WO2016021448A1 - Conveyor belt, method for producing conveyor belt, and rubber composition - Google Patents

Conveyor belt, method for producing conveyor belt, and rubber composition Download PDF

Info

Publication number
WO2016021448A1
WO2016021448A1 PCT/JP2015/071417 JP2015071417W WO2016021448A1 WO 2016021448 A1 WO2016021448 A1 WO 2016021448A1 JP 2015071417 W JP2015071417 W JP 2015071417W WO 2016021448 A1 WO2016021448 A1 WO 2016021448A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupling agent
silane coupling
conveyor belt
rubber
rubber composition
Prior art date
Application number
PCT/JP2015/071417
Other languages
French (fr)
Japanese (ja)
Inventor
大樹 土屋
聡一郎 中根
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to JP2016540165A priority Critical patent/JP6254704B2/en
Priority to CN201580042181.7A priority patent/CN106573729B/en
Publication of WO2016021448A1 publication Critical patent/WO2016021448A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G15/00Conveyors having endless load-conveying surfaces, i.e. belts and like continuous members, to which tractive effort is transmitted by means other than endless driving elements of similar configuration
    • B65G15/30Belts or like endless load-carriers
    • B65G15/32Belts or like endless load-carriers made of rubber or plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene

Definitions

  • the present invention relates to a conveyor belt, a method for manufacturing a conveyor belt, and a rubber composition.
  • conveyor belts which are the main components of belt conveyors widely used as conveying devices for articles and materials, are commercially available in various shapes and materials, and these are used properly according to the application. It has been.
  • a rubber conveyor belt is used.
  • This rubber conveyor belt has a core at the center in the thickness direction, and the core is mounted on both the front and back sides. Those provided with a cover rubber layer covering from a wide range are widely used.
  • a rubber composition constituting the cover rubber layer of this conveyor belt a rubber composition having a base rubber made of diene rubber such as natural rubber or polybutadiene rubber is known because of its excellent strength and wear resistance (see below). (See Patent Documents 1 and 2).
  • a belt conveyor is usually provided with a conveyor belt in an endless state.
  • This type of belt conveyor includes a driving pulley and a driven pulley for driving the conveyor belt over the belt.
  • the belt conveyor as described above usually includes a plurality of support rollers for supporting the conveyor belt from the back side between the driving pulley and the driven pulley.
  • the conveyor belt is not only greatly bent by the driving pulley and the driven pulley during operation, but also on the back side (non-conveying side) when passing over the support roller arranged between the driving pulley and the driven pulley. Deformation such as slight bending, stretching, and compression occurs.
  • the cover rubber on the back side that comes into contact with the support roller has a relatively high elastic modulus and is formed of a rubber composition having a low loss coefficient (Tan ⁇ ) in dynamic viscoelasticity. It is preferable from the viewpoint of suppressing energy loss when received. That is, in order to make the conveyor belt exhibit energy saving, it is effective to form the back side cover rubber layer with a rubber composition having at least a relatively high elastic modulus of the back side cover rubber layer and a low loss coefficient. is there.
  • the loss coefficient (Tan ⁇ ) of the cover rubber when the loss coefficient (Tan ⁇ ) of the cover rubber is reduced, energy loss when passing over the support roller is reduced, and power consumption when driving the conveyor belt is reduced.
  • the durability of the cover rubber such as tear resistance and wear resistance, tends to be low.
  • the conventional conveyor belt has a problem that energy saving and durability cannot be achieved at the same time.
  • the present invention has been made paying attention to such points, and provides a rubber composition having a low loss factor while maintaining basic physical properties such as tensile strength and tear strength, and thus, energy saving and durability. It is an object to provide a conveyor belt having a good balance of performance.
  • the present invention is a conveyor belt provided with a front side cover rubber layer and a back side cover rubber layer as a cover rubber layer extending along the longitudinal direction of the belt, and at least the back side cover
  • the rubber composition constituting the rubber layer contains a diene rubber, carbon black, silica, and a silane coupling agent, and a sulfide silane coupling agent and an amino silane coupling agent as the silane coupling agent.
  • Conveyor belt including is provided.
  • this invention is a conveyor belt manufacturing method which produces the conveyor belt provided with the surface side cover rubber layer and the back side cover rubber layer as a cover rubber layer extended along a belt longitudinal direction in order to solve the said subject.
  • a rubber composition comprising a diene rubber, carbon black, silica, and a silane coupling agent, and a sulfide silane coupling agent and an amino silane coupling agent as the silane coupling agent is prepared.
  • Conveyor belt for carrying out a first step, a second step of forming at least the back side cover rubber layer with the rubber composition produced in the first step among the front side cover rubber layer and the back side cover rubber layer A manufacturing method is provided.
  • the present invention includes a diene rubber, carbon black, silica, and a silane coupling agent in order to solve the above-mentioned problems, and as the silane coupling agent, a sulfide silane coupling agent and an amino silane.
  • a rubber composition comprising a coupling agent is provided.
  • a rubber composition having a low loss factor can be provided while maintaining basic physical properties such as tensile strength and tear strength. Therefore, according to the present invention, a conveyor belt excellent in energy saving and durability can be provided.
  • FIG. 2 is a cross-sectional view taken along the line II of FIG. 1 showing a schematic cross-sectional structure of the conveyor belt of one embodiment.
  • FIG. 4 is a cross-sectional view taken along line II-II in FIG. 3.
  • FIG. 1 is a diagram schematically showing a method of using a belt conveyor provided with the conveyor belt of the present embodiment
  • FIG. 2 is a cross-sectional structure taken along a line II shown in FIG. It is arrow sectional drawing which showed schematically.
  • FIG. 1 shows a state of the belt conveyor 1 in which the conveyor belt 10 of the present embodiment formed in an endless shape is arranged so as to have a constant upward gradient from the right side to the left side when viewed from the front in FIG. .
  • FIG. 1 shows a state in which the transported object A is transported as viewed from the side in the transport direction.
  • the conveyor belt 10 is stretched between pulleys 20 arranged on one end side (loading side) and the other end side (unloading side) in the longitudinal direction of the transport path.
  • the unloading pulley 20 is a driving pulley 21 connected to a driving source.
  • the pulley 20 arranged on the stacking side is a driven pulley 22 that rotates together with the endless conveyor belt 10 circulated by the drive pulley 21.
  • support rollers 30 are arranged at a plurality of locations between the drive pulley 21 and the driven pulley 22.
  • the belt conveyor 1 of the present embodiment is provided with a plurality of forward path side support rollers 30a that support the conveyor belt 10 from the back surface side in a transport path (forward path) from the stacking side to the unloading side.
  • the belt conveyor 1 includes a plurality of return-side support rollers 30b that come into contact with the surface of the conveyor belt 10 facing downward in a path (return path) from the unloading side to the loading side. ing.
  • the return path side support roller 30b supports the conveyor belt by bringing the outer peripheral surface into contact with the surface of the conveyor belt 10.
  • the driving pulley 21, the driven pulley 22, and the plurality of forward path side support rollers 30a are arranged with their rotation axes arranged in parallel to each other so that the conveyor belt 10 in the forward path can be supported at a substantially constant inclination.
  • the plurality of the return path side support rollers 30b are arranged in parallel with each other so that the conveyor belt 10 on the return path can be supported at a substantially constant inclination, and the vertical position of the upper end portion is lowered to the right in FIG. It is provided in the belt conveyor 1 so as to be.
  • the conveyor belt 10 in this embodiment is formed in the shape of a flat belt which is not provided with a horizontal beam crossing in the belt width direction and an ear beam standing along both side edges of the belt.
  • the conveyor belt 10 in the present embodiment has a cover rubber 11 (hereinafter referred to as “surface side cover rubber 11a”) that forms the surface side (outer peripheral side) of the conveyor belt 10 on which the conveyed product A is placed.
  • a cover rubber 11 constituting a back surface opposite to the surface on which the conveyed product A is placed hereinafter also referred to as “back surface cover rubber 11b”).
  • a core body layer 12 is formed inside the two layers of cover rubber 11.
  • the core body layer 12 is formed by embedding a core canvas for imparting a tensile strength to the conveyor belt inside the cover rubber 11 of two layers. That is, the front surface side cover rubber 11a and the back surface side cover rubber 11b form a rubber layer extending along the longitudinal direction of the belt, and are formed to have a substantially constant thickness in the longitudinal direction of the belt.
  • the conveyor belt 10 when the conveyed product A is positioned between the forward path side support rollers 30a, the conveyor belt 10 is bent downward due to the weight of the conveyed product A during operation. Become. That is, in a situation where the weight of the conveyed product A is not supported by the forward path side support roller 30a, a tension corresponding to the weight of the conveyed product A is applied to the conveyor belt 10.
  • the conveyor belt 10 is lifted as the conveyed product A approaches the forward path support roller 30a, and after the conveyed object A passes the forward path support roller 30a, the forward path side. As the distance from the support roller 30a increases, the conveyor belt 10 is bent downward again.
  • the conveyor belt 10 according to the present embodiment undergoes multiple bendings in the outward path.
  • the belt conveyor 1 of the present embodiment has a plurality of forward path support rollers 30 a arranged in the belt width direction at locations where the conveyor belt 10 is supported by the forward path support rollers 30 a.
  • the belt conveyor 1 of this embodiment makes the state which lifted the width direction both ends of the conveyor belt 10 rather than the center part with these some outward path side support rollers 30a, made the conveyor belt 10 into a bowl shape, and the conveyed product A became The falling from the side of the conveyor belt 10 is prevented.
  • the conveyor belt 10 of the present embodiment is bent into a bowl shape after passing through the driven pulley 22 in a flat state, and returned to a flat state before being wound around the drive pulley 21. Further, the conveyor belt 10 is greatly bent by these when passing through the driving pulley 21 and the driven pulley 22. Furthermore, the conveyor belt 10 of the present embodiment applies a compressive stress or the like by the forward support roller 30a and the transported object A due to the mass of the transported object A when the transported object A passes over the forward support roller 30a. It is done.
  • the back side cover rubber 11b out of the front side cover rubber 11a and the back side cover rubber 11b has a relatively high elastic modulus and a cycle of “elastic deformation-restoration”. It is preferable that hysteresis loss is small.
  • the back-side cover rubber 11b is preferably composed of a rubber composition having a low dynamic loss factor (Tan ⁇ ).
  • the conveyor belt of this embodiment can form the said surface side cover rubber
  • the front side cover rubber 11a and the back side cover rubber 11b do not need to be formed of the same rubber composition, and may be formed of different rubber compositions.
  • the rubber composition for conveyor belts of this embodiment used for forming the back side cover rubber 11b includes components such as a base rubber, a filler, and an additive. Specifically, a diene rubber, carbon black, Silica and a silane coupling agent are included. Further, the rubber composition of the present embodiment includes a sulfide-based silane coupling agent and an amino-based silane coupling agent as a silane coupling agent.
  • the rubber composition preferably contains natural rubber and a diene rubber other than natural rubber as a rubber component. From the viewpoint of reducing the loss coefficient (Tan ⁇ ) at low temperatures of the rubber composition, polybutadiene other than natural rubber is used. It preferably contains rubber or styrene-butadiene rubber.
  • the rubber composition has a functional group capable of binding to a filler (filler) in the molecule as the polybutadiene rubber or the styrene-butadiene rubber, particularly from the viewpoint of achieving both a loss factor (Tan ⁇ ) and tear strength. It is preferable to contain a modified product prepared at the end of the main chain.
  • the rubber composition contains natural rubber at a ratio of 50 mass% to 80 mass% in the rubber component. Therefore, when the rubber composition contains a modified product and / or a non-modified product of polybutadiene rubber or styrene-butadiene rubber, the total of all polybutadiene rubbers and all styrene-butadiene rubbers is 20% by mass in the rubber component. The content is preferably 50% by mass or less.
  • the rubber composition may contain a filler other than the carbon black and the silica.
  • the filler other than the carbon black and the silica include talc, clay, calcium carbonate, and aluminum hydroxide. Can be mentioned.
  • the filler contained in the rubber composition is preferably 80% by mass or more of carbon black and silica, more preferably 90% by mass or more of carbon black and silica, and 95% by mass or more of carbon. Particularly preferred are black and silica.
  • the carbon black is an effective component for exerting strength against the cover rubber
  • the carbon black tends to form an agglomerate by itself in the cover rubber.
  • This agglomerate collapses when a large deformation occurs in the cover rubber, and the shear elastic modulus decreases, which may increase the hysteresis loss of the cover rubber.
  • the rubber composition contains silica, which generally has a tendency to be inferior to carbon black in terms of reinforcing effect, but can make it difficult to form agglomerates with a silane coupling agent or the like. ing.
  • the content of silica contained in the rubber composition is preferably 5 to 60 parts by mass and more preferably 10 to 50 parts by mass with respect to 100 parts by mass of the diene rubber. Moreover, it is preferable that the ratio of the silica to the sum total of carbon black and a silica is 25 to 75 mass%.
  • carbon black for reinforcing rubber those classified as HAF, FEF and the like in ASTM D 1765 are widely used.
  • the rubber composition has a low loss factor. Therefore, it is preferable to employ carbon black having a relatively large particle size classified as GPF or SRF in the same standard. More specifically, in the rubber composition of the present embodiment, 80% by mass or more of the carbon black contained is preferably GPF or SRF, and more preferably 90% by mass or more is GPF or SRF. 95% by mass or more is particularly preferably GPF or SRF.
  • the silica in the present embodiment preferably has a particle size of a certain size or more, like carbon black.
  • the silica is preferably produced by a wet method rather than the one produced by a dry method, and among the wet methods, one produced by a sedimentation method is more preferred than that produced by a gel method.
  • the silica contained in the rubber composition of the present embodiment is preferably one in which primary particles having a size of 10 nm to 50 nm are aggregated to form secondary particles, and an average of 1 ⁇ m to 40 ⁇ m. What has a particle diameter is preferable.
  • silica having a BET specific surface area of 20 m 2 / g to 400 m 2 / g is preferable.
  • the rubber composition of this embodiment contains an amino-based silane coupling agent and a sulfide-based silane coupling agent for the purpose of improving the dispersibility of silica in the rubber composition.
  • the amino silane coupling agent and the sulfide silane coupling agent do not need to be contained alone in the rubber composition, and two or more of them may be contained in the rubber composition.
  • amino-based silane coupling agent examples include 3-aminopropyltrimethoxysilane ( ⁇ -aminopropyltrimethoxysilane), N-3- (4- (3-aminopropoxy) butoxy) propyl-3-aminopropyl Trimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane (N- ⁇ (aminoethyl) ⁇ -aminopropyltri Methoxysilane), N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine and its partial hydrolyzate, N-phenyl -3-aminopropyltrimethoxysilane), N-
  • the amino silane coupling agent contained in the rubber composition of this embodiment is preferably 3-aminopropyltrimethoxysilane.
  • the rubber composition of the present embodiment prevents the influence of the addition of the amino-based silane coupling agent from being excessively manifested in the viscoelasticity of the rubber composition, and improves the work such as rubber kneading.
  • the alkylamine has an alkyl group having 6 to 20 carbon atoms, and is preferably either a monoalkylamine having one alkyl group or a dialkylamine having two alkyl groups. .
  • the alkylamine is preferably a monoalkylamine such as octylamine or dodecylamine.
  • the sulfide silane coupling agent examples include a monosulfide silane coupling agent and a polysulfide silane coupling agent.
  • a polysulfide-based silane coupling agent such as bis (3-triethoxysilylpropyl) tetrasulfide is preferable.
  • the amino silane coupling agent and the alkylamine are effective components for improving the hardness of the rubber composition. Therefore, the compound containing all the components contained in the rubber composition contains the amino-based silane coupling agent and the alkylamine even when an aggregate formed by the silica or the carbon black is formed during kneading. Shear force is easily applied to the agglomerates. That is, the rubber composition contains the amino-based silane coupling agent and the alkylamine, thereby reducing the abundance of aggregates due to the silica and the carbon black.
  • the content of the amino silane coupling agent with respect to 100 parts by mass of the silica is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and 3 parts by mass or more. It is particularly preferred.
  • the content of the amino silane coupling agent with respect to 100 parts by mass of silica is preferably 10 parts by mass or less, and more preferably 8 parts by mass or less.
  • the content of the alkylamine with respect to 100 parts by mass of the silica is preferably 1 part by mass or more, and more preferably 1.5 parts by mass or more.
  • the content of the alkylamine with respect to 100 parts by mass of the silica is preferably 10 parts by mass or less, and more preferably 7 parts by mass or less.
  • the content of the amino silane coupling agent with respect to 100 parts by mass of silica is “Xa (parts by mass)”, and the content of the alkylamine with respect to 100 parts by mass of silica Is preferably “Xb (parts by mass)”, it is preferable to satisfy all of the following relational expressions (1) to (3).
  • Xa parts by mass
  • Xb parts by mass
  • the content of the sulfide-based silane coupling agent with respect to 100 parts by mass of the silica is preferably 1 part by mass or more and 20 parts by mass or less, and is 5 parts by mass or more and 15 parts by mass or less. It is preferable.
  • silane coupling agents are effective for imparting affinity between rubber components such as natural rubber and silica particles.
  • silica is coupled with a sulfide-based silane coupling agent after being coupled with an amino-based silane coupling agent. Is preferably applied.
  • the coupling treatment with the sulfide-based silane coupling agent is performed after the coupling treatment with the amino-based silane coupling agent.
  • the coupling treatment with the amino silane coupling agent is preferably performed prior to the coupling treatment with the sulfide silane coupling agent.
  • the agglomerates covered with the coupling agent are formed in common, but it is considered that the agglomerates are easily crushed by being sheared by kneading.
  • silica that has been crushed into individual particles having at least a part of the surface subjected to coupling treatment is usually subjected to coupling treatment with a sulfide-based silane coupling agent, thereby suppressing reaggregation, Dispersibility becomes even better.
  • the rubber composition of this embodiment can contain additives other than the silane coupling agent.
  • the additive include vulcanizing agents such as sulfur and organic peroxides; aldehyde / ammonia compounds, guanidine compounds, thiourea compounds, thiazole compounds, sulfenamide compounds, thiuram compounds, dithiocarbamates Vulcanization accelerators such as organic compounds; vulcanization retarders such as organic acids, nitroso compounds, halides, 2-mercaptobenzimidazole, N-cyclohexylthiophthalimide; amino / ketone compounds, aromatic amine compounds, monophenols Anti-aging agents such as compounds, polyphenol compounds and benzimidazole compounds; processing aids such as fatty acid ester compounds; flame retardants and pigments.
  • vulcanizing agents such as sulfur and organic peroxides
  • aldehyde / ammonia compounds such as guanidine compounds, thiourea compounds, thiazole compounds, sul
  • the conveyor belt of the present embodiment is not particularly limited with respect to the core for forming the core body layer 12, and a conveyor belt used for a general conveyor belt can also be employed in this embodiment.
  • a canvas or the like is exemplified as the core body, but the core body does not have to be a canvas and may be a steel cord or the like.
  • the manufacturing method of the conveyor belt of this embodiment is not particularly limited, and can be manufactured in the same manner as a general conveyor belt.
  • the method for producing a conveyor belt according to the present embodiment includes a cover rubber layer extending along the belt longitudinal direction, and the front rubber cover layer and the rear cover rubber layer as the cover rubber layer. And a second step of forming at least the back side cover rubber layer of the front side cover rubber layer and the back side cover rubber layer with the rubber composition produced in the first step.
  • the method of implementing is mentioned.
  • the first step includes a diene rubber, carbon black, silica, and a silane coupling agent.
  • the rubber includes a sulfide silane coupling agent and an amino silane coupling agent as the silane coupling agent.
  • the composition may be prepared by a general method.
  • the rubber composition can be produced, for example, by kneading a compound containing all components using a Banbury mixer, a kneader mixer, a roll, or the like.
  • the conveyor belt is manufactured by forming an unvulcanized sheet for a cover rubber by molding a rubber composition into a sheet shape using a calendar or the like, and vulcanizing the unvulcanized sheet and canvas integrally. be able to.
  • a rubberized canvas is prepared, and the canvas is sandwiched between unvulcanized sheets for cover rubber, and “unvulcanized sheet for front side cover rubber / canvas / unvulcanized sheet for back side cover rubber”.
  • the above-mentioned conveyor belt can be produced by forming a laminated body laminated in the order of “” and integrating the laminated body while vulcanizing using a vulcanizing press.
  • the silica is subjected to the coupling treatment with the sulfide-based silane coupling agent after the coupling treatment with the amino-based silane coupling agent. Therefore, in the rubber kneading for producing the unvulcanized rubber sheet, silica previously coupled with an amino silane coupling agent is used, and a sulfide silane coupling agent is added during the rubber kneading. Alternatively, the addition of the silane coupling agent is preferably carried out in two steps.
  • the first kneading is performed by kneading the first compound in which one or more components among all the components contained in the rubber composition are insufficient, and the first kneading.
  • Second kneading the second compound containing the kneaded product and the second compound supplemented with the lacking component, the amino compound containing an amino-based silane coupling agent, and The first kneading is performed in a state where the sulfide-based silane coupling agent is deficient in the first compound, and the second compound supplemented with the sulfide-based silane coupling agent is kneaded in the second compounding. It is preferable to prepare a rubber composition.
  • the component is insufficient means not only the case where “the component is included but the proportion thereof is small”, but also the case where “the component is not included”.
  • a sulfide-based silane coupling agent is not substantially contained in the first compound.
  • the silane coupling agent is preferably sufficiently reacted with silica.
  • the kneading of the rubber composition is preferably carried out in a heated state (for example, 100 ° C. or higher) in the sense of reacting silica and the silane coupling agent.
  • a heated state for example, 100 ° C. or higher
  • the double bond of the rubber is excessively cut or the vulcanization proceeds, so that the desired properties are exhibited in the cover rubber. There is a risk that it will be difficult.
  • the kneading of the rubber composition including the vulcanizing agent is preferably performed at a temperature lower than 100 ° C, and preferably performed at a temperature lower than 80 ° C.
  • the first compound containing the amino silane coupling agent without substantially containing the vulcanizing agent or the sulfide silane coupling agent is kneaded at a temperature of 100 ° C. or higher.
  • a step, a step of cooling the kneaded product to a temperature of less than 100 ° C. after the step, a step of adding a sulfide-based silane coupling agent after the step and kneading at a temperature of 100 ° C. or more, and a kneaded product after the step of 100 It is preferable to carry out at least the step of cooling to a temperature of less than 0 ° C. and the step of kneading at a temperature of less than 100 ° C. after containing the vulcanizing agent.
  • the belt conveyor is excellent in energy saving and durability by being provided with the conveyor belt of this embodiment.
  • the conveyor belt 10 is used in the form of a bowl curved in the width direction when transporting the transported object A, The case where bending in the width direction as well as the longitudinal direction is performed at the time of use is illustrated. However, the effect of the present invention is also exhibited in a conveyor belt that is only bent in the longitudinal direction during use. Further, as shown in FIGS. 3 and 4, examples in which the bending of the width direction is larger than that of the conveyor belt shown in FIGS.
  • FIGS. 3 and 4 show a belt conveyor 1 called a pipe conveyor and the use state of the conveyor belt 10 in the belt conveyor 1.
  • the conveyor belt 10 shown in FIGS. 3 and 4 is common to the conveyor belt shown in FIGS. 1 and 2 in that it is endless and is stretched between the drive pulley 21 and the driven pulley 22.
  • the conveyor belt 10 shown in FIGS. 3 and 4 is also common to the conveyor belt shown in FIGS. 1 and 2 in that the conveyor belt 10 is distorted when getting over the forward path side support roller 30a and the backward path side support roller 30b.
  • the conveyor belt 10 shown in FIGS. 3 and 4 is also shown in FIGS. 1 and 2 in that a core layer (not shown) is formed between the front cover rubber 11a and the back cover rubber 11b. Common to the conveyor belt shown.
  • the conveyor belt 10 shown in FIGS. 3 and 4 is used in a state in which the conveyor belt 10 is rolled into a cylindrical shape in a section where the conveyed product A is conveyed. That is, the conveyor belt 10 shown in FIGS. 3 and 4 has both ends in the width direction lifted by the forward-side support rollers 30a after the conveyed product A is placed on the upper surface of the front-side cover rubber 11a on the stacking side. The lifted both end portions are drawn so that the back side faces upward, and the both end portions are overlapped to form a cylindrical shape, and this cylindrical state is maintained until unloading.
  • the belt conveyor 1 shown in FIGS. 3 and 4 is suitable for transporting a transported object A or the like which is easily scattered such as powder, and is large for the conveyor belt 10 when it is formed into a cylindrical shape. Since distortion is added, the effect of the present invention becomes more remarkable. In particular, even if a part of the conveyed product A adheres to the surface of the surface side cover rubber 11a, the conveyor belt 10 is formed into a cylinder by the return side support roller 30b in the return path so that it does not fall on the return path. In the belt conveyor 1 of the shape, the effect of the present invention is particularly remarkable. As described above, the effects of the present invention are exhibited in various conveyor belts other than those shown in FIGS.
  • Such an effect does not occur only when the rubber composition of the present embodiment is used as a cover rubber.
  • energy loss during traveling can be reduced by forming the ear rails with the rubber composition of the present embodiment.
  • the rubber composition for conveyor belts of the present invention can be applied not only to the back cover rubber layer, but also to the front cover rubber layer and the core layer, and is useful for forming other parts of the conveyor belt. It is a thing.
  • the rubber composition of the present embodiment is a compressed rubber layer of a V belt or V ribbed belt that is used by being wound around a pulley with a V groove, a tooth portion of a toothed belt that is used by being wound around a toothed pulley, or the like. It is also useful for the formation of Furthermore, the rubber composition of this embodiment is useful as a material for forming a transmission belt such as a round belt or a flat belt. The rubber composition of the present embodiment is not only useful as a rubber composition for belts such as conveyor belts and transmission belts, but also can be used in various applications that require both energy saving and durability.
  • the rubber composition and conveyor belt of the present invention are not limited to the above examples.
  • silica precipitated silica (trade name: Ultrasil VN3, manufactured by Evonik Degussa Japan), 30 parts by mass, and then an amino silane coupling agent (3-aminopropyltriethoxysilane) (trade name: dynasilane AMEO).
  • Evonik Degussajapa 1.3 parts by mass and 0.7 parts by mass of octylamine (trade name: Farmin 08D manufactured by Kao) were added and reacted at 150 ° C., and then a sulfide-based silane coupling agent (bis (3-tri Ethoxysilylpropyl) tetrasulfide) (trade name: Si69 manufactured by Evonik Degussa Japan) (3 parts by mass) was added and reacted at 140 ° C.
  • a sulfide-based silane coupling agent bis (3-tri Ethoxysilylpropyl) tetrasulfide
  • stearic acid (trade name: bead stearic acid Tsubaki Sanyu Industrial, (processing aid 1)) and three types of zinc oxide (trade name: Zinc Hana 3A, made by Mitsui Mining & Mining, Auxiliary agent 2)), anti-aging agent (trade names: Nocrack 6C, Nocrack 224, Sunnock, and Nocrack AW-N Ouchi Shinsei Chemical), Vulcanization accelerator (Product No .: Noxeller NS-F Ouchi Shinsei Chemical) ), A vulcanization retarder (trade name: MIRAD PVI, manufactured by Ogura Sandine Co., Ltd.), and kneaded with a Banbury mixer.
  • MIRAD PVI manufactured by Ogura Sandine Co., Ltd.
  • the rubber after kneading is made into a sheet shape with a sheet extruder (trade name: TSR Kobe Steel), and then a vulcanizing agent (sulfur) (trade name: Seimi OT Rubber Industrial Materials) is charged in a mill blender. An unvulcanized rubber sheet having a predetermined thickness was obtained.
  • the vulcanized rubber sheet obtained by hot pressing this unvulcanized rubber sheet was evaluated according to the following items.
  • Test piece was a JIS No. 3 dumbbell-shaped test piece with a thickness of 2.0 mm.
  • ⁇ Shear modulus> As a testing machine, “RPA2000” manufactured by Alpha Technologies was used. The test conditions were a frequency of 0.5 Hz and a temperature of 40 ° C., the shear modulus at shear strain of 0.28% and 60% was measured, respectively, and the retention rate (%) of the shear modulus was obtained from the ratio thereof.
  • the test piece was produced by punching a disk having a diameter of 30 mm from a sheet having a thickness of 12.5 mm in accordance with JISK6300-2 (2001) “How to obtain vulcanization characteristics using a vibration vulcanization tester”.
  • ⁇ Test of loss factor (tan ⁇ )> As a testing machine, “FT-RheoSpectra DVE-V4” manufactured by Rheology Co., Ltd. was used. The test conditions were a frequency of 10 Hz, a temperature of 0 ° C., 20 ° C., a sample thickness of 1.0 mm, a sample length of 8.00 mm, and a sample width of 3 mm. The measured value of the loss factor tan ⁇ was measured by applying a distortion of amplitude ⁇ 2% in a state where the loss factor tan ⁇ was extended by 5% with respect to the sample length.
  • Example 5 A rubber composition was prepared in the same manner as in Example 1 except that the rubber composition was prepared by the formulation shown in Table 1, and evaluation of the vulcanized rubber sheet was performed in the same manner as in Example 1.
  • silica Product No .: Cupsil 8113 Evonik Degussa
  • silica that was previously surface-treated on silica (Product No .: Ultrasil VN3) with a sulfide-based silane coupling agent (Product No .: Si69) manufactured by Evonik Degussa Japan.
  • a rubber composition was prepared by adding a sulfide-based silane coupling agent at the timing of adding the amino-based silane coupling agent in Example 1.
  • a rubber composition was prepared using styrene-butadiene rubber (SBR) (product number: NS616 manufactured by Nippon Zeon Co., Ltd.) instead of polybutadiene rubber (BR).
  • silica precipitated silica
  • product number: Ultrasil VN3 manufactured by Evonik Degussa Japan 30 parts by mass, and then an amino-based silane coupling agent (3-aminopropyltriethoxysilane) (trade name: dynasilane AMEO Evonik Degussa) Made in Japan
  • an amino-based silane coupling agent 3-aminopropyltriethoxysilane
  • dynasilane AMEO Evonik Degussa amino-based silane coupling agent
  • 3-aminopropyltriethoxysilane trade name: dynasilane AMEO Evonik Degussa
  • a sulfide-based silane coupling agent bis (3-triethoxysilylpropyl) tetrasulfide
  • stearic acid (trade name: bead stearic acid made by Tsubaki Sanyu Industrial, (processing aid 1)) and three types of zinc oxide (product number: Zinc Hua 3A, made by Mitsui Mining & Mining, Agent 2)), anti-aging agent (trade names: Nocrack 6C, Nocrack 224, Sunnock, and Nocrack AW-N Ouchi Shinsei Chemical), vulcanization accelerator (trade name: Noxeller NS-F Ouchi Shinsei Chemical) ), A vulcanization retarder (trade name: MIRAD PVI, manufactured by Ogura Sandine Co., Ltd.), and kneaded with a Banbury mixer.
  • zinc oxide product number: Zinc Hua 3A, made by Mitsui Mining & Mining, Agent 2
  • anti-aging agent trade names: Nocrack 6C, Nocrack 224, Sunnock, and Nocrack AW-N Ouchi Shinsei Chemical
  • vulcanization accelerator (trade name: Noxeller
  • the rubber after kneading is made into a sheet shape with a sheet extruder (trade name: TSR Kobe Steel), and then a vulcanizing agent (sulfur) (trade name: Seimi OT Rubber Industrial Materials) is charged in a mill blender. An unvulcanized rubber sheet having a predetermined thickness was obtained.
  • the shear modulus retention rate (60% / 0.3%) and 20 ° C. in the same manner as in “Evaluation 1”.
  • Loss factor (tan ⁇ ) was measured.
  • the value of “shear modulus retention (%)” obtained here is an index representing the dispersibility of the filler. Therefore, the value of “shear modulus retention (%)” of this reference sample was set as “dispersion index (D1)”.
  • the value of “loss factor (tan ⁇ )” obtained here is an index representing energy saving. Therefore, the value of “loss factor (tan ⁇ )” of this reference sample was set as “energy saving index (S1)”.
  • the percentage value [100% ⁇ (T2 / Ty)] obtained by dividing the “rolling time (T2)” of the reference sample by the “rolling time (Ty)” of the comparative sample is “workability during rolling”. It was used as an index for judging. Both indicators were set so that the comparative sample had better workability, and the values were higher as the “kneading time (Tx)” and “rolling time (Ty)” were shorter.
  • the “dispersion index (Dx)” and “energy saving index (Sx)” of the comparative sample are obtained,
  • the percentage value [100% ⁇ (Dx / D1)] obtained by dividing the “dispersion index (Dx)” of this comparative sample by the “dispersion index (D1)” of the reference sample is judged as “filler dispersibility”. It was used as an indicator.
  • the percentage value [100% ⁇ (S1 / Sx)] obtained by dividing the “energy saving index (S1)” of the reference sample by the “energy saving index (Sx)” of the comparative sample is judged as “energy saving”. It was used as an indicator.
  • the “dispersion index” is different from the “energy saving index”, “kneading time”, and “rolling time”, and the higher the value, the better the result. Therefore, only the “dispersion index” is obtained by dividing the result of the comparative sample by the result of the reference sample. In other words, both the “dispersibility of filler” and the “energy saving” index have higher values as good results are obtained as in “workability during kneading” and “workability during rolling”. Set. These results are shown in Table 2.
  • a rubber composition having a low loss factor can be obtained while maintaining basic physical properties such as tensile strength and tear strength, and a conveyor belt excellent in energy saving and durability can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Belt Conveyors (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

Provided is a conveyor belt in which a back-surface-side cover rubber layer is formed by a rubber composition including a diene-based rubber, carbon black, silica, and a silane coupling agent, wherein a sulfide-based silane coupling agent and an amino-based silane coupling agent are included as the silane coupling agent.

Description

コンベヤベルト、コンベヤベルトの製造方法、及び、ゴム組成物Conveyor belt, conveyor belt manufacturing method, and rubber composition 関連出願の相互参照Cross-reference of related applications
 本願は、日本国特願2014-161050号の優先権を主張し、引用によって本願明細書の記載に組み込まれる。 This application claims the priority of Japanese Patent Application No. 2014-161050, and is incorporated herein by reference.
 本発明は、コンベヤベルト、コンベヤベルトの製造方法、及び、ゴム組成物に関する。 The present invention relates to a conveyor belt, a method for manufacturing a conveyor belt, and a rubber composition.
 従来、物品や資材等の搬送装置として広く用いられているベルトコンベヤの主要構成部材であるコンベヤベルトは、形状や材質を異ならせた種々のものが市販されており、これらが用途に応じて使い分けられている。
 一般的に高い強度が求められるような用途においては、ゴム製のコンベヤベルトが採用されており、このゴム製のコンベヤベルトとしては、厚み方向中央部に芯体を備え、この芯体を表裏両面から覆うカバーゴム層が備えられたものが広く採用されている。
 このコンベヤベルトのカバーゴム層を構成するゴム組成物としては、強度や耐摩耗性などに優れることから、天然ゴムやポリブタジエンゴム等のジエン系ゴムをベースゴムとしたものが知られている(下記特許文献1、2参照)。
Conventionally, conveyor belts, which are the main components of belt conveyors widely used as conveying devices for articles and materials, are commercially available in various shapes and materials, and these are used properly according to the application. It has been.
In applications where high strength is generally required, a rubber conveyor belt is used. This rubber conveyor belt has a core at the center in the thickness direction, and the core is mounted on both the front and back sides. Those provided with a cover rubber layer covering from a wide range are widely used.
As a rubber composition constituting the cover rubber layer of this conveyor belt, a rubber composition having a base rubber made of diene rubber such as natural rubber or polybutadiene rubber is known because of its excellent strength and wear resistance (see below). (See Patent Documents 1 and 2).
日本国特開平11-139523号公報Japanese Patent Laid-Open No. 11-139523 日本国特開2008-38133号公報Japanese Unexamined Patent Publication No. 2008-38133
 ベルトコンベヤには、通常、コンベヤベルトが無端状にされた状態で備えられている。この種のベルトコンベヤは、コンベヤベルトを掛け渡して駆動するための駆動プーリと従動プーリとを備えている。
 また、上記のようなベルトコンベヤは、通常、駆動プーリと従動プーリとの間でコンベヤベルトを裏面側から支持するための複数の支持ローラを備えている。
 コンベヤベルトは、運転時に駆動プーリや従動プーリによって大きな曲げが加えられるばかりでなく、駆動プーリと従動プーリとの間に配された支持ローラ上を通過する際にも裏面側(非搬送側)に僅かな屈曲、伸長、圧縮などの変形が生じる。
A belt conveyor is usually provided with a conveyor belt in an endless state. This type of belt conveyor includes a driving pulley and a driven pulley for driving the conveyor belt over the belt.
In addition, the belt conveyor as described above usually includes a plurality of support rollers for supporting the conveyor belt from the back side between the driving pulley and the driven pulley.
The conveyor belt is not only greatly bent by the driving pulley and the driven pulley during operation, but also on the back side (non-conveying side) when passing over the support roller arranged between the driving pulley and the driven pulley. Deformation such as slight bending, stretching, and compression occurs.
 前記のようなゴム製コンベヤベルトは、その大部分がカバーゴム層によって占められている。
 そして、このカバーゴム層は、ベルト長手方向に延在する形でコンベヤベルトに備えられているため、ベルトコンベヤの運転時には、当然ながらコンベヤベルト全体と同様に変形が生じることになる。
 一般的なコンベヤベルトは、ベルトコンベヤの運転時において、駆動力や摩擦力によってベルト長手方向に張力が発生する。また、一般的なコンベヤベルトは、ベルトコンベヤの運転時において、搬送物を搭載して支持ローラ上を通過する際に圧縮応力などが加わる。
 特に、近年、ベルトコンベヤの長距離化・高速化が進んでいることから、コンベヤベルトに発生するエネルギーロスの内、コンベヤベルトが支持ローラ上を乗り越える際に生じるエネルギーロスの割合が増大している。
 支持ローラに接触する裏面側のカバーゴムは、弾性率が比較的高く、且つ動的粘弾性における損失係数(Tanδ)の低いゴム組成物によって形成される方が、屈曲、伸長、圧縮といった変形を受けた際のエネルギーロスを抑制させる観点から好ましい。
 即ち、コンベヤベルトに省エネルギー性を発揮させるには、少なくとも裏面側カバーゴム層の弾性率を比較的高くして、且つ損失係数の低いゴム組成物で裏面側カバーゴム層を形成させることが有効である。
  但し、特許文献1、2のように、カバーゴムの損失係数(Tanδ)を小さくすると、前記支持ローラの上を通過する際のエネルギーロスが低減され、コンベヤベルト駆動時の消費電力が低減されるもののカバーゴムの耐引裂性、耐摩耗性などの耐久性が低くなる傾向がある。
 このように、従来のコンベヤベルトは、省エネルギー性と耐久性とを両立できないという問題を有している。
Most of the rubber conveyor belt as described above is occupied by a cover rubber layer.
And since this cover rubber layer is provided in the conveyor belt in the form extended in a belt longitudinal direction, naturally, like the whole conveyor belt, a deformation | transformation will arise at the time of operation of a belt conveyor.
In general conveyor belts, tension is generated in the longitudinal direction of the belt by driving force or frictional force during operation of the belt conveyor. Further, a general conveyor belt is subjected to a compressive stress or the like when a conveyed product is loaded and passed over a support roller during operation of the belt conveyor.
In particular, as belt conveyors have become longer and faster in recent years, the proportion of energy loss that occurs when the conveyor belt passes over the support roller is increasing among the energy loss that occurs in the conveyor belt. .
The cover rubber on the back side that comes into contact with the support roller has a relatively high elastic modulus and is formed of a rubber composition having a low loss coefficient (Tan δ) in dynamic viscoelasticity. It is preferable from the viewpoint of suppressing energy loss when received.
That is, in order to make the conveyor belt exhibit energy saving, it is effective to form the back side cover rubber layer with a rubber composition having at least a relatively high elastic modulus of the back side cover rubber layer and a low loss coefficient. is there.
However, as in Patent Documents 1 and 2, when the loss coefficient (Tanδ) of the cover rubber is reduced, energy loss when passing over the support roller is reduced, and power consumption when driving the conveyor belt is reduced. However, the durability of the cover rubber, such as tear resistance and wear resistance, tends to be low.
Thus, the conventional conveyor belt has a problem that energy saving and durability cannot be achieved at the same time.
 本発明は、このような点に着目してなされたものであり、引張強度、引裂強度などの基本物性を維持しつつ、且つ損失係数の低いゴム組成物を提供し、ひいては、省エネルギー性と耐久性とをバランス良く備えたコンベヤベルトを提供することを課題としている。 The present invention has been made paying attention to such points, and provides a rubber composition having a low loss factor while maintaining basic physical properties such as tensile strength and tear strength, and thus, energy saving and durability. It is an object to provide a conveyor belt having a good balance of performance.
 本発明は、上記課題を解決すべく、ベルト長手方向に沿って延在するカバーゴム層として表面側カバーゴム層と裏面側カバーゴム層とを備えたコンベヤベルトであって、少なくとも前記裏面側カバーゴム層を構成するゴム組成物が、ジエン系ゴム、カーボンブラック、シリカ、及び、シランカップリング剤を含み、前記シランカップリング剤としてスルフィド系シランカップリング剤、及び、アミノ系シランカップリング剤を含むコンベヤベルトを提供する。 In order to solve the above problems, the present invention is a conveyor belt provided with a front side cover rubber layer and a back side cover rubber layer as a cover rubber layer extending along the longitudinal direction of the belt, and at least the back side cover The rubber composition constituting the rubber layer contains a diene rubber, carbon black, silica, and a silane coupling agent, and a sulfide silane coupling agent and an amino silane coupling agent as the silane coupling agent. Conveyor belt including is provided.
 また、本発明は、上記課題を解決すべく、ベルト長手方向に沿って延在するカバーゴム層として表面側カバーゴム層と裏面側カバーゴム層とを備えたコンベヤベルトを作製するコンベヤベルト製造方法であって、ジエン系ゴム、カーボンブラック、シリカ、及び、シランカップリング剤を含み、前記シランカップリング剤としてスルフィド系シランカップリング剤、及び、アミノ系シランカップリング剤を含むゴム組成物を作製する第1工程、前記表面側カバーゴム層及び前記裏面側カバーゴム層の内、少なくとも前記裏面側カバーゴム層を第1工程で作製されたゴム組成物によって形成する第2工程を実施するコンベヤベルト製造方法を提供する。 Moreover, this invention is a conveyor belt manufacturing method which produces the conveyor belt provided with the surface side cover rubber layer and the back side cover rubber layer as a cover rubber layer extended along a belt longitudinal direction in order to solve the said subject. A rubber composition comprising a diene rubber, carbon black, silica, and a silane coupling agent, and a sulfide silane coupling agent and an amino silane coupling agent as the silane coupling agent is prepared. Conveyor belt for carrying out a first step, a second step of forming at least the back side cover rubber layer with the rubber composition produced in the first step among the front side cover rubber layer and the back side cover rubber layer A manufacturing method is provided.
 さらに、本発明は、上記課題を解決すべく、ジエン系ゴム、カーボンブラック、シリカ、及び、シランカップリング剤を含み、該シランカップリング剤として、スルフィド系シランカップリング剤、及び、アミノ系シランカップリング剤を含むゴム組成物を提供する。 Furthermore, the present invention includes a diene rubber, carbon black, silica, and a silane coupling agent in order to solve the above-mentioned problems, and as the silane coupling agent, a sulfide silane coupling agent and an amino silane. A rubber composition comprising a coupling agent is provided.
 本発明によれば、引張強度、引裂強度などの基本物性を維持しつつ、損失係数の低いゴム組成物が提供され得る。
 従って、本発明によれば、省エネルギー性及び耐久性に優れたコンベヤベルトが提供され得る。
According to the present invention, a rubber composition having a low loss factor can be provided while maintaining basic physical properties such as tensile strength and tear strength.
Therefore, according to the present invention, a conveyor belt excellent in energy saving and durability can be provided.
一実施形態のコンベヤベルトが備えられたベルトコンベヤの概略使用状態図。The general use state figure of the belt conveyor provided with the conveyor belt of one embodiment. 一実施形態のコンベヤベルトの概略的な断面構造を示した図1のI-I線矢視断面図。FIG. 2 is a cross-sectional view taken along the line II of FIG. 1 showing a schematic cross-sectional structure of the conveyor belt of one embodiment. 図1とは異なる態様でコンベヤベルトが備えられたベルトコンベヤの概略斜視図。The schematic perspective view of the belt conveyor with which the conveyor belt was provided in the aspect different from FIG. 図3のII-II線矢視断面図。FIG. 4 is a cross-sectional view taken along line II-II in FIG. 3.
 本発明の実施の形態について以下に説明する。
 なお、以下においては、本発明のゴム組成物がコンベヤベルト用ゴム組成物で、該ゴム組成物をカバーゴムの形成に利用する場合を例にして本発明の実施の形態を説明する。
 まず、添付図面に基づき、本実施形態のコンベヤベルトが用いられてなるベルトコンベヤについて説明する。
Embodiments of the present invention will be described below.
In the following, embodiments of the present invention will be described by taking as an example the case where the rubber composition of the present invention is a rubber composition for conveyor belts and the rubber composition is used for forming cover rubber.
First, a belt conveyor using the conveyor belt of this embodiment will be described with reference to the accompanying drawings.
 図1は、本実施形態のコンベヤベルトが備えられてなるベルトコンベヤの使用方法を概略的に示した図であり、図2は図1中に破線で示したI-I線による切断面の構造を概略的に示した矢視断面図である。 FIG. 1 is a diagram schematically showing a method of using a belt conveyor provided with the conveyor belt of the present embodiment, and FIG. 2 is a cross-sectional structure taken along a line II shown in FIG. It is arrow sectional drawing which showed schematically.
 なお、図1は、無端状に形成された本実施形態のコンベヤベルト10が図1正面視右側から左側に向けて一定の昇り勾配となるように配されたベルトコンベヤ1の様子を表している。図1は、搬送物Aを搬送する様子を搬送方向側方から見た状態を示すものである。
 本実施形態のベルトコンベヤ1においては、搬送路の長手方向一端側(積載側)と他端側(荷下ろし側)とに配されたプーリ20の間に前記コンベヤベルト10が掛け渡されている。
 なお、前記コンベヤベルト10が掛け渡されている一対のプーリ20の内の荷下ろし側のプーリ20は、駆動源に接続された駆動プーリ21である。積載側に配されたプーリ20は前記駆動プーリ21によって無端状のコンベヤベルト10が周回されることで共回りする従動プーリ22となっている。
FIG. 1 shows a state of the belt conveyor 1 in which the conveyor belt 10 of the present embodiment formed in an endless shape is arranged so as to have a constant upward gradient from the right side to the left side when viewed from the front in FIG. . FIG. 1 shows a state in which the transported object A is transported as viewed from the side in the transport direction.
In the belt conveyor 1 of this embodiment, the conveyor belt 10 is stretched between pulleys 20 arranged on one end side (loading side) and the other end side (unloading side) in the longitudinal direction of the transport path. .
Of the pair of pulleys 20 around which the conveyor belt 10 is stretched, the unloading pulley 20 is a driving pulley 21 connected to a driving source. The pulley 20 arranged on the stacking side is a driven pulley 22 that rotates together with the endless conveyor belt 10 circulated by the drive pulley 21.
 そして、本実施形態のベルトコンベヤ1には、この駆動プーリ21と従動プーリ22との間の複数箇所に支持ローラ30が配されている。本実施形態のベルトコンベヤ1には、前記積載側から前記荷下ろし側に掛けての搬送路(往路)においてコンベヤベルト10を裏面側から支持する往路側支持ローラ30aが複数備えられている。該ベルトコンベヤ1は、前記荷下ろし側から前記積載側に戻るまでの経路(復路)において下方に面した状態となるコンベヤベルト10の表面に下方から当接される復路側支持ローラ30bを複数備えている。該復路側支持ローラ30bは、外周面をコンベヤベルト10の前記表面に当接させてコンベヤベルトを支持する。 In the belt conveyor 1 of this embodiment, support rollers 30 are arranged at a plurality of locations between the drive pulley 21 and the driven pulley 22. The belt conveyor 1 of the present embodiment is provided with a plurality of forward path side support rollers 30a that support the conveyor belt 10 from the back surface side in a transport path (forward path) from the stacking side to the unloading side. The belt conveyor 1 includes a plurality of return-side support rollers 30b that come into contact with the surface of the conveyor belt 10 facing downward in a path (return path) from the unloading side to the loading side. ing. The return path side support roller 30b supports the conveyor belt by bringing the outer peripheral surface into contact with the surface of the conveyor belt 10.
 即ち、駆動プーリ21、従動プーリ22および複数の前記往路側支持ローラ30aは、往路におけるコンベヤベルト10を略一定傾斜で支持しうるように、その回転軸を互いに平行に配しつつそれぞれの上端部の垂直位置が図1において左上がりとなるように前記ベルトコンベヤ1に備えられている。
 また、複数の前記復路側支持ローラ30bは、復路におけるコンベヤベルト10を略一定傾斜で支持しうるように、その回転軸を互いに平行に配しつつ上端部の垂直位置が図1において右下がりとなるように前記ベルトコンベヤ1に備えられている。
That is, the driving pulley 21, the driven pulley 22, and the plurality of forward path side support rollers 30a are arranged with their rotation axes arranged in parallel to each other so that the conveyor belt 10 in the forward path can be supported at a substantially constant inclination. Is provided on the belt conveyor 1 so that the vertical position of FIG.
Further, the plurality of the return path side support rollers 30b are arranged in parallel with each other so that the conveyor belt 10 on the return path can be supported at a substantially constant inclination, and the vertical position of the upper end portion is lowered to the right in FIG. It is provided in the belt conveyor 1 so as to be.
 なお、本実施形態におけるコンベヤベルト10は、ベルト幅方向に横断する横桟やベルト両側縁に沿って立設された耳桟といったものが備えられていない平ベルト状に形成されている。
 そして、本実施形態におけるコンベヤベルト10は、図2に示すように、搬送物Aが載置されるコンベヤベルト10の表面側(外周側)を形成するカバーゴム11(以下「表面側カバーゴム11a」ともいう)と、前記搬送物Aが載置される表面とは逆側の裏面を構成するカバーゴム11(以下「裏面側カバーゴム11b」ともいう)との2層のカバーゴム11を備えている。本実施形態におけるコンベヤベルト10は、この2層のカバーゴム11の内側に、芯体層12が形成されている。該芯体層12は、コンベヤベルトに抗張力を付与するための芯体帆布が2層のカバーゴム11の内側に埋設されて形成されている。
 即ち、前記表面側カバーゴム11a及び前記裏面側カバーゴム11bは、ベルト長手方向に沿って延在するゴム層を形成するもので、該ベルト長手方向において略一定厚みとなるよう形成されている。
In addition, the conveyor belt 10 in this embodiment is formed in the shape of a flat belt which is not provided with a horizontal beam crossing in the belt width direction and an ear beam standing along both side edges of the belt.
As shown in FIG. 2, the conveyor belt 10 in the present embodiment has a cover rubber 11 (hereinafter referred to as “surface side cover rubber 11a”) that forms the surface side (outer peripheral side) of the conveyor belt 10 on which the conveyed product A is placed. And a cover rubber 11 constituting a back surface opposite to the surface on which the conveyed product A is placed (hereinafter also referred to as “back surface cover rubber 11b”). ing. In the conveyor belt 10 in this embodiment, a core body layer 12 is formed inside the two layers of cover rubber 11. The core body layer 12 is formed by embedding a core canvas for imparting a tensile strength to the conveyor belt inside the cover rubber 11 of two layers.
That is, the front surface side cover rubber 11a and the back surface side cover rubber 11b form a rubber layer extending along the longitudinal direction of the belt, and are formed to have a substantially constant thickness in the longitudinal direction of the belt.
 本実施形態のベルトコンベヤ1は、運転時において、搬送物Aが往路側支持ローラ30aの間に位置している場合、コンベヤベルト10が搬送物Aの重量によって下方に向かって撓んだ状態となる。
 即ち、搬送物Aの重量が往路側支持ローラ30aによって支持されていない状況においては、この搬送物Aの重量に相当する張力がコンベヤベルト10に加わることになる。
 そして、本実施形態のベルトコンベヤは、搬送物Aが往路側支持ローラ30aに接近するに従って、コンベヤベルト10が持ち上げられた状態となり、搬送物Aが往路側支持ローラ30aを通過した後は往路側支持ローラ30aから離れるに従ってコンベヤベルト10が再び下方に撓んだ状態となる。
 このようにして本実施形態のコンベヤベルト10は、往路において複数回の屈曲を受ける。
 本実施形態のベルトコンベヤ1は、図2に示すように、コンベヤベルト10が往路側支持ローラ30aによって支持される箇所において、ベルト幅方向に複数の往路側支持ローラ30aを配置している。
 そして、本実施形態のベルトコンベヤ1は、この複数の往路側支持ローラ30aによってコンベヤベルト10の幅方向両端部を中央部よりも持ち上げた状態とし、コンベヤベルト10を樋状にして搬送物Aがコンベヤベルト10の側方から落下することを防止している。
 即ち、本実施形態のコンベヤベルト10は、平坦な状態で従動プーリ22を通過した後に樋状に曲げられ、駆動プーリ21に巻き掛けられる前に再び平坦な状態へと戻される。
 また、コンベヤベルト10は、駆動プーリ21や従動プーリ22を通過する際においてこれらによって大きな曲げが加えられる。
 さらに、本実施形態のコンベヤベルト10は、搬送物Aが往路側支持ローラ30aの上を通過する際に、搬送物Aの質量によって往路側支持ローラ30aと搬送物Aとによって圧縮応力等が加えられる。
In the belt conveyor 1 of the present embodiment, when the conveyed product A is positioned between the forward path side support rollers 30a, the conveyor belt 10 is bent downward due to the weight of the conveyed product A during operation. Become.
That is, in a situation where the weight of the conveyed product A is not supported by the forward path side support roller 30a, a tension corresponding to the weight of the conveyed product A is applied to the conveyor belt 10.
In the belt conveyor of the present embodiment, the conveyor belt 10 is lifted as the conveyed product A approaches the forward path support roller 30a, and after the conveyed object A passes the forward path support roller 30a, the forward path side. As the distance from the support roller 30a increases, the conveyor belt 10 is bent downward again.
In this way, the conveyor belt 10 according to the present embodiment undergoes multiple bendings in the outward path.
As shown in FIG. 2, the belt conveyor 1 of the present embodiment has a plurality of forward path support rollers 30 a arranged in the belt width direction at locations where the conveyor belt 10 is supported by the forward path support rollers 30 a.
And the belt conveyor 1 of this embodiment makes the state which lifted the width direction both ends of the conveyor belt 10 rather than the center part with these some outward path side support rollers 30a, made the conveyor belt 10 into a bowl shape, and the conveyed product A became The falling from the side of the conveyor belt 10 is prevented.
That is, the conveyor belt 10 of the present embodiment is bent into a bowl shape after passing through the driven pulley 22 in a flat state, and returned to a flat state before being wound around the drive pulley 21.
Further, the conveyor belt 10 is greatly bent by these when passing through the driving pulley 21 and the driven pulley 22.
Furthermore, the conveyor belt 10 of the present embodiment applies a compressive stress or the like by the forward support roller 30a and the transported object A due to the mass of the transported object A when the transported object A passes over the forward support roller 30a. It is done.
 以上のようなことから前記表面側カバーゴム11a、及び、前記裏面側カバーゴム11bの内、少なくとも前記裏面側カバーゴム11bは、弾性率が比較的高く、且つ、“弾性変形-復元”のサイクルにおけるヒステリシスロスの少ないことが好ましい。前記裏面側カバーゴム11bは、力学的な損失係数(Tanδ)の低いゴム組成物によって構成されることが好ましい。
 本実施形態のコンベヤベルトは、以下に例示の裏面側カバーゴム11bと同様のゴム組成物で前記表面側カバーゴム11aを形成させることができる。
 なお、前記表面側カバーゴム11a及び前記裏面側カバーゴム11bは、同じゴム組成物によって形成される必要はなく、それぞれが別のゴム組成物によって形成されていても良い。
Because of the above, at least the back side cover rubber 11b out of the front side cover rubber 11a and the back side cover rubber 11b has a relatively high elastic modulus and a cycle of “elastic deformation-restoration”. It is preferable that hysteresis loss is small. The back-side cover rubber 11b is preferably composed of a rubber composition having a low dynamic loss factor (Tan δ).
The conveyor belt of this embodiment can form the said surface side cover rubber | gum 11a with the rubber composition similar to the back surface side cover rubber | gum 11b illustrated below.
The front side cover rubber 11a and the back side cover rubber 11b do not need to be formed of the same rubber composition, and may be formed of different rubber compositions.
 前記裏面側カバーゴム11bの形成に用いられる本実施形態のコンベヤベルト用ゴム組成物は、ベースゴム、充填剤、及び、添加剤といった成分を含み、具体的には、ジエン系ゴム、カーボンブラック、シリカ、及び、シランカップリング剤を含んでいる。
 また、本実施形態の前記ゴム組成物は、シランカップリング剤として、スルフィド系シランカップリング剤、及び、アミノ系シランカップリング剤を含んでいる。
The rubber composition for conveyor belts of this embodiment used for forming the back side cover rubber 11b includes components such as a base rubber, a filler, and an additive. Specifically, a diene rubber, carbon black, Silica and a silane coupling agent are included.
Further, the rubber composition of the present embodiment includes a sulfide-based silane coupling agent and an amino-based silane coupling agent as a silane coupling agent.
 前記ゴム組成物は、ゴム成分として天然ゴムと天然ゴム以外のジエン系ゴムとを含んでいることが好ましく、ゴム組成物の低温における損失係数(Tanδ)を低くできる観点から、天然ゴム以外にポリブタジエンゴムやスチレン-ブタジエンゴムを含有していることが好ましい。
 前記ゴム組成物は、特に、損失係数(Tanδ)と引裂強度等との両立を図る観点から、前記ポリブタジエンゴムや前記スチレン-ブタジエンゴムとして、フィラー(充填剤)と結合可能な官能基を分子中(主鎖末端など)に備えさせた変性品を含有させることが好ましい。
 前記ゴム組成物は、ゴム成分に占める割合が50質量%以上80質量%以下となる割合で天然ゴムを含有していることが好ましい。
 従って、前記ゴム組成物は、ポリブタジエンゴムやスチレン-ブタジエンゴムの変性品及び/又は非変性品を含有させる場合、全てのポリブタジエンゴムと全てのスチレン-ブタジエンゴムとの合計がゴム成分において20質量%以上50質量%以下となるように含有させることが好ましい。
The rubber composition preferably contains natural rubber and a diene rubber other than natural rubber as a rubber component. From the viewpoint of reducing the loss coefficient (Tanδ) at low temperatures of the rubber composition, polybutadiene other than natural rubber is used. It preferably contains rubber or styrene-butadiene rubber.
The rubber composition has a functional group capable of binding to a filler (filler) in the molecule as the polybutadiene rubber or the styrene-butadiene rubber, particularly from the viewpoint of achieving both a loss factor (Tan δ) and tear strength. It is preferable to contain a modified product prepared at the end of the main chain.
It is preferable that the rubber composition contains natural rubber at a ratio of 50 mass% to 80 mass% in the rubber component.
Therefore, when the rubber composition contains a modified product and / or a non-modified product of polybutadiene rubber or styrene-butadiene rubber, the total of all polybutadiene rubbers and all styrene-butadiene rubbers is 20% by mass in the rubber component. The content is preferably 50% by mass or less.
 前記ゴム組成物は、前記カーボンブラックや前記シリカ以外の充填剤を含有していてもよく、このカーボンブラック及びシリカ以外の充填剤としては、例えば、タルク、クレー、炭酸カルシウム、水酸化アルミニウムなどが挙げられる。
 ただし、本実施形態においては、カーボンブラック及びシリカ以外の充填剤を過度にゴム組成物に含有させるのは好ましいことではない。
 従って、ゴム組成物に含有される充填剤は、80質量%以上がカーボンブラック及びシリカであることが好ましく、90質量%以上がカーボンブラック及びシリカであることがより好ましく、95質量%以上がカーボンブラック及びシリカであることが特に好ましい。
The rubber composition may contain a filler other than the carbon black and the silica. Examples of the filler other than the carbon black and the silica include talc, clay, calcium carbonate, and aluminum hydroxide. Can be mentioned.
However, in the present embodiment, it is not preferable to contain a filler other than carbon black and silica in the rubber composition.
Accordingly, the filler contained in the rubber composition is preferably 80% by mass or more of carbon black and silica, more preferably 90% by mass or more of carbon black and silica, and 95% by mass or more of carbon. Particularly preferred are black and silica.
 前記カーボンブラックは、カバーゴムに対して強度を発揮させるのに有効な成分である一方で自身による凝集塊をカバーゴム中に形成させ易い。
 この凝集塊は、カバーゴムに大きな変形が生じた際に崩壊し、せん断弾性率が低下することから、カバーゴムのヒステリシスロスを大きくさせてしまう要因となり得る。
 このようなことから本実施形態においては、一般にカーボンブラックよりも補強効果の点において劣る傾向があるもののシランカップリング剤等によって凝集塊を形成させ難くすることができるシリカをゴム組成物に含有させている。
 具体的には、ゴム組成物に含有されるシリカの含有量は、ジエン系ゴム100質量部に対して、5~60質量部であることが好ましく、10~50質量部であることがより好ましい。
 また、カーボンブラックとシリカとの合計に占めるシリカの割合は、25質量%以上75質量%以下であることが好ましい。
While the carbon black is an effective component for exerting strength against the cover rubber, the carbon black tends to form an agglomerate by itself in the cover rubber.
This agglomerate collapses when a large deformation occurs in the cover rubber, and the shear elastic modulus decreases, which may increase the hysteresis loss of the cover rubber.
For this reason, in this embodiment, the rubber composition contains silica, which generally has a tendency to be inferior to carbon black in terms of reinforcing effect, but can make it difficult to form agglomerates with a silane coupling agent or the like. ing.
Specifically, the content of silica contained in the rubber composition is preferably 5 to 60 parts by mass and more preferably 10 to 50 parts by mass with respect to 100 parts by mass of the diene rubber. .
Moreover, it is preferable that the ratio of the silica to the sum total of carbon black and a silica is 25 to 75 mass%.
 ゴムの補強を目的としたカーボンブラックとしては、ASTM D 1765においてHAFやFEFなどとして分類されるものが広く一般に使用されているが、本実施形態においては、ゴム組成物を低い損失係数のものとする上において同規格においてGPFやSRFとして分類される比較的粒径の大きなカーボンブラックを採用することが好ましい。
 より具体的には、本実施形態のゴム組成物は、含有するカーボンブラックの内の80質量%以上がGPFやSRFであることが好ましく、90質量%以上がGPFやSRFであることがより好ましく、95質量%以上がGPFやSRFであることが特に好ましい。
As carbon black for reinforcing rubber, those classified as HAF, FEF and the like in ASTM D 1765 are widely used. However, in this embodiment, the rubber composition has a low loss factor. Therefore, it is preferable to employ carbon black having a relatively large particle size classified as GPF or SRF in the same standard.
More specifically, in the rubber composition of the present embodiment, 80% by mass or more of the carbon black contained is preferably GPF or SRF, and more preferably 90% by mass or more is GPF or SRF. 95% by mass or more is particularly preferably GPF or SRF.
 本実施形態における前記シリカは、カーボンブラックと同様にある程度以上の粒径を有していることが好ましい。
 該シリカは、乾式法によって製造されたものよりも湿式法によって製造されたものの方が好ましく、湿式法の中でもゲル法によって製造されたものよりも沈降法によって製造されたものが好ましい。
 より具体的には、本実施形態のゴム組成物に含有させるシリカは、10nm~50nmの大きさの1次粒子が集合して2次粒子を形成しているものが好ましく、1μm~40μmの平均粒子径を有するものが好ましい。本実施形態においては20m/g~400m/gのBET比表面積を有するシリカが好ましい。
The silica in the present embodiment preferably has a particle size of a certain size or more, like carbon black.
The silica is preferably produced by a wet method rather than the one produced by a dry method, and among the wet methods, one produced by a sedimentation method is more preferred than that produced by a gel method.
More specifically, the silica contained in the rubber composition of the present embodiment is preferably one in which primary particles having a size of 10 nm to 50 nm are aggregated to form secondary particles, and an average of 1 μm to 40 μm. What has a particle diameter is preferable. In the present embodiment, silica having a BET specific surface area of 20 m 2 / g to 400 m 2 / g is preferable.
 なお、該シリカについても、2次粒子どうしが凝集塊を形成する場合がある。
 このようなシリカの凝集塊もカーボンブラックの凝集塊と同様にゴム組成物の損失係数を悪化させるおそれがある。
 そのため、本実施形態のゴム組成物には、当該ゴム組成物中のシリカの分散性を向上させる目的で、アミノ系シランカップリング剤とスルフィド系シランカップリング剤とを含有させている。
 なお、アミノ系シランカップリング剤及びスルフィド系シランカップリング剤は、それぞれ1種単独でゴム組成物に含有させる必要はなく、それぞれ2種以上のものをゴム組成物に含有させても良い。
In addition, also about this silica, secondary particles may form an aggregate.
Such agglomerates of silica may deteriorate the loss factor of the rubber composition in the same manner as the agglomerates of carbon black.
Therefore, the rubber composition of this embodiment contains an amino-based silane coupling agent and a sulfide-based silane coupling agent for the purpose of improving the dispersibility of silica in the rubber composition.
The amino silane coupling agent and the sulfide silane coupling agent do not need to be contained alone in the rubber composition, and two or more of them may be contained in the rubber composition.
 前記アミノ系シランカップリング剤としては、例えば、3-アミノプロピルトリメトキシシラン(γ-アミノプロピルトリメトキシシラン)、N-3-(4-(3-アミノプロポキシ)ブトキシ)プロピル-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン)、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミンとその部分加水分解物、N-フェニル-3-アミノプロピルトリメトキシシラン)、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシランの塩酸塩などが挙げられる。
 本実施形態のゴム組成物に含有させるアミノ系シランカップリング剤としては、3-アミノプロピルトリメトキシシランが好ましい。
 なお、本実施形態のゴム組成物は、アミノ系シランカップリング剤の添加の影響がゴム組成物の粘弾性などに過度に発現することを防止し、ゴム練りなどの作業を良好にさせる上において、アミノ系シランカップリング剤とともにアルキルアミンを併用することが好ましい。該アルキルアミンは、炭素数6以上20以下のアルキル基を有し、該アルキル基を1つ有するモノアルキルアミンか、又は、前記アルキル基を2つ有するジアルキルアミンかの何れかであることが好ましい。該アルキルアミンは、オクチルアミンやドデシルアミンなどのモノアルキルアミンであることが好ましい。
Examples of the amino-based silane coupling agent include 3-aminopropyltrimethoxysilane (γ-aminopropyltrimethoxysilane), N-3- (4- (3-aminopropoxy) butoxy) propyl-3-aminopropyl Trimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane (N-β (aminoethyl) γ-aminopropyltri Methoxysilane), N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine and its partial hydrolyzate, N-phenyl -3-aminopropyltrimethoxysilane), N- (vinylbenzyl) -2-aminoe Le-3-aminopropyl hydrochloride trimethoxysilane and the like.
The amino silane coupling agent contained in the rubber composition of this embodiment is preferably 3-aminopropyltrimethoxysilane.
The rubber composition of the present embodiment prevents the influence of the addition of the amino-based silane coupling agent from being excessively manifested in the viscoelasticity of the rubber composition, and improves the work such as rubber kneading. It is preferable to use an alkylamine together with an amino silane coupling agent. The alkylamine has an alkyl group having 6 to 20 carbon atoms, and is preferably either a monoalkylamine having one alkyl group or a dialkylamine having two alkyl groups. . The alkylamine is preferably a monoalkylamine such as octylamine or dodecylamine.
 前記スルフィド系シランカップリング剤としては、例えば、モノスルフィド系シランカップリング剤やポリスルフィド系シランカップリング剤が挙げられる。
 本実施形態のゴム組成物に含有させるスルフィド系シランカップリング剤としては、ビス(3-トリエトキシシリルプロピル)テトラスルフィドなどのポリスルフィド系シランカップリング剤が好ましい。
Examples of the sulfide silane coupling agent include a monosulfide silane coupling agent and a polysulfide silane coupling agent.
As the sulfide-based silane coupling agent contained in the rubber composition of the present embodiment, a polysulfide-based silane coupling agent such as bis (3-triethoxysilylpropyl) tetrasulfide is preferable.
 前記アミノ系シランカップリング剤や前記アルキルアミンは、ゴム組成物の硬さを向上させるのに有効な成分である。
 従って、ゴム組成物に含まれる全ての成分を含む配合物は、混練時に前記シリカや前記カーボンブラックによる凝集塊が形成されても前記アミノ系シランカップリング剤や前記アルキルアミンを含んでいるため前記凝集塊にせん断力が加わり易い。
 即ち、ゴム組成物は、前記アミノ系シランカップリング剤や前記アルキルアミンを含むことで前記シリカや前記カーボンブラックによる凝集塊の存在割合が低減される。
 一方、これらの配合物を混練する作業は、前記アミノ系シランカップリング剤や前記アルキルアミンを過度に配合すると、一様な混練物を得るまでの時間が長期化するなどして効率が低下する場合がある。
 このことから前記シリカ100質量部に対する前記アミノ系シランカップリング剤の含有量は、0.5質量部以上であることが好ましく、1質量部以上であることがより好ましく、3質量部以上であることが特に好ましい。
 前記シリカ100質量部に対する前記アミノ系シランカップリング剤の含有量は、10質量部以下であることが好ましく、8質量部以下であることがより好ましい。
The amino silane coupling agent and the alkylamine are effective components for improving the hardness of the rubber composition.
Therefore, the compound containing all the components contained in the rubber composition contains the amino-based silane coupling agent and the alkylamine even when an aggregate formed by the silica or the carbon black is formed during kneading. Shear force is easily applied to the agglomerates.
That is, the rubber composition contains the amino-based silane coupling agent and the alkylamine, thereby reducing the abundance of aggregates due to the silica and the carbon black.
On the other hand, the work of kneading these blends, when the amino silane coupling agent and the alkylamine are excessively blended, decreases the efficiency, for example, the time until obtaining a uniform blend is prolonged. There is a case.
Accordingly, the content of the amino silane coupling agent with respect to 100 parts by mass of the silica is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and 3 parts by mass or more. It is particularly preferred.
The content of the amino silane coupling agent with respect to 100 parts by mass of silica is preferably 10 parts by mass or less, and more preferably 8 parts by mass or less.
 前記シリカ100質量部に対する前記アルキルアミンの含有量は、1質量部以上であることが好ましく、1.5質量部以上であることがより好ましい。
 前記シリカ100質量部に対する前記アルキルアミンの含有量は、10質量部以下であることが好ましく、7質量部以下であることがより好ましい。
The content of the alkylamine with respect to 100 parts by mass of the silica is preferably 1 part by mass or more, and more preferably 1.5 parts by mass or more.
The content of the alkylamine with respect to 100 parts by mass of the silica is preferably 10 parts by mass or less, and more preferably 7 parts by mass or less.
 前記ゴム組成物は、シリカの含有量100質量部に対する前記アミノ系シランカップリング剤の含有量を「Xa(質量部)」とし、且つ、シリカの含有量100質量部に対する前記アルキルアミンの含有量を「Xb(質量部)」とした際に下記式(1)~(3)の全ての関係式を満たすことが好ましい。
 
 3 ≦ Xa ≦ 10     ・・・(1)
 1 ≦ Xb ≦ 7      ・・・(2)
 4 ≦(Xa+Xb)≦ 14  ・・・(3)
In the rubber composition, the content of the amino silane coupling agent with respect to 100 parts by mass of silica is “Xa (parts by mass)”, and the content of the alkylamine with respect to 100 parts by mass of silica Is preferably “Xb (parts by mass)”, it is preferable to satisfy all of the following relational expressions (1) to (3).

3 ≦ Xa ≦ 10 (1)
1 ≦ Xb ≦ 7 (2)
4 ≦ (Xa + Xb) ≦ 14 (3)
 本実施形態のゴム組成物は、前記シリカ100質量部に対する前記スルフィド系シランカップリング剤の含有量が1質量部以上20質量部以下であることが好ましく、5質量部以上15質量部以下であることが好ましい。 In the rubber composition of the present embodiment, the content of the sulfide-based silane coupling agent with respect to 100 parts by mass of the silica is preferably 1 part by mass or more and 20 parts by mass or less, and is 5 parts by mass or more and 15 parts by mass or less. It is preferable.
 これらのシランカップリング剤は、天然ゴムなどのゴム成分と、シリカの粒子との親和性の付与に有効なものである。
 なお、後述するように、ゴム組成物を損失係数の低いものとする上においては、シリカは、アミノ系シランカップリング剤によってカップリング処理が施された後にスルフィド系シランカップリング剤でカップリング処理が施されることが好ましい。
These silane coupling agents are effective for imparting affinity between rubber components such as natural rubber and silica particles.
As will be described later, in order to make the rubber composition have a low loss coefficient, silica is coupled with a sulfide-based silane coupling agent after being coupled with an amino-based silane coupling agent. Is preferably applied.
 即ち、スルフィド系シランカップリング剤でのカップリング処理をアミノ系シランカップリング剤でのカップリング処理後に行うことが好ましいのは、はじめにスルフィド系シランカップリング剤でシリカをカップリング処理するとシリカをゴム成分中に分散させ易い状態にし得るもののカップリング剤で覆われた凝集塊が形成されて当該凝集塊を形成しているシリカが個々に分散し難くなるためではないかと考えられる。
 言い換えると、アミノ系シランカップリング剤でのカップリング処理をスルフィド系シランカップリング剤でのカップリング処理に先行して実施するのが好ましいのは、アミノ系シランカップリング剤でシリカをカップリング処理する場合においてもカップリング剤で覆われた凝集塊が形成される点においては共通するが、この凝集塊が混練などによりせん断を受けることで解砕され易くなるためであると考えられる。なお、解砕されて表面の少なくとも一部分がカップリング処理された個々の粒子となったシリカは、通常、スルフィド系シランカップリング剤によるカップリング処理が施されることで、再凝集が抑制され、分散性がより一層良好なものになる。
That is, it is preferable that the coupling treatment with the sulfide-based silane coupling agent is performed after the coupling treatment with the amino-based silane coupling agent. Although it can be easily dispersed in the components, it is thought that the aggregates covered with the coupling agent are formed and the silica forming the aggregates is difficult to be dispersed individually.
In other words, the coupling treatment with the amino silane coupling agent is preferably performed prior to the coupling treatment with the sulfide silane coupling agent. In this case, the agglomerates covered with the coupling agent are formed in common, but it is considered that the agglomerates are easily crushed by being sheared by kneading. In addition, silica that has been crushed into individual particles having at least a part of the surface subjected to coupling treatment is usually subjected to coupling treatment with a sulfide-based silane coupling agent, thereby suppressing reaggregation, Dispersibility becomes even better.
 本実施形態のゴム組成物には、シランカップリング剤以外の添加物を含有させることができる。
 該添加物としては、例えば、硫黄、有機過酸化物といった加硫剤;アルデヒド・アンモニア系化合物、グアニジン系化合物、チオウレア系化合物、チアゾール系化合物、スルフェンアミド系化合物、チウラム系化合物、ジチオカルバミン酸塩系化合物などの加硫促進剤;有機酸、ニトロソ化合物、ハロゲン化物、2-メルカプトベンツイミダゾール、N-シクロヘキシルチオフタルイミド等の加硫遅延剤;アミノ・ケトン系化合物、芳香族アミン系化合物、モノフェノール系化合物、ポリフェノール系化合物、ベンズイミダゾール系化合物などの老化防止剤;脂肪酸エステル系化合物などの加工助剤;難燃剤、顔料などが挙げられる。
The rubber composition of this embodiment can contain additives other than the silane coupling agent.
Examples of the additive include vulcanizing agents such as sulfur and organic peroxides; aldehyde / ammonia compounds, guanidine compounds, thiourea compounds, thiazole compounds, sulfenamide compounds, thiuram compounds, dithiocarbamates Vulcanization accelerators such as organic compounds; vulcanization retarders such as organic acids, nitroso compounds, halides, 2-mercaptobenzimidazole, N-cyclohexylthiophthalimide; amino / ketone compounds, aromatic amine compounds, monophenols Anti-aging agents such as compounds, polyphenol compounds and benzimidazole compounds; processing aids such as fatty acid ester compounds; flame retardants and pigments.
 本実施形態のコンベヤベルトは、前記芯体層12を形成させるための芯体については特に限定されることなく一般的なコンベヤベルトに用いられているものを本実施形態においても採用することができる。
 本実施形態においては、芯体として帆布などが例示されるが、芯体は、帆布である必要はなく、スチールコードなどであってもよい。
The conveyor belt of the present embodiment is not particularly limited with respect to the core for forming the core body layer 12, and a conveyor belt used for a general conveyor belt can also be employed in this embodiment. .
In the present embodiment, a canvas or the like is exemplified as the core body, but the core body does not have to be a canvas and may be a steel cord or the like.
 本実施形態のコンベヤベルトは、その製造方法が特に限定されるものではなく、一般的なコンベヤベルトと同様に製造することができる。
 ベルト長手方向に沿って延在するカバーゴム層を備え、該カバーゴム層として表面側カバーゴム層と裏面側カバーゴム層とを備えた本実施形態のコンベヤベルトの製造方法としては、前記ゴム組成物を作製する第1工程、及び、前記表面側カバーゴム層及び前記裏面側カバーゴム層の内、少なくとも前記裏面側カバーゴム層を第1工程で作製されたゴム組成物によって形成する第2工程を実施する方法が挙げられる。
 そして、前記第1工程では、ジエン系ゴム、カーボンブラック、シリカ、及び、シランカップリング剤を含み、前記シランカップリング剤としてスルフィド系シランカップリング剤、及び、アミノ系シランカップリング剤を含むゴム組成物を一般的な方法で調製すればよい。
 前記ゴム組成物は、例えば、バンバリーミキサー、ニーダーミキサー、ロール等を用いて全ての成分を含んだ配合物を混練することで作製できる。コンベヤベルトは、カレンダー等を用いてゴム組成物をシート状に成形してカバーゴム用未加硫シートを作製し、該未加硫シートと帆布とを一体化させて加硫することによって製造することができる。
The manufacturing method of the conveyor belt of this embodiment is not particularly limited, and can be manufactured in the same manner as a general conveyor belt.
The method for producing a conveyor belt according to the present embodiment includes a cover rubber layer extending along the belt longitudinal direction, and the front rubber cover layer and the rear cover rubber layer as the cover rubber layer. And a second step of forming at least the back side cover rubber layer of the front side cover rubber layer and the back side cover rubber layer with the rubber composition produced in the first step. The method of implementing is mentioned.
The first step includes a diene rubber, carbon black, silica, and a silane coupling agent. The rubber includes a sulfide silane coupling agent and an amino silane coupling agent as the silane coupling agent. The composition may be prepared by a general method.
The rubber composition can be produced, for example, by kneading a compound containing all components using a Banbury mixer, a kneader mixer, a roll, or the like. The conveyor belt is manufactured by forming an unvulcanized sheet for a cover rubber by molding a rubber composition into a sheet shape using a calendar or the like, and vulcanizing the unvulcanized sheet and canvas integrally. be able to.
 より詳しくは、ゴム引きした帆布を用意し、該帆布をカバーゴム用未加硫シートの間に挟んで、「表面側カバーゴム用未加硫シート/帆布/裏面側カバーゴム用未加硫シート」の順に積層された積層体を形成させ、該積層体を加硫プレスを用いて加硫しつつ一体化することにより前記コンベヤベルトを作製することができる。 More specifically, a rubberized canvas is prepared, and the canvas is sandwiched between unvulcanized sheets for cover rubber, and “unvulcanized sheet for front side cover rubber / canvas / unvulcanized sheet for back side cover rubber”. The above-mentioned conveyor belt can be produced by forming a laminated body laminated in the order of “” and integrating the laminated body while vulcanizing using a vulcanizing press.
 なお、本実施形態においては、前記のようにシリカに対しては、アミノ系シランカップリング剤によってカップリング処理を施した後にスルフィド系シランカップリング剤でカップリング処理を行うことが好ましい。
 従って、前記未加硫ゴムシートを作製するためのゴム練りにおいては、アミノ系シランカップリング剤によって予めカップリング処理されたシリカを用い、当該ゴム練りに際してスルフィド系シランカップリング剤を添加するようにさせるか、或いは、シランカップリング剤の添加を2回に分けて実施することが好ましい。
In the present embodiment, as described above, it is preferable that the silica is subjected to the coupling treatment with the sulfide-based silane coupling agent after the coupling treatment with the amino-based silane coupling agent.
Therefore, in the rubber kneading for producing the unvulcanized rubber sheet, silica previously coupled with an amino silane coupling agent is used, and a sulfide silane coupling agent is added during the rubber kneading. Alternatively, the addition of the silane coupling agent is preferably carried out in two steps.
 即ち、前記第1工程では、前記ゴム組成物に含まれる全ての成分の内の1又は2以上の成分が不足している第1配合物を混練する第1混練と、該第1混練によって得られた混練物を含み且つ前記不足している成分が補われた第2配合物を混練する第2混練とを実施し、前記第1配合物にアミノ系シランカップリング剤を含有させ、且つ、前記第1配合物にスルフィド系シランカップリング剤を不足させた状態で前記第1混練を実施し、前記第2混練ではスルフィド系シランカップリング剤が補われた第2配合物を混練して前記ゴム組成物を作製することが好ましい。
 なお、ここで「成分が不足している」とは、「成分を含むもののその割合が少ない」という場合だけでなく「成分を全く含んでいない」という場合をも意味している。
 そして、前記第1混練においては、スルフィド系シランカップリング剤を前記第1配合物に実質的に含有させないことが好ましい。
That is, in the first step, the first kneading is performed by kneading the first compound in which one or more components among all the components contained in the rubber composition are insufficient, and the first kneading. Second kneading the second compound containing the kneaded product and the second compound supplemented with the lacking component, the amino compound containing an amino-based silane coupling agent, and The first kneading is performed in a state where the sulfide-based silane coupling agent is deficient in the first compound, and the second compound supplemented with the sulfide-based silane coupling agent is kneaded in the second compounding. It is preferable to prepare a rubber composition.
Here, “the component is insufficient” means not only the case where “the component is included but the proportion thereof is small”, but also the case where “the component is not included”.
In the first kneading, it is preferable that a sulfide-based silane coupling agent is not substantially contained in the first compound.
 なお、シランカップリング剤は、シリカと十分に反応させることが好ましい。
 従って、ゴム組成物の混練は、シリカとシランカップリング剤とを反応させる意味においては加温状態(例えば、100℃以上)で実施することが好ましい。
 その一方で、加温状態でゴム組成物の混練を実施すると、ゴムの二重結合が過度に切断されてしまったり、加硫が進行してしまったりして所望の物性をカバーゴムに発揮させるのが難しくなるおそれを有する。
 特に加硫剤を含んだ状態でのゴム組成物の混練は、100℃未満で実施することが好ましく、80℃未満で実施することが好ましい。
 従って、ゴム組成物の作製に際しては、加硫剤やスルフィド系シランカップリング剤を実質的に含有させずアミノ系シランカップリング剤を含有させた第1配合物を100℃以上の温度で混練する工程と、該工程後に混練物を100℃未満の温度に冷却する工程と、該工程後にスルフィド系シランカップリング剤を加えて100℃以上の温度で混練する工程と、該工程後に混練物を100℃未満の温度に冷却する工程と、該工程後に加硫剤を含有させて100℃未満の温度で混練する工程とを少なくとも実施することが好ましい。
Note that the silane coupling agent is preferably sufficiently reacted with silica.
Accordingly, the kneading of the rubber composition is preferably carried out in a heated state (for example, 100 ° C. or higher) in the sense of reacting silica and the silane coupling agent.
On the other hand, when the rubber composition is kneaded in a heated state, the double bond of the rubber is excessively cut or the vulcanization proceeds, so that the desired properties are exhibited in the cover rubber. There is a risk that it will be difficult.
In particular, the kneading of the rubber composition including the vulcanizing agent is preferably performed at a temperature lower than 100 ° C, and preferably performed at a temperature lower than 80 ° C.
Therefore, when producing the rubber composition, the first compound containing the amino silane coupling agent without substantially containing the vulcanizing agent or the sulfide silane coupling agent is kneaded at a temperature of 100 ° C. or higher. A step, a step of cooling the kneaded product to a temperature of less than 100 ° C. after the step, a step of adding a sulfide-based silane coupling agent after the step and kneading at a temperature of 100 ° C. or more, and a kneaded product after the step of 100 It is preferable to carry out at least the step of cooling to a temperature of less than 0 ° C. and the step of kneading at a temperature of less than 100 ° C. after containing the vulcanizing agent.
 また、本実施形態においては、カバーゴムの基本物性を維持しつつ、損失係数の低いゴム組成物によって形成されるため、支持ローラ上を通過するなどした際にエネルギーロスが生じ難く、かつ引張強度、引裂強度などの低下を抑制できる。
 従って、ベルトコンベヤは、本実施形態のコンベヤベルトが備えられることにより省エネルギー性および耐久性に優れたものになる。
Further, in the present embodiment, since it is formed of a rubber composition having a low loss coefficient while maintaining the basic physical properties of the cover rubber, energy loss is unlikely to occur when passing over the support roller, and tensile strength. In addition, a decrease in tear strength and the like can be suppressed.
Therefore, the belt conveyor is excellent in energy saving and durability by being provided with the conveyor belt of this embodiment.
 なお、本実施形態においては、本発明の効果をより顕著に発揮する上において有利であることから搬送物Aを搬送する際にコンベヤベルト10が幅方向に湾曲した樋状となって用いられ、使用時に長手方向のみならず幅方向での屈曲が行われる場合を例示している。
 しかし、本発明の効果は、使用時に長手方向での屈曲しか加わらないようなコンベヤベルトにおいても発揮される。
 また、図1、2などに示したコンベヤベルトよりも幅方向での大きな屈曲が行われ、本発明の効果が特に顕著に発揮される事例として図3、4に示すような場合が挙げられる。
In addition, in this embodiment, since it is advantageous in exhibiting the effect of the present invention more remarkably, the conveyor belt 10 is used in the form of a bowl curved in the width direction when transporting the transported object A, The case where bending in the width direction as well as the longitudinal direction is performed at the time of use is illustrated.
However, the effect of the present invention is also exhibited in a conveyor belt that is only bent in the longitudinal direction during use.
Further, as shown in FIGS. 3 and 4, examples in which the bending of the width direction is larger than that of the conveyor belt shown in FIGS.
 図3、4は、パイプコンベヤなどと呼ばれるベルトコンベヤ1及び該ベルトコンベヤ1におけるコンベヤベルト10の使用状態を示したものである。
 図3、4に示したコンベヤベルト10は、無端状となって駆動プーリ21と従動プーリ22との間に掛け渡されている点では図1、2に示したコンベヤベルトに共通している。
 また、図3、4に示したコンベヤベルト10は、往路側支持ローラ30aや復路側支持ローラ30bを乗り越える際に歪みを受ける点においても図1、2に示したコンベヤベルトに共通している。
 そして、図3、4に示したコンベヤベルト10は、表面側カバーゴム11aと裏面側カバーゴム11bとの間に芯体層(図示せず)が形成されている点においても図1、2に示したコンベヤベルトに共通している。
 一方で、図3、4に示したコンベヤベルト10は、搬送物Aを搬送する区間においてコンベヤベルト10が筒状に丸められた状態で用いられる。
 即ち、図3、4に示したコンベヤベルト10は、積載側で搬送物Aが表面側カバーゴム11aの上面に載置された後、往路側支持ローラ30aによって幅方向両端部が持ち上げられ、さらにこの持ち上げられた両端部どうしが裏面側が上向きになるように引き寄せられて両端部どうしが重ね合せられて筒状とされ、荷下ろしまでの間、この筒状の状態が保持される。
3 and 4 show a belt conveyor 1 called a pipe conveyor and the use state of the conveyor belt 10 in the belt conveyor 1.
The conveyor belt 10 shown in FIGS. 3 and 4 is common to the conveyor belt shown in FIGS. 1 and 2 in that it is endless and is stretched between the drive pulley 21 and the driven pulley 22.
The conveyor belt 10 shown in FIGS. 3 and 4 is also common to the conveyor belt shown in FIGS. 1 and 2 in that the conveyor belt 10 is distorted when getting over the forward path side support roller 30a and the backward path side support roller 30b.
The conveyor belt 10 shown in FIGS. 3 and 4 is also shown in FIGS. 1 and 2 in that a core layer (not shown) is formed between the front cover rubber 11a and the back cover rubber 11b. Common to the conveyor belt shown.
On the other hand, the conveyor belt 10 shown in FIGS. 3 and 4 is used in a state in which the conveyor belt 10 is rolled into a cylindrical shape in a section where the conveyed product A is conveyed.
That is, the conveyor belt 10 shown in FIGS. 3 and 4 has both ends in the width direction lifted by the forward-side support rollers 30a after the conveyed product A is placed on the upper surface of the front-side cover rubber 11a on the stacking side. The lifted both end portions are drawn so that the back side faces upward, and the both end portions are overlapped to form a cylindrical shape, and this cylindrical state is maintained until unloading.
 上記のようなことから図3、4に示したベルトコンベヤ1は、粉体などの飛散し易い搬送物Aなどを搬送するのに適しているとともに筒状とされる際にコンベヤベルト10に大きな歪が加わるため、本発明の効果がより顕著なものとなって発揮される。
 なかでも、搬送物Aの一部が表面側カバーゴム11aの表面に付着した場合でも、これを復路にて落下させないようにするために、復路においても復路側支持ローラ30bによってコンベヤベルト10が筒状とされるタイプのベルトコンベヤ1においては、本発明の効果が特に顕著なものとなって発揮される。
 このように、本発明の効果は、図1、2に示した態様以外の各種のコンベヤベルトにおいて発揮されるものである。
Because of the above, the belt conveyor 1 shown in FIGS. 3 and 4 is suitable for transporting a transported object A or the like which is easily scattered such as powder, and is large for the conveyor belt 10 when it is formed into a cylindrical shape. Since distortion is added, the effect of the present invention becomes more remarkable.
In particular, even if a part of the conveyed product A adheres to the surface of the surface side cover rubber 11a, the conveyor belt 10 is formed into a cylinder by the return side support roller 30b in the return path so that it does not fall on the return path. In the belt conveyor 1 of the shape, the effect of the present invention is particularly remarkable.
As described above, the effects of the present invention are exhibited in various conveyor belts other than those shown in FIGS.
 なお、このような効果は、本実施形態のゴム組成物がカバーゴムに用いられる場合のみに生じることではない。
 例えば、ベルト両側縁に沿って立設された耳桟を有するコンベヤベルトなどにおいては、当該耳桟を本実施形態のゴム組成物によって形成させることで走行時におけるエネルギーロスの低減を図ることができる。
 また、本発明のコンベヤベルト用ゴム組成物は、裏面側カバーゴム層だけでなく、表面側カバーゴム層や芯体層にも適用することができ、コンベヤベルトにおけるその他の部位の形成にも有用なものである。
Such an effect does not occur only when the rubber composition of the present embodiment is used as a cover rubber.
For example, in a conveyor belt or the like having ear rails erected along both sides of the belt, energy loss during traveling can be reduced by forming the ear rails with the rubber composition of the present embodiment. .
The rubber composition for conveyor belts of the present invention can be applied not only to the back cover rubber layer, but also to the front cover rubber layer and the core layer, and is useful for forming other parts of the conveyor belt. It is a thing.
 また、本実施形態のゴム組成物は、V溝付プーリーに巻き掛けられて用いられるVベルトやVリブトベルトの圧縮ゴム層や、歯付プーリーに巻き掛けられて用いられる歯付ベルトの歯部などの形成にも有用である。
 さらに、本実施形態のゴム組成物は、丸ベルトや平ベルトなどの伝動ベルトの形成材料としても有用である。
 また、本実施形態のゴム組成物は、コンベヤベルトや伝動ベルトなどのベルト用ゴム組成物として有用であるばかりでなく、省エネルギー性と耐久性との両立が求められる各種用途において利用可能である。
Further, the rubber composition of the present embodiment is a compressed rubber layer of a V belt or V ribbed belt that is used by being wound around a pulley with a V groove, a tooth portion of a toothed belt that is used by being wound around a toothed pulley, or the like. It is also useful for the formation of
Furthermore, the rubber composition of this embodiment is useful as a material for forming a transmission belt such as a round belt or a flat belt.
The rubber composition of the present embodiment is not only useful as a rubber composition for belts such as conveyor belts and transmission belts, but also can be used in various applications that require both energy saving and durability.
 なお、本発明のゴム組成物やコンベヤベルトは、上記例示には何等限定されるものではない。 The rubber composition and conveyor belt of the present invention are not limited to the above examples.
 以下に本発明の実施例を掲げて本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples of the present invention, but the present invention is not limited thereto.
(評価1)
(実施例1)
 天然ゴム(NR)(商品名:SVRCV60 DAU TIENG RUBBERCORPORATION製)とポリブタジエンゴム(BR)(商品名:VCR-412 宇都興産製)を60/40(NR/BR)の比率にてバンバリーミキサー(商品名:ミクストロンBB180 神戸製鋼製)にて混練し、そこへ充填剤としてカーボンブラック(GPF)(商品名:シーストV 東海カーボン製)12質量部(「質量部」は、ゴム100質量部に対する割合。以下において同じ。)とシリカ(沈降法シリカ)(商品名:Ultrasil VN3 エボニックデグサジャパン製)30質量部を投入した後、アミノ系シランカップリング剤(3-アミノプロピルトリエトキシシラン)(商品名:dynasilaneAMEOエボニックデグサジャパン製)を1.3質量部、オクチルアミン(商品名:ファーミン08D 花王製)を0.7質量部添加し、150℃にて反応させたのち、スルフィド系シランカップリング剤(ビス(3-トリエトキシシリルプロピル)テトラスルフィド)(商品名:Si69 エボニックデグサジャパン製)3質量部を加え、140℃で反応させた。
 最後に加工助剤として、ステアリン酸(商品名:ビーズステアリン酸 つばき サンユインダストリアル製、(加工助剤1))、及び、酸化亜鉛三種(商品名:亜鉛華3号A 三井金属鉱業製、(加工助剤2))、老化防止剤(商品名:ノクラック6C、ノクラック224、サンノック、及び、ノクラックAW-N 大内新興化学製)、加硫促進剤(品番:ノクセラーNS-F 大内新興化学製)、加硫遅延剤(商品名:MIRAD PVI 小倉サンダイン株式会社製)を投入しバンバリーミキサーにて混練した。
 混練後のゴムは、シート押出機(商品名:TSR 神戸製鋼製)にてシート状にした後、ミルブレンダーにて加硫剤(硫黄)(商品名:セイミOT ゴム工業資材製)を投入し、所定の厚みの未加硫ゴムシートを得た。
(Evaluation 1)
(Example 1)
Natural rubber (NR) (trade name: SVRCV60 DAU TIENG RUBBER CORPORION) and polybutadiene rubber (BR) (trade name: VCR-412 manufactured by Utsuko) at a ratio of 60/40 (NR / BR) Banbury mixer (trade name) : Mixtron BB180 manufactured by Kobe Steel Co., Ltd., and there are 12 parts by mass of carbon black (GPF) (trade name: made by SEAST V Tokai Carbon) as a filler. And silica (precipitated silica) (trade name: Ultrasil VN3, manufactured by Evonik Degussa Japan), 30 parts by mass, and then an amino silane coupling agent (3-aminopropyltriethoxysilane) (trade name: dynasilane AMEO). Evonik Degussajapa 1.3 parts by mass and 0.7 parts by mass of octylamine (trade name: Farmin 08D manufactured by Kao) were added and reacted at 150 ° C., and then a sulfide-based silane coupling agent (bis (3-tri Ethoxysilylpropyl) tetrasulfide) (trade name: Si69 manufactured by Evonik Degussa Japan) (3 parts by mass) was added and reacted at 140 ° C.
Finally, as processing aids, stearic acid (trade name: bead stearic acid Tsubaki Sanyu Industrial, (processing aid 1)) and three types of zinc oxide (trade name: Zinc Hana 3A, made by Mitsui Mining & Mining, Auxiliary agent 2)), anti-aging agent (trade names: Nocrack 6C, Nocrack 224, Sunnock, and Nocrack AW-N Ouchi Shinsei Chemical), Vulcanization accelerator (Product No .: Noxeller NS-F Ouchi Shinsei Chemical) ), A vulcanization retarder (trade name: MIRAD PVI, manufactured by Ogura Sandine Co., Ltd.), and kneaded with a Banbury mixer.
The rubber after kneading is made into a sheet shape with a sheet extruder (trade name: TSR Kobe Steel), and then a vulcanizing agent (sulfur) (trade name: Seimi OT Rubber Industrial Materials) is charged in a mill blender. An unvulcanized rubber sheet having a predetermined thickness was obtained.
 この未加硫ゴムシートを熱プレスして得られた加硫ゴムシートを用い以下のような項目による評価を行った。 The vulcanized rubber sheet obtained by hot pressing this unvulcanized rubber sheet was evaluated according to the following items.
<引張試験:引張強さ、破断伸び>
 試験はJISK 6251(2004)「加硫ゴム及び熱可塑性ゴム-引張特性の求め方」に準拠した。試験片はJIS3号ダンベル状試験片とし、厚さ2.0mmとした。
<Tensile test: Tensile strength, elongation at break>
The test conformed to JISK 6251 (2004) "Vulcanized rubber and thermoplastic rubber-Determination of tensile properties". The test piece was a JIS No. 3 dumbbell-shaped test piece with a thickness of 2.0 mm.
<引裂強さの試験>
 試験機として、株式会社上島製作所製引張試験機TS-1552(商品名)を使用した。試験はJISK 6252(2001)「加硫ゴム及び可塑性ゴム・引裂強さの求め方」に準拠した。
 試験片はクレセント形試験片とし、厚さ2.0mmとした。
 引裂き力(TR)は以下の式によって求めた。
 
 TR=F/t
  
    TR: 引裂き力[N/mm]
   F: 最大引裂力[N]
  t: 試験片の厚さ[mm]
<Tear strength test>
As a testing machine, a tensile testing machine TS-1552 (trade name) manufactured by Ueshima Seisakusho Co., Ltd. was used. The test was based on JISK 6252 (2001) "Vulcanized rubber and plastic rubber-Determination of tear strength".
The test piece was a crescent-type test piece with a thickness of 2.0 mm.
The tearing force (TR) was determined by the following formula.

TR = F / t

TR: Tear force [N / mm]
F: Maximum tear force [N]
t: Test specimen thickness [mm]
<硬さ>
JIS K 6253に規定のタイプAデュロメータによって常温(23℃)での硬さ(瞬時値)を測定した。
<Hardness>
The hardness (instantaneous value) at normal temperature (23 ° C.) was measured with a type A durometer specified in JIS K 6253.
<せん断弾性率>
 試験機として、アルファテクノロジーズ社製「RPA2000」を使用した。試験条件は、周波数0.5Hz、温度40℃とし、せん断歪0.28%、60%時におけるせん断弾性率をそれぞれ測定し、それらの比によりせん断弾性率の保持率(%)を求めた。
 試験片は、JISK6300-2(2001)「振動式加硫試験機による加硫特性の求め方」に準拠して、厚さ12.5mmのシートから直径30mmの円盤を打ち抜いて作製した。
<Shear modulus>
As a testing machine, “RPA2000” manufactured by Alpha Technologies was used. The test conditions were a frequency of 0.5 Hz and a temperature of 40 ° C., the shear modulus at shear strain of 0.28% and 60% was measured, respectively, and the retention rate (%) of the shear modulus was obtained from the ratio thereof.
The test piece was produced by punching a disk having a diameter of 30 mm from a sheet having a thickness of 12.5 mm in accordance with JISK6300-2 (2001) “How to obtain vulcanization characteristics using a vibration vulcanization tester”.
<損失係数(tanδ)の試験>
 試験機として、株式会社レオロジー製「FT-レオスペクトラDVE-V4」を使用した。試験条件は、周波数10Hz,温度0℃、20℃,サンプル厚さ1.0mm,サンプル長さ8.00mm、サンプル幅3mmとした。損失係数tanδの測定値は、サンプル長さに対して5%伸長させた状態で、振幅±2%の歪みを与えて測定した。
<Test of loss factor (tan δ)>
As a testing machine, “FT-RheoSpectra DVE-V4” manufactured by Rheology Co., Ltd. was used. The test conditions were a frequency of 10 Hz, a temperature of 0 ° C., 20 ° C., a sample thickness of 1.0 mm, a sample length of 8.00 mm, and a sample width of 3 mm. The measured value of the loss factor tan δ was measured by applying a distortion of amplitude ± 2% in a state where the loss factor tan δ was extended by 5% with respect to the sample length.
(その他の実施例、比較例)
 表1に示した配合によってゴム組成物を作製したこと以外は、実施例1と同様にゴム組成物を作製し、実施例1と同様に加硫ゴムシートについての評価を行った。
 なお、実施例5においては、エボニックデグサジャパン製のスルフィド系シランカップリング剤(品番:Si69)にて予めシリカ(品番:Ultrasil VN3)に対して表面処理を実施したシリカ(品番:Coupsil 8113 エボニックデグサジャパン製 Si69/VN3=13/87)を用いたため、実施例1においてスルフィド系シランカップリング剤を混練する工程に該当する部分を割愛してゴム組成物を作製した。
 また、比較例においては、実施例1でアミノ系シランカップリング剤を加えるタイミングでスルフィド系シランカップリング剤を加えてゴム組成物を作製した。
 なお、実施例2、比較例2では、ポリブタジエンゴム(BR)に代えてスチレン-ブタジエンゴム(SBR)(品番:NS616 日本ゼオン製)を用いゴム組成物を作製した。
 これらの評価結果についても、実施例1と同様に表1に示す。
(Other examples, comparative examples)
A rubber composition was prepared in the same manner as in Example 1 except that the rubber composition was prepared by the formulation shown in Table 1, and evaluation of the vulcanized rubber sheet was performed in the same manner as in Example 1.
In Example 5, silica (Product No .: Cupsil 8113 Evonik Degussa) that was previously surface-treated on silica (Product No .: Ultrasil VN3) with a sulfide-based silane coupling agent (Product No .: Si69) manufactured by Evonik Degussa Japan. A rubber composition was prepared by omitting the portion corresponding to the step of kneading the sulfide-based silane coupling agent in Example 1 because Si69 / VN3 = 13/87) manufactured by Japan was used.
In Comparative Example, a rubber composition was prepared by adding a sulfide-based silane coupling agent at the timing of adding the amino-based silane coupling agent in Example 1.
In Example 2 and Comparative Example 2, a rubber composition was prepared using styrene-butadiene rubber (SBR) (product number: NS616 manufactured by Nippon Zeon Co., Ltd.) instead of polybutadiene rubber (BR).
These evaluation results are also shown in Table 1 as in Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(評価2)
(基準試料の作製:実施例6)
 天然ゴム(NR)(商品名:SVRCV60 DAU TIENG RUBBERCORPORATION製)とポリブタジエンゴム(BR)(商品名:VCR-412 宇都興産製)を60/40(NR/BR)の比率にてバンバリーミキサー(商品名:ミクストロンBB180 神戸製鋼製)にて混練し、そこへ充填剤としてカーボンブラック(GPF)(品番:シーストV 東海カーボン製)12質量部(「質量部」は、ゴム100質量部に対する割合。以下において同じ。)とシリカ(沈降法シリカ)(品番:Ultrasil VN3 エボニックデグサジャパン製)30質量部を投入した後、アミノ系シランカップリング剤(3-アミノプロピルトリエトキシシラン)(商品名:dynasilaneAMEOエボニックデグサジャパン製)を2.5質量部添加し、150℃にて反応させたのち、スルフィド系シランカップリング剤(ビス(3-トリエトキシシリルプロピル)テトラスルフィド)(品番:Si69 エボニックデグサジャパン製)3質量部を加え、140℃で反応させた。
 最後に加工助剤として、ステアリン酸(商品名:ビーズステアリン酸 つばき サンユインダストリアル製、(加工助剤1))、及び、酸化亜鉛三種(品番:亜鉛華3号A 三井金属鉱業製、(加工助剤2))、老化防止剤(商品名:ノクラック6C、ノクラック224、サンノック、及び、ノクラックAW-N 大内新興化学製)、加硫促進剤(商品名:ノクセラーNS-F 大内新興化学製)、加硫遅延剤(商品名:MIRAD PVI 小倉サンダイン株式会社製)を投入しバンバリーミキサーにて混練した。
 混練後のゴムは、シート押出機(商品名:TSR 神戸製鋼製)にてシート状にした後、ミルブレンダーにて加硫剤(硫黄)(商品名:セイミOT ゴム工業資材製)を投入し、所定の厚みの未加硫ゴムシートを得た。
(Evaluation 2)
(Preparation of reference sample: Example 6)
Natural rubber (NR) (trade name: SVRCV60 DAU TIENG RUBBER CORPORION) and polybutadiene rubber (BR) (trade name: VCR-412 manufactured by Utsuko) at a ratio of 60/40 (NR / BR) Banbury mixer (trade name) : Mixtron BB180 manufactured by Kobe Steel Co., Ltd., and 12 parts by mass of carbon black (GPF) (product number: SEAST V manufactured by Tokai Carbon Co., Ltd.) as a filler (“mass part” is a ratio with respect to 100 parts by mass of rubber. Same as above) and silica (precipitated silica) (product number: Ultrasil VN3 manufactured by Evonik Degussa Japan), 30 parts by mass, and then an amino-based silane coupling agent (3-aminopropyltriethoxysilane) (trade name: dynasilane AMEO Evonik Degussa) Made in Japan After adding 2.5 parts by mass of the mixture and reacting at 150 ° C., 3 parts by mass of a sulfide-based silane coupling agent (bis (3-triethoxysilylpropyl) tetrasulfide) (product number: Si69 made by Evonik Degussa Japan) was added. In addition, the reaction was carried out at 140 ° C.
Finally, as processing aids, stearic acid (trade name: bead stearic acid made by Tsubaki Sanyu Industrial, (processing aid 1)) and three types of zinc oxide (product number: Zinc Hua 3A, made by Mitsui Mining & Mining, Agent 2)), anti-aging agent (trade names: Nocrack 6C, Nocrack 224, Sunnock, and Nocrack AW-N Ouchi Shinsei Chemical), vulcanization accelerator (trade name: Noxeller NS-F Ouchi Shinsei Chemical) ), A vulcanization retarder (trade name: MIRAD PVI, manufactured by Ogura Sandine Co., Ltd.), and kneaded with a Banbury mixer.
The rubber after kneading is made into a sheet shape with a sheet extruder (trade name: TSR Kobe Steel), and then a vulcanizing agent (sulfur) (trade name: Seimi OT Rubber Industrial Materials) is charged in a mill blender. An unvulcanized rubber sheet having a predetermined thickness was obtained.
 ここで、最初に天然ゴムとポリブタジエンゴムとの混練をバンバリーミキサーで開始してから、最終的に加硫剤(硫黄)を投入して加硫剤(硫黄)を均一に分散させるまでに要した時間を「混練時間(T1)」として計測した。
 そして、加硫剤を分散させたシートの厚み及び幅を調整し、当該調整が完了して所望の厚みと幅とを有する未加硫ゴムシートが得られるまでの時間を「圧延時間(T2)」として計測した。
Here, it was necessary to start the kneading of natural rubber and polybutadiene rubber with a Banbury mixer, and finally add the vulcanizing agent (sulfur) to uniformly disperse the vulcanizing agent (sulfur). The time was measured as “kneading time (T1)”.
And the thickness and width of the sheet | seat which disperse | distributed the vulcanizing agent are adjusted, The time until the said adjustment is completed and the unvulcanized rubber sheet which has desired thickness and width is obtained "rolling time (T2) Was measured.
 また、この未加硫ゴムシートを熱プレスして得られた加硫ゴムシートを用い「評価1」と同様にして、せん断弾性率保持率(60%/0.3%)、及び、20℃での損失係数(tanδ)を測定した。
 ここで得られた「せん断弾性率保持率(%)」の値は、フィラーの分散性を表す指標となるものである。
 そこで、この基準試料の「せん断弾性率保持率(%)」の値を「分散指数(D1)」として設定した。
 さらに、ここで得られた「損失係数(tanδ)」の値は、省エネルギー性を表す指標となるものである。
 そこで、この基準試料の「損失係数(tanδ)」の値を「省エネルギー指数(S1)」として設定した。
Further, using a vulcanized rubber sheet obtained by hot pressing this unvulcanized rubber sheet, the shear modulus retention rate (60% / 0.3%) and 20 ° C. in the same manner as in “Evaluation 1”. Loss factor (tan δ) was measured.
The value of “shear modulus retention (%)” obtained here is an index representing the dispersibility of the filler.
Therefore, the value of “shear modulus retention (%)” of this reference sample was set as “dispersion index (D1)”.
Furthermore, the value of “loss factor (tan δ)” obtained here is an index representing energy saving.
Therefore, the value of “loss factor (tan δ)” of this reference sample was set as “energy saving index (S1)”.
(比較試料(実施例6-12、比較例5)の作製と判定)
 次いで、表2に示す配合内容で、基準試料(実施例6)とは異なる配合内容で比較試料となるゴムシートを作製した。
 そして、この比較試料の作製における「混練時間(Tx)」及び「圧延時間(Ty)」を計測した。
 基準試料の「混練時間(T1)」をこの比較試料の「混練時間(Tx)」で除して得られた百分率の値[100%×(T1/Tx)]を「混練時加工性」を判定する指標とした。
 また、基準試料の「圧延時間(T2)」を比較試料の「圧延時間(Ty)」で除して得られた百分率の値[100%×(T2/Ty)]を「圧延時加工性」を判定する指標とした。
 なお、両指標は、比較試料が作業性に優れ、「混練時間(Tx)」や「圧延時間(Ty)」が短いほど値が高くなるよう設定した。
(Production and determination of comparative sample (Example 6-12, Comparative example 5))
Next, a rubber sheet serving as a comparative sample with a blending content shown in Table 2 and a blending content different from that of the reference sample (Example 6) was produced.
Then, “kneading time (Tx)” and “rolling time (Ty)” in the production of this comparative sample were measured.
The percentage value [100% × (T1 / Tx)] obtained by dividing the “kneading time (T1)” of the reference sample by the “kneading time (Tx)” of this comparative sample is expressed as “workability during kneading”. It was used as an index for judgment.
Further, the percentage value [100% × (T2 / Ty)] obtained by dividing the “rolling time (T2)” of the reference sample by the “rolling time (Ty)” of the comparative sample is “workability during rolling”. It was used as an index for judging.
Both indicators were set so that the comparative sample had better workability, and the values were higher as the “kneading time (Tx)” and “rolling time (Ty)” were shorter.
 さらに、比較試料の「分散指数(Dx)」及び「省エネルギー指数(Sx)」を求め、
この比較試料の「分散指数(Dx)」を基準試料の「分散指数(D1)」で除して得られた百分率の値[100%×(Dx/D1)]を「フィラー分散性」を判定する指標とした。
 また、基準試料の「省エネルギー指数(S1)」を比較試料の「省エネルギー指数(Sx)」で除して得られた百分率の値[100%×(S1/Sx)]を「省エネルギー性」を判定する指標とした。
 ここで、「分散指数」は、「省エネルギー指数」、「混練時間」及び「圧延時間」とは異なり値が高いほうが良好な結果が得られていることになる。
 そこで、「分散指数」だけは比較試料の結果を基準試料の結果で割る形にした。
 即ち、「フィラー分散性」及び「省エネルギー性」の両方の指標は、「混練時加工性」や「圧延時加工性」と同様に良好な結果が得られている程、値が高くなるように設定した。
 これらの結果を表2に示す。
Furthermore, the “dispersion index (Dx)” and “energy saving index (Sx)” of the comparative sample are obtained,
The percentage value [100% × (Dx / D1)] obtained by dividing the “dispersion index (Dx)” of this comparative sample by the “dispersion index (D1)” of the reference sample is judged as “filler dispersibility”. It was used as an indicator.
In addition, the percentage value [100% × (S1 / Sx)] obtained by dividing the “energy saving index (S1)” of the reference sample by the “energy saving index (Sx)” of the comparative sample is judged as “energy saving”. It was used as an indicator.
Here, the “dispersion index” is different from the “energy saving index”, “kneading time”, and “rolling time”, and the higher the value, the better the result.
Therefore, only the “dispersion index” is obtained by dividing the result of the comparative sample by the result of the reference sample.
In other words, both the “dispersibility of filler” and the “energy saving” index have higher values as good results are obtained as in “workability during kneading” and “workability during rolling”. Set.
These results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 この結果からも、本発明によれば、引張強度、引裂強度などの基本物性を維持しつつ、損失係数の低いゴム組成物を得ることができ、省エネルギー性および耐久性に優れたコンベヤベルトが得られることがわかる。
 また、上記結果からは、シリカに対してアミノ系シランカップリング処理を施した後にスルフィド系シランカップリング剤でカップリング処理を施した方が好ましい結果が得られることがわかる。
Also from this result, according to the present invention, a rubber composition having a low loss factor can be obtained while maintaining basic physical properties such as tensile strength and tear strength, and a conveyor belt excellent in energy saving and durability can be obtained. I understand that
Moreover, from the above results, it can be seen that it is preferable to perform a coupling treatment with a sulfide-based silane coupling agent after performing an amino-based silane coupling treatment on silica.
 また、上記の結果からも、シリカの含有量に対する、アミノ系シランカップリング剤の含有量とアルキルアミンの含有量とを所定範囲内に調製することが省エネルギー性に優れたコンベヤベルトを製造容易にする上において有利であることがわかる。 In addition, from the above results, it is easy to manufacture a conveyor belt excellent in energy saving by adjusting the content of the amino silane coupling agent and the content of the alkylamine within a predetermined range with respect to the silica content. It can be seen that this is advantageous.
 1:ベルトコンベヤ、10:コンベヤベルト、11:カバーゴム、12:芯体層、20:プーリ、30:支持ローラ 1: belt conveyor, 10: conveyor belt, 11: cover rubber, 12: core layer, 20: pulley, 30: support roller

Claims (7)

  1.  ベルト長手方向に沿って延在するカバーゴム層として表面側カバーゴム層と裏面側カバーゴム層とを備えたコンベヤベルトであって、
     少なくとも前記裏面側カバーゴム層を構成するゴム組成物が、ジエン系ゴム、カーボンブラック、シリカ、及び、シランカップリング剤を含み、前記シランカップリング剤としてスルフィド系シランカップリング剤、及び、アミノ系シランカップリング剤を含むコンベヤベルト。
    A conveyor belt provided with a front cover rubber layer and a back cover rubber layer as a cover rubber layer extending along the longitudinal direction of the belt,
    The rubber composition constituting at least the back side cover rubber layer includes a diene rubber, carbon black, silica, and a silane coupling agent, and a sulfide silane coupling agent and an amino system as the silane coupling agent. Conveyor belt containing silane coupling agent.
  2.  前記ゴム組成物がアルキルアミンをさらに含み、
     該アルキルアミンは、炭素数6以上20以下のアルキル基を有し、該アルキル基を1つ有するモノアルキルアミンか、又は、前記アルキル基を2つ有するジアルキルアミンかの何れかである請求項1記載のコンベヤベルト。
    The rubber composition further comprises an alkylamine;
    The alkylamine has an alkyl group having 6 to 20 carbon atoms, and is either a monoalkylamine having one alkyl group or a dialkylamine having two alkyl groups. The conveyor belt described.
  3.  前記ゴム組成物は、
     シリカの含有量100質量部に対する前記アミノ系シランカップリング剤の含有量をXa質量部とし、
     且つ、シリカの含有量100質量部に対する前記アルキルアミンの含有量をXb質量部とした際に、下記式(1)~(3)の全てを満たす請求項2記載のコンベヤベルト。
     
     3 ≦ Xa ≦ 10     ・・・(1)
     1 ≦ Xb ≦ 7      ・・・(2)
     4 ≦(Xa+Xb)≦ 14  ・・・(3)
    The rubber composition is
    The content of the amino silane coupling agent with respect to 100 parts by mass of silica is Xa parts by mass,
    The conveyor belt according to claim 2, wherein when the content of the alkylamine with respect to 100 parts by mass of silica is Xb parts by mass, all of the following formulas (1) to (3) are satisfied.

    3 ≦ Xa ≦ 10 (1)
    1 ≦ Xb ≦ 7 (2)
    4 ≦ (Xa + Xb) ≦ 14 (3)
  4.  ベルト長手方向に沿って延在するカバーゴム層として表面側カバーゴム層と裏面側カバーゴム層とを備えたコンベヤベルトを作製するコンベヤベルト製造方法であって、
     ジエン系ゴム、カーボンブラック、シリカ、及び、シランカップリング剤を含み、前記シランカップリング剤としてスルフィド系シランカップリング剤、及び、アミノ系シランカップリング剤を含むゴム組成物を作製する第1工程、
     前記表面側カバーゴム層及び前記裏面側カバーゴム層の内、少なくとも前記裏面側カバーゴム層を第1工程で作製されたゴム組成物によって形成する第2工程を実施するコンベヤベルト製造方法。
    A conveyor belt manufacturing method for producing a conveyor belt provided with a front side cover rubber layer and a back side cover rubber layer as a cover rubber layer extending along the belt longitudinal direction,
    A first step of producing a rubber composition containing a diene rubber, carbon black, silica, and a silane coupling agent, and containing a sulfide silane coupling agent and an amino silane coupling agent as the silane coupling agent. ,
    The conveyor belt manufacturing method which implements the 2nd process which forms at least the said back surface cover rubber layer with the rubber composition produced at the 1st process among the said surface side cover rubber layer and the said back surface cover rubber layer.
  5.  前記第1工程では、
     前記ゴム組成物に含まれる全ての成分の内の1又は2以上の成分が不足している第1配合物を混練する第1混練と、
     該第1混練によって得られた混練物を含み且つ前記不足している成分が補われた第2配合物を混練する第2混練とを実施し、
     前記第1混練では、前記第1配合物にアミノ系シランカップリング剤を含有させ、且つ、前記第1配合物にスルフィド系シランカップリング剤を不足させた状態で混練し、
     前記第2混練ではスルフィド系シランカップリング剤が補われた第2配合物を混練して前記ゴム組成物を作製する請求項4記載のコンベヤベルト製造方法。
    In the first step,
    First kneading a first compound in which one or more components among all the components contained in the rubber composition are insufficient;
    Carrying out a second kneading comprising a kneaded product obtained by the first kneading and kneading the second compound supplemented with the deficient components,
    In the first kneading, the first compound contains an amino silane coupling agent, and the first compound is kneaded with a sulfide silane coupling agent being insufficient,
    The conveyor belt manufacturing method according to claim 4, wherein in the second kneading, the rubber composition is prepared by kneading a second compound supplemented with a sulfide-based silane coupling agent.
  6.  ジエン系ゴム、カーボンブラック、シリカ、及び、シランカップリング剤を含み、該シランカップリング剤として、スルフィド系シランカップリング剤、及び、アミノ系シランカップリング剤を含むゴム組成物。 Rubber composition comprising a diene rubber, carbon black, silica, and a silane coupling agent, and a sulfide silane coupling agent and an amino silane coupling agent as the silane coupling agent.
  7.  シリカの含有量100質量部に対する前記アミノ系シランカップリング剤の含有量をXa質量部とし、
     且つ、シリカの含有量100質量部に対する前記アルキルアミンの含有量をXb質量部とした際に、下記式(1)~(3)の全てを満たす請求項6記載のゴム組成物。
     
     3 ≦ Xa ≦ 10     ・・・(1)
     1 ≦ Xb ≦ 7      ・・・(2)
     4 ≦(Xa+Xb)≦ 14  ・・・(3)
     
     
    The content of the amino silane coupling agent with respect to 100 parts by mass of silica is Xa parts by mass,
    The rubber composition according to claim 6, wherein when the content of the alkylamine with respect to 100 parts by mass of silica is Xb parts by mass, all of the following formulas (1) to (3) are satisfied.

    3 ≦ Xa ≦ 10 (1)
    1 ≦ Xb ≦ 7 (2)
    4 ≦ (Xa + Xb) ≦ 14 (3)

PCT/JP2015/071417 2014-08-07 2015-07-28 Conveyor belt, method for producing conveyor belt, and rubber composition WO2016021448A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016540165A JP6254704B2 (en) 2014-08-07 2015-07-28 Conveyor belt, conveyor belt manufacturing method, and rubber composition
CN201580042181.7A CN106573729B (en) 2014-08-07 2015-07-28 Conveyer belt, the manufacturing method of conveyer belt and rubber composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014161050 2014-08-07
JP2014-161050 2014-08-07

Publications (1)

Publication Number Publication Date
WO2016021448A1 true WO2016021448A1 (en) 2016-02-11

Family

ID=55263719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071417 WO2016021448A1 (en) 2014-08-07 2015-07-28 Conveyor belt, method for producing conveyor belt, and rubber composition

Country Status (3)

Country Link
JP (1) JP6254704B2 (en)
CN (1) CN106573729B (en)
WO (1) WO2016021448A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021059633A (en) * 2019-10-03 2021-04-15 横浜ゴム株式会社 Rubber composition for steel cord adhesion and conveyor belt

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997035918A2 (en) * 1996-06-26 1997-10-02 Bridgestone Corporation Rubber compositions
JPH1067884A (en) * 1996-06-24 1998-03-10 Goodyear Tire & Rubber Co:The Aminosilane compound in silica-filled rubber composition
JP2000143880A (en) * 1998-11-12 2000-05-26 Goodyear Tire & Rubber Co:The Reinforced elastomer, elastomer composite material and tire comprising same as constituting member
JP2001200063A (en) * 1999-12-24 2001-07-24 Bayer Inc Elastomer-butyl compound having improved chemical bonding properties between butyl elastomer and filler
JP2001527599A (en) * 1997-05-22 2001-12-25 バイエル・インコーポレーテツド Methods for rendering particles hydrophobic and their use as fillers in polymer masterbatches
JP2006282964A (en) * 2005-04-05 2006-10-19 Asahi Kasei Chemicals Corp Rubber composition
JP2007031581A (en) * 2005-07-27 2007-02-08 Yokohama Rubber Co Ltd:The Rubber composition
JP2007509226A (en) * 2003-10-20 2007-04-12 ユニロイヤル ケミカル カンパニー インコーポレイテッド Rubber composition and method for reducing tangent delta value and wear index

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11139523A (en) * 1997-11-12 1999-05-25 Bridgestone Corp Conveyor belt
US6403693B2 (en) * 1999-06-18 2002-06-11 The Goodyear Tire & Rubber Company Silica reinforced rubber composition and use in tires
JP4867015B2 (en) * 2005-03-25 2012-02-01 国立大学法人京都工芸繊維大学 Rubber composition and method for producing the same
JP2006282954A (en) * 2005-04-05 2006-10-19 Nissan Soap Co Ltd Production method of detergent granule
JP2007099896A (en) * 2005-10-04 2007-04-19 Yokohama Rubber Co Ltd:The Rubber composition
JP4286298B2 (en) * 2006-07-14 2009-06-24 横浜ゴム株式会社 Rubber composition for conveyor belt and conveyor belt

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067884A (en) * 1996-06-24 1998-03-10 Goodyear Tire & Rubber Co:The Aminosilane compound in silica-filled rubber composition
WO1997035918A2 (en) * 1996-06-26 1997-10-02 Bridgestone Corporation Rubber compositions
JP2001527599A (en) * 1997-05-22 2001-12-25 バイエル・インコーポレーテツド Methods for rendering particles hydrophobic and their use as fillers in polymer masterbatches
JP2000143880A (en) * 1998-11-12 2000-05-26 Goodyear Tire & Rubber Co:The Reinforced elastomer, elastomer composite material and tire comprising same as constituting member
JP2001200063A (en) * 1999-12-24 2001-07-24 Bayer Inc Elastomer-butyl compound having improved chemical bonding properties between butyl elastomer and filler
JP2007509226A (en) * 2003-10-20 2007-04-12 ユニロイヤル ケミカル カンパニー インコーポレイテッド Rubber composition and method for reducing tangent delta value and wear index
JP2006282964A (en) * 2005-04-05 2006-10-19 Asahi Kasei Chemicals Corp Rubber composition
JP2007031581A (en) * 2005-07-27 2007-02-08 Yokohama Rubber Co Ltd:The Rubber composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021059633A (en) * 2019-10-03 2021-04-15 横浜ゴム株式会社 Rubber composition for steel cord adhesion and conveyor belt
JP7381853B2 (en) 2019-10-03 2023-11-16 横浜ゴム株式会社 Rubber composition for adhering steel cords and conveyor belts

Also Published As

Publication number Publication date
CN106573729A (en) 2017-04-19
JP6254704B2 (en) 2017-12-27
CN106573729B (en) 2019-04-26
JPWO2016021448A1 (en) 2017-05-25

Similar Documents

Publication Publication Date Title
CN106414582B (en) Rubber composition and use its conveyer belt
JP5934677B2 (en) Rubber composition for tire and pneumatic tire
JP2008038133A (en) Rubber composition for conveyor belt and conveyor belt
DE112011102762B4 (en) Rubber composition and its use in pneumatic tires
WO2015163168A1 (en) Coating rubber composition for conveyor belt
CN1876702A (en) Tire with tread comprised of natural rubber and specialized emulsion prepared styrene/butadiene elastomer
JP4561046B2 (en) Rubber composition for conveyor belt and conveyor belt
WO2012032896A1 (en) Rubber composition for conveyor belt and conveyor belt
WO2016056219A1 (en) Rubber composition for conveyor belts, and conveyor belt
CN105330906B (en) A kind of impact resistance tear-proof steel cable core conveying belt rubber cover and preparation method
JP6254704B2 (en) Conveyor belt, conveyor belt manufacturing method, and rubber composition
JP5902935B2 (en) Rubber composition for conveyor belt, conveyor belt and belt conveyor
JPWO2018012325A1 (en) Rubber composition, conveyor belt, and belt conveyor
KR20190122153A (en) Multi-functional composite conveyor belt and manufacturing method thereof
JP2004018752A (en) Rubber composition for conveyer belt, and conveyer belt
WO2019044959A1 (en) Rubber composition, inner peripheral cover rubber, conveyor belt, and belt conveyor
JP5317518B2 (en) Conveyor belt
CN107001702B (en) Vibration-proof rubber rubber composition and vibration-proof rubber
JP2010013262A (en) Rubber composition for conveyor belt, method for manufacturing the same, and conveyor belt
JP5482071B2 (en) Rubber composition for conveyor belt and conveyor belt
JP5082571B2 (en) Rubber composition for tire tread
JP2017052605A (en) Conveyor belt rubber composition, and conveyor belt
JP2008069199A (en) Rubber composition for coating fixed cord and tire having carcass and/or belt using the same
JP2004010215A (en) Conveyer belt
JP2004284815A (en) Conveyor belt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830494

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016540165

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15830494

Country of ref document: EP

Kind code of ref document: A1