WO2016021413A1 - Solid-state image pickup element and solid-state image pickup device - Google Patents

Solid-state image pickup element and solid-state image pickup device Download PDF

Info

Publication number
WO2016021413A1
WO2016021413A1 PCT/JP2015/070925 JP2015070925W WO2016021413A1 WO 2016021413 A1 WO2016021413 A1 WO 2016021413A1 JP 2015070925 W JP2015070925 W JP 2015070925W WO 2016021413 A1 WO2016021413 A1 WO 2016021413A1
Authority
WO
WIPO (PCT)
Prior art keywords
counter
solid
imaging device
circuit
state imaging
Prior art date
Application number
PCT/JP2015/070925
Other languages
French (fr)
Japanese (ja)
Inventor
直史 大西
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2016021413A1 publication Critical patent/WO2016021413A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Definitions

  • the present disclosure relates to a solid-state imaging device and a solid-state imaging device, and more particularly, to a solid-state imaging device and a solid-state imaging device that can suppress unintended data output with minimal circuit changes.
  • a counter that continues to count during the AD period is provided to convert an analog value, which is a signal from the pixel array unit, into a digital value.
  • the counter data space necessary for this counter is determined by the counter mounting bit, and it is assumed that the counter is used in a range that fits in the data space.
  • Patent Document 1 and the like have been proposed as a technique related to the counter.
  • the present disclosure has been made in view of such a situation, and can suppress unintended data output with a minimum circuit change.
  • a solid-state imaging device performs a logical calculation based on a counter that counts during an AD period and a threshold of the counter data space defined by the output of the upper 2 bits of the counter, and outputs a result.
  • a controller that outputs the control pulse to the logic circuit in a predetermined period; the logic circuit performs a logic calculation based on a threshold of the data space of the counter and the control pulse input in the predetermined period; The result can be output.
  • the logic circuit includes a register for changing the threshold value of the data section of the counter.
  • a solid-state imaging device performs a logical calculation based on a counter that counts during an AD period and a threshold of the counter data space defined by the output of the upper 2 bits of the counter, and outputs the result.
  • a solid-state image sensor comprising a logic circuit and a counter stop circuit that outputs a signal for stopping the counter based on a result output from the logic circuit, and a signal for processing an output signal output from the solid-state image sensor A processing circuit; and an optical system that makes incident light incident on the solid-state imaging device.
  • a controller that outputs the control pulse to the logic circuit in a predetermined period; the logic circuit performs a logic calculation based on a threshold of the data space of the counter and the control pulse input in the predetermined period; The result can be output.
  • the logic circuit includes a register for changing the threshold value of the data section of the counter.
  • a logical calculation is performed based on a threshold of the counter data space defined by the output of the upper 2 bits of the counter that counts during the AD period, and the result is output. Based on the output result, a signal for stopping the counter is output.
  • This technology can suppress unintended data output with minimal circuit changes.
  • FIG. 1 shows a schematic configuration example of an example of a CMOS (Complementary Metal Oxide Semiconductor) solid-state imaging device applied to each embodiment of the present technology.
  • CMOS Complementary Metal Oxide Semiconductor
  • the solid-state imaging device (image sensor) 1 mainly includes a pixel array unit 11, a low current circuit 12, a comparator (comparator) 13, a counter circuit 14, a DA converter 15, an address decoder 16, It comprises a pixel drive timing drive circuit 17 and a sensor controller 18.
  • the pixel array unit 11 is configured by regularly and two-dimensionally arranging pixels including a plurality of photoelectric conversion elements, and the photoelectrically converted charges propagate through the vertical signal lines.
  • the pixel includes a photoelectric conversion element (for example, a photodiode) and a plurality of pixel transistors (so-called MOS transistors).
  • the plurality of pixel transistors can be constituted by three transistors, for example, a transfer transistor, a reset transistor, and an amplifying transistor, and can further be constituted by four transistors by adding a selection transistor. Since the equivalent circuit of each pixel 2 (unit pixel) is the same as a general one, detailed description thereof is omitted here.
  • the pixels can have a pixel sharing structure.
  • the pixel sharing structure includes a plurality of photodiodes, a plurality of transfer transistors, one shared floating diffusion, and one other pixel transistor that is shared.
  • the low current circuit 12 forms a load MOS portion of the source follower circuit.
  • the comparator 13 compares the vertical signal line potential with the potential of the DA converter 15.
  • the counter circuit 14 continues to count during the AD period in order to convert the analog value into a digital value.
  • the DA converter 15 is, for example, a single slope type DA converter for analog-digital conversion of the vertical signal line potential.
  • the address decoder 16 outputs a control signal for controlling access to the pixel array unit 11 in the vertical direction to the pixel drive timing drive circuit 17.
  • the pixel drive timing drive circuit 17 drives the pixels of the pixel array unit 11 from the logical sum of the control signal from the address decoder 16 and the pixel drive pulse.
  • the sensor controller 18 controls driving of the entire solid-state imaging device 1.
  • FIG. 2 is a diagram showing an outline of overflow driving in the counter circuit 14. Normal drive is P phase and D phase once, but as shown in Fig. 2, when driving P phase and D phase twice each, the intended data (white in the example of Fig. 2) is not output There is.
  • FIG. 2 an example of driving P phase and D phase twice is shown, and below that, a counter level diagram (data space that the counter circuit 14 can take) is shown.
  • the P phase is driven once (counted), driven twice (counted), and then simultaneously reversed.
  • the D phase is driven (counted), the D phase is driven twice (counted), and then simultaneously reversed. Since it is white before inversion, it should be white data even if it is inverted. However, if the counter circuit 14 is rotated too much, it becomes black as shown in FIG. 2 depending on the position where the counter is stopped. May have.
  • FIG. 3 is a diagram illustrating an example of counter data during D-phase counting.
  • 7FFFh is the counter value at the timing canceled for the P-phase, and outputs black data.
  • 5FFFh is an approximate boundary between black data and white data, and white data is output when the count is around 5FFFh.
  • 3FFFh 14-bit MAX
  • 1FFFh 1FFFh among 5FFFh and later are areas that you want to stick to white because the counting operation will be strange if black appears during D-phase counting. , Defined as a clip area.
  • [hex] and [bin] at the end of the D-phase count and their inversion (that is, counter final data) [bin] are shown.
  • the clip area described above is 3FFFh (100000000000000) to 1FFFh (101111111111111) after inversion, and indicates 4000h (011111111111111) to 5FFFh (010000000000000) before inversion, that is, at the end of the D-phase count.
  • FIG. 4 is a diagram illustrating a configuration example of the counter circuit. This counter circuit is an example of a 15-bit counter.
  • the counter circuit 14 is configured to include a counter 51, a logic circuit 52, and a count operation enable control circuit 53.
  • the counter 51 performs counting in order to convert an analog value into a digital value. Further, the counter 51 outputs to the logic circuit 52 the counter bit of the bit required as a threshold value, and in the case of the example of FIG. 4, the upper 2 bits (the 13th bit and the 14th bit).
  • the logic circuit 52 performs logic calculation using the counter output from the counter 51 and the control pulse from the sensor controller 18, and outputs a counter stop signal to the count operation enable control circuit 53 when the output is 1.
  • the count operation enable control circuit 53 stops the count operation of the counter 51.
  • FIG. 5 is a diagram illustrating a configuration example of a logic circuit.
  • the logic circuit 52 includes a NOT gate 71, a NAND gate 72, and an OR gate 73.
  • the 14th bit output from the counter 51 is input to the NOT gate 71.
  • the 13th bit output (for example, 1) from the counter 51 is input to the NAND gate 72. Further, since it is determined by the count number of the D phase before inversion from the sensor controller 18, a control pulse as shown in FIG. 7 is input to the OR gate 73 only in the last (second) D phase period.
  • the NOT gate 71 inverts the 14th bit output (for example, 0) from the counter 51 and outputs it to the NAND gate 72.
  • the NAND gate 72 inputs an inversion of the 14th bit output (for example, 1) and an output of the 13th bit (for example, 1), calculates a logical product, and inverts the result (for example, 1) , And output to the OR gate 73.
  • the upper 2 bits of the logic threshold value are defined, and the count is stopped when the threshold value is exceeded during the last one count period of the D phase.
  • the operation stops even if the threshold is exceeded during the P-phase period. Therefore, the count is stopped in the period intended by the logic of the upper 2 bits and the control pulse.
  • the driving is not limited to P phase and D phase twice. That is, the present technology is also applied to the case of driving three times for the P phase and the D phase, and driving the P phase and the D phase for a plurality of times. Also in these cases, the control pulse is inputted three times for the D phase three times, and every n times for the D phase (n-1) time, that is, the last D phase.
  • FIG. 8 is a diagram illustrating another example of the configuration of the counter circuit.
  • This counter circuit is an example of an n-bit counter.
  • a threshold setting register signal for enabling the threshold to be changed is input from the sensor controller 18 to the counter circuit in the example of FIG.
  • the counter circuit 14 of FIG. 8 is common to the counter circuit 14 of FIG. 4 in that it includes a count operation enable control circuit 53.
  • the counter circuit 14 of FIG. 8 is different from the counter circuit 14 of FIG. 4 in that the counter 51 is replaced with a counter 101 that is an n-bit counter and the logic circuit 52 is replaced with a logic circuit 102.
  • the counter 101 performs counting in order to convert an analog value into a digital value. Further, the counter 101 outputs to the logic circuit 102 a counter output of at least two bits among the 0th to (n-1) th bits.
  • the logic circuit 102 includes a register 111 for changing the threshold value.
  • the register 111 uses the threshold setting register signal from the sensor controller 18 to set a threshold for stopping counting.
  • the logic circuit 102 performs logic calculation based on the counter output from the counter 101 and the threshold set by the register 111, and outputs a counter stop signal to the count operation enable control circuit 53 when the output is 1.
  • the count operation enable control circuit 53 stops the count operation of the counter 101.
  • the logic circuit 102 is configured according to a threshold set by a threshold setting register signal.
  • versatility can be expanded by using a circuit configuration in which the threshold value can be changed by a register.
  • the present technology may be applied to a solid-state imaging device such as a CCD (Charge Coupled Device) solid-state imaging device.
  • CCD Charge Coupled Device
  • the present technology can be applied to any back-illuminated type or front-illuminated type CMOS solid-state image sensor as long as it is a CMOS solid-state image sensor.
  • the present technology is not limited to application to a solid-state imaging device, but can also be applied to a solid-state imaging device.
  • the solid-state imaging device refers to a camera system such as a digital still camera or a digital video camera, or an electronic device having an imaging function such as a mobile phone.
  • a module form mounted on an electronic device, that is, a camera module is a solid-state imaging device.
  • FIG. 9 is a block diagram illustrating a configuration example of a camera device (solid-state imaging device) as an electronic apparatus to which the present technology is applied.
  • the camera device 600 includes an optical unit 601 including a lens group, a solid-state imaging device (imaging device) 602 employing each structure of the present technology, and a DSP circuit 603 that is a camera signal processing circuit.
  • the camera device 600 also includes a frame memory 604, a display unit 605, a recording unit 606, an operation unit 607, and a power supply unit 608.
  • the DSP circuit 603, the frame memory 604, the display unit 605, the recording unit 606, the operation unit 607, and the power supply unit 608 are connected to each other via a bus line 609.
  • the optical unit 601 takes in incident light (image light) from a subject and forms an image on the imaging surface of the solid-state imaging device 602.
  • the solid-state imaging device 602 converts the amount of incident light imaged on the imaging surface by the optical unit 601 into an electrical signal for each pixel and outputs the electrical signal as a pixel signal.
  • the solid-state imaging device 602 the solid-state imaging device 1 according to the above-described embodiment can be used.
  • the display unit 605 includes, for example, a panel type display device such as a liquid crystal panel or an organic El (Electro Luminescence) panel, and displays a moving image or a still image captured by the solid-state image sensor 602.
  • the recording unit 606 records a moving image or a still image captured by the solid-state imaging device 602 on a recording medium such as a video tape or a DVD (Digital Versatile Disk).
  • the operation unit 607 issues operation commands for various functions of the camera device 600 under the operation of the user.
  • the power supply unit 608 appropriately supplies various power sources serving as operation power sources for the DSP circuit 603, the frame memory 604, the display unit 605, the recording unit 606, and the operation unit 607 to these supply targets.
  • the configuration described as one device (or processing unit) may be divided and configured as a plurality of devices (or processing units).
  • the configurations described above as a plurality of devices (or processing units) may be combined into a single device (or processing unit).
  • a configuration other than that described above may be added to the configuration of each device (or each processing unit).
  • a part of the configuration of a certain device (or processing unit) may be included in the configuration of another device (or other processing unit). . That is, the present technology is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present technology.
  • this technique can also take the following structures.
  • a counter that counts during the AD period;
  • a logic circuit that performs a logical calculation based on a threshold of the data space of the counter defined by the output of the upper 2 bits of the counter and outputs a result;
  • a solid-state imaging device comprising: a counter stop circuit that outputs a signal for stopping the counter based on a result output by the logic circuit.
  • a controller for outputting the control pulse to the logic circuit during a predetermined period;
  • the solid-state imaging device according to (1) or (2), wherein the logic circuit includes a register for changing a threshold value of a data section of the counter. (4) a counter that counts during the AD period; A logic circuit that performs a logical calculation based on a threshold of the data space of the counter defined by the output of the upper 2 bits of the counter and outputs a result; A solid-state imaging device comprising: a counter stop circuit that outputs a signal for stopping the counter based on a result output by the logic circuit; A signal processing circuit for processing an output signal output from the solid-state imaging device; A solid-state imaging device comprising: an optical system that makes incident light incident on the solid-state imaging device.
  • a controller for outputting the control pulse to the logic circuit during a predetermined period a controller for outputting the control pulse to the logic circuit during a predetermined period;
  • the logic circuit includes a register for changing a threshold value of a data section of the counter.
  • 1 solid-state imaging device 11 pixel array section, 14 counter circuit, 18 sensor controller, 51 counter, 52 logic circuit, 53 count operation enable control circuit, 71 NOT gate, 72 NAND gate, 73 OR gate, 101 counter, 102 logic circuit , 111 registers, 600 electronic devices, 601 solid-state imaging device

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

This disclosure relates to a solid-state image pickup element and a solid-state image pickup device which enable unintended data output to be suppressed by the smallest possible circuit change. A counter performs counter output of upper two bits (for example, 13th bit and 14th bit) to a logical circuit. The logical circuit performs a logical computation using the counter output from the counter and a control pulse from a sensor controller, and outputs a counter stop signal to a counting operation enable control circuit when the output is one. This disclosure is applicable, for example, to a solid-state image pickup device such as a camera.

Description

固体撮像素子および固体撮像装置Solid-state imaging device and solid-state imaging device
 本開示は、固体撮像素子および固体撮像装置に関し、特に、最小限の回路変更で、意図しないデータの出力を抑制することができるようにした固体撮像素子および固体撮像装置に関する。 The present disclosure relates to a solid-state imaging device and a solid-state imaging device, and more particularly, to a solid-state imaging device and a solid-state imaging device that can suppress unintended data output with minimal circuit changes.
 固体撮像素子において、画素アレイ部からの信号であるアナログ値を、デジタル値に変換するためにAD期間にカウントし続けるカウンタが備えられている。このカウンタの必要なカウンタデータ空間は、カウンタの搭載bitで決まっており、データ空間に収まる範囲で使用することが前提となっている。 In the solid-state imaging device, a counter that continues to count during the AD period is provided to convert an analog value, which is a signal from the pixel array unit, into a digital value. The counter data space necessary for this counter is determined by the counter mounting bit, and it is assumed that the counter is used in a range that fits in the data space.
 ただし、駆動方法によっては、データ空間を超えるケースがあり、その際、意図しないデータ(例えば、白のはずが黒)が出力されてしまう。カウンタがカウントをし過ぎるためであり、対策としては以下が考えられる。 However, depending on the driving method, there are cases where the data space is exceeded, and unintended data (for example, white should be black) is output. This is because the counter counts too much, and the following can be considered as countermeasures.
 対策1:駆動方法を制限する
 対策2:ビットシフト機能を搭載する
 対策3:ビットを増加する
Measure 1: Limit drive method Measure 2: Install bit shift function Measure 3: Increase the number of bits
 なお、カウンタに関する技術としては、特許文献1などが提案されている。 Note that Patent Document 1 and the like have been proposed as a technique related to the counter.
特開2007-316961号公報JP 2007-316961 A
 しかしながら、対策1の場合、顧客要求を満たさない。対策2の場合、回路面積が増大してしまう。対策3の場合、回路面積増大に加えて、消費電流が増してしまう。以上のように、何れの場合もデメリットが大きく、また、大幅な変更なく、それらのデメリットへの対策を考えることは困難であった。 However, in the case of measure 1, the customer request is not satisfied. In the case of measure 2, the circuit area increases. In the case of measure 3, in addition to an increase in circuit area, current consumption increases. As described above, the demerits are large in any case, and it is difficult to consider measures for these demerits without significant changes.
 本開示は、このような状況に鑑みてなされたものであり、最小限の回路変更で、意図しないデータの出力を抑制することができるものである。 The present disclosure has been made in view of such a situation, and can suppress unintended data output with a minimum circuit change.
 本技術の一側面の固体撮像素子は、AD期間にカウントを行うカウンタと、前記カウンタの上位2ビットの出力で定義される前記カウンタのデータ空間の閾値に基づく論理計算を行い、結果を出力する論理回路と、前記論理回路により出力される結果に基づいて、前記カウンタを停止する信号を出力するカウンタ停止回路とを備える。 A solid-state imaging device according to an aspect of the present technology performs a logical calculation based on a counter that counts during an AD period and a threshold of the counter data space defined by the output of the upper 2 bits of the counter, and outputs a result. A logic circuit; and a counter stop circuit that outputs a signal for stopping the counter based on a result output from the logic circuit.
 所定の期間に前記制御パルスを前記論理回路に出力するコントローラをさらに備え、前記論理回路は、前記カウンタのデータ空間の閾値と前記所定の期間に入力される制御パルスとに基づく論理計算を行い、結果を出力することができる。 A controller that outputs the control pulse to the logic circuit in a predetermined period; the logic circuit performs a logic calculation based on a threshold of the data space of the counter and the control pulse input in the predetermined period; The result can be output.
 前記論理回路は、前記カウンタのデータ区間の閾値変更を行うためのレジスタを備える。 The logic circuit includes a register for changing the threshold value of the data section of the counter.
 本技術の一側面の固体撮像装置は、AD期間にカウントを行うカウンタと、前記カウンタの上位2ビットの出力で定義される前記カウンタのデータ空間の閾値に基づく論理計算を行い、結果を出力する論理回路と、前記論理回路により出力される結果に基づいて、前記カウンタを停止する信号を出力するカウンタ停止回路とを備える固体撮像素子と、前記固体撮像素子から出力される出力信号を処理する信号処理回路と、入射光を前記固体撮像素子に入射する光学系とを有する。 A solid-state imaging device according to one aspect of the present technology performs a logical calculation based on a counter that counts during an AD period and a threshold of the counter data space defined by the output of the upper 2 bits of the counter, and outputs the result. A solid-state image sensor comprising a logic circuit and a counter stop circuit that outputs a signal for stopping the counter based on a result output from the logic circuit, and a signal for processing an output signal output from the solid-state image sensor A processing circuit; and an optical system that makes incident light incident on the solid-state imaging device.
 所定の期間に前記制御パルスを前記論理回路に出力するコントローラをさらに備え、前記論理回路は、前記カウンタのデータ空間の閾値と前記所定の期間に入力される制御パルスとに基づく論理計算を行い、結果を出力することができる。 A controller that outputs the control pulse to the logic circuit in a predetermined period; the logic circuit performs a logic calculation based on a threshold of the data space of the counter and the control pulse input in the predetermined period; The result can be output.
 前記論理回路は、前記カウンタのデータ区間の閾値変更を行うためのレジスタを備える。 The logic circuit includes a register for changing the threshold value of the data section of the counter.
 本技術の一側面においては、AD期間にカウントを行うカウンタの上位2ビットの出力で定義される前記カウンタのデータ空間の閾値に基づく論理計算が行われて、結果が出力される。そして、出力される結果に基づいて、前記カウンタを停止する信号が出力される。 In one aspect of the present technology, a logical calculation is performed based on a threshold of the counter data space defined by the output of the upper 2 bits of the counter that counts during the AD period, and the result is output. Based on the output result, a signal for stopping the counter is output.
 本技術によれば、最小限の回路変更で、意図しないデータの出力を抑制することができる。 This technology can suppress unintended data output with minimal circuit changes.
  なお、本明細書に記載された効果は、あくまで例示であり、本技術の効果は、本明細書に記載された効果に限定されるものではなく、付加的な効果があってもよい。 Note that the effects described in the present specification are merely examples, and the effects of the present technology are not limited to the effects described in the present specification, and may have additional effects.
本技術を適用した固体撮像装置の概略構成例を示すブロック図である。It is a block diagram which shows the schematic structural example of the solid-state imaging device to which this technique is applied. オーバフロー駆動の概略を説明する図である。It is a figure explaining the outline of an overflow drive. D相カウント中のカウンタデータの例を示す図である。It is a figure which shows the example of the counter data in D phase count. カウンタ回路の構成例を示すブロック図である。It is a block diagram which shows the structural example of a counter circuit. 論理回路の構成例を示す図である。It is a figure which shows the structural example of a logic circuit. 閾値の例を示す図である。It is a figure which shows the example of a threshold value. 制御パルスの例を示す図である。It is a figure which shows the example of a control pulse. カウンタ回路の構成の他の例を示すブロック図である。It is a block diagram which shows the other example of a structure of a counter circuit. 本技術を適用した電子機器の構成例を示すブロック図である。It is a block diagram which shows the structural example of the electronic device to which this technique is applied.
 以下、本開示を実施するための形態(以下実施の形態とする)について説明する。 Hereinafter, modes for carrying out the present disclosure (hereinafter referred to as embodiments) will be described.
<固体撮像装置の概略構成例>
 図1は、本技術の各実施の形態に適用されるCMOS(Complementary Metal Oxide Semiconductor)固体撮像素子の一例の概略構成例を示している。
<Schematic configuration example of solid-state imaging device>
FIG. 1 shows a schematic configuration example of an example of a CMOS (Complementary Metal Oxide Semiconductor) solid-state imaging device applied to each embodiment of the present technology.
 図1に示されるように、固体撮像素子(イメージセンサ)1は、主に、画素アレイ部11、低電流回路12、比較器(コンパレータ)13、カウンタ回路14、DAコンバータ15、アドレスデコーダ16、画素駆動タイミング駆動回路17、およびセンサコントローラ18から構成される。 As shown in FIG. 1, the solid-state imaging device (image sensor) 1 mainly includes a pixel array unit 11, a low current circuit 12, a comparator (comparator) 13, a counter circuit 14, a DA converter 15, an address decoder 16, It comprises a pixel drive timing drive circuit 17 and a sensor controller 18.
 画素アレイ部11は、複数の光電変換素子を含む画素が規則的に2次元的に配列されて構成されており、光電変換した電荷が垂直信号線を介して信号伝搬する。 The pixel array unit 11 is configured by regularly and two-dimensionally arranging pixels including a plurality of photoelectric conversion elements, and the photoelectrically converted charges propagate through the vertical signal lines.
 なお、画素は、光電変換素子(例えばフォトダイオード)と、複数の画素トランジスタ(いわゆるMOSトランジスタ)を有してなる。複数の画素トランジスタは、例えば、転送トランジスタ、リセットトランジスタ、および増幅トランジスタの3つのトランジスタで構成することができ、さらに選択トランジスタを追加して4つのトランジスタで構成することもできる。各画素2(単位画素)の等価回路は一般的なものと同様であるので、ここでは詳細な説明は省略する。 The pixel includes a photoelectric conversion element (for example, a photodiode) and a plurality of pixel transistors (so-called MOS transistors). The plurality of pixel transistors can be constituted by three transistors, for example, a transfer transistor, a reset transistor, and an amplifying transistor, and can further be constituted by four transistors by adding a selection transistor. Since the equivalent circuit of each pixel 2 (unit pixel) is the same as a general one, detailed description thereof is omitted here.
 また、画素は、画素共有構造とすることもできる。画素共有構造は、複数のフォトダイオード、複数の転送トランジスタ、共有される1つのフローティングディフュージョン、および、共有される1つずつの他の画素トランジスタから構成される。 Also, the pixels can have a pixel sharing structure. The pixel sharing structure includes a plurality of photodiodes, a plurality of transfer transistors, one shared floating diffusion, and one other pixel transistor that is shared.
 低電流回路12は、ソースフォロア回路の負荷MOS部を形成する。比較器13は、垂直信号線電位とDAコンバータ15の電位を比較する。カウンタ回路14は、アナログ値をデジタル値に変換するためにAD期間にカウントし続ける。DAコンバータ15は、垂直信号線電位をアナログデジタル変換するための、例えば、シングルスロープ型のDAコンバータである。 The low current circuit 12 forms a load MOS portion of the source follower circuit. The comparator 13 compares the vertical signal line potential with the potential of the DA converter 15. The counter circuit 14 continues to count during the AD period in order to convert the analog value into a digital value. The DA converter 15 is, for example, a single slope type DA converter for analog-digital conversion of the vertical signal line potential.
 アドレスデコーダ16は、垂直方向の画素アレイ部11のアクセスを制御する制御信号を、画素駆動タイミング駆動回路17に出力する。画素駆動タイミング駆動回路17は、アドレスデコーダ16からの制御信号と画素駆動パルスの論理和から、画素アレイ部11の画素を駆動する。センサコントローラ18は、固体撮像素子1全体の駆動を制御する。 The address decoder 16 outputs a control signal for controlling access to the pixel array unit 11 in the vertical direction to the pixel drive timing drive circuit 17. The pixel drive timing drive circuit 17 drives the pixels of the pixel array unit 11 from the logical sum of the control signal from the address decoder 16 and the pixel drive pulse. The sensor controller 18 controls driving of the entire solid-state imaging device 1.
 <カウンタ回路のオーバフロー駆動の説明>
 図2は、カウンタ回路14におけるオーバフロー駆動の概略を示す図である。通常の駆動は、P相D相1回であるが、図2に示されるように、P相D相2回ずつ駆動した場合、意図したデータ(図2の例では、白)が出力されないケースがある。
<Description of counter circuit overflow drive>
FIG. 2 is a diagram showing an outline of overflow driving in the counter circuit 14. Normal drive is P phase and D phase once, but as shown in Fig. 2, when driving P phase and D phase twice each, the intended data (white in the example of Fig. 2) is not output There is.
 図2の例においては、P相D相2回ずつの駆動の例が示されており、その下には、カウンタレベルダイヤ(カウンタ回路14が取り得るデータ空間)が示されている。P相を1回駆動(カウント)し、2回駆動(カウント)した後、一斉反転する。次にD相を駆動(カウント)し、D相を2回駆動(カウント)した後、一斉反転する。反転前は白なので、本来、反転しても白データになっているはずが、カウンタ回路14が回り過ぎていると、カウンタが止まっている位置によっては、図2に示されるように黒になっていることがある。 In the example of FIG. 2, an example of driving P phase and D phase twice is shown, and below that, a counter level diagram (data space that the counter circuit 14 can take) is shown. The P phase is driven once (counted), driven twice (counted), and then simultaneously reversed. Next, the D phase is driven (counted), the D phase is driven twice (counted), and then simultaneously reversed. Since it is white before inversion, it should be white data even if it is inverted. However, if the counter circuit 14 is rotated too much, it becomes black as shown in FIG. 2 depending on the position where the counter is stopped. May have.
 <回路変更概要>
 図3は、D相カウント中のカウンタデータの例を示す図である。D相カウント中のカウンタデータにおいて、7FFFhは、P相分キャンセルしたタイミングのカウンタ値であり、黒データを出力する。5FFFhは、黒データと白データのおおよその境界であり、5FFFh辺り以降のカウントのとき白データを出力するが、図2を参照して上述したようにカウンタ回路14が回り過ぎていると、黒になってしまうことがあり得る。
<Overview of circuit change>
FIG. 3 is a diagram illustrating an example of counter data during D-phase counting. In the counter data during the D-phase count, 7FFFh is the counter value at the timing canceled for the P-phase, and outputs black data. 5FFFh is an approximate boundary between black data and white data, and white data is output when the count is around 5FFFh. However, as described above with reference to FIG. Can end up.
 ここで、5FFFh以降のうち、3FFFh(14ビットMAX)乃至1FFFhは、D相カウント中に、黒がでるとカウント動作がおかしくなってしまうため、白に貼りつかせたい領域であり、その領域を、クリップ領域と定義する。 Here, 3FFFh (14-bit MAX) to 1FFFh among 5FFFh and later are areas that you want to stick to white because the counting operation will be strange if black appears during D-phase counting. , Defined as a clip area.
 なお、図中下には、D相カウント終了時の[hex]と[bin]およびそれの反転後(すなわち、カウンタ最終データ)[bin]が示されている。上述したクリップ領域は、反転後、3FFFh(100000000000000)乃至1FFFh(101111111111111)であり、反転前、すなわち、D相のカウント終了時では、4000h(011111111111111)乃至5FFFh(010000000000000)を示す。 In the lower part of the figure, [hex] and [bin] at the end of the D-phase count and their inversion (that is, counter final data) [bin] are shown. The clip area described above is 3FFFh (100000000000000) to 1FFFh (101111111111111) after inversion, and indicates 4000h (011111111111111) to 5FFFh (010000000000000) before inversion, that is, at the end of the D-phase count.
 すなわち、クリップ領域は、D相カウント終了時では、14ビット目(最上位)=0、13ビット目=1の範囲であり、カウンタ回路14の上位2ビットで判別することができる。したがって、D相カウント中に、上位2ビットがどういう出力になるかを閾値に設定して、設定した閾値を超えた場合、カウンタ回路14の動作を止めるようにすればよい。 That is, the clip area is in the range of the 14th bit (most significant) = 0 and the 13th bit = 1 at the end of the D-phase count, and can be determined by the upper 2 bits of the counter circuit 14. Therefore, during the D-phase counting, what kind of output the upper 2 bits are output is set as a threshold value, and when the set threshold value is exceeded, the operation of the counter circuit 14 may be stopped.
 特に、D相の2回目のところが数えすぎるため、D相の2回目のタイミングで、センサコントローラ18からの制御パルスをかぶせてあげることで、この区間で閾値を超えたら、カウントをとめることが可能になる。この区間で閾値を超えたらカウントをとめるので、反転しても白の領域にいるという動きになる。 In particular, since the second phase of D phase is overcounted, it is possible to stop counting when the threshold is exceeded in this section by applying a control pulse from sensor controller 18 at the second timing of D phase. become. If the threshold value is exceeded in this section, the count is stopped, so that even if it is reversed, the movement is in the white area.
 以上のことより、本技術においては、CDS(Correlated Double Sampling/相関二重サンプリング)時、すなわち、D相時に、カウントデータが14bitを超えたら、すなわち、14ビット目(最上位)=0、13ビット目=1となったら、カウンタ回路14のカウントが停止される。 From the above, in this technology, when the count data exceeds 14 bits at the time of CDS (Correlated Double Sampling), that is, at the D phase, that is, the 14th bit (the most significant) = 0, 13 When the bit number = 1, the counter circuit 14 stops counting.
 すなわち、本技術においては、カウントデータが、14ビット目(最上位)=0、13ビット目=1となったら、カラム毎にカウントを止める機能が設けられる。 That is, in the present technology, when the count data is 14th bit (most significant) = 0 and 13th bit = 1, a function for stopping the count is provided for each column.
 ただし、P相カウント中にも、カウントデータがこの領域に入る可能性があるので、次に後述するように、D相に立つ制御パルスとイネーブル(信号の生成)の機能も設けられる。 However, since the count data may enter this area even during the P-phase counting, a control pulse and enable (signal generation) function in the D-phase are provided as will be described later.
 <カウンタ回路の構成例>
 図4は、カウンタ回路の構成例を示す図である。なお、このカウンタ回路は、15ビットカウンタの例である。
<Configuration example of counter circuit>
FIG. 4 is a diagram illustrating a configuration example of the counter circuit. This counter circuit is an example of a 15-bit counter.
 図4の例において、カウンタ回路14は、カウンタ51、論理回路52、およびカウント動作イネーブル制御回路53を含むように構成されている。 4, the counter circuit 14 is configured to include a counter 51, a logic circuit 52, and a count operation enable control circuit 53.
 カウンタ51は、アナログ値をデジタル値に変換するためにカウントを行う。また、カウンタ51は、論理回路52に、閾値として必要なビット目、図4の例の場合、上位2ビット(13ビット目と14ビット目)のカウンタ出力を行う。 The counter 51 performs counting in order to convert an analog value into a digital value. Further, the counter 51 outputs to the logic circuit 52 the counter bit of the bit required as a threshold value, and in the case of the example of FIG. 4, the upper 2 bits (the 13th bit and the 14th bit).
 論理回路52は、カウンタ51からのカウンタ出力とセンサコントローラ18からの制御パルスとを用いて、論理計算を行い、出力が1のときにカウンタ停止信号を、カウント動作イネーブル制御回路53に出力する。カウント動作イネーブル制御回路53は、論理回路52からカウンタ停止信号を受けたら、カウンタ51のカウント動作を停止させる。 The logic circuit 52 performs logic calculation using the counter output from the counter 51 and the control pulse from the sensor controller 18, and outputs a counter stop signal to the count operation enable control circuit 53 when the output is 1. When receiving a counter stop signal from the logic circuit 52, the count operation enable control circuit 53 stops the count operation of the counter 51.
 <論理回路の構成例>
 図5は、論理回路の構成例を示す図である。D相カウント中に、図6に示されるカウント、すなわち、上述したクリップ領域である010000000000000h(8192)乃至01111111111111h(16383)になったら、カウンタ51を停止させる。このとき、カウンタ51からの0乃至12ビット目の出力は不問であり、13ビット目の出力は1であり、14ビット目の出力は0である。
<Configuration example of logic circuit>
FIG. 5 is a diagram illustrating a configuration example of a logic circuit. When the count shown in FIG. 6 is reached during the D-phase count, that is, 010000000000000h (8192) to 01111111111111h (16383), which are the above clip areas, the counter 51 is stopped. At this time, the output of the 0th to 12th bits from the counter 51 is unquestioned, the output of the 13th bit is 1, and the output of the 14th bit is 0.
 論理回路52は、NOTゲート71、NANDゲート72、およびORゲート73により構成されている。 The logic circuit 52 includes a NOT gate 71, a NAND gate 72, and an OR gate 73.
 カウンタ51からの14ビット目の出力がNOTゲート71に入力される。カウンタ51からの13ビット目の出力(例えば、1)がNANDゲート72に入力される。また、センサコントローラ18からは、反転前のD相のカウント数で決まるので、最後(2度目)のD相期間のみに、図7に示されるような制御パルスがORゲート73に入力される。 The 14th bit output from the counter 51 is input to the NOT gate 71. The 13th bit output (for example, 1) from the counter 51 is input to the NAND gate 72. Further, since it is determined by the count number of the D phase before inversion from the sensor controller 18, a control pulse as shown in FIG. 7 is input to the OR gate 73 only in the last (second) D phase period.
 NOTゲート71は、カウンタ51からの14ビット目の出力(例えば、0)を反転して、NANDゲート72に出力する。 The NOT gate 71 inverts the 14th bit output (for example, 0) from the counter 51 and outputs it to the NAND gate 72.
 NANDゲート72は、14ビット目の出力の反転(例えば、1)と13ビット目の出力(例えば、1)とを入力し、論理積を計算し、その結果(例えば、1)を反転して、ORゲート73に出力する。 The NAND gate 72 inputs an inversion of the 14th bit output (for example, 1) and an output of the 13th bit (for example, 1), calculates a logical product, and inverts the result (for example, 1) , And output to the OR gate 73.
 ORゲート73は、NANDゲート72の計算結果の反転(例えば、0)と、制御パルスとを入力し、論理和を計算し、その結果を、カウント動作イネーブル制御回路53に出力する。すなわち、2度目(最後の1回)のD相期間のみ、図7に示されるような制御パルス(=1)がORゲート73に入力される。このとき、図6に示される閾値(条件)で、NANDゲート72の計算結果の反転(例えば、0)となると、ORゲート73の出力は1となり、カウント動作イネーブル制御回路53に、カウンタ停止信号が出力される。 The OR gate 73 inputs the inversion (for example, 0) of the calculation result of the NAND gate 72 and the control pulse, calculates a logical sum, and outputs the result to the count operation enable control circuit 53. That is, the control pulse (= 1) as shown in FIG. 7 is input to the OR gate 73 only in the second (last one) D-phase period. At this time, when the calculation result of the NAND gate 72 is inverted (for example, 0) with the threshold (condition) shown in FIG. 6, the output of the OR gate 73 becomes 1, and the counter operation stop signal is sent to the count operation enable control circuit 53. Is output.
 なお、実際には、内部遅延の影響でカウンタ停止信号が出力されてもカウンタ51が即座に止まらないため、期待値に対し+αとなるが、白が認識できればよいこととする。 Actually, even if the counter stop signal is output due to the influence of the internal delay, the counter 51 does not stop immediately, and thus + α with respect to the expected value. However, it is only necessary to recognize white.
 以上のように、カウント回路14においては、上位2ビットの論理の閾値を定義し、D相の最後の1回のカウント期間中に閾値を超えたらカウントを停止させるようにした。また、上位2ビットの論理だけでは、D相のカウント数で決まるので、P相期間中に閾値を超えた場合にも停止してしまう。したがって、上位2ビットと制御パルスの論理で意図した期間にカウントが停止されるようにした。 As described above, in the count circuit 14, the upper 2 bits of the logic threshold value are defined, and the count is stopped when the threshold value is exceeded during the last one count period of the D phase. In addition, since only the upper 2 bits of logic are determined by the D-phase count, the operation stops even if the threshold is exceeded during the P-phase period. Therefore, the count is stopped in the period intended by the logic of the upper 2 bits and the control pulse.
 以上により、本技術によれば、データ空間を超える駆動であってもbit追加やビットシフトなど大幅な回路修正の必要がなく、意図しないデータの出力を抑制することができる。また、本技術の場合、最小限の回路変更で対応可能なため、面積・消費電流増の影響が少なく、今後のタイプへの展開も容易である。 As described above, according to the present technology, even when driving beyond the data space, there is no need for significant circuit correction such as bit addition or bit shift, and unintended data output can be suppressed. In addition, since this technology can be handled with minimal circuit changes, it is less affected by increased area and current consumption, and can be easily expanded to future types.
 なお、上記説明においては、P相D相2回ずつの駆動の例を説明したが、P相D相2回ずつの駆動に限らない。すなわち、本技術は、P相D相3回ずつの駆動やP相D相その他複数回の駆動の場合にも適用される。それらの場合も、制御パルスが入力されるのは、3回ずつならD相3回目、n回ずつならD相(n-1)回目に、つまり、D相最後の1回目となる。 In the above description, an example of driving P phase and D phase twice has been described, but the driving is not limited to P phase and D phase twice. That is, the present technology is also applied to the case of driving three times for the P phase and the D phase, and driving the P phase and the D phase for a plurality of times. Also in these cases, the control pulse is inputted three times for the D phase three times, and every n times for the D phase (n-1) time, that is, the last D phase.
 また、上記説明においては、上位2ビットを論理の閾値としたため、閾値を変更するには、回路変更が伴ってしまう。 In the above description, since the upper 2 bits are set as the logical threshold value, changing the threshold value involves a circuit change.
 <カウンタ回路の構成例>
 図8は、カウンタ回路の構成の他の例を示す図である。なお、このカウンタ回路は、nビットカウンタの例である。また、図8の例のカウンタ回路には、例えばセンサコントローラ18から、閾値を変更可能とするための閾値設定レジスタ信号が入力される。
<Configuration example of counter circuit>
FIG. 8 is a diagram illustrating another example of the configuration of the counter circuit. This counter circuit is an example of an n-bit counter. In addition, a threshold setting register signal for enabling the threshold to be changed is input from the sensor controller 18 to the counter circuit in the example of FIG.
 図8のカウンタ回路14は、カウント動作イネーブル制御回路53を含む点が、図4のカウンタ回路14と共通している。図8のカウンタ回路14は、カウンタ51がnビットカウンタであるカウンタ101に入れ替わった点と、論理回路52が論理回路102に入れ替わった点が、図4のカウンタ回路14と異なっている。 8 is common to the counter circuit 14 of FIG. 4 in that it includes a count operation enable control circuit 53. The counter circuit 14 of FIG. 8 is different from the counter circuit 14 of FIG. 4 in that the counter 51 is replaced with a counter 101 that is an n-bit counter and the logic circuit 52 is replaced with a logic circuit 102.
 カウンタ101は、アナログ値をデジタル値に変換するためにカウントを行う。また、カウンタ101は、論理回路102に、0乃至n-1ビット目のうち少なくとも2つの何ビット目かのカウンタ出力を行う。 The counter 101 performs counting in order to convert an analog value into a digital value. Further, the counter 101 outputs to the logic circuit 102 a counter output of at least two bits among the 0th to (n-1) th bits.
 論理回路102は、閾値を変更するためのレジスタ111を含むようになされている。レジスタ111は、センサコントローラ18からの閾値設定レジスタ信号を用いて、カウント停止のための閾値を設定する。論理回路102は、カウンタ101からのカウンタ出力とレジスタ111により設定された閾値に基づいて、論理計算を行い、出力が1のときにカウンタ停止信号を、カウント動作イネーブル制御回路53に出力する。カウント動作イネーブル制御回路53は、論理回路52からカウンタ停止信号を受けたら、カウンタ101のカウント動作を停止させる。 The logic circuit 102 includes a register 111 for changing the threshold value. The register 111 uses the threshold setting register signal from the sensor controller 18 to set a threshold for stopping counting. The logic circuit 102 performs logic calculation based on the counter output from the counter 101 and the threshold set by the register 111, and outputs a counter stop signal to the count operation enable control circuit 53 when the output is 1. When receiving the counter stop signal from the logic circuit 52, the count operation enable control circuit 53 stops the count operation of the counter 101.
 なお、論理回路102は、閾値設定レジスタ信号により設定される閾値に応じて構成される。 Note that the logic circuit 102 is configured according to a threshold set by a threshold setting register signal.
 以上のように、レジスタで閾値を変更できるような回路構成を用いることで、汎用性を広げることができる。 As described above, versatility can be expanded by using a circuit configuration in which the threshold value can be changed by a register.
 なお、以上においては、本技術を、CMOS固体撮像素子に適用した構成について説明してきたが、CCD(Charge Coupled Device)固体撮像素子といった固体撮像素子に適用するようにしてもよい。 In the above description, the configuration in which the present technology is applied to the CMOS solid-state imaging device has been described. However, the present technology may be applied to a solid-state imaging device such as a CCD (Charge Coupled Device) solid-state imaging device.
 また、本技術は、CMOS固体撮像素子であれば、裏面照射型または表面照射型いずれのCMOS固体撮像素子であっても適用することができる。 In addition, the present technology can be applied to any back-illuminated type or front-illuminated type CMOS solid-state image sensor as long as it is a CMOS solid-state image sensor.
 また、本技術は、固体撮像素子への適用に限られるものではなく、固体撮像装置にも適用可能である。ここで、固体撮像装置とは、デジタルスチルカメラやデジタルビデオカメラ等のカメラシステムや、携帯電話機等の撮像機能を有する電子機器のことをいう。なお、電子機器に搭載されるモジュール状の形態、すなわちカメラモジュールを固体撮像装置とする場合もある。 In addition, the present technology is not limited to application to a solid-state imaging device, but can also be applied to a solid-state imaging device. Here, the solid-state imaging device refers to a camera system such as a digital still camera or a digital video camera, or an electronic device having an imaging function such as a mobile phone. In some cases, a module form mounted on an electronic device, that is, a camera module is a solid-state imaging device.
 <電子機器の構成例>
 図9は、本技術を適用した電子機器としての、カメラ装置(固体撮像装置)の構成例を示すブロック図である。
<Configuration example of electronic equipment>
FIG. 9 is a block diagram illustrating a configuration example of a camera device (solid-state imaging device) as an electronic apparatus to which the present technology is applied.
 図9のカメラ装置600は、レンズ群などからなる光学部601、本技術の各構造が採用される固体撮像素子(撮像デバイス)602、およびカメラ信号処理回路であるDSP回路603を備える。また、カメラ装置600は、フレームメモリ604、表示部605、記録部606、操作部607、および電源部608も備える。 DSP回路603、フレームメモリ604、表示部605、記録部606、操作部607および電源部608は、バスライン609を介して相互に接続されている。 9 includes an optical unit 601 including a lens group, a solid-state imaging device (imaging device) 602 employing each structure of the present technology, and a DSP circuit 603 that is a camera signal processing circuit. The camera device 600 also includes a frame memory 604, a display unit 605, a recording unit 606, an operation unit 607, and a power supply unit 608. The DSP circuit 603, the frame memory 604, the display unit 605, the recording unit 606, the operation unit 607, and the power supply unit 608 are connected to each other via a bus line 609.
 光学部601は、被写体からの入射光(像光)を取り込んで固体撮像素子602の撮像面上に結像する。固体撮像素子602は、光学部601によって撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号として出力する。この固体撮像素子602として、上述した実施の形態に係る固体撮像素子1を用いることができる。 The optical unit 601 takes in incident light (image light) from a subject and forms an image on the imaging surface of the solid-state imaging device 602. The solid-state imaging device 602 converts the amount of incident light imaged on the imaging surface by the optical unit 601 into an electrical signal for each pixel and outputs the electrical signal as a pixel signal. As the solid-state imaging device 602, the solid-state imaging device 1 according to the above-described embodiment can be used.
 表示部605は、例えば、液晶パネルや有機El(Electro Luminescence)パネル等のパネル型表示装置からなり、固体撮像素子602で撮像された動画または静止画を表示する。記録部606は、固体撮像素子602で撮像された動画または静止画を、ビデオテープやDVD(Digital Versatile Disk)等の記録媒体に記録する。 The display unit 605 includes, for example, a panel type display device such as a liquid crystal panel or an organic El (Electro Luminescence) panel, and displays a moving image or a still image captured by the solid-state image sensor 602. The recording unit 606 records a moving image or a still image captured by the solid-state imaging device 602 on a recording medium such as a video tape or a DVD (Digital Versatile Disk).
 操作部607は、ユーザによる操作の下に、カメラ装置600が有する様々な機能について操作指令を発する。電源部608は、DSP回路603、フレームメモリ604、表示部605、記録部606および操作部607の動作電源となる各種の電源を、これら供給対象に対して適宜供給する。 The operation unit 607 issues operation commands for various functions of the camera device 600 under the operation of the user. The power supply unit 608 appropriately supplies various power sources serving as operation power sources for the DSP circuit 603, the frame memory 604, the display unit 605, the recording unit 606, and the operation unit 607 to these supply targets.
 なお、本開示における実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。 Note that the embodiments in the present disclosure are not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present disclosure.
 また、以上において、1つの装置(または処理部)として説明した構成を分割し、複数の装置(または処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成をまとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。つまり、本技術は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 Also, in the above, the configuration described as one device (or processing unit) may be divided and configured as a plurality of devices (or processing units). Conversely, the configurations described above as a plurality of devices (or processing units) may be combined into a single device (or processing unit). Of course, a configuration other than that described above may be added to the configuration of each device (or each processing unit). Furthermore, if the configuration and operation of the entire system are substantially the same, a part of the configuration of a certain device (or processing unit) may be included in the configuration of another device (or other processing unit). . That is, the present technology is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present technology.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、開示はかかる例に限定されない。本開示の属する技術の分野における通常の知識を有するのであれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例また修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the disclosure is not limited to such examples. It is obvious that various changes and modifications can be conceived within the scope of the technical idea described in the claims if the person has ordinary knowledge in the technical field to which the present disclosure belongs. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 なお、本技術は以下のような構成も取ることができる。
 (1) AD期間にカウントを行うカウンタと、
 前記カウンタの上位2ビットの出力で定義される前記カウンタのデータ空間の閾値に基づく論理計算を行い、結果を出力する論理回路と、
 前記論理回路により出力される結果に基づいて、前記カウンタを停止する信号を出力するカウンタ停止回路と
 を備える固体撮像素子。
 (2) 所定の期間に前記制御パルスを前記論理回路に出力するコントローラを
 さらに備え、
 前記論理回路は、前記カウンタのデータ空間の閾値と前記所定の期間に入力される制御パルスとに基づく論理計算を行い、結果を出力する
 前記(1)に記載の固体撮像素子。
 (3) 前記論理回路は、前記カウンタのデータ区間の閾値変更を行うためのレジスタを
 備える前記(1)または(2)に記載の固体撮像素子。
 (4) AD期間にカウントを行うカウンタと、
 前記カウンタの上位2ビットの出力で定義される前記カウンタのデータ空間の閾値に基づく論理計算を行い、結果を出力する論理回路と、
 前記論理回路により出力される結果に基づいて、前記カウンタを停止する信号を出力するカウンタ停止回路と
 を備える固体撮像素子と、
 前記固体撮像素子から出力される出力信号を処理する信号処理回路と、
 入射光を前記固体撮像素子に入射する光学系と
 を有する固体撮像装置。
 (5) 所定の期間に前記制御パルスを前記論理回路に出力するコントローラを
 さらに備え、
 前記論理回路は、前記カウンタのデータ空間の閾値と前記所定の期間に入力される制御パルスとに基づく論理計算を行い、結果を出力する
 前記(4)に記載の固体撮像装置。
 (6) 前記論理回路は、前記カウンタのデータ区間の閾値変更を行うためのレジスタを
 備える前記(4)または(5)に記載の固体撮像装置。
In addition, this technique can also take the following structures.
(1) a counter that counts during the AD period;
A logic circuit that performs a logical calculation based on a threshold of the data space of the counter defined by the output of the upper 2 bits of the counter and outputs a result;
A solid-state imaging device comprising: a counter stop circuit that outputs a signal for stopping the counter based on a result output by the logic circuit.
(2) a controller for outputting the control pulse to the logic circuit during a predetermined period;
The solid-state imaging device according to (1), wherein the logic circuit performs a logical calculation based on a threshold of the data space of the counter and a control pulse input during the predetermined period, and outputs a result.
(3) The solid-state imaging device according to (1) or (2), wherein the logic circuit includes a register for changing a threshold value of a data section of the counter.
(4) a counter that counts during the AD period;
A logic circuit that performs a logical calculation based on a threshold of the data space of the counter defined by the output of the upper 2 bits of the counter and outputs a result;
A solid-state imaging device comprising: a counter stop circuit that outputs a signal for stopping the counter based on a result output by the logic circuit;
A signal processing circuit for processing an output signal output from the solid-state imaging device;
A solid-state imaging device comprising: an optical system that makes incident light incident on the solid-state imaging device.
(5) a controller for outputting the control pulse to the logic circuit during a predetermined period;
The solid-state imaging device according to (4), wherein the logic circuit performs a logical calculation based on a threshold of the data space of the counter and a control pulse input during the predetermined period, and outputs a result.
(6) The solid-state imaging device according to (4) or (5), wherein the logic circuit includes a register for changing a threshold value of a data section of the counter.
  1 固体撮像素子, 11 画素アレイ部, 14 カウンタ回路, 18 センサコントローラ, 51 カウンタ, 52 論理回路, 53 カウント動作イネーブル制御回路, 71 NOTゲート, 72 NANDゲート, 73 ORゲート, 101 カウンタ, 102 論理回路, 111 レジスタ, 600 電子機器, 601 固体撮像素子 1 solid-state imaging device, 11 pixel array section, 14 counter circuit, 18 sensor controller, 51 counter, 52 logic circuit, 53 count operation enable control circuit, 71 NOT gate, 72 NAND gate, 73 OR gate, 101 counter, 102 logic circuit , 111 registers, 600 electronic devices, 601 solid-state imaging device

Claims (6)

  1.  AD期間にカウントを行うカウンタと、
     前記カウンタの上位2ビットの出力で定義される前記カウンタのデータ空間の閾値に基づく論理計算を行い、結果を出力する論理回路と、
     前記論理回路により出力される結果に基づいて、前記カウンタを停止する信号を出力するカウンタ停止回路と
     を備える固体撮像素子。
    A counter that counts during the AD period;
    A logic circuit that performs a logical calculation based on a threshold of the data space of the counter defined by the output of the upper 2 bits of the counter and outputs a result;
    A solid-state imaging device comprising: a counter stop circuit that outputs a signal for stopping the counter based on a result output by the logic circuit.
  2.  所定の期間に前記制御パルスを前記論理回路に出力するコントローラを
     さらに備え、
     前記論理回路は、前記カウンタのデータ空間の閾値と前記所定の期間に入力される制御パルスとに基づく論理計算を行い、結果を出力する
     請求項1に記載の固体撮像素子。
    A controller that outputs the control pulse to the logic circuit during a predetermined period;
    The solid-state imaging device according to claim 1, wherein the logic circuit performs a logic calculation based on a threshold of the data space of the counter and a control pulse input during the predetermined period, and outputs a result.
  3.  前記論理回路は、前記カウンタのデータ区間の閾値変更を行うためのレジスタを
     備える請求項1に記載の固体撮像素子。
    The solid-state imaging device according to claim 1, wherein the logic circuit includes a register for changing a threshold value of a data section of the counter.
  4.  AD期間にカウントを行うカウンタと、
     前記カウンタの上位2ビットの出力で定義される前記カウンタのデータ空間の閾値に基づく論理計算を行い、結果を出力する論理回路と、
     前記論理回路により出力される結果に基づいて、前記カウンタを停止する信号を出力するカウンタ停止回路と
     を備える固体撮像素子と、
     前記固体撮像素子から出力される出力信号を処理する信号処理回路と、
     入射光を前記固体撮像素子に入射する光学系と
     を有する固体撮像装置。
    A counter that counts during the AD period;
    A logic circuit that performs a logical calculation based on a threshold of the data space of the counter defined by the output of the upper 2 bits of the counter and outputs a result;
    A solid-state imaging device comprising: a counter stop circuit that outputs a signal for stopping the counter based on a result output by the logic circuit;
    A signal processing circuit for processing an output signal output from the solid-state imaging device;
    A solid-state imaging device comprising: an optical system that makes incident light incident on the solid-state imaging device.
  5.  所定の期間に前記制御パルスを前記論理回路に出力するコントローラを
     さらに備え、
     前記論理回路は、前記カウンタのデータ空間の閾値と前記所定の期間に入力される制御パルスとに基づく論理計算を行い、結果を出力する
     請求項4に記載の固体撮像装置。
    A controller that outputs the control pulse to the logic circuit during a predetermined period;
    5. The solid-state imaging device according to claim 4, wherein the logic circuit performs a logical calculation based on a threshold of the data space of the counter and a control pulse input during the predetermined period, and outputs a result.
  6.  前記論理回路は、前記カウンタのデータ区間の閾値変更を行うためのレジスタを
     備える請求項4に記載の固体撮像装置。
    The solid-state imaging device according to claim 4, wherein the logic circuit includes a register for changing a threshold value of a data section of the counter.
PCT/JP2015/070925 2014-08-06 2015-07-23 Solid-state image pickup element and solid-state image pickup device WO2016021413A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014160418 2014-08-06
JP2014-160418 2014-08-06

Publications (1)

Publication Number Publication Date
WO2016021413A1 true WO2016021413A1 (en) 2016-02-11

Family

ID=55263685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070925 WO2016021413A1 (en) 2014-08-06 2015-07-23 Solid-state image pickup element and solid-state image pickup device

Country Status (1)

Country Link
WO (1) WO2016021413A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203497A (en) * 2002-01-08 2003-07-18 Mitsubishi Electric Corp Semiconductor memory device
JP2007316961A (en) * 2006-05-26 2007-12-06 Renesas Technology Corp Semiconductor integrated circuit device
JP2009159331A (en) * 2007-12-26 2009-07-16 Panasonic Corp Solid-state imaging apparatus, operation method thereof, and camera
JP2010258817A (en) * 2009-04-24 2010-11-11 Sony Corp Integrated ad converter, solid-state imaging device, and camera system
JP2013062584A (en) * 2011-09-12 2013-04-04 Olympus Corp Ad conversion circuit and imaging device
JP2014138364A (en) * 2013-01-18 2014-07-28 Canon Inc Imaging element and imaging device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003203497A (en) * 2002-01-08 2003-07-18 Mitsubishi Electric Corp Semiconductor memory device
JP2007316961A (en) * 2006-05-26 2007-12-06 Renesas Technology Corp Semiconductor integrated circuit device
JP2009159331A (en) * 2007-12-26 2009-07-16 Panasonic Corp Solid-state imaging apparatus, operation method thereof, and camera
JP2010258817A (en) * 2009-04-24 2010-11-11 Sony Corp Integrated ad converter, solid-state imaging device, and camera system
JP2013062584A (en) * 2011-09-12 2013-04-04 Olympus Corp Ad conversion circuit and imaging device
JP2014138364A (en) * 2013-01-18 2014-07-28 Canon Inc Imaging element and imaging device

Similar Documents

Publication Publication Date Title
JP5868065B2 (en) Imaging device
US9479189B2 (en) A/D converter, solid-state imaging device and camera system
US8004587B2 (en) Solid-state imaging device, signal processing method for the same, and imaging apparatus
JP6097574B2 (en) Imaging apparatus, driving method thereof, and imaging system
JP5256874B2 (en) Solid-state imaging device and camera system
JP5272630B2 (en) Solid-state imaging device, driving method thereof, and camera system
US9930283B2 (en) Solid state image sensor and electronic apparatus
JP2014060573A (en) Solid-state image sensor, control method and electronic apparatus
US10368026B2 (en) Solid-state image sensing apparatus, control method, and electronic device
JP2011182095A (en) Solid-state imaging device, and imaging device
US9894299B2 (en) Ad converter, signal processing method, solid-state imaging device, and electronic apparatus
WO2015190288A1 (en) Image sensor, electronic device, comparator, and driving method
JP2009049459A (en) Solid state image sensor and camera system
US7948537B2 (en) Method for resetting image sensing and image sensing device using the same
US9807327B2 (en) Solid-state image device, method of driving solid-state imaging device, and electronic system with AD converter and bias current control
WO2016136500A1 (en) Image capture element, processing method, and electronic device
JPWO2016147887A1 (en) SOLID-STATE IMAGING DEVICE, ITS CONTROL METHOD, AND ELECTRONIC DEVICE
WO2016021413A1 (en) Solid-state image pickup element and solid-state image pickup device
WO2018159342A1 (en) Solid-state imaging device and electronic apparatus
JP2008193479A (en) Vertical ccd driver, and imaging apparatus with the same
JP2016019040A (en) Imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15829886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15829886

Country of ref document: EP

Kind code of ref document: A1