side. The connection electrode 92 electrically connects the central light emitting part 101 and the first semiconductor layer 30 and the second semiconductor layer 50 of the peripheral light emitting part 201 which face each other. One end of the connection electrode 92 is in electrical communication with the first semiconductor layer 30 exposed by etching the second semiconductor layer 50 and the active layer 40, and the other end of the connection electrode 92 is It is provided between the second semiconductor layer 50 and the reflective layer (R). An insulator 97 is formed between the central light emitting unit and the peripheral light emitting unit, and the connection electrode 92 is formed on the insulator. The first electrode 80 is in electrical communication with the first semiconductor layer 30 through the first electrical connection 81 on the reflective layer R of the peripheral light emitting part, and the second electrode 70 is a reflective layer of the other peripheral light emitting part ( R) is in electrical communication with the second semiconductor layer 50 via the second electrical connection 71. The ohmic electrodes 72 and 82 may be interposed between the electrical connections 71 and 81 and the plurality of semiconductor layers to reduce contact resistance and improve stability of the electrical connection. An auxiliary pad 93 is formed on the reflective layer R of the central light emitting unit 101 for heat radiation or support.
도 17은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면으로서, 플립칩에 적용된 예가 제시되어 있다. 연결 전극(92) 투광성 도전막(60)을 덮는 반사층(R) 위에 형성되어 있다. 연결 전극(92)은 반사층(R)을 관통하는 제1 전기적 연결(81)에 의해 주변 발광부의 제1 반도체층과 전기적으로 연결되며, 반사층(R)을 관통하는 제2 전기적 연결(71)에 의해 중심 발광부의 제2 반도체층과 전기적으로 연결된다. 17 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure, an example applied to a flip chip is presented. The connection electrode 92 is formed on the reflective layer R covering the transparent conductive film 60. The connection electrode 92 is electrically connected to the first semiconductor layer of the peripheral light emitting part by the first electrical connection 81 passing through the reflective layer R, and to the second electrical connection 71 passing through the reflective layer R. The second semiconductor layer is electrically connected to the central light emitting unit.
도 18은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면으로서, 플립칩에 적용된 예가 제시되어 있다. 오믹 전극(72,82)과 전기적 연결(71,81)의 전기적 접속의 안정성을 향상하기 위해 반사층(R)에 형성된 개구에 의해 오믹 전극(72,82)의 주변까지 노출되며, 전기적 연결(71,81)이 오믹 전극(72,82)을 감싸도록 형성할 수 있다. 반사층은 단일층 또는 다층 구조를 가질 수 있다. 18 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure, and an example applied to a flip chip is shown. In order to improve the stability of the electrical connection between the ohmic electrodes 72 and 82 and the electrical connections 71 and 81, the openings formed in the reflective layer R are exposed to the periphery of the ohmic electrodes 72 and 82, and the electrical connection 71 is provided. , 81 may be formed to surround the ohmic electrodes 72 and 82. The reflective layer can have a single layer or a multilayer structure.
반사층은 단일층 또는 다층 구조를 가질 수 있다. 본 예에서 반사층(R)은 금속 반사막에 의한 광흡수 감소를 위해 비도전성 물질로 형성되며, 분포 브래그 리플렉터(Distributed Bragg Reflector) 및 ODR(Omni-Directional Reflector) 중 하나를 포함할 수 있다. 다층 구조의 일 예로, 유전체막(91b), 분포 브래그 리플렉터(91a) 및 클래드막(91c)을 포함한다. 유전체막(91b)는 높이차를 완화하여 분포 브래그 리플렉터(91a)를 안정적으로 제조할 수 있게 되며, 빛의 반사에도 도움을 줄 수 있다. 유전체막(91b)의 재질은 SiO2가 적당하다. 분포 브래그 리플렉터(91a)는 유전체막(91b) 위에 형성된다. 분포 브래그 리플렉터(91a)는 반사율이 다른 물질의 반복 적층, 예를 들어, SiO2/TiO2, SiO2/Ta2O2, 또는 SiO2/HfO의 반복 적층으로 이루어질 수 있으며, Blue 빛에 대해서는 SiO2/TiO2가 반사효율이 좋고, UV 빛에 대해서는 SiO2/Ta2O2, 또는 SiO2/HfO가 반사효율이 좋을 것이다. 클래드막(91c)은 Al2O3와 같은 금속 산화물, SiO2, SiON와 같은 유전체막(91b), MgF, CaF, 등의 물질로 이루어질 수 있다.The reflective layer can have a single layer or a multilayer structure. In this example, the reflective layer R is formed of a non-conductive material to reduce light absorption by the metal reflective film, and may include one of a distributed bragg reflector and an omni-directional reflector (ODR). An example of the multilayer structure includes a dielectric film 91b, a distributed Bragg reflector 91a, and a clad film 91c. The dielectric film 91b may reduce the height difference to stably manufacture the distributed Bragg reflector 91a and may also help to reflect light. SiO 2 is a suitable material for the dielectric film 91b. The distributed Bragg reflector 91a is formed on the dielectric film 91b. The distribution Bragg reflector 91a may be composed of repeated stacking of materials having different reflectances, for example, SiO 2 / TiO 2 , SiO 2 / Ta 2 O 2 , or SiO 2 / HfO. SiO 2 / TiO 2 has good reflection efficiency, and for UV light, SiO 2 / Ta 2 O 2 , or SiO 2 / HfO will have good reflection efficiency. The clad film 91c may be made of a metal oxide such as Al 2 O 3 , a dielectric film 91b such as SiO 2 , SiON, MgF, CaF, or the like.
도 19는 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면이고, 도 20은 도 19의 A-A선을 따라 취한 절단면의 일 예를 나타내는 도면이다.19 is a diagram illustrating still another example of the semiconductor light emitting device according to the present disclosure, and FIG. 20 is a diagram illustrating an example of a cut plane taken along line A-A of FIG. 19.
반도체 발광소자는 제1 발광부(101), 제2 발광부(201), 제1 전극(80), 제2 전극(70) 및 연결 전극(90)을 포함한다. 제1 발광부(101) 및 제2 발광부(201)는 동일한 또는 단일 기판(10)에 형성되며, 각각 기판(10) 위에 형성된 복수의 반도체층을 포함한다. 연결 전극(90)은 연장형(extending type) 전극부(91) 및 점형(point type) 전극부(93)를 포함한다.The semiconductor light emitting device includes a first light emitting unit 101, a second light emitting unit 201, a first electrode 80, a second electrode 70, and a connection electrode 90. The first light emitting unit 101 and the second light emitting unit 201 are formed on the same or single substrate 10, and each includes a plurality of semiconductor layers formed on the substrate 10. The connection electrode 90 includes an extending type electrode portion 91 and a point type electrode portion 93.
기판(10)으로 주로 사파이어, SiC, Si, GaN 등이 이용된다. 본 예는 기판(10)이 제거되거나 도전성을 가지는 경우에 전극이 기판(10)이 제거된 제1 반도체층(30) 측 또는 도전성 기판(10) 측에 형성되는 반도체 발광소자에도 적용될 수 있다. 제1 반도체층(30)과 제2 반도체층(50)은 그 위치가 바뀔 수 있으며, 3족 질화물 반도체 발광소자에 있어서 주로 GaN으로 이루어진다. Sapphire, SiC, Si, GaN and the like are mainly used as the substrate 10. This example may also be applied to a semiconductor light emitting device in which an electrode is formed on the first semiconductor layer 30 side or the conductive substrate 10 side from which the substrate 10 is removed when the substrate 10 is removed or has conductivity. The positions of the first semiconductor layer 30 and the second semiconductor layer 50 may be changed, and are mainly made of GaN in the group III nitride semiconductor light emitting device.
복수의 반도체층은 기판(10) 위에 형성된 버퍼층(20), 제1 도전성을 가지는 제1 반도체층(30; 예: Si 도핑된 GaN), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(50; 예: Mg 도핑된 GaN) 및 제1 반도체층(30)과 제2 반도체층(50) 사이에 개재되며 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(40; 예: InGaN/(In)GaN 다중양자우물구조)을 포함한다. 복수의 반도체층(30,40,50) 각각은 다층으로 이루어질 수 있고, 버퍼층(20)은 생략될 수 있다. The plurality of semiconductor layers may include a buffer layer 20 formed on the substrate 10, a first semiconductor layer 30 having a first conductivity (for example, Si-doped GaN), and a second semiconductor layer having a second conductivity different from the first conductivity. (Eg, Mg-doped GaN) and an active layer 40 interposed between the first semiconductor layer 30 and the second semiconductor layer 50 to generate light through recombination of electrons and holes (eg, InGaN / ( In) GaN multi-quantum well structure). Each of the semiconductor layers 30, 40, and 50 may be formed in multiple layers, and the buffer layer 20 may be omitted.
바람직하게는 투광성 도전막(60)이 구비된다. 투광성 도전막(60)은 투광성을 가지며 대략 제2 반도체층(50)을 전체적으로 덮도록 형성될 수 있지만, 일부에만 형성될 수도 있다. 특히 p형 GaN의 경우에 전류 확산 능력이 떨어지며, p형 반도체층(50)이 GaN으로 이루어지는 경우에, 대부분 투광성 도전막(60)의 도움을 받아야 한다. 예를 들어, ITO, Ni/Au와 같은 물질이 투광성 도전막(60)으로 사용될 수 있다.Preferably, the transparent conductive film 60 is provided. The transparent conductive film 60 may be formed to have a light transmissive shape and substantially cover the second semiconductor layer 50, but may be formed only in part. In particular, in the case of p-type GaN, the current spreading ability is inferior, and in the case where the p-type semiconductor layer 50 is made of GaN, most of the transparent conductive film 60 should be assisted. For example, materials such as ITO and Ni / Au may be used as the transparent conductive film 60.
제1 전극(80)은 제1 발광부(101)의 제2 반도체층(50) 및 활성층(40)이 식각되어 노출된 제1 반도체층(n-contact 영역)에 형성되어 전자를 공급한다. 제2 전극(70)은 제2 발광부(201)의 투광성 도전막(30) 위에 형성되어 정공을 공급한다. 연결 전극(90)은 제1 발광부(101) 및 제2 발광부(201)를 전기적으로 연결한다. 연결 전극(90)은 더 후술된다. 제1 발광부(101) 및 제2 발광부(201) 및 연결 전극(90)을 덮는 보호막(도시되지 않음)이 형성될 수 있다.The first electrode 80 is formed in the first semiconductor layer (n-contact region) where the second semiconductor layer 50 and the active layer 40 of the first light emitting unit 101 are etched and exposed to supply electrons. The second electrode 70 is formed on the transparent conductive film 30 of the second light emitting part 201 to supply holes. The connection electrode 90 electrically connects the first light emitting part 101 and the second light emitting part 201. The connecting electrode 90 is further described below. A passivation layer (not shown) may be formed to cover the first light emitting unit 101, the second light emitting unit 201, and the connection electrode 90.
제1 발광부(101) 및 제2 발광부(201)는 트렌치(105; trench)와 같이 반도체층을 식각하는 방법 등에 의해 서로 전기적으로 분리(isolation)되어 있다. 전기적 분리 방법으로 제1 발광부(101) 및 제2 발광부(201) 사이에 절연막이 구비될 수 있고, 또는 기판(10)에 이온 주입 등의 방법이 사용되거나, 반도체층을 형성하여 절연할 수도 있다. The first light emitting part 101 and the second light emitting part 201 are electrically isolated from each other by a method of etching a semiconductor layer, such as a trench 105. An insulating film may be provided between the first light emitting part 101 and the second light emitting part 201 as an electrical separation method, or a method such as ion implantation may be used in the substrate 10, or a semiconductor layer may be formed and insulated. It may be.
평면도(top view) 상으로 관찰할 때 제1 발광부(101) 및 제2 발광부(201)는 서로 대향하게 구비되며, 상기 분리에 의한 제1 발광부(101) 및 제2 발광부(201)의 서로 대향하는 에지(107,207)가 제1 발광부(101) 및 제2 발광부(201)의 다른 에지에 대해 비스듬하게 사선으로 형성되어 있다. 만약 제1 발광부(101) 및 제2 발광부(201)의 서로 대향하는 에지(107,207)가 사선으로 형성되지 않고, 제1 발광부(101) 및 제2 발광부(201)가 각각 직사각 형상을 가지는 비교예(도 21 참조)의 경우, 서로 대향하는 에지(107,207)에 임계각으로 입사하는 광은 반사되며 갇히거나 외부로 추출되기까지 반사 회수가 증가하고 이로 인해 광손실이 증가한다. 본 예에서는 전술한 바와 같이, 제1 발광부(101) 및 제2 발광부(201)의 서로 대향하는 에지(107,207)가 제1 발광부(101) 및 제2 발광부(201)의 다른 에지에 대해 비스듬하게 사선으로 형성되어 있다. 따라서, 상기 비교예에서 임계각으로 입사하는 광은 본 예에서 사선으로 형성된 에지(107,207)에 대해 입사각이 임계각이 아니게 된다. 따라서, 상기 광은 외부로 더 잘 추출될 수 있다. 따라서, 광추출효율이 향상되며, 그 결과 휘도가 향상된다.When viewed in a top view, the first light emitting part 101 and the second light emitting part 201 are provided to face each other, and the first light emitting part 101 and the second light emitting part 201 are separated by the separation. Opposite edges 107 and 207 are formed obliquely with respect to the other edges of the first light emitting portion 101 and the second light emitting portion 201. If the edges 107 and 207 of the first light emitting part 101 and the second light emitting part 201 which face each other are not formed diagonally, the first light emitting part 101 and the second light emitting part 201 are rectangular in shape. In the comparative example (see FIG. 21), the light incident at critical angles on the edges 107 and 207 facing each other is reflected and increases the number of reflections until it is trapped or extracted to the outside, thereby increasing the light loss. In this example, as described above, the edges 107 and 207 that face each other of the first light emitting part 101 and the second light emitting part 201 are different edges of the first light emitting part 101 and the second light emitting part 201. It is formed obliquely with respect to the oblique line. Therefore, the light incident at the critical angle in the comparative example is such that the incident angle is not the critical angle with respect to the diagonally formed edges 107 and 207. Thus, the light can be better extracted to the outside. Therefore, the light extraction efficiency is improved, and as a result, the brightness is improved.
연결 전극(90)은 제1 발광부(101) 및 제2 발광부(201)를 전기적으로 직렬연결한다. 연결 전극(90)은 연장형 전극부(91) 및 점형 전극부(93)를 포함한다. 연장형 전극부(91)는 제1 발광부(101)의 투광성 도전막(60) 위에서 뻗으며 제1 발광부(101)의 측면, 제1 발광부(101)와 제2 발광부(201)의 사이 및 제2 발광부(201)의 측면으로 연장된다. 제1 발광부(101)의 측면, 제1 발광부(101)와 제2 발광부(201)의 사이 및 제2 발광부(201)의 측면에는 연장형 전극부(91)와 복수의 반도체층(30,40,50)가 절연되도록 절연막(95)이 형성될 수 있다. 연장형 전극부(91)는 연결선(92) 및 가지(98)를 포함한다. 연결선(92)은 제1 발광부(101)의 측면, 제1 발광부(101)와 제2 발광부(201)의 사이 및 제2 발광부(201)의 측면에 형성되며, 가지(98)는 제1 발광부(101)의 투광성 도전막(60) 위에서 연결선(92)으로부터 분기된다. 가지(98)와 같이 분기되지 않고, 투광성 도전막(60) 위에서 연결선(92)이 뻗는 실시예도 물론 가능하다. 가지(98)는 투광성 도전막(60) 위에서 가장자리를 따라 뻗으며, 사선형 에지(107,207)와 대향하는 에지에 인접하게 형성된 제1 전극(80)의 주변으로 뻗는다.The connection electrode 90 electrically connects the first light emitting unit 101 and the second light emitting unit 201 in series. The connection electrode 90 includes an extended electrode portion 91 and a point electrode portion 93. The extended electrode part 91 extends over the transmissive conductive film 60 of the first light emitting part 101, and has a side surface of the first light emitting part 101, the first light emitting part 101 and the second light emitting part 201. And extend to the side of the second light emitting part 201. On the side of the first light emitting part 101, between the first light emitting part 101 and the second light emitting part 201 and on the side of the second light emitting part 201, the extended electrode part 91 and the plurality of semiconductor layers are provided. The insulating film 95 may be formed to insulate the 30, 40, and 50. The extended electrode portion 91 includes a connecting line 92 and a branch 98. The connection line 92 is formed on the side of the first light emitting part 101, between the first light emitting part 101 and the second light emitting part 201, and on the side of the second light emitting part 201, and the branch 98. Is branched from the connecting line 92 on the transparent conductive film 60 of the first light emitting part 101. The embodiment in which the connection line 92 extends on the transparent conductive film 60 without branching like the branch 98 is also possible. The branches 98 extend along the edges on the transmissive conductive film 60 and extend around the first electrode 80 formed adjacent to the edges opposite the diagonal edges 107, 207.
점형 전극부(93)는 제2 발광부(201)의 n-contact 영역이 형성된 제1 반도체층 가장자리 위에 형성되며 연장형 전극부(91)의 연결선(92)과 연결된다. 점형 전극부(93)는 원형 및 다각형 형상 중 하나의 형상을 가질 수 있으며, 본 예에서 점형 전극부(93)는 원형이며, 연장형 전극부(91)보다 크거나 같은 폭을 가지는 것이 바람직하다. 본예에서는 점형 전극부(93)는 연장형 전극부(91)보다 큰 폭의 예가 제시되어 있다. 점형 전극부(93) 및 연장형 전극부(91)는 일체로서 동일 공정에서 함께 형성될 수 있다. 이 경우, 연장형 전극부(91)의 연결선(92)은 점형 전극부(93)의 측면에 연결된다. 이와 다르게, 점형 전극부(93)를 먼저 형성하고, 연장형 전극부(91)의 연결선(92)의 단부가 점형 전극부(93) 위로 걸쳐지게 형성하는 것도 가능하다. 반대로, 연장형 전극부(91)의 연결선(92)의 단부가 제2 발광부(201)의 n-contact 영역에 먼저 형성되고, 점형 전극부(93)가 연결선(92)의 단부를 덮도록 형성되는 실시예도 가능하다.The viscous electrode portion 93 is formed on the edge of the first semiconductor layer where the n-contact region of the second light emitting portion 201 is formed and is connected to the connection line 92 of the extended electrode portion 91. The point electrode portion 93 may have one of circular and polygonal shapes, and in this example, the point electrode portion 93 is circular and preferably has a width greater than or equal to that of the extended electrode portion 91. . In this example, the point electrode 93 has a larger width than the extended electrode 91. The pointed electrode portion 93 and the extended electrode portion 91 may be formed together as one body in the same process. In this case, the connection line 92 of the extended electrode portion 91 is connected to the side surface of the point electrode portion 93. Alternatively, the point electrode portion 93 may be formed first, and the end of the connecting line 92 of the extended electrode portion 91 may be formed over the point electrode portion 93. On the contrary, an end portion of the connection line 92 of the extended electrode portion 91 is first formed in the n-contact region of the second light emitting portion 201, and the point electrode portion 93 covers the end portion of the connection line 92. The embodiment to be formed is also possible.
도 21은 비교예의 반도체 발광소자를 나타내는 도면으로서, 제1 발광부(101) 및 제2 발광부(201) 모두에 걸쳐 연결 전극(98,92)이 뻗어 있다. 특히, 제2 발광부(201)에서 연결 전극(92)이 길게 뻗어 있어서, 복수의 발광부(101,201)가 한정된 면적에 구비될 때, 이러한 연결 전극(98,92) 구조는 콤팩트한(compact) 구조에 제약이 되고, 발광면적을 감소하는 단점이 있다. 연결 전극을 띠 형상으로 제2 발광부(201)의 가장자리를 따라 연장하는 경우에도 역시 메사식각 면적이 증가하여 발광면적이 감소된다.FIG. 21 is a view showing a semiconductor light emitting device according to a comparative example, in which connection electrodes 98 and 92 extend across both the first light emitting portion 101 and the second light emitting portion 201. In particular, when the connecting electrodes 92 extend in the second light emitting part 201 and the plurality of light emitting parts 101 and 201 are provided in a limited area, the structure of the connecting electrode 98 and 92 is compact. There is a disadvantage in that the structure is restricted and the light emitting area is reduced. Even when the connecting electrode extends along the edge of the second light emitting part 201 in a band shape, the mesa etching area is also increased to reduce the light emitting area.
본 예에서, 연결 전극(90)은 제2 발광부(201) 위에서는 길게 뻗는 부분이 없거나 거의 없이 단순히 점형 전극부(93)로만 형성되어 있다. 점형 전극부(93)는 띠 형상으로 제2 발광부(201)의 사선형 에지(207)를 따라 뻗거나, 제2 발광부(201)의 내측으로 길게 들어가지 않는다. 따라서, 메사식각으로 n-contact 영역을 길게 형성할 필요가 없어서 발광면적의 감소를 방지한다. 또한, 제1 발광부(101) 및 제2 발광부(201)가 배열되는 방향으로 더 콤팩트하게 형성할 수 있는 장점이 있다. 제2 발광부(201)에 있어서 전류확산의 관점에서 p측 보다 전류확산이 잘되는 n측에 점형 전극부(93)가 형성되도록 하고, 제2 전극(70)이 외부와 본딩을 위한 패드부와, 패드부로부터 점형 전극부(93) 주변으로 뻗는 가지부(78)를 포함하도록 하여 전류확산의 균일성을 향상하는 것이 바람직하다. 제1 발광부(101)에 있어서는 연장형 전극부(91)는 전술한 바와 같이, 가지(98)를 가질 수 있어서 충분히 투광성 도전막(60) 전체적으로 전류확산을 이룰 수 있다. 이와 같이 본 예의 반도체 발광소자는 한정된 면적에 다수의 발광부가 구비되는 콤팩트한 구성에 적합하며, 충분히 전류확산을 위한 구성을 가지며, 발광면적 감소를 억제한 구성을 가진다.In the present example, the connection electrode 90 is simply formed of the point electrode portion 93 with little or no elongated portion on the second light emitting portion 201. The pointed electrode portion 93 extends along the diagonal edge 207 of the second light emitting portion 201 in a band shape or does not extend long inside the second light emitting portion 201. Therefore, it is not necessary to form the n-contact region long by mesa etching, thereby preventing the emission area from being reduced. In addition, there is an advantage in that the first light emitting portion 101 and the second light emitting portion 201 can be formed more compactly in the arrangement direction. In the second light emitting unit 201, the point electrode portion 93 is formed on the n side where current spreads better than the p side in terms of current spreading, and the second electrode 70 has a pad portion for bonding with the outside. It is preferable to include the branch portion 78 extending from the pad portion to the periphery of the point electrode portion 93 to improve the uniformity of current spreading. In the first light emitting part 101, the extended electrode part 91 may have the branches 98 as described above, and thus, the current-transmitting conductive film 60 may be sufficiently spread. As described above, the semiconductor light emitting device of the present example is suitable for the compact structure in which a plurality of light emitting parts are provided in a limited area, has a structure for sufficiently spreading current, and has a structure in which the light emitting area is reduced.
도 22는 본 개시에 따른 반도체 발광소자의 다른 예를 나타내는 도면으로서, 점형 연결 전극(90)의 형상이 사각형으로 형성되어 있다. 점형 전극부(93)는 제2 발광부(201)의 n-contact 영역에 형성되며, 제2 발광부(201)의 n-contact 영역은 사선형 에지(207) 방향으로 개구되어 있다. 따라서, 점형 전극부(93)는 사선형 에지(207)에 인접하게 위치하여 불필요하게 n-contact 영역이 증가하는 것을 억제한다. 점형 전극부(93)는 사각형 외에도 삼각형 등 다양한 형상으로 변경 가능하다.22 is a view showing another example of the semiconductor light emitting device according to the present disclosure, in which the shape of the point connection electrode 90 is formed in a quadrangular shape. The viscous electrode portion 93 is formed in the n-contact region of the second light emitting portion 201, and the n-contact region of the second light emitting portion 201 is opened toward the diagonal edge 207. Thus, the pointed electrode portion 93 is located adjacent to the diagonal edge 207 to suppress an unnecessary increase in the n-contact area. The point electrode 93 may be changed into various shapes such as a triangle in addition to a quadrangle.
도 23은 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면으로서, 점형 전극부(93)이 연결선(92)의 폭과 거의 비슷하게 형성되어 n-contact 영역을 더 작게 형성하는 것도 가능하다.FIG. 23 is a diagram illustrating still another example of the semiconductor light emitting device according to the present disclosure. It is also possible that the point electrode 93 is formed to be substantially similar to the width of the connection line 92 to form a smaller n-contact region.
도 24는 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면으로서, 반도체 발광소자는 복수의 제1 발광부(101) 및 복수의 제2 발광부(201)를 포함하며, 제1 발광부(101) 및 제2 발광부(201)가 교대로 배열되며 직렬연결되어 있다. 제1 전극(80)은 직렬연결의 일측 단의 제1 발광부(101)에 형성되고, 제2 전극(70)은 직렬연결의 타측 단의 제2 발광부(201)에 형성되어 있다. 연결 전극(91,93)은 제1 발광부(101)의 투광성 도전막(60) 위에서 제2 발광부(201)의 n-contact 영역으로 연결되며, 추가의 연결 전극(91-2,93-2)은 제2 발광부(201)의 투광성 도전막(60) 위에서 제1 발광부(101)의 n-contact 영역으로 연결된다. 이렇게 다수의 발광부를 어레이(array)로 만들 때, 가지(98), 연결선(92) 및 점형 전극부(93)로 이루어진 연결 전극 및 추가의 연결 전극(91-2,93-2)은 전류확산을 충분히 달성하면서, 발광면적 감소를 억제하며, 콤팩트한 배치를 위해 적합한 구조를 가진다.24 is a diagram illustrating still another example of the semiconductor light emitting device according to the present disclosure, wherein the semiconductor light emitting device includes a plurality of first light emitting parts 101 and a plurality of second light emitting parts 201, and the first light emitting part. The 101 and the second light emitting units 201 are alternately arranged and connected in series. The first electrode 80 is formed at the first light emitting part 101 at one end of the series connection, and the second electrode 70 is formed at the second light emitting part 201 at the other end of the series connection. The connecting electrodes 91 and 93 are connected to the n-contact region of the second light emitting part 201 on the transmissive conductive film 60 of the first light emitting part 101, and the additional connecting electrodes 91-2 and 93-are provided. 2) is connected to the n-contact region of the first light emitting portion 101 on the transparent conductive film 60 of the second light emitting portion 201. When the plurality of light emitting parts are arrayed in this way, the connecting electrode consisting of the branch 98, the connecting line 92 and the point electrode portion 93, and the additional connecting electrodes 91-2 and 93-2 are current spreading. While sufficiently achieving this, it is possible to suppress the emission area reduction and to have a structure suitable for compact arrangement.
도 25는 본 개시에 따른 반도체 발광소자의 또 다른 예를 나타내는 도면으로서, 동일 또는 단일 기판(10)에 제1 발광부(101,102) 및 제2 발광부(201,202)가 교대로 배치된 열이 복수로 형성되어 있다. 복수의 직렬 어레이를 서로 병렬로 연결하는 것도 가능하다. 또한, 서로 대향하는 각 제1 발광부(101) 및 각 제2 발광부(201)의 분리선(107,207)이 각 제1 발광부(101) 및 각 제2 발광부(201)의 다른 측면에 대해 사선으로 형성되어 있다. 따라서, 전술된 바와 같이, 광추출 효율이 향상되며, 다수의 발광부를 전류확산을 충분히 달성하면서, 발광면적 감소를 억제하며, 콤팩트하게 배치할 수 있다. 이와 같은 발광소자는 다수의 발광부를 포함하여 고전압(high voltage)에서 구동될 수 있고, 상용의 교류전압을 감압하기 위한 복잡한 전기소자나 회로구성을 단순화할 수 있는 장점이 있다.FIG. 25 is a diagram illustrating still another example of the semiconductor light emitting device according to the present disclosure, in which a plurality of rows in which the first light emitting units 101 and 102 and the second light emitting units 201 and 202 are alternately arranged on the same or single substrate 10 is provided. It is formed. It is also possible to connect a plurality of serial arrays in parallel with each other. In addition, the separation lines 107 and 207 of each of the first light emitting units 101 and the second light emitting units 201 that face each other have different sides of the first light emitting units 101 and the second light emitting units 201. It is formed by diagonal lines. Therefore, as described above, the light extraction efficiency is improved, and the light emitting area can be reduced and compactly arranged while achieving sufficient current spreading of the plurality of light emitting units. Such a light emitting device can be driven at high voltage, including a plurality of light emitting units, and has the advantage of simplifying a complicated electric device or a circuit configuration for reducing a commercial AC voltage.
도 26은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면으로서, 연결 전극(90)은 연장형 전극부(91) 및 점형 전극부(93)를 포함한다. 연장형 전극부(91)는 연결선(92) 및 가지(98)를 포함한다. 본 예에서 연결선(92)은 제1 발광부(101)의 측면, 제1 발광부(101)와 제2 발광부(201)의 사이 및 제2 발광부(201)의 측면에 형성되며, 가지(98)보다 큰 폭으로 형성되어 전기적 연결의 신뢰성을 더 좋게 할 수 있다. 본 예에서 점형 전극부(93)의 폭은 연결선(92)과 거의 같게 형성된다.26 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure, and the connection electrode 90 includes an extended electrode portion 91 and a point electrode portion 93. The extended electrode portion 91 includes a connecting line 92 and a branch 98. In this example, the connection line 92 is formed on the side of the first light emitting part 101, between the first light emitting part 101 and the second light emitting part 201, and on the side of the second light emitting part 201. It can be formed larger than (98) to improve the reliability of the electrical connection. In this example, the width of the point electrode portion 93 is formed to be substantially the same as the connecting line 92.
도 27은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면이고, 도 28은 도 27의 B-B 선을 따라 취한 절단면의 일 예를 설명하는 도면으로서, 플립칩에 적용된 예가 제시되어 있다. 각 발광부는 장변 및 단변을 가지는 형상이며, 단변이 V형으로 형성되어 있고, V형 단변이 서로 마주하고 있다. 연결 전극(90) 및 투광성 도전막(60)을 덮도록 반사막(R)이 형성되어 있다. 반사막은 활성층으로부터의 빛을 기판 측으로 반사한다. 연결 전극(90)은 V형 에지가 마주하는 제1 발광부(101)와 제2 발광부(201)의 제1 반도체층(30)과 제2 반도체층(50)을 전기적으로 연결한다. 점형 전극부(93)는 제1 발광부의 식각되어 노출된 제1 반도체층(30)의 에지에 인접하게 형성되며, 연장형 전극부는 점형 전극부와 연결되며, 연장형 전극부의 가지(98)가 제2 발광부의 투광성 도전막(60) 위에서 뻗는다. 제1 발광부와 제2 발광부의 사이에는 절연체(97)가 형성되며, 연장형 전극부의 연결선(92)은 절연체(97) 위에 형성된다. 연결 전극이 반도체 발광소자의 일 측 가장자리 형성되어 있다. 제1 전극(80)은 제1 발광부의 반사층(R) 위에서 제1 전기적 연결(81)을 통해 제1 반도체층(30)에 전기적으로 연통되고, 제2 전극(70)은 제2 발광부의 반사층(R) 위에서 제2 전기적 연결(71)을 통해 제2 반도체층(50)에 전기적으로 연통된다. 전기적 접속의 안정성을 향상하기 위해 전기적 연결(71,81)과 복수의 반도체층 사이에 오믹 전극(72,82)을 개재시킬 수 있다.27 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure, and FIG. 28 is a view for explaining an example of a cut plane taken along line BB of FIG. 27, and an example applied to a flip chip is shown. . Each light emitting part has a shape having a long side and a short side, the short side is formed in a V shape, and the V type short sides face each other. The reflective film R is formed to cover the connection electrode 90 and the transparent conductive film 60. The reflecting film reflects light from the active layer to the substrate side. The connection electrode 90 electrically connects the first light emitting part 101 and the first semiconductor layer 30 and the second semiconductor layer 50 of the second light emitting part 201 facing the V-shaped edge. The point electrode part 93 is formed adjacent to the edge of the first semiconductor layer 30 which is exposed by etching the first light emitting part, the extended electrode part is connected to the point electrode part, and the branch 98 of the extended electrode part is It extends on the translucent conductive film 60 of a 2nd light emitting part. An insulator 97 is formed between the first light emitting part and the second light emitting part, and a connection line 92 of the extended electrode part is formed on the insulator 97. The connecting electrode is formed at one side edge of the semiconductor light emitting device. The first electrode 80 is electrically connected to the first semiconductor layer 30 through the first electrical connection 81 on the reflective layer R of the first light emitting part, and the second electrode 70 is a reflective layer of the second light emitting part. (R) is in electrical communication with the second semiconductor layer 50 via the second electrical connection 71. In order to improve the stability of the electrical connection, the ohmic electrodes 72 and 82 may be interposed between the electrical connections 71 and 81 and the plurality of semiconductor layers.
반사층은 단일층 또는 다층 구조를 가질 수 있다. 본 예에서 반사층(R)은 금속 반사막에 의한 광흡수 감소를 위해 비도전성 물질로 형성되며, 분포 브래그 리플렉터(Distributed Bragg Reflector) 및 ODR(Omni-Directional Reflector) 중 하나를 포함할 수 있다. 다층 구조의 일 예로, 유전체막(91b), 분포 브래그 리플렉터(91a) 및 클래드막(91c)을 포함한다. 유전체막(91b)는 높이차를 완화하여 분포 브래그 리플렉터(91a)를 안정적으로 제조할 수 있게 되며, 빛의 반사에도 도움을 줄 수 있다. 유전체막(91b)의 재질은 SiO2가 적당하다. 분포 브래그 리플렉터(91a)는 유전체막(91b) 위에 형성된다. 분포 브래그 리플렉터(91a)는 반사율이 다른 물질의 반복 적층, 예를 들어, SiO2/TiO2, SiO2/Ta2O2, 또는 SiO2/HfO의 반복 적층으로 이루어질 수 있으며, Blue 빛에 대해서는 SiO2/TiO2가 반사효율이 좋고, UV 빛에 대해서는 SiO2/Ta2O2, 또는 SiO2/HfO가 반사효율이 좋을 것이다. 클래드막(91c)은 Al2O3와 같은 금속 산화물, SiO2, SiON와 같은 유전체막(91b), MgF, CaF, 등의 물질로 이루어질 수 있다.The reflective layer can have a single layer or a multilayer structure. In this example, the reflective layer R is formed of a non-conductive material to reduce light absorption by the metal reflective film, and may include one of a distributed bragg reflector and an omni-directional reflector (ODR). An example of the multilayer structure includes a dielectric film 91b, a distributed Bragg reflector 91a, and a clad film 91c. The dielectric film 91b may reduce the height difference to stably manufacture the distributed Bragg reflector 91a and may also help to reflect light. SiO 2 is a suitable material for the dielectric film 91b. The distributed Bragg reflector 91a is formed on the dielectric film 91b. The distribution Bragg reflector 91a may be composed of repeated stacking of materials having different reflectances, for example, SiO 2 / TiO 2 , SiO 2 / Ta 2 O 2 , or SiO 2 / HfO. SiO 2 / TiO 2 has good reflection efficiency, and for UV light, SiO 2 / Ta 2 O 2 , or SiO 2 / HfO will have good reflection efficiency. The clad film 91c may be made of a metal oxide such as Al 2 O 3 , a dielectric film 91b such as SiO 2 , SiON, MgF, CaF, or the like.
도 29는 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면으로서, 플립칩에 적용된 예가 제시되어 있다. 각 발광부는 장변 및 단변을 가지는 형상이며, 단변이 V 형으로 형성되어 있고, V형 단변이 서로 마주하고 있다. 연결 전극이 V형 단변의 대략 가운데에 형성되어 있고, 점형 전극부(93)이 V형 단변에 인접하게 형성되며, 연결선(92)이 발광부 위에서 뻗고 연결선의 끝에서 가지(98)가 분기된다.29 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure, an example applied to a flip chip is presented. Each light emitting part has a shape having a long side and a short side, the short side is formed in a V shape, and the V type short sides face each other. The connecting electrode is formed in approximately the center of the V-shaped short side, the point electrode portion 93 is formed adjacent to the V-shaped short side, the connecting line 92 extends above the light emitting portion, and the branch 98 branches at the end of the connecting line. .
도 30은 미국 등록특허공보 제7,262,436호에 개시된 반도체 발광소자의 일 예를 나타내는 도면으로서, 반도체 발광소자는 기판(100), 기판(100) 위에 성장되는 위에 성장되는 n형 반도체층(300), n형 반도체층(300) 위에 성장되는 활성층(400), 활성층(400) 위에 성장되는 p형 반도체층(500), p형 반도체층(500) 위에 형성되는 반사막으로 기능하는 전극(901,902,903) 그리고 식각되어 노출된 n형 반도체층(300) 위에 형성되는 n측 본딩 패드(800)를 포함한다.30 is a view showing an example of a semiconductor light emitting device disclosed in US Patent No. 7,262,436, wherein the semiconductor light emitting device is a substrate 100, an n-type semiconductor layer 300 is grown on the substrate 100, Active layers 400 grown on the n-type semiconductor layer 300, p-type semiconductor layers 500 grown on the active layer 400, electrodes 901, 902, 903 functioning as reflective films formed on the p-type semiconductor layer 500, and etching And an n-side bonding pad 800 formed on the exposed n-type semiconductor layer 300.
이러한 구조의 칩, 즉 기판(100)의 일 측에 전극(901,902,903) 및 전극(800) 모두가 형성되어 있고, 전극(901,902,903)이 반사막으로 기능하는 형태의 칩을 플립 칩(filp chip)이라 한다. 전극(901,902,903)은 반사율이 높은 전극(901; 예: Ag), 본딩을 위한 전극(903; 예: Au) 그리고 전극(901) 물질과 전극(903) 물질 사이의 확산을 방지하는 전극(902; 예: Ni)으로 이루어진다. 이러한 금속 반사막 구조는 반사율이 높고, 전류 확산에 이점을 가지지만, 금속에 의한 빛 흡수라는 단점을 가진다. 또한, 금속 반사막이 전극이면서 방열통로가 될 수 있지만, 금속 반사막이 전극이면서 동시에 좋은 방열 구조를 가지는 데에는 한계가 많다.A chip having such a structure, that is, a chip in which both the electrodes 901, 902, 903 and the electrode 800 are formed on one side of the substrate 100, and the electrodes 901, 902, 903 function as a reflective film is called a flip chip. . The electrodes 901, 902 and 903 may include a high reflectance electrode 901 (eg Ag), an electrode 903 (eg Au) for bonding, and an electrode 902 which prevents diffusion between the electrode 901 material and the electrode 903 material; Example: Ni). This metal reflective film structure has a high reflectance and has an advantage in current spreading, but has a disadvantage of light absorption by metal. In addition, although the metal reflecting film is an electrode and can be a heat dissipation passage, there are many limitations in that the metal reflecting film is an electrode and has a good heat dissipation structure.
도 31은 일본 공개특허공보 제2006-20913호에 개시된 반도체 발광소자의 일 예를 나타내는 도면으로서, 반도체 발광소자는 기판(100), 기판(100) 위에 성장되는 버퍼층(200), 버퍼층(200) 위에 성장되는 n형 반도체층(300), n형 반도체층(300) 위에 성장되는 활성층(400), 활성층(400) 위에 성장되는 p형 반도체층(500), p형 반도체층(500) 위에 형성되며, 전류 확산 기능을 하는 투광성 도전막(600), 투광성 도전막(600) 위에 형성되는 p측 본딩 패드(700) 그리고 식각되어 노출된 n형 반도체층(300) 위에 형성되는 n측 본딩 패드(800)를 포함한다. 그리고 투광성 도전막(600) 위에는 분포 브래그 리플렉터(900; DBR: Distributed Bragg Reflector)와 금속 반사막(904)이 구비되어 있다. 이러한 구성에 의하면, 금속 반사막(904)에 의한 빛 흡수를 감소하지만, 전극(901,902,903)을 이용하는 것보다 상대적으로 전류 확산이 원활치 못한 단점이 있다. FIG. 31 is a diagram illustrating an example of a semiconductor light emitting device disclosed in Japanese Laid-Open Patent Publication No. 2006-20913. The semiconductor light emitting device includes a substrate 100, a buffer layer 200, and a buffer layer 200 grown on the substrate 100. It is formed on the n-type semiconductor layer 300, the active layer 400 is grown on the n-type semiconductor layer 300, the p-type semiconductor layer 500, the p-type semiconductor layer 500 is grown on the active layer 400 And a transmissive conductive film 600 having a current spreading function, a p-side bonding pad 700 formed on the transmissive conductive film 600, and an n-side bonding pad formed on the etched and exposed n-type semiconductor layer 300 ( 800). The distributed Bragg reflector 900 (DBR: Distributed Bragg Reflector) and the metal reflecting film 904 are provided on the transparent conductive film 600. According to this configuration, the light absorption by the metal reflective film 904 is reduced, but there is a disadvantage in that current spreading is not smoother than using the electrodes 901, 902, 903.
도 32는 미국 등록특허공보 제6,650,044호에 도시된 반도체 발광소자의 일 예를 나타내는 도면으로서, 반도체 발광소자는 플립 칩의 형태로, 기판(100), 기판(100) 위에, 제1 도전성을 가지는 제1 반도체층(300), 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(400), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(500)이 순차로 증착되어 있으며, 그 위에 기판(100) 측으로 빛을 반사시키기 위한 반사막(950)이 형성되어 있고, 식각되어 노출된 제1 반도체층(300) 위에 본딩 패드로 기능하는 전극(800)이 형성되어 있으며, 기판(100) 및 반도체층(300,400,500)을 둘러싸도록 봉지재(1000)가 형성되어 있다. 반사막(950)은 도 31에서와 같이 금속층으로 이루어질 수 있지만, 도 34에 도시된 바와 같이, SiO2/TiO2로 된 DBR(Distributed Bragg Reflector)과 같은 절연체 반사막으로 이루어질 수 있다. 반도체 발광소자는 전기 배선(820,960)이 구비된 PCB(1200; Printed Circuit Board)에 도전 접착제(830,970)를 통해 장착된다. 봉지재(1000)에는 주로 형광체가 함유된다. 여기서 반도체 발광소자는 봉지재(1000)를 포함하므로, 구분을 위해, 봉지재(1000)를 제외한 반도체 발광소자 부분을 반도체 발광칩이라 부를 수 있다. 이러한 방법으로 도 32에 도시된 바와 같이 반도체 발광칩에 봉지재(1000)가 도포될 수 있다. 32 is a view showing an example of the semiconductor light emitting device shown in US Patent No. 6,650,044, the semiconductor light emitting device in the form of a flip chip, having a first conductivity on the substrate 100, the substrate 100 The first semiconductor layer 300, an active layer 400 that generates light through recombination of electrons and holes, and a second semiconductor layer 500 having a second conductivity different from the first conductivity are sequentially deposited thereon. A reflective film 950 for reflecting light toward the substrate 100 is formed, and an electrode 800 serving as a bonding pad is formed on the first semiconductor layer 300 that is etched and exposed, and the substrate 100 and The encapsulant 1000 is formed to surround the semiconductor layers 300, 400, and 500. The reflective film 950 may be formed of a metal layer as shown in FIG. 31, but may be formed of an insulator reflective film such as a distributed bragg reflector (DBR) made of SiO 2 / TiO 2 , as shown in FIG. 34. The semiconductor light emitting device is mounted on a printed circuit board (PCB) 1200 having electrical wires 820 and 960 through conductive adhesives 830 and 970. The encapsulant 1000 mainly contains phosphors. Since the semiconductor light emitting device includes the encapsulation material 1000, the semiconductor light emitting device portion except for the encapsulation material 1000 may be referred to as a semiconductor light emitting chip for the purpose of classification. In this manner, the encapsulant 1000 may be applied to the semiconductor light emitting chip as illustrated in FIG. 32.
도 33은 미국 공개특허공보 제2012/0171789에 개시된 반도체 발광소자의 일 예를 나타내는 도면으로서, 회로 기판(3)에 형성된 단자(3)에 범프(5)가 접합되어 실장된 발광소자가 제시되어 있다. 발광소자 전극들 사이에는 절연체(7)가 개재되어 있다. 방열의 측면에서 전극과 회로 기판의 단자를 통한 방열통로는 매우 제한적이고, 방열 면적이 작다.FIG. 33 is a view illustrating an example of a semiconductor light emitting device disclosed in US Patent Application Publication No. 2012/0171789. A light emitting device in which bumps 5 are bonded to terminals 3 formed on a circuit board 3 is mounted. have. An insulator 7 is interposed between the light emitting element electrodes. In terms of heat dissipation, the heat dissipation passage through the electrode and the terminal of the circuit board is very limited, and the heat dissipation area is small.
도 34는 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면이고, 도 35는 도 34의 A-A 선을 따라 취한 단면의 일 예를 나타내는 도면이다. 반도체 발광소자는 복수의 반도체층(30,40,50), 제1 가지 전극(85) 및 제2 가지 전극(75) 중 적어도 하나, 비도전성 반사막(R), 제1 전극(80), 및 제2 전극(70)을 포함한다. 복수의 반도체층은 순차로 적층된 제1 도전성을 가지는 제1 반도체층(30), 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(40), 및 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(50)을 포함한다. 복수의 반도체층은 서로 대향하는 긴 에지들(long edges)과 서로 대향하는 2개의 짧은 에지들(short edges)을 가진다. 제1 가지 전극(85)은 제2 반도체층(50) 및 활성층(40)이 제거되어 노출된 제1 반도체층(30) 위에서 일 측 긴 에지로부터 타 측 긴 에지를 향하여 뻗는다. 제2 가지 전극(75)은 제2 반도체층(50) 위에서 타 측 긴 에지로부터 일 측 긴 에지를 향하여 뻗는다. 비도전성 반사막(R)은 복수의 반도체층과 제1 가지 전극(85) 및 제2 가지 전극(75)을 덮도록 형성되며, 활성층(40)으로부터의 빛을 반사한다. 본 예에서, 반도체 발광소자는 제1 전극(80) 및 제2 전극(70) 중 적어도 하나는 비도전성 반사막(R)을 기준으로 복수의 반도체층의 반대 측에 구비되며, 비도전성 반사막(R)을 관통하는 전기적 연결(an electrical connection)에 의해 복수의 반도체층과 전기적으로 연통되는 플립칩(flip chip)이다. 도 34 및 도 35에서, 제1 전극(80)은 제1 반도체층(30)과 전기적으로 연통하도록 일 측 긴 에지 측 비도전성 반사막(R) 위에 구비되며, 전자와 정공 중 하나를 공급한다. 제2 전극(70)은 제2 반도체층(50)과 전기적으로 연통하도록 타 측 긴 에지 측 비도전성 반사막(R) 위에 구비되며, 전자와 정공 중 나머지 하나를 공급한다.34 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure, and FIG. 35 is a diagram illustrating an example of a cross section taken along a line A-A of FIG. 34. The semiconductor light emitting device includes at least one of the plurality of semiconductor layers 30, 40, 50, the first branch electrode 85, and the second branch electrode 75, the non-conductive reflective film R, the first electrode 80, and The second electrode 70 is included. The plurality of semiconductor layers may include a first semiconductor layer 30 having a first conductivity sequentially stacked, an active layer 40 for generating light through recombination of electrons and holes, and a second conductivity different from the first conductivity. 2 semiconductor layer 50 is included. The plurality of semiconductor layers have long edges facing each other and two short edges facing each other. The first branch electrode 85 extends from the one long edge to the other long edge on the exposed first semiconductor layer 30 by removing the second semiconductor layer 50 and the active layer 40. The second branch electrode 75 extends from the other long edge toward the one long edge on the second semiconductor layer 50. The nonconductive reflective film R is formed to cover the plurality of semiconductor layers, the first branch electrodes 85, and the second branch electrodes 75, and reflects light from the active layer 40. In this example, at least one of the first electrode 80 and the second electrode 70 is provided on the opposite side of the plurality of semiconductor layers with respect to the non-conductive reflective film R, and the non-conductive reflective film R It is a flip chip that is in electrical communication with the plurality of semiconductor layers by an electrical connection through the (). 34 and 35, the first electrode 80 is provided on one side of the long edge side non-conductive reflective film R to electrically communicate with the first semiconductor layer 30, and supplies one of electrons and holes. The second electrode 70 is provided on the other long edge side non-conductive reflective film R so as to be in electrical communication with the second semiconductor layer 50, and supplies the other one of electrons and holes.
이하, 3족 질화물 반도체 발광소자를 예로 하여 설명한다.Hereinafter, the group III nitride semiconductor light emitting element will be described as an example.
기판(10)으로 주로 사파이어, SiC, Si, GaN 등이 이용되며, 기판(10)은 최종적으로 제거될 수 있다. 제1 반도체층(30)과 제2 반도체층(50)은 그 위치가 바뀔 수 있으며, 3족 질화물 반도체 발광소자에 있어서 주로 GaN으로 이루어진다. Sapphire, SiC, Si, GaN and the like are mainly used as the substrate 10, and the substrate 10 may be finally removed. The positions of the first semiconductor layer 30 and the second semiconductor layer 50 may be changed, and are mainly made of GaN in the group III nitride semiconductor light emitting device.
복수의 반도체층은 기판(10) 위에 형성된 버퍼층(20), 제1 도전성을 가지는 제1 반도체층(30; 예: Si 도핑된 GaN), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(50; 예: Mg 도핑된 GaN) 및 제1 반도체층(30)과 제2 반도체층(50) 사이에 개재되며 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(40; 예: InGaN/(In)GaN 다중양자우물구조)을 포함한다. 복수의 반도체층(30,40,50) 각각은 다층으로 이루어질 수 있고, 버퍼층(20)은 생략될 수 있다. The plurality of semiconductor layers may include a buffer layer 20 formed on the substrate 10, a first semiconductor layer 30 having a first conductivity (for example, Si-doped GaN), and a second semiconductor layer having a second conductivity different from the first conductivity. (Eg, Mg-doped GaN) and an active layer 40 interposed between the first semiconductor layer 30 and the second semiconductor layer 50 to generate light through recombination of electrons and holes (eg, InGaN / ( In) GaN multi-quantum well structure). Each of the semiconductor layers 30, 40, and 50 may be formed in multiple layers, and the buffer layer 20 may be omitted.
복수의 반도체층은 대략 사각 형상을 가지고, 위에서 볼 때, 서로 대향하는 긴 에지(장변)들과, 서로 대향하는 짧은 에지(단변)들을 가진다. 제2 반도체층(50) 및 활성층(40)이 식각되어 제1 반도체층이 노출되는 n-contact 영역(65)이 형성된다. n-contact 영역(65)에는 제1 가지 전극(85)이 형성되며, 전술한 바와 같이, 제1 가지 전극(85)은 일 측 긴 에지의 인근으로부터 타 측 긴 에지를 향하는 방향으로 뻗어 있다. The plurality of semiconductor layers have a substantially rectangular shape, and when viewed from above, have long edges (long sides) facing each other and short edges (short sides) facing each other. The second semiconductor layer 50 and the active layer 40 are etched to form an n-contact region 65 through which the first semiconductor layer is exposed. A first branch electrode 85 is formed in the n-contact region 65. As described above, the first branch electrode 85 extends from the vicinity of one long edge to a direction toward the other long edge.
바람직하게는 투광성 도전막(60; 예: ITO,Ni/Au)이 제2 반도체층(50)과 반사층(R) 사이에 형성된다. 기판(10) 상에 제1 반도체층(30), 활성층(40), 제2 반도체층(50), 투광성 도전막(60)을 형성하고, 메사식각하여 전술된 n-contact 영역(65)을 형성할 수 있다. 메사식각은 투광성 도전막(60) 형성 전 또는 이후에 수행될 수도 있다. 투광성 도전막(60)은 생략될 수 있다. Preferably, the transparent conductive film 60 (eg, ITO, Ni / Au) is formed between the second semiconductor layer 50 and the reflective layer R. The first semiconductor layer 30, the active layer 40, the second semiconductor layer 50, and the transparent conductive film 60 are formed on the substrate 10, and mesa-etched to form the n-contact region 65 described above. Can be formed. Mesa etching may be performed before or after the transparent conductive layer 60 is formed. The transparent conductive film 60 may be omitted.
제2 가지 전극(75)은 투광성 도전막(60) 위에서 타 측 긴 에지의 인근으로부터 일 측 긴 에지를 향하는 방향으로 뻗어 있다. 복수의 제1 가지 전극(85)과 복수의 제2 가지 전극(75)이 교대로 구비될 수 있다. 제1 가지 전극(85) 및 제2 가지 전극(75)은 복수의 금속층으로 이루어질 수 있으며, 제1 반도체층(30) 또는 투광성 도전막(60)과의 전기적 접촉이 좋은 접촉층과 광반사성이 좋은 반사층 등을 구비할 수 있다.The second branch electrode 75 extends from the vicinity of the other long edge on the light-transmissive conductive film 60 in a direction toward the one long edge. The plurality of first branch electrodes 85 and the plurality of second branch electrodes 75 may be alternately provided. The first branch electrode 85 and the second branch electrode 75 may be formed of a plurality of metal layers, and the contact layer and the light reflectivity having good electrical contact with the first semiconductor layer 30 or the transparent conductive layer 60 may be formed. A good reflective layer can be provided.
비도전성 반사막(R)은 투광성 도전막(60), 제1 가지 전극(85), 및 제2 가지 전극(75)을 덮도록 형성되며, 활성층(40)으로부터의 빛을 기판(10) 측으로 반사한다. 본 예에서 비도전성 반사막(R)은 금속 반사막에 의한 광흡수 감소를 위해 절연성 물질로 형성되며, 바람직하게는 DBR(Distributed Bragg Reflector) 또는 ODR(Omni-Directional Reflector)을 포함하는 다층 구조일 수 있다.The non-conductive reflective film R is formed to cover the transparent conductive film 60, the first branch electrode 85, and the second branch electrode 75, and reflects light from the active layer 40 toward the substrate 10. do. In this example, the non-conductive reflecting film R is formed of an insulating material to reduce light absorption by the metal reflecting film, and may preferably have a multilayer structure including a distributed bragg reflector (DBR) or an omni-directional reflector (ODR). .
전술한 바와 같이, 제1 전극(80) 및 제2 전극(70)은 비도전성 반사막(R) 위에 구비되며, 제1 전극(80) 및 제2 전극(70)의 서로 마주보는 에지들은 일 측 짧은 에지 인근으로부터 타 측 짧은 에지를 향하여 뻗어 있다. 제1 전기적 연결(81)은 비도전성 반사막(R)을 관통하여 제1 전극(80)과 제1 가지 전극(85)을 연결한다. 제1 가지 전극(85)은 전류 확산을 위해서도 구비되지만, 제1 전기적 연결(81)과 제1 반도체층(30) 사이에 접촉저항 감소하고 전기적 연결을 안정성을 위해 이들 사이에 개재될 수 있다. 제2 전기적 연결(71)은 비도전성 반사막(R)을 관통하여 제2 전극(70)과 투광성 도전막(60)을 전기적으로 연결한다. 제2 가지 전극(75)은 전류 확산을 위해서도 구비되지만, 제2 전기적 연결(71)과 투광성 도전막(60) 사이에 접촉저항 감소하고 전기적 연결을 안정성을 위해 이들 사이에 개재될 수 있다. 제1 가지 전극(85)은 제1 전극(80)의 아래로부터 제2 전극(70)의 아래로 뻗고, 제2 가지 전극(75)은 제2 전극(70)의 아래로부터 제1 전극(80)의 아래로 뻗는다.As described above, the first electrode 80 and the second electrode 70 are provided on the non-conductive reflective film R, and the edges facing each other of the first electrode 80 and the second electrode 70 are on one side. It extends from the vicinity of the short edge toward the other short edge. The first electrical connection 81 penetrates the non-conductive reflective film R to connect the first electrode 80 and the first branch electrode 85. The first branch electrode 85 is also provided for the current diffusion, but may reduce the contact resistance between the first electrical connection 81 and the first semiconductor layer 30 and may be interposed therebetween for stability of the electrical connection. The second electrical connection 71 penetrates the non-conductive reflective film R to electrically connect the second electrode 70 and the transparent conductive film 60. The second branch electrode 75 is also provided for the current diffusion, but may reduce the contact resistance between the second electrical connection 71 and the transparent conductive film 60 and may be interposed therebetween for stability of the electrical connection. The first branch electrode 85 extends below the second electrode 70 from below the first electrode 80, and the second branch electrode 75 extends from the bottom of the second electrode 70 to the first electrode 80. Stretches down).
제1 전극(80) 및 제2 전극(70)은 외부 전극과의 전기적 연결용 전극으로서, 외부 전극과 유테틱 본딩되거나, 솔더링되거나 또는 와이어 본딩도 가능하다. 외부전극은 서브마운트에 구비된 도통부, 패키지의 리드 프레임, PCB에 형성된 전기 패턴 등일 수 있으며, 반도체 발광소자와 독립적으로 구비된 도선이라면 그 형태에 특별한 제한이 있는 것은 아니다.The first electrode 80 and the second electrode 70 are electrodes for electrical connection with the external electrode, and may also be eutectic bonded, soldered, or wire bonded with the external electrode. The external electrode may be a conductive portion provided in the submount, a lead frame of the package, an electrical pattern formed on the PCB, and the like, and the external electrode may be provided independently of the semiconductor light emitting device.
도 36은 비교예의 반도체 발광소자를 설명하기 위한 도면으로서, 제1 가지 전극(85) 및 제2 가지 전극(75)이 긴 변을 따라 뻗어 있다. 따라서, n-contact 영역(65)이 도 34 및 도 35에 제시한 예보다 훨씬 더 길다. 따라서, 활성층(40)이 그만큼 더 많이 제거되어 발광면적이 더 감소한다. 즉, 도 34 및 도 35에 제시된 소자에서, 제1 가지 전극(85)을 일 측 긴 에지로부터 타 측 긴 에지를 향하는 방향 또는 그 반대 방향으로 향하게 형성하면, 발광면적 감소를 줄일 수 있고, 휘도가 향상된다. 또한, 도 36에 제시된 비교예보다 도 34 및 도 35에 제시된 예에서 제1 가지 전극(85) 및 제2 가지 전극(75)의 길이가 더 짧다. 따라서, 가지 전극(75,85) 같은 금속에 의한 광흡수 손실도 줄일 수 있어서, 휘도가 향상된다. 뿐만 아니라 도 34 및 도 35에 제시된 소자의 예는 외부 전극에 실장될 때도 도 36에 제시된 비교예보다 장점을 가지게 된다. 이에 대해서는 더 후술된다.36 is a view for explaining the semiconductor light emitting device of the comparative example, in which the first branch electrode 85 and the second branch electrode 75 extend along a long side. Thus, the n-contact region 65 is much longer than the example shown in FIGS. 34 and 35. Therefore, the active layer 40 is removed more by that much, and the light emitting area is further reduced. That is, in the devices shown in FIGS. 34 and 35, when the first branch electrodes 85 are formed in one direction from the one long edge to the other long edge or in the opposite direction, the emission area decreases and the luminance is reduced. Is improved. Further, the lengths of the first branch electrode 85 and the second branch electrode 75 are shorter in the examples shown in FIGS. 34 and 35 than in the comparative example shown in FIG. 36. Therefore, the light absorption loss by metals such as the branch electrodes 75 and 85 can also be reduced, so that the luminance is improved. In addition, the example of the device shown in FIGS. 34 and 35 has advantages over the comparative example shown in FIG. 36 even when mounted on an external electrode. This is further described below.
도 37은 본 개시에 따른 반도체 발광소자의 다른 예를 설명하기 위한 도면이고, 도 38은 도 37의 B-B 선을 따라 취한 단면의 일 예를 나타내는 도면이다. 본 예에서, 섬형(island type) 오믹 전극(72,82), 및 광흡수 방지막(41)이 추가되고, 제1 전극(80) 및 제2 전극(70)이 가지 전극(75,85)에 대응하여 복수 개로 서로 떨어져 형성되어 있다. 또한, 비도전성 반사막(R)의 다층 구조의 일 예가 제시되어 있다.37 is a diagram for describing another example of the semiconductor light emitting device according to the present disclosure, and FIG. 38 is a diagram illustrating an example of a cross section taken along a line B-B of FIG. 37. In this example, island type ohmic electrodes 72 and 82 and a light absorption prevention film 41 are added, and the first electrode 80 and the second electrode 70 are connected to the branch electrodes 75 and 85. Correspondingly, they are formed in plurality apart from each other. In addition, an example of the multilayer structure of the non-conductive reflective film R is shown.
가지 전극(75,85)이 긴 에지들을 향하여 뻗으며, 짧은 에지보다 짧게 형성된다. 제1 섬형 오믹 전극(82)은 제1 반도체층(30)과, 제1 전기적 연결(81) 사이에 개재되어 접촉 저항을 감소하고, 전기적 연결의 안정성을 향상한다. 제2 섬형 오믹 전극(72)은 투광성 도전막(60)과 제2 전기적 연결(71) 사이에 개재되어 접촉 저항을 감소하고, 전기적 연결의 안정성을 향상한다. 전기적 연결(71,81)이 섬형 오믹 전극(72,82)을 감싸도록 형성되어 더욱 안정적으로 전기적 연결을 이룬다. 섬형 오믹 전극(72,82)은 가지 전극(75,85)과 다르게 뻗지(extending) 않고, 원형, 다각형 등 점형으로 형성된다. 전류 확산을 위해 가지 전극을 구비하지만, 긴 에지들을 향하여 뻗도록, 예를 들어, 짧은 에지와 나란하게 가지 전극을 형성하여 가지 전극의 길이를 줄이는 것에 더 하여, 본 예에서는 섬형 오믹 전극(72,82)을 통해 전류를 공급함으로써, 가지 전극(75,85)이 불필요하게 길어지는 것을 방지한다. 따라서 가지 전극(75,85)에 의한 광흡수 손실을 더 줄일 수 있다. n-contact 영역(65)도 제1 가지 전극(85)과 제1 섬형 오믹 전극(82)에 대응하는 부분이 별개로 떨어져 형성되어 있다. 따라서, n-contact 영역(65) 불필요하게 길어지는 것이 방지되며, 발광면적 감소를 더 줄일 수 있다. Branch electrodes 75 and 85 extend toward the long edges and are formed shorter than the short edges. The first island-type ohmic electrode 82 is interposed between the first semiconductor layer 30 and the first electrical connection 81 to reduce contact resistance and improve stability of the electrical connection. The second island-type ohmic electrode 72 is interposed between the transparent conductive film 60 and the second electrical connection 71 to reduce contact resistance and improve stability of the electrical connection. The electrical connections 71 and 81 are formed to surround the island- type ohmic electrodes 72 and 82 to achieve a more stable electrical connection. The island-like ohmic electrodes 72 and 82 do not extend differently from the branch electrodes 75 and 85, and are formed in a circular or polygonal dot shape. A branch electrode is provided for current spreading, but in addition to reducing the length of the branch electrode by forming the branch electrode parallel to the short edge, for example, parallel to the short edge, the island-type ohmic electrode 72, By supplying current through 82, the branch electrodes 75, 85 are prevented from unnecessarily lengthening. Therefore, the light absorption loss caused by the branch electrodes 75 and 85 can be further reduced. In the n-contact region 65, portions corresponding to the first branch electrodes 85 and the first island-type ohmic electrodes 82 are formed separately from each other. Therefore, unnecessary elongation of the n-contact region 65 is prevented, and it is possible to further reduce the light emitting area reduction.
광흡수 방지막(41)은 SiO2, TiO2 등을 사용하여 제2 반도체층(50)과 투광성 도전막(60) 사이에 제2 가지 전극(75) 및 제2 섬형 오믹 전극(72)에 대응하여 형성될 수 있다. 광흡수 방지막(41)은 활성층(40)에서 발생된 빛의 일부 또는 전부를 반사하는 기능만을 가져도 좋고, 제2 가지 전극(75) 및 제2 섬형 오믹 전극(72)으로부터 바로 아래로 전류가 흐르지 못하도록 하는 기능만을 가져도 좋고, 양자의 기능을 모두 가져도 좋다.The light absorption prevention film 41 corresponds to the second branch electrode 75 and the second island-type ohmic electrode 72 between the second semiconductor layer 50 and the transparent conductive film 60 using SiO 2 , TiO 2 , or the like. Can be formed. The light absorption prevention film 41 may have only a function of reflecting a part or all of the light generated in the active layer 40, and a current flows directly below the second branch electrode 75 and the second island-type ohmic electrode 72. It may have only a function that prevents flow, or may have both functions.
비도전성 반사막(R)은, 다층 구조의 일 예로, 유전체막(91b), 분포 브래그 리플렉터(91a) 및 클래드막(91c)을 포함한다. 유전체막(91b)은 높이차를 완화하여 분포 브래그 리플렉터(91a)를 안정적으로 제조할 수 있게 되며, 빛의 반사에도 도움을 줄 수 있다. 유전체막(91b)의 재질은 SiO2가 적당하다. 분포 브래그 리플렉터(91a)는 유전체막(91b) 위에 형성된다. 분포 브래그 리플렉터(91a)는 반사율이 다른 물질의 반복 적층, 예를 들어, SiO2/TiO2, SiO2/Ta2O2, 또는 SiO2/HfO의 반복 적층으로 이루어질 수 있으며, Blue 빛에 대해서는 SiO2/TiO2가 반사효율이 좋고, UV 빛에 대해서는 SiO2/Ta2O2, 또는 SiO2/HfO가 반사효율이 좋을 것이다. 클래드막(91c)은 Al2O3와 같은 금속 산화물, SiO2, SiON와 같은 유전체막(91b), MgF, CaF, 등의 물질로 이루어질 수 있다.The nonconductive reflecting film R includes, as an example of a multilayer structure, a dielectric film 91b, a distributed Bragg reflector 91a, and a clad film 91c. The dielectric film 91b may reduce the height difference to stably manufacture the distributed Bragg reflector 91a and may also help to reflect light. SiO 2 is a suitable material for the dielectric film 91b. The distributed Bragg reflector 91a is formed on the dielectric film 91b. The distribution Bragg reflector 91a may be composed of repeated stacking of materials having different reflectances, for example, SiO 2 / TiO 2 , SiO 2 / Ta 2 O 2 , or SiO 2 / HfO. SiO 2 / TiO 2 has good reflection efficiency, and for UV light, SiO 2 / Ta 2 O 2 , or SiO 2 / HfO will have good reflection efficiency. The clad film 91c may be made of a metal oxide such as Al 2 O 3 , a dielectric film 91b such as SiO 2 , SiON, MgF, CaF, or the like.
DBR과 같은 비도전성 반사막(91) 위에 전극(70,80)이 위치하는 경우에, 전극(70,80)에 의해 빛이 흡수되지만, 전극(70,80)을 Ag, Al과 같이 반사율이 높은 금속으로 구성하는 경우에 반사율을 높일 수 있는 것으로 알려져 왔다. 또한, 전극(70,80)은 본딩 패드, 반도체 발광소자의 방열을 위해서도 기능 해야 하므로, 이러한 요소를 고려하여 그 크기를 결정해야 한다. 그러나 본 발명자들은 DBR과 같은 비도전성 반사막(R)이 이용되는 경우에 그 위에 놓이는 전극(70,80)의 크기를 줄일수록 비도전성 반사막(91)에 의한 광 반사율이 높아진다는 것을 확인하였으며, 이러한 실험 결과는 본 개시에서 전극(70,80)의 크기를 종래에 생략할 수 없었던 범위로 줄일 수 있는 계기를 제공하였다.When the electrodes 70 and 80 are positioned on the non-conductive reflective film 91 such as DBR, light is absorbed by the electrodes 70 and 80, but the electrodes 70 and 80 have a high reflectance such as Ag and Al. It has been known that the reflectance can be increased in the case of a metal. In addition, the electrodes 70 and 80 should also function for heat dissipation of the bonding pad and the semiconductor light emitting device, and thus, the size of the electrodes 70 and 80 should be determined in consideration of these factors. However, the present inventors have found that when the non-conductive reflecting film R such as DBR is used, the light reflectance by the non-conductive reflecting film 91 increases as the size of the electrodes 70 and 80 placed thereon is reduced. Experimental results provided an instrument capable of reducing the size of the electrodes 70 and 80 to a range that could not be omitted in the prior art.
본 예에서, 제1 전극(80) 및 제2 전극(70)은 일 측 짧은 에지 인근으로부터 타 측 짧은 에지를 향하여 길게 형성된 도 34의 예와 다르게, 각 가지 전극에 대응하여 복수의 제1 전극(80) 및 복수의 제2 전극(70)이 서로 떨어져 형성된다. 따라서, 전극에 의한 광흡수 손실을 줄이고, 비도전성 반사막(R)의 반사율이 더 높아진다. In the present example, unlike the example of FIG. 34, in which the first electrode 80 and the second electrode 70 are elongated from the vicinity of one short edge toward the other short edge, a plurality of first electrodes corresponding to each branch electrode is provided. 80 and the plurality of second electrodes 70 are formed apart from each other. Therefore, the light absorption loss by the electrode is reduced, and the reflectance of the nonconductive reflecting film R is higher.
도 39 및 도 40은 본 개시에 따른 반도체 발광소자의 사용 예들을 설명하기 위한 도면으로서, 복수의 반도체 발광소자(101,102,103)가 플레이트(200) 위에 실장되어 있다. 플레이트(200)는 제1 도전부(201), 제2 도전부(202), 및 절연부(203)를 포함한다. 반도체 발광소자(101)의 제1 전극(80) 및 제2 전극(70)은 각각 제1 도전부(201) 및 제2 도전부(202)와 접합된다. 절연부(203)는 제1 도전부(201) 및 제2 도전부(202)의 사이에 개재되며, 제1 전극(80)과 제2 전극(70)의 사이에 대응한다. 제1 도전부(201) 및 제2 도전부(202)가 상하로 노출되며, 절연부(203)는 상하로 도전부(201,202)를 덮지 않아서 방열에 매우 효과적이다. 제1 도전부(201) 및 제2 도전부(202)가 교대로 형성되며, 각 도전부에는 이웃한 반도체 발광소자들의 제1 전극(80) 및 제2 전극(70)이 접합되어 복수의 반도체 발광소자(101,102,103)가 직렬연결된다. 물론 병렬연결도 가능하다.39 and 40 illustrate examples of use of the semiconductor light emitting device according to the present disclosure, and a plurality of semiconductor light emitting devices 101, 102, and 103 are mounted on the plate 200. The plate 200 includes a first conductive portion 201, a second conductive portion 202, and an insulating portion 203. The first electrode 80 and the second electrode 70 of the semiconductor light emitting device 101 are bonded to the first conductive portion 201 and the second conductive portion 202, respectively. The insulating portion 203 is interposed between the first conductive portion 201 and the second conductive portion 202, and corresponds between the first electrode 80 and the second electrode 70. The first conductive portion 201 and the second conductive portion 202 are exposed up and down, and the insulating portion 203 does not cover the conductive portions 201 and 202 up and down, which is very effective for heat dissipation. The first conductive portion 201 and the second conductive portion 202 are alternately formed, and the first electrode 80 and the second electrode 70 of neighboring semiconductor light emitting devices are bonded to each conductive portion to form a plurality of semiconductors. The light emitting elements 101, 102, 103 are connected in series. Of course, parallel connection is also possible.
도 34, 도 35, 도 37, 및 도 38에서 설명된 반도체 발광소자는 제1 전극(80) 및 제2 전극(70)이 각각 일 측 및 타 측 긴 에지 인근에 구비되고, 가지 전극(75,85)이 일 측 긴 에지로부터 타 측 긴 에지를 향하는 방향으로, 또는 그 반대로 뻗어 있다. 도 39 및 도 40에서 직렬연결의 방향은 가지 전극(75,85)이 뻗는 방향이므로 도 36에 제시된 비교예의 소자 복수 개를 직렬연결하는 경우에 비하여 플레이트(200)에 직렬연결의 방향으로 더 콤팩트하게 실장될 수 있다. 34, 35, 37, and 38, the semiconductor light emitting device illustrated in FIG. 38 includes a first electrode 80 and a second electrode 70 near one side and the other long edge, respectively, and the branch electrode 75. 85 extend in a direction from one long edge to the other long edge, or vice versa. 39 and 40, the direction of the series connection is the direction in which the branch electrodes 75 and 85 extend, which is more compact in the direction of the series connection to the plate 200 than in the case of connecting a plurality of elements of the comparative example shown in FIG. Can be implemented.
도 41은 플레이트를 제조하는 방법의 일 예를 설명하는 도면으로서, 복수의 도전판(201,202; 예: Al/Cu/Al)을 절연접착제(203; 예: 에폭시) 등과 같은 절연재료를 사용하여 접착하는 방식으로 반복 적층하여 적층체를 준비한다. 이와 같은 적층체를 절단하여(예: 와이어 커팅 방법), 도 39 및 도 40에 제시된 것과 같이, 플레이트(200)가 형성된다. 절단하는 방법에 따라 플레이트는 띠 모양으로 길게 형성되거나, 바둑판처럼 넓게 형성될 수 있다. 도전부(201,202)의 폭, 절연부(203)의 폭은 상기 도전판 및 절연접착제의 두께를 변경하여 조절될 수 있다.FIG. 41 is a view for explaining an example of a method of manufacturing a plate, and bonding a plurality of conductive plates 201 and 202 (for example, Al / Cu / Al) using an insulating material such as an insulating adhesive 203 (for example, epoxy) or the like. The laminate was prepared by repeating lamination in the manner as described above. By cutting such a laminate (eg, a wire cutting method), a plate 200 is formed, as shown in FIGS. 39 and 40. According to the cutting method, the plate may be formed long in a band shape, or may be formed as wide as a checker board. The width of the conductive parts 201 and 202 and the width of the insulating part 203 may be adjusted by changing the thicknesses of the conductive plate and the insulating adhesive.
도 34, 도 35, 도 37, 및 도 38에서 설명된 반도체 발광소자는 도 39 및 도 40에 제시된 것과 같이, 복수의 반도체 발광소자를 사용하여 가로 및 세로가 대략 비슷한 사각의 패키지를 형성하기에 용이하다. 예를 들어, 도 36에 제시된 비교예의 소자의 경우, 직렬연결 방향으로 소자가 길게 배치되므로 가로 및 세로가 비슷하게 만들기가 곤란한 점이 있다. 34, 35, 37, and 38, the semiconductor light emitting device described in FIG. 39 and 40, as shown in Figure 39 and 40, to form a rectangular package of approximately the same width and length using a plurality of semiconductor light emitting device It is easy. For example, in the case of the device of the comparative example shown in Fig. 36, there is a difficulty in making the horizontal and vertical similar because the device is arranged long in the series connection direction.
도 42는 본 개시에 따른 반도체 발광소자의 사용 방법의 다른 예를 설명하기 위한 도면으로서, 플레이트(200)에 실장된 복수의 반도체 발광소자를 봉지재(210)로 덮어 사용될 수 있다. 예를 들어, 봉지재(210)는 스크린 프린팅 방법으로 프린팅되거나, 컨포멀 코팅되거나, 액상의 수지를 제공하고, 경화시켜 형성될 수 있다. 봉지재(210)는 실리콘 등과 같은 액상의 투명한 수지 재료와 형광체를 포함할 수 있다. 도 39에 제시된 바와 같이, 평면상에서 반도체 발광소자의 예정된 경계(점선들로 표시됨)를 따라 경화된 봉지재 및 플레이트(110)를 함께 절단하여 도 42에 제시된 바와 같은 패키지가 제조될 수 있다.FIG. 42 is a view for explaining another example of a method of using a semiconductor light emitting device according to the present disclosure. The plurality of semiconductor light emitting devices mounted on the plate 200 may be covered with an encapsulant 210. For example, the encapsulant 210 may be formed by printing by a screen printing method, conformal coating, or by providing and curing a liquid resin. The encapsulant 210 may include a liquid transparent resin material such as silicone and the phosphor. As shown in FIG. 39, a package as shown in FIG. 42 may be manufactured by cutting the cured encapsulant and plate 110 together along a predetermined boundary (indicated by dotted lines) of the semiconductor light emitting device on a plane.
도 43은 본 개시에 따른 반도체 발광소자의 사용 방법의 또 다른 예를 설명하기 위한 도면으로서, 복수의 반도체 발광소자 둘레에 댐(250)을 형성하고, 댐(250)에 봉지재(210)를 채워 사용될 수 있다. 예를 들어, 댐(250)은 화이트 수지를 플레이트(200)에 프린팅하거나, 디스펜싱하고 경화시켜 형성될 수 있다. 댐(250)은 플레이트(200)의 상면에 필요한 만큼만 형성되며, 플레이트(200)의 하면으로 불필요한 연장이 없다. 따라서 플레이트(200)는 전원전달과 함께 좋은 히트싱크가 된다. 또한, 반도체 발광소자는 전술한 바와 같이, 플레이트(200)에 콤팩트하게 실장되기에 유리한 구조를 가져서 패키지 전체가 더 콤팩트하게 될 수 있다.43 is a view for explaining another example of a method of using a semiconductor light emitting device according to the present disclosure. A dam 250 is formed around a plurality of semiconductor light emitting devices, and an encapsulant 210 is formed on the dam 250. Can be used to fill. For example, the dam 250 may be formed by printing, dispensing, and curing the white resin on the plate 200. Dam 250 is formed only as necessary on the upper surface of the plate 200, there is no unnecessary extension to the lower surface of the plate 200. Therefore, the plate 200 becomes a good heat sink with power transfer. In addition, as described above, the semiconductor light emitting device has a structure that is advantageous to be compactly mounted on the plate 200, so that the entire package may be more compact.
도 44는 미국 등록특허공보 제6,307,218호에 개시된 전극 구조의 일 예를 나타내는 도면으로서, 발광소자가 대면적화됨(예를 들어, 가로/세로가 1000um/1000um)에 따라, p측 본딩 패드(700)와 n측 본딩 패드로 기능하는 n측 전극(800)에 같은 간격을 가지는 가지 전극을 구비함으로써, 전류 확산을 개선하고 있으며, 더하여 충분한 전류 공급을 위해 p측 본딩 패드(700)와 n측 전극(800)이 각각 두 개씩 마련되어 있다. 복수의 가지 전극(710,810)과 복수의 본딩 패드가 도입되어 있지만, 이들의 도입은 발광 면적의 감소 등을 가져와 발광효율을 감소시키는 역기능을 포함한다.FIG. 44 is a view showing an example of an electrode structure disclosed in US Patent No. 6,307,218. The p-side bonding pad 700 according to the large area of the light emitting device (for example, 1000um / 1000um in width and length). ) And the branch electrodes having the same spacing at the n-side electrode 800 functioning as the n-side bonding pad, thereby improving current spreading, and in addition, the p-side bonding pad 700 and the n-side electrode for sufficient current supply. There are two 800 each. Although a plurality of branch electrodes 710 and 810 and a plurality of bonding pads are introduced, the introduction of the plurality of branch electrodes 710 and 810 includes a reverse function of reducing the light emitting area and thus reducing the light emitting efficiency.
도 45는 미국 공개특허공보 제2007-0096115호에 개시된 전극 구조의 일 예를 나타내는 도면으로서, 직사각형 형상(예를 들어, 가로/세로가 600um/300um)의 발광소자에 있어서 전류 확산의 도모를 위해 p측 본딩 패드(700)와 n측 본딩 패드로 기능하는 n측 전극(800) 각각에 가지 전극(710)과 가지 전극(810)이 구비되어 있다.FIG. 45 is a view showing an example of the electrode structure disclosed in US Patent Publication No. 2007-0096115. For the purpose of current diffusion in a light emitting device having a rectangular shape (for example, 600 μm / 300 μm in width and length). The branch electrode 710 and the branch electrode 810 are provided in each of the p-side bonding pad 700 and the n-side electrode 800 that functions as the n-side bonding pad.
도 46은 본 개시에 따른 반도체 발광소자의 일 예를 나타내는 도면이고, 도 47은 도 46에서 A-A 선을 따라 절단한 단면의 일 예를 설명하는 도면이다. 도 46b는 도 46a에 제시된 반도체 발광소자의 발광 테스트 사진이다.46 is a diagram illustrating an example of a semiconductor light emitting device according to the present disclosure, and FIG. 47 is a diagram illustrating an example of a cross section taken along line A-A in FIG. 46. FIG. 46B is a light emission test photograph of the semiconductor light emitting device shown in FIG. 46A.
반도체 발광소자는 복수의 반도체층(30,40,50), 제1 전극부(80,85,81a,81b), 제2 전극부(70,75,71a,71b), 및 비도전성 반사막(R)을 포함한다. 복수의 반도체층(30,40,50)은 제1 도전성을 가지는 제1 반도체층(30), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(50), 및 제1 반도체층(30)과 제2 반도체층(50)의 사이에 개재되며 전자와 정공의 재결합에 의해 빛을 생성하는 활성층(40)을 포함한다. 제1 전극부(80,85,81a,81b)는 제1 반도체층(30)과 전기적으로 연통하며 전자와 정공 중 하나를 공급하며, 제2 전극부(70,75,71a,71b)는 제2 반도체층(50)과 전기적으로 연통하며 전자와 정공 중 나머지 하나를 공급한다. 비도전성 반사막(R)은 복수의 반도체층(30,40,50) 위에 형성되며, 활성층(40)으로부터의 빛을 반사한다.The semiconductor light emitting device includes a plurality of semiconductor layers 30, 40, 50, first electrode portions 80, 85, 81a, 81b, second electrode portions 70, 75, 71a, 71b, and a non-conductive reflective film R. ). The plurality of semiconductor layers 30, 40, and 50 may include a first semiconductor layer 30 having a first conductivity, a second semiconductor layer 50 having a second conductivity different from the first conductivity, and a first semiconductor layer 30. ) And an active layer 40 interposed between the second semiconductor layer 50 and generating light by recombination of electrons and holes. The first electrode portions 80, 85, 81a, and 81b are in electrical communication with the first semiconductor layer 30 and supply one of electrons and holes, and the second electrode portions 70, 75, 71a, and 71b are made of 2 is in electrical communication with the semiconductor layer 50 and supplies the other one of electrons and holes. The non-conductive reflecting film R is formed on the plurality of semiconductor layers 30, 40, 50 and reflects light from the active layer 40.
본 개시에서 제1 전극부와 제2 전극부 중 적어도 하나는 비도전성 반사막(R) 위에 형성된 상부 전극, 위에서 볼 때, 상부 전극 아래에서 상부 전극 바깥으로 뻗는 가지 전극, 비도전성 반사막(R)을 관통하며 상부 전극과 가지 전극을 연결하는 전기적 연결(an electrical connection), 비도전성 반사막(R)을 관통하며 상부 전극과 복수의 반도체층(30,40,50)을 전기적으로 연통하되, 가지 전극의 연장선상에서 벗어나 있는 전기적 연결을 포함한다. 이와 같은, 가지 전극과 전기적 연결의 배치는 제1 전극부(80,85,81a,81b) 및 제2 전극부(70,75,71a,71b) 중 하나에만 적용될 수도 있지만, 본 예에서는 제1 전극부(80,85,81a,81b) 및 제2 전극부(70,75,71a,71b) 모두 이러한 방식의 구성을 가진다.In the present disclosure, at least one of the first electrode portion and the second electrode portion includes an upper electrode formed on the non-conductive reflective film R, a branch electrode extending from the upper electrode to the outside of the upper electrode, and a non-conductive reflective film R, when viewed from above. An electrical connection that penetrates and connects the upper electrode and the branch electrode, penetrates the non-conductive reflective film R, and electrically connects the upper electrode and the plurality of semiconductor layers 30, 40, and 50 to each other. Electrical connections that deviate from the extension line. Such arrangement of the branch electrode and the electrical connection may be applied to only one of the first electrode portions 80, 85, 81a, 81b and the second electrode portions 70, 75, 71a, 71b, but in this example, the first electrode The electrode portions 80, 85, 81a, 81b and the second electrode portions 70, 75, 71a, 71b all have this configuration.
본 예에서 반도체 발광소자는 상부 전극이 비도전성 반사막(R)을 기준으로 복수의 반도체층(30,40,50)의 반대 측에 구비되는 플립칩(flip chip)이다. 제1 전극부(80,85,81a,81b)는 제1 상부 전극(80), 제1 가지 전극(85), 제1 전기적 연결(81a), 및 제2 전기적 연결(81b)을 포함하며, 제2 전극부(70,75,71a,71b)는 제2 상부 전극(70), 제2 가지 전극(75), 제3 전기적 연결(71a), 및 제4 전기적 연결(71b)을 포함한다. In this example, the semiconductor light emitting device is a flip chip in which the upper electrode is provided on the opposite side of the plurality of semiconductor layers 30, 40, and 50 with respect to the non-conductive reflective film R. The first electrode portions 80, 85, 81a, 81b include a first upper electrode 80, a first branch electrode 85, a first electrical connection 81a, and a second electrical connection 81b. The second electrode portions 70, 75, 71a, and 71b include a second upper electrode 70, a second branch electrode 75, a third electrical connection 71a, and a fourth electrical connection 71b.
본 개시에 따른 반도체 발광소자는 가로 및 세로가 비슷하거나, 가로 및 세로 중 하나가 다른 하나보다 길거나 특별히 제한되지는 않는다. 본 예에 따른 반도체 발광소자는 광취출효율 향상을 위한 구조로서, 특히 사이즈가 작은 소자에서 효과적이다. 본 예에서, 복수의 반도체층(30,40,50)은 단변(110; a short edge), 단변(112)에 대향하는 타 단변(110), 장변(111; a long edge), 및 장변(111)에 대향하는 타 장변(113)을 가진다. 단변(112)은 도 45에서 설명된 사이즈 300㎛보다 작을 수 있다. 예를 들어, 단변(112)은 200㎛ 이하일 수 있으며, 이 이상의 사이즈를 배제하는 것은 아니다. The semiconductor light emitting device according to the present disclosure is similar in width and length, or one of the width and length is longer than the other and is not particularly limited. The semiconductor light emitting device according to the present example is a structure for improving light extraction efficiency, and is particularly effective in a small device. In this example, the plurality of semiconductor layers 30, 40, and 50 have a short edge 110, the other short side 110 opposite to the short side 112, a long edge 111, and a long side 110. 111 has the other long side 113 opposite. The short side 112 may be smaller than the size 300 μm described in FIG. 45. For example, the short side 112 may be 200 μm or less, and the size of the short side 112 is not excluded.
제2 전기적 연결(81b)은 제1 전기적 연결(81a)보다 장변(111)으로부터 멀리, 단변(112)에 가까이 위치한다. 다시 말해 장변(111)과 제2 전기적 연결(81b) 간의 거리는 장변(111)과 제1 전기적 연결(81a) 간의 거리보다 길고, 단변(112)과 제2 전기적 연결(81b) 간의 거리는 단변(112)과 제1 전기적 연결(81a) 간의 거리보다 짧다. 제4 전기적 연결(71b)은 제3 전기적 연결(71a)보다 타 장변(113)으로부터 멀리, 타 단변(110)에 가까이 위치한다. 다시 말해 타 장변(113)과 제4 전기적 연결(71b) 간의 거리는 타 장변(113)과 제3 전기적 연결(71a) 간의 거리보다 길고, 타 단변(110)과 제4 전기적 연결(71b) 간의 거리는 타 단변(110)과 제3 전기적 연결(71a) 간의 거리보다 짧다. The second electrical connection 81b is located farther from the long side 111 and closer to the short side 112 than the first electrical connection 81a. In other words, the distance between the long side 111 and the second electrical connection 81b is longer than the distance between the long side 111 and the first electrical connection 81a, and the distance between the short side 112 and the second electrical connection 81b is short side 112. ) And the distance between the first electrical connection 81a. The fourth electrical connection 71b is located farther from the other long side 113 and closer to the other short side 110 than the third electrical connection 71a. In other words, the distance between the other long side 113 and the fourth electrical connection 71b is longer than the distance between the other long side 113 and the third electrical connection 71a, and the distance between the other short side 110 and the fourth electrical connection 71b is It is shorter than the distance between the other short side 110 and the third electrical connection 71a.
이하, 3족 질화물 반도체 발광소자를 예로 하여 설명한다.Hereinafter, the group III nitride semiconductor light emitting element will be described as an example.
복수의 반도체층(30,405,80)은 기판(10) 위에 형성되며, 기판(10)으로는 주로 사파이어, SiC, Si, GaN 등이 이용되며, 기판(10)은 최종적으로 제거될 수 있다. 제1 반도체층(30)(30)과 제2 반도체층(50)은 그 위치가 바뀔 수 있으며, 3족 질화물 반도체 발광소자에 있어서 주로 GaN으로 이루어진다. The semiconductor layers 30, 405, and 80 are formed on the substrate 10, and sapphire, SiC, Si, GaN, and the like are mainly used as the substrate 10, and the substrate 10 may be finally removed. The positions of the first semiconductor layers 30 and 30 and the second semiconductor layer 50 may be changed, and are mainly made of GaN in the group III nitride semiconductor light emitting device.
복수의 반도체층(30,40,50)은 기판(10) 위에 형성된 버퍼층(20), 제1 도전성을 가지는 제1 반도체층(30; 예: Si 도핑된 GaN), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(50; 예: Mg 도핑된 GaN) 및 제1 반도체층(30)과 제2 반도체층(50) 사이에 개재되며 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(40; 예: InGaN/(In)GaN 다중양자우물구조)을 포함한다. 복수의 반도체층(30,40,50) 각각은 다층으로 이루어질 수 있고, 버퍼층(20)은 생략될 수 있다. The plurality of semiconductor layers 30, 40, and 50 may include a buffer layer 20 formed on the substrate 10, a first semiconductor layer 30 having a first conductivity (eg, Si-doped GaN), and a second different from the first conductivity. A conductive second semiconductor layer 50 (eg, Mg-doped GaN) and an active layer interposed between the first semiconductor layer 30 and the second semiconductor layer 50 to generate light through recombination of electrons and holes ( 40; e.g., InGaN / (In) GaN multi-quantum well structure). Each of the semiconductor layers 30, 40, and 50 may be formed in multiple layers, and the buffer layer 20 may be omitted.
바람직하게는 제2 반도체층(50) 위에 투광성 도전막(60; 예: ITO,Ni/Au)이 구비된다. Preferably, a transparent conductive film 60 (eg, ITO, Ni / Au) is provided on the second semiconductor layer 50.
비도전성 반사막(R)은 투광성 도전막(60), 제1 가지 전극(85), 및 제2 가지 전극(75)을 덮도록 형성되며, 활성층(40)으로부터의 빛을 기판(10) 측으로 반사한다. 본 예에서 비도전성 반사막(R)은 금속 반사막에 의한 광흡수 감소를 위해 절연성 물질로 형성되며, 바람직하게는 DBR(Distributed Bragg Reflector) 또는 ODR(Omni-Directional Reflector)을 포함하는 다층 구조일 수 있다. 예를 들어, 도 47에 제시된 바와 같이, 비도전성 반사막(R)은 순차로 적층된 유전체막(91b), DBR(91a), 및 클래드막(91c)을 포함한다.The non-conductive reflective film R is formed to cover the transparent conductive film 60, the first branch electrode 85, and the second branch electrode 75, and reflects light from the active layer 40 toward the substrate 10. do. In this example, the non-conductive reflecting film R is formed of an insulating material to reduce light absorption by the metal reflecting film, and may preferably have a multilayer structure including a distributed bragg reflector (DBR) or an omni-directional reflector (ODR). . For example, as shown in FIG. 47, the nonconductive reflecting film R includes a dielectric film 91b, a DBR 91a, and a clad film 91c sequentially stacked.
제1 상부 전극(80) 및 제2 상부 전극(70)은 비도전성 반사막(R) 위에 떨어져 각각 단변(112) 측 및 타 단변(110) 측에 구비된다. 제1 상부 전극(80) 및 제2 상부 전극(70)은 외부와 직접 접합되거나, 와이어 본딩될 수 있다. The first upper electrode 80 and the second upper electrode 70 are disposed on the short side 112 side and the other short side 110 side, respectively, on the non-conductive reflective film R. The first upper electrode 80 and the second upper electrode 70 may be directly bonded to the outside or wire bonded.
제1 가지 전극(85)은 제2 반도체층(50) 및 활성층(40)이 식각되어 노출된 장변(111) 측 제1 반도체층(30) 위에 구비되며, 본 예에서는 장변(111)을 따라 뻗어 있다. 제1 전기적 연결(81a)은 비도전성 반사막(R)을 관통하여 제1 상부 전극(80)과 제1 가지 전극(85)의 일 측 끝을 연결한다. 이와 다르게, 제1 전기적 연결(81a)이 제1 가지 전극(85)의 끝이 아닌 부분에 연결되는 것도 고려할 수 있다. 제2 전기적 연결(81b)은 비도전성 반사막(R)을 관통하여 제1 상부 전극(80)과 식각되어 노출된 제1 반도체층(30)을 연결한다. 제1 반도체층(30)과 제2 전기적 연결(81b) 사이에 접촉저항을 감소하고 연결의 안정성 향상을 위해 제1 오믹 전극(82)이 개재될 수 있다. 제2 전기적 연결(81b)은 제1 가지 전극(85)의 연장선상에서 벗어나 있다. 여기서, 연장선은 가지 전극의 형상을 따라 연장한 가상의 선을 의미하며, 본 예에서 제1 가지 전극(85)은 직선형이므로 연장선도 이 직선과 일치하는 선으로서 대략 반도체 발광소자의 코너를 향하는 가상의 선이 될 것이다.The first branch electrode 85 is provided on the first semiconductor layer 30 on the long side 111 side where the second semiconductor layer 50 and the active layer 40 are etched and exposed, and in this example, along the long side 111. Stretched. The first electrical connection 81a penetrates the non-conductive reflective film R to connect one end of the first upper electrode 80 and the first branch electrode 85 to each other. Alternatively, it may be considered that the first electrical connection 81a is connected to a portion other than the end of the first branch electrode 85. The second electrical connection 81b penetrates the non-conductive reflective film R to connect the exposed first semiconductor layer 30 by being etched with the first upper electrode 80. The first ohmic electrode 82 may be interposed between the first semiconductor layer 30 and the second electrical connection 81b to reduce contact resistance and improve stability of the connection. The second electrical connection 81b is off the extension of the first branch electrode 85. Here, the extension line means an imaginary line extending along the shape of the branch electrode. In this example, since the first branch electrode 85 is a straight line, the extension line is a line coinciding with the straight line, and is an imaginary line toward the corner of the semiconductor light emitting device. Will be the line of
제2 가지 전극(75)은 투광성 도전막(60)과 비도전성 반사막(R) 사이에 구비되며, 본 예에서는 타 장변(113)을 따라 뻗어 있다. 제3 전기적 연결(71a)은 비도전성 반사막(R)을 관통하여 제2 상부 전극(70)과 제2 가지 전극(75)의 일 측 끝을 연결한다. 이와 다르게, 제3 전기적 연결(71a)이 제2 가지 전극(75)의 끝이 아닌 부분에 연결되는 것도 고려할 수 있다. 제4 전기적 연결(71b)은 비도전성 반사막(R)을 관통하여 제2 상부 전극(70)과 투광성 도전막(60)을 연결한다. 투광성 도전막(60)과 제4 전기적 연결(71b) 사이에 접촉저항을 감소하고 연결의 안정성 향상을 위해 제2 오믹 전극(72)이 개재될 수 있다. 제4 전기적 연결(71b)은 제2 가지 전극(75)의 연장선상에서 벗어나 있다. The second branch electrode 75 is provided between the transparent conductive film 60 and the non-conductive reflective film R, and extends along the other long side 113 in this example. The third electrical connection 71a penetrates through the non-conductive reflective film R to connect one end of the second upper electrode 70 and the second branch electrode 75. Alternatively, it may be considered that the third electrical connection 71a is connected to a portion other than the end of the second branch electrode 75. The fourth electrical connection 71b penetrates the non-conductive reflective film R to connect the second upper electrode 70 and the transparent conductive film 60. The second ohmic electrode 72 may be interposed between the transparent conductive film 60 and the fourth electrical connection 71b to reduce contact resistance and improve stability of the connection. The fourth electrical connection 71b is out of an extension line of the second branch electrode 75.
광흡수 방지막(41)이 제2 반도체층(50)과 투광성 도전막(60) 사이에 제2 가지 전극(75) 및 제2 오믹 전극(72)에 각각 대응하게 구비될 수 있다. 광흡수 방지막(41)은 SiO2, TiO2 등으로 형성될 수 있으며, 활성층(40)에서 발생된 빛의 일부 또는 전부를 반사하는 기능만을 가져도 좋고, 제2 가지 전극(75) 및 제2 오믹 전극(72)으로부터 바로 아래로 전류가 흐르지 못하도록 하는 기능만을 가져도 좋고, 양자의 기능을 모두 가져도 좋다. The light absorption prevention layer 41 may be provided between the second semiconductor layer 50 and the transparent conductive layer 60 to correspond to the second branch electrode 75 and the second ohmic electrode 72, respectively. The light absorption prevention layer 41 may be formed of SiO 2 , TiO 2, or the like, and may have only a function of reflecting some or all of the light generated from the active layer 40, and the second branch electrode 75 and the second It may have only a function of preventing current from flowing directly down from the ohmic electrode 72, or may have both functions.
제1 가지 전극(85) 및 제2 가지 전극(75)은 복수의 금속층으로 이루어질 수 있으며, 제1 반도체층(30) 또는 투광성 도전막(60)과의 전기적 접촉이 좋은 접촉층과 광반사성이 좋은 반사층 등을 구비할 수 있다.The first branch electrode 85 and the second branch electrode 75 may be formed of a plurality of metal layers, and the contact layer and the light reflectivity having good electrical contact with the first semiconductor layer 30 or the transparent conductive layer 60 may be formed. A good reflective layer can be provided.
본 예에 따른 반도체 발광소자는 금속 반사막 대신 비도전성 반사막(R)을 사용하여 도 30 및 도 31에 제시된 플립칩보다 금속에 의한 광흡수 손실 감소에 유리하며, 가지 전극을 불필요하게 연장하지 않고, 전류 공급 또는 발광의 균일성 향상에 필요한 위치에 섬 형태의 전기적 연결(81b,71b)을 적절히 구비한다.The semiconductor light emitting device according to the present embodiment is advantageous in reducing light absorption loss due to metal than the flip chip shown in FIGS. 30 and 31 by using the non-conductive reflecting film R instead of the metal reflecting film, without extending the branch electrode unnecessarily, Island-shaped electrical connections 81b and 71b are suitably provided at positions necessary for improving current supply or uniformity of light emission.
한편, 도 44 및 도 45에 설명된 반도체 발광소자에서 통상적으로 전류 공급 또는 발광의 균일성을 위해, 여러 개의 가지 전극을 형성하고, 가지 전극을 코너나 자장자리를 따라 길게 연장하는 방법이 사용된다. 그러나 본 예의 반도체 발광소자에서는 상기 통상적인 방식과는 다르게 가지 전극의 개수 및 길이를 줄여 금속에 의한 광흡수 손실을 많이 감소하되, 전류 공급 또는 발광의 균일성을 달성하도록 가지 전극과 전기적 연결의 형태, 위치, 개수 등의 좋은 구성을 만들어 내었다. 본 예에 제시되는 구성은 사이즈가 작고, 저전류로 동작하는 소자에 더욱 효과적이다.On the other hand, in the semiconductor light emitting device illustrated in FIGS. 44 and 45, a method of forming a plurality of branch electrodes and extending the branch electrodes along a corner or a magnetic field is generally used for uniformity of current supply or light emission. . However, unlike the conventional method, the semiconductor light emitting device of the present example reduces the number and length of the branch electrodes to reduce the light absorption loss caused by the metal, but forms the electrical connection with the branch electrodes to achieve uniformity of current supply or light emission. We made a good composition of location, number, and so on. The configuration presented in this example is smaller in size and more effective for devices operating at low current.
이를 위해 본 예에 따른 반도체 발광소자는 제1 가지 전극(85) 및 제2 가지 전극(75)을 1개씩만 구비하며, 그 길이가 단변(112)이나 타 단변(110)까지 연장되지 않고, 비교적 짧다. 여기서, 1개씩만 구비한다는 것은 가지 전극의 개수를 가능하면 적게 하는 구성의 좋은 예로서 제시되는 것이며, 2개 이상의 제1 가지 전극(85) 및/또는 2개 이상의 제2 가지 전극(75)과 같은 구성을 배제한다는 의미는 아니다. 또한, 본 예에서 제1 반도체층(예: Si 도핑된 GaN)은 제2 반도체층(예: Mg 도핑된 GaN)보다 전류 확산이 잘되므로 이를 고려하여 설계된다.To this end, the semiconductor light emitting device according to the present example includes only one first branch electrode 85 and one second branch electrode 75, and the length thereof does not extend to the short side 112 or the other short side 110. Relatively short Here, the provision of only one by one is presented as a good example of a configuration in which the number of branch electrodes is as small as possible, and includes two or more first branch electrodes 85 and / or two or more second branch electrodes 75. This does not mean to exclude the same configuration. In addition, in the present example, since the first semiconductor layer (eg, Si-doped GaN) has better current diffusion than the second semiconductor layer (eg, Mg-doped GaN), the first semiconductor layer (eg, Si-doped GaN) is designed in consideration of this.
도 46 및 도 47을 참조하면, 단변(112)은 길지 않으므로 제1 가지 전극(85) 및 제2 가지 전극(75)을 각각 장변(111) 측 및 타 장변(113) 측에 구비하여 제1 가지 전극(85)과 제2 가지 전극(75)의 간격을 확보한다. 제1 가지 전극(85)은 장변(111) 측에서 제1 상부 전극(80)의 아래에서 제1 전기적 연결(81a)과 연결되며, 제1 상부 전극(80)에 인접한 제2 상부 전극(70)의 아래에까지 짧게 뻗어 있다. 제2 가지 전극(75)은 타 장변(113) 측에서 제2 상부 전극(70)의 아래에서 제3 전기적 연결(71a)과 연결되며, 제1 상부 전극(80)의 아래로 제1 가지 전극(85)보다는 길게 뻗지만 단변(112)까지 뻗지 않고, 대략 제1 상부 전극(80)의 중간 정도까지 뻗어서 불필요한 연장을 억제한다. 물론, p-GaN과 같은 제2 반도체층(50)의 전류 확산 정도가 향상된다면, 제2 가지 전극(75)도 제1 가지 전극(85)만큼 짧게 형성할 수 있을 것이다. 이렇게, 제1 가지 전극(85) 및 제2 가지 전극(75)을 코너나 변을 따라 길게 연장하지 않아서 금속에 의한 광흡수 손실이 감소한다. 또한, 제2 반도체층(50) 및 활성층(40)을 메사식각하는 것이 필요한 제1 가지 전극(85)의 경우, 소자의 내측보다는 장변(111) 측에 구비하여 메사식각으로 인한 활성층 면적 감소의 정도를 줄인다. 46 and 47, since the short side 112 is not long, the first branch electrode 85 and the second branch electrode 75 are provided on the long side 111 and the other long side 113, respectively. The gap between the branch electrode 85 and the second branch electrode 75 is secured. The first branch electrode 85 is connected to the first electrical connection 81a under the first upper electrode 80 on the long side 111 side, and the second upper electrode 70 adjacent to the first upper electrode 80. It extends shortly underneath). The second branch electrode 75 is connected to the third electrical connection 71a under the second upper electrode 70 on the other long side 113 side, and the first branch electrode below the first upper electrode 80. It extends longer than 85 but does not extend to the short side 112, but extends to about the middle of the first upper electrode 80 to suppress unnecessary extension. Of course, if the degree of current diffusion of the second semiconductor layer 50 such as p-GaN is improved, the second branch electrode 75 may be formed as short as the first branch electrode 85. In this way, the first branch electrode 85 and the second branch electrode 75 do not extend along the corner or the side so that the light absorption loss due to the metal is reduced. In addition, in the case of the first branch electrode 85, which needs to mesa-etch the second semiconductor layer 50 and the active layer 40, it is provided on the long side 111 side rather than the inside of the device to reduce the active layer area due to mesa etching. Reduce the degree
제2 전기적 연결(81b) 및 제4 전기적 연결(71b)은 위에서 볼 때, 섬(island) 형태를 가지는 데, 적은 개수를 사용하며, 본 예에서는 각 1개씩 구비된다. 여기서 섬 형태란 가지 전극과 같이 일 측으로 뻗는 형태가 아니라 원형, 다각형 등의 형상을 가지는 것을 의미한다. 이렇게, 제한적인 개수의 제2 전기적 연결(81b) 및 제4 전기적 연결(71b)의 위치는 전류 공급의 균일성 향상에 더 바람직한 위치에 구비되며, 그 결과 상기 연장선상에서 벗어나게 위치한다.The second electrical connection 81b and the fourth electrical connection 71b have an island shape when viewed from above, and a small number is used, and in this example, one each is provided. Here, the island form means a shape such as a circle, a polygon, and the like, rather than extending to one side like a branch electrode. In this way, a limited number of positions of the second electrical connection 81b and the fourth electrical connection 71b are provided at a more preferable position for improving the uniformity of the current supply, and as a result, they are located out of the extension line.
본 예에서, 제2 전기적 연결(81b)은 단변(112) 측 대략 중간 정도에 위치하며, 제4 전기적 연결(71b)은 타 단변(110)으로부터 약간 떨어져 위치한다. 그 결과, 제2 전기적 연결(81b)을 제1 가지 전극(85)의 연장선상에서 벗어나 위치하며, 제4 전기적 연결(71b)은 제2 가지 전극(75)의 연장선상에서 벗어나 위치한다. 또한, 본 예의 경우, 제2 전기적 연결(81b)은 제2 가지 전극(75)의 연장선상에서도 벗어나 있고, 제4 전기적 연결(71b)은 제1 가지 전극(85)의 연장선상에서도 벗어나 있다.  In this example, the second electrical connection 81b is located approximately midway on the short side 112 side, and the fourth electrical connection 71b is located slightly away from the other short side 110. As a result, the second electrical connection 81b is positioned off the extension of the first branch electrode 85, and the fourth electrical connection 71b is positioned off the extension of the second branch electrode 75. In addition, in the present example, the second electrical connection 81b deviates from the extension of the second branch electrode 75, and the fourth electrical connection 71b deviates from the extension of the first branch electrode 85.
이를 전기적 연결의 관점에서 보면, 제2 전기적 연결(81b)은 제1 전기적 연결(81a)보다 장변(111)으로부터 더 멀리, 단변(112)에 더 가까이 위치하며, 제4 전기적 연결(71b)은 제3 전기적 연결(71a)보다 타 장변(113)으로부터 더 멀리, 타 단변(110)에 더 가까이 위치한다. 또한, 제2 전기적 연결(81b)과 제4 전기적 연결(71b) 사이에는 가지 전극이 없다. In view of the electrical connection, the second electrical connection 81b is located farther from the long side 111 and closer to the short side 112 than the first electrical connection 81a, and the fourth electrical connection 71b is It is located farther from the other long side 113 and closer to the other short side 110 than the third electrical connection 71a. In addition, there is no branch electrode between the second electrical connection 81b and the fourth electrical connection 71b.
도 46b를 참조하면, 단변(112) 200㎛, 장변(111) 800㎛ 사이즈, 20mA와 같은 조건의 반도체 발광소자에서 전체적으로 발광의 정도가 전체적으로 큰 편차 없는 것을 확인할 수 있다. 이와 같이, 2개의 가지 전극(85,75)과 2개의 섬형 전기적 연결(81b,71b)로 심플하게 구성하면서도 전류 공급의 균일성을 확보하고, 금속에 의한 광흡수 손실도 많이 감소한다. 특히 비교적 저전류로 동작하는 작은 사이즈의 소자에서 효과적인 구조가 된다. Referring to FIG. 46B, it can be seen that the degree of light emission is not largely large in the semiconductor light emitting device under conditions such as 200 μm of the short side 112, 800 μm of the long side 111, and 20 mA. As described above, the two branch electrodes 85 and 75 and the two island-type electrical connections 81b and 71b have a simple configuration and ensure uniformity of current supply, and light loss due to metal is also greatly reduced. In particular, it is an effective structure for small size devices operating at relatively low current.
도 48은 본 개시에 따른 반도체 발광소자의 제조 방법의 다른 예를 설명하기 위한 도면으로서, 도 46 내지 도 48을 참조하면, 먼저, 도 47에 제시된 바와 같이, 기판(10) 상에 제1 반도체층(30), 활성층(40), 제2 반도체층(50)을 형성하고, 광흡수 방지막(41)을 형성한 후, 그 위에 투광성 도전막(60; 예: ITO)을 형성하고, 도 48a에 제시된 바와 같이, 메사식각하여 제1 반도체층(30)의 일부를 노출시킨다. 메사식각은 투광성 도전막(60) 형성 전에 수행될 수도 있다. 투광성 도전막(60)은 생략될 수 있다. FIG. 48 is a view for explaining another example of a method of manufacturing a semiconductor light emitting device according to the present disclosure. Referring to FIGS. 46 to 48, first, as illustrated in FIG. 47, the first semiconductor on the substrate 10 is illustrated. After forming the layer 30, the active layer 40, the second semiconductor layer 50, and forming the light absorption prevention film 41, a transparent conductive film 60 (e.g., ITO) is formed thereon, and FIG. 48A. As shown in, mesa etching exposes a portion of the first semiconductor layer 30. Mesa etching may be performed before the transparent conductive film 60 is formed. The transparent conductive film 60 may be omitted.
이후, 도 47 및 도 48b에 제시된 바와 같이, 노출된 제1 반도체층(30) 및 투광성 도전막(60) 위에 각각 제1 가지 전극(85), 제2 가지 전극(75), 및 오믹 전극(72,82)을 형성한다. 오믹 전극(72,82)은 생략될 수 있지만 동작전압 상승을 억제하고 안정적인 전기적 접촉을 위해 구비되는 것이 바람직하다. 이후, 투광성 도전막(60) 위에 반사층(R)을 형성한다. 본 예에서 반사층(R)은 금속 반사막에 의한 광흡수 감소를 위해 절연성 물질로 형성되며, 바람직하게는 DBR(Distributed Bragg Reflector) 또는 ODR(Omni-Directional Reflector)을 포함하는 다층 구조일 수 있다. 예를 들어, 유전체 막(91b), 분포 브래그 리플렉터(91a) 및 클래드 막(91f)을 형성하여 비도전성 반사막(R)이 형성된다. 유전체 막(91b) 또는 클래드 막(91f)은 생략될 수 있다. 분포 브래그 리플렉터(91a)는, 예를 들어, SiO2와 TiO2의 쌍이 복수 회 적층되어 이루어진다. 이 외에도 분포 브래그 리플렉터(91a)는 Ta2O5, HfO, ZrO, SiN 등 고 굴절률 물질과 이보다 굴절률이 낮은 유전체 박막(대표적으로 SiO2)등의 조합으로 이루어질 수 있다. 비도전성 반사막(R)은 그 두께가 수 ㎛(예: 1 ~ 8㎛)정도 일 수 있다.47 and 48B, a first branch electrode 85, a second branch electrode 75, and an ohmic electrode may be disposed on the exposed first semiconductor layer 30 and the transparent conductive film 60, respectively. 72,82). Although the ohmic electrodes 72 and 82 may be omitted, the ohmic electrodes 72 and 82 are preferably provided to suppress an increase in operating voltage and to provide stable electrical contact. Thereafter, the reflective layer R is formed on the transparent conductive film 60. In this example, the reflective layer R is formed of an insulating material to reduce light absorption by the metal reflective film, and may preferably have a multilayer structure including a distributed bragg reflector (DBR) or an omni-directional reflector (ODR). For example, the dielectric film 91b, the distributed Bragg reflector 91a, and the clad film 91f are formed to form the non-conductive reflective film R. The dielectric film 91b or the clad film 91f may be omitted. The distributed Bragg reflector 91a is formed by stacking a pair of SiO 2 and TiO 2 a plurality of times, for example. In addition, the distribution Bragg reflector 91a may be formed of a combination of a high refractive index material such as Ta 2 O 5 , HfO, ZrO, SiN, and a dielectric thin film (typically SiO 2 ) having a lower refractive index. The non-conductive reflective film R may have a thickness of about several μm (eg, 1 to 8 μm).
이후, 비도전성 반사막(R)에 건식식각 등의 방법으로 개구를 형성하고, 개구를 통하도록 제1 전기적 연결(81a), 제2 전기적 연결(81b), 제3 전기적 연결(71a), 및 제4 전기적 연결(71b)을 형성한다. 비도전성 반사막(R) 위에 제1 상부 전극(80) 및 제2 상부 전극(70)을 형성한다. 전기적 연결(71,81)과 상부 전극(70,80)은 별개로 형성될 수도 있지만, 하나의 과정에서 일체로 형성될 수도 있다.Subsequently, an opening is formed in the non-conductive reflecting film R by a method such as dry etching, and the first electrical connection 81a, the second electrical connection 81b, the third electrical connection 71a, and the first through the opening. 4 Form the electrical connection 71b. The first upper electrode 80 and the second upper electrode 70 are formed on the non-conductive reflective film R. The electrical connections 71 and 81 and the upper electrodes 70 and 80 may be formed separately, but may be integrally formed in one process.
도 49는 본 개시에 따른 반도체 발광소자의 다른 예들을 설명하기 위한 도면으로서, 도 49a를 참조하면, 반도체 발광소자에서 제2 전기적 연결(81b,81c) 및 제4 전기적 연결(71b,71c)이 복수 개가 구비될 수 있다. 복수의 제2 전기적 연결(81b,81c)은 제1 가지 전극(85)의 연장선상에서 벗어나 있다. 본 예에서는 2개의 제2 전기적 연결(81b,81c)이 제1 전기적 연결(81a)로부터 멀어지는 순으로 장변(111)으로부터 거리가 증가하며, 단변(112)에 가까워진다. 복수의 제4 전기적 연결(71b,71c)은 제2 가지 전극(75)의 연장선상에서 벗어나 있다. 본 예에서는 2개의 제4 전기적 연결(71b,71c)이 제3 전기적 연결(71a)로부터 멀어지는 순으로 타 장변(113)으로부터 거리가 증가하며, 타 단변(110)에 가까워진다. 49 is a view for explaining another example of a semiconductor light emitting device according to the present disclosure. Referring to FIG. 49A, second and fourth electrical connections 81b and 81c and 71b and 71c may be formed in a semiconductor light emitting device. Plural can be provided. The plurality of second electrical connections 81b and 81c deviate from an extension line of the first branch electrode 85. In this example, the distance from the long side 111 increases in the order of the two second electrical connections 81b and 81c away from the first electrical connection 81a and approaches the short side 112. The plurality of fourth electrical connections 71b and 71c deviate from an extension line of the second branch electrode 75. In the present example, the distance from the other long side 113 increases in order of the two fourth electrical connections 71b and 71c away from the third electrical connection 71a and approaches the other short side 110.
도 49b를 참조하면, 반도체 발광소자는 제2 반도체층(50)의 전류 확산 정도가 제1 반도체층(30)보다 못하기 때문에, 제4 전기적 연결(71b,71c)의 개수를 제2 전기적 연결(81b)의 개수보다 많게 구비할 수 있다. 본 예에서, 2개의 제4 전기적 연결(71b,71c)은 제2 가지 전극(75)의 연장선상에서 벗어나 있다. 하나의 제4 전기적 연결(71b)이 타 단변(110) 측에 위치하고, 다른 하나의 제4 전기적 연결(71c)이 장변(111) 측에 위치한다.Referring to FIG. 49B, in the semiconductor light emitting device, since the current spreading degree of the second semiconductor layer 50 is less than that of the first semiconductor layer 30, the number of fourth electrical connections 71b and 71c is changed to the second electrical connection. It can be provided more than the number of 81b. In this example, the two fourth electrical connections 71b and 71c deviate from the extension of the second branch electrode 75. One fourth electrical connection 71b is located on the other short side 110 side, and the other fourth electrical connection 71c is located on the long side 111 side.
도 50은 본 개시에 따른 반도체 발광소자의 또 다른 예들을 설명하기 위한 도면으로서, 도 50a를 참조하면, 반도체 발광소자는 제1 가지 전극(85)의 끝이 제2 상부 전극(70) 아래에서 제4 전기적 연결(71b)을 향하여 휘어져 있고, 제2 가지 전극(75)의 끝이 제1 상부 전극(80) 아래에서 제2 전기적 연결(81b)을 향하여 휘어져 있다. 50 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure. Referring to FIG. 50A, in the semiconductor light emitting device, an end of the first branch electrode 85 may be disposed under the second upper electrode 70. It is bent toward the fourth electrical connection 71b, and the end of the second branch electrode 75 is bent toward the second electric connection 81b under the first upper electrode 80.
도 50b를 참조하면, 제4 전기적 연결(71b,71c)이 제2 전기적 연결(81b)의 개수보다 많고, 제1 가지 전극(85)의 끝이 휘어져 있고, 제2 가지 전극(75)의 끝이 제1 상부 전극(80) 아래에서 장변(111) 측 코너를 향하여 휘어져 있다. 이에 따라 제1 전기적 연결(81a)과 제2 전기적 연결(81b)은 제2 가지 전극(75)을 기준으로 서로 반대 측에 위치한다.Referring to FIG. 50B, the fourth electrical connections 71b and 71c are larger than the number of the second electrical connections 81b, the ends of the first branch electrodes 85 are bent, and the ends of the second branch electrodes 75. Bends below the first upper electrode 80 toward the long side 111 side corner. Accordingly, the first electrical connection 81a and the second electrical connection 81b are located on opposite sides with respect to the second branch electrode 75.
도 51은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면으로서, 전술된 예들에 비하여 단변(112)과 장변(111)의 길이 차이가 작은 경우, 제4 전기적 연결(71b)은 타 단변(110)으로부터 제3 전기적 연결(71a)과 비슷한 거리에 위치하며, 제2 가지 전극(75)의 연장선상에서 벗어나 있다.51 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure. When the length difference between the short side 112 and the long side 111 is smaller than the above-described examples, the fourth electrical connection 71b may include It is located at a distance similar to the third electrical connection 71a from the other short side 110 and is out of an extension line of the second branch electrode 75.
도 52는 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면으로서, 도 46에서 제시된 실시예에 비하여, 제2 전기적 연결(81b)이 삭제되고, 제1 가지 전극(85)이 제1 상부 전극(80) 아래에만 형성되어 있고, 제1 전기적 연결(81a)은 단변 측 코너에 구비되어 잇다. FIG. 52 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure. Compared to the embodiment of FIG. 46, the second electrical connection 81b is deleted, and the first branch electrode 85 is formed. It is formed only below the first upper electrode 80, and the first electrical connection 81a is provided at the short side corner.
도 53은 본 개시에 따른 반도체 발광소자의 또 다른 예들을 설명하기 위한 도면이고, 도 54는 도 53에 제시된 반도체 발광소자의 발광 사진이다. 도 46에 제시된 실시예에 비하여, 도 53a에 제시된 실시예의 경우, 제1 가지 전극(85)이 삭제되어 있고, 도 53b에 제시된 실시예의 경우, 제1 가지 전극(85)이 삭제되어 있고, 제4 전기적 연결(71c)이 추가되어 있다.53 is a view for explaining still another example of the semiconductor light emitting device according to the present disclosure, and FIG. 54 is a light emission photograph of the semiconductor light emitting device shown in FIG. 53. In contrast to the embodiment shown in FIG. 46, for the embodiment shown in FIG. 53A, the first branch electrode 85 is deleted, and for the embodiment shown in FIG. 53B, the first branch electrode 85 is deleted, and 4 Electrical connection 71c is added.
도 55는 본 개시에 따른 반도체 발광소자의 또 다른 예들을 설명하기 위한 도면이고, 도 56은 도 55에 제시된 반도체 발광소자의 발광 사진이다. 도 46에 제시된 실시예에 비하여, 도 55a에 제시된 실시예의 경우, 제1 가지 전극(85)이 삭제되어 있고, 제2 가지 전극(75)이 발광면의 중앙에서 뻗으며, 제2 전기적 연결(81b)이 추가되어 있다. 도 55b에 제시된 실시예의 경우, 제1 가지 전극(85)이 삭제되어 있고, 제2 가지 전극(75)이 발광면의 중앙에서 뻗으며, 제1 가지 전극(85)이 단변을 따라 뻗으며, 제2 전기적 연결(81b)이 삭제되어 있다.55 is a view for explaining still another example of the semiconductor light emitting device according to the present disclosure, and FIG. 56 is a light emission photograph of the semiconductor light emitting device shown in FIG. 55. In contrast to the embodiment shown in FIG. 46, in the case of the embodiment shown in FIG. 55A, the first branch electrode 85 is deleted, the second branch electrode 75 extends from the center of the emitting surface, and the second electrical connection ( 81b) is added. In the embodiment shown in FIG. 55B, the first branch electrode 85 is deleted, the second branch electrode 75 extends at the center of the emission surface, and the first branch electrode 85 extends along the short side. The second electrical connection 81b is deleted.
도 57은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면으로서, 도 46에 제시된 실시예에 비하여, 제2 가지 전극(75)이 삭제되어 있고, 제4 전기적 연결(71c)이 추가되어 있다.FIG. 57 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure. Compared to the embodiment of FIG. 46, the second branch electrode 75 is deleted, and the fourth electrical connection 71c is removed. It is added.
도 58은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면이고, 도 60은 도 59의 A-A 선을 따라 취한 단면의 일 예를 나타내는 도면이다. 반도체 발광소자는 복수의 반도체층(30,40,50), 제1 가지 전극(85) 및 제2 가지 전극(75) 중 적어도 하나, 비도전성 반사막(R), 제1 전극(80), 및 제2 전극(70)을 포함한다. 제1 전극(80) 복수의 서브 전극(80a)과 복수의 서브 전극(80a)을 연결하는 적어도 하나의 연결부(80b)를 포함한다. 제2 전극(70) 복수의 서브 전극(70a)과 복수의 서브 전극(70a)을 연결하는 적어도 하나의 연결부(70b)를 포함한다. 58 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure, and FIG. 60 is a diagram illustrating an example of a cross section taken along the line A-A of FIG. 59. The semiconductor light emitting device includes at least one of the plurality of semiconductor layers 30, 40, 50, the first branch electrode 85, and the second branch electrode 75, the non-conductive reflective film R, the first electrode 80, and The second electrode 70 is included. The first electrode 80 includes a plurality of sub-electrodes 80a and at least one connecting portion 80b for connecting the plurality of sub-electrodes 80a. The second electrode 70 includes at least one connecting portion 70b connecting the plurality of sub electrodes 70a and the plurality of sub electrodes 70a.
전극(80,70)과 비도전성 반사막(R)은 열팽창 계수가 차이가 있어서, 장시간 사용 중 또는 제조 공정 중에 전극(80,70)이 비도전성 반사막(R)과의 접합력이 저하될 수 있다. 본 예에서, 전극(80,70)은 복수의 서브 전극(80a,70a)으로 분할(segmentation)되어 있고, 연결부(80b,70b)에 의해 연결되므로, 각 서브 전극(80a,70a) 간에는 열팽창에 대한 완충 영역(R80,R70)이 있게 된다. 따라서, 열팽창에 의한 상기 문제점이 억제 내지 방지될 수 있다. 또한, 전극(80,70)이 하나의 통으로 형성되지 않고, 연결부(80b,70b)에 의해 연결됨에 따라 전체적으로 전극(80,70)의 면적을 줄이는 데 유리하며, 비도전성 반사막(R) 위에 전극(80,70)의 면적이 감소할수록 휘도가 향상됨을 본 발명자들은 알게 되었다.Since the thermal expansion coefficients of the electrodes 80 and 70 differ from the non-conductive reflecting film R, the bonding strength of the electrodes 80 and 70 with the non-conductive reflecting film R may be reduced during long time use or during a manufacturing process. In this example, the electrodes 80, 70 are segmented into a plurality of sub-electrodes 80a, 70a, and are connected by the connecting portions 80b, 70b, so that each sub-electrode 80a, 70a is subjected to thermal expansion. There is a buffer region (R80, R70) for. Therefore, the above problems due to thermal expansion can be suppressed or prevented. In addition, the electrodes 80 and 70 are not formed as a single cylinder, and are connected to each other by the connecting portions 80b and 70b, which is advantageous for reducing the area of the electrodes 80 and 70 as a whole. The inventors have found that the luminance improves as the area of (80,70) decreases.
이하, 3족 질화물 반도체 발광소자를 예로 하여 설명한다.Hereinafter, the group III nitride semiconductor light emitting element will be described as an example.
기판(10)으로 주로 사파이어, SiC, Si, GaN 등이 이용되며, 기판(10)은 최종적으로 제거될 수 있다. 제1 반도체층(30)과 제2 반도체층(50)은 그 위치가 바뀔 수 있으며, 3족 질화물 반도체 발광소자에 있어서 주로 GaN으로 이루어진다. Sapphire, SiC, Si, GaN and the like are mainly used as the substrate 10, and the substrate 10 may be finally removed. The positions of the first semiconductor layer 30 and the second semiconductor layer 50 may be changed, and are mainly made of GaN in the group III nitride semiconductor light emitting device.
복수의 반도체층(30,40,50)은 기판(10) 위에 형성된 버퍼층(20), 제1 도전성을 가지는 제1 반도체층(30; 예: Si 도핑된 GaN), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(50; 예: Mg 도핑된 GaN) 및 제1 반도체층(30)과 제2 반도체층(50) 사이에 개재되며 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(40; 예: InGaN/(In)GaN 다중양자우물구조)을 포함한다. 복수의 반도체층(30,40,50) 각각은 다층으로 이루어질 수 있고, 버퍼층(20)은 생략될 수 있다. The plurality of semiconductor layers 30, 40, and 50 may include a buffer layer 20 formed on the substrate 10, a first semiconductor layer 30 having a first conductivity (eg, Si-doped GaN), and a second different from the first conductivity. A conductive second semiconductor layer 50 (eg, Mg-doped GaN) and an active layer interposed between the first semiconductor layer 30 and the second semiconductor layer 50 to generate light through recombination of electrons and holes ( 40; e.g., InGaN / (In) GaN multi-quantum well structure). Each of the semiconductor layers 30, 40, and 50 may be formed in multiple layers, and the buffer layer 20 may be omitted.
복수의 반도체층(30,40,50)은 대략 사각 형상을 가지고, 위에서 볼 때, 서로 대향하는 긴 에지들(long edges)과 서로 대향하는 2개의 짧은 에지들(short edges)을 가진다. 제2 반도체층(50) 및 활성층(40)이 식각되어 제1 반도체층이 노출되는 n-contact 영역(65)이 형성된다. n-contact 영역(65)에는 제1 가지 전극(85)이 형성되며, 전술한 바와 같이, 제1 가지 전극(85)은 일 측 긴 에지의 인근으로부터 타 측 긴 에지를 향하는 방향으로 뻗어 있다. 제2 가지 전극(75)은 제2 반도체층(50) 위에서 타 측 긴 에지로부터 일 측 긴 에지를 향하여 뻗는다.The plurality of semiconductor layers 30, 40 and 50 have a substantially rectangular shape and when viewed from above, have long edges facing each other and two short edges facing each other. The second semiconductor layer 50 and the active layer 40 are etched to form an n-contact region 65 through which the first semiconductor layer is exposed. A first branch electrode 85 is formed in the n-contact region 65. As described above, the first branch electrode 85 extends from the vicinity of one long edge to a direction toward the other long edge. The second branch electrode 75 extends from the other long edge toward the one long edge on the second semiconductor layer 50.
바람직하게는 투광성 도전막(60; 예: ITO,Ni/Au)이 제2 반도체층(50)과 비도전성 반사막(R) 사이에 형성된다. 기판(10) 상에 제1 반도체층(30), 활성층(40), 제2 반도체층(50), 투광성 도전막(60)을 형성하고, 메사식각하여 전술된 n-contact 영역(65)을 형성할 수 있다. 메사식각은 투광성 도전막(60) 형성 전 또는 이후에 수행될 수도 있다. 투광성 도전막(60)은 생략될 수 있다. Preferably, a transparent conductive film 60 (eg, ITO, Ni / Au) is formed between the second semiconductor layer 50 and the non-conductive reflective film R. The first semiconductor layer 30, the active layer 40, the second semiconductor layer 50, and the transparent conductive film 60 are formed on the substrate 10, and mesa-etched to form the n-contact region 65 described above. Can be formed. Mesa etching may be performed before or after the transparent conductive layer 60 is formed. The transparent conductive film 60 may be omitted.
제2 가지 전극(75)은 투광성 도전막(60) 위에서 타 측 긴 에지의 인근으로부터 일 측 긴 에지를 향하는 방향으로 뻗어 있다. 복수의 제1 가지 전극(85)과 복수의 제2 가지 전극(75)이 교대로 구비된다. 제1 가지 전극(85) 및 제2 가지 전극(75)은 복수의 금속층으로 이루어질 수 있으며, 제1 반도체층(30) 또는 투광성 도전막(60)과의 전기적 접촉이 좋은 접촉층과 광반사성이 좋은 반사층 등을 구비할 수 있다.The second branch electrode 75 extends from the vicinity of the other long edge on the light-transmissive conductive film 60 in a direction toward the one long edge. The plurality of first branch electrodes 85 and the plurality of second branch electrodes 75 are alternately provided. The first branch electrode 85 and the second branch electrode 75 may be formed of a plurality of metal layers, and the contact layer and the light reflectivity having good electrical contact with the first semiconductor layer 30 or the transparent conductive layer 60 may be formed. A good reflective layer can be provided.
본 예에서, 제1 가지 전극(85)은 제2 전극(70)의 완충 영역(R70), 즉 서브 전극(70a) 사이의 연결부(70b)에 의해 덮이지 않은 영역을 피하여, 제2 전극(70)의 아래로 뻗어 있다. 또한, 제2 가지 전극(75)은 제1 전극(80)의 완충 영역(R80), 즉 서브 전극(80a) 사이의 연결부(80b)에 의해 덮이지 않은 영역을 피하여, 제1 전극(80)의 아래로 뻗어 있다.In the present example, the first branch electrode 85 avoids the region not covered by the buffer region R70 of the second electrode 70, that is, the connection portion 70b between the sub-electrodes 70a, and thus, the second electrode ( 70) stretched down. In addition, the second branch electrode 75 avoids the region not covered by the buffer region R80 of the first electrode 80, that is, the connection portion 80b between the sub-electrodes 80a, and thus, the first electrode 80. Stretched down.
비도전성 반사막(R)은 투광성 도전막(60), 제1 가지 전극(85), 및 제2 가지 전극(75)을 덮도록 형성되며, 활성층(40)으로부터의 빛을 기판(10) 측으로 반사한다. 본 예에서 비도전성 반사막(R)은 금속 반사막에 의한 광흡수 감소를 위해 절연성 물질로 형성되며, 바람직하게는 분포 브래그 리플렉터(Distributed Bragg Reflector), 전방향 리플렉터(ODR; Omni-Directional Reflector), 등을 포함하는 다층 구조일 수 있다.The non-conductive reflective film R is formed to cover the transparent conductive film 60, the first branch electrode 85, and the second branch electrode 75, and reflects light from the active layer 40 toward the substrate 10. do. In this example, the non-conductive reflector R is formed of an insulating material to reduce light absorption by the metal reflector, and is preferably a distributed Bragg reflector, an omni-directional reflector, or the like. It may be a multilayer structure comprising a.
본 예에서, 제1 전극(80) 및 제2 전극(70)은 비도전성 반사막(R) 위에 구비된다. 이와 다른 예로서, 제2 반도체층(50) 위에 금속 반사막이 구비되고, 제2 전극(70)이 금속 반사막 위에 구비되며, 메사식각으로 노출된 제1 반도체층(30)과 제1 전극(80)이 연통될 수 있다.In this example, the first electrode 80 and the second electrode 70 are provided on the nonconductive reflecting film R. As another example, the metal reflective film is provided on the second semiconductor layer 50, the second electrode 70 is provided on the metal reflective film, and the first semiconductor layer 30 and the first electrode 80 exposed by mesa etching. ) May be communicated.
본 예에서, 제1 전기적 연결(81)은 비도전성 반사막(R)을 관통하여 제1 전극(80)과 제1 가지 전극(85)을 연결한다. 제2 전기적 연결(71)은 비도전성 반사막(R)을 관통하여 제2 전극(70)과 투광성 도전막(60)을 전기적으로 연결한다.In this example, the first electrical connection 81 connects the first electrode 80 and the first branch electrode 85 through the non-conductive reflective film R. The second electrical connection 71 penetrates the non-conductive reflective film R to electrically connect the second electrode 70 and the transparent conductive film 60.
제1 전극(80)은 일 측 긴 에지 측 비도전성 반사막(R) 위에 구비되며, 제2 전극(70)은 타 측 긴 에지 측 비도전성 반사막(R) 위에 구비된다. 제1 전극(80) 및 제2 전극(70)은 각각 복수의 서브 전극(80a,70a), 및 적어도 하나의 연결부(80b,70b)를 포함한다. 제1 전극(80)에 있어서, 복수의 서브 전극(80a)은 상기 일 측 긴 에지를 따라 일렬로 배열되어 있고, 복수의 연결부(80b)에 의해 연결되어 있다. 제2 전극(70)에 있어서, 복수의 서브 전극(70a)은 상기 타측 측 긴 에지를 따라 일렬로 배열되어 있고, 복수의 연결부(70b)에 의해 연결되어 있다. 연결부(80b,70b)에 의한 연결 방향에 대해 직교하는 방향으로의 폭에 있어서, 각 연결부(80b,70b)는 연결부(80b,70b)에 의해 연결되는 각 서브 전극(80a,70a)보다 작은 폭을 가진다. 연결부(80b,70b)는 복수의 서브 전극(80a,70a)을 연결하는 다리(bridge)로 볼 수 있다. 따라서, 이웃한 서브 전극(80a,70a)들 사이의 연결부(80b,70b)에 의해 덮이지 않은 완충 영역(R80,R70)은 비도전성 반사막(R)이 노출된다. 본 예에서 연결 방향에 직교하는 방향으로 볼 때, 각 연결부(80b,70b)는 연결되는 각 서브 전극(80a,70a)의 대략 중앙에 위치한다. 또는, 연결 방향에 직교하는 방향으로 볼 때, 각 연결부(80b,70b)는 연결되는 각 서브 전극(80a,70a)의 에지들로부터 내측으로 들어가 있다. 물론 상기 직교하는 방향으로 볼 때, 각 연결부(80b,70b)는 각 서브 전극(80a,70a)의 가장자리, 또는 에지에 위치할 수도 있다. The first electrode 80 is provided on one side of the long edge side non-conductive reflective film R, and the second electrode 70 is provided on the other side of the long edge side non-conductive reflective film R. The first electrode 80 and the second electrode 70 each include a plurality of sub electrodes 80a and 70a and at least one connection part 80b and 70b. In the first electrode 80, the plurality of sub-electrodes 80a are arranged in a line along the one long edge and are connected by the plurality of connecting portions 80b. In the second electrode 70, the plurality of sub-electrodes 70a are arranged in a line along the other long edge and are connected by a plurality of connecting portions 70b. In the width in the direction orthogonal to the connecting direction by the connecting portions 80b and 70b, each connecting portion 80b and 70b is smaller in width than the respective sub-electrodes 80a and 70a connected by the connecting portions 80b and 70b. Has The connecting portions 80b and 70b may be viewed as bridges connecting the plurality of sub electrodes 80a and 70a. Therefore, the non-conductive reflective film R is exposed in the buffer regions R80 and R70 not covered by the connecting portions 80b and 70b between the adjacent sub-electrodes 80a and 70a. In this example, when viewed in a direction orthogonal to the connection direction, each of the connection portions 80b and 70b is located approximately at the center of each of the sub-electrodes 80a and 70a to be connected. Alternatively, when viewed in a direction orthogonal to the connecting direction, each of the connecting portions 80b and 70b enters inward from the edges of the respective sub-electrodes 80a and 70a to be connected. Of course, when viewed in the orthogonal direction, each of the connecting portions 80b and 70b may be located at the edge or the edge of each of the sub-electrodes 80a and 70a.
제1 전극(80) 및 제2 전극(70)은 외부 전극과의 전기적 연결용 전극으로서, 외부 전극과 유테틱 본딩되거나, 솔더링되거나 또는 와이어 본딩도 가능하다. 외부전극은 서브마운트에 구비된 도통부, 패키지의 리드 프레임, PCB에 형성된 전기 패턴 등일 수 있으며, 반도체 발광소자와 독립적으로 구비된 도선이라면 그 형태에 특별한 제한이 있는 것은 아니다.The first electrode 80 and the second electrode 70 are electrodes for electrical connection with the external electrode, and may also be eutectic bonded, soldered, or wire bonded with the external electrode. The external electrode may be a conductive portion provided in the submount, a lead frame of the package, an electrical pattern formed on the PCB, and the like, and the external electrode may be provided independently of the semiconductor light emitting device.
이러한 외부 전극과 연결과정, 또는 제조 공정에서 열로 인해 비도전성 반사막(R)과 전극 사이에 응력이 작용하여 전극이 비도전성 반사막(R)으로부터 벗겨지겨나 접합력이 저하될 수 있지만, 본 예에서는 복수의 서브 전극(80a,70a) 사이에는 연결부(80b,70b)에 의해 덮이지 않은 완충 영역(R80,R70)이 형성된다. 이로 인해 상기 벗겨짐 또는 접합력 저하가 억제 내지 방지될 수 있다. 특히 반도체 발광소자의 사이즈가 커서 전극 사이즈도 길거나 넓어지는 경우, 열팽창 차이가 문제가 더 될 수 있으며, 이러한 경우 본 예와 같이 전극이 복수의 서브 전극(80a,70a)으로 분할되고, 연결부(80b,70b)에 의해 연결되는 구성이 상기 문제를 해소해 줄 수 있다.In the connection process with the external electrode or in the manufacturing process, the stress is applied between the non-conductive reflecting film R and the electrode due to heat, so that the electrode may be peeled off from the non-conductive reflecting film R and the bonding force may be lowered. The buffer regions R80 and R70 which are not covered by the connecting portions 80b and 70b are formed between the sub electrodes 80a and 70a. As a result, the peeling or the lowering of the bonding force can be suppressed or prevented. In particular, when the size of the semiconductor light emitting device is large, the electrode size is also long or wide, the thermal expansion difference may be a problem, in this case, as shown in the present example, the electrode is divided into a plurality of sub-electrodes (80a, 70a), the connection portion 80b The configuration connected by 70b can solve the above problem.
한편, 제1 가지 전극(85) 및 제2 가지 전극(75)이 긴 변을 따라 뻗는 경우 n-contact 영역(65)이 본 예보다 훨씬 더 길어 진다. 따라서, 활성층(40)이 그만큼 더 많이 제거되어 발광면적이 더 감소한다. 즉, 도 58 및 도 59에 제시된 소자에서, 제1 가지 전극(85)을 일 측 긴 에지로부터 타 측 긴 에지를 향하는 방향 또는 그 반대 방향으로 향하게 형성하면, 발광면적 감소를 줄일 수 있고, 휘도가 향상된다. 또한, 제1 가지 전극(85) 및 제2 가지 전극(75)의 길이가 더 짧아 질 수 있다. 따라서, 가지 전극(75,85) 같은 금속에 의한 광흡수 손실도 줄일 수 있어서, 휘도가 향상된다. 뿐만 아니라 도 58 및 도 59에 제시된 소자의 예는 외부 전극에 실장될 때도 가지 전극이 긴 변을 따라 연장되는 소자에 비해 장점을 가지게 된다. On the other hand, when the first branch electrode 85 and the second branch electrode 75 extend along the long side, the n-contact region 65 becomes much longer than in this example. Therefore, the active layer 40 is removed more by that much, and the light emitting area is further reduced. That is, in the devices shown in FIGS. 58 and 59, when the first branch electrodes 85 are formed in one direction from the one long edge to the other long edge or vice versa, the emission area decreases and the luminance is reduced. Is improved. In addition, the lengths of the first branch electrode 85 and the second branch electrode 75 may be shorter. Therefore, the light absorption loss by metals such as the branch electrodes 75 and 85 can also be reduced, so that the luminance is improved. In addition, the example of the device illustrated in FIGS. 58 and 59 has advantages over the device in which the branch electrode extends along a long side even when mounted on the external electrode.
도 60은 본 개시에 따른 반도체 발광소자의 다른 예를 설명하기 위한 도면으로서, 가지 전극(85,75)이 긴 변을 따라 뻗어 있다. 전극(80,70)이 상대적으로 길지 않은 경우, 서브 전극(80a,70a)의 개수도 감소되며, 연결부(80b,70b)의 개수도 감소된다. 이웃한 서브 전극(80a,70a) 사이의 연결부(80b,70b)에 의해 덮이지 않은 완충 영역(R80,R70)은 도 58에 제시된 예보다 더 넓게 할 수 있다. 즉, 상기 완충 영역(R80,R70)은 단순히 전극(80,70)의 에지에 노치를 내는 형태를 더 넘어서 도 60에 제시된 바와 같이, 연결부(80b,70b)에 버금가는 상당한 넓이, 예를 들어, 연결부(80b,70b)의 1/2 이상의 넓이를 가지도록 형성하는 실시예도 고려할 수 있다.60 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure, and branch electrodes 85 and 75 extend along a long side. When the electrodes 80 and 70 are not relatively long, the number of the sub electrodes 80a and 70a is also reduced, and the number of the connecting portions 80b and 70b is also reduced. The buffer regions R80 and R70 not covered by the connecting portions 80b and 70b between the adjacent sub-electrodes 80a and 70a may be wider than the example shown in FIG. 58. That is, the buffer regions R80 and R70 simply extend beyond notches at the edges of the electrodes 80 and 70, as shown in FIG. 60, for example, a considerable area comparable to the connections 80b and 70b. In this regard, the embodiment may be considered to have a width of 1/2 or more of the connection portions 80b and 70b.
도 61은 본 개시에 따른 반도체 발광소자의 다른 예를 설명하기 위한 도면이고, 도 62는 도 61의 B-B 선을 따라 취한 단면의 일 예를 나타내는 도면이다. 본 예에서, 섬형(island type) 오믹 전극(72,82), 및 광흡수 방지막(41)이 추가되고,비도전성 반사막(R)의 다층 구조의 일 예가 제시되어 있다. 도 58에서 설명된 예에 비하여 서브 전극(80a,70a)들 간의 거리가 더 멀어지고, 연결부(80b,70b) 대비 완충 영역(R80,R70)의 면적이 증가하였다. 본 예에서, 제1 가지 전극(85)은 제2 전극(70)의 연결부(70b) 아래로 뻗어 있고, 또한, 제2 가지 전극(75)은 제1 전극(80)의 연결부(80b) 아래로 뻗어 있다. FIG. 61 is a diagram for describing another example of the semiconductor light emitting device according to the present disclosure, and FIG. 62 is a diagram illustrating an example of a cross section taken along a line B-B of FIG. 61. In this example, island type ohmic electrodes 72 and 82, and light absorption prevention film 41 are added, and an example of the multilayer structure of the non-conductive reflecting film R is shown. Compared to the example illustrated in FIG. 58, the distance between the sub electrodes 80a and 70a is further increased, and the area of the buffer regions R80 and R70 is increased compared to the connecting portions 80b and 70b. In the present example, the first branch electrode 85 extends below the connecting portion 70b of the second electrode 70, and the second branch electrode 75 also under the connecting portion 80b of the first electrode 80. As laid out.
가지 전극(75,85)이 긴 에지들을 향하여 뻗으며, 짧은 에지보다 짧게 형성된다. 제1 섬형 오믹 전극(82)은 제1 반도체층(30)과, 제1 전기적 연결(81) 사이에 개재되어 접촉 저항을 감소하고, 전기적 연결의 안정성을 향상한다. 제2 섬형 오믹 전극(72)은 투광성 도전막(60)과 제2 전기적 연결(71) 사이에 개재되어 접촉 저항을 감소하고, 전기적 연결의 안정성을 향상한다. 전기적 연결(71,81)이 섬형 오믹 전극(72,82)을 감싸도록 형성되어 더욱 안정적으로 전기적 연결을 이룬다. 섬형 오믹 전극(72,82)은 가지 전극(75,85)과 다르게 뻗지(extending) 않고, 원형, 다각형 등 점형으로 형성되며, 가지 전극(75,85)이 불필요하게 길어지는 것을 방지한다. Branch electrodes 75 and 85 extend toward the long edges and are formed shorter than the short edges. The first island-type ohmic electrode 82 is interposed between the first semiconductor layer 30 and the first electrical connection 81 to reduce contact resistance and improve stability of the electrical connection. The second island-type ohmic electrode 72 is interposed between the transparent conductive film 60 and the second electrical connection 71 to reduce contact resistance and improve stability of the electrical connection. The electrical connections 71 and 81 are formed to surround the island- type ohmic electrodes 72 and 82 to achieve a more stable electrical connection. The island- type ohmic electrodes 72 and 82 are formed in a point shape such as a circle or a polygon without extending, unlike the branch electrodes 75 and 85, and prevent the branch electrodes 75 and 85 from being unnecessarily long.
광흡수 방지막(41)은 SiO2, TiO2 등을 사용하여 제2 반도체층(50)과 투광성 도전막(60) 사이에 제2 가지 전극(75) 및 제2 섬형 오믹 전극(72)에 대응하여 형성될 수 있다. 광흡수 방지막(41)은 활성층(40)에서 발생된 빛의 일부 또는 전부를 반사하는 기능만을 가져도 좋고, 제2 가지 전극(75) 및 제2 섬형 오믹 전극(72)으로부터 바로 아래로 전류가 흐르지 못하도록 하는 기능만을 가져도 좋고, 양자의 기능을 모두 가져도 좋다.The light absorption prevention film 41 corresponds to the second branch electrode 75 and the second island-type ohmic electrode 72 between the second semiconductor layer 50 and the transparent conductive film 60 using SiO 2 , TiO 2 , or the like. Can be formed. The light absorption prevention film 41 may have only a function of reflecting a part or all of the light generated in the active layer 40, and a current flows directly below the second branch electrode 75 and the second island-type ohmic electrode 72. It may have only a function that prevents flow, or may have both functions.
비도전성 반사막(R)은, 다층 구조의 일 예로, 유전체막(91b), 분포 브래그 리플렉터(91a) 및 클래드막(91c)을 포함한다. 유전체막(91b)은 높이차를 완화하여 분포 브래그 리플렉터(91a)를 안정적으로 제조할 수 있게 되며, 빛의 반사에도 도움을 줄 수 있다. 유전체막(91b)의 재질은 SiO2가 적당하다. 분포 브래그 리플렉터(91a)는 유전체막(91b) 위에 형성된다. 분포 브래그 리플렉터(91a)는 반사율이 다른 물질의 반복 적층, 예를 들어, SiO2/TiO2, SiO2/Ta2O2, 또는 SiO2/HfO의 반복 적층으로 이루어질 수 있으며, Blue 빛에 대해서는 SiO2/TiO2가 반사효율이 좋고, UV 빛에 대해서는 SiO2/Ta2O2, 또는 SiO2/HfO가 반사효율이 좋을 것이다. 클래드막(91c)은 Al2O3와 같은 금속 산화물, SiO2, SiON와 같은 유전체막(91b), MgF, CaF, 등의 물질로 이루어질 수 있다.The nonconductive reflecting film R includes, as an example of a multilayer structure, a dielectric film 91b, a distributed Bragg reflector 91a, and a clad film 91c. The dielectric film 91b may reduce the height difference to stably manufacture the distributed Bragg reflector 91a and may also help to reflect light. SiO 2 is a suitable material for the dielectric film 91b. The distributed Bragg reflector 91a is formed on the dielectric film 91b. The distribution Bragg reflector 91a may be composed of repeated stacking of materials having different reflectances, for example, SiO 2 / TiO 2 , SiO 2 / Ta 2 O 2 , or SiO 2 / HfO. SiO 2 / TiO 2 has good reflection efficiency, and for UV light, SiO 2 / Ta 2 O 2 , or SiO 2 / HfO will have good reflection efficiency. The clad film 91c may be made of a metal oxide such as Al 2 O 3 , a dielectric film 91b such as SiO 2 , SiON, MgF, CaF, or the like.
DBR과 같은 비도전성 반사막(91) 위에 전극(70,80)이 위치하는 경우에, 전극(70,80)에 의해 빛이 흡수되지만, 전극(70,80)을 Ag, Al과 같이 반사율이 높은 금속으로 구성하는 경우에 반사율을 높일 수 있는 것으로 알려져 왔다. 또한, 전극(70,80)은 본딩 패드, 반도체 발광소자의 방열을 위해서도 기능해야 하므로, 이러한 요소를 고려하여 그 크기를 결정해야 한다. 그러나 본 발명자들은 DBR과 같은 비도전성 반사막(R)이 이용되는 경우에 그 위에 놓이는 전극(70,80)의 크기를 줄일수록 비도전성 반사막(91)에 의한 광 반사율이 높아진다는 것을 확인하였으며, 이러한 실험 결과는 본 개시에서 전극(70,80)의 크기를 종래에 생략할 수 없었던 범위로 줄일 수 있는 계기를 제공하였다.When the electrodes 70 and 80 are positioned on the non-conductive reflective film 91 such as DBR, light is absorbed by the electrodes 70 and 80, but the electrodes 70 and 80 have a high reflectance such as Ag and Al. It has been known that the reflectance can be increased in the case of a metal. In addition, since the electrodes 70 and 80 must also function to dissipate the bonding pads and the semiconductor light emitting device, the size of the electrodes 70 and 80 should be determined in consideration of these factors. However, the present inventors have found that when the non-conductive reflecting film R such as DBR is used, the light reflectance by the non-conductive reflecting film 91 increases as the size of the electrodes 70 and 80 placed thereon is reduced. Experimental results provided an instrument capable of reducing the size of the electrodes 70 and 80 to a range that could not be omitted in the prior art.
본 예에서, 제1 전극(80) 및 제2 전극(70)은 복수의 서브 전극(80a,70a)으로 분할되어 있어서, 전극 면적을 줄이기 유리한 구조이며, 연결부(80b,70b)를 사용하여 복수의 서브 전극(80a,70a)이 모두 연결되게 하여 전기적 연결이 편중되는 것이 방지된다. 또한 연결부(80b,70b)에 의한 완충 영역(R80,R70)이 형성됨으로써, 열팽창시 응역을 완화하여 벗겨짐 등이 방지된다.In this example, the first electrode 80 and the second electrode 70 are divided into a plurality of sub-electrodes 80a and 70a, which is advantageous in reducing the electrode area, and using the connecting portions 80b and 70b to form a plurality of electrodes. The sub-electrodes 80a and 70a are connected to each other to prevent the electrical connection from being biased. In addition, the buffer regions R80 and R70 formed by the connecting portions 80b and 70b are formed, thereby preventing the peeling and the like due to the relaxation of the stress during thermal expansion.
도 63은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하는 도면으로서, 본 예에서, 제1 전극(80) 및 제2 전극(70)은 각각 복수의 서브 전극(80a,70a)과 이들을 연결하는 복수의 연결부(80b,70b)를 포함한다. 제1 가지 전극(85)은 제2 전극(70)의 연결부(70b) 아래로 지나가지 않고, 제2 전극(70)의 완충부에 대응하도록 뻗어 있다. 제2 가지 전극(75)은 제1 전극(80)의 연결부(80b) 아래로 지나가지 않고, 제1 전극(80)의 완충 영역(R80)에 대응하도록 뻗어 있다. 이와 같이 완충 영역(R80,R70) 아래에 가지 전극(85,75)을 형성하여 가지 전극(85,75)에 의한 제1 전극(80) 및 제2 전극(70)에서 요철 발생을 감소할 수 있다.FIG. 63 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure. In the present example, the first electrode 80 and the second electrode 70 each include a plurality of sub-electrodes 80a and 70a and these. It includes a plurality of connecting parts (80b, 70b) for connecting. The first branch electrode 85 extends to correspond to the buffer portion of the second electrode 70 without passing under the connection portion 70b of the second electrode 70. The second branch electrode 75 does not pass under the connecting portion 80b of the first electrode 80 but extends to correspond to the buffer region R80 of the first electrode 80. As described above, branch electrodes 85 and 75 may be formed under the buffer regions R80 and R70 to reduce the occurrence of irregularities in the first electrode 80 and the second electrode 70 by the branch electrodes 85 and 75. have.
도 64는 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면으로서, 제1 전극(80) 및 제2 전극(70)이 각각 복수의 서브 전극(80a,70a)으로 분할되어 있고, 복수의 서브 전극(80a,70a)이 긴 변을 따라 배열되고, 연결부(80b,70b)에 의해 연결된다. 제1 가지 전극(85)은 제2 전극(70)의 아래로 뻗지 않고, 대략 긴 변을 따라 길게 뻗는 가지(85b)와 전기적 연결(81)에 연결되는 가지(85a)를 가진다. 제2 가지 전극(75)은 단변 측을 따라 뻗는 가지(75a)와 긴 변을 따라 뻗는 가지(75b)를 가진다.64 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure. The first electrode 80 and the second electrode 70 are divided into a plurality of sub-electrodes 80a and 70a, respectively. The plurality of sub-electrodes 80a and 70a are arranged along the long side and connected by the connecting portions 80b and 70b. The first branch electrode 85 does not extend below the second electrode 70, but has a branch 85b extending along an approximately long side and a branch 85a connected to the electrical connection 81. The second branch electrode 75 has a branch 75a extending along the short side and a branch 75b extending along the long side.
도 65는 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면으로서, 복수의 서브 전극(75a)이 긴변을 따라 배열되며, 복수의 연결부(75b)가 복수의 서브 전극(75a)을 연결하되 지그재그 형태로 배열되어 있다. 복수의 서브 전극(75a)이 열팽창 시에 복수의 연결부(75b)가 지그재그로 배열되어 있으면, 복수의 서브 전극(75a)이 비도전성 반사막(R)으로부터 벗겨지도록 하는 응력을 완화하는 데에 도움이 될 수 있다.FIG. 65 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure, in which a plurality of sub electrodes 75a are arranged along a long side, and a plurality of connection portions 75b are used to define the plurality of sub electrodes 75a. Connected but arranged in a zigzag pattern. When the plurality of sub-electrodes 75a are arranged in a zigzag manner when the plurality of sub-electrodes 75a are thermally expanded, it helps to relieve the stress that causes the plurality of the sub-electrodes 75a to peel off from the non-conductive reflecting film R. Can be.
도 66 및 도 67은 본 개시에 따른 반도체 발광소자의 사용 예를 설명하기 위한 도면들로서, 복수의 반도체 발광소자(101,102,103)가 플레이트(200) 위에 실장되어 있다. 플레이트(200)는 제1 도전부(201), 제2 도전부(202), 및 절연부(203)를 포함한다. 반도체 발광소자(101)의 제1 전극(80) 및 제2 전극(70)은 각각 제1 도전부(201) 및 제2 도전부(202)와 접합된다. 절연부(203)는 제1 도전부(201) 및 제2 도전부(202)의 사이에 개재되며, 제1 전극(80)과 제2 전극(70)의 사이에 대응한다. 제1 도전부(201) 및 제2 도전부(202)가 상하로 노출되며, 절연부(203)는 상하로 도전부(201,202)를 덮지 않아서 방열에 매우 효과적이다. 제1 도전부(201) 및 제2 도전부(202)가 교대로 형성되며, 각 도전부에는 이웃한 반도체 발광소자들의 제1 전극(80) 및 제2 전극(70)이 접합되어 복수의 반도체 발광소자(101,102,103)가 직렬연결된다. 물론 병렬연결도 가능하다.66 and 67 are diagrams for describing a use example of a semiconductor light emitting device according to the present disclosure, and a plurality of semiconductor light emitting devices 101, 102, and 103 are mounted on a plate 200. The plate 200 includes a first conductive portion 201, a second conductive portion 202, and an insulating portion 203. The first electrode 80 and the second electrode 70 of the semiconductor light emitting device 101 are bonded to the first conductive portion 201 and the second conductive portion 202, respectively. The insulating portion 203 is interposed between the first conductive portion 201 and the second conductive portion 202, and corresponds between the first electrode 80 and the second electrode 70. The first conductive portion 201 and the second conductive portion 202 are exposed up and down, and the insulating portion 203 does not cover the conductive portions 201 and 202 up and down, which is very effective for heat dissipation. The first conductive portion 201 and the second conductive portion 202 are alternately formed, and the first electrode 80 and the second electrode 70 of neighboring semiconductor light emitting devices are bonded to each conductive portion to form a plurality of semiconductors. The light emitting elements 101, 102, 103 are connected in series. Of course, parallel connection is also possible.
도 58, 도 61, 도 64, 및 도 65에서 설명된 반도체 발광소자는 제1 전극(80) 및 제2 전극(70)이 각각 일 측 및 타 측 긴 에지 인근에 구비되어 있어서 복수의 반도체 발광소자를 직렬연결하는 경우에 플레이트(200)에 직렬연결의 방향으로 더 콤팩트하게 실장될 수 있다. 58, 61, 64, and 65 in the semiconductor light emitting device described above, the first electrode 80 and the second electrode 70 are provided on one side and the other side near the long edge of the plurality of semiconductor light emission When the devices are connected in series, the plate 200 may be more compactly mounted in the direction of the series connection.
도 68은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면, 도 69는 도 68의 A-A 선을 따른 단면의 일 예를 설명하기 위한 도면으로서, 반도체 발광소자는 복수의 반도체층(30,40,50), 비도전성 반사막(R), 제1 전극(80), 제2 전극(70), 제1 가지 전극(85), 제2 가지 전극(75), 제1 전기적 연결부(81), 및 제2 전기적 연결부(71)를 포함한다. 복수의 반도체층(30,40,50)은 제1 도전성을 가지는 제1 반도체층(30), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(50), 및 제1 반도체층(30)과 제2 반도체층(50)의 사이에 개재되어 전자와 정공의 재결합에 의해 빛을 생성하는 활성층(40)을 가진다. 비도전성 반사막(R)은 복수의 반도체층(30,40,50) 위에 형성되어 활성층(40)으로부터의 빛을 반사한다. 제1 전극(80)은 비도전성 반사막(R) 위에 형성되며, 패드부(83)와 패드부(83)로부터 돌출된 돌출부(88)를 가진다. 제2 전극(70)은 비도전성 반사막(R) 위에 돌출부(88)와 마주하도록 형성된다. 제1 가지 전극(85)은 제2 반도체층(50), 및 활성층(40)이 식각되어 노출된 제1 반도체층(30) 위에 형성된다. 제1 가지 전극(85)은 돌출부(88) 아래에서 제1 전극(80)과 제2 전극(70) 사이로 뻗는다. 제2 가지 전극(75)은 제2 반도체층(50)과 비도전성 반사막(R) 사이에서 제2 전극(70) 아래서 제1 전극(80) 아래로 뻗도록 형성된다. 제2 가지 전극(75)은 생략될 수 있다. 제1 전기적 연결부(81)는 비도전성 반사막(R)을 관통하여 돌출부(88)와 제1 가지 전극(85)을 연결한다. 다른 하나의 제1 전기적 연결부(81)는 제1 가지 전극(85)에 의하지 않고 제1 반도체층(30)과 제1 전극(80)을 전기적으로 연통한다. 제2 전기적 연결부(71)는 비도전성 반사막(R)을 관통하여 제2 전극(70)과 제2 반도체층(50)을 전기적으로 연통한다. 다른 하나의 제2 전기적 연결부(71)는 제2 가지 전극(75)에 의하지 않고 제2 반도체층(50)과 제2 전극(70)을 전기적으로 연통한다. FIG. 68 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure. FIG. 69 is a view for explaining an example of a cross section along the line AA of FIG. 68, and the semiconductor light emitting device may include a plurality of semiconductor layers ( 30, 40, 50, non-conductive reflective film R, first electrode 80, second electrode 70, first branch electrode 85, second branch electrode 75, first electrical connection 81 ), And a second electrical connection 71. The plurality of semiconductor layers 30, 40, and 50 may include a first semiconductor layer 30 having a first conductivity, a second semiconductor layer 50 having a second conductivity different from the first conductivity, and a first semiconductor layer 30. ) Between the second semiconductor layer 50 and the second semiconductor layer 50 to generate light by recombination of electrons and holes. The non-conductive reflecting film R is formed on the plurality of semiconductor layers 30, 40, and 50 to reflect light from the active layer 40. The first electrode 80 is formed on the non-conductive reflective film R and has a pad portion 83 and a protrusion 88 protruding from the pad portion 83. The second electrode 70 is formed on the non-conductive reflective film R to face the protrusion 88. The first branch electrode 85 is formed on the second semiconductor layer 50 and the first semiconductor layer 30 to which the active layer 40 is etched and exposed. The first branch electrode 85 extends between the first electrode 80 and the second electrode 70 under the protrusion 88. The second branch electrode 75 is formed to extend under the first electrode 80 under the second electrode 70 between the second semiconductor layer 50 and the non-conductive reflective film R. The second branch electrode 75 may be omitted. The first electrical connection portion 81 penetrates the non-conductive reflective film R to connect the protrusion 88 and the first branch electrode 85. The other first electrical connection 81 electrically communicates the first semiconductor layer 30 and the first electrode 80 without the first branch electrode 85. The second electrical connector 71 penetrates the non-conductive reflective film R to electrically communicate the second electrode 70 and the second semiconductor layer 50. The other second electrical connection 71 electrically connects the second semiconductor layer 50 and the second electrode 70 without the second branch electrode 75.
제2 가지 전극(75)은 제1 가지 전극(85)의 양측에 각각 구비되며, 제2 가지 전극(75)과 연결된 각 제2 전기적 연결부(71)는 제1 전극(80)과 마주하는 제2 전극(70)의 에지에 인접하게 위치한다. 평면도로 볼 때, 제1 전기적 연결부(81)는 제1 전극(80)의 패드부(83)의 에지와 교차할 수 있으며, 돌출부(88)는 제1 전기적 연결부(81)에 대응하여 패드부(83)로부터 돌출되어 있다. 제1 가지 전극(85)에 대응하는 메사식각 영역(35; n-contact 영역)의 면적이 증가하면 반도체 발광소자의 휘도가 감소한다. 특히, 사이즈가 작은 반도체 발광소자에서는 메사식각의 면적을 작게할 필요가 더 있다.The second branch electrode 75 is provided at both sides of the first branch electrode 85, and each second electrical connection 71 connected to the second branch electrode 75 is formed to face the first electrode 80. It is located adjacent to the edge of the two electrodes 70. In plan view, the first electrical connection portion 81 may intersect the edge of the pad portion 83 of the first electrode 80, and the protrusion 88 may correspond to the first electrical connection portion 81. It protrudes from 83. When the area of the mesa etching region 35 (n-contact region) corresponding to the first branch electrode 85 increases, the luminance of the semiconductor light emitting device decreases. In particular, in the semiconductor light emitting device having a small size, it is necessary to reduce the area of mesa etching.
도 70b에 제시된 비교예를 참조하면, 제1 가지 전극(85)이 제1 전극(80)의 대략 중앙에서부터 제2 전극(70)의 아래로 길게 뻗어 있다. 반면, 본 예에서는 제1 가지 전극(85)은 제2 전극(70) 아래로 조금만 연장되어 있고, 제1 가지 전극(85)의 일 측 끝이 패드부(83)로부터 돌출된 돌출부(88) 아래에 위치한다. 즉, 제1 가지 전극(85)은 제1 전극(80)의 패드부(83) 아래로 뻗지 않는다. 따라서, 본 예에서 메사식각의 면적이 비교예에 비해 훨씬 감소한다. 가지 전극(85,75)과 연결되지 않는 전기적 연결부(81,71)를 구비하여 전류 공급의 균일성도 달성된다. 또한, 반도체 발광소자를 PCB 등의 기판에 실장하거나, 검사시에 p측(예: 제2 전극)과 n측(예: 제1 전극)을 구분할 수 있도록 할 필요가 있는데, 본 예에서 돌출부(88)는 반도체 발광소자의 외관으로부터 쉽게 식별될 수 있어서 p측과 n측을 구분하는 수단으로 사용할 수 있다.Referring to the comparative example shown in FIG. 70B, the first branch electrode 85 extends long from the center of the first electrode 80 to the bottom of the second electrode 70. On the other hand, in the present example, the first branch electrode 85 extends slightly below the second electrode 70, and the protruding portion 88 in which one end of the first branch electrode 85 protrudes from the pad portion 83. It is located below. That is, the first branch electrode 85 does not extend under the pad portion 83 of the first electrode 80. Therefore, in this example, the area of mesa etching is much reduced compared to the comparative example. Uniformity of current supply is also achieved by providing electrical connections 81 and 71 which are not connected to branch electrodes 85 and 75. In addition, it is necessary to mount the semiconductor light emitting device on a substrate such as a PCB or to distinguish between the p-side (eg, the second electrode) and the n-side (eg, the first electrode) during inspection. 88 can be easily identified from the external appearance of the semiconductor light emitting element, and can be used as a means for distinguishing the p side and the n side.
이하, 3족 질화물 반도체 발광소자를 예로 하여 설명한다.Hereinafter, the group III nitride semiconductor light emitting element will be described as an example.
기판(10)으로 주로 사파이어, SiC, Si, GaN 등이 이용되며, 기판(10)은 최종적으로 제거될 수 있다. 제1 반도체층(30)과 제2 반도체층(50)은 그 위치가 바뀔 수 있으며, 3족 질화물 반도체 발광소자에 있어서 주로 GaN으로 이루어진다. Sapphire, SiC, Si, GaN and the like are mainly used as the substrate 10, and the substrate 10 may be finally removed. The positions of the first semiconductor layer 30 and the second semiconductor layer 50 may be changed, and are mainly made of GaN in the group III nitride semiconductor light emitting device.
복수의 반도체층(30,40,50)은 기판(10) 위에 형성된 버퍼층(20), 제1 도전성을 가지는 제1 반도체층(30; 예: Si 도핑된 GaN), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(50; 예: Mg 도핑된 GaN) 및 제1 반도체층(30)과 제2 반도체층(50) 사이에 개재되며 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(40; 예: InGaN/(In)GaN 다중양자우물구조)을 포함한다. 복수의 반도체층(30,40,50) 각각은 다층으로 이루어질 수 있고, 버퍼층(20)은 생략될 수 있다. The plurality of semiconductor layers 30, 40, and 50 may include a buffer layer 20 formed on the substrate 10, a first semiconductor layer 30 having a first conductivity (eg, Si-doped GaN), and a second different from the first conductivity. A conductive second semiconductor layer 50 (eg, Mg-doped GaN) and an active layer interposed between the first semiconductor layer 30 and the second semiconductor layer 50 to generate light through recombination of electrons and holes ( 40; e.g., InGaN / (In) GaN multi-quantum well structure). Each of the semiconductor layers 30, 40, and 50 may be formed in multiple layers, and the buffer layer 20 may be omitted.
바람직하게는 투광성 도전막(60; 예: ITO,Ni/Au)이 제2 반도체층(50) 위에 형성된다. 기판(10) 상에 제1 반도체층(30), 활성층(40), 제2 반도체층(50), 투광성 도전막(60)을 형성하고, 메사식각하여 전술된 n-contact 영역(35)을 형성할 수 있다. 메사식각은 투광성 도전막(60) 형성 전 또는 이후에 수행될 수도 있다. 투광성 도전막(60)은 생략될 수 있다. Preferably, a transparent conductive film 60 (eg, ITO, Ni / Au) is formed on the second semiconductor layer 50. The first semiconductor layer 30, the active layer 40, the second semiconductor layer 50, and the transparent conductive film 60 are formed on the substrate 10, and mesa-etched to form the n-contact region 35 described above. Can be formed. Mesa etching may be performed before or after the transparent conductive layer 60 is formed. The transparent conductive film 60 may be omitted.
제2 가지 전극(75)은 투광성 도전막(60) 위에 형성된다. 제1 가지 전극(85) 및 제2 가지 전극(75)은 복수의 금속층으로 이루어질 수 있으며, 제1 반도체층(30) 또는 투광성 도전막(60)과의 전기적 접촉이 좋은 접촉층과 광반사성이 좋은 반사층 등을 구비할 수 있다.The second branch electrode 75 is formed on the transparent conductive film 60. The first branch electrode 85 and the second branch electrode 75 may be formed of a plurality of metal layers, and the contact layer and the light reflectivity having good electrical contact with the first semiconductor layer 30 or the transparent conductive layer 60 may be formed. A good reflective layer can be provided.
바람직하게는 광흡수 방지막(41)은 SiO2, TiO2 등을 사용하여 제2 반도체층(50)과 투광성 도전막(60) 사이에 제2 가지 전극(75) 및 제2 전기적 연결부(71)(71)에 대응하여 형성된다. 광흡수 방지막(41)은 활성층(40)에서 발생된 빛의 일부 또는 전부를 반사하는 기능만을 가져도 좋고, 제2 가지 전극(75) 및 제2 전기적 연결부(71)로부터 바로 아래로 전류가 흐르지 못하도록 하는 기능만을 가져도 좋고, 양자의 기능을 모두 가져도 좋다.Preferably, the light absorption prevention film 41 is formed between the second semiconductor layer 50 and the transparent conductive film 60 by using SiO 2 , TiO 2, or the like. It is formed corresponding to (71). The light absorption prevention film 41 may have only a function of reflecting some or all of the light generated in the active layer 40, and no current flows directly from the second branch electrode 75 and the second electrical connection 71. It may have only a function that prevents it, or may have both functions.
비도전성 반사막(R)은 투광성 도전막(60), 제1 가지 전극(85), 및 제2 가지 전극(75)을 덮도록 형성되며, 활성층(40)으로부터의 빛을 기판(10) 측으로 반사한다. 본 예에서 비도전성 반사막(R)은 금속 반사막에 의한 광흡수 감소를 위해 절연성 물질로 형성되며, 바람직하게는 분포 브래그 리플렉터(Distributed Bragg Reflector), 전방향 리플렉터(ODR; Omni-Directional Reflector), 등을 포함하는 다층 구조일 수 있다. The non-conductive reflective film R is formed to cover the transparent conductive film 60, the first branch electrode 85, and the second branch electrode 75, and reflects light from the active layer 40 toward the substrate 10. do. In this example, the non-conductive reflector R is formed of an insulating material to reduce light absorption by the metal reflector, and is preferably a distributed Bragg reflector, an omni-directional reflector, or the like. It may be a multilayer structure comprising a.
비도전성 반사막(R)은, 다층 구조의 일 예로, 유전체막(91b), 분포 브래그 리플렉터(91a) 및 클래드막(91c)을 포함할 수 있다. 유전체막(91b)은 높이차를 완화하여 분포 브래그 리플렉터(91a)를 안정적으로 제조할 수 있게 되며, 빛의 반사에도 도움을 줄 수 있다. 유전체막(91b)의 재질은 SiO2가 적당하다. 분포 브래그 리플렉터(91a)는 유전체막(91b) 위에 형성된다. 분포 브래그 리플렉터(91a)는 반사율이 다른 물질의 반복 적층, 예를 들어, SiO2/TiO2, SiO2/Ta2O2, 또는 SiO2/HfO의 반복 적층으로 이루어질 수 있으며, Blue 빛에 대해서는 SiO2/TiO2가 반사효율이 좋고, UV 빛에 대해서는 SiO2/Ta2O2, 또는 SiO2/HfO가 반사효율이 좋을 것이다. 클래드막(91c)은 Al2O3와 같은 금속 산화물, SiO2, SiON와 같은 유전체막(91b), MgF, CaF, 등의 물질로 이루어질 수 있다.The nonconductive reflecting film R may include, for example, a dielectric film 91b, a distributed Bragg reflector 91a, and a clad film 91c. The dielectric film 91b may reduce the height difference to stably manufacture the distributed Bragg reflector 91a and may also help to reflect light. SiO 2 is a suitable material for the dielectric film 91b. The distributed Bragg reflector 91a is formed on the dielectric film 91b. The distribution Bragg reflector 91a may be composed of repeated stacking of materials having different reflectances, for example, SiO 2 / TiO 2 , SiO 2 / Ta 2 O 2 , or SiO 2 / HfO. SiO 2 / TiO 2 has good reflection efficiency, and for UV light, SiO 2 / Ta 2 O 2 , or SiO 2 / HfO will have good reflection efficiency. The clad film 91c may be made of a metal oxide such as Al 2 O 3 , a dielectric film 91b such as SiO 2 , SiON, MgF, CaF, or the like.
비도전성 반사막(R)에 개구를 형성하고, 개구에 전기적 연결을 형성하며, 제1 전극(80) 및 제2 전극(70)은 전기적 연결과 함께 형성될 수 있다.An opening is formed in the non-conductive reflective film R, an electrical connection is formed in the opening, and the first electrode 80 and the second electrode 70 may be formed together with the electrical connection.
도 70a는 본 개시에 따른 반도체 발광소자의 다른 예를 설명하기 위한 도면으로서, 본 예에서 제1 전극(80)은 패드부(83), 및 패드부(83)로부터 돌출된 돌출부(88)를 포함한다. 제2 전극(70)은 패드부(73) 및 패드부(73)로부터 제1 전극(80)과 제2 전극(70) 사이로 돌출되는 돌출부(78)를 포함한다. 제2 가지 전극(75)은 제2 반도체층(50)과 비도전성 반사막(R) 사이에서, 제2 전극(70)의 돌출부(78) 아래에서 제1 전극(80) 아래로 뻗는다. 제2 전기적 연결부(71)는 제2 전극(70)의 돌출부(78)와 제2 가지 전극(75)을 연결한다. 제2 가지 전극(75)이 제1 가지 전극(85)의 양측에 각각 구비되며, 각 제2 가지 전극(75)에 대응하여 제2 전극(70)의 패드부(73)로부터 각 돌출부(78)가 형성되어 있다. 본 예에서 제2 가지 전극(75)은 도 70b에 제시된 비교예와 다르게, 돌출부(78) 아래에서 제2 전극(70)의 패드부(73) 아래로는 뻗지 않는다. 따라서, 금속에 의한 빛흡수 손실이 그만큼 더 감소한다. 제1 전극(80) 및 제2 전극(70)이 모두 돌출부(88,78)를 가지며, 가지 전극(85,75)이 패드부(83,73) 아래로는 뻗지 않아서 금속에 의한 빛흡수 손실이 감소하고, 메사식각의 면적도 감소하여 발광량 감소를 억제할 수 있다.70A is a view for explaining another example of the semiconductor light emitting device according to the present disclosure. In this example, the first electrode 80 may include a pad portion 83 and a protrusion 88 protruding from the pad portion 83. Include. The second electrode 70 includes a pad portion 73 and a protrusion 78 protruding from the pad portion 73 between the first electrode 80 and the second electrode 70. The second branch electrode 75 extends below the first electrode 80 between the second semiconductor layer 50 and the nonconductive reflective film R under the protrusion 78 of the second electrode 70. The second electrical connection 71 connects the protrusion 78 of the second electrode 70 and the second branch electrode 75. The second branch electrodes 75 are provided at both sides of the first branch electrode 85, respectively, and each protrusion 78 from the pad portion 73 of the second electrode 70 in correspondence with each of the second branch electrodes 75. ) Is formed. In the present example, unlike the comparative example shown in FIG. 70B, the second branch electrode 75 does not extend below the pad portion 73 of the second electrode 70 under the protrusion 78. Thus, the light absorption loss by the metal is further reduced by that. Both the first electrode 80 and the second electrode 70 have protrusions 88 and 78, and the branch electrodes 85 and 75 do not extend below the pad portions 83 and 73, so that light absorption loss due to metal is lost. This decreases, and the area of mesa etching is also reduced to suppress the decrease in the amount of emitted light.
도 71은 본 개시에 따른 반도체 발광소자의 또 다른 예들을 설명하기 위한 도면으로서, 제2 가지 전극(75)은 제1 가지 전극(85)의 양측에 각각 구비되며, 각 제2 가지 전극(75)은 끝이 서로를 향하여 휘어져 있다. 이와 같이 휘어짐으로써, 제1 가지 전극(85)과 제2 가지 전극(75) 간이 거리가 위치에 따른 차이가 감소할 수 있고, 전류 공급 또는 발광의 균일성이 향상될 수 있다. 반도체 발광소자는 평면도로 볼 때, 직사각 형상을 가지며, 제1 전극(80)의 돌출부(88)로 인해 제1 가지 전극(85)은 직사각 형상의 대략 가운데에서 직사각형의 긴 변들과 짧은 변들로부터 각각 균등한 위치에 배치될 수 있다. 각 제2 가지 전극(75)도 각 긴 변을 따라 뻗되 끝이 전술된 바와 같이 휘어져 있고, 제1 가지 전극(85)을 기준으로 각 제2 가지 전극(75)은 대칭적으로 배치되어 있다. 따라서, 매우 대칭적 구조를 가지며, 균일성 향상에 좋은 구조가 된다. 이와 같이, 돌출부(88)는 전극 배치의 균등성, 또는 균일성 향상에도 기여한다.FIG. 71 is a view illustrating still another example of the semiconductor light emitting device according to the present disclosure. The second branch electrodes 75 are provided at both sides of the first branch electrode 85, respectively, and each second branch electrode 75 is provided. The ends are bent toward each other. By bending as described above, the difference between the positions of the first branch electrodes 85 and the second branch electrodes 75 may be reduced according to positions, and the uniformity of current supply or light emission may be improved. The semiconductor light emitting device has a rectangular shape when viewed in plan view, and the first branch electrode 85 is formed from the long sides and the short sides of the rectangular shape approximately in the center of the rectangular shape due to the protrusion 88 of the first electrode 80. It may be placed in an even position. Each second branch electrode 75 also extends along each long side, and the tip is bent as described above, and the second branch electrodes 75 are symmetrically arranged with respect to the first branch electrode 85. Therefore, it has a very symmetrical structure and is a good structure for improving uniformity. In this way, the protrusions 88 also contribute to the improvement of uniformity or uniformity of electrode arrangement.
한편, 도 71b에 제시된 예에서, 제1 가지 전극(85)은 제2 전극(70) 아래로 뻗지 않고 제1 전극(80)과 제2 전극(70) 사이에만 위치한다. 따라서, 메사식각의 면적이 더 감소될 수 있고, 대칭성 또는 균등성이 더 향상된다.Meanwhile, in the example shown in FIG. 71B, the first branch electrode 85 is located only between the first electrode 80 and the second electrode 70 without extending below the second electrode 70. Thus, the area of mesa etching can be further reduced, and symmetry or uniformity is further improved.
도 72는 본 개시에 따른 반도체 발광소자의 또 다른 예들을 설명하기 위한 도면으로서, 본 예에서, 제2 가지 전극(75)은 제1 가지 전극(85)의 양측에 각각 구비되며, 제1 가지 전극(85)의 양측의 각 제2 가지 전극(75)은 제1 전극(80) 및 제2 전극(70) 중 적어도 하나의 아래에서 서로 이어져 하나의 가지 전극을 이루고 있다. 도 72a에서는 제2 전극(70) 아래에서 양측의 제2 가지 전극(75)이 연결되어 있고, 도 72b에서는 제1 전극(80) 및 제2 전극(70) 아래에서 양측의 제2 가지 전극(75)이 연결되어 폐루프를 이루고 있다. 양측의 제2 가지 전극(75)을 연결하여 일체로 형성함으로써, 전류 공급의 균일성과 발광의 균일성을 향상할 수 있다.FIG. 72 is a view illustrating still another example of the semiconductor light emitting device according to the present disclosure. In this example, the second branch electrodes 75 are provided at both sides of the first branch electrode 85, respectively. Each of the second branch electrodes 75 on both sides of the electrode 85 is connected to each other under at least one of the first electrode 80 and the second electrode 70 to form one branch electrode. In FIG. 72A, the second branch electrodes 75 on both sides are connected under the second electrode 70. In FIG. 72B, the second branch electrodes 75 on both sides under the first electrode 80 and the second electrode 70 are connected to each other. 75) is connected to form a closed loop. By connecting the second branch electrodes 75 on both sides to form a single body, uniformity of current supply and uniformity of light emission can be improved.
도 73은 전극의 면적과 반도체 발광소자의 휘도의 관계를 설명하기 위한 도면으로서, DBR과 같은 비도전성 반사막(R) 위에 전극(70,80)이 위치하는 경우에, 전극(70,80)에 의해 빛이 흡수되지만, 전극(70,80)을 Ag, Al과 같이 반사율이 높은 금속으로 구성하는 경우에 반사율을 높일 수 있는 것으로 알려져 왔다. 또한, 전극(70,80)은 본딩 패드, 반도체 발광소자의 방열을 위해서도 기능해야 하므로, 이러한 요소를 고려하여 그 크기를 결정해야 한다. 그러나 본 발명자들은 DBR과 같은 비도전성 반사막(R)이 이용되는 경우에 그 위에 놓이는 전극(70,80)의 크기를 줄일수록 비도전성 반사막(R)에 의한 광 반사율이 높아진다는 것을 확인하였으며, 이러한 실험 결과는 본 개시에서 전극(70,80)의 크기를 종래에 생략할 수 없었던 범위로 줄일 수 있는 계기를 제공하였다. 또한, 전극이 돌출부(88,78)를 가짐으로써, 전극의 면적을 감소하면서도 가지 전극의 길이가 증가하는 것을 억제할 수 있었다.FIG. 73 is a view for explaining the relationship between the area of the electrode and the luminance of the semiconductor light emitting element. When the electrodes 70 and 80 are positioned on the non-conductive reflective film R such as DBR, Although light is absorbed, it has been known that the reflectance can be increased when the electrodes 70 and 80 are made of a metal having high reflectance such as Ag and Al. In addition, since the electrodes 70 and 80 must also function to dissipate the bonding pads and the semiconductor light emitting device, the size of the electrodes 70 and 80 should be determined in consideration of these factors. However, the present inventors have found that when the non-conductive reflective film R such as DBR is used, the light reflectance by the non-conductive reflective film R increases as the size of the electrodes 70 and 80 placed thereon is reduced. Experimental results provided an instrument capable of reducing the size of the electrodes 70 and 80 to a range that could not be omitted in the prior art. In addition, since the electrodes had protrusions 88 and 78, it was possible to suppress the increase in the length of the branch electrodes while reducing the area of the electrodes.
분포 브래그 리플렉터(91a)는 수직 방향에 가까운 빛일 수록 더 잘 반사하여, 대략 99% 이상의 빛을 반사한다. 그러나 비스듬히 입사하는 빛은 분포 브래그 리플렉터(91a)를 통과하며, 클래드 막(91c) 또는 비도전성 반사막(R)의 상면에 입사하며, 전극(80,70)에 의해 덮이지 않은 부분에서는 빛이 거의 반사되지만, 전극(80,70)에 입사하는 빛은 일부가 흡수된다.The distribution Bragg reflector 91a reflects better as light closer to the vertical direction reflects light of approximately 99% or more. However, the light incident at an angle passes through the distribution Bragg reflector 91a and enters the upper surface of the clad film 91c or the non-conductive reflecting film R, and the light is almost not covered by the electrodes 80 and 70. Although reflected, part of the light incident on the electrodes 80 and 70 is absorbed.
한편, 도 73에 제시된 바와 같이, 전극(80,70) 간의 간격(G) 및 면적비를 변경하여 휘도를 테스트하였다. 간격(G)를 150um(도 73a),300um(도 73b),450um(도 73c),600um(도 73d)로 변경하고, 반도체 발광소자의 외곽과 전극(80,70)의 외측 에지와의 겝은 일정하다. 전극(80,70)이 서로 대향하는 방향으로 반도체 발광소자의 에지 간의 거리(W)는 1200um이고, 세로 길이(c)는 600um이고, 전극(80,70)의 가로(B)는 485,410,335,260um이고, 전극(80,70)의 세로(A)는 520um로 일정하다. 반도체 발광소자의 평면적과 전극(80,70)의 면적비는 각각 0.7, 0.59, 0.48, 0.38이된다. 비교 기준으로 전극(80,70) 간격이 80um인 경우, 면적비는 0.75가 된다. 전극(80,70) 면적이 동일하면, 전극(80,70) 간격이 변화해도 휘도에 큰 차이가 없음을 알았다. Meanwhile, as shown in FIG. 73, luminance was tested by changing the gap G and the area ratio between the electrodes 80 and 70. The distance G is changed to 150 um (FIG. 73A), 300 um (FIG. 73B), 450 um (FIG. 73C) and 600 um (FIG. 73D), and the gap between the outer edge of the semiconductor light emitting element and the outer edge of the electrodes 80 and 70 Is constant. The distance (W) between the edges of the semiconductor light emitting element in the direction in which the electrodes 80, 70 face each other is 1200um, the vertical length (c) is 600um, the width (B) of the electrodes 80, 70 is 485,410,335,260um The length A of the electrodes 80 and 70 is constant at 520 um. The area ratio of the planar area of the semiconductor light emitting element to the electrodes 80 and 70 is 0.7, 0.59, 0.48 and 0.38, respectively. If the distance between the electrodes 80 and 70 is 80 um, the area ratio is 0.75. When the areas of the electrodes 80 and 70 are the same, it is found that there is no significant difference in luminance even when the distance between the electrodes 80 and 70 changes.
도 73에서 상측의 그래프는 설명된 실험예들의 결과를 나타내는 그래프로서, 비교 기준휘도를 100으로 할 때, 106.79(도 73a),108.14(도 73b),109.14(도 73c),111.30(도 73d)의 휘도를 확인하였다. 휘도의 상승이 상당히 높은 것을 확인할 수 있다. 전극(80,70)의 면적비를 0.38 보다 더 작게 하면 휘도 상승이 더 있을 수 있다.The upper graph in FIG. 73 is a graph showing the results of the described experimental examples. When the reference luminance is 100, 106.79 (FIG. 73A), 108.14 (FIG. 73B), 109.14 (FIG. 73C), and 111.30 (FIG. 73D). The luminance of was confirmed. It can be seen that the increase in luminance is considerably high. If the area ratio of the electrodes 80 and 70 is smaller than 0.38, there may be further increase in luminance.
도 74는 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면으로서, 제1 전극(80) 및 제2 전극(70) 각각 패드부(83,73) 및 돌출부(88,78)를 포함한다. 평면도로 볼 때, 제1 전기적 연결부(81)는 제1 전극(80)의 패드부(83)의 에지로부터 제2 전극(70) 측으로 떨어져 있고, 돌출부(88)는 제1 전극(80)의 패드부(83)로부터 제2 전극(70)을 향하여 연장된 후, 돌출부(88)의 말단이 제1 전기적 연결부(81)와 연결되어 있다. 제1 전극(80)의 패드부(83) 및 제2 전극(70)의 패드부(73)는 점선으로 표시된 면적보다 축소되어 있어서, 도 73에서 설명된 바와 같이, 금속에 의한 빛흡수가 감소하여 휘도가 향상된다. 이와 같이 전극(80,70)의 면적이 감소할 때, 제1 가지 전극(85)과 연결되는 제1 전기적 연결부(81)가 제1 전극(80)의 패드부(83) 측으로 따라서 이동하면, 제1 가지 전극(85)의 길이가 증가하고 메사식각 면적이 증가한다. 본 예에서는 돌출부(88)를 길게 형성하여 돌출부(88)의 끝에서 제1 전기적 연결부(81)가 연결되므로 제1 가지 전극(85)의 길이 증가, 및 메사식각의 면적의 증가가 방지된다. 74 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure. The pad portions 83 and 73 and the protrusions 88 and 78 of the first electrode 80 and the second electrode 70, respectively, are illustrated. Include. In plan view, the first electrical connection 81 is spaced apart from the edge of the pad portion 83 of the first electrode 80 toward the second electrode 70, and the protrusion 88 is formed of the first electrode 80. After extending from the pad portion 83 toward the second electrode 70, the distal end of the protrusion 88 is connected to the first electrical connection 81. The pad portion 83 of the first electrode 80 and the pad portion 73 of the second electrode 70 are smaller than the area indicated by the dotted lines, so that light absorption by the metal is reduced as described with reference to FIG. 73. The brightness is improved. When the area of the electrodes 80 and 70 is reduced in this manner, when the first electrical connection portion 81 connected to the first branch electrode 85 moves along the pad portion 83 side of the first electrode 80, The length of the first branch electrode 85 is increased and the mesa etching area is increased. In this example, since the protrusion 88 is formed long, the first electrical connection 81 is connected at the end of the protrusion 88, thereby increasing the length of the first branch electrode 85 and increasing the area of the mesa etching.
본 예에서, 복수의 반도체층(30,40,50)은 식각 또는 절단된 측면들을 가진다. 예를 들어 복수의 반도체층(30,40,50)의 둘레가 메사식각되어 형성된 테두리를 가진다. 본 예에서, 평면도(top view)로 볼 때, 제1 전극(80) 및 제2 전극(70)과 복수의 반도체층(30,40,50)의 측면들까지의 거리(E)는 50㎛ 이상이어서, 비도전성 반사막(R)에 발생한 크랙(crak)이 제1 전극(80) 및 제2 전극(70)까지 전파되기가 쉽지 않다. 따라서, 크랙에 의한 전극(80,70)이 벗겨지는(peeling) 것이 방지된다. 또한, 전극(80,70)을 외부 전극에 본딩시 본딜 물질이 복수의 반도체층(30,40,50)의 측면으로 올라오는 것을 억제할 수 있다.In this example, the plurality of semiconductor layers 30, 40, 50 have etched or cut side surfaces. For example, the circumferences of the plurality of semiconductor layers 30, 40, and 50 have mesa-etched edges. In this example, when viewed from the top view, the distance E between the first electrode 80 and the second electrode 70 and the side surfaces of the plurality of semiconductor layers 30, 40, and 50 is 50 μm. As described above, cracks generated in the non-conductive reflective film R are not easily propagated to the first electrode 80 and the second electrode 70. Thus, peeling of the electrodes 80 and 70 due to cracks is prevented. In addition, when bonding the electrodes 80 and 70 to the external electrode, the bond material may be prevented from rising to the side surfaces of the plurality of semiconductor layers 30, 40, and 50.
도 75는 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면으로서, 돌출부(88)가 길게 형성되어 있고, 돌출부(88)의 끝에 제1 전기적 연결부(81)가 연결되므로, 전극 면적이 감소하여도 제1 가지 전극(85)이 길어지지 않는다. 또한, 제1 가지 전극(85)은 제2 전극(70) 아래로 뻗지 않도록 형성되며, 제1 가지 전극(85)의 양측의 제2 가지 전극(75)은 각 끝이 서로를 향하여 휘어져 있다. 따라서 균등성 또는 대칭성이 향상된다.FIG. 75 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure. Since the protrusion 88 is long and the first electrical connection 81 is connected to the end of the protrusion 88, an electrode area Even if this decreases, the first branch electrodes 85 do not become long. In addition, the first branch electrode 85 is formed so as not to extend below the second electrode 70, and the second branch electrodes 75 on both sides of the first branch electrode 85 are bent toward each other. Therefore, uniformity or symmetry is improved.
도 76은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면으로서, 복수의 제1 가지 전극(85)과 복수의 제2 가지 전극(75)이 교대로 배치되며, 제1 전극(80)은 각 제1 가지 전극(85)에 대응하여 돌출부(88)를 가지며, 제2 전극(70)은 각 제2 가지 전극(75)에 대응하여 돌출부(88)를 가진다. 반도체 발광소자의 사이즈나 형태에 따라 제1 가지 전극(85) 및 제2 가지 전극(75)의 개수, 형상, 및 위치를 변경할 수 있고, 돌출부(88)의 길이도 변경가능하다.FIG. 76 is a diagram for describing another example of the semiconductor light emitting device according to the present disclosure. A plurality of first branch electrodes 85 and a plurality of second branch electrodes 75 are alternately disposed, and a first electrode ( 80 has protrusions 88 corresponding to each first branch electrode 85, and second electrode 70 has protrusions 88 corresponding to each second branch electrode 75. The number, shape, and position of the first branch electrode 85 and the second branch electrode 75 can be changed according to the size or shape of the semiconductor light emitting element, and the length of the protrusion 88 can be changed.
도 77은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면이고, 도 78은 도 77에서 A-A 선을 따라 절단한 단면의 일 예를 설명하는 도면으로서, 반도체 발광소자는 복수의 반도체층(30,40,50), 비도전성 반사막(R), 제1 전극(80), 제2 전극(70), 제1 전기적 연결부(81a,81b), 제2 전기적 연결부(71a,71b), 제1 가지 전극(85), 및 제2 가지 전극(75)을 포함한다. 복수의 반도체층(30,40,50)은 제1 도전성을 가지는 제1 반도체층(30), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(50), 및 제1 반도체층(30)과 제2 반도체층(50)의 사이에 개재되어 전자와 정공의 재결합에 의해 빛을 생성하는 활성층(40)을 포함한다. 제1 가지 전극(85)은 제2 반도체층(50), 및 활성층(40)이 식각되어 노출된 제1 반도체층(30) 위에 형성된다. 제2 가지 전극(75)은 제2 반도체층(50) 위에 형성된다. 비도전성 반사막(R)은 제1 가지 전극(85), 및 제2 가지 전극(75)을 덮도록 복수의 반도체층(30,40,50) 위에 형성되어 활성층(40)으로부터의 빛을 반사한다. 제1 전극(80) 및 제2 전극(70)은 비도전성 반사막(R) 위에 서로 떨어져 형성되어 있다. 제1 전기적 연결부(81a)는 비도전성 반사막(R)을 관통하여 제1 전극(80)과 제1 가지 전극(85)을 전기적으로 연통하며, 제1 전기적 연결부(81b)는 제1 전극(80)과 제1 반도체층(30)을 전기적으로 연통한다. 제2 전기적 연결부(71a)는 비도전성 반사막(R)을 관통하여 제2 전극(70)과 제2 가지 전극(75)을 전기적으로 연통하며, 제2 전기적 연결부(71b, 71c)는 제2 전극(70)과 제2 반도체층(50)을 전기적으로 연통한다.77 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure, and FIG. 78 is a view for explaining an example of a cross section taken along line AA in FIG. 77, wherein the semiconductor light emitting device is a plurality of semiconductors; Layers 30, 40 and 50, non-conductive reflective film R, first electrode 80, second electrode 70, first electrical connections 81a and 81b, second electrical connections 71a and 71b, The first branch electrode 85 and the second branch electrode 75 are included. The plurality of semiconductor layers 30, 40, and 50 may include a first semiconductor layer 30 having a first conductivity, a second semiconductor layer 50 having a second conductivity different from the first conductivity, and a first semiconductor layer 30. ) And an active layer 40 interposed between the second semiconductor layer 50 to generate light by recombination of electrons and holes. The first branch electrode 85 is formed on the second semiconductor layer 50 and the first semiconductor layer 30 to which the active layer 40 is etched and exposed. The second branch electrode 75 is formed on the second semiconductor layer 50. The non-conductive reflective film R is formed on the plurality of semiconductor layers 30, 40, and 50 to cover the first branch electrode 85 and the second branch electrode 75 to reflect light from the active layer 40. . The first electrode 80 and the second electrode 70 are formed apart from each other on the non-conductive reflective film R. The first electrical connection 81a penetrates the non-conductive reflecting film R to electrically communicate the first electrode 80 and the first branch electrode 85, and the first electrical connection 81b is connected to the first electrode 80. ) And the first semiconductor layer 30 are in electrical communication. The second electrical connection 71a penetrates the non-conductive reflecting film R to electrically communicate the second electrode 70 and the second branch electrode 75, and the second electrical connections 71b and 71c connect the second electrode. 70 and the second semiconductor layer 50 are in electrical communication with each other.
본 예에서, 제1 전극(80) 및 제2 전극(70)은 서로 대향하며, 각각 복수의 코너를 가진다. 제1 전기적 연결부(81a,81b)는 대략 제1 전극(80)의 대각방향(D11)으로 제1 전극(80)의 마주하는 코너들에 각각 형성되어 있다. 여기서 제1 전극(80)의 대각방향(D11)은 제1 전극(80)이 대략 사각형일 때, 사각형의 대각선들 중 하나의 대각선 방향을 의미한다. 제2 전기적 연결부(71a)는 대략 제2 전극(70)의 대각방향(D11)으로 서로 마주하는 코너들 중 하나에 형성되어 있고, 제2 전기적 연결부(71b)는 나머지 다른 코너로부터 약간 떨어져서 형성되어 있다. 또한, 제2 전기적 연결부(71c)는 제2 전극(70)의 다른 대각방향(D44)의 코너에 형성되어 있다. 여기서, 제2 전극(70)이 대략 사각형일 때, 사각형은 대각방향(D33)과 대각방향(D44)를 가질 수 있다. In this example, the first electrode 80 and the second electrode 70 face each other, each having a plurality of corners. The first electrical connections 81a and 81b are formed at opposite corners of the first electrode 80 in the diagonal direction D11 of the first electrode 80, respectively. Here, the diagonal direction D11 of the first electrode 80 means a diagonal direction of one of the diagonals of the quadrangle when the first electrode 80 is substantially rectangular. The second electrical connection 71a is formed at one of the corners facing each other in the diagonal direction D11 of the second electrode 70, and the second electrical connection 71b is formed slightly apart from the other corners. have. In addition, the second electrical connection part 71c is formed at a corner of another diagonal direction D44 of the second electrode 70. Here, when the second electrode 70 is substantially rectangular, the square may have a diagonal direction D33 and a diagonal direction D44.
평면도로 볼때, 제1 가지 전극(85)은 대략 대각방향(D33)으로 위치하는 2개의 제2 전기적 연결부들(71a,71b) 사이로 뻗으며, 다른 코너에 위치한 제2 전기적 연결부(71c)를 향하여 휘어져 있다. 제2 가지 전극(75)은 대략 대각방향(D11)으로 위치하는 2개의 제1 전기적 연결부들(81a,81b) 사이로 뻗으며, 제1 전극(80)의 다른 코너를 향하여 휘어져 있다. In plan view, the first branch electrode 85 extends between two second electrical connections 71a and 71b located approximately in the diagonal direction D33, towards the second electrical connection 71c located at the other corner. It is curved. The second branch electrode 75 extends between two first electrical connections 81a and 81b positioned approximately diagonally D11 and is bent toward another corner of the first electrode 80.
제1 가지 전극(85)과 연결되는 제1 전기적 연결부(81a)는 제2 전극(70)과 인접한 제1 전극(80)의 코너에 위치한다. 따라서, 제1 가지 전극(85)이 제1 전극(80) 아래로 불필요하게 길게 뻗지 않아서 매사식각의 면적의 불필요한 증가가 방지된다. 또한, 제2 가지 전극(75)과 연결되는 제2 전기적 연결부(71a)는 제1 전극(80)과 인접한 제2 전극(70)의 코너에 위치한다. 따라서, 제2 가지 전극(75)이 제2 전극(70) 아래로 불필요하게 길게 뻗지 않아서 금속에 의한 빛흡수가 감소한다. The first electrical connection 81a connected to the first branch electrode 85 is located at a corner of the first electrode 80 adjacent to the second electrode 70. Thus, the first branch electrode 85 does not extend unnecessarily long below the first electrode 80, thereby preventing an unnecessary increase in the area of the etching etching. In addition, the second electrical connection 71a connected to the second branch electrode 75 is located at the corner of the second electrode 70 adjacent to the first electrode 80. Therefore, the second branch electrode 75 does not extend unnecessarily long below the second electrode 70, so that light absorption by the metal is reduced.
전기적 연결부 사이로 뻗는 가지 전극의 구성은 p측 가지 전극, 및 n측 가지 전극 중 하나에만 적용될 수 있다. 본 예에서는 p측 가지 전극, 및 n측 가지 전극 모두 이러한 방식의 구성을 가진다.The configuration of the branch electrode extending between the electrical connections can be applied only to one of the p-side branch electrode and the n-side branch electrode. In this example, both the p-side branch electrode and the n-side branch electrode have such a configuration.
본 개시에 따른 반도체 발광소자는 가로 및 세로가 비슷하거나, 가로 및 세로 중 하나가 다른 하나보다 길거나 특별히 제한되지는 않는다. 본 예에 따른 반도체 발광소자는 광취출효율 향상을 위한 구조로서, 특히 사이즈가 작은 소자에서 효과적이다.The semiconductor light emitting device according to the present disclosure is similar in width and length, or one of the width and length is longer than the other and is not particularly limited. The semiconductor light emitting device according to the present example is a structure for improving light extraction efficiency, and is particularly effective in a small device.
한편, 도 44 및 도 45에 설명된 반도체 발광소자에서 통상적으로 전류 공급 또는 발광의 균일성을 위해, 여러 개의 가지 전극을 형성하고, 가지 전극을 코너나 자장자리를 따라 길게 연장하는 방법이 사용된다. 그러나 본 예의 반도체 발광소자에서는 상기 통상적인 방식과는 다르게 가지 전극의 개수 및 불필요한 길이를 줄여 금속에 의한 광흡수 손실을 많이 감소하되, 전류 공급 또는 발광의 균일성을 달성하도록 가지 전극과 전기적 연결부의 형태, 위치, 개수 등의 좋은 구성을 만들어 내었다. 본 예에 제시되는 구성은 사이즈가 작고, 저전류로 동작하는 소자에 더욱 효과적일 수 있다. 예를 들어, 복수의 반도체층(30,40,50)은 서로 대향하는 2개의 단변(short edges), 서로 대향하는 2개의 장변(long edges)를 가진다. 단변은 도 45에서 설명된 사이즈 300㎛보다 작을 수 있다. 예를 들어, 단변은 200㎛ 이하일 수 있으며, 이 이상의 사이즈를 배제하는 것은 아니다. On the other hand, in the semiconductor light emitting device illustrated in FIGS. 44 and 45, a method of forming a plurality of branch electrodes and extending the branch electrodes along a corner or a magnetic field is generally used for uniformity of current supply or light emission. . However, unlike the conventional method, the semiconductor light emitting device of the present example reduces the number and unnecessary lengths of the branch electrodes, thereby greatly reducing the light absorption loss due to the metal. It made a good composition of form, location and number. The configuration presented in this example can be more effective for devices that are small in size and operate at low current. For example, the plurality of semiconductor layers 30, 40, and 50 have two short edges facing each other and two long edges facing each other. The short side may be smaller than the size 300 μm described in FIG. 45. For example, the short side may be 200 μm or less, and does not exclude more sizes.
이를 위해 본 예에 따른 반도체 발광소자는 제1 가지 전극(85) 및 제2 가지 전극(75)을 1개씩만 구비한다. 여기서, 1개씩만 구비한다는 것은 가지 전극의 개수를 가능하면 적게 하는 구성의 좋은 예로서 제시되는 것이며, 2개 이상의 제1 가지 전극(85) 및/또는 2개 이상의 제2 가지 전극(75)과 같은 구성을 배제한다는 의미는 아니다. 또한, 본 예에서 제1 반도체층(30; 예: Si 도핑된 GaN)은 제2 반도체층(50; 예: Mg 도핑된 GaN)보다 전류 확산이 잘되므로 이를 고려하여 설계된다. 단변은 길지 않으므로 제1 가지 전극(85) 및 제2 가지 전극(75)을 각각 장변 측 및 타 장변 측에 구비하여 제1 가지 전극(85)과 제2 가지 전극(75)의 간격을 확보한다. 또한, 제1 가지 전극(85) 및 제2 가지 전극(75)을 코너나 변을 따라 길게 연장하지 않아서 금속에 의한 광흡수 손실이 감소한다. To this end, the semiconductor light emitting device according to the present example includes only one first branch electrode 85 and one second branch electrode 75. Here, the provision of only one by one is presented as a good example of a configuration in which the number of branch electrodes is as small as possible, and includes two or more first branch electrodes 85 and / or two or more second branch electrodes 75. This does not mean to exclude the same configuration. In addition, in the present example, since the first semiconductor layer 30 (eg, Si-doped GaN) has better current diffusion than the second semiconductor layer 50 (eg, Mg-doped GaN), the first semiconductor layer 30 is designed in consideration of this. Since the short side is not long, the first branch electrode 85 and the second branch electrode 75 are provided on the long side and the other long side, respectively, to secure a gap between the first branch electrode 85 and the second branch electrode 75. . In addition, since the first branch electrode 85 and the second branch electrode 75 do not extend along the corner or side, the light absorption loss due to the metal is reduced.
제2 전기적 연결부(71b,71c) 및 제1 전기적 연결부(81b)는 위에서 볼 때, 섬(island) 형태를 가지는 데, 적은 개수가 형성된다. 여기서 섬 형태란 가지 전극과 같이 일 측으로 뻗는 형태가 아니라 원형, 다각형 등의 형상을 가지는 것을 의미한다. 이렇게, 제한적인 개수의 제2 전기적 연결부(71a,71b,71c) 및 제1 전기적 연결부(81a,81b)의 위치는 전류 공급의 균일성 향상에 더 바람직한 위치에 구비되며, 본 예에서는 제1 가지 전극(85)을 기준으로 양측에 제2 전기적 연결부(71a,71b)가 위치하고, 제2 가지 전극(75)를 기준으로 양측에 제1 전기적 연결부(85a,85b)가 위치한다. 도 77를 참조하면, 반도체 발광소자는 제2 반도체층(50)의 전류 확산 정도가 제1 반도체층(30)보다 못하기 때문에, 제2 전기적 연결부(71a,71b,71c)의 개수를 제1 전기적 연결(81a,81b)의 개수보다 많게 구비할 수 있다.The second electrical connectors 71b and 71c and the first electrical connectors 81b have an island shape when viewed from above, but a small number is formed. Here, the island form means a shape such as a circle, a polygon, and the like, rather than extending to one side like a branch electrode. As such, the limited number of second electrical connections 71a, 71b, 71c and the first electrical connections 81a, 81b are provided at a more preferable position for improving the uniformity of the current supply. Second electrical connectors 71a and 71b are positioned at both sides of the electrode 85, and first electrical connectors 85a and 85b are positioned at both sides of the second branch electrode 75. Referring to FIG. 77, in the semiconductor light emitting device, since the current spreading degree of the second semiconductor layer 50 is less than that of the first semiconductor layer 30, the number of the second electrical connectors 71a, 71b, and 71c is determined by the first. More than the number of electrical connections (81a, 81b) can be provided.
이하, 3족 질화물 반도체 발광소자를 예로 하여 설명한다.Hereinafter, the group III nitride semiconductor light emitting element will be described as an example.
기판(10)으로 주로 사파이어, SiC, Si, GaN 등이 이용되며, 기판(10)은 최종적으로 제거될 수 있다. 제1 반도체층(30)과 제2 반도체층(50)은 그 위치가 바뀔 수 있으며, 3족 질화물 반도체 발광소자에 있어서 주로 GaN으로 이루어진다. Sapphire, SiC, Si, GaN and the like are mainly used as the substrate 10, and the substrate 10 may be finally removed. The positions of the first semiconductor layer 30 and the second semiconductor layer 50 may be changed, and are mainly made of GaN in the group III nitride semiconductor light emitting device.
복수의 반도체층(30,40,50)은 기판(10) 위에 형성된 버퍼층(20), 제1 도전성을 가지는 제1 반도체층(30; 예: Si 도핑된 GaN), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(50; 예: Mg 도핑된 GaN) 및 제1 반도체층(30)과 제2 반도체층(50) 사이에 개재되며 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(40; 예: InGaN/(In)GaN 다중양자우물구조)을 포함한다. 복수의 반도체층(30,40,50) 각각은 다층으로 이루어질 수 있고, 버퍼층(20)은 생략될 수 있다. The plurality of semiconductor layers 30, 40, and 50 may include a buffer layer 20 formed on the substrate 10, a first semiconductor layer 30 having a first conductivity (eg, Si-doped GaN), and a second different from the first conductivity. A conductive second semiconductor layer 50 (eg, Mg-doped GaN) and an active layer interposed between the first semiconductor layer 30 and the second semiconductor layer 50 to generate light through recombination of electrons and holes ( 40; e.g., InGaN / (In) GaN multi-quantum well structure). Each of the semiconductor layers 30, 40, and 50 may be formed in multiple layers, and the buffer layer 20 may be omitted.
복수의 반도체층(30,40,50)은 대략 사각 형상을 가지고, 위에서 볼 때, 서로 대향하는 긴 에지들(long edges)과 서로 대향하는 2개의 짧은 에지들(short edges)을 가진다. 제2 반도체층(50) 및 활성층(40)이 식각되어 제1 반도체층(30)이 노출되는 n-contact 영역(35)이 형성된다. n-contact 영역(35)에는 제1 가지 전극(85)이 형성된다. The plurality of semiconductor layers 30, 40 and 50 have a substantially rectangular shape and when viewed from above, have long edges facing each other and two short edges facing each other. The second semiconductor layer 50 and the active layer 40 are etched to form an n-contact region 35 through which the first semiconductor layer 30 is exposed. The first branch electrode 85 is formed in the n-contact region 35.
바람직하게는 투광성 도전막(60; 예: ITO,Ni/Au)이 제2 반도체층(50) 위에 형성된다. 기판(10) 상에 제1 반도체층(30), 활성층(40), 제2 반도체층(50), 투광성 도전막(60)을 형성하고, 메사식각하여 전술된 n-contact 영역(35)을 형성할 수 있다. 메사식각은 투광성 도전막(60) 형성 전 또는 이후에 수행될 수도 있다. 투광성 도전막(60)은 생략될 수 있다. Preferably, a transparent conductive film 60 (eg, ITO, Ni / Au) is formed on the second semiconductor layer 50. The first semiconductor layer 30, the active layer 40, the second semiconductor layer 50, and the transparent conductive film 60 are formed on the substrate 10, and mesa-etched to form the n-contact region 35 described above. Can be formed. Mesa etching may be performed before or after the transparent conductive layer 60 is formed. The transparent conductive film 60 may be omitted.
제2 가지 전극(75)은 투광성 도전막(60) 위에 형성된다. 제1 가지 전극(85) 및 제2 가지 전극(75)은 복수의 금속층으로 이루어질 수 있으며, 제1 반도체층(30) 또는 투광성 도전막(60)과의 전기적 접촉이 좋은 접촉층과 광반사성이 좋은 반사층 등을 구비할 수 있다.The second branch electrode 75 is formed on the transparent conductive film 60. The first branch electrode 85 and the second branch electrode 75 may be formed of a plurality of metal layers, and the contact layer and the light reflectivity having good electrical contact with the first semiconductor layer 30 or the transparent conductive layer 60 may be formed. A good reflective layer can be provided.
바람직하게는 광흡수 방지막(41)은 SiO2, TiO2 등을 사용하여 제2 반도체층(50)과 투광성 도전막(60) 사이에 제2 가지 전극(75) 및 제2 전기적 연결부(71a,71b,71c)에 대응하여 형성된다. 광흡수 방지막(41)은 활성층(40)에서 발생된 빛의 일부 또는 전부를 반사하는 기능만을 가져도 좋고, 제2 가지 전극(75) 및 제2 전기적 연결부(71a,71b,71c)로부터 바로 아래로 전류가 흐르지 못하도록 하는 기능만을 가져도 좋고, 양자의 기능을 모두 가져도 좋다.Preferably, the light absorption prevention layer 41 is formed between the second branch electrode 75 and the second electrical connection 71a between the second semiconductor layer 50 and the transparent conductive film 60 using SiO 2 , TiO 2, or the like. 71b, 71c). The light absorption prevention film 41 may have only a function of reflecting some or all of the light generated in the active layer 40, and is directly below the second branch electrode 75 and the second electrical connections 71a, 71b, and 71c. The furnace may have only a function of preventing a current from flowing, or may have both functions.
비도전성 반사막(R)은 투광성 도전막(60), 제1 가지 전극(85), 및 제2 가지 전극(75)을 덮도록 형성되며, 활성층(40)으로부터의 빛을 기판(10) 측으로 반사한다. 본 예에서 비도전성 반사막(R)은 금속 반사막에 의한 광흡수 감소를 위해 절연성 물질로 형성되며, 바람직하게는 분포 브래그 리플렉터(Distributed Bragg Reflector), 전방향 리플렉터(ODR; Omni-Directional Reflector), 등을 포함하는 다층 구조일 수 있다. The non-conductive reflective film R is formed to cover the transparent conductive film 60, the first branch electrode 85, and the second branch electrode 75, and reflects light from the active layer 40 toward the substrate 10. do. In this example, the non-conductive reflector R is formed of an insulating material to reduce light absorption by the metal reflector, and is preferably a distributed Bragg reflector, an omni-directional reflector, or the like. It may be a multilayer structure comprising a.
비도전성 반사막(R)은, 다층 구조의 일 예로, 유전체막(91b), 분포 브래그 리플렉터(91a) 및 클래드막(91c)을 포함한다. 유전체막(91b)은 높이차를 완화하여 분포 브래그 리플렉터(91a)를 안정적으로 제조할 수 있게 되며, 빛의 반사에도 도움을 줄 수 있다. 유전체막(91b)의 재질은 SiO2가 적당하다. 분포 브래그 리플렉터(91a)는 유전체막(91b) 위에 형성된다. 분포 브래그 리플렉터(91a)는 반사율이 다른 물질의 반복 적층, 예를 들어, SiO2/TiO2, SiO2/Ta2O2, 또는 SiO2/HfO의 반복 적층으로 이루어질 수 있으며, Blue 빛에 대해서는 SiO2/TiO2가 반사효율이 좋고, UV 빛에 대해서는 SiO2/Ta2O2, 또는 SiO2/HfO가 반사효율이 좋을 것이다. 클래드막(91c)은 Al2O3와 같은 금속 산화물, SiO2, SiON와 같은 유전체막(91b), MgF, CaF, 등의 물질로 이루어질 수 있다.The nonconductive reflecting film R includes, as an example of a multilayer structure, a dielectric film 91b, a distributed Bragg reflector 91a, and a clad film 91c. The dielectric film 91b may reduce the height difference to stably manufacture the distributed Bragg reflector 91a and may also help to reflect light. SiO 2 is a suitable material for the dielectric film 91b. The distributed Bragg reflector 91a is formed on the dielectric film 91b. The distribution Bragg reflector 91a may be composed of repeated stacking of materials having different reflectances, for example, SiO 2 / TiO 2 , SiO 2 / Ta 2 O 2 , or SiO 2 / HfO. SiO 2 / TiO 2 has good reflection efficiency, and for UV light, SiO 2 / Ta 2 O 2 , or SiO 2 / HfO will have good reflection efficiency. The clad film 91c may be made of a metal oxide such as Al 2 O 3 , a dielectric film 91b such as SiO 2 , SiON, MgF, CaF, or the like.
도 79는 본 개시에 따른 반도체 발광소자의 다른 예를 설명하기 위한 도면으로서, 제2 가지 전극(75)은 제1 전극(80)의 대략 대각방향(D11; 도 77 참조)에 위치하는 2개의 제1 전기적 연결부들(81a,81b) 사이로 뻗어 있다. 제1 가지 전극(85)은 제1 전극(80)의 코너 아래에서 제1 전극(80)과 제2 전극(70) 사이로 가장자리를 따라 뻗되, 제2 전극(70) 아래로는 뻗지 않는다. 이와 같이, 제1 가지 전극(85)의 길이를 더 짧게 할 수 있다.FIG. 79 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure, in which the second branch electrode 75 is disposed at approximately the diagonal direction D11 (see FIG. 77) of the first electrode 80. It extends between the first electrical connections 81a, 81b. The first branch electrode 85 extends along an edge between the first electrode 80 and the second electrode 70 below the corner of the first electrode 80 but does not extend below the second electrode 70. In this manner, the length of the first branch electrode 85 can be made shorter.
도 80은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면으로서, 반도체 발광소자는 평면도로 볼 때, 2개의 긴변과 2개의 짧은 변을 가지는 직사각 형상을 가지며, 제1 전극(80)은 하나의 짧은 변 측에, 제2 전극(70)은 나머지 하나의 짧은 변 측에 구비되며, 제1 전극(80)과 제2 전극(70)의 서로 마주하는 에지들은 직사각 형의 긴 변의 대해 각각 사선이 되도록 형성되어 있다. 제1 가지 전극(85)은 제1 전극(80)의 복수의 코너 중에서 제2 전극(70)이 위치한 짧은 변 측으로 더 가까운 제1 전극(80)의 코너에서 제1 전기적 연결부(81a)와 연결된다. 제2 가지 전극(75)은 제2 전극(70)의 복수의 코너 중에서 제1 전극(80)이 위치한 짧은 변 측으로 더 가까운 제2 전극(70)의 코너에서 제2 전기적 연결부(71a)와 연결된다.80 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure. The semiconductor light emitting device has a rectangular shape having two long sides and two short sides when viewed in plan view, and the first electrode 80. ) Is provided on one short side, and the second electrode 70 is provided on the other short side, and the edges facing each other of the first electrode 80 and the second electrode 70 are formed on a rectangular long side. Are formed so as to be diagonal to each other. The first branch electrode 85 is connected to the first electrical connection 81a at the corner of the first electrode 80 closer to the short side where the second electrode 70 is located among the plurality of corners of the first electrode 80. do. The second branch electrode 75 is connected to the second electrical connection 71a at the corner of the second electrode 70 closer to the short side where the first electrode 80 is located among the plurality of corners of the second electrode 70. do.
제1 가지 전극(85)은 제1 전극(80)의 코너 아래로부터, 제2 전극(70)의 대각방향(D33) 코너들에 각각 형성된 제2 전기적 연결부들(71a,71b) 사이로 뻗는다. 제2 가지 전극(75)은 제2 전극(70)의 코너 아래로부터, 제1 전극(80)의 대각방향(D11) 코너들에 각각 형성된 제1 전기적 연결부들(81a,81b) 사이로 뻗는다. 예를 들어, 제2 가지 전극(75)은 제1 가지(75a), 및 제2 가지(75b)를 포함한다. 제1 가지(75a)는 제1 전극(80)과 제2 전극(70) 사이 일 측 긴변을 따라 뻗는다. 제2 가지(75b)는 제1 가지(75a)로부터 꺽여 제1 전극(80)의 대각방향(D11) 코너들에 각각 형성된 제1 전기적 연결부들(81a,81b) 사이로 뻗는다. 제2 가지(75b)는 제1 전극(80)의 다른 대각방향(D22)을 따라 뻗을 수 있다. 제1 가지 전극(85)은 제3 가지(85a), 및 제4 가지(85b)를 포함한다. 제3 가지(85a)는 제1 전극(80)과 제2 전극(70) 사이에서 제1 가지(75a)와 대향하며, 타측 긴변을 따라 뻗는다. 제4 가지(85b)는 제3 가지(85a)로부터 꺽여 제2 전극(70)의 대각방향(D33) 코너들에 각각 형성된 제2 전기적 연결부들(71a,71b) 사이로 뻗는다. 제4 가지(85b)는 제2 전극(70)의 다른 대각방향(D44)을 따라 뻗을 수 있다. 대각방향(D11)에 위치하는 2개의 제1 전기적 연결부(81a,81b), 및 대각방향(D11)에 위치하는 2개의 제2 전기적 연결부(71a,71b)는 대략 사변형의 꼭지점에 위치할 수 있다. 제2 가지 전극(75)의 제1 가지(75a)와 제1 가지 전극(85)의 제3 가지(85a)는 서로 나란할 수 있고, 제2 가지 전극(75)의 제2 가지(75b)와 제1 가지 전극(85)의 제4 가지(85b)는 서로 나란할 수 있다. The first branch electrode 85 extends from under the corner of the first electrode 80 to between the second electrical connections 71a and 71b formed at the corners of the diagonal D33 of the second electrode 70, respectively. The second branch electrode 75 extends from below the corner of the second electrode 70 to the first electrical connections 81a and 81b formed at the corners of the diagonal D11 of the first electrode 80, respectively. For example, the second branch electrode 75 includes a first branch 75a and a second branch 75b. The first branch 75a extends along one side of the long side between the first electrode 80 and the second electrode 70. The second branch 75b is bent from the first branch 75a and extends between the first electrical connections 81a and 81b formed at the corners of the diagonal D11 of the first electrode 80, respectively. The second branch 75b may extend along another diagonal direction D22 of the first electrode 80. The first branch electrode 85 includes a third branch 85a and a fourth branch 85b. The third branch 85a faces the first branch 75a between the first electrode 80 and the second electrode 70 and extends along the other long side. The fourth branch 85b is bent from the third branch 85a and extends between the second electrical connections 71a and 71b formed at the corners of the diagonal D33 of the second electrode 70, respectively. The fourth branch 85b may extend along another diagonal direction D44 of the second electrode 70. The two first electrical connections 81a and 81b located in the diagonal direction D11 and the two second electrical connections 71a and 71b located in the diagonal direction D11 may be positioned at approximately vertices of a quadrilateral shape. . The first branch 75a of the second branch electrode 75 and the third branch 85a of the first branch electrode 85 may be parallel to each other, and the second branch 75b of the second branch electrode 75 may be parallel to each other. And the fourth branch 85b of the first branch electrode 85 may be parallel to each other.
본 예에서, 제1 전극(80)과 제2 전극(70)의 서로 대향하는 에지들이 복수의 반도체층의 변(또는 에지)에 대해 사선으로 형성되어 있다. 따라서, 대향하는 에지들이 복수의 반도체층(30,40,50)의 변에 나란하거나 수직인 경우에 비하여, 전극(80,70)의 코너 중 일부가 더 중앙에 가깝게 위치할 수 있다. 또는 제1 전극(80)의 코너중 하나가 대향하는 제2 전극(70) 측으로 더 이동하여 위치하며, 제2 전극(70)의 코너중 하나가 대향하는 제1 전극(80) 측으로 더 이동하여 위치한다. 따라서, 이렇게 중앙에 더 가깝거나 대향하는 전극 측으로 더 이동된 코너 아래로부터 가지 전극(85,75)이 형성되면 가지 전극(85,75)의 길이를 그만큼 더 감소할 수 있고, 금속에 의한 빛흡수를 줄일 수 있다. 또한, 전류 공급의 균일성, 또는 발광의 균일성 관점에서 전기적 연결부(71a,71b,71c,81a,81b) 간의 간격을 조절하기에 더 여유를 준다.In this example, edges facing each other of the first electrode 80 and the second electrode 70 are formed diagonally with respect to the sides (or edges) of the plurality of semiconductor layers. Thus, some of the corners of the electrodes 80 and 70 may be located closer to the center than when the opposite edges are parallel or perpendicular to the sides of the plurality of semiconductor layers 30, 40 and 50. Alternatively, one of the corners of the first electrode 80 moves further toward the opposite second electrode 70, and one of the corners of the second electrode 70 moves further toward the opposite first electrode 80. Located. Thus, when branch electrodes 85 and 75 are formed from the corners closer to the center or further moved to the opposite electrode side, the lengths of the branch electrodes 85 and 75 can be further reduced by that, and light absorption by metal Can be reduced. In addition, in terms of uniformity of current supply or uniformity of light emission, the space between the electrical connections 71a, 71b, 71c, 81a, and 81b is further adjusted.
도 81은 본 개시에 따른 반도체 발광소자의 또 다른 예를 설명하기 위한 도면으로서, 제1 가지 전극(85)은 제1 전극(80)의 코너 아래에서 제1 전극(80)과 제2 전극(70) 사이로 뻗되, 제2 전극(70) 아래로는 뻗지 않아서 제1 가지 전극(85)의 길이가 전술된 예들보다 더 짧다. 또한, 제2 반도체층(50) 및 활성층(40)을 메사식각하는 것이 필요한 제1 가지 전극(85)의 경우, 소자의 내측보다는 가장자리, 또는 에지, 또는 변 측에 구비하여 메사식각으로 인한 활성층 면적 감소의 정도를 줄인다. 제1 전극(80)과 제2 전극(70)의 서로 대향하는 에지들이 사선 형태이고, 이로 인해 제1 전기적 연결부(81a) 및 제2 전기적 연결부(71a)가 반도체 발광소자의 가운데로 더 근접하므로, 가지 전극(85,75)의 길이가 또한 더욱 감소한다. FIG. 81 is a view for explaining another example of the semiconductor light emitting device according to the present disclosure. The first branch electrode 85 may include a first electrode 80 and a second electrode under a corner of the first electrode 80. 70, but not below the second electrode 70, the length of the first branch electrode 85 is shorter than the examples described above. In addition, in the case of the first branch electrode 85, which requires mesa etching of the second semiconductor layer 50 and the active layer 40, the active layer due to mesa etching is provided at the edge, edge, or side rather than inside of the device. Reduce the extent of area reduction. Opposite edges of the first electrode 80 and the second electrode 70 are diagonally formed, which causes the first electrical connection 81a and the second electrical connection 71a to be closer to the center of the semiconductor light emitting device. , The length of the branch electrodes 85, 75 is further reduced.
이하 본 개시의 다양한 실시 형태에 대하여 설명한다.Hereinafter, various embodiments of the present disclosure will be described.
(1) 반도체 발광소자에 있어서, 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층 및 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 통해 빛을 생성하는 활성층을 가지는 복수의 반도체층;을 포함하는 중심 발광부; 중심 발광부의 둘레에 구비된 주변 발광부;로서, 평면도(top view) 상으로 관찰할 때 중심 발광부와 다른 형상을 가지며, 중심 발광부와 마주하는 측면이 중심 발광부의 윤곽(outline)을 따라 형성된 주변 발광부; 그리고 중심 발광부 및 주변 발광부를 전기적으로 연결하는 중심 연결 전극;을 포함하는 것을 특징으로 하는 반도체 발광소자. (1) A semiconductor light emitting device comprising: a first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, and interposed between the first semiconductor layer and the second semiconductor layer and having electrons and holes A central light emitting unit including a plurality of semiconductor layers having an active layer generating light through recombination of the semiconductor light emitting unit; A peripheral light emitting part provided around the central light emitting part, the peripheral light emitting part having a shape different from that of the central light emitting part when viewed in a top view, and a side facing the central light emitting part is formed along the outline of the central light emitting part; Ambient light emitting unit; And a center connection electrode electrically connecting the center light emitting unit and the peripheral light emitting unit.
(2) 복수의 주변 발광부를 포함하며, 각 주변 발광부는 중심 발광부와 마주하는 측면과 이어지며 다른 주변 발광부와 마주하는 측면을 구비하는 것을 특징으로 하는 반도체 발광소자.(2) A semiconductor light emitting device comprising a plurality of peripheral light emitting parts, each peripheral light emitting part having a side facing the central light emitting part and having a side facing another peripheral light emitting part.
(3) 중심 발광부의 측면은 중심 발광부와 마주하는 측면 이외의 주변 발광부의 다른 측면과 나란하지 않은 것을 특징으로 하는 반도체 발광소자.(3) The semiconductor light emitting element, characterized in that the side surface of the central light emitting portion is not parallel with other side surfaces of the peripheral light emitting portion other than the side facing the center light emitting portion.
(4) 중심 발광부와 마주하는 측면이 오목한 것을 특징으로 하는 반도체 발광소자.(4) A semiconductor light emitting element, characterized in that the side facing the center light emitting portion is concave.
(5) 중심 발광부의 평면도 상의 형상이 원형인 것을 특징으로 하는 반도체 발광소자.(5) A semiconductor light emitting element comprising a circular shape on a plan view of a central light emitting unit.
(6) 중심 발광부의 평면도 상의 형상이 사각형인 것을 특징으로 하는 반도체 발광소자.(6) A semiconductor light emitting element, characterized in that the shape on the top view of the central light emitting unit is rectangular.
(7) 중심 발광부의 평면도 상의 형상이 반원인 것을 특징으로 하는 반도체 발광소자.(7) A semiconductor light emitting element, wherein the shape on the top view of the central light emitting unit is a semicircle.
(8) 중심 발광부의 모서리는 중심 발광부의 중심과 주변 발광부의 중심을 연결하는 선의 바깥에 위치하는 것을 특징으로 하는 반도체 발광소자.(8) The edge of the central light emitting part is a semiconductor light emitting element, characterized in that located outside the line connecting the center of the central light emitting portion and the center of the peripheral light emitting portion.
(9) 복수의 중심 발광부; 각 중심 발광부 둘레에 복수의 주변 발광부; 그리고 이웃한 주변 발광부들을 전기적으로 연결하는 주변 연결 전극;을 포함하는 것을 특징으로 하는 반도체 발광소자.(9) a plurality of central light emitting units; A plurality of peripheral light emitting units around each central light emitting unit; And a peripheral connection electrode electrically connecting neighboring peripheral light emitting parts.
(10) 복수의 주변 발광부는 각 중심 발광부를 기준으로 대칭적으로(symmetrically) 배치되며, 복수의 중심 발광부 및 복수의 주변 발광부는 전기적으로 직렬연결된 것을 특징으로 하는 반도체 발광소자.(10) A plurality of peripheral light emitting units are arranged symmetrically with respect to each of the central light emitting units, wherein the plurality of central light emitting units and the plurality of peripheral light emitting units are electrically connected in series.
(11) 중심 연결 전극 및 주변 연결 전극 중 적어도 하나는 복수의 연결선을 포함하는 것을 특징으로 하는 반도체 발광소자.(11) A semiconductor light emitting element, characterized in that at least one of the center connection electrode and the peripheral connection electrode includes a plurality of connection lines.
(12) 중심 연결 전극은 어느 하나의 주변 발광부로부터 반대측의 주변 발광부를 향하는 대각 방향으로 형성된 것을 특징으로 하는 반도체 발광소자.(12) A semiconductor light emitting element, wherein the center connection electrode is formed in a diagonal direction from one of the peripheral light emitting parts toward the opposite light emitting part.
(13) 복수의 중심 발광부는 제1 중심 발광부 및 제2 중심 발광부를 포함하며, 제1 중심 발광부 둘레의 주변 발광부 중 하나의 주변 발광부의 제1 반도체층과 전기적으로 연통되어 전자 및 정공 중 하나를 공급하는 제1 전극; 그리고 제2 중심 발광부 둘레의 주변 발광부 중 하나의 주변 발광부의 제2 반도체층과 전기적으로 연통되어 전자 및 정공 중 나머지 하나를 공급하는 제1 전극;을 포함하며, 제1 중심 발광부 및 제1 중심 발광부 둘레의 주변 발광부가 전기적으로 직렬연결되고, 제2 중심 발광부 및 제2 중심 발광부 둘레의 주변 발광부가 전기적으로 직렬연결되며, 제1 중심 발광부 둘레의 하나의 주변 발광부와 제2 중심 발광부 둘레의 하나의 주변 발광부가 전기적으로 연결된 것을 특징으로 하는 반도체 발광소자.(13) The plurality of central light emitting parts include a first central light emitting part and a second central light emitting part, and are in electrical communication with the first semiconductor layer of the peripheral light emitting part of one of the peripheral light emitting parts surrounding the first central light emitting part to be electron and hole A first electrode supplying one of the first electrodes; And a first electrode in electrical communication with a second semiconductor layer of one of the peripheral light emitting parts around the second central light emitting part to supply the other one of electrons and holes. The peripheral light emitting part around the first center light emitting part is electrically connected in series, and the peripheral light emitting part around the second center light emitting part and the second central light emitting part is electrically connected in series, and with one peripheral light emitting part around the first central light emitting part. The peripheral light emitting part of the periphery of the second central light emitting part is electrically connected.
물론 중심 발광부의 개수는 제3 중심 발광부, 제4 중심 발광부 등으로 더 증가될 수 있다.Of course, the number of center light emitting units may be further increased to the third center light emitting unit, the fourth center light emitting unit, and the like.
(14) 복수의 주변 발광부를 포함함며, 중심 발광부, 주변 발광부, 및 중심 연결 전극을 덮으며, 활성층에서 생성된 빛을 반사하는 반사층; 복수의 주변 발광부 중 하나의 제1 반도체층과 전기적으로 연결되는 제1 전극; 다른 하나의 주변 발광부의 제2 반도체층과 전기적으로 연결되는 제2 전극; 그리고, 제1 전극 및 제2 전극 중 적어도 하나와 복수의 반도체층을 전기적으로 연결하는 전기적 연결(an electrical connection);을 포함하며, 제1 전극 및 제2 전극 중 적어도 하나는 반사층 위에 형성되며, 반사층을 관통하는 전기적 연결에 연결된 것을 특징으로 하는 반도체 발광소자.(14) a reflective layer including a plurality of peripheral light emitting parts, covering the central light emitting part, the peripheral light emitting part, and the center connection electrode and reflecting light generated in the active layer; A first electrode electrically connected to the first semiconductor layer of the plurality of peripheral light emitting parts; A second electrode electrically connected to the second semiconductor layer of the other peripheral light emitting part; And an electrical connection electrically connecting at least one of the first electrode and the second electrode to the plurality of semiconductor layers, wherein at least one of the first electrode and the second electrode is formed on the reflective layer, A semiconductor light emitting device, characterized in that connected to the electrical connection through the reflective layer.
(15) 반사층은: 분포 브래그 리플렉터(Distributed Bragg Reflector) 및 ODR(Omni-Directional Reflector) 중 하나를 포함하는 것을 특징으로 하는 반도체 발광소자.(15) The reflective layer includes: a semiconductor light emitting element comprising one of a distributed Bragg reflector and an omni-directional reflector (ODR).
(16) 단일 기판에 형성된 제1 발광부 및 제2 발광부를 포함하는 반도체 발광소자에 있어서, 제1 발광부 및 제2 발광부는 각각: 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층 및 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 통해 빛을 생성하는 활성층을 가지는 복수의 반도체층;을 포함하며, 제1 발광부의 제1 반도체층과 전기적으로 연통하며 전자와 정공 중 하나를 공급하는 제1 전극; 제2 발광부의 제2 반도체층과 전기적으로 연통하며 전자와 정공 중 나머지 하나를 공급하는 제2 전극; 그리고 제1 발광부의 제2 반도체층 위에서 뻗으며 제1 발광부의 측면, 제1 발광부와 제2 발광부의 사이 및 제2 발광부의 측면으로 연장된 연장형(extending type) 전극부; 그리고 제2 발광부의 제1 반도체층 가장자리 위에 형성되며 연장형 전극부와 연결되는 점형(point type) 전극부;를 구비하는 연결 전극;을 포함하는 것을 특징으로 하는 반도체 발광소자.(16) A semiconductor light emitting device comprising a first light emitting portion and a second light emitting portion formed on a single substrate, wherein the first light emitting portion and the second light emitting portion are respectively: a first semiconductor layer having a first conductivity, and different from the first conductivity; And a plurality of semiconductor layers having a second semiconductor layer having a second conductivity and an active layer interposed between the first semiconductor layer and the second semiconductor layer and generating light through recombination of electrons and holes. A first electrode in electrical communication with the first semiconductor layer and supplying one of electrons and holes; A second electrode in electrical communication with a second semiconductor layer of the second light emitting part and supplying the other one of electrons and holes; And an extending type electrode part extending over the second semiconductor layer of the first light emitting part and extending to the side of the first light emitting part, between the first light emitting part and the second light emitting part, and to the side of the second light emitting part; And a connection electrode formed on an edge of the first semiconductor layer of the second light emitting part and connected to the extended electrode part.
(17) 점형 전극부는 연장형 전극부보다 크거나 같은 폭을 가지는 것을 특징으로 하는 반도체 발광소자.(17) A semiconductor light emitting element, characterized in that the point electrode portion has a width greater than or equal to that of the extended electrode portion.
(18) 제1 전극 및 점형 전극부는 제2 반도체층 및 활성층이 식각되어 노출된 제1 반도체층의 가장자리 위에 형성된 것을 특징으로 하는 반도체 발광소자.(18) The semiconductor light emitting device according to claim 1, wherein the first electrode and the point electrode are formed on the edge of the first semiconductor layer where the second semiconductor layer and the active layer are etched and exposed.
(19) 점형 전극부는 원형 및 다각형 형상 중 하나의 형상을 가지는 것을 특징으로 하는 반도체 발광소자.(19) A semiconductor light emitting element, characterized in that the point electrode portion has one of circular and polygonal shapes.
(20) 제1 발광부와 제2 발광부를 분리(isolation)하는 트렌치(trench)로 인한 제1 발광부의 에지 및 제2 발광부의 에지는 평명도(top view) 상으로 볼 때, 제1 발광부 및 제2 발광부의 다른 에지에 대해 사선을 이루는 것을 특징으로 하는 반도체 발광소자.(20) The edge of the first light emitting part and the edge of the second light emitting part due to the trench for isolating the first light emitting part and the second light emitting part are viewed from the top view. And an oblique line with respect to the other edge of the second light emitting portion.
(21) 연장형 전극부는: 제1 발광부의 측면, 제1 발광부와 제2 발광부의 사이 및 제2 발광부의 측면에 형성된 연결선; 그리고 제1 발광부의 제2 반도체층 위에서 연결선으로부터 분기되는 가지;를 포함하는 것을 특징으로 하는 반도체 발광소자.(21) The extended electrode portion includes: a connecting line formed on the side of the first light emitting portion, between the first light emitting portion and the second light emitting portion, and on the side of the second light emitting portion; And a branch branched from a connection line on the second semiconductor layer of the first light emitting unit.
(22) 점형 전극부는 제1 발광부와 제2 발광부를 분리(isolation)하는 트렌치(trench)로 인한 제2 발광부의 에지 측의 제2 반도체층 및 활성층이 식각되어 노출된 제1 반도체층의 가장자리 위에 연장형 전극부보다 크거나 같은 폭을 가지도록 형성되며, 평명도(top view) 상으로 볼 때, 트렌치는 제1 발광부 및 제2 발광부의 다른 에지에 대해 사선을 이루는 것을 특징으로 하는 반도체 발광소자.(22) The edge electrode portion has an edge of the first semiconductor layer exposed by etching the second semiconductor layer and the active layer on the edge side of the second light emitting portion due to a trench for isolating the first light emitting portion and the second light emitting portion. The semiconductor is formed to have a width greater than or equal to that of the extended electrode, and the trench forms oblique lines with respect to the other edges of the first light emitting part and the second light emitting part when viewed in top view. Light emitting element.
(23) 연장형 전극부는: 제1 발광부의 측면, 제1 발광부와 제2 발광부의 사이 및 제2 발광부의 측면에 형성된 연결선; 그리고 제1 발광부의 제2 반도체층 위에서 연결선으로부터 분기되는 가지;을 포함하며, 제2 전극은: 패드부; 그리고 패드부로부터 점형 전극부의 양측으로 뻗은 가지부;을 포함하는 것을 특징으로 하는 반도체 발광소자.(23) The extended electrode portion includes: a connecting line formed on the side of the first light emitting portion, between the first light emitting portion and the second light emitting portion, and on the side of the second light emitting portion; And a branch branched from a connection line on the second semiconductor layer of the first light emitting part, wherein the second electrode comprises: a pad part; And branch portions extending from the pad portion to both sides of the point electrode portion.
(24) 복수의 제1 발광부 및 복수의 제2 발광부를 포함하며, 제1 발광부 및 제2 발광부가 교대로 배열되며 직렬연결되고, 제1 전극은 직렬연결의 일측 단의 제1 발광부에 형성되고, 제2 전극은 직렬연결의 타측 단의 제2 발광부에 형성되며, 제2 발광부의 제2 반도체층 위에서 뻗으며 제2 발광부의 측면, 제2 발광부와 제1 발광부의 사이 및 제1 발광부의 측면으로 연장된 추가의 연장형(extending type) 전극부; 그리고 제1 발광부의 제1 반도체층 가장자리 위에 형성되며 추가의 연장형 전극부와 연결되는 추가의 점형(point type) 전극부;를 구비하는 추가의 연결 전극;을 포함하는 것을 특징으로 하는 반도체 발광소자.(24) a plurality of first light emitting portions and a plurality of second light emitting portions, the first light emitting portion and the second light emitting portion are alternately arranged and connected in series, and the first electrode is a first light emitting portion at one end of the series connection And a second electrode is formed on the second light emitting part of the other end of the series connection, extends over the second semiconductor layer of the second light emitting part, and is located between the side of the second light emitting part, between the second light emitting part and the first light emitting part, and An additional extending type electrode portion extending to the side of the first light emitting portion; And an additional connection electrode formed on an edge of the first semiconductor layer of the first light emitting part, the additional connecting electrode having an additional point type electrode part connected to the additional extended electrode part. .
(25) 제1 발광부 및 제2 발광부가 교대로 배치된 복수의 열을 포함하며, 서로 대향하는 각 제1 발광부 및 각 제2 발광부의 분리선이 각 제1 발광부 및 각 제2 발광부의 다른 측면에 대해 사선으로 형성된 것을 특징으로 하는 반도체 발광소자.(25) A plurality of rows in which the first light emitting portion and the second light emitting portion are alternately arranged, and the separation lines of each of the first light emitting portion and each of the second light emitting portions that face each other are each of the first light emitting portion and each of the second light emitting portions. A semiconductor light emitting element, characterized in that formed on an oblique side to the other side.
(26) 복수의 반도체층 및 연결 전극을 덮으며, 활성층에서 생성된 빛을 반사하는 반사층;으로서, 제1 전극 및 제2 전극 중 적어도 하나가 반사층 위에 형성되는 반사층; 그리고 반사층을 관통하여 반사층 위에 형성된 제1 전극 및 제2 전극 중 적어도 하나와 복수의 반도체층을 전기적으로 연결하는 전기적 연결(an electrical connection);을 포함하는 것을 특징으로 하는 반도체 발광소자.A reflection layer covering the plurality of semiconductor layers and the connection electrode and reflecting light generated in the active layer, the reflection layer having at least one of the first electrode and the second electrode formed on the reflection layer; And an electrical connection electrically connecting at least one of the first electrode and the second electrode formed on the reflective layer and the plurality of semiconductor layers through the reflective layer.
(27) 반사층은: 분포 브래그 리플렉터(Distributed Bragg Reflector) 및 ODR(Omni-Directional Reflector) 중 하나를 포함하는 것을 특징으로 하는 반도체 발광소자.(27) The reflecting layer includes: a semiconductor light emitting element comprising one of a distributed Bragg reflector and an omni-directional reflector (ODR).
(28) 반도체 발광소자에 있어서, 제1 도전성을 가지는 제1 반도체층, 전자와 정공의 재결합을 통해 빛을 생성하는 활성층 및 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층이 순차로 적층된 복수의 반도체층;으로서, 서로 대향하는 2개의 긴 에지들(long edges)와 서로 대향하는 2개의 짧은 에지들(short edges)을 가지는 복수의 반도체층; 제2 반도체층 및 활성층이 제거되어 노출된 제1 반도체층 위에서 일 측 긴 에지로부터 타 측 긴 에지를 향하여 뻗는 제1 가지 전극과, 제2 반도체층 위에서 타 측 긴 에지로부터 일 측 긴 에지를 향하여 뻗은 제2 가지 전극 중 적어도 하나; 복수의 반도체층과 제1 가지 전극 및 제2 가지 전극을 덮도록 형성되며, 활성층으로부터의 빛을 반사하는 비도전성 반사막; 제1 반도체층과 전기적으로 연통하도록 일 측 긴 에지 측에 구비되며, 전자와 정공 중 하나를 공급하는 제1 전극; 그리고 제2 반도체층과 전기적으로 연통하도록 타 측 긴 에지 측에 구비되며, 전자와 정공 중 나머지 하나를 공급하는 제2 전극;을 포함하는 것을 특징으로 하는 반도체 발광소자.(28) In a semiconductor light emitting device, a first semiconductor layer having a first conductivity, an active layer for generating light through recombination of electrons and holes, and a second semiconductor layer having a second conductivity different from the first conductivity are sequentially stacked. A plurality of semiconductor layers comprising: a plurality of semiconductor layers having two long edges facing each other and two short edges facing each other; A first branch electrode extending from one side long edge to the other long edge on the exposed first semiconductor layer with the second semiconductor layer and the active layer removed, and from the other long edge to the one long edge on the second semiconductor layer At least one of the extended second branch electrodes; A non-conductive reflecting film formed to cover the plurality of semiconductor layers, the first branch electrode and the second branch electrode, and reflecting light from the active layer; A first electrode provided on one side of the long edge side to be in electrical communication with the first semiconductor layer and supplying one of electrons and holes; And a second electrode provided at the other long edge side to be in electrical communication with the second semiconductor layer, the second electrode supplying the other one of electrons and holes.
(29) 제1 전극 및 제2 전극 중 적어도 하나는 비도전성 반사막을 기준으로 복수의 반도체층의 반대 측에 구비되며, 반사층을 관통하는 전기적 연결(an electrical connection)에 의해 복수의 반도체층과 전기적으로 연통되는 플립칩(flip chip)인 것을 특징으로 하는 반도체 발광소자.(29) At least one of the first electrode and the second electrode is provided on the opposite side of the plurality of semiconductor layers with respect to the non-conductive reflective film, and is electrically connected to the plurality of semiconductor layers by an electrical connection passing through the reflective layer. The semiconductor light emitting device, characterized in that the flip chip (flip chip) communicated with.
(30) 제1 전극 및 제2 전극은 비도전성 반사막 위에 구비되며, 제1 전극 및 제2 전극의 서로 마주보는 에지들은 일 측 짧은 에지로부터 타 측 짧은 에지를 향하여 뻗은 것을 특징으로 하는 반도체 발광소자.(30) The first electrode and the second electrode are provided on the non-conductive reflective film, and the edges facing each other of the first electrode and the second electrode extend from one short edge toward the other short edge. .
(31) 제1 전극 및 제2 전극은 비도전성 반사막 위에 구비되며, 제1 가지 전극은 제1 전극의 아래로부터 제2 전극의 아래로 뻗고, 제2 가지 전극은 제2 전극의 아래로부터 제1 전극의 아래로 뻗은 것을 특징으로 하는 반도체 발광소자.(31) The first electrode and the second electrode are provided on the nonconductive reflecting film, the first branch electrode extends from below the first electrode to the bottom of the second electrode, and the second branch electrode extends from the bottom of the second electrode to the first. A semiconductor light emitting device, characterized in that extending below the electrode.
(32) 복수의 제1 가지 전극과 이들 사이에 제2 가지 전극;을 포함하는 것을 특징으로 하는 반도체 발광소자.(32) A plurality of first branch electrodes and a second branch electrode therebetween.
(33) 제1 전극 및 제2 전극의 서로 마주보는 에지들은 일 측 짧은 에지로부터 타 측 짧은 에지를 향하여 뻗고, 비도전성 반사막을 관통하며, 제1 전극과 제1 가지 전극을 연결하는 제1 전기적 연결; 그리고 비도전성 반사막을 관통하며, 제2 전극과 제2 가지 전극을 연결하는 제2 전기적 연결;을 포함하는 것을 특징으로 하는 반도체 발광소자.(33) First and second opposing edges of the first electrode and the second electrode extend from one short edge toward the other short edge, penetrate the non-conductive reflective film, and connect the first electrode and the first branch electrode to each other. connect; And a second electrical connection penetrating the non-conductive reflecting film and connecting the second electrode and the second branch electrode to the semiconductor light emitting device.
(34) 복수의 제1 전극 및 복수의 제2 전극이 반사층 위에 서로 떨어져 구비되며, 비도전성 반사막을 관통하며, 각 제1 전극과 각 제1 가지 전극을 연결하는 제1 전기적 연결; 그리고 비도전성 반사막을 관통하며, 각 제2 전극과 각 제2 가지 전극을 연결하는 제2 전기적 연결;을 포함하는 것을 특징으로 하는 반도체 발광소자.(34) a first electrical connection provided with a plurality of first electrodes and a plurality of second electrodes spaced apart from each other on the reflective layer, penetrating the non-conductive reflective film, and connecting each first electrode and each first branch electrode; And a second electrical connection penetrating through the non-conductive reflecting film and connecting each second electrode and each second branch electrode to the semiconductor light emitting device.
(35) 비도전성 반사막을 관통하며, 제1 가지 전극과 연결되지 않고, 제1 전극과 제1 반도체층을 전기적으로 연통하는 추가의 제1 전기적 연결; 그리고 비도전성 반사막을 관통하며, 제2 가지 전극과 연결되지 않고, 제2 전극과 제2 반도체층을 전기적으로 연통하는 추가의 제2 전기적 연결;을 포함하는 것을 특징으로 하는 반도체 발광소자.(35) an additional first electrical connection penetrating the non-conductive reflecting film and not in connection with the first branch electrode, but in electrical communication with the first electrode and the first semiconductor layer; And an additional second electrical connection penetrating the non-conductive reflecting film and not connected to the second branch electrode and electrically communicating with the second electrode and the second semiconductor layer.
(36) 제1 전극과 접합되는 제1 도전부, 제2 전극과 접합되는 제2 도전부, 및 제1 도전부와 제2 도전부 사이에 개재된 절연부;를 가지는 플레이트;로서, 제1 도전부 및 제2 도전부가 상하로 노출된 플레이트;를 포함하는 것을 특징으로 하는 반도체 발광소자.A plate having a first conductive portion joined to the first electrode, a second conductive portion joined to the second electrode, and an insulating portion interposed between the first conductive portion and the second conductive portion; And a plate in which the conductive portion and the second conductive portion are exposed up and down.
(37) 제1 가지 전극은 제1 도전부 측으로부터 제2 도전부 측을 향하여 뻗고, 제2 가지 전극은 제2 도전부 측으로부터 제1 도전부 측을 향하여 뻗고, 제1 전극 및 제2 전극 사이는 절연부에 대응하는 것을 특징으로 하는 반도체 발광소자.(37) The first branch electrode extends from the first conductive portion side toward the second conductive portion side, the second branch electrode extends from the second conductive portion side toward the first conductive portion side, and the first electrode and the second electrode. The semiconductor light emitting element according to claim 1, characterized in that the insulating portion.
(38) 반도체 발광소자에 있어서, 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 및 제1 반도체층과 제2 반도체층의 사이에 개재되며 전자와 정공의 재결합에 의해 빛을 생성하는 활성층을 가지는 복수의 반도체층; 제1 반도체층과 전기적으로 연통하며 전자와 정공 중 하나를 공급하는 제1 전극부; 제2 반도체층과 전기적으로 연통하며 전자와 정공 중 나머지 하나를 공급하는 제2 전극부; 그리고 복수의 반도체층 위에 형성되며, 활성층으로부터의 빛을 반사하는 비도전성 반사막;을 포함하며, 제1 전극부와 제2 전극부 중 적어도 하나는: 비도전성 반사막 위에 형성된 제1 상부 전극; 제1 상부 전극 아래에서 제1 상부 전극 바깥으로 뻗는 제1 가지 전극; 비도전성 반사막을 관통하며 제1 상부 전극과 제1 가지 전극을 연결하는 제1 전기적 연결; 그리고 비도전성 반사막을 관통하며 제1 상부 전극과 복수의 반도체층을 전기적으로 연통하되, 제1 가지 전극의 연장선상에서 벗어나 있는 제2 전기적 연결;을 포함하는 것을 특징으로 하는 반도체 발광소자.(38) A semiconductor light emitting device comprising: a first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, and interposed between the first semiconductor layer and the second semiconductor layer And a plurality of semiconductor layers having an active layer that generates light by recombination of holes; A first electrode part in electrical communication with the first semiconductor layer and supplying one of electrons and holes; A second electrode part in electrical communication with the second semiconductor layer and supplying the other one of electrons and holes; And a nonconductive reflecting film formed over the plurality of semiconductor layers and reflecting light from the active layer, wherein at least one of the first electrode part and the second electrode part comprises: a first upper electrode formed on the nonconductive reflecting film; A first branch electrode extending below the first upper electrode and out of the first upper electrode; A first electrical connection penetrating the non-conductive reflective film and connecting the first upper electrode and the first branch electrode; And a second electrical connection penetrating the non-conductive reflective film and electrically communicating with the first upper electrode and the plurality of semiconductor layers, wherein the second electrical connection is separated from an extension line of the first branch electrode.
(39) 제1 전극부는: 제1 상부 전극; 제2 반도체층 및 활성층이 식각되어 노출된 제1 반도체층 위에 형성된 제1 가지 전극; 제1 상부 전극과 제1 가지 전극을 전기적으로 연결하는 제1 전기적 연결; 그리고 제1 상부 전극과 제1 반도체층을 전기적으로 연결하는 제2 전기적 연결;을 포함하며, 제2 전극부는: 비도전성 반사막 위에서 제1 상부 전극으로부터 떨어져 형성된 제2 상부 전극; 제2 상부 전극 아래 제2 반도체층과 비도전성 반사막 사이에서 제2 상부 전극 바깥으로 뻗는 제2 가지 전극; 비도전성 반사막을 관통하며 제2 상부 전극과 제2 가지 전극을 연결하는 제3 전기적 연결; 그리고 비도전성 반사막을 관통하며 제2 상부 전극과 제2 반도체층을 전기적으로 연통하되, 제2 가지 전극의 연장선상에서 벗어나 있는 제4 전기적 연결;을 포함하는 것을 특징으로 하는 반도체 발광소자.(39) The first electrode portion includes: a first upper electrode; A first branch electrode formed on the exposed first semiconductor layer by etching the second semiconductor layer and the active layer; A first electrical connection for electrically connecting the first upper electrode and the first branch electrode; And a second electrical connection electrically connecting the first upper electrode and the first semiconductor layer, wherein the second electrode part comprises: a second upper electrode formed away from the first upper electrode on the non-conductive reflective film; A second branch electrode extending out of the second upper electrode between the second semiconductor layer and the non-conductive reflecting film below the second upper electrode; A third electrical connection penetrating the non-conductive reflective film and connecting the second upper electrode and the second branch electrode; And a fourth electrical connection penetrating the non-conductive reflecting film and electrically communicating the second upper electrode and the second semiconductor layer, but deviating from an extension line of the second branch electrode.
(40) 제1 가지 전극 및 제2 가지 전극을 1개씩만 가지는 것을 특징으로 하는 반도체 발광소자.(40) A semiconductor light emitting device comprising only one first branch electrode and one second branch electrode.
(41) 복수의 반도체층은 단변(a short edge), 단변에 대향하는 타 단변, 장변(a long edge), 및 장변에 대향하는 타 장변을 가지며, 제1 상부 전극은 단변 측에 구비되고, 제2 상부 전극은 타 단변 측에 구비되며, 제1 가지 전극은 제1 상부 전극 아래에서 제2 상부 전극 아래로 뻗고, 제2 가지 전극은 제2 상부 전극 아래에서 제1 상부 전극 아래로 뻗으며, 제2 전기적 연결은 제1 전기적 연결보다 장변으로부터 멀리, 단변에 가까이 위치하며, 제4 전기적 연결은 제3 전기적 연결보다 타 장변으로부터 멀리, 타 단변에 가까이 위치하는 것을 특징으로 하는 반도체 발광소자.(41) The plurality of semiconductor layers have a short edge, the other short side opposite to the short side, a long edge, and the other long side opposite to the long side, and the first upper electrode is provided on the short side, The second upper electrode is provided on the other short side, and the first branch electrode extends under the first upper electrode below the second upper electrode, and the second branch electrode extends under the second upper electrode and below the first upper electrode. And a second electrical connection is located far from the long side and closer to the short side than the first electrical connection, and the fourth electrical connection is located farther from the other side and closer to the other side than the third electrical connection.
(42) 제1 가지 전극 및 제2 가지 전극 중 적어도 하나는 제1 전기적 연결 및 제3 전기적 연결과 연결되는 측의 반대 측 끝이 휘어진 것을 특징으로 하는 반도체 발광소자.(42) At least one of the first branch electrode and the second branch electrode is a semiconductor light emitting element, characterized in that the opposite end of the side connected to the first electrical connection and the third electrical connection is bent.
(43) 제1 가지 전극은 제2 상부 전극에 인접한 제1 상부 전극의 아래에서 제1 상부 전극에 인접한 제2 상부 전극의 아래까지만 형성된 것을 특징으로 하는 반도체 발광소자.(43) The semiconductor light emitting device according to claim 1, wherein the first branch electrode is formed only below the first upper electrode adjacent to the second upper electrode and below the second upper electrode adjacent to the first upper electrode.
(44) 제4 전기적 연결의 개수는 제2 전기적 연결의 개수보다 많은 것을 특징으로 하는 반도체 발광소자.44. The semiconductor light emitting device according to claim 4, wherein the number of fourth electrical connections is greater than the number of second electrical connections.
(45) 반도체 발광소자에 있어서, 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 및 제1 반도체층과 제2 반도체층의 사이에 개재되며 전자와 정공의 재결합에 의해 빛을 생성하는 활성층을 포함하는 복수의 반도체층;으로서, 단변(short edge), 단변에 대향하는 타 단변, 장변(long edge), 및 장변에 대향하는 타 장변을 가지는 복수의 반도체층; 복수의 반도체층 위에 형성되며, 활성층으로부터의 빛을 반사하는 비도전성 반사막; 비도전성 반사막 위에 형성된 제1 상부 전극 및 제2 상부 전극;으로서, 단변 측에 구비된 제1 상부 전극, 타 단변 측에 구비된 제2 상부 전극; 각각 비도전성 반사막을 관통하여 제1 반도체층과 제1 상부 전극을 전기적으로 연통하는 제1 전기적 연결 및 제2 전기적 연결;로서, 제2 전기적 연결이 제1 전기적 연결보다 장변으로부터 멀리 위치하는 제1 전기적 연결 및 제2 전기적 연결; 각각 비도전성 반사막을 관통하여 제2 반도체층과 제2 상부 전극을 전기적으로 연통하는 제3 전기적 연결 및 제4 전기적 연결;로서, 제4 전기적 연결이 제3 전기적 연결보다 타 장변으로부터 멀리 위치하는 제3 전기적 연결 및 제4 전기적 연결; 제1 전기적 연결과 연결되며, 제2 반도체층 및 활성층이 식각되어 노출된 장변 측 제1 반도체층 위에서 제1 상부 전극의 아래로부터 제2 상부 전극의 아래로 뻗는 제1 가지 전극; 그리고 제3 전기적 연결과 연결되며, 타 장변 측 제2 반도체층과 광 반사층 사이에서 제2 상부 전극의 아래로부터 제1 상부 전극의 아래로 뻗는 제2 가지 전극;을 포함하며, 제2 전기적 연결과 제4 전기적 연결의 사이에는 단변으로부터 타 단변을 향하는 방향 및 타 단변으로부터 단변을 향하는 방향으로 형성된 가지 전극이 없는 것을 특징으로 하는 반도체 발광소자.(45) A semiconductor light emitting device comprising: a first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, and interposed between the first semiconductor layer and the second semiconductor layer And a plurality of semiconductor layers including an active layer that generates light by recombination of holes, comprising: a plurality of short edges, another short side opposite to the short side, long edges, and the other long side opposite to the long side; Semiconductor layer; A nonconductive reflecting film formed over the plurality of semiconductor layers and reflecting light from the active layer; A first upper electrode and a second upper electrode formed on the non-conductive reflective film, the first upper electrode provided on the short side and the second upper electrode provided on the other short side; A first electrical connection and a second electrical connection respectively passing through the non-conductive reflecting film to electrically connect the first semiconductor layer and the first upper electrode; wherein the first electrical connection is located farther from the long side than the first electrical connection; Electrical connection and second electrical connection; A third electrical connection and a fourth electrical connection respectively passing through the non-conductive reflecting film to electrically connect the second semiconductor layer and the second upper electrode; wherein the fourth electrical connection is located farther from the other side than the third electrical connection. 3 electrical connections and fourth electrical connections; A first branch electrode connected to the first electrical connection and extending from the bottom of the first upper electrode to the bottom of the first upper electrode on which the second semiconductor layer and the active layer are etched and exposed; And a second branch electrode connected to the third electrical connection and extending from the bottom of the second upper electrode to the bottom of the first upper electrode between the second long side semiconductor layer and the light reflection layer. There is no branch electrode formed between the fourth electrical connection in the direction from the short side to the other short side and the direction from the other short side to the short side.
(46) 제2 전기적 연결은 제1 가지 전극의 연장선상에서 벗어나 있고, 제4 전기적 연결은 제2 가지 전극의 연장선상에서 벗어나 있는 것을 특징으로 하는 반도체 발광소자.46. The semiconductor light emitting device of claim 2, wherein the second electrical connection deviates from the extension line of the first branch electrode, and the fourth electrical connection deviates from the extension line of the second branch electrode.
(47) 가지 전극으로는 제1 가지 전극 및 제2 가지 전극을 1개씩만 구비하는 것을 특징으로 하는 반도체 발광소자.(47) A branch light emitting device comprising only one first branch electrode and one second branch electrode.
(48) 단변과의 거리는 제2 전기적 연결이 제1 전기적 연결보다 가깝고, 타 단변과의 거리는 제4 전기적 연결이 제3 전기적 연결보다 가까운 것을 특징으로 하는 반도체 발광소자.(48) The distance between the short sides of the semiconductor light emitting device, characterized in that the second electrical connection is closer than the first electrical connection, the distance from the other short side is the fourth electrical connection is closer than the third electrical connection.
(49) 반도체 발광소자에 있어서, 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는제2 반도체층, 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 통해 빛을 생성하는 활성층을 구비하며, 성장 기판을 이용하여 성장되는 복수의 반도체층; 성장 기판의 반대 측에서 복수의 반도체층에 결합되는 비도전성 반사막; 그리고 복수의 반도체층과 전기적으로 연결되며, 비도전성 반사막 위에 서로 대향하게 형성되는 제1 전극 및 제2 전극;으로서, 적어도 하나가 복수의 서브 전극과 복수의 서브 전극을 연결하는 적어도 하나의 연결부를 가지며, 연결 방향과 직교하는 방향을 기준으로 각 연결부는 각 연결부에 의해 연결되는 각 서브 전극보다 작은 폭을 가지는 제1 전극 및 제2 전극을 포함하는 것을 특징으로 하는 반도체 발광소자.(49) A semiconductor light emitting device comprising: a first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, and interposed between the first semiconductor layer and the second semiconductor layer and having electrons and holes A plurality of semiconductor layers having an active layer for generating light through recombination of and grown using a growth substrate; A nonconductive reflecting film bonded to the plurality of semiconductor layers on the opposite side of the growth substrate; And a first electrode and a second electrode electrically connected to the plurality of semiconductor layers and formed to face each other on the non-conductive reflective film, wherein at least one connection portion connecting the plurality of sub electrodes and the plurality of sub electrodes to each other. The semiconductor light emitting device comprising: a first electrode and a second electrode having a width smaller than that of each sub-electrode connected by each connection part based on a direction perpendicular to the connection direction.
(50) 연결 방향에 직교하는 방향에 있어서, 각 연결부는 각 서브 전극의 서로 대향하는 양측 에지들로부터, 상기 직교하는 방향으로 떨어져 있는 것을 특징으로 하는 반도체 발광소자.(50) A semiconductor light emitting element according to claim 1, wherein each connecting portion is spaced apart in the orthogonal direction from opposite edges of each sub-electrode facing each other.
(51) 제1 전극 및 제2 전극 모두 복수의 서브 전극, 및 적어도 하나의 연결부를 가지는 것을 특징으로 하는 반도체 발광소자.(51) A semiconductor light emitting element, wherein both the first electrode and the second electrode have a plurality of sub-electrodes and at least one connection portion.
(52) 연결 방향으로 볼 때, 각 서브 전극은 연결부보다 큰 폭을 가지는 것을 특징으로 하는 반도체 발광소자.(52) A semiconductor light emitting element according to claim 1, wherein each sub-electrode has a width larger than that of the connection portion.
(53) 서브 전극 사이 연결부에 의해 덮이지 않은 영역은 연결부의 양측에 각각 형성되는 것을 특징으로 하는 반도체 발광소자.(53) A semiconductor light emitting element, wherein regions not covered by the connecting portion between the sub-electrodes are formed on both sides of the connecting portion, respectively.
(54) 제2 반도체층 및 활성층이 제거되어 노출된 제1 반도체층 위에서 제1 전극과 전기적으로 연결되며, 제1 전극 아래에서 제2 전극 아래로 뻗는 제1 가지 전극; 그리고 제2 반도체층 위에서 제2 전극과 전기적으로 연결되며, 제2 전극 아래에서 제1 전극 아래로 뻗는 제2 가지 전극;을 포함하며, 제1 가지 전극 및 제2 가지 전극은 각 연결부로 연결되는 서브 전극들 사이를 피하여 구비되는 것을 특징으로 하는 반도체 발광소자.(54) a first branch electrode electrically connected to the first electrode on the exposed first semiconductor layer with the second semiconductor layer and the active layer removed and extending below the second electrode below the first electrode; And a second branch electrode electrically connected to the second electrode on the second semiconductor layer and extending below the first electrode under the second electrode, wherein the first branch electrode and the second branch electrode are connected to each connection portion. A semiconductor light emitting device, characterized in that provided between the sub-electrodes.
(55) 제2 반도체층 및 활성층이 제거되어 노출된 제1 반도체층 위에서 제1 전극과 전기적으로 연결되며, 제1 전극 아래에서 제2 전극 아래로 뻗는 제1 가지 전극; 그리고 제2 반도체층 위에서 제2 전극과 전기적으로 연결되며, 제2 전극 아래에서 제1 전극 아래로 뻗는 제2 가지 전극;을 포함하며, 제1 가지 전극 및 제2 가지 전극은 각 연결부로 연결되는 서브 전극들 사이로 뻗어 있는 것을 특징으로 하는 반도체 발광소자.A first branch electrode electrically connected to the first electrode on the exposed first semiconductor layer by removing the second semiconductor layer and the active layer, and extending from the first electrode to the second electrode; And a second branch electrode electrically connected to the second electrode on the second semiconductor layer and extending below the first electrode under the second electrode, wherein the first branch electrode and the second branch electrode are connected to each connection portion. A semiconductor light emitting device, characterized in that extending between the sub-electrodes.
(56) 복수의 반도체층은 서로 대향하는 2개의 긴 에지들(long edges)과 서로 대향하는 2개의 짧은 에지들(short edges)을 가지며, 제1 전극의 복수의 서브 전극은 일 측 긴 에지를 따라 배열되고, 제2 전극의 복수의 서브 전극은 타 측 긴 에지를 따라 배열되며, 제2 반도체층 및 활성층이 제거되어 노출된 제1 반도체층 위에서 제1 전극과 전기적으로 연결되며, 제1 전극 아래에서 제2 전극 아래로 뻗는 제1 가지 전극; 그리고 제2 반도체층 위에서 제2 전극과 전기적으로 연결되며, 제2 전극 아래에서 제1 전극 아래로 뻗는 제2 가지 전극;을 포함하는 것을 특징으로 하는 반도체 발광소자.The plurality of semiconductor layers have two long edges facing each other and two short edges facing each other, and the plurality of sub-electrodes of the first electrode have one long edge. And a plurality of sub-electrodes of the second electrode are arranged along the other long edge, and are electrically connected to the first electrode on the exposed first semiconductor layer by removing the second semiconductor layer and the active layer. A first branch electrode extending below the second electrode; And a second branch electrode electrically connected to the second electrode on the second semiconductor layer and extending below the first electrode under the second electrode.
(57) 복수의 반도체층은 서로 대향하는 2개의 긴 에지들(long edges)과 서로 대향하는 2개의 짧은 에지들(short edges)을 가지며, 제1 전극의 복수의 서브 전극은 일 측 긴 에지를 따라 배열되고, 제2 전극의 복수의 서브 전극은 타 측 긴 에지를 따라 배열되며, 제2 반도체층 및 활성층이 제거되어 노출된 제1 반도체층 위에서 제1 전극과 전기적으로 연결되는 제1 가지 전극;으로서, 평면도로 볼 때, 제2 전극과 중첩되지 않고 제1 전극과 제2 전극 사이에서 뻗는 제1 가지 전극;을 포함하는 것을 특징으로 하는 반도체 발광소자.The plurality of semiconductor layers have two long edges facing each other and two short edges facing each other, and the plurality of sub-electrodes of the first electrode have one long edge. And a plurality of sub-electrodes of the second electrode are arranged along the other long edge, and the first branch electrode is electrically connected to the first electrode on the exposed first semiconductor layer by removing the second semiconductor layer and the active layer. A first branch electrode extending between the first electrode and the second electrode without overlapping with the second electrode in a plan view.
(58) 복수의 서브 전극이 복수의 연결부에 의해 연결되며, 복수의 연결부는 지그재그 형태로 배열된 것을 특징으로 하는 반도체 발광소자.(58) A plurality of sub-electrodes are connected by a plurality of connecting portions, wherein the plurality of connecting portions are arranged in a zigzag form.
(59) 반도체 발광소자에 있어서, 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 및 제1 반도체층과 제2 반도체층의 사이에 개재되어 전자와 정공의 재결합에 의해 빛을 생성하는 활성층을 가지는 복수의 반도체층; 복수의 반도체층 위에 형성되어 활성층으로부터의 빛을 반사하는 비도전성 반사막; 비도전성 반사막 위에 형성되며, 패드부와 패드부로부터 돌출된 돌출부를 가지는 제1 전극; 비도전성 반사막 위에 형성되며 돌출부와 마주하도록 형성된 제2 전극; 제1 반도체층 위에 형성되며, 돌출부 아래에서 제1 전극과 제2 전극 사이로 뻗는 제1 가지 전극; 비도전성 반사막을 관통하여 돌출부와 제1 가지 전극을 연결하는 제1 전기적 연결부; 그리고 비도전성 반사막을 관통하여 제2 전극과 제2 반도체층을 전기적으로 연통하는 제2 전기적 연결부;를 포함하는 것을 특징으로 하는 반도체 발광소자.(59) A semiconductor light emitting element comprising: a first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, and interposed between the first semiconductor layer and the second semiconductor layer And a plurality of semiconductor layers having an active layer that generates light by recombination of holes; A nonconductive reflecting film formed over the plurality of semiconductor layers to reflect light from the active layer; A first electrode formed on the non-conductive reflecting film and having a pad portion and a protrusion projecting from the pad portion; A second electrode formed on the non-conductive reflecting film and facing the protrusion; A first branch electrode formed on the first semiconductor layer and extending between the first electrode and the second electrode under the protrusion; A first electrical connector penetrating the non-conductive reflective film to connect the protrusion and the first branch electrode; And a second electrical connection part penetrating the non-conductive reflective film to electrically connect the second electrode and the second semiconductor layer.
제1 가지 전극은 n측 가지 전극일 수 있고, p측 가지 전극일 수도 있다.The first branch electrode may be an n-side branch electrode, or may be a p-side branch electrode.
(60) 제2 전극은: 패드부 및 패드부로부터 제1 전극과 제2 전극 사이로 돌출되는 돌출부를 포함하고, 복수의 반도체층과 비도전성 반사막 사이에서, 제2 전극의 돌출부 아래에서 제1 전극 아래로 뻗는 제2 가지 전극;을 포함하며, 제2 전기적 연결부는 제2 전극의 돌출부와 제2 가지 전극을 연결하는 것을 특징으로 하는 반도체 발광소자.(60) The second electrode includes: a pad portion and a protrusion protruding from the pad portion between the first electrode and the second electrode, and between the plurality of semiconductor layers and the nonconductive reflecting film, the first electrode under the protrusion of the second electrode. And a second branch electrode extending downward, wherein the second electrical connection unit connects the protrusion of the second electrode and the second branch electrode.
(61) 제1 가지 전극은 제2 반도체층, 및 활성층이 식각되어 노출된 제1 반도체층 위에 형성되며, 제1 전극의 패드부, 및 제2 전극 아래로는 뻗지 않는 것을 특징으로 하는 반도체 발광소자.(61) The first branch electrode is formed on the second semiconductor layer and the first semiconductor layer where the active layer is etched and exposed, and does not extend below the pad portion of the first electrode and the second electrode. device.
(62) 복수의 반도체층과 비도전성 반사막 사이에서 제2 전기적 연결부에 의해 제2 전극과 연결되며, 제2 전극 아래에서 제1 전극 아래로 뻗는 제2 가지 전극;을 포함하며, 제2 가지 전극은 제1 가지 전극의 양측에 각각 구비되며, 각 제2 전기적 연결부는 제1 전극과 마주하는 제2 전극의 에지에 인접하게 위치하는 것을 특징으로 하는 반도체 발광소자.(62) a second branch electrode connected to the second electrode by a second electrical connection between the plurality of semiconductor layers and the non-conductive reflective film, the second branch electrode extending below the first electrode below the second electrode; Are respectively provided on both sides of the first branch electrode, and each second electrical connection part is positioned adjacent to an edge of the second electrode facing the first electrode.
(63) 평면도로 볼 때, 제1 전기적 연결부는 제1 전극의 패드부의 에지와 교차하며, 돌출부는 제1 전기적 연결에 대응하여 패드부로부터 돌출된 것을 특징으로 하는 반도체 발광소자.(63) In plan view, the first electrical connection portion intersects the edge of the pad portion of the first electrode, and the protrusion portion protrudes from the pad portion corresponding to the first electrical connection.
(64) 평면도로 볼 때, 제1 전기적 연결부는 제1 전극의 패드부의 에지로부터 제2 전극 측으로 떨어져 있고, 돌출부는 제1 전극의 패드부로부터 제2 전극을 향하여 연장된 후, 돌출부의 말단이 제1 전기적 연결부와 연결되는 것을 특징으로 하는 반도체 발광소자.(64) In plan view, the first electrical connection is spaced from the edge of the pad portion of the first electrode to the second electrode side, the protrusion extends from the pad portion of the first electrode toward the second electrode, and then the distal end of the protrusion is A semiconductor light emitting device, characterized in that connected to the first electrical connection.
(65) 제2 가지 전극이 제1 가지 전극의 양측에 각각 구비되며, 각 제2 가지 전극에 대응하여 제2 전극의 패드부로부터 각 돌출부가 형성된 것을 특징으로 하는 반도체 발광소자.(65) A semiconductor light emitting element, wherein the second branch electrodes are provided on both sides of the first branch electrode, respectively, and each protrusion is formed from the pad portion of the second electrode in correspondence with each of the second branch electrodes.
(66) 복수의 반도체층과 비도전성 반사막 사이에서 제2 전기적 연결부에 의해 제2 전극과 연결되며, 제2 전극 아래에서 제1 전극 아래로 뻗는 제2 가지 전극;을 포함하며, 제2 가지 전극은 제1 가지 전극의 양측에 각각 구비되며, 각 제2 가지 전극은 끝이 서로를 향하여 휘어진 것을 특징으로 하는 반도체 발광소자.(66) a second branch electrode connected to the second electrode by a second electrical connection between the plurality of semiconductor layers and the non-conductive reflecting film and extending below the first electrode below the second electrode. Silver is provided on both sides of the first branch electrode, each second branch electrode is a semiconductor light emitting device, characterized in that the ends are bent toward each other.
(67) 복수의 반도체층과 비도전성 반사막 사이에서 제2 전기적 연결부에 의해 제2 전극과 연결되며, 제2 전극 아래에서 제1 전극 아래로 뻗는 제2 가지 전극;을 포함하며, 제2 가지 전극은 제1 가지 전극의 양측에 각각 구비되며, 제1 가지 전극의 양측의 각 제2 가지 전극은 제1 전극 및 제2 전극 중 적어도 하나의 아래에서 서로 이어진 것을 특징으로 하는 반도체 발광소자.A second branch electrode connected to the second electrode by a second electrical connection between the plurality of semiconductor layers and the non-conductive reflective film, the second branch electrode extending below the first electrode below the second electrode; Are respectively provided on both sides of the first branch electrode, and each of the second branch electrodes on both sides of the first branch electrode is connected to each other under at least one of the first electrode and the second electrode.
(68) 제1 가지 전극은 제1 전극의 패드부 아래로는 뻗지 않고, 제2 가지 전극은 제2 전극의 패드부 아래로는 뻗지 않는 것을 특징으로 하는 반도체 발광소자.(68) A semiconductor light emitting device, characterized in that the first branch electrode does not extend under the pad portion of the first electrode and the second branch electrode does not extend under the pad portion of the second electrode.
(69) 반도체 발광소자에 있어서, 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 및 제1 반도체층과 제2 반도체층의 사이에 개재되어 전자와 정공의 재결합에 의해 빛을 생성하는 활성층을 가지는 복수의 반도체층; 복수의 반도체층 위에 형성되어 활성층으로부터의 빛을 반사하는 비도전성 반사막; 비도전성 반사막 위에 떨어져 형성된 제1 전극, 및 제2 전극; 비도전성 반사막을 관통하여 제1 전극과 제1 반도체층을 전기적으로 연통하는 적어도 하나의 제1 전기적 연결부; 비도전성 반사막을 관통하여 제2 전극과 제2 반도체층을 연통하는 적어도 하나의 제2 전기적 연결부; 적어도 하나의 제1 전기적 연결부와 연결되도록 제1 반도체층 위에 형성된 제1 가지 전극;으로서, 제1 전극의 대각방향 코너들 중 제2 전극과 인접한 코너 아래로부터 제1 전극과 제2 전극 사이로 뻗는 제1 가지 전극; 그리고 적어도 하나의 제2 전기적 연결부와 연결되도록 복수의 반도체층과 비도전성 반사막 사이에 형성된 제2 가지 전극;으로서, 제2 전극의 대각방향 코너들 중 제1 전극과 인접한 코너 아래로부터 제1 전극의 대각방향 코너들 사이를 향하여 뻗는 제2 가지 전극;을 포함하는 것을 특징으로 하는 반도체 발광소자.(69) A semiconductor light emitting device comprising: a first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, and an electron interposed between the first semiconductor layer and the second semiconductor layer; And a plurality of semiconductor layers having an active layer that generates light by recombination of holes; A nonconductive reflecting film formed over the plurality of semiconductor layers to reflect light from the active layer; A first electrode and a second electrode formed to be separated from the non-conductive reflecting film; At least one first electrical connection penetrating the non-conductive reflective film to electrically connect the first electrode and the first semiconductor layer; At least one second electrical connection penetrating the non-conductive reflective film to communicate the second electrode and the second semiconductor layer; A first branch electrode formed on the first semiconductor layer to be connected to the at least one first electrical connection portion, the first branch electrode extending between the first electrode and the second electrode from below a corner adjacent to the second electrode of the diagonal corners of the first electrode; 1 electrode; And a second branch electrode formed between the plurality of semiconductor layers and the non-conductive reflecting film so as to be connected to the at least one second electrical connection part, wherein the second branch electrode is formed from below a corner adjacent to the first electrode of the diagonal corners of the second electrode. And a second branch electrode extending toward diagonal corners.
본 개시는 제1 가지 전극이 n측 가지 전극이고, 제2 가지 전극이 p측 가지 전극인 경우와, 제1 가지 전극이 p측 가지 전극이고, 제2 가지 전극이 n측 가지 전극인 경우를 모두 포함한다.The present disclosure discloses a case where a first branch electrode is an n-side branch electrode, a second branch electrode is a p-side branch electrode, a first branch electrode is a p-side branch electrode, and a second branch electrode is an n-side branch electrode. It includes everything.
(70) 적어도 하나의 제1 전기적 연결부는 제1 전극의 대각방향 코너들에 각각 형성된 2개의 제1 전기적 연결부들을 포함하며, 제2 가지 전극은 제1 전극과 인접한 제2 전극의 코너 아래에서 적어도 하나의 제2 전기적 연결부와 연결되며, 2개의 제1 전기적 연결부들 사이를 지나가도록 뻗어 있는 것을 특징으로 하는 반도체 발광소자.(70) The at least one first electrical connection includes two first electrical connections respectively formed at diagonal corners of the first electrode, the second branch electrode being at least below a corner of the second electrode adjacent to the first electrode. The semiconductor light emitting device is connected to one second electrical connection, and extends to pass between the two first electrical connection.
(71) 적어도 하나의 제2 전기적 연결부는 제2 전극의 대각방향 코너들에 각각 형성된 2개의 제2 전기적 연결부들을 포함하며, 제1 가지 전극은 제2 전극과 인접한 제1 전극의 코너 아래에서 적어도 하나의 제1 전기적 연결부와 연결되며, 2개의 제2 전기적 연결부들 사이를 지나가도록 뻗어 있는 것을 특징으로 하는 반도체 발광소자.(71) The at least one second electrical connection includes two second electrical connections respectively formed at diagonal corners of the second electrode, the first branch electrode being at least below a corner of the first electrode adjacent to the second electrode. The semiconductor light emitting device of claim 1, wherein the semiconductor light emitting device is connected to one first electrical connection part and extends between the two second electrical connection parts.
(72) 제1 가지 전극은 제1 전극과 제2 전극 사이 복수의 반도체층의 일 측 가장자리 인근에서 뻗고, 제2 가지 전극은 제1 전극과 제2 전극 사이 복수의 반도체층의 타 측 가장자리 인근에서 뻗는 것을 특징으로 하는 반도체 발광소자.(72) The first branch electrode extends near one edge of the plurality of semiconductor layers between the first electrode and the second electrode, and the second branch electrode extends near the other edge of the plurality of semiconductor layers between the first electrode and the second electrode. A semiconductor light emitting device, characterized in that extending from.
(73) 평면도로 볼때, 제1 전극과 제2 전극 사이 중심을 기준으로, 제1 가지 전극의 형상은 제2 가지 전극의 형상과 대칭을 이루는 것을 특징으로 하는 반도체 발광소자.(73) A planar view, in which the shape of the first branch electrode is symmetrical with the shape of the second branch electrode with respect to the center between the first electrode and the second electrode.
(74) 반도체 발광소자는 평면도로 볼 때, 2개의 긴변과 2개의 짧은 변을 가지는 사각 형상을 가지며, 제1 전극은 하나의 짧은 변 측에 위치하고, 제2 전극은 다른 짧은 변 측에 위치하며, 제1 가지 전극, 및 제2 가지 전극은 각각 1개만 형성된 것을 특징으로 하는 반도체 발광소자.(74) The semiconductor light emitting device has a rectangular shape having two long sides and two short sides when viewed in plan view, the first electrode is located on one short side, and the second electrode is located on the other short side. And only one first branch electrode and one second branch electrode are formed.
(75) 평면도로 볼 때, 제1 전극과 제2 전극의 서로 마주하는 에지들은 복수의 반도체층의 에지들에 대해 각각 사선(inclined or oblique line)이 되도록 형성되며, 제1 전극의 대각방향 코너들은 사선을 이루는 제1 전극의 에지로 인해 제2 전극 측으로 더 가까운 코너와 이와 대각 방향에 위치하는 코너를 포함하며, 제1 가지 전극은 제1 전극의 대각방향 코너들 중 제2 전극 측으로 더 가까운 코너 아래에서 적어도 하나의 제1 전기적 연결부와 연결되며, 제2 전극의 대각방향 코너들은 사선을 이루는 제2 전극의 에지로 인해 제1 전극 측으로 더 가까운 코너와 이와 대각 방향에 위치하는 코너를 포함하며, 제2 가지 전극은 제2 전극의 대각방향 코너들 중 제1 전극 측으로 더 가까운 코너 아래에서 적어도 하나의 제2 전기적 연결부와 연결되는 것을 특징으로 하는 반도체 발광소자. (75) In plan view, the edges facing each other of the first electrode and the second electrode are formed to be inclined or oblique lines with respect to the edges of the plurality of semiconductor layers, respectively, and diagonal corners of the first electrode are shown. Includes a corner closer to the second electrode side and a corner located diagonally to the second electrode side due to the oblique edge of the first electrode, wherein the first branch electrode is closer to the second electrode side of the diagonal corners of the first electrode. A corner connected to the at least one first electrical connection below the corner, wherein the diagonal corners of the second electrode comprise a corner closer to the first electrode side and a corner located diagonally to the first electrode due to the diagonal edge of the second electrode; And the second branch electrode is connected with at least one second electrical connection below a corner closer to the first electrode side of the diagonal corners of the second electrode. A light emitting element.
(76) 적어도 하나의 제1 전기적 연결부는 제1 전극의 대각방향 코너들에 각각 형성된 2개의 제1 전기적 연결부들을 포함하며, 적어도 하나의 제2 전기적 연결부는 제2 전극의 대각방향 코너들에 각각 형성된 2개의 제2 전기적 연결부들을 포함하며, 제2 가지 전극은 2개의 제1 전기적 연결부들 사이를 지나가도록 뻗어 있는 것을 특징으로 하는 반도체 발광소자.(76) The at least one first electrical connection includes two first electrical connections respectively formed at diagonal corners of the first electrode, and the at least one second electrical connection is respectively at the diagonal corners of the second electrode. And two second electrical connections formed, wherein the second branch electrode extends to pass between the two first electrical connections.
(77) 제2 가지 전극은: 제1 전극과 제2 전극 사이 복수의 반도체층의 일 측 가장자리에서 뻗는 제1 가지; 그리고 제1 가지로부터 꺽여 2개의 제1 전기적 연결부들 사이로 뻗는 제2 가지;를 포함하며, 제1 가지 전극은: 제1 전극과 제2 전극 사이 복수의 반도체층의 타 측 가장자리에서 뻗는 제3 가지; 그리고 제3 가지로부터 꺽여 2개의 제2 전기적 연결부들 사이로 뻗는 제4 가지;를 포함하는 것을 특징으로 하는 반도체 발광소자.(77) The second branch electrode includes: a first branch extending from one side edge of the plurality of semiconductor layers between the first electrode and the second electrode; And a second branch that is bent from the first branch and extends between the two first electrical connections, wherein the first branch electrode includes: a third branch extending from the other edge of the plurality of semiconductor layers between the first electrode and the second electrode; ; And a fourth branch, which is bent from the third branch and extends between the two second electrical connections.
(78) 제2 가지 전극은: 제1 전극과 제2 전극 사이 복수의 반도체층의 일 측 가장자리에서 뻗는 제1 가지; 그리고 제1 가지로부터 꺽여 2개의 제1 전기적 연결부들 사이로 뻗는 제2 가지;를 포함하며, 제1 가지 전극은: 제1 전극과 제2 전극 사이 복수의 반도체층의 타 측 가장자리에서 뻗으며, 제2 전극 아래로는 뻗지 않는 것을 특징으로 하는 반도체 발광소자.(78) The second branch electrode includes: a first branch extending from one side edge of the plurality of semiconductor layers between the first electrode and the second electrode; And a second branch that is bent from the first branch and extends between the two first electrical connections, wherein the first branch electrode includes: a second branch extending from the other edge of the plurality of semiconductor layers between the first electrode and the second electrode; 2. A semiconductor light emitting device, characterized in that it does not extend below the electrode.
본 개시에 따른 하나의 반도체 발광소자에 의하면, 휘도가 향상된 반도체 발광소자가 제공된다.According to one semiconductor light emitting device according to the present disclosure, a semiconductor light emitting device having improved luminance is provided.
본 개시에 따른 다른 하나의 반도체 발광소자에 의하면, 한정된 면적에 콤팩트하게 다수의 발광부를 포함할 수 있다.According to another semiconductor light emitting device according to the present disclosure, a plurality of light emitting parts may be compactly included in a limited area.
본 개시에 따른 또 다른 하나의 반도체 발광소자에 의하면, 발광부의 모서리가 라운드져서 수율이 향상된다.According to another semiconductor light emitting device according to the present disclosure, the corners of the light emitting portion are rounded to improve the yield.
본 개시에 따른 또 다른 하나의 반도체 발광소자에 의하면, 다수의 발광부를 어레이(array)로 만들 때, 가지, 연결선 및 점형 전극부로 이루어진 연결 전극을 구비함으로써, 전류확산을 충분히 달성하면서, 발광면적 감소를 억제하며, 콤팩트한 배치를 가지는 반도체 발광소자가 제공된다.According to another semiconductor light emitting device according to the present disclosure, when making a plurality of light emitting portions in an array, by providing a connection electrode consisting of a branch, a connecting line and a point electrode portion, the light emitting area is reduced while achieving sufficient current spreading. There is provided a semiconductor light emitting device which suppresses the above and has a compact arrangement.
본 개시에 따른 또 다른 하나의 반도체 발광소자에 의하면, 전류 확산을 위해 가지 전극을 구비하면서 상대적으로 n-contact 영역이 작은 반도체 발광소자가 제공된다.According to another semiconductor light emitting device according to the present disclosure, a semiconductor light emitting device having a relatively small n-contact region and having branch electrodes for current diffusion is provided.
본 개시에 따른 또 다른 하나의 반도체 발광소자에 의하면, 전류 확산을 위해 가지 전극을 구비하면서 가지 전극의 길이가 상대적으로 짧아져서 광흡수 손실이 감소된 반도체 발광소자가 제공된다.According to another semiconductor light emitting device according to the present disclosure, there is provided a semiconductor light emitting device having a branch electrode for current diffusion and having a relatively short length of the branch electrode, thereby reducing light absorption loss.
본 개시에 따른 또 다른 하나의 반도체 발광소자에 의하면, 복수의 반도체 발광소자를 구비하는 패키지를 콤팩트하게 형성할 수 있다.According to another semiconductor light emitting device according to the present disclosure, a package including a plurality of semiconductor light emitting devices can be compactly formed.
본 개시에 따른 또 다른 하나의 반도체 발광소자에 의하면, 복수의 반도체 발광소자를 구비하는 패키지를 콤팩트하게 형성할 수 있다.According to another semiconductor light emitting device according to the present disclosure, a package including a plurality of semiconductor light emitting devices can be compactly formed.
본 개시에 따른 또 다른 하나의 반도체 발광소자에 의하면, 금속에 의한 광흡수 손실이 감소한다.According to another semiconductor light emitting device according to the present disclosure, the light absorption loss due to the metal is reduced.
또한, 작은 사이즈의 소자에서 적은 수의 가지 전극과 전기적 연결을 사용하여 전류 공급 및/또는 발광의 균일성을 달성한다.In addition, in small size devices, a small number of branch electrodes and electrical connections are used to achieve uniformity of current supply and / or light emission.
본 개시에 따른 또 다른 하나의 반도체 발광소자에 의하면, 열팽창 차이에 의한 전극 벗겨짐 등의 손상이 방지된다.According to another semiconductor light emitting device according to the present disclosure, damage such as peeling of electrodes due to thermal expansion difference is prevented.
본 개시에 따른 또 다른 하나의 반도체 발광소자에 의하면, 금속에 의한 빛흡수가 감소하고, 메사식각에 의한 발광면적 감소가 줄어든 반도체 발광소자가 제공된다.According to another semiconductor light emitting device according to the present disclosure, there is provided a semiconductor light emitting device in which light absorption by metal is reduced and light emission area decreases by mesa etching is reduced.
또한, 작은 사이즈의 소자에서 적은 수의 가지 전극과 전기적 연결을 사용하여 전류 공급 및/또는 발광의 균일성을 달성한다.In addition, in small size devices, a small number of branch electrodes and electrical connections are used to achieve uniformity of current supply and / or light emission.

Claims (10)

  1. 반도체 발광소자에 있어서,In a semiconductor light emitting device,
    제1 도전성을 가지는 제1 반도체층, 전자와 정공의 재결합을 통해 빛을 생성하는 활성층 및 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층이 순차로 적층된 복수의 반도체층;으로서, 서로 대향하는 2개의 긴 에지들(long edges)과 서로 대향하는 2개의 짧은 에지(short edges)들을 가지는 복수의 반도체층;A plurality of semiconductor layers sequentially stacked with a first semiconductor layer having a first conductivity, an active layer generating light through recombination of electrons and holes, and a second semiconductor layer having a second conductivity different from the first conductivity; A plurality of semiconductor layers having two long edges facing each other and two short edges facing each other;
    제2 반도체층 및 활성층이 제거되어 노출된 제1 반도체층 위에서 일 측 긴 에지로부터 타 측 긴 에지를 향하여 뻗는 제1 가지 전극과, 제2 반도체층 위에서 타 측 긴 에지로부터 일 측 긴 에지를 향하여 뻗은 제2 가지 전극 중 적어도 하나;A first branch electrode extending from one side long edge to the other long edge on the exposed first semiconductor layer with the second semiconductor layer and the active layer removed, and from the other long edge to the one long edge on the second semiconductor layer At least one of the extended second branch electrodes;
    복수의 반도체층과 제1 가지 전극 및 제2 가지 전극을 덮도록 형성되며, 활성층으로부터의 빛을 반사하는 비도전성 반사막;A non-conductive reflecting film formed to cover the plurality of semiconductor layers, the first branch electrode and the second branch electrode, and reflecting light from the active layer;
    제1 반도체층과 전기적으로 연통하도록 일 측 긴 에지 측에 구비되며, 전자와 정공 중 하나를 공급하는 제1 전극; 그리고A first electrode provided on one side of the long edge side to be in electrical communication with the first semiconductor layer and supplying one of electrons and holes; And
    제2 반도체층과 전기적으로 연통하도록 타 측 긴 에지 측에 구비되며, 전자와 정공 중 나머지 하나를 공급하는 제2 전극;을 포함하는 것을 특징으로 하는 반도체 발광소자.And a second electrode provided at the other long edge side to be in electrical communication with the second semiconductor layer and supplying the other one of electrons and holes.
  2. 청구항 1에 있어서,The method according to claim 1,
    제1 전극 및 제2 전극 중 적어도 하나는 비도전성 반사막을 기준으로 복수의 반도체층의 반대 측에 구비되며, 비도전성 반사막을 관통하는 전기적 연결(an electrical connection)에 의해 복수의 반도체층과 전기적으로 연통되는 플립칩(flip chip)인 것을 특징으로 하는 반도체 발광소자.At least one of the first electrode and the second electrode is provided on the opposite side of the plurality of semiconductor layers with respect to the non-conductive reflecting film, and is electrically connected to the plurality of semiconductor layers by an electrical connection passing through the non-conductive reflecting film. A semiconductor light emitting device, characterized in that the communication is a flip chip (flip chip).
  3. 청구항 1에 있어서,The method according to claim 1,
    제1 전극 및 제2 전극은 비도전성 반사막 위에 구비되며,The first electrode and the second electrode are provided on the nonconductive reflecting film,
    제1 전극 및 제2 전극의 서로 마주보는 에지들은 일 측 짧은 에지로부터 타 측 짧은 에지를 향하여 뻗은 것을 특징으로 하는 반도체 발광소자.Edges facing each other of the first electrode and the second electrode extend from one short edge toward the other short edge.
  4. 청구항 1에 있어서,The method according to claim 1,
    제1 전극 및 제2 전극은 비도전성 반사막 위에 구비되며,The first electrode and the second electrode are provided on the nonconductive reflecting film,
    제1 가지 전극은 제1 전극의 아래로부터 제2 전극의 아래로 뻗고,The first branch electrode extends from below the first electrode to below the second electrode,
    제2 가지 전극은 제2 전극의 아래로부터 제1 전극의 아래로 뻗은 것을 특징으로 하는 반도체 발광소자.The second branch electrode extends from the bottom of the second electrode to the bottom of the first electrode.
  5. 청구항 1에 있어서,The method according to claim 1,
    복수의 제1 가지 전극과 이들 사이에 제2 가지 전극;을 포함하는 것을 특징으로 하는 반도체 발광소자.And a plurality of first branch electrodes and a second branch electrode therebetween.
  6. 청구항 4에 있어서,The method according to claim 4,
    제1 전극 및 제2 전극의 서로 마주보는 에지들은 일 측 짧은 에지로부터 타 측 짧은 에지를 향하여 뻗고,Opposing edges of the first electrode and the second electrode extend from one short edge toward the other short edge,
    비도전성 반사막을 관통하며, 제1 전극과 제1 가지 전극을 연결하는 제1 전기적 연결; 그리고A first electrical connection passing through the non-conductive reflecting film and connecting the first electrode and the first branch electrode; And
    비도전성 반사막을 관통하며, 제2 전극과 제2 가지 전극을 연결하는 제2 전기적 연결;을 포함하는 것을 특징으로 하는 반도체 발광소자.And a second electrical connection penetrating the non-conductive reflective film and connecting the second electrode and the second branch electrode.
  7. 청구항 5에 있어서,The method according to claim 5,
    복수의 제1 전극 및 복수의 제2 전극이 반사층 위에 서로 떨어져 구비되며,A plurality of first electrodes and a plurality of second electrodes are provided apart from each other on the reflective layer,
    비도전성 반사막을 관통하며, 각 제1 전극과 각 제1 가지 전극을 연결하는 제1 전기적 연결; 그리고A first electrical connection passing through the non-conductive reflecting film and connecting each first electrode and each first branch electrode; And
    비도전성 반사막을 관통하며, 각 제2 전극과 각 제2 가지 전극을 연결하는 제2 전기적 연결;을 포함하는 것을 특징으로 하는 반도체 발광소자.And a second electrical connection penetrating through the non-conductive reflecting film and connecting each second electrode and each second branch electrode.
  8. 청구항 7에 있어서,The method according to claim 7,
    비도전성 반사막을 관통하며, 제1 가지 전극과 연결되지 않고, 제1 전극과 제1 반도체층을 전기적으로 연통하는 추가의 제1 전기적 연결; 그리고An additional first electrical connection penetrating the non-conductive reflecting film and not in communication with the first branch electrode, the first electrical connection electrically communicating with the first electrode and the first semiconductor layer; And
    비도전성 반사막을 관통하며, 제2 가지 전극과 연결되지 않고, 제2 전극과 제2 반도체층을 전기적으로 연통하는 추가의 제2 전기적 연결;을 포함하는 것을 특징으로 하는 반도체 발광소자.And an additional second electrical connection penetrating the non-conductive reflecting film and not connected to the second branch electrode and electrically communicating with the second electrode and the second semiconductor layer.
  9. 청구항 3에 있어서,The method according to claim 3,
    제1 전극과 접합되는 제1 도전부, 제2 전극과 접합되는 제2 도전부, 및 제1 도전부와 제2 도전부 사이에 개재된 절연부;를 가지는 플레이트;로서, 제1 도전부 및 제2 도전부가 상하로 노출된 플레이트;를 포함하는 것을 특징으로 하는 반도체 발광소자.A plate having a first conductive portion joined to the first electrode, a second conductive portion joined to the second electrode, and an insulating portion interposed between the first conductive portion and the second conductive portion; And a plate in which the second conductive portion is exposed up and down.
  10. 청구항 9에 있어서,The method according to claim 9,
    제1 가지 전극은 제1 도전부 측으로부터 제2 도전부 측을 향하여 뻗고, The first branch electrode extends from the first conductive portion side toward the second conductive portion side,
    제2 가지 전극은 제2 도전부 측으로부터 제1 도전부 측을 향하여 뻗고, The second branch electrode extends from the second conductive portion side toward the first conductive portion side,
    제1 전극 및 제2 전극 사이는 절연부에 대응하는 것을 특징으로 하는 반도체 발광소자.The semiconductor light emitting device according to claim 1, wherein the first electrode and the second electrode correspond to the insulating portion.
PCT/KR2015/006638 2014-08-07 2015-06-29 Semiconductor light-emitting element WO2016021833A1 (en)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
KR10-2014-0101775 2014-08-07
KR10-2014-0101774 2014-08-07
KR1020140101775A KR20160018924A (en) 2014-08-07 2014-08-07 Semiconductor light emitting device
KR1020140101774A KR101617225B1 (en) 2014-08-07 2014-08-07 Semiconductor light emitting device
KR1020140115581A KR101628239B1 (en) 2014-09-01 2014-09-01 Semiconductor light emitting device
KR10-2014-0115581 2014-09-01
KR10-2014-0153693 2014-11-06
KR1020140153693A KR101626905B1 (en) 2014-11-06 2014-11-06 Semiconductor light emitting device
KR1020150044279A KR20160117682A (en) 2015-03-30 2015-03-30 Semiconductor light emitting device
KR10-2015-0044279 2015-03-30
KR1020150049720A KR101635908B1 (en) 2015-04-08 2015-04-08 Semiconductor light emitting device
KR10-2015-0049720 2015-04-08
KR10-2015-0051787 2015-04-13
KR1020150051787A KR101635907B1 (en) 2015-04-13 2015-04-13 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
WO2016021833A1 true WO2016021833A1 (en) 2016-02-11

Family

ID=55264058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006638 WO2016021833A1 (en) 2014-08-07 2015-06-29 Semiconductor light-emitting element

Country Status (1)

Country Link
WO (1) WO2016021833A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120105950A (en) * 2011-03-17 2012-09-26 서울옵토디바이스주식회사 Wafer level led package and method of fabricating the same
KR101368720B1 (en) * 2013-01-10 2014-03-03 주식회사 세미콘라이트 Semiconductor light emimitting device
KR101426434B1 (en) * 2013-06-11 2014-08-05 주식회사 세미콘라이트 Manufacturing method of semiconductor light emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120105950A (en) * 2011-03-17 2012-09-26 서울옵토디바이스주식회사 Wafer level led package and method of fabricating the same
KR101368720B1 (en) * 2013-01-10 2014-03-03 주식회사 세미콘라이트 Semiconductor light emimitting device
KR101426434B1 (en) * 2013-06-11 2014-08-05 주식회사 세미콘라이트 Manufacturing method of semiconductor light emitting device

Similar Documents

Publication Publication Date Title
WO2015190817A1 (en) Semiconductor light-emitting element
WO2017191923A1 (en) Light emitting diode
WO2017222279A1 (en) Semiconductor device
WO2019103566A1 (en) Led unit for display and display apparatus having the same
WO2019135606A1 (en) Light emitting device with led stack for display and display apparatus having the same
WO2017160119A1 (en) Semiconductor device and display device including same
WO2016129873A2 (en) Light-emitting element and light-emitting diode
WO2015053595A1 (en) Semiconductor light-emitting diode
WO2017183944A1 (en) Light emitting device and display comprising same
WO2016076637A1 (en) Light emitting device
WO2011083923A2 (en) Light emitting diode having electrode pads
WO2019054547A1 (en) Light emitting device package and lighting apparatus comprising same
WO2014119911A1 (en) Nano-structured semiconductor light-emitting element
WO2016047950A1 (en) Light emitting device and method of fabricating the same
WO2019004518A1 (en) Light emitting device package and light source apparatus
WO2015053600A1 (en) Semiconductor light emitting diode
WO2019045167A1 (en) Light emitting device package and light source device having same
WO2020159068A1 (en) Light-emitting diode
WO2018164371A1 (en) Semiconductor device and semiconductor device package
WO2018139770A1 (en) Semiconductor device and semiconductor device package
WO2018048275A1 (en) Semiconductor device
WO2019045166A1 (en) Light-emitting device package
WO2017026753A1 (en) Light emitting diode and light emitting diode package
WO2019045513A1 (en) Light-emitting element package and lighting device comprising same
WO2018143751A1 (en) Semiconductor device and display device including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15829164

Country of ref document: EP

Kind code of ref document: A1