WO2016021616A1 - Scroll-type fluid machine - Google Patents

Scroll-type fluid machine Download PDF

Info

Publication number
WO2016021616A1
WO2016021616A1 PCT/JP2015/072139 JP2015072139W WO2016021616A1 WO 2016021616 A1 WO2016021616 A1 WO 2016021616A1 JP 2015072139 W JP2015072139 W JP 2015072139W WO 2016021616 A1 WO2016021616 A1 WO 2016021616A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
fixed
revolving
discharge port
orbiting scroll
Prior art date
Application number
PCT/JP2015/072139
Other languages
French (fr)
Japanese (ja)
Inventor
和昭 佐藤
Original Assignee
アネスト岩田株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アネスト岩田株式会社 filed Critical アネスト岩田株式会社
Publication of WO2016021616A1 publication Critical patent/WO2016021616A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum

Definitions

  • the present disclosure relates to a scroll fluid machine.
  • a conventional scroll fluid machine is rotatably supported by a fixed scroll, a main shaft that can be rotated by a motor, and an eccentric shaft portion that is formed integrally with the main shaft. And an orbiting scroll that can revolve by rotation of the main shaft, and a rotation prevention mechanism that revolves while preventing the orbiting scroll from rotating.
  • This scroll type fluid machine forms a sealed chamber between the orbiting wrap and the fixed wrap by meshing the fixed wrap of the fixed scroll and the orbiting scroll of the orbiting scroll by the revolving motion of the orbiting scroll by the rotation of the drive shaft. Then, the gas sucked from the suction port is introduced into the sealed chamber, moved in the central direction and compressed, and the compressed gas is discharged from the discharge port.
  • a shaft hole is provided in the center portion of the orbiting scroll, and the eccentric shaft portion is inserted into the shaft hole up to the orbiting lap so that the radial load point and the support point of the eccentric shaft portion are made coincident with each other by the compressed gas in the orbiting scroll. .
  • the scroll fluid machine is improved in performance so that no overturning moment is generated in the orbiting scroll.
  • the eccentric shaft portion is rotatably inserted into the shaft hole of the orbiting scroll, and the shaft hole passes through the orbiting scroll and opens on the side facing the discharge port. Therefore, in a non-sealed scroll type fluid machine that does not include a hermetic casing, dust, water, and the like may enter the bearing portion of the shaft hole via the exposed discharge port, leading to a cause of failure.
  • This disclosure describes a scroll fluid machine that prevents a capsize moment from acting on the orbiting scroll and prevents intrusion of dust, water, and the like into the shaft hole of the orbiting scroll.
  • a scroll fluid machine includes a housing, a fixed scroll fixed to the housing and having a fixed lap formed on an end plate, and an eccentricity integrated with a main shaft housed in the housing and connected to a motor.
  • a revolving motion that is pivotally supported by the shaft portion and that forms a revolving wrap that forms a sealed chamber by meshing with the fixed scroll on the end plate, and prevents the revolving motion of the revolving scroll when the main shaft rotates.
  • a rotation preventing mechanism that revolves, and the orbiting scroll revolves so that the gas sucked from the suction port is introduced into the sealed chamber and moved from the outer peripheral side toward the center to be compressed, and the compressed gas is compressed by the fixed scroll.
  • the orbiting scroll has a boss part in the center part, and the boss part is on the side facing the discharge port.
  • the eccentric shaft portion is characterized in that it comprises a shaft hole which is inserted rotatably.
  • the orbiting scroll may be provided with a thrust bearing.
  • an escape space is formed between the closed wall and the discharge port facing the closed wall so as to communicate with the sealed chamber near the center of the sealed chamber, and the gas introduced into the sealed chamber is Finally, it may be discharged from the discharge port through the escape space.
  • the escape space is formed, the resistance of the discharge flow path can be reduced, high efficiency can be obtained, and the discharge port can be reduced to reduce the size of the scroll type fluid machine.
  • the height of the boss portion in the axial direction is lower than the height of the orbiting wrap, and the blocking wall is separated from the end plate of the fixed scroll in the axial direction, so that at least the escape space on the orbiting scroll side. May be formed.
  • the escape space is formed at the center of the orbiting scroll, the resistance of the discharge flow path can be reduced, high efficiency can be obtained, and the discharge port can be reduced to reduce the size of the scroll fluid machine. Can do.
  • a relief space may be formed at least on the fixed scroll side by providing a groove portion communicating with the discharge port on the end plate of the fixed scroll.
  • a shaft hole is formed in the center portion of the orbiting scroll so that the side facing the discharge port is blocked by the blocking wall and the eccentric shaft portion is inserted to the orbiting wrap.
  • FIG. 1 is a vertical side view of a scroll vacuum pump according to an embodiment of the present disclosure.
  • 2 is a longitudinal sectional view taken along line II-II in FIG.
  • FIG. 3 is an enlarged longitudinal sectional side view of a main part.
  • FIG. 4 is an exploded perspective view of the scroll type vacuum pump as viewed obliquely from the front.
  • FIG. 5 is an exploded perspective view of a main part as viewed obliquely from the rear.
  • FIG. 6 is a vertical side view of a scroll vacuum pump according to another embodiment of the present disclosure.
  • FIG. 1 is a vertical side view showing a scroll vacuum pump 1 according to an embodiment of the present disclosure.
  • the left side in FIG. 1 is defined as “front”, and the right side is defined as “rear”.
  • the scroll type vacuum pump 1 of the present embodiment includes an annular housing 2 formed of, for example, an aluminum alloy, and a disc-shaped bearing plate 2A on the rear side of the housing 2.
  • a fixed scroll 4 fixed to the front side of the housing 2, a main shaft 5 in the front-rear direction that rotates together with the rotating shaft 31 of the motor 3, and a turning scroll 6 that revolves as the main shaft 5 rotates.
  • an Oldham ring 10 that prevents the rotating motion of the orbiting scroll 6 and enables the revolving motion.
  • the revolving scroll 6 is revolved by the rotation of the main shaft 5, whereby the gas sucked from a container (not shown) that is brought into a vacuum state from the suction port 8 formed on the outer periphery of the housing 2. And the orbiting scroll 6 are introduced into a sealed chamber 7 and compressed in the direction of the center, and then discharged from a discharge port 9 formed at the center of the fixed scroll 4. .
  • the front part of the rotating shaft 31 of the motor 3 is rotatably supported by a radial bearing 20 installed at the center part of the bearing plate 2A.
  • the rear end portion of the rotating shaft 31 of the motor 3 is rotatably supported by the radial bearing 21 at the center portion of the motor casing 32.
  • An eccentric shaft portion 51 is integrally formed at the front end portion of the main shaft 5.
  • the rear end portion of the main shaft 5 is fitted and fixed to the outer periphery of the front end portion of the rotating shaft 31 of the motor 3. With this configuration, the main shaft 5 rotates as the rotating shaft 31 rotates.
  • the orbiting scroll 6 is rotatably supported by the eccentric shaft portion 51 of the main shaft 5 via the radial bearing 12, and the dynamic unbalance due to the revolving motion of the orbiting scroll 6 is provided at the substantially central portion in the axial direction of the main shaft 5.
  • a balance weight 13 for balancing is fixed.
  • the fixed scroll 4 is fixed to the front part of the housing 2 with bolts 11 facing rearward.
  • a fixed wrap 42 having a predetermined height and being spiral is integrally formed.
  • a discharge port 9 for discharging the gas compressed in the sealed chamber 7 is formed at the center of the end plate 41 of the fixed scroll 4.
  • a large number of cooling fins 43 are integrally formed on the front surface of the end plate 41.
  • the orbiting scroll 6 has a disc-shaped end plate 61. On the front surface of the end plate 61, a swirl wrap 62 having a predetermined spiral height that engages with the fixed wrap 42 of the fixed scroll 4. It is integrally formed. A boss 64 having a shaft hole 63 is integrally formed at the center of the end plate 61. An eccentric shaft portion 51 is rotatably inserted into the shaft hole 63 via the radial bearing 12.
  • the orbiting scroll 6 revolves without rotating with respect to the fixed scroll 4 as the main shaft 5 rotates by being supported in the housing 2 via the Oldham ring 10 as will be described later.
  • the fixed wrap 42 and the orbiting wrap 62 are engaged with each other so as to form a sealed chamber 7 between the fixed scroll 4 and the orbiting scroll 6.
  • Band-shaped seals 14 a and 14 b are respectively embedded in the distal ends of the fixed wrap 42 and the turning wrap 62. The seals 14a and 14b keep the sealed chamber 7 in a sealed state by contacting the opposing surfaces.
  • the orbiting scroll 6 revolves with respect to the fixed scroll 4, so that the gas sucked from the suction port 8 is sequentially shifted from the outer peripheral side to the center side of the sealed chamber 7. Sent and compressed. The gas compressed in the sealed chamber 7 is finally discharged from the discharge port 9 of the fixed scroll 4 through the escape space 71 described later.
  • the axial direction (forward) height h2 of the boss portion 64 of the orbiting scroll 6 is lower than the height h1 of the orbiting wrap 62.
  • the boss portion 64 includes a thin blocking wall 65 that blocks the front surface of the shaft hole 63 at a position facing the discharge port 9 of the fixed scroll 4.
  • the front surface of the blocking wall 65 is opposed to the discharge port 9 of the fixed scroll 4 with a slight distance.
  • an escape space 71 is formed which is a small space communicating with both the closed chamber 7 a (see FIG. 2) near the center of the sealed chamber 7 and the discharge port 9. Yes.
  • the blocking wall 65 is spaced apart from the rear surface of the end plate 41 of the fixed scroll 4 in the axial direction.
  • the escape space 71 is formed between the rear surface of the end plate 41 and the front surface of the blocking wall 65. In other words, the escape space 71 is formed on the orbiting scroll 6 side.
  • the eccentric shaft portion 51 penetrates the end plate 61 and has a height h ⁇ b> 1 of the orbiting wrap 62. More than the dimension corresponding to / 2, the shaft hole 63 is inserted.
  • the depth d in the axial direction of the shaft hole 63 is formed so as to be shallower than the height h1 of the turning wrap 62 and deeper than 1 ⁇ 2 of the height h1.
  • the escape space 71 is formed at the center of the orbiting scroll 6, it is possible to reduce the resistance of the discharge flow path, to obtain high efficiency, and to make the discharge port 9 small so that the scroll type vacuum can be obtained.
  • the pump 1 can be downsized.
  • the front of the ears 68 (three ears 68 in this embodiment) formed on the outer periphery of the end plate 61 of the orbiting scroll 6 is behind the fixed scroll 4.
  • a plate-shaped thrust bearing 15 having excellent wear resistance capable of contacting the side facing surface is fixed, and the rear surface of the end plate 61 is also provided with wear resistance capable of contacting the front facing surface in the housing 2.
  • An excellent annular thrust bearing 16 is fixed. The thrust bearings 15 and 16 make the revolving motion of the orbiting scroll 6 smooth by receiving a thrust load acting on the orbiting scroll 6.
  • the Oldham ring 10 includes a ring-shaped main body 101, a pair of front claws 102 provided at positions facing each other across the center of the front surface of the main body 101, and a rear surface of the main body 101 90 in the circumferential direction with respect to the front claws 102. And a pair of rear claws 103 provided at positions shifted by.
  • Each front claw 102 is slidably fitted into a pair of guide grooves 66 formed on the rear surface of the orbiting scroll 6, and each rear claw 103 is paired with a pair of guide grooves 66 formed on the inner surface facing the front side of the housing 2.
  • Each front claw 102 is slidably fitted into a pair of guide grooves 66 formed on the rear surface of the orbiting scroll 6, and each rear claw 103 is paired with a pair of guide grooves 66 formed on the inner surface facing the front side of the housing 2.
  • An annular groove 67 is provided on the rear surface of the end plate 61 of the orbiting scroll 6 on the outer peripheral side of the thrust bearing 16 and on the inner peripheral side of the Oldham ring 10.
  • an annular ring seal 17 that contacts the inner surface facing forward in the housing 2
  • an annular elastic body (backup seal) 18 that has a repulsive force that presses the annular seal 17 against the inner surface of the housing 2.
  • the annular seal 17 seals the rear surface of the orbiting scroll 6 and the inner surface of the housing 2, so that the inner space formed on the rear side of the end plate 61 of the orbiting scroll 6 in the housing 2 is on the outer peripheral side of the annular seal 17. Is divided into an outer peripheral space 22 formed on the inner periphery side and an inner peripheral space 23 formed on the inner peripheral side of the annular seal 17.
  • the outer peripheral side space 22 is in the outermost periphery of the sealed chamber 7 and communicates with the suction chamber 7b in a low pressure environment lower than the atmospheric pressure by following a flow path indicated by an arrow in FIG. Thereby, the pressure environment of the outer peripheral side space 22 becomes the same as the pressure environment of the suction chamber 7b when the scroll vacuum pump 1 is operated, and becomes a low pressure environment lower than the atmospheric pressure.
  • an annular seal 24 is maintained in a sealed state between the front surface of the housing 2 and the rear surface of the fixed scroll 4 facing the front surface. Thereby, the outer peripheral side space 22 is sealed in the state connected to the suction chamber 7b.
  • the outer peripheral side space 22 communicates with the suction chamber 7b as described above.
  • the suction chamber 7b in the sealed chamber 7 is in a low pressure environment lower than the atmospheric pressure, so the pressure environment in the outer peripheral space 22 is the same low pressure environment as the suction chamber 7b.
  • the sealed chamber 7a near the center of the sealed chamber 7 is not sealed, it becomes an atmospheric pressure environment.
  • the backward pressure acting on the outer peripheral part and inner peripheral part of the orbiting scroll 6 and the pressure in the outer peripheral side space 22 and the inner peripheral side space 23 are balanced with each other. Therefore, it is possible to prevent the orbiting scroll 6 from revolving smoothly.
  • thrust bearings 15 and 16 are provided on the front and rear surfaces of the orbiting scroll 6, respectively.
  • the thrust bearings 15 and 16 effectively receive a load in the thrust direction acting on the orbiting scroll 6 to enable more stable revolving motion of the orbiting scroll 6.
  • a scroll type vacuum pump 1 ⁇ / b> B in which a groove portion communicating with the discharge port 9 is provided in the end plate 41 may be used.
  • an escape space 72 is formed which is a small space communicating with both the sealed chamber 7a (see FIG. 2) near the center of the sealed chamber 7 and the discharge port 9.
  • the groove portion, that is, the escape space 72 has, for example, a cylindrical shape, and is provided in the center portion 45 on the rear surface side of the end plate 41. In other words, the escape space 72 is formed on the fixed scroll 4B side.
  • the height in the axial direction (forward) of the boss portion 64 of the orbiting scroll 6 ⁇ / b> B is substantially equal to the height of the orbiting wrap 62.
  • the blocking wall 65 is close to the rear surface of the end plate 41 of the fixed scroll 4 with a slight gap. Even with the scroll vacuum pump 1B having such a relief space 72, the same functions and effects as those of the scroll vacuum pump 1 are achieved. According to the escape space 72, the resistance of the discharge flow path can be reduced, and high efficiency can be obtained. Furthermore, it is possible to reduce the size of the scroll vacuum pump 1B by reducing the discharge port 9.
  • the escape space 71 formed on the orbiting scroll 6 side in the scroll type vacuum pump 1 shown in FIG. 1 and the escape space 72 formed on the orbiting scroll 6B side in the scroll type vacuum pump 1B shown in FIG. 6 are combined. Also good. In that case, the escape space 71 and the escape space 72 communicate with each other. Relief spaces are formed on both the orbiting scroll side and the fixed scroll side.
  • the rollover moment is prevented from acting on the orbiting scroll. Intrusion of dust, water, etc. into the shaft hole of the orbiting scroll is prevented and the cause of the failure is eliminated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A scroll-type fluid machine having: a housing; a fixed scroll fixed to the housing and having a fixed wrap formed on an end plate; a revolving scroll housed inside the housing, pivotally supported by an eccentric shaft integrally formed with a main shaft that is coupled to a motor, said revolving scroll having a revolving wrap formed on an end plate, said revolving wrap forming a sealed chamber as a result of engaging with the fixed scroll; and a rotation-prevention mechanism that prevents rotation of the revolving scroll and causes orbital motion thereof, when the main shaft rotates. The revolving scroll has a boss section in the center thereof. The boss section includes: a closing wall section that closes a side facing a discharge port; and a shaft hole into which the eccentric shaft is rotatably inserted.

Description

スクロール式流体機械Scroll type fluid machine
 本開示は、スクロール式流体機械に関する。 The present disclosure relates to a scroll fluid machine.
 従来のスクロール式流体機械は、例えば特許文献1に記載されているように、固定スクロールと、モータにより回転可能な主軸と、当該主軸に一体的に形成された偏心軸部に回転可能に枢支され、主軸の回転によって公転可能な旋回スクロールと、旋回スクロールの自転運動を阻止しつつ公転運動させる自転防止機構とを備える。このスクロール式流体機械は、駆動軸の回転による旋回スクロールの公転運動によって、固定スクロールの固定ラップと旋回スクロールの旋回ラップとを互いに噛み合わせることにより、旋回ラップと固定ラップの間に密閉室を形成し、吸入口から吸入した気体を密閉室に導入して中心方向へ移動させて圧縮し、当該圧縮された気体を吐出口から吐出させる。 As described in Patent Document 1, for example, a conventional scroll fluid machine is rotatably supported by a fixed scroll, a main shaft that can be rotated by a motor, and an eccentric shaft portion that is formed integrally with the main shaft. And an orbiting scroll that can revolve by rotation of the main shaft, and a rotation prevention mechanism that revolves while preventing the orbiting scroll from rotating. This scroll type fluid machine forms a sealed chamber between the orbiting wrap and the fixed wrap by meshing the fixed wrap of the fixed scroll and the orbiting scroll of the orbiting scroll by the revolving motion of the orbiting scroll by the rotation of the drive shaft. Then, the gas sucked from the suction port is introduced into the sealed chamber, moved in the central direction and compressed, and the compressed gas is discharged from the discharge port.
 旋回スクロールの中心部には、軸孔を設け、当該軸孔に偏心軸部を旋回ラップまで挿入することで、旋回スクロール内の圧縮気体によりラジアル荷重点と、偏心軸部の支持点を一致させる。これにより、旋回スクロールに転覆モーメントが発生しないようにして、スクロール式流体機械の性能向上を図っている。 A shaft hole is provided in the center portion of the orbiting scroll, and the eccentric shaft portion is inserted into the shaft hole up to the orbiting lap so that the radial load point and the support point of the eccentric shaft portion are made coincident with each other by the compressed gas in the orbiting scroll. . Thus, the scroll fluid machine is improved in performance so that no overturning moment is generated in the orbiting scroll.
特開平7-332258号公報JP 7-332258 A
 上記特許文献1に記載のスクロール式流体機械は、偏心軸部が旋回スクロールの軸孔に回転可能に挿入され、軸孔が旋回スクロールを貫通して吐出口に対向する側が開口している。そのため、密閉ケーシングを備えない密閉式でないスクロール式流体機械では、露出している吐出口を経由して軸孔の軸受部分に塵、水等が浸入して、故障の原因を招く虞がある。 In the scroll fluid machine described in Patent Document 1, the eccentric shaft portion is rotatably inserted into the shaft hole of the orbiting scroll, and the shaft hole passes through the orbiting scroll and opens on the side facing the discharge port. Therefore, in a non-sealed scroll type fluid machine that does not include a hermetic casing, dust, water, and the like may enter the bearing portion of the shaft hole via the exposed discharge port, leading to a cause of failure.
 本開示は、旋回スクロールに転覆モーメントが作用することを防止すると共に、旋回スクロールの軸孔への塵、水等の浸入を防止したスクロール式流体機械を説明する。 This disclosure describes a scroll fluid machine that prevents a capsize moment from acting on the orbiting scroll and prevents intrusion of dust, water, and the like into the shaft hole of the orbiting scroll.
 本開示の一態様に係るスクロール式流体機械は、ハウジングと、ハウジングに固定され、端板に固定ラップを形成した固定スクロールと、ハウジング内に収容され、モータに連結された主軸と一体をなす偏心軸部に枢支されると共に、端板に固定スクロールと噛合することにより密閉室を形成する旋回ラップを形成した旋回スクロールと、主軸が回転した際、旋回スクロールの自転運動を阻止しつつ公転運動させる自転防止機構とを備え、旋回スクロールが公転することで、吸入口から吸入した気体を密閉室に導入して外周側から中心方向へ移動させて圧縮し、当該圧縮された気体を固定スクロールの中心部に設けた吐出口から吐出するように構成されており、旋回スクロールは、中心部にボス部を有し、ボス部は、吐出口に対向する側を閉塞する閉塞壁と、偏心軸部が回転可能に挿入される軸孔とを含むことを特徴としている。 A scroll fluid machine according to an aspect of the present disclosure includes a housing, a fixed scroll fixed to the housing and having a fixed lap formed on an end plate, and an eccentricity integrated with a main shaft housed in the housing and connected to a motor. A revolving motion that is pivotally supported by the shaft portion and that forms a revolving wrap that forms a sealed chamber by meshing with the fixed scroll on the end plate, and prevents the revolving motion of the revolving scroll when the main shaft rotates. A rotation preventing mechanism that revolves, and the orbiting scroll revolves so that the gas sucked from the suction port is introduced into the sealed chamber and moved from the outer peripheral side toward the center to be compressed, and the compressed gas is compressed by the fixed scroll. The orbiting scroll has a boss part in the center part, and the boss part is on the side facing the discharge port. A busy closing wall, the eccentric shaft portion is characterized in that it comprises a shaft hole which is inserted rotatably.
 いくつかの態様において、旋回スクロールに、スラスト軸受を設けてもよい。 In some embodiments, the orbiting scroll may be provided with a thrust bearing.
 いくつかの態様において、閉塞壁と閉塞壁に対向する吐出口との間には、密閉室のうち中心寄りの密閉室に連通する逃がし空間が形成されており、密閉室に導入された気体は、最終的に、逃がし空間を通って吐出口から吐出されてもよい。逃がし空間を形成すると、吐出流路の抵抗を小さくして、高い効率が得られることができると共に、吐出口を小さくして、スクロール式流体機械の小型化を図ることができる。 In some embodiments, an escape space is formed between the closed wall and the discharge port facing the closed wall so as to communicate with the sealed chamber near the center of the sealed chamber, and the gas introduced into the sealed chamber is Finally, it may be discharged from the discharge port through the escape space. When the escape space is formed, the resistance of the discharge flow path can be reduced, high efficiency can be obtained, and the discharge port can be reduced to reduce the size of the scroll type fluid machine.
 いくつかの態様において、ボス部の軸線方向の高さは旋回ラップの高さよりも低くなっており、閉塞壁が固定スクロールの端板から軸線方向に離間することにより、少なくとも旋回スクロール側に逃がし空間が形成されてもよい。逃がし空間を、旋回スクロールの中心部に形成すると、吐出流路の抵抗を小さくして、高い効率が得られることができると共に、吐出口を小さくして、スクロール式流体機械の小型化を図ることができる。 In some embodiments, the height of the boss portion in the axial direction is lower than the height of the orbiting wrap, and the blocking wall is separated from the end plate of the fixed scroll in the axial direction, so that at least the escape space on the orbiting scroll side. May be formed. When the escape space is formed at the center of the orbiting scroll, the resistance of the discharge flow path can be reduced, high efficiency can be obtained, and the discharge port can be reduced to reduce the size of the scroll fluid machine. Can do.
 いくつかの態様において、固定スクロールの端板に、吐出口に連通する溝部が設けられることにより、少なくとも固定スクロール側に逃がし空間が形成されてもよい。 In some embodiments, a relief space may be formed at least on the fixed scroll side by providing a groove portion communicating with the discharge port on the end plate of the fixed scroll.
 本開示のいくつかの形態によると、旋回スクロールの中心部に、吐出口に対向する側が閉塞壁により閉塞され、かつ偏心軸部が旋回ラップまで挿入される程度の深さを有する軸孔を形成したことにより、旋回スクロールに転覆モーメントが作用することを防止すると共に、旋回スクロールの軸孔への塵、水等の浸入を阻止して故障の原因を除去することができる。 According to some embodiments of the present disclosure, a shaft hole is formed in the center portion of the orbiting scroll so that the side facing the discharge port is blocked by the blocking wall and the eccentric shaft portion is inserted to the orbiting wrap. As a result, it is possible to prevent an overturning moment from acting on the orbiting scroll, and to prevent entry of dust, water and the like into the shaft hole of the orbiting scroll, thereby eliminating the cause of the failure.
図1は、本開示の一形態におけるスクロール式真空ポンプの縦断側面図である。FIG. 1 is a vertical side view of a scroll vacuum pump according to an embodiment of the present disclosure. 図2は、図1におけるII-II線縦断面図である。2 is a longitudinal sectional view taken along line II-II in FIG. 図3は、要部の拡大縦断側面図である。FIG. 3 is an enlarged longitudinal sectional side view of a main part. 図4は、斜め前方から見たスクロール式真空ポンプの分解斜視図である。FIG. 4 is an exploded perspective view of the scroll type vacuum pump as viewed obliquely from the front. 図5は、斜め後方から見た要部の分解斜視図である。FIG. 5 is an exploded perspective view of a main part as viewed obliquely from the rear. 図6は、本開示の他の形態におけるスクロール式真空ポンプの縦断側面図である。FIG. 6 is a vertical side view of a scroll vacuum pump according to another embodiment of the present disclosure.
 以下、本開示の一実施形態を図面に基づいて説明する。図1は、本開示の一実施形態に係るスクロール式真空ポンプ1を示した縦断側面図である。なお、以下の説明においては、図1における左方を「前方」とし、右方を「後方」と定義する。 Hereinafter, an embodiment of the present disclosure will be described based on the drawings. FIG. 1 is a vertical side view showing a scroll vacuum pump 1 according to an embodiment of the present disclosure. In the following description, the left side in FIG. 1 is defined as “front”, and the right side is defined as “rear”.
 図1および図4に示すように、本実施形態のスクロール式真空ポンプ1は、例えばアルミ合金等で成形される円環状のハウジング2と、ハウジング2の後側に円板状の軸受プレート2Aを介して取り付けられるモータ3と、ハウジング2の前側に固定される固定スクロール4と、モータ3の回転軸31と共に回転する前後方向の主軸5と、主軸5の回転に伴って公転する旋回スクロール6と、旋回スクロール6の自転運動を阻止して公転運動を可能にするオルダムリング10とを備える。スクロール式真空ポンプ1は、旋回スクロール6が主軸5の回転によって公転することにより、ハウジング2の外周に形成された吸入口8から真空状態にする図示略の容器から吸入した気体を、固定スクロール4と旋回スクロール6との間に形成される密閉室7へ導入して、その中心方向に行くにしたがって圧縮した後、固定スクロール4の中心に形成した吐出口9から吐出させるように構成されている。 As shown in FIGS. 1 and 4, the scroll type vacuum pump 1 of the present embodiment includes an annular housing 2 formed of, for example, an aluminum alloy, and a disc-shaped bearing plate 2A on the rear side of the housing 2. A fixed scroll 4 fixed to the front side of the housing 2, a main shaft 5 in the front-rear direction that rotates together with the rotating shaft 31 of the motor 3, and a turning scroll 6 that revolves as the main shaft 5 rotates. And an Oldham ring 10 that prevents the rotating motion of the orbiting scroll 6 and enables the revolving motion. In the scroll type vacuum pump 1, the revolving scroll 6 is revolved by the rotation of the main shaft 5, whereby the gas sucked from a container (not shown) that is brought into a vacuum state from the suction port 8 formed on the outer periphery of the housing 2. And the orbiting scroll 6 are introduced into a sealed chamber 7 and compressed in the direction of the center, and then discharged from a discharge port 9 formed at the center of the fixed scroll 4. .
 モータ3の回転軸31の前部は、軸受プレート2Aの中心部に設置されるラジアル軸受20により回転自在に支持されている。モータ3の回転軸31の後端部は、ラジアル軸受21によりモータケーシング32の中心部に回転自在に支持されている。 The front part of the rotating shaft 31 of the motor 3 is rotatably supported by a radial bearing 20 installed at the center part of the bearing plate 2A. The rear end portion of the rotating shaft 31 of the motor 3 is rotatably supported by the radial bearing 21 at the center portion of the motor casing 32.
 主軸5の前端部には、偏心軸部51が一体形成されている。主軸5の後端部は、モータ3の回転軸31の前端部外周に嵌合固定されている。この構成により、主軸5は、回転軸31の回転に伴って回転する。主軸5の偏心軸部51には、ラジアル軸受12を介して旋回スクロール6が回転自在に支持され、主軸5の軸方向の略中央部には、旋回スクロール6の公転運動による動的アンバランスを平衡させるためのバランスウェイト13が固定される。 An eccentric shaft portion 51 is integrally formed at the front end portion of the main shaft 5. The rear end portion of the main shaft 5 is fitted and fixed to the outer periphery of the front end portion of the rotating shaft 31 of the motor 3. With this configuration, the main shaft 5 rotates as the rotating shaft 31 rotates. The orbiting scroll 6 is rotatably supported by the eccentric shaft portion 51 of the main shaft 5 via the radial bearing 12, and the dynamic unbalance due to the revolving motion of the orbiting scroll 6 is provided at the substantially central portion in the axial direction of the main shaft 5. A balance weight 13 for balancing is fixed.
 固定スクロール4は、ハウジング2の前部に後方を向くボルト11により固定される。固定スクロール4の円板状の端板41の後面には、渦巻き状で所定の高さを有する固定ラップ42が一体形成される。固定スクロール4の端板41の中心部には、密閉室7で圧縮された気体を吐出するための吐出口9が形成される。また、端板41の前面には、多数の冷却フィン43が一体形成されている。 The fixed scroll 4 is fixed to the front part of the housing 2 with bolts 11 facing rearward. On the rear surface of the disk-shaped end plate 41 of the fixed scroll 4, a fixed wrap 42 having a predetermined height and being spiral is integrally formed. A discharge port 9 for discharging the gas compressed in the sealed chamber 7 is formed at the center of the end plate 41 of the fixed scroll 4. A large number of cooling fins 43 are integrally formed on the front surface of the end plate 41.
 旋回スクロール6は、円板状の端板61を有し、当該端板61の前面には、固定スクロール4の固定ラップ42に対向して噛み合う渦巻き状の所定の高さを有する旋回ラップ62が一体形成されている。端板61の中心部には、軸孔63を有するボス部64が一体形成されている。軸孔63には、ラジアル軸受12を介して、偏心軸部51が回転可能に挿入されている。 The orbiting scroll 6 has a disc-shaped end plate 61. On the front surface of the end plate 61, a swirl wrap 62 having a predetermined spiral height that engages with the fixed wrap 42 of the fixed scroll 4. It is integrally formed. A boss 64 having a shaft hole 63 is integrally formed at the center of the end plate 61. An eccentric shaft portion 51 is rotatably inserted into the shaft hole 63 via the radial bearing 12.
 旋回スクロール6は、後述のようにオルダムリング10を介してハウジング2内に支持されることによって、主軸5の回転に伴って固定スクロール4に対して自転することなく公転運動する。 The orbiting scroll 6 revolves without rotating with respect to the fixed scroll 4 as the main shaft 5 rotates by being supported in the housing 2 via the Oldham ring 10 as will be described later.
 固定ラップ42と旋回ラップ62は、互いに対向して噛み合うことにより、固定スクロール4と旋回スクロール6との間に密閉室7を形成している。固定ラップ42及び旋回ラップ62の先端には、帯状のシール14a及び14bがそれぞれ埋設されている。シール14a、14bは、それぞれ対向する面に接触することで密閉室7を密閉状態に保っている。 The fixed wrap 42 and the orbiting wrap 62 are engaged with each other so as to form a sealed chamber 7 between the fixed scroll 4 and the orbiting scroll 6. Band- shaped seals 14 a and 14 b are respectively embedded in the distal ends of the fixed wrap 42 and the turning wrap 62. The seals 14a and 14b keep the sealed chamber 7 in a sealed state by contacting the opposing surfaces.
 主軸5の偏心軸部51の公転に伴って、旋回スクロール6が固定スクロール4に対して公転運動することにより、吸入口8から吸入された気体は、密閉室7の外周側から中心側に順次送られて圧縮される。密閉室7で圧縮された気体は、最終的に、後述の逃がし空間71を通って固定スクロール4の吐出口9から吐出される。 With the revolution of the eccentric shaft portion 51 of the main shaft 5, the orbiting scroll 6 revolves with respect to the fixed scroll 4, so that the gas sucked from the suction port 8 is sequentially shifted from the outer peripheral side to the center side of the sealed chamber 7. Sent and compressed. The gas compressed in the sealed chamber 7 is finally discharged from the discharge port 9 of the fixed scroll 4 through the escape space 71 described later.
 図3に示すように、旋回スクロール6のボス部64の軸方向(前方)の高さh2は、旋回ラップ62の高さh1よりも低くなっている。ボス部64は、固定スクロール4の吐出口9に対向する位置において、軸孔63の前面を閉塞する薄肉の閉塞壁65を含む。閉塞壁65の前面は、固定スクロール4の吐出口9に若干離間して対向している。閉塞壁65と吐出口9との間には、密閉室7のうち中心寄りの密閉室7a(図2参照)と吐出口9との双方に連通する小さい空間である逃がし空間71が形成されている。閉塞壁65は、固定スクロール4の端板41の後面から、軸線方向に離間している。逃がし空間71は、端板41の後面と閉塞壁65の前面との間に形成されている。言い換えれば、逃がし空間71は、旋回スクロール6側に形成されている。 As shown in FIG. 3, the axial direction (forward) height h2 of the boss portion 64 of the orbiting scroll 6 is lower than the height h1 of the orbiting wrap 62. The boss portion 64 includes a thin blocking wall 65 that blocks the front surface of the shaft hole 63 at a position facing the discharge port 9 of the fixed scroll 4. The front surface of the blocking wall 65 is opposed to the discharge port 9 of the fixed scroll 4 with a slight distance. Between the blocking wall 65 and the discharge port 9, an escape space 71 is formed which is a small space communicating with both the closed chamber 7 a (see FIG. 2) near the center of the sealed chamber 7 and the discharge port 9. Yes. The blocking wall 65 is spaced apart from the rear surface of the end plate 41 of the fixed scroll 4 in the axial direction. The escape space 71 is formed between the rear surface of the end plate 41 and the front surface of the blocking wall 65. In other words, the escape space 71 is formed on the orbiting scroll 6 side.
 また、図3に示すように、偏心軸部51が旋回スクロール6の軸孔63に挿入された状態において、偏心軸部51は、端板61を貫通し、旋回ラップ62の高さh1の1/2に相当する寸法以上、軸孔63に挿入される。換言すると、軸孔63の軸方向への深さdは、旋回ラップ62の高さh1よりも浅く、かつ高さh1の1/2よりも深くなるように形成される。これにより、密閉室7の圧縮気体による旋回スクロール6に作用するラジアル荷重点と、偏心軸部51の支持点を略一致させることにより、旋回スクロール6に転覆モーメントが発生しないようにすることができる。 Further, as shown in FIG. 3, in a state where the eccentric shaft portion 51 is inserted into the shaft hole 63 of the orbiting scroll 6, the eccentric shaft portion 51 penetrates the end plate 61 and has a height h <b> 1 of the orbiting wrap 62. More than the dimension corresponding to / 2, the shaft hole 63 is inserted. In other words, the depth d in the axial direction of the shaft hole 63 is formed so as to be shallower than the height h1 of the turning wrap 62 and deeper than ½ of the height h1. As a result, the radial load point acting on the orbiting scroll 6 by the compressed gas in the sealed chamber 7 and the support point of the eccentric shaft portion 51 are substantially matched so that no overturning moment is generated in the orbiting scroll 6. .
 さらに、吐出口9に対向するボス部64の前面は、閉塞壁65により閉塞されているため、吐出口9から浸入した塵、水等の軸孔63への浸入を防止して、旋回スクロール6の円滑な公転運動を長期に亘って保つことができる。 Further, since the front surface of the boss portion 64 facing the discharge port 9 is blocked by the blocking wall 65, the intrusion of dust, water, and the like entering from the discharge port 9 into the shaft hole 63 is prevented, and the orbiting scroll 6 Smooth revolving motion can be maintained for a long time.
 さらに、逃がし空間71は、旋回スクロール6の中心部に形成されるため、吐出流路の抵抗を小さくして、高い効率が得られることができると共に、吐出口9を小さくして、スクロール式真空ポンプ1の小型化を図ることができる。 Furthermore, since the escape space 71 is formed at the center of the orbiting scroll 6, it is possible to reduce the resistance of the discharge flow path, to obtain high efficiency, and to make the discharge port 9 small so that the scroll type vacuum can be obtained. The pump 1 can be downsized.
 図4および図5に示すように、旋回スクロール6の端板61の外周に形成された耳部68(本実施形態においては、3個の耳部68)の前面には、固定スクロール4の後側を向く面に接触可能な耐摩耗性に優れたプレート状のスラスト軸受15が固定され、また同じく端板61の後面には、ハウジング2内の前側を向く面に接触可能な耐摩耗性に優れた円環状のスラスト軸受16が固定される。スラスト軸受15、16は、旋回スクロール6に作用するスラスト荷重を受けることで、旋回スクロール6の公転運動を円滑なものとする。 As shown in FIGS. 4 and 5, the front of the ears 68 (three ears 68 in this embodiment) formed on the outer periphery of the end plate 61 of the orbiting scroll 6 is behind the fixed scroll 4. A plate-shaped thrust bearing 15 having excellent wear resistance capable of contacting the side facing surface is fixed, and the rear surface of the end plate 61 is also provided with wear resistance capable of contacting the front facing surface in the housing 2. An excellent annular thrust bearing 16 is fixed. The thrust bearings 15 and 16 make the revolving motion of the orbiting scroll 6 smooth by receiving a thrust load acting on the orbiting scroll 6.
 オルダムリング10は、円環状の本体101と、本体101の前面で中心を挟んで互いに対向した位置に設けられる一対の前側爪102と、本体101の後面で前側爪102に対して周方向に90°だけずれた位置に設けられる一対の後側爪103とを含んで構成される。 The Oldham ring 10 includes a ring-shaped main body 101, a pair of front claws 102 provided at positions facing each other across the center of the front surface of the main body 101, and a rear surface of the main body 101 90 in the circumferential direction with respect to the front claws 102. And a pair of rear claws 103 provided at positions shifted by.
 各前側爪102は、旋回スクロール6の後面に形成された一対の案内溝66にスライド自在に嵌め込まれ、各後側爪103は、ハウジング2の前側を向く内面に形成された一対の案内溝66に各前側爪102のスライド方向に対して直交する方向にスライド自在に嵌め込まれる。これにより、旋回スクロール6は、主軸5の偏心軸部51が回転することによって、オルダムリング10に対して、径方向へ直線往復運動することにより自転することなく公転運動することができる。 Each front claw 102 is slidably fitted into a pair of guide grooves 66 formed on the rear surface of the orbiting scroll 6, and each rear claw 103 is paired with a pair of guide grooves 66 formed on the inner surface facing the front side of the housing 2. Are slidably fitted in a direction perpendicular to the sliding direction of each front claw 102. Thereby, the orbiting scroll 6 can revolve without rotating by the linear reciprocating motion in the radial direction with respect to the Oldham ring 10 by the rotation of the eccentric shaft portion 51 of the main shaft 5.
 旋回スクロール6の端板61の後面にあって、スラスト軸受16よりも外周側で、かつオルダムリング10よりも内周側には、円環状の凹溝67が凹設される。凹溝67には、ハウジング2内の前方を向く内面に接触する円環状の環状シール17及び当該環状シール17をハウジング2の内面に押し付ける反発力を有する円環状の弾性体(バックアップシール)18が埋設される。 An annular groove 67 is provided on the rear surface of the end plate 61 of the orbiting scroll 6 on the outer peripheral side of the thrust bearing 16 and on the inner peripheral side of the Oldham ring 10. In the concave groove 67, there are an annular ring seal 17 that contacts the inner surface facing forward in the housing 2, and an annular elastic body (backup seal) 18 that has a repulsive force that presses the annular seal 17 against the inner surface of the housing 2. Buried.
 環状シール17は、旋回スクロール6の後面とハウジング2の内面と密封することで、ハウジング2内における旋回スクロール6の端板61の後側に形成される内部空間を、環状シール17よりも外周側に形成される外周側空間22と、環状シール17よりも内周側に形成される内周側空間23とに分割する。 The annular seal 17 seals the rear surface of the orbiting scroll 6 and the inner surface of the housing 2, so that the inner space formed on the rear side of the end plate 61 of the orbiting scroll 6 in the housing 2 is on the outer peripheral side of the annular seal 17. Is divided into an outer peripheral space 22 formed on the inner periphery side and an inner peripheral space 23 formed on the inner peripheral side of the annular seal 17.
 外周側空間22は、密閉室7における最外周にあって、大気圧よりも低い低圧環境にある吸込室7bに図3に矢印で示す流路を辿って連通する。これにより、外周側空間22の圧力環境は、スクロール式真空ポンプ1の作動時には吸込室7bの圧力環境と同じになり、大気圧よりも低い低圧環境となる。なお、ハウジング2の前面と当該前面に対面する固定スクロール4の後面との間は、円環状のシール24をもって密閉状態に保たれている。これにより、外周側空間22は、吸込室7bに連通した状態で密閉される。 The outer peripheral side space 22 is in the outermost periphery of the sealed chamber 7 and communicates with the suction chamber 7b in a low pressure environment lower than the atmospheric pressure by following a flow path indicated by an arrow in FIG. Thereby, the pressure environment of the outer peripheral side space 22 becomes the same as the pressure environment of the suction chamber 7b when the scroll vacuum pump 1 is operated, and becomes a low pressure environment lower than the atmospheric pressure. Note that an annular seal 24 is maintained in a sealed state between the front surface of the housing 2 and the rear surface of the fixed scroll 4 facing the front surface. Thereby, the outer peripheral side space 22 is sealed in the state connected to the suction chamber 7b.
 次に、上述構成のスクロール式真空ポンプ1における動作について説明する。モータ3の回転軸31が回転すると、偏心軸部51は、主軸5の軸心に対して公転運動する。これに伴い、旋回スクロール6は、オルダムリング10により自転運動が阻止されて固定スクロール4に対して公転運動する。これにより、各スクロール4、6の各ラップ42、62のそれぞれの接触箇所が中心部に向って移動し、これに伴って、吸入口8から密閉室7に導入された低圧の気体は、中心部に向って渦巻状に移動しながら圧縮され、旋回スクロール6の中心部に形成される逃がし空間71を通って吐出口9から吐出される。 Next, the operation of the scroll type vacuum pump 1 having the above configuration will be described. When the rotating shaft 31 of the motor 3 rotates, the eccentric shaft portion 51 revolves around the axis of the main shaft 5. Along with this, the orbiting scroll 6 is revolving with respect to the fixed scroll 4 while being prevented from rotating by the Oldham ring 10. Thereby, each contact location of each lap | wrap 42,62 of each scroll 4,6 moves toward a center part, and the low pressure gas introduce | transduced into the sealed chamber 7 from the suction inlet 8 in connection with this moves to the center. Compressed while moving in a spiral toward the part, discharged from the discharge port 9 through the escape space 71 formed at the center of the orbiting scroll 6.
 外周側空間22は、前述のとおり、吸込室7bに連通している。上述の真空動作の際、密閉室7における吸込室7bは、大気圧よりも低い低圧環境となることから、外周側空間22の圧力環境は、吸込室7bと同じ低圧環境となる。また、密閉室7における中心寄りの密閉室7aは、密閉されていないため大気圧環境となる。この結果、旋回スクロール6の外周部及び内周部に作用する後方への圧力と、外周側空間22及び内周側空間23の圧力とが互いに均衡するため、各シール14a、14bに対して過大な力が作用することが防止され、旋回スクロール6の円滑な公転運動を可能にする。 The outer peripheral side space 22 communicates with the suction chamber 7b as described above. During the vacuum operation described above, the suction chamber 7b in the sealed chamber 7 is in a low pressure environment lower than the atmospheric pressure, so the pressure environment in the outer peripheral space 22 is the same low pressure environment as the suction chamber 7b. Further, since the sealed chamber 7a near the center of the sealed chamber 7 is not sealed, it becomes an atmospheric pressure environment. As a result, the backward pressure acting on the outer peripheral part and inner peripheral part of the orbiting scroll 6 and the pressure in the outer peripheral side space 22 and the inner peripheral side space 23 are balanced with each other. Therefore, it is possible to prevent the orbiting scroll 6 from revolving smoothly.
 また、旋回スクロール6の前面及び後面のそれぞれにスラスト軸受15、16を設けている。スラスト軸受15、16は、旋回スクロール6に作用するスラスト方向への荷重を効果的に受けて、旋回スクロール6のより安定した公転運動を可能にする。 Further, thrust bearings 15 and 16 are provided on the front and rear surfaces of the orbiting scroll 6, respectively. The thrust bearings 15 and 16 effectively receive a load in the thrust direction acting on the orbiting scroll 6 to enable more stable revolving motion of the orbiting scroll 6.
 以上、本開示の各実施形態について説明したが、本発明の要旨を逸脱しない範囲内で、各実施形態に種々の変形や変更を施すことが可能である。 The embodiments of the present disclosure have been described above, but various modifications and changes can be made to the embodiments without departing from the gist of the invention.
 たとえば、図6に示すように、吐出口9に連通する溝部が端板41に設けられたスクロール式真空ポンプ1Bであってもよい。この溝部が設けられることにより、密閉室7のうち中心寄りの密閉室7a(図2参照)と吐出口9との双方に連通する小さい空間である逃がし空間72が形成されている。溝部すなわち逃がし空間72は、たとえば円柱状であり、端板41の後面側の中心部45に設けられる。言い換えれば、逃がし空間72は、固定スクロール4B側に形成されている。この場合、旋回スクロール6Bのボス部64の軸方向(前方)の高さは、旋回ラップ62の高さと略等しくなっている。閉塞壁65は、固定スクロール4の端板41の後面に、僅かな隙間をもって近接している。このような逃がし空間72を備えたスクロール式真空ポンプ1Bによっても、前述のスクロール式真空ポンプ1と同様の作用・効果が奏される。逃がし空間72によれば、吐出流路の抵抗を小さくして、高い効率が得られることができる。さらには、吐出口9を小さくして、スクロール式真空ポンプ1Bの小型化を図ることができる。 For example, as shown in FIG. 6, a scroll type vacuum pump 1 </ b> B in which a groove portion communicating with the discharge port 9 is provided in the end plate 41 may be used. By providing this groove portion, an escape space 72 is formed which is a small space communicating with both the sealed chamber 7a (see FIG. 2) near the center of the sealed chamber 7 and the discharge port 9. The groove portion, that is, the escape space 72 has, for example, a cylindrical shape, and is provided in the center portion 45 on the rear surface side of the end plate 41. In other words, the escape space 72 is formed on the fixed scroll 4B side. In this case, the height in the axial direction (forward) of the boss portion 64 of the orbiting scroll 6 </ b> B is substantially equal to the height of the orbiting wrap 62. The blocking wall 65 is close to the rear surface of the end plate 41 of the fixed scroll 4 with a slight gap. Even with the scroll vacuum pump 1B having such a relief space 72, the same functions and effects as those of the scroll vacuum pump 1 are achieved. According to the escape space 72, the resistance of the discharge flow path can be reduced, and high efficiency can be obtained. Furthermore, it is possible to reduce the size of the scroll vacuum pump 1B by reducing the discharge port 9.
 図1に示すスクロール式真空ポンプ1における、旋回スクロール6側に形成された逃がし空間71と、図6に示すスクロール式真空ポンプ1Bにおける、旋回スクロール6B側に形成された逃がし空間72とを組み合わせてもよい。その場合、逃がし空間71と逃がし空間72とが連通される。旋回スクロール側と固定スクロール側との双方に、逃がし空間が形成される。 The escape space 71 formed on the orbiting scroll 6 side in the scroll type vacuum pump 1 shown in FIG. 1 and the escape space 72 formed on the orbiting scroll 6B side in the scroll type vacuum pump 1B shown in FIG. 6 are combined. Also good. In that case, the escape space 71 and the escape space 72 communicate with each other. Relief spaces are formed on both the orbiting scroll side and the fixed scroll side.
 (i)旋回スクロール6の自転を阻止して公転運動を可能にする構成として、オルダムリング10に代えて、他の構成を採用してもよい。(ii)スクロール式流体機械を、真空ポンプに代えて、圧縮ポンプを採用してもよい。 (I) Instead of the Oldham ring 10, another configuration may be adopted as a configuration that enables the revolving motion by preventing the orbiting scroll 6 from rotating. (Ii) The scroll fluid machine may employ a compression pump instead of the vacuum pump.
 本開示のいくつかの態様よれば、旋回スクロールに転覆モーメントが作用することが防止される。旋回スクロールの軸孔への塵、水等の浸入が阻止されて故障の原因が除去される。 According to some aspects of the present disclosure, the rollover moment is prevented from acting on the orbiting scroll. Intrusion of dust, water, etc. into the shaft hole of the orbiting scroll is prevented and the cause of the failure is eliminated.
1、1B スクロール式真空ポンプ
2 ハウジング
2A 軸受プレート
3 モータ
4、4B 固定スクロール
5 主軸
6、6B 旋回スクロール
7 密閉室
7a 中心寄りの密閉室
7b 吸込室
8 吸入口
9 吐出口
10 オルダムリング
11 ボルト
12 ラジアル軸受
13 バランスウェイト
14a、14b シール
15 スラスト軸受
16 スラスト軸受
17 環状シール
18 弾性体
20、21 ラジアル軸受
22 外周側空間
23 内周側空間
24 シール
31 回転軸
32 モータケーシング
41 端板
42 固定ラップ
43 冷却フィン
51 偏心軸部
61 端板
62 旋回ラップ
63 軸孔
64 ボス部
65 閉塞壁
66 案内溝
67 凹溝
68 耳部
71 逃がし空間
72 逃がし空間
101 本体
102 前側爪
103 後側爪
DESCRIPTION OF SYMBOLS 1, 1B Scroll type vacuum pump 2 Housing 2A Bearing plate 3 Motor 4, 4B Fixed scroll 5 Main shaft 6, 6B Orbiting scroll 7 Sealed chamber 7a Closed chamber 7b near the center Suction chamber 8 Suction port 9 Discharge port 10 Oldham ring 11 Bolt 12 Radial bearing 13 Balance weight 14a, 14b Seal 15 Thrust bearing 16 Thrust bearing 17 Annular seal 18 Elastic body 20, 21 Radial bearing 22 Outer peripheral space 23 Inner peripheral space 24 Seal 31 Rotating shaft 32 Motor casing 41 End plate 42 Fixed lap 43 Cooling fin 51 Eccentric shaft part 61 End plate 62 Revolving wrap 63 Shaft hole 64 Boss part 65 Closure wall 66 Guide groove 67 Recessed groove 68 Ear part 71 Relief space 72 Relief space 101 Main body 102 Front claw 103 Rear claw

Claims (5)

  1.  ハウジングと、
     前記ハウジングに固定され、端板に固定ラップを形成した固定スクロールと、
     前記ハウジング内に収容され、モータに連結された主軸と一体をなす偏心軸部に枢支されると共に、端板に前記固定スクロールと噛合することにより密閉室を形成する旋回ラップを形成した旋回スクロールと、
     前記主軸が回転した際、前記旋回スクロールの自転運動を阻止しつつ公転運動させる自転防止機構とを備え、
     前記旋回スクロールが公転することで、吸入口から吸入した気体を前記密閉室に導入して外周側から中心方向へ移動させて圧縮し、当該圧縮された気体を前記固定スクロールの中心部に設けた吐出口から吐出するように構成されており、
     前記旋回スクロールは、中心部にボス部を有し、前記ボス部は、前記吐出口に対向する側を閉塞する閉塞壁と、前記偏心軸部が回転可能に挿入される軸孔とを含むことを特徴とするスクロール式流体機械。
    A housing;
    A fixed scroll fixed to the housing and having a fixed wrap formed on an end plate;
    A revolving scroll that is housed in the housing and is pivotally supported by an eccentric shaft portion that is integral with a main shaft that is connected to a motor, and that forms a revolving wrap that forms a sealed chamber by meshing with the fixed scroll on an end plate. When,
    A rotation preventing mechanism for revolving while preventing the rotation of the orbiting scroll when the main shaft rotates,
    By revolving the orbiting scroll, the gas sucked from the suction port is introduced into the sealed chamber and compressed by moving from the outer peripheral side toward the center, and the compressed gas is provided at the center of the fixed scroll. It is configured to discharge from the discharge port,
    The orbiting scroll has a boss portion at a center portion, and the boss portion includes a blocking wall that closes a side facing the discharge port, and a shaft hole into which the eccentric shaft portion is rotatably inserted. Scroll type fluid machine characterized by
  2.  前記旋回スクロールに、スラスト軸受を設けたことを特徴とする請求項1記載のスクロール式流体機械。 The scroll fluid machine according to claim 1, wherein a thrust bearing is provided on the orbiting scroll.
  3.  前記閉塞壁と前記閉塞壁に対向する前記吐出口との間には、前記密閉室のうち中心寄りの密閉室に連通する逃がし空間が形成されており、
     前記密閉室に導入された気体は、最終的に、前記逃がし空間を通って前記吐出口から吐出されることを特徴とする請求項1または2記載のスクロール式流体機械。
    Between the closed wall and the discharge port facing the closed wall, an escape space communicating with a sealed chamber closer to the center of the sealed chamber is formed,
    The scroll fluid machine according to claim 1 or 2, wherein the gas introduced into the sealed chamber is finally discharged from the discharge port through the escape space.
  4.  前記ボス部の軸線方向の高さは前記旋回ラップの高さよりも低くなっており、
     前記閉塞壁が前記固定スクロールの前記端板から前記軸線方向に離間することにより、少なくとも前記旋回スクロール側に前記逃がし空間が形成されていることを特徴とする請求項3記載のスクロール式流体機械。
    The height in the axial direction of the boss portion is lower than the height of the turning wrap,
    4. The scroll fluid machine according to claim 3, wherein the escape space is formed at least on the orbiting scroll side by separating the blocking wall from the end plate of the fixed scroll in the axial direction.
  5.  前記固定スクロールの前記端板に、前記吐出口に連通する溝部が設けられることにより、少なくとも前記固定スクロール側に前記逃がし空間が形成されていることを特徴とする請求項3記載のスクロール式流体機械。 The scroll fluid machine according to claim 3, wherein the escape space is formed at least on the fixed scroll side by providing a groove portion communicating with the discharge port on the end plate of the fixed scroll. .
PCT/JP2015/072139 2014-08-08 2015-08-04 Scroll-type fluid machine WO2016021616A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-163127 2014-08-08
JP2014163127A JP2017186906A (en) 2014-08-08 2014-08-08 Scroll type fluid machine

Publications (1)

Publication Number Publication Date
WO2016021616A1 true WO2016021616A1 (en) 2016-02-11

Family

ID=55263877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072139 WO2016021616A1 (en) 2014-08-08 2015-08-04 Scroll-type fluid machine

Country Status (2)

Country Link
JP (1) JP2017186906A (en)
WO (1) WO2016021616A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017037778A1 (en) * 2015-08-28 2017-03-09 株式会社日立産機システム Scroll-type fluid machine and maintenance method for same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04365902A (en) * 1991-06-12 1992-12-17 Mitsubishi Electric Corp Scroll type fluid machine
JP2002161875A (en) * 2000-11-27 2002-06-07 Matsushita Electric Works Ltd Scroll pump
JP2003232284A (en) * 2001-12-03 2003-08-22 Matsushita Ecology Systems Co Ltd Generating device
JP2003254271A (en) * 2002-03-04 2003-09-10 Teijin Ltd Twin scroll type fluid machinery
JP2003301784A (en) * 2003-04-16 2003-10-24 ▲荒▼田 哲哉 Rotation preventing mechanism of scroll fluid machine
JP2005233093A (en) * 2004-02-20 2005-09-02 Toyota Industries Corp Scroll type compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04365902A (en) * 1991-06-12 1992-12-17 Mitsubishi Electric Corp Scroll type fluid machine
JP2002161875A (en) * 2000-11-27 2002-06-07 Matsushita Electric Works Ltd Scroll pump
JP2003232284A (en) * 2001-12-03 2003-08-22 Matsushita Ecology Systems Co Ltd Generating device
JP2003254271A (en) * 2002-03-04 2003-09-10 Teijin Ltd Twin scroll type fluid machinery
JP2003301784A (en) * 2003-04-16 2003-10-24 ▲荒▼田 哲哉 Rotation preventing mechanism of scroll fluid machine
JP2005233093A (en) * 2004-02-20 2005-09-02 Toyota Industries Corp Scroll type compressor

Also Published As

Publication number Publication date
JP2017186906A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
EP1835180B1 (en) Scroll fluid machine
US9624928B2 (en) Scroll-type compressor with gas passage formed in orbiting plate to restrict flow from compression chamber to back pressure chamber
JP5817760B2 (en) Scroll compressor
US6264444B1 (en) Scroll-type compressor having orbital rotating mechanism on the side of movable spiral wall
US20150198161A1 (en) Scroll type compressor
JP5901446B2 (en) Rotary compressor
US10473102B2 (en) Rotary compressor having fluid passage between sliding vane and vane slot
JP2015113722A (en) Scroll type compressor
JP3144611B2 (en) Scroll compressor
KR20180072302A (en) Scroll compressor
JP3036271B2 (en) Scroll compressor
JP4822943B2 (en) Fluid machinery
WO2016021616A1 (en) Scroll-type fluid machine
US6663367B2 (en) Shaft seal structure of vacuum pumps
JP5554124B2 (en) Compression device
JP2020133499A (en) Turbo type fluid machine
JP6470000B2 (en) Scroll type fluid machinery
JP2016037937A (en) Scroll type vacuum pump
JP2009138641A (en) Compressor
JP6792072B2 (en) Scroll fluid machine
JPWO2020084666A1 (en) Vane pump device
JP2015165116A (en) Scroll compressor
KR102232427B1 (en) Scroll type compressor
WO2022152228A1 (en) Scroll compressor
JP2017040181A (en) Motor pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15830179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP