WO2016021308A1 - Photoelectric conversion layer and photoelectric conversion element provided with same - Google Patents

Photoelectric conversion layer and photoelectric conversion element provided with same Download PDF

Info

Publication number
WO2016021308A1
WO2016021308A1 PCT/JP2015/067699 JP2015067699W WO2016021308A1 WO 2016021308 A1 WO2016021308 A1 WO 2016021308A1 JP 2015067699 W JP2015067699 W JP 2015067699W WO 2016021308 A1 WO2016021308 A1 WO 2016021308A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
dye
semiconductor
laminated
layer
Prior art date
Application number
PCT/JP2015/067699
Other languages
French (fr)
Japanese (ja)
Inventor
真実 櫻井
和寿 福井
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Publication of WO2016021308A1 publication Critical patent/WO2016021308A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a stacked photoelectric conversion layer and a photoelectric conversion element (a solar cell (particularly, a dye-sensitized solar cell)) including the photoelectric conversion layer.
  • a photoelectric conversion element a solar cell (particularly, a dye-sensitized solar cell)
  • Solar cells are attracting attention as clean energy with a low environmental impact, and solar cells using silicon (such as crystalline silicon) are widely used.
  • silicon such as crystalline silicon
  • the power generation cost is high, and the conversion efficiency for faint light such as indoors is small.
  • Dye-sensitized solar cells are attracting attention as solar cells that can be manufactured at low cost.
  • a photoelectrode is formed by adsorbing a sensitizing dye to a metal oxide semiconductor (such as titanium oxide).
  • a metal oxide semiconductor having a large surface area for example, nano-sized semiconductor
  • a metal oxide semiconductor is used for the electrode, and the effective area is made larger than the apparent area.
  • the metal oxide nanoparticles are simply applied to the substrate, they are peeled off from the substrate and do not function as electrodes, and the electrical resistance between the particles is large.
  • a tandem photoelectric conversion element using a plurality of dyes has been proposed in order to avoid thermal decomposition of the dyes and to effectively use incident light for photoelectric conversion.
  • Patent Document 1 a first photoelectric conversion cell including a first photoelectrode in which a first dye is adsorbed to a first porous semiconductor, and a second dye is a second porous material.
  • a second photoelectric conversion cell having a second photoelectrode adsorbed on a crystalline semiconductor is stacked in a direction intersecting the incident light incident direction, and the first counter electrode and the second transparent conductive layer are connected in series.
  • a tandem dye-sensitized photoelectric conversion element is described.
  • the coating film of titanium oxide is baked to form the first porous semiconductor and the second porous semiconductor, respectively, and the first dye and the second dye are adsorbed respectively.
  • This document also shows a single-layer photoelectrode in which a plurality of dyes are mixed and adsorbed, or a multi-layer photoelectrode in which a plurality of dyes are adsorbed in each region, but details thereof are not described.
  • Patent Document 2 discloses a first photovoltaic cell (PV) cell in which a cathode and an anode are disposed via a first dye layer, and a second dye layer.
  • the second PV cell in which the cathode and the anode are disposed, the first PV cell and the second PV cell are bonded together, and the first PV cell and the second PV cell are electrically connected to each other.
  • a tandem dye-sensitized solar cell (DSC) with a first transparent conductive adhesive layer for series connection is described.
  • each photoelectric conversion cell includes a transparent support having a transparent conductive layer, a photoelectrode layer formed on the transparent conductive layer, a counter electrode facing the photoelectrode layer, a photoelectrode layer and a counter electrode. And an electrolytic solution filled in between.
  • the electrode substrate and the electrolyte interposed between the pair of photoelectrode layers and the counter electrode absorb or scatter incident light, resulting in loss of light absorption.
  • the photoelectric conversion efficiency cannot be greatly improved.
  • Patent Document 3 discloses a photoelectric conversion layer containing a semiconductor, an ionic polymer, and a dye, wherein the proportion of the ionic polymer is 0.1 to 30 parts by weight with respect to 1 part by weight of the semiconductor. It is described that the composition is applied to a conductive substrate and a photoelectric conversion layer is formed without sintering the semiconductor. This document also describes that the photoelectric conversion layer can be formed with high adhesion to the conductive substrate. However, this photoelectric conversion layer still has insufficient photoelectric conversion efficiency of incident light.
  • JP 2008-34258 A ([0019] [0020] [0022] [0078] to [0081] FIGS. 1 to 3) JP 2012-74365 A (Claims) WO 2014/017536 (Claims 14 and 17, [0091])
  • an object of the present invention is to provide a photoelectric conversion layer or a photoelectric conversion body (photoelectrode layer) capable of efficiently photoelectrically converting incident light with a simple structure, and a photoelectric conversion element (a dye-sensitized solar cell) including the photoelectric conversion layer. Etc.).
  • Another object of the present invention is to provide a photoelectric conversion layer (or a photoelectric conversion body) having different absorption wavelength ranges and high photoelectric conversion efficiency, and a photoelectric conversion element including the photoelectric conversion layer.
  • Still another object of the present invention is to provide a photoelectric conversion layer (or photoelectric conversion body) that has excellent durability without sintering and can maintain high photoelectric conversion characteristics over a long period of time and has high adhesion to a substrate. And a photoelectric conversion element including the photoelectric conversion layer.
  • Another object of the present invention is to provide a photoelectric conversion layer (or a photoelectrode layer) useful for forming a dye-sensitized solar cell and a photoelectric conversion element including the photoelectric conversion layer.
  • Yet another object of the present invention is to provide a coating composition useful for forming the photoelectric conversion layer (or photoelectric conversion body) and a method for easily and efficiently forming the photoelectric conversion layer (or photoelectric conversion body). There is to do.
  • a semiconductor such as titanium oxide
  • an ionic binder for example, an ionic polymer such as a strongly acidic ion exchange resin
  • a dye sensitizing dye
  • a plurality of coating compositions coating agent or ink
  • a plurality of dyes having different absorption wavelength ranges or absorption peak wavelengths are contained in the coating composition, and the plurality of coating compositions are sequentially applied to the conductive substrate.
  • the laminated photoelectric conversion body (laminated body) of the present invention has a laminated structure in which a photoelectric conversion layer containing a semiconductor, an ionic binder, and a dye is laminated.
  • a conversion layer (dye-sensitized photoelectric conversion layer) is laminated.
  • dye contained in each photoelectric converting layer differs. That is, a plurality of photoelectric conversion layers (for example, adjacent photoelectric conversion layers) contain dyes having absorption wavelength ranges or absorption peak wavelengths different from each other.
  • the adjacent photoelectric conversion layer can also be referred to as a stacked photoelectric conversion layer containing dyes having different absorption peak wavelengths or absorption wavelength ranges, and a stacked photoelectric conversion containing two kinds of dyes.
  • a photoelectric conversion layer containing a first dye and a photoelectric conversion layer containing a second dye are stacked.
  • the photoelectric conversion layer and the stacked photoelectric conversion body are usually formed on a conductive substrate.
  • the dye contained in the incident side (light receiving side) photoelectric conversion layer has an absorption peak wavelength in a shorter wavelength region than the absorption peak wavelength of the dye contained in the transmission side photoelectric conversion layer.
  • a photoelectric conversion layer (dye-sensitized photoelectric conversion layer) containing a dye capable of absorbing a short wavelength region is formed on the light receiving side, and the side opposite to the light receiving side (transmission side) ) May be formed with a photoelectric conversion layer (a dye-sensitized photoelectric conversion layer) containing a dye capable of absorbing a long wavelength region (for example, a long wavelength region in the visible light region).
  • a plurality of photoelectric conversion layers may be formed without being sintered, and the total thickness of the plurality of photoelectric conversion layers may be about 0.1 to 100 ⁇ m.
  • the photoelectric conversion layer on the light receiving side contains a first dye having an absorption peak wavelength at 300 to 650 nm (for example, 300 to 600 nm), and the photoelectric conversion layer on the opposite side (transmission side) from the light receiving side is 550 to 800 nm.
  • a second dye having an absorption peak wavelength (for example, 600 to 800 nm) may be contained.
  • the absorption peak wavelengths of the plurality of dyes (for example, the absorption peak wavelengths of the first dye and the second dye) may be close to each other, but the absorption peak wavelength of the first dye is usually the second.
  • the absorption peak wavelength of the dye may be shorter than the absorption peak wavelength of the dye by 10 nm or more, and the absorption peak wavelengths of the plurality of dyes are separated by, for example, about 10 to 200 nm (for example, 20 to 200 nm, preferably 30 to 150 nm).
  • the semiconductor may include at least one selected from titanium oxide nanoparticles, zinc oxide nanoparticles, and tin oxide nanoparticles, and the ionic polymer includes a fluorine-containing resin having a sulfo group. Also good.
  • the proportion of the ionic polymer may be about 1 to 100 parts by weight (for example, 5 to 50 parts by weight) with respect to 100 parts by weight of the semiconductor.
  • the present invention is a set of a coating composition (or ink) for forming a plurality of photoelectric conversion layers on a conductive substrate, which contains a semiconductor, an ionic polymer, and a dye, and the plurality of coating compositions are A set of a plurality of coating compositions each containing a dye having a different absorption wavelength range or absorption peak wavelength is also included.
  • the present invention also includes a method for producing the laminated photoelectric converter.
  • a plurality of coating compositions (or inks) containing a semiconductor, an ionic polymer, and a pigment are applied to a conductive substrate.
  • the photoelectric conversion layer is formed (usually, the photoelectric conversion layer is formed without sintering).
  • the absorption wavelength range or the absorption peak wavelength of the dye contained in each coating agent is different from each other. That is, a plurality of dyes having different absorption wavelength ranges or absorption peak wavelengths are respectively contained in the coating composition (or ink) (or a coating composition is prepared for each dye having a different absorption wavelength range or absorption peak wavelength).
  • a plurality of coating compositions (or inks) are sequentially coated and laminated on a conductive substrate, and a laminated photoelectric conversion body is formed without sintering.
  • the present invention also includes a photoelectric conversion element provided with the laminated photoelectric converter (laminated body).
  • This photoelectric conversion element includes the laminated photoelectric conversion body formed on a conductive substrate as an electrode (photoelectrode), a counter electrode (another electrode) disposed opposite to the electrode, and an interval between these electrodes And an electrolyte phase (or electrolyte layer) sealed in the substrate, and the photoelectric conversion element may form a dye-sensitized solar cell.
  • the present invention comprises a photoelectric conversion layer formed on a conductive substrate as an electrode, a counter electrode disposed opposite to the electrode, and an electrolyte phase (or electrolyte layer) sealed between these electrodes.
  • the manufacturing method of the provided photoelectric conversion element is also included. In this method, a plurality of coating compositions containing a semiconductor, an ionic polymer, and a pigment are sequentially coated on a conductive substrate and laminated, and a plurality of photoelectric conversion layers are laminated without sintering. A step of forming a laminated photoelectric converter, and the absorption wavelength range or the absorption peak wavelength of the dyes contained in the respective coating agents are different from each other.
  • the present invention can form a photoelectric conversion layer having a laminated structure, and can efficiently photoelectrically convert incident light with a simple structure. Moreover, photoelectric conversion efficiency can be greatly improved by providing different absorption wavelength ranges to the photoelectric conversion layer having a laminated structure. Furthermore, the coating can easily and efficiently form a photoelectric conversion layer having a laminated structure, and it has excellent durability without being sintered, can maintain high photoelectric conversion characteristics over a long period of time, and has high adhesion to the substrate. It is possible to form a laminated photoelectric conversion body having Therefore, it is useful for forming a dye-sensitized solar cell.
  • FIG. 1 is a graph showing the output characteristics of the dye-sensitized solar cell obtained in the example.
  • a plurality of coating compositions containing different types of dyes are used.
  • Each coating composition contains a semiconductor, an ionic binder, and a dye (sensitizing dye), has film-forming properties, and can form a photoelectric conversion layer in close contact with a conductive substrate.
  • semiconductor semiconductor
  • inorganic semiconductors include simple metals, metal compounds (metal oxides, metal sulfides, metal nitrides, and the like).
  • the semiconductor is an optical semiconductor that absorbs light and generates an electromotive force.
  • the constituent elements of the inorganic semiconductor include, for example, Group 2 metals (Ca, Sr, etc.), Group 3 metals (Sc, Y, La, etc.), Group 4 metals (Ti, Zr, Hf, etc.), Group metals (V, Nb, Ta, etc.), Group 6 metals (Cr, Mo, W, etc.), Group 7 metals (Mn, etc.), Group 8 metals (Fe, etc.), Group 9 metals (Co, etc.) , Group 10 metals (Ni, etc.), Group 11 metals (Cu, etc.), Group 12 metals (Zn, Cd, etc.), Group 13 metals (Al, Ga, In, Tl, etc.), Group 14 metals ( Ge, Sn, etc.), Group 15 metals (As, Sb, Bi, etc.), Group 16 elements (Te, etc.), etc.
  • the semiconductor may contain these elements alone or in combination of two or more.
  • the semiconductor may be an alloy, and the metal oxide may be a composite oxide
  • examples of the metal oxide include transition metal oxides [for example, periodic table group 3 metal oxides (yttrium oxide, cerium oxide, etc.), group 4 metal oxides (titanium oxide, oxide). Zirconium, calcium titanate, strontium titanate, barium titanate, etc., Group 5 metal oxides (vanadium oxide, niobium oxide, tantalum oxide (eg, ditantalum pentoxide), etc.), Group 6 metal oxides (chromium oxide) , Tungsten oxide, etc.), Group 7 metal oxides (manganese oxide, etc.), Group 8 metal oxides (iron oxide, ruthenium oxide, etc.), Group 9 metal oxides (cobalt oxide, iridium oxide, cobalt and sodium) Complex oxides), Group 10 metal oxides (such as nickel oxide), Group 11 metal oxides (such as copper oxide), Group 12 metal oxides (such as Zinc oxide, etc.], typical metal oxides [for example, Group 2 metal oxides (eg, strontium
  • a composite oxide of copper and a group 13 metal such as SrCu 2 O 2 ; a composite oxide of a copper and group 2 metal such as SrCu 2 O 2 ; a composite oxide of silver and a group 13 metal such as AgInO 2 Is an example That.
  • the metal oxide is an oxide containing a group 16 element other than these metals and oxygen [for example, a complex oxysulfide of a group 11 metal and a transition metal (transition metal other than the group 11 metal) (for example, a complex acid selenide of a group 11 metal and a transition metal (a transition metal other than the group 11 metal) (for example, a copper such as LaCuOSe) Etc.) and the like.
  • a complex oxysulfide of a group 11 metal and a transition metal (transition metal other than the group 11 metal) for example, a complex acid selenide of a group 11 metal and a transition metal (a transition metal other than the group 11 metal) (for example, a copper such as LaCuOSe) Etc.
  • the semiconductor includes metal nitride (such as thallium nitride), metal phosphide (such as InP), metal sulfide [for example, CdS, copper sulfide (CuS, Cu 2 S), composite sulfide (for example, periodic table 11th).
  • metal nitride such as thallium nitride
  • metal phosphide such as InP
  • metal sulfide for example, CdS, copper sulfide (CuS, Cu 2 S)
  • composite sulfide for example, periodic table 11th.
  • Complex sulfides of group metals and typical metals eg, complex sulfides of copper and group 13 metals of the periodic table such as CuGaS 2 and CuInS 2 )), metal selenides (CdSe, ZnSe, etc.), metal halogens Metal compounds (or alloys) such as compounds (CuCl, CuBr, etc.), Periodic Table Group 13 metal-Group 15 metal compounds (GaAs, InSb, etc.), Periodic Table Group 12 metal-Group 16 metal compounds (CdTe, etc.) ); Simple metal (for example, palladium, platinum, silver, gold, silicon, germanium) and the like.
  • the semiconductor may be a semiconductor doped with other elements.
  • the semiconductor may be an n-type semiconductor or a p-type semiconductor.
  • Typical n-type semiconductors include, for example, a periodic table group 4 metal oxide (such as titanium oxide), a periodic table group 5 metal oxide (such as niobium oxide, tantalum oxide), and a periodic table group 12 metal oxide. (Zinc oxide, etc.), periodic table group 13 metal oxides (gallium oxide, indium oxide, etc.), periodic table group 14 metal oxides (tin oxide, etc.), and the like.
  • Typical p-type semiconductors include, for example, a periodic table group 6 metal oxide (such as chromium oxide), a periodic table group 7 metal oxide (such as manganese oxide), and a periodic table group 8 metal oxide (iron oxide). Etc.), periodic table group 9 metal oxides (cobalt oxide, iridium oxide, etc.), periodic table group 10 metal oxides (nickel oxide, etc.), periodic table group 11 metal oxides (copper oxide, etc.), periodic table Group 15 metal oxides (such as bismuth oxide), complex oxides of Group 11 metals and transition metals or typical metals (for example, CuYO 2 , CuAlO 2 , CuGaO 2 , CuInO 2 , SrCu 2 O 2 , AgInO) 2 ), complex oxysulfides of periodic table Group 11 metals and transition metals (for example, LaCuOS, etc.), complex acid selenides of periodic table Group 11 metals and transition metals (for example, LaCuOSe, etc.) And composite sulf
  • Preferred semiconductors include metal oxides such as titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), indium oxide (In 2 O 3 ), gallium oxide (Ga 2 O 3 ), copper -Aluminum oxide (CuAlO 2 ), iridium oxide (IrO), nickel oxide (NiO), doped materials of these metal oxides; strontium titanate, barium titanate, etc .; cadmium sulfide, etc.
  • titanium oxide, zinc oxide, tin oxide and the like are preferable.
  • an n-type semiconductor particularly an n-type metal oxide semiconductor such as titanium oxide (TiO 2 ) is preferable.
  • the crystal form (crystal form) of titanium oxide may be any of rutile, anatase, and brookite.
  • Preferred titanium oxide is rutile or anatase titanium oxide.
  • anatase type titanium oxide it is easy to form a photoelectric conversion layer with high adhesion over a long period of time with respect to the substrate.
  • rutile type titanium oxide is preferable from the viewpoint of conductivity and durability.
  • the titanium oxide may be titanium oxide doped with other elements.
  • the shape of the semiconductor (for example, a metal oxide such as titanium oxide) is not particularly limited, and may be in the form of particles, fibers (or needles or rods), plates, and the like.
  • a preferable semiconductor form may be particulate, needle-like, or fibrous, and a particulate semiconductor (semiconductor particle) may be used.
  • the average particle diameter (average primary particle diameter) of the semiconductor particles can be selected from the range of about 1 to 1000 nm (for example, 1 to 700 nm), and is usually nano-sized (nanometer size), for example, It may be about 1 to 500 nm (for example, 2 to 400 nm), preferably 3 to 300 nm (for example, 4 to 200 nm), more preferably about 5 to 100 nm (for example, 6 to 70 nm), and 50 nm or less, for example, 1 May be about 50 nm (for example, 2 to 40 nm), preferably about 3 to 30 nm (for example, 4 to 25 nm), more preferably about 5 to 20 nm (for example, 6 to 15 nm), and usually about 10 to 50 nm. There may be.
  • Such nanometer-sized semiconductor particles have high transparency to visible light, and can efficiently photoelectrically convert incident light including at least the visible light wavelength region.
  • the average fiber diameter of the acicular (or fibrous) semiconductor may be, for example, about 1 to 300 nm, preferably 10 to 200 nm, and more preferably about 50 to 100 nm.
  • the average fiber length of the acicular (or fibrous) semiconductor may be about 10 to 2000 nm, preferably 50 to 1000 nm, and more preferably about 100 to 500 nm.
  • the aspect ratio of the acicular semiconductor may be, for example, about 2 to 200, preferably about 5 to 100, and more preferably about 20 to 40.
  • the needle-like or fibrous semiconductor may form nanofibers (eg, titanium oxide nanofibers (TNF)) or nanotubes (eg, titanium oxide nanotubes (TNT)).
  • the specific surface area of the semiconductor (for example, a particulate or fibrous semiconductor) may be, for example, about 1 to 600 m 2 / g, preferably 2 to 500 m 2 / g, more preferably about 3 to 400 m 2 / g. .
  • the specific surface area of the semiconductor particles is, for example, 5 to 600 m 2 / g (eg 10 to 550 m 2 / g), preferably 20 to 500 m 2 / g (eg 30 to 450 m 2 / g), more preferably It may be about 40 to 400 m 2 / g (for example, 50 to 350 m 2 / g), 50 m 2 / g or more [for example, 50 to 500 m 2 / g, preferably 75 to 450 m 2 / g, more preferably 100 to 400 m 2 / g, particularly 150 to 350 m 2 / g (for example, 200 to 350 m 2 / g)].
  • the specific surface area of the fibrous or needle-like semiconductor is about 1 to 100 m 2 / g, preferably 2 to 70 m 2 / g, more preferably 3 to 50 m 2 / g (for example, 4 to 30 m 2 / g). It may be.
  • the semiconductor may be a commercially available product or may be synthesized using a conventional method.
  • a dispersion of titanium oxide can be obtained by the method described in Japanese Patent No. 452886.
  • the type of semiconductor may be the same or different.
  • an ionic binder In the present invention, by combining a semiconductor and an ionic polymer (hereinafter sometimes referred to as an ionic binder), a photoelectric conversion layer having excellent photoelectric conversion characteristics can be formed without sintering.
  • an ionic binder an ionic polymer
  • the ionic polymer is immobilized by bonding (chemical bonding, hydrogen bonding, etc.) to the semiconductor [especially nano-sized semiconductor particles (semiconductor nanoparticles)]. It may not only improve the properties, but also function as an electrolyte (solid electrolyte) that electronically couples with the excited state of the semiconductor and transports charges from the semiconductor.
  • an ionic polymer acts as a binder, can maintain a photoelectric conversion characteristic over a long period of time, and can improve the adhesiveness of the photoelectric conversion layer (or semiconductor) with respect to a board
  • an ionic polymer may be selected depending on the type of semiconductor. For example, in (i) an n-type semiconductor, an ionic polymer including an anionic polymer is selected, ii) For a p-type semiconductor, an ionic polymer including a cationic polymer may be selected.
  • the ionic polymer may be any polymer having an electrolyte property (that is, a polymer electrolyte) and has an anionic polymer, a cationic polymer, and an amphoteric polymer (both an anionic group and a cationic group). Any of an anionic polymer and a cationic polymer (especially an anionic polymer) may be used.
  • the ionic polymer may be an ion exchange resin (or an ion exchanger or a solid polymer electrolyte).
  • the ionic polymers may be used alone or in combination of two or more.
  • An anionic polymer usually has an acid group (or acidic group), for example, a carboxyl group, a sulfo group (or sulfonic acid group), etc., and has a single acid group (or acidic group). It may also have a plurality of different acid groups (or acidic groups). In addition, the acid group may be partially or entirely neutralized.
  • Typical anionic polymers include cation exchange resins (cationic ion exchange resins, acid type ion exchange resins), such as weakly acidic cation exchange resins having carboxyl groups, strong acids having sulfonic acid groups (sulfo groups).
  • weakly acidic cation exchange resins include (meth) acrylic acid resins (for example, poly (meth) acrylic acid; (meth) acrylic acid-styrene copolymers ( And a fluorine-containing resin having a carboxyl group (perfluorocarboxylic acid resin).
  • Preferred anionic polymers include strongly acidic cation exchange resins.
  • the strongly acidic ion exchange resin include a styrene resin having a sulfo group (for example, polystyrene sulfonic acid, a sulfonated product of a styrene polymer); a fluorine-containing resin having a sulfo group (or a fluoro resin), for example, hydrophobic Fluorosulfonic acid resin having a functional poly (fluoro C 2-3 alkylene) main chain and a fluoro C 2-8 alkyl side chain having a sulfo group or a fluoro C 2-8 alkyl ether side chain having a sulfo group It is done.
  • this fluorosulfonic acid resin a copolymer of fluoroalkene (perfluoro C 2-3 alkene such as tetrafluoroethylene) and sulfofluoroalkyl-fluorovinyl ether (sulfoperfluoroalkyl-perfluorovinyl ether, etc.),
  • the fluorine-containing resin having a sulfo group is available from DuPont under the trade name “Nafion” series or the like, and may be obtained in the form of an aqueous solution or an aqueous dis
  • the cationic polymer is usually a primary group such as a basic group (alkaline group), for example, an amino group [for example, an amino group, a substituted amino group (for example, a mono- or dialkylamino group such as a dimethylamino group) or the like.
  • Primary or tertiary amino group imino group (—NH—, —N ⁇ ), quaternary ammonium base (for example, trialkylammonium base such as trimethylammonium base), etc.
  • a single base May have a functional group, and may have a plurality of different basic groups.
  • the basic group may be partially or completely neutralized.
  • Typical cationic polymers include anion exchange resins (anion-type ion exchange resins, base-type ion exchange resins), such as allylamine monomers (eg, allylamine, diallylamine, diallylalkylamine (diallylmethylamine, diallyl).
  • anion exchange resins anion-type ion exchange resins, base-type ion exchange resins
  • allylamine monomers eg, allylamine, diallylamine, diallylalkylamine (diallylmethylamine, diallyl).
  • Ethylamine, etc.) or a copolymer or a copolymer of an allylamine monomer and a copolymerizable monomer [for example, polyallylamine, allylamine-dimethylallylamine copolymer, diallylamine-sulfur dioxide copolymer Etc.]; Vinylamine monomer homopolymer or copolymer (for example, polyvinylamine etc.); (meth) acrylic monomer homopolymer or copolymer having amino group [aminoalkyl (meth) acrylate (for example, N, N-dimethylaminoethyl (meth) acrylate, N N, such as N- dimethylaminopropyl (meth) acrylate, N- dialkylamino C 1-4 alkyl (meth) acrylate), aminoalkyl (meth) acrylamides (e.g., N, N- dimethylaminoethyl (meth) acrylamide N, N
  • quaternary ammonium base-containing polymer for example, a polymer obtained by quaternizing an amino group or imino group of the above-described amine-based polymer or imine-based polymer, for example, N, N, N-trialkyl-N -(Meth) acryloyloxyalkylammonium salts [for example, tri-C 1 such as trimethyl-2- (meth) acryloyloxyethylammonium chloride, N, N-dimethyl-N-ethyl-2- (meth) acryloyloxyethylammonium chloride, etc.
  • N, N, N-trialkyl-N -(Meth) acryloyloxyalkylammonium salts for example, tri-C 1 such as trimethyl-2- (meth) acryloyloxyethylammonium chloride, N, N-dimethyl-N-ethyl-2- (meth) acryloyloxye
  • Cationic cellulose (cationized cellulose) is from Daicel Co., Ltd. under the trade name “Gerner”, polyallylamine is from Nito-Bo Medical Co., Ltd. under the trade name “PAA”, and amine-modified silicone resins are from Shin-Etsu Chemical Co., Ltd. It can be obtained from Co., Ltd. as the product name “KF” series.
  • examples of the salt include halide salts (for example, chloride, bromide, iodide, etc.), carboxylates (for example, alkane salts such as acetate), sulfonates, etc. Is mentioned.
  • a preferable cationic polymer includes a strongly basic cationic polymer (anion exchange resin) such as a quaternary ammonium base-containing polymer.
  • the ionic polymer may be composed of only an anionic or cationic polymer, or may be combined with another ionic polymer (for example, an amphoteric polymer).
  • the ratio of the anionic or cationic polymer to the whole ionic polymer is, for example, 30% by weight or more (for example, 40 to 99% by weight), preferably 50% by weight or more (for example, 60 to 98% by weight), and more preferably It may be 70% by weight or more (for example, 80 to 97% by weight).
  • the pH of the aqueous solution or dispersion of the ionic polymer may be acidic, neutral or alkaline, and the pH may be selected according to the ionic polymer.
  • the pH (25 ° C.) of the ionic polymer may be selected from the range of 10 or less (eg, 0.1 to 8), for example, 0.2 to 7 (eg, 0.3 to 5), Preferably, it may be 0.5 to 4 (for example, 0.7 to 3), more preferably about 1 to 3.
  • an ionic polymer having a relatively high pH when used, aggregation of semiconductors (for example, titanium oxide nanoparticles) may be suppressed, so that the photoelectric conversion characteristics may be further improved. Moreover, the adhesiveness with respect to a board
  • substrate may be improved efficiently.
  • the pH (25 ° C.) of such an ionic polymer is, for example, 3 or more (for example, 4 to 14), preferably 5 or more (for example, 6 to 13), and more preferably 7 or more (for example, 7 to 12). It may be a degree.
  • the pH (25 ° C.) of an anionic polymer eg, a strongly acidic ion exchange resin
  • an ionic polymer containing an anionic polymer is, for example, 4 to 14 (eg, 5 to 13), preferably 5.5 to It may be about 12 (for example, 7 to 12), more preferably about 6 to 11 (for example, 7 to 9).
  • the pH (25 ° C.) of the cationic polymer (eg, strongly basic anion exchange resin) or the ionic polymer including the cationic polymer can be selected from the range of 5 or more (eg, 6 to 14), for example, 7 to It may be 14 (for example, 8 to 13), preferably 9 to 13 (for example, 9.5 to 13), and more preferably about 10 to 13.
  • the PH can be adjusted by a conventional method (for example, a method of neutralizing with a base or a method of neutralizing with an acid).
  • the counter ion may be, for example, an alkali metal (for example, lithium, sodium, potassium, etc.), a tertiary amine, or the like.
  • the ionic polymer may have a crosslinked structure, but an ionic polymer that does not have a crosslinked structure (or has a very low degree of crosslinking) is preferable.
  • the ion exchange capacity is 0.1 to 5.0 meq / g (for example, 0.15 to 4.0 meq / g), preferably 0.2 to 3.0 meq / g ( For example, it may be about 0.3 to 2.0 meq / g), more preferably about 0.4 to 1.5 meq / g (for example, 0.5 to 1.0 meq / g).
  • the molecular weight of the ionic polymer is not particularly limited as long as it is in a range that can be dissolved or dispersed in a solvent.
  • a fluorine-containing resin having a sulfo group (fluororesin) or the like is dispersed in a nanometer size, and the molecular weight may not be measured accurately.
  • the ratio of the ionic polymer can be selected from the range of about 1 to 100 parts by weight with respect to 100 parts by weight of the semiconductor, for example, 3 to 75 parts by weight (for example, 4 to 60 parts by weight), preferably 5 to 50 parts by weight. Parts (eg 6 to 40 parts by weight), more preferably 7 to 30 parts by weight (eg 10 to 25 parts by weight), usually 5 to 20 parts by weight (eg 10 to 15 parts by weight). Good.
  • when there is too little quantity of an ionic polymer there exists a possibility that adhesiveness may fall, and when too large, there exists a possibility that a photoelectric conversion characteristic may fall.
  • the type of ionic polymer may be the same or different.
  • Dyes that function as sensitizers include, for example, organic dyes, inorganic dyes (for example, carbon pigments, chromate pigments, cadmium pigments, ferrocyanide pigments, metals) Oxide pigments, silicate pigments, phosphate pigments, etc.).
  • the dyes may be used alone or in combination of two or more.
  • organic dye organic dye or organic pigment
  • conventional or known dyes can be used.
  • ruthenium complex dyes osmium complex dyes, porphyrin dyes (magnesium porphyrin, zinc porphyrin, etc.), chlorophyll dyes (chlorophyll, etc.)
  • Xanthene dyes rhodamine B, sulforhodamine B, erythrosine, etc.
  • cyanine (or polymethine) dyes merocyanine, quinocyanine, cryptocyanine, etc.
  • phthalocyanine dyes this dye is referred to as “TT1” dye
  • a plurality of alkyl groups such as three t-butyl groups) and a carboxyl group for enhancing solubility in organic solvents
  • azo dyes perylene dyes, perinone dyes, Coumarin dye, quinone dye, quinone imine color , Diphenylmethane dyes, triphenylmethane
  • the dye may be a thiophene or acrylic acid dye (3- ⁇ 5 ′-[N, N-bis (9,9-dimethylfluoren-2-yl) phenyl] -2,2′-bisthiophene-5 Yl ⁇ -2-cyanoacrylic acid (sometimes referred to as “JK2” dye), 2-cyano-3- (5- (4-ethoxyphenyl) thiophen-2-yl) acrylic acid (“P5” dye) And thiazole dyes (3-carboxymethyl-5- (3- (4-sulfobutyl) -2 (3H) -benzothiazolidene) -2-thioxo-4-thiazolidinone sodium Salts (such as “NK3705” dyes), metal-free panchromatic dyes (for example, dyes into which phenoxazine as an electron donor and rhodamine as an electron acceptor are introduced). It may be.
  • ruthenium complex dye examples include ruthenium pyridine complexes, such as ruthenium bipyridine complexes [for example, cis-bis (isothiocyanato) bis (2,2′-bipyridyl-4,4′-dicarboxylato) ruthenium (II)].
  • ruthenium pyridine complexes such as ruthenium bipyridine complexes [for example, cis-bis (isothiocyanato) bis (2,2′-bipyridyl-4,4′-dicarboxylato) ruthenium (II)].
  • Bistetrabutylammonium also known as “N719” dye, “Red dye”
  • cis-bis (isothiocyanato) bis (2,2′-bipyridyl-4,4′-dicarboxylato) ruthenium (II) also known as “N3”) Dye
  • cis-bis (isothiocyanato) (2,2′-bipyridyl-4,4′-dicarboxylato) (2,2′-bipyridyl-4,4′-dinonyl) ruthenium (II) also known as Z) -907 dye
  • a pyridinecarboxylic acid unit at least one selected from pyridinecarboxylic acid, bipyridyldicarboxylic acid, and terpyridyltricarboxylic acid
  • isothiocyanate coordinate to ruthenium, resulting in high photoelectric conversion efficiency.
  • Ruthenium complex dyes include complexes with phenanthroline.
  • the dye including ruthenium pyridine complex
  • a commercially available product may be used, and known documents such as J. Am. Chem. Soc. 115 (1993) 6382, J. Am. Chem. Soc. 123 (2001). ) 1613, Inorganica Chimica Acta.322 (2001) 7, etc.
  • the absorption wavelength range may be expanded by combining a plurality of dyes, but when a plurality of dyes are mixed and supported or fixed on a semiconductor, they are deactivated due to energy transition between the dyes and the photoelectric conversion efficiency decreases. There is.
  • the plurality of coating compositions only need to contain pigments having different absorption wavelength ranges or absorption peak wavelengths, respectively, and by incorporating a plurality of pigments into a plurality of photoelectric conversion layers in a laminated form.
  • the photoelectric conversion efficiency can be greatly improved.
  • the plurality of dyes contained in the photoelectric conversion layer in the laminated form can be absorbed over the entire wavelength region of the emission spectrum of sunlight, and as a whole, at least the visible region or the visible light region (for example, the wavelength region 400 to 400).
  • the visible light region can be, for example, a wavelength region of 300 to 800 nm (for example, 380 to 730 nm, particularly 400 to 700 nm).
  • the plurality of dyes include, for example, a dye having an absorption wavelength region or an absorption peak wavelength in the ultraviolet region, a dye having an absorption wavelength region or an absorption peak wavelength in the visible light region, and an absorption wavelength region or an absorption peak wavelength in the infrared region. Can also be classified into dyes having an absorption wavelength region or absorption peak wavelength in the ultraviolet region and visible light region, and dyes having an absorption wavelength region or absorption peak wavelength in the infrared region. A dye having an absorption wavelength range or absorption peak wavelength in the ultraviolet range and visible light range, and a dye having an absorption wavelength range or absorption peak wavelength in the visible light range and infrared range can also be classified.
  • the absorption wavelength range of a typical dye for example, “JK2” dye shows broad absorption in a wavelength range of about 450 to 550 nm, “P5” dye shows an absorption range of about 390 to 430 nm, and “N719” “The dye has an absorption peak at 540 nm and absorption in a wavelength range of about 380 to 410 nm and a wavelength range of about 530 to 550 nm, and“ N749 ”dye has an absorption peak at around 600 nm and about 370 to 420 nm.
  • the “MK-2” dye has an absorption peak at 480 nm and a broad absorption range at a wavelength range of about 450 to 650 nm, “TT1”. Phthalocyanine dyes such as dyes show a sharp absorption range at about 680 to 710 nm. Therefore, in the present invention, a stacked photoelectric conversion layer is formed by combining a plurality of dyes having different absorption wavelength ranges.
  • the absorption wavelength region or absorption peak wavelength (especially absorption peak wavelength) of the plurality of dyes is 10 nm or more (for example, about 10 to 200 nm), preferably 20 nm or more (for example, about 20 to 200 nm), more preferably. It is preferably shifted by 30 nm or more (for example, about 30 to 150 nm), usually 10 to 150 nm (for example, 25 to 120 nm), preferably 20 to 100 nm (for example, 30 to 100 nm or 30 to 80 nm). There are many cases.
  • a first coating composition containing a dye “P5” dye, a second coating composition containing an “N719” dye, a third coating composition containing an “N749” dye are prepared, By sequentially applying the coating composition to the conductive substrate, a stacked photoelectric conversion layer may be formed.
  • a multilayer photoelectric conversion layer may be formed by preparing a coating composition and sequentially applying each coating composition to a conductive substrate.
  • each coating composition may contain not only a single pigment but a plurality of pigments.
  • dye is normally contained in a photoelectric converting layer with the form carry
  • the dye may be attached (or immobilized) to the semiconductor by adsorption (physical adsorption), chemical bonding, or the like.
  • a dye that easily adheres to or bonds to a semiconductor for example, a dye having a functional group such as a carboxyl group, an ester group, a sulfo group, or a cyano group (for example, a carboxyl group such as an “N719” dye or an “N749” dye)
  • An acrylic acid dye or a thiazole dye having a sulfo group such as “NK3705” dye
  • Such a dye is not only difficult to bind to and desorb from a semiconductor surface such as titanium oxide, but is also considered to be useful in increasing the photoelectric conversion efficiency by electronically coupling with
  • the ratio (adhesion or adsorption ratio) of the dye may be selected so as to be in the range of the following formula in association with the semiconductor and the ionic binder or ionic polymer, for example.
  • I A is the number of ionic groups of the ionic binder or ionic polymers
  • I S is the number of occupied area per ionic group
  • D A dye diye molecules
  • D S dye Occupied area per piece
  • S S indicates the surface area of the semiconductor.
  • I A is the total number of ionic groups, for example, the weight (g) and Avogadro number of ionic binder or ionic polymer to the ion exchange capacity of the ion binder or ionic polymer (meq / g) It can be calculated by multiplication, and usually I A ⁇ I S ⁇ S S.
  • I S, D S respectively, an ionic group one occupied area (m 2), a occupation area of the dye molecule (m 2), as the occupied area, the use of the maximum projected area in the projection of the molecule Can do.
  • the coating composition only needs to contain an amount of the dye that can be adsorbed or immobilized on the semiconductor, and the amount of the dye is, for example, 0.1 to 20 parts by weight (for example, 100 parts by weight of the semiconductor) 0.5 to 15 parts by weight), preferably 1 to 10 parts by weight (for example, 1.5 to 8 parts by weight), more preferably about 2 to 6 parts by weight (for example, 3 to 5 parts by weight). Also good.
  • the coating composition may contain a solvent.
  • the solvent may be water and / or an organic solvent.
  • the organic solvent include alcohols (alkanols such as methanol, ethanol, isopropanol and butanol) and hydrocarbons (aromatic carbonization such as toluene and xylene).
  • the ratio of the solid content (or non-volatile component) is, for example, 0.1 to 60% by weight (eg 1 to 50% by weight), preferably 5 to 40%, depending on the coating method and the like. It may be about wt% (for example, 10 to 30 wt%).
  • the dispersion stability of the semiconductor can be improved even when the solid content including the semiconductor is high.
  • the coating composition may be prepared by a conventional method, for example, mixing a semiconductor (such as titanium oxide), an ionic polymer, and a dye, or a non-adsorbed or immobilized dye on a semiconductor (such as) in advance.
  • the pH of the coating composition containing the solvent is not particularly limited and can be selected from the same range as the pH of the ionic polymer.
  • the pH can be adjusted at an appropriate stage, for example, a solution of the ionic polymer or
  • the pH of the dispersion may be adjusted and mixed with the semiconductor and the dye.
  • the coating composition of the present invention is useful for laminating a plurality of photoelectric conversion layers by coating to form a laminated photoelectric conversion layer or a laminated photoelectric converter (laminated body) having different dye regions in the thickness direction.
  • the laminated photoelectric conversion body of the present invention includes a photoelectric conversion layer in which a plurality of photoelectric conversion layers are stacked, and can usually be formed on a conductive substrate.
  • the conductive substrate may be composed of only a conductor, but may usually include a base substrate and a conductive layer (or conductive film) formed on the substrate.
  • an inorganic substrate for example, a glass substrate, a ceramic substrate, etc.
  • a plastic substrate or a plastic film for example, a polyester resin (for example, polyethylene terephthalate, polyethylene naphthalate), a polycarbonate resin, a cycloolefin resin, polypropylene -Based resins, cellulose-based resins (such as cellulose triacetate), polyether-based resins (such as polyethersulfone), polysulfide-based resins (such as polyphenylene sulfide), and substrates or films formed of plastics such as polyimide resins] It is done.
  • a plastic substrate plastic film
  • the base substrate is usually a transparent substrate.
  • the conductive layer may be, for example, a conductive metal oxide [eg, tin oxide, indium oxide, zinc oxide, antimony-doped metal oxide (such as antimony-doped tin oxide), tin-doped metal oxide (such as tin-doped indium oxide), aluminum Doped metal oxide (such as aluminum-doped zinc oxide), gallium-doped metal oxide (such as gallium-doped zinc oxide), fluorine-doped metal oxide (such as fluorine-doped tin oxide), and the like.
  • a conductive metal oxide eg, tin oxide, indium oxide, zinc oxide, antimony-doped metal oxide (such as antimony-doped tin oxide), tin-doped metal oxide (such as tin-doped indium oxide), aluminum Doped metal oxide (such as aluminum-doped zinc oxide), gallium-doped metal oxide (such as gallium-doped zinc oxide), fluorine-doped metal
  • a laminated photoelectric conversion body can be formed on a conductive substrate by sequentially coating and laminating a plurality of coating compositions (or inks) on the conductive substrate (or its conductive layer).
  • the plurality of coating compositions (or inks) each contain a plurality of pigments having different absorption wavelength ranges or absorption peak wavelengths.
  • each photoelectric conversion layer can be formed without sintering. Therefore, in the laminated photoelectric conversion body, a plurality of dyes can be contained in each photoelectric conversion layer in a layered form.
  • the number of stacked photoelectric conversion layers with a plurality of coating compositions is not particularly limited, and may be, for example, about 2 to 10 layers (for example, 2 to 7 layers), and usually 2 to 5 layers (for example, 2 layers). ⁇ 4 layers), in particular 2 or 3 layers.
  • a plurality of dyes having different absorption peak wavelengths or absorption wavelength ranges may be used, and a plurality of photoelectric conversion layers that absorb different wavelength ranges may be stacked.
  • a first photoelectric conversion layer including a first dye and a semiconductor and a second photoelectric conversion layer including a second dye and a semiconductor may be stacked on the conductive substrate, and the second photoelectric conversion layer may be stacked.
  • a third photoelectric conversion layer containing a third dye and a semiconductor may be stacked on the photoelectric conversion layer.
  • the absorption wavelength region or the absorption peak wavelength (particularly the absorption peak wavelength) of the plurality of dyes is the same as described above, and each photoelectric conversion layer is, for example, 10 nm or more (for example, 10 to About 200 nm), particularly about 20 to 100 nm (for example, 30 to 80 nm), or about 10 to 150 nm.
  • the order of coating of the plurality of coating compositions (or inks) is not particularly limited, and in a laminate in which a plurality of photoelectric conversion layers having different absorption wavelengths (for example, adjacent photoelectric conversion layers) are stacked, different absorption wavelength ranges or A dye having an absorption peak wavelength (particularly, a dye having an absorption peak wavelength) may be contained in an arbitrary photoelectric conversion layer, the absorption peak wavelength or absorption wavelength region of a plurality of dyes, and the stacking order of the photoelectric conversion layers (lamination Position).
  • a photoelectric conversion layer that absorbs a short wavelength (for example, at least a wavelength in the visible light region, or a wavelength in the ultraviolet region to a visible light region) is changed to a long wavelength (for example, a wavelength in the near infrared region, or a visible light region or near It may be positioned on the incident side (light receiving side) of the photoelectric conversion layer that absorbs (wavelength in the infrared region), or may be positioned in the middle between the incident side and the transmission side.
  • the incident side conductive substrate or light receiving side
  • a plurality of photoelectric conversion layers from the photoelectric conversion layer to the transmission side photoelectric conversion layer are divided into the order of the second coating composition / third coating composition / first coating composition, third coating composition / Coated in the order of second coating composition / first coating composition, second coating composition / first coating composition / third coating composition, etc. It may be.
  • the photoelectric conversion layer that absorbs a short wavelength has a long wavelength (for example, a wavelength in the near infrared region or a visible light region).
  • the dye contained in the photoelectric conversion layer on the incident side is located closer to the light receiving side than the photoelectric conversion layer absorbing the wavelength in the near infrared region), and the dye contained in the photoelectric conversion layer on the transmission side. It has an absorption peak wavelength in a shorter wavelength region than the absorption peak wavelength.
  • the absorption wavelength range or the absorption peak wavelength shifts from a short wavelength to a long wavelength continuously or step by step from the light receiving side photoelectric conversion layer to the transmission side photoelectric conversion layer.
  • the plurality of dyes are sequentially contained.
  • a dye-sensitized photoelectric conversion layer containing a dye capable of absorbing a short wavelength region (for example, a short wavelength region in the visible light region) is formed on the light receiving side, and a long wavelength region (for example, a visible light region in the transmission side).
  • a dye-sensitized photoelectric conversion layer containing a dye capable of absorbing (long wavelength region) is formed.
  • the photoelectric conversion layer on the light receiving side has an absorption peak wavelength in a short wavelength region of the visible light region (for example, about 300 to 600 nm, preferably about 350 to 580 nm, more preferably about 370 to 570 nm). 1 pigment may be contained.
  • the photoelectric conversion layer on the side opposite to the light receiving side has an absorption peak wavelength in the long wavelength region of the visible light region (for example, about 550 to 800 nm, preferably about 570 to 750 nm, more preferably about 580 to 700 nm). You may contain the 2nd pigment
  • the absorption peak wavelengths of the plurality of dyes are photoelectric conversions on the light receiving side.
  • the layer and the photoelectric conversion layer opposite to the light receiving side may be separated by 10 nm or more, for example, 10 to 200 nm (for example, 20 to 200 nm), preferably 30 to 200 nm (for example, 30 to 30 nm). 170 nm), more preferably about 50 to 150 nm, or about 30 to 150 nm (for example, 50 to 130 nm).
  • the absorption peak wavelength of the first dye is shorter than the absorption peak wavelength of the second dye, for example, 10 nm or more (eg, 10 to 200 nm, preferably 20 to 200 nm, like the difference in the peak wavelength) Further preferably, the wavelength may be as short as about 50 to 150 nm.
  • a plurality of photoelectric conversion layers (laminates) in a stacked form are formed on the conductive substrate based on the relationship between the absorption peak wavelength or absorption wavelength range of the plurality of dyes and the stacking order of the photoelectric conversion layers.
  • These coating compositions can be sequentially coated.
  • the stacked photoelectric conversion layer may be formed of, for example, a conductive substrate, a first coating composition / third coating composition / second coating composition. It may be formed by coating in order, or by coating in the order of first coating composition / second coating composition / third coating composition.
  • the coating method is not particularly limited. For example, air knife coating method, roll coating method, gravure coating method, blade coating method, doctor blade method, squeegee method, dip coating method, spray method, spin coating method, ink jet printing method, etc. It may be. Further, after coating, the coating film may be dried at a predetermined temperature (eg, room temperature to about 150 ° C., preferably about 50 to 120 ° C.). In addition, in application
  • a photoelectric conversion layer having high photoelectric conversion characteristics is obtained without sintering (or baking) the semiconductor by heating at a high temperature (for example, 500 ° C. or higher). Can be formed.
  • the total thickness of the stacked photoelectric conversion layers is, for example, about 0.1 to 100 ⁇ m (for example, 0.5 to 70 ⁇ m), preferably 1 to 50 ⁇ m (for example, 3 to 30 ⁇ m), and more preferably about 5 to 20 ⁇ m. May be.
  • the thickness of each photoelectric conversion layer can be selected from a range of about 0.01 to 50 ⁇ m (for example, 0.5 to 30 ⁇ m, particularly 1 to 15 ⁇ m) depending on the number of layers, the extinction coefficient of the dye, and the like.
  • each photoelectric conversion layer and the total thickness can be freely adjusted by the number of coatings (number of laminations).
  • Increasing the thickness Tr of the photoelectric conversion layer on the light receiving side can absorb incident light efficiently and increase the photoelectric conversion efficiency.
  • a laminated photoelectric conversion body (laminated dye-sensitized photoelectric conversion body or laminated body) formed on a conductive substrate has a conductive layer and a photoelectric conversion layer, and an electrode (photoelectrode) constituting a photoelectric conversion element ).
  • an electrode photoelectrode
  • a photoelectric conversion element provided with a laminated photoelectric conversion body (photoelectrode) formed on a conductive substrate can be used for various applications capable of photoelectric conversion, and typically used for a solar cell (dye-sensitized solar cell). it can.
  • a solar cell is, for example, a laminated photoelectric conversion body formed on a conductive substrate as an electrode, a counter electrode disposed opposite to the electrode (on the photoelectric conversion layer side of the electrode), and sealed between these electrodes An electrolyte phase (or electrolyte layer).
  • the same process as that for producing the laminated photoelectric converter for example, a coating composition containing a plurality of dyes having different absorption wavelength ranges or absorption peak wavelengths, A step of sequentially coating and laminating a plurality of coating compositions containing the conductive substrate, and a step of forming a laminated photoelectric conversion body in which a plurality of photoelectric conversion layers are laminated without sintering the semiconductor; It can manufacture by the method containing.
  • the electrolyte phase is a sealant [for example, a sealant containing a thermoplastic resin (such as an ionomer resin), a thermosetting resin (such as an epoxy resin or a silicone resin)) on the periphery of both electrodes. By sealing, it is enclosed in a space or gap between both electrodes.
  • a sealant for example, a sealant containing a thermoplastic resin (such as an ionomer resin), a thermosetting resin (such as an epoxy resin or a silicone resin)
  • the counter electrode forms a positive electrode (the stacked body is a negative electrode), and when the semiconductor is a p-type semiconductor, the counter electrode forms a negative electrode (the stacked body is a positive electrode).
  • the counter electrode includes a conductive substrate and a catalyst layer (a positive electrode catalyst layer or a negative electrode catalyst layer) formed on the conductive substrate (or on the conductive layer of the conductive substrate) in the same manner as the stacked photoelectric conversion body.
  • the conductive layer or the catalyst layer of the counter electrode is disposed so as to face the stacked photoelectric conversion body (or electrode). Note that a catalyst layer is not necessarily provided in a conductive layer having a reducing ability.
  • the conductive substrate for the counter electrode may be a substrate in which a layer having both a conductive layer and a catalyst layer (conductive catalyst layer) is formed on a base substrate in addition to the same substrate as described above.
  • the catalyst layer (positive electrode catalyst layer or negative electrode catalyst layer) is not particularly limited, and can be formed of a conductive metal (such as gold or platinum), carbon, or the like.
  • the catalyst layer may be a non-porous layer (or non-porous layer) or a porous layer.
  • the porous layer may be composed of a porous catalyst component (porous catalyst component), and is composed of a porous component (porous component) and a catalyst component supported on the porous component. Alternatively, these may be combined. That is, the porous layer (porous catalyst layer) has porosity and functions as a catalyst.
  • porous catalyst component examples include metal fine particles (for example, platinum black), porous carbon [carbon black (carbon black aggregate) such as activated carbon, graphite, ketjen black, furnace black, acetylene black, carbon nanotube ( Carbon nanotube aggregate)) and the like. These components may be used alone or in combination of two or more. Activated carbon or the like may be used as the porous catalyst component.
  • metal fine particles for example, platinum black
  • porous carbon carbon black (carbon black aggregate) such as activated carbon, graphite, ketjen black, furnace black, acetylene black, carbon nanotube ( Carbon nanotube aggregate)
  • Activated carbon or the like may be used as the porous catalyst component.
  • porous component examples include metal compound particles [e.g., particles (fine particles) of the above-described conductive metal oxide (e.g., tin-doped indium oxide)] in addition to the porous carbon. These components may be used alone or in combination of two or more.
  • the catalyst component include a conductive metal (for example, platinum).
  • the shape (or form) of the porous catalyst component and the porous component is not particularly limited, and may be particulate or fibrous, and is preferably particulate.
  • the average particle diameter of the particulate porous catalyst component and the porous component (porous particles) is, for example, 1 to 1000 ⁇ m (for example, 10 to 500 ⁇ m), preferably 30 to 300 ⁇ m (for example, 40 to 200 ⁇ m), and more preferably May be about 50 to 150 ⁇ m (for example, 70 to 100 ⁇ m).
  • the BET specific surface area of the porous catalyst component and the porous component is, for example, 1 to 4000 m 2 / g (for example, 20 to 3000 m 2 / g), preferably 50 to 2000 m 2 / g (for example, 100 to 1500 m 2 / g). ), More preferably about 200 to 1000 m 2 / g (for example, 300 to 500 m 2 / g).
  • the porous layer (porous catalyst layer) may be a binder component, for example, a resin component [for example, a thermoplastic resin such as a cellulose derivative (such as methylcellulose); a thermosetting resin such as an epoxy resin] or the like. May be included.
  • the ratio of the binder component is, for example, 0.1 to 50% by weight (for example, 1 to 40% by weight), preferably 2 to 30% by weight (for example, 3%) with respect to the entire porous layer (porous catalyst layer). ⁇ 20 wt%), more preferably about 5 to 15 wt%.
  • the electrode (counter electrode) often includes at least a porous layer, and usually includes at least a substrate (a substrate that may be a conductive substrate) and a porous catalyst layer.
  • An electrode (counter electrode) having a representative porous layer includes (i) a conductive substrate and a porous catalyst layer formed on the conductive substrate (or conductive layer) and composed of a porous catalyst component.
  • the electrode (or laminated body) provided with the layer etc. may be sufficient.
  • the thickness of the porous layer may be, for example, about 0.1 to 100 ⁇ m, preferably 0.5 to 50 ⁇ m, more preferably about 1 to 30 ⁇ m.
  • the electrolyte layer may be formed of an electrolytic solution containing an electrolyte and a solvent, or may be formed of a solid layer (or gel) containing an electrolyte.
  • the electrolyte of the electrolytic solution is not particularly limited, and is a general-purpose electrolyte, for example, a combination of a halogen (halogen molecule) and a halide salt [for example, a combination of bromine and bromide salt, a combination of iodine and iodide salt, etc. ] Etc. are mentioned.
  • Counter ions (cations) constituting the halide salt include metal ions [for example, alkali metal ions (for example, lithium ions, sodium ions, potassium ions, cesium ions, etc.), alkaline earth metal ions (for example, magnesium ions, Quaternary ammonium ion [tetraalkylammonium salt, pyridinium salt, imidazolium salt (eg, 1,2-dimethyl-3-propylimidazolium salt)] and the like.
  • the electrolytes may be used alone or in combination of two or more.
  • Preferred electrolytes include combinations of iodine and iodide salts, particularly iodine and metal iodide salts [for example, alkali metal salts (lithium iodide, sodium iodide, potassium iodide, etc.), quaternary ammonium salts, etc. And the combination.
  • iodine and metal iodide salts for example, alkali metal salts (lithium iodide, sodium iodide, potassium iodide, etc.), quaternary ammonium salts, etc. And the combination.
  • the solvent of the electrolytic solution is not particularly limited, and examples thereof include alcohols (for example, alkanols such as methanol, ethanol, and butanol; glycols such as ethylene glycol, diethylene glycol, and polyethylene glycol), and nitriles (acetonitrile, methoxyacetonitrile, Propionitrile, valeronitrile, 3-methoxypropionitrile, benzonitrile, etc.), carbonates (ethylene carbonate, propylene carbonate, diethyl carbonate, etc.), lactones ( ⁇ -butyrolactone, etc.), ethers (1,2-dimethoxy) Chain ethers such as ethane, dimethyl ether and diethyl ether; rings such as tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane and 4-methyldioxolane Ethers), sulfolane (such as sulfolane), sulfoxides (dimethyl sul
  • the pH of the ionic polymer when the pH of the ionic polymer is adjusted, the pH of the ionic polymer may be adjusted in the same range as described above also in the photoelectric conversion element.
  • a component that does not affect pH adjustment may be suitably used as the component of the electrolytic solution.
  • a neutral solvent or a non-acidic solvent (or an aprotic solvent) may be suitably used as the electrolytic solution.
  • the concentration of the electrolyte may be, for example, about 0.01 to 10M, preferably 0.03 to 8M, and more preferably about 0.05 to 5M.
  • solid electrolytes ⁇ eg, resin components [eg, thiophene polymers (eg, polythiophene)], carbazole polymers (eg, poly (N-vinyl) Carbazole) and the like], organic solid components such as low molecular weight organic components (eg, naphthalene, anthracene, phthalocyanine, etc.); inorganic solid components such as silver iodide ⁇ and the like.
  • resin components eg, thiophene polymers (eg, polythiophene)]
  • carbazole polymers eg, poly (N-vinyl) Carbazole
  • organic solid components such as low molecular weight organic components (eg, naphthalene, anthracene, phthalocyanine, etc.); inorganic solid components such as silver iodide ⁇ and the like.
  • the solid layer is a solid layer in which the electrolyte or electrolytic solution is held on a gel base material [for example, thermoplastic resin (polyethylene glycol, polymethyl methacrylate, etc.), thermosetting resin (epoxy resin, etc.), etc.]. May be.
  • a gel base material for example, thermoplastic resin (polyethylene glycol, polymethyl methacrylate, etc.), thermosetting resin (epoxy resin, etc.), etc.]. May be.
  • the photoelectric conversion element having such a structure is a single element, it can absorb a wide wavelength range from a short wavelength range to a long wavelength range and efficiently perform photoelectric conversion, and is suitable as a solar cell.
  • the photoelectric conversion efficiency can be improved with a very simple structure.
  • no electrode substrate, electrolyte, or the like is interposed between photoelectric conversion layers having different absorption wavelengths, there is little loss of light absorption, members such as expensive conductive substrates can be reduced, and photoelectric conversion elements can be manufactured at low cost. .
  • aqueous lithium hydroxide solution prepared by dissolving lithium hydroxide (manufactured by Tokyo Chemical Industry Co., Ltd.) in ion-exchanged water
  • the “N749” dye manufactured by solaronix, molecular weight 1188.57, occupied area of about 1 nm 2 per molecule
  • the photoelectric conversion ink 2 for long wavelength absorption
  • the obtained photoelectric conversion ink 1 was applied to the ITO layer side of a glass substrate with ITO (Geomatec, size 12 mm ⁇ 25 mm, surface resistance 10 ⁇ / ⁇ ) by a squeegee method, and then dried at 90 ° C. in the atmosphere to perform photoelectric conversion.
  • Layer 1 short wavelength absorption layer
  • the photoelectric conversion ink 2 was applied on the photoelectric conversion layer 1 by the squeegee method, and then dried in the atmosphere at 90 ° C. to form the photoelectric conversion layer 2 (long wavelength absorption layer).
  • the laminated photoelectric conversion layer is cut into a predetermined size (4 mm ⁇ 4 mm) to remove an excess film, and a laminated photoelectric conversion layer having a thickness of 10 ⁇ m (photoelectric conversion layer 1 thickness 6 ⁇ m, photoelectric conversion layer 2 thickness 4 ⁇ m). Formed.
  • a platinum thin film (electrode) having a thickness of 0.003 ⁇ m was formed on the ITO layer of a glass substrate with ITO (manufactured by Geomatic Co., Ltd., 10 ⁇ / ⁇ ) by a sputtering method.
  • the electrolyte solution was an acetonitrile solution containing 0.05M iodine, 0.1M lithium iodide, 0.5M 1,2-dimethyl-3-propylimidazolium iodide, 0.5M 4-tert-butylpyridine.
  • Example 1 The photoelectric conversion ink 1 prepared in Example 1 (“N719” dye, for short wavelength absorption) was applied to the ITO layer side of the glass substrate with ITO by the squeegee method, and then dried in the atmosphere at 90 ° C. to obtain the photoelectric conversion layer 1. (Short wavelength absorption layer) was formed, the photoelectric conversion layer was cut in the same manner as in Example 1, and a dye-sensitized solar cell having a photoelectric conversion layer having a thickness of 10 ⁇ m (thickness of photoelectric conversion layer 1 of 10 ⁇ m) was obtained.
  • Comparative Example 2 A dye-sensitized solar cell was prepared in the same manner as in Comparative Example 1 except that the photoelectric conversion ink 2 prepared in Example 1 (“N749” dye, for long wavelength absorption) was used instead of the photoelectric conversion ink 1 in Comparative Example 1. Was made.
  • Example 2 In Example 1, MK-2 dye (manufactured by Soken Chemical Co., Ltd.) was used instead of N719 dye, and the thickness of the photoelectric conversion layer 1 was 3 ⁇ m and the thickness of the photoelectric conversion layer 2 was 7 ⁇ m. In the same manner as above, a dye-sensitized solar cell was produced.
  • MK-2 dye manufactured by Soken Chemical Co., Ltd.
  • the dye-sensitized solar cells obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were subjected to AM 1.5, 100 mW / mm using a solar simulator (“XES-301S + EL-100” manufactured by Mitsunaga Electric Co., Ltd.). Evaluation was performed under conditions of cm 2 and 25 ° C. The output characteristics of the obtained dye-sensitized solar cell are shown in FIG.
  • Example 3 In Example 1, instead of the glass substrate with ITO, a polyethylene terephthalate (PET) film with ITO (manufactured by Aldrich, size 30 ⁇ 50 mm, thickness of ITO layer 0.12 ⁇ m) was used in the same manner as in Example 1. When a dye-sensitized solar cell was produced, the same output characteristics as in Example 1 were obtained.
  • PET polyethylene terephthalate
  • the laminated photoelectric conversion body (laminated body) of the present invention has a plurality of photoelectric conversion layers having different absorption wavelengths, and is useful for forming a photoelectric conversion element (such as a dye-sensitized solar cell). Furthermore, since a stacked photoelectric conversion body (laminated body) can be formed by coating without sintering, a photoelectric conversion layer or a photoelectric conversion element can be easily formed.

Abstract

A multilayer photoelectric conversion body, wherein a plurality of photoelectric conversion layers having different absorption wavelengths are laminated, is formed by sequentially coating a conductive substrate with a plurality of coating compositions, each of which contains a semiconductor (for example, titanium oxide particles) and an ionic polymer (for example, a fluorine-based resin having a sulfo group), without sintering the semiconductor, while having the coating compositions respectively contain a plurality of dyes having different absorption wavelength ranges or absorption peak wavelengths. This photoelectric conversion element is capable of efficient photoelectric conversion by means of a simple structure.

Description

光電変換層およびそれを備えた光電変換素子Photoelectric conversion layer and photoelectric conversion element provided with the same
 本発明は、積層形態の光電変換層およびこの光電変換層を備えた光電変換素子(太陽電池(特に、色素増感太陽電池)など)に関する。 The present invention relates to a stacked photoelectric conversion layer and a photoelectric conversion element (a solar cell (particularly, a dye-sensitized solar cell)) including the photoelectric conversion layer.
 環境負荷の小さいクリーンエネルギーとして太陽電池が注目され、シリコン(結晶シリコンなど)を用いた太陽電池が広く使用されている。しかし、高純度なシリコンを用いるため発電コストが高く、室内など微弱光に対する変換効率が小さい。 Solar cells are attracting attention as clean energy with a low environmental impact, and solar cells using silicon (such as crystalline silicon) are widely used. However, since high-purity silicon is used, the power generation cost is high, and the conversion efficiency for faint light such as indoors is small.
 低コストで製造可能な太陽電池として、色素増感太陽電池が注目されている。色素増感太陽電池では、金属酸化物半導体(酸化チタンなど)に増感色素を吸着させて光電極を形成している。 Dye-sensitized solar cells are attracting attention as solar cells that can be manufactured at low cost. In a dye-sensitized solar cell, a photoelectrode is formed by adsorbing a sensitizing dye to a metal oxide semiconductor (such as titanium oxide).
 このような色素増感太陽電池での光電変換は、金属酸化物半導体と増感色素との接触界面で生じるため、変換効率を高める目的で、表面積の大きな金属酸化物半導体(例えば、ナノサイズの金属酸化物半導体)を電極に用い、見かけ面積に対して実効面積を大きくしている。しかし、金属酸化物ナノ粒子は、単に基板に塗布しても基板から剥離し電極として機能しなくなるとともに、粒子間の電気抵抗が大きい。そのため、金属酸化物ナノ粒子を塗布した後、高温(500℃程度)で熱処理して金属酸化物ナノ粒子を焼結し、焼結層を、色素を含む溶液に浸漬して色素を吸着させて光電変換層を形成し、色素の熱分解を回避する必要がある。このような方法は、焼結過程を含めて煩雑なプロセスであり、製造コスト上昇の要因ともなる。さらに、焼結過程で基板を高温に曝す必要があるため、基板がガラスなどの無機材料に限定され、プラスチック基板を用いたフレキシブルな色素増感太陽電池を作製できない。また、色素の吸収波長域で限定されるため、単一色素で効率よく長波長域まで吸収できず、入射光の利用効率が低く、光電変換効率が低い。 Since photoelectric conversion in such a dye-sensitized solar cell occurs at the contact interface between the metal oxide semiconductor and the sensitizing dye, a metal oxide semiconductor having a large surface area (for example, nano-sized semiconductor) is used for the purpose of increasing the conversion efficiency. A metal oxide semiconductor) is used for the electrode, and the effective area is made larger than the apparent area. However, even if the metal oxide nanoparticles are simply applied to the substrate, they are peeled off from the substrate and do not function as electrodes, and the electrical resistance between the particles is large. Therefore, after applying the metal oxide nanoparticles, heat treatment is performed at a high temperature (about 500 ° C.) to sinter the metal oxide nanoparticles, and the sintered layer is immersed in a solution containing the dye to adsorb the dye. It is necessary to form a photoelectric conversion layer and avoid thermal decomposition of the dye. Such a method is a complicated process including a sintering process, and causes an increase in manufacturing cost. Furthermore, since it is necessary to expose the substrate to a high temperature during the sintering process, the substrate is limited to an inorganic material such as glass, and a flexible dye-sensitized solar cell using a plastic substrate cannot be produced. Moreover, since it is limited by the absorption wavelength region of the dye, it cannot be efficiently absorbed to a long wavelength region with a single dye, incident light utilization efficiency is low, and photoelectric conversion efficiency is low.
 色素の熱分解を回避し、かつ入射光を光電変換に有効に利用するため、複数の色素を用いたタンデム型光電変換素子が提案されている。例えば、特開2008-34258号公報(特許文献1)には、第1色素が第1多孔質半導体に吸着した第1光電極を備えた第1光電変換セルと、第2色素が第2多孔質半導体に吸着した第2光電極を備えた第2光電変換セルとを、入射光の入射方向に対して交差する方向に積層して、第1対極と第2透明導電層とを直列接続したタンデム型色素増感型光電変換素子が記載されている。この文献でも、酸化チタンの塗膜を焼成して第1多孔質半導体及び第2多孔質半導体をそれぞれ形成し、第1色素及び第2色素をそれぞれ吸着させている。また、この文献には、複数の色素を混合して吸着した一層の光電極、または領域別に複数の色素を吸着した多層の光電極も図示されているが、その詳細については記載されていない。 A tandem photoelectric conversion element using a plurality of dyes has been proposed in order to avoid thermal decomposition of the dyes and to effectively use incident light for photoelectric conversion. For example, in Japanese Patent Application Laid-Open No. 2008-34258 (Patent Document 1), a first photoelectric conversion cell including a first photoelectrode in which a first dye is adsorbed to a first porous semiconductor, and a second dye is a second porous material. A second photoelectric conversion cell having a second photoelectrode adsorbed on a crystalline semiconductor is stacked in a direction intersecting the incident light incident direction, and the first counter electrode and the second transparent conductive layer are connected in series. A tandem dye-sensitized photoelectric conversion element is described. Also in this document, the coating film of titanium oxide is baked to form the first porous semiconductor and the second porous semiconductor, respectively, and the first dye and the second dye are adsorbed respectively. This document also shows a single-layer photoelectrode in which a plurality of dyes are mixed and adsorbed, or a multi-layer photoelectrode in which a plurality of dyes are adsorbed in each region, but details thereof are not described.
 特開2012-74365号公報(特許文献2)には、第1の色素層を介して陰極と陽極とが配設された第1の光電池(PV)セルと、第2の色素層を介して陰極と陽極とが配設された第2のPVセルと、第1のPVセルと第2のPVセルとを貼り合わせ、第1のPVセルと第2のPVセルとの間を電気的に直列接続するための第1の透明導電接着剤層とを備えたタンデム型色素増感太陽電池(DSC)が記載されている。 Japanese Patent Laid-Open No. 2012-74365 (Patent Document 2) discloses a first photovoltaic cell (PV) cell in which a cathode and an anode are disposed via a first dye layer, and a second dye layer. The second PV cell in which the cathode and the anode are disposed, the first PV cell and the second PV cell are bonded together, and the first PV cell and the second PV cell are electrically connected to each other. A tandem dye-sensitized solar cell (DSC) with a first transparent conductive adhesive layer for series connection is described.
 これらの文献では、第1の光電変換セルと第2の光電変換セルとをそれぞれ作製し、第1及び第2の光電変換セルを積み重ねるため、入射光を有効に光電変換できる。しかし、各光電変換セルは、透明導電層を有する透明支持体と、前記透明導電層上に形成された光電極層と、この光電極層に対して対向する対極と、光電極層と対極との間に充填された電解液とを備えている。しかも、このような2つの光電変換セルを積層する必要があるとともに、2つの光電変換セルを電気的に接続する必要がある。そのため、タンデム型色素増感太陽電池の構造が複雑化する。また、高価な導電性透明基板を少なくとも1枚余分に使用する必要があり、高コストとなる。さらに、光電変換セルの中央部(光透過部)では、一対の光電極層と対極との間に介在する電極基板及び電解質が入射光を吸収し又は散乱させるため、光吸収の損失が生じ、光電変換効率を大きく向上できない。 In these documents, since the first photoelectric conversion cell and the second photoelectric conversion cell are respectively produced and the first and second photoelectric conversion cells are stacked, incident light can be effectively photoelectrically converted. However, each photoelectric conversion cell includes a transparent support having a transparent conductive layer, a photoelectrode layer formed on the transparent conductive layer, a counter electrode facing the photoelectrode layer, a photoelectrode layer and a counter electrode. And an electrolytic solution filled in between. In addition, it is necessary to stack such two photoelectric conversion cells and to electrically connect the two photoelectric conversion cells. This complicates the structure of the tandem dye-sensitized solar cell. In addition, it is necessary to use at least one more expensive conductive transparent substrate, resulting in high cost. Furthermore, in the central part (light transmission part) of the photoelectric conversion cell, the electrode substrate and the electrolyte interposed between the pair of photoelectrode layers and the counter electrode absorb or scatter incident light, resulting in loss of light absorption. The photoelectric conversion efficiency cannot be greatly improved.
 なお、焼結した酸化チタンの多孔質層に、2つの色素を2層状(dye bi-layer)に拡散させることも知られている。しかし、この方法は依然として焼結操作及び色素の拡散操作が必要であるだけでなく、2つの色素が境界域で混在し、効率よく光電変換層を形成できない。 It is also known that two dyes are diffused into a bilayer of a sintered titanium oxide porous layer. However, this method still requires a sintering operation and a dye diffusing operation, and two dyes are mixed in the boundary region, so that a photoelectric conversion layer cannot be formed efficiently.
 国際公開WO 2014/017536(特許文献3)には、半導体とイオン性ポリマーと色素とを含み、イオン性ポリマーの割合が、半導体1重量部に対して0.1~30重量部の光電変換層用組成物を導電性基板に塗布し、半導体を焼結することなく、光電変換層を形成することが記載されている。また、この文献には、導電性基板に対して光電変換層を高い密着性で形成できることも記載されている。しかし、この光電変換層は入射光の光電変換効率が未だ十分でない。 International Publication WO 2014/017536 (Patent Document 3) discloses a photoelectric conversion layer containing a semiconductor, an ionic polymer, and a dye, wherein the proportion of the ionic polymer is 0.1 to 30 parts by weight with respect to 1 part by weight of the semiconductor. It is described that the composition is applied to a conductive substrate and a photoelectric conversion layer is formed without sintering the semiconductor. This document also describes that the photoelectric conversion layer can be formed with high adhesion to the conductive substrate. However, this photoelectric conversion layer still has insufficient photoelectric conversion efficiency of incident light.
特開2008-34258号公報([0019][0020][0022][0078]~[0081]図1~図3)JP 2008-34258 A ([0019] [0020] [0022] [0078] to [0081] FIGS. 1 to 3) 特開2012-74365号公報(特許請求の範囲)JP 2012-74365 A (Claims) WO 2014/017536(請求項14及び17、[0091])WO 2014/017536 (Claims 14 and 17, [0091])
 従って、本発明の目的は、簡単な構造で入射光を効率よく光電変換可能な光電変換層又は光電変換体(光電極層)及びこの光電変換層を備えた光電変換素子(色素増感太陽電池など)を提供することにある。 Accordingly, an object of the present invention is to provide a photoelectric conversion layer or a photoelectric conversion body (photoelectrode layer) capable of efficiently photoelectrically converting incident light with a simple structure, and a photoelectric conversion element (a dye-sensitized solar cell) including the photoelectric conversion layer. Etc.).
 本発明の他の目的は、異なる吸収波長域を有し、かつ光電変換効率の高い光電変換層(又は光電変換体)、及びその光電変換層を備えた光電変換素子を提供することにある。 Another object of the present invention is to provide a photoelectric conversion layer (or a photoelectric conversion body) having different absorption wavelength ranges and high photoelectric conversion efficiency, and a photoelectric conversion element including the photoelectric conversion layer.
 本発明のさらに他の目的は、焼結しなくても耐久性に優れ、長期に亘って高い光電変換特性を維持できるとともに、基板に対して高い密着性を有する光電変換層(又は光電変換体)及びその光電変換層を備えた光電変換素子を提供することにある。 Still another object of the present invention is to provide a photoelectric conversion layer (or photoelectric conversion body) that has excellent durability without sintering and can maintain high photoelectric conversion characteristics over a long period of time and has high adhesion to a substrate. And a photoelectric conversion element including the photoelectric conversion layer.
 本発明の別の目的は、色素増感太陽電池を形成するのに有用な光電変換層(又は光電極層)及びこの光電変換層を備えた光電変換素子を提供することにある。 Another object of the present invention is to provide a photoelectric conversion layer (or a photoelectrode layer) useful for forming a dye-sensitized solar cell and a photoelectric conversion element including the photoelectric conversion layer.
 本発明のさらに別の目的は、前記光電変換層(又は光電変換体)を形成するのに有用なコーティング組成物及び前記光電変換層(又は光電変換体)を簡便かつ効率よく形成できる方法を提供することにある。 Yet another object of the present invention is to provide a coating composition useful for forming the photoelectric conversion layer (or photoelectric conversion body) and a method for easily and efficiently forming the photoelectric conversion layer (or photoelectric conversion body). There is to do.
 本発明者らは、前記課題を解決するため鋭意検討した結果、半導体(酸化チタンなど)とイオン性バインダー(例えば、強酸性イオン交換樹脂などのイオン性ポリマー)と色素(増感色素)とを含む複数のコーティング組成物(コーティング剤又はインク)において、吸収波長域又は吸収ピーク波長が互いに異なる複数の色素を、それぞれコーティング組成物に含有させ、複数のコーティング組成物を導電性基板に順次に塗布して積層型光電変換体を形成すると、入射光を効率よく光電変換できることを見いだし、本発明を完成した。 As a result of intensive studies to solve the above problems, the present inventors have found that a semiconductor (such as titanium oxide), an ionic binder (for example, an ionic polymer such as a strongly acidic ion exchange resin), and a dye (sensitizing dye). In a plurality of coating compositions (coating agent or ink), a plurality of dyes having different absorption wavelength ranges or absorption peak wavelengths are contained in the coating composition, and the plurality of coating compositions are sequentially applied to the conductive substrate. Thus, when a stacked photoelectric conversion body is formed, it has been found that incident light can be efficiently photoelectrically converted, and the present invention has been completed.
 すなわち、本発明の積層光電変換体(積層体)は、半導体とイオン性バインダーと色素とを含む光電変換層が積層された積層構造を有しており、前記積層光電変換体は、複数の光電変換層(色素増感光電変換層)が積層して形成されている。そして、各光電変換層に含まれる色素の吸収波長域又は吸収ピーク波長が異なっている。すなわち、複数の光電変換層(例えば、隣接する光電変換層)には、互いに異なる吸収波長域又は吸収ピーク波長を有する色素が含有されている。本発明の積層光電変換体は、例えば、隣接する光電変換層が、吸収ピーク波長又は吸収波長域の異なる色素を含む積層型光電変換層ということもでき、2種類の色素を含む積層型光電変換層では、第1の色素を含む光電変換層と、第2の色素を含む光電変換層とが積層されている。なお、光電変換層及び積層光電変換体は、通常、導電性基板に形成される。 That is, the laminated photoelectric conversion body (laminated body) of the present invention has a laminated structure in which a photoelectric conversion layer containing a semiconductor, an ionic binder, and a dye is laminated. A conversion layer (dye-sensitized photoelectric conversion layer) is laminated. And the absorption wavelength range or absorption peak wavelength of the pigment | dye contained in each photoelectric converting layer differs. That is, a plurality of photoelectric conversion layers (for example, adjacent photoelectric conversion layers) contain dyes having absorption wavelength ranges or absorption peak wavelengths different from each other. In the laminated photoelectric conversion body of the present invention, for example, the adjacent photoelectric conversion layer can also be referred to as a stacked photoelectric conversion layer containing dyes having different absorption peak wavelengths or absorption wavelength ranges, and a stacked photoelectric conversion containing two kinds of dyes. In the layer, a photoelectric conversion layer containing a first dye and a photoelectric conversion layer containing a second dye are stacked. Note that the photoelectric conversion layer and the stacked photoelectric conversion body are usually formed on a conductive substrate.
 積層光電変換体において、入射側(受光側)の光電変換層に含まれる色素は、透過側の光電変換層に含まれる色素の吸収ピーク波長よりも短波長域に吸収ピーク波長を有していてもよい。例えば、受光側には短波長域(例えば、可視光域の短波長域)を吸収可能な色素を含む光電変換層(色素増感光電変換層)を形成し、受光側と反対側(透過側)には長波長域(例えば、可視光域の長波長域)を吸収可能な色素を含む光電変換層(色素増感光電変換層)を形成してもよい。 In the laminated photoelectric conversion body, the dye contained in the incident side (light receiving side) photoelectric conversion layer has an absorption peak wavelength in a shorter wavelength region than the absorption peak wavelength of the dye contained in the transmission side photoelectric conversion layer. Also good. For example, a photoelectric conversion layer (dye-sensitized photoelectric conversion layer) containing a dye capable of absorbing a short wavelength region (for example, a short wavelength region in the visible light region) is formed on the light receiving side, and the side opposite to the light receiving side (transmission side) ) May be formed with a photoelectric conversion layer (a dye-sensitized photoelectric conversion layer) containing a dye capable of absorbing a long wavelength region (for example, a long wavelength region in the visible light region).
 さらに、半導体が焼結されることなく、複数の光電変換層を積層して形成してもよく、複数の光電変換層の合計厚みは、0.1~100μm程度であってもよく、受光側の光電変換層の厚みTrと透過側の光電変換層の厚みTtとの割合は、Tr/Tt=10/90~80/20(例えば、30/70~80/20)程度であってもよい。 Further, a plurality of photoelectric conversion layers may be formed without being sintered, and the total thickness of the plurality of photoelectric conversion layers may be about 0.1 to 100 μm. The ratio between the thickness Tr of the photoelectric conversion layer and the thickness Tt of the photoelectric conversion layer on the transmission side may be about Tr / Tt = 10/90 to 80/20 (for example, 30/70 to 80/20). .
 また、受光側の光電変換層が300~650nm(例えば、300~600nm)に吸収ピーク波長を有する第1の色素を含有し、受光側と反対側(透過側)の光電変換層が550~800nm(例えば、600~800nm)に吸収ピーク波長を有する第2の色素を含有していてもよい。また、複数の色素の吸収ピーク波長(例えば、第1の色素と第2の色素との吸収ピーク波長)は近接していてもよいが、通常、第1の色素の吸収ピーク波長が第2の色素の吸収ピーク波長よりも10nm以上短波長であってもよく、複数の色素の吸収ピーク波長は、例えば、10~200nm(例えば、20~200nm、好ましくは30~150nm)程度離れている。 The photoelectric conversion layer on the light receiving side contains a first dye having an absorption peak wavelength at 300 to 650 nm (for example, 300 to 600 nm), and the photoelectric conversion layer on the opposite side (transmission side) from the light receiving side is 550 to 800 nm. A second dye having an absorption peak wavelength (for example, 600 to 800 nm) may be contained. The absorption peak wavelengths of the plurality of dyes (for example, the absorption peak wavelengths of the first dye and the second dye) may be close to each other, but the absorption peak wavelength of the first dye is usually the second. It may be shorter than the absorption peak wavelength of the dye by 10 nm or more, and the absorption peak wavelengths of the plurality of dyes are separated by, for example, about 10 to 200 nm (for example, 20 to 200 nm, preferably 30 to 150 nm).
 前記光電変換層において、半導体は、酸化チタンナノ粒子、酸化亜鉛ナノ粒子、酸化スズナノ粒子から選択された少なくとも1種を含んでいてもよく、イオン性ポリマーはスルホ基を有するフッ素含有樹脂を含んでいてもよい。また、イオン性ポリマーの割合は、半導体100重量部に対して1~100重量部(例えば、5~50重量部)程度であってもよい。 In the photoelectric conversion layer, the semiconductor may include at least one selected from titanium oxide nanoparticles, zinc oxide nanoparticles, and tin oxide nanoparticles, and the ionic polymer includes a fluorine-containing resin having a sulfo group. Also good. The proportion of the ionic polymer may be about 1 to 100 parts by weight (for example, 5 to 50 parts by weight) with respect to 100 parts by weight of the semiconductor.
 本発明は、半導体とイオン性ポリマーと色素とを含み、導電性基板に、複数の光電変換層を形成するためのコーティング組成物(又はインク)のセットであって、複数のコーティング組成物が、それぞれ、互いに異なる吸収波長域又は吸収ピーク波長を有する色素を含有している複数のコーティング組成物のセットも包含する。 The present invention is a set of a coating composition (or ink) for forming a plurality of photoelectric conversion layers on a conductive substrate, which contains a semiconductor, an ionic polymer, and a dye, and the plurality of coating compositions are A set of a plurality of coating compositions each containing a dye having a different absorption wavelength range or absorption peak wavelength is also included.
 また、本発明は、前記積層光電変換体を製造する方法も包含し、この方法では、導電性基板に、半導体とイオン性ポリマーと色素とを含む複数のコーティング組成物(又はインク)を塗布し、光電変換層を形成する(通常、焼結することなく光電変換層を形成する)。各コーティング剤に含まれる色素の吸収波長域又は吸収ピーク波長は互いに異なっている。すなわち、吸収波長域又は吸収ピーク波長の異なる複数の色素を、それぞれコーティング組成物(又はインク)に含有させる(又は吸収波長域又は吸収ピーク波長の異なる色素ごとにコーティング組成物を調製する)。そして、複数のコーティング組成物(又はインク)を導電性基板に順次にコーティングして積層し、焼結させることなく、積層光電変換体を形成する。 The present invention also includes a method for producing the laminated photoelectric converter. In this method, a plurality of coating compositions (or inks) containing a semiconductor, an ionic polymer, and a pigment are applied to a conductive substrate. The photoelectric conversion layer is formed (usually, the photoelectric conversion layer is formed without sintering). The absorption wavelength range or the absorption peak wavelength of the dye contained in each coating agent is different from each other. That is, a plurality of dyes having different absorption wavelength ranges or absorption peak wavelengths are respectively contained in the coating composition (or ink) (or a coating composition is prepared for each dye having a different absorption wavelength range or absorption peak wavelength). Then, a plurality of coating compositions (or inks) are sequentially coated and laminated on a conductive substrate, and a laminated photoelectric conversion body is formed without sintering.
 さらに、本発明は、前記積層光電変換体(積層体)を備えた光電変換素子も包含する。この光電変換素子は、電極(光電極)としての導電性基板上に形成された前記積層光電変換体と、前記電極に対向して配置される対極(もう一方の電極)と、これらの電極間に封止された電解質相(又は電解質層)とを備えていてもよく、光電変換素子は色素増感太陽電池を形成してもよい。 Furthermore, the present invention also includes a photoelectric conversion element provided with the laminated photoelectric converter (laminated body). This photoelectric conversion element includes the laminated photoelectric conversion body formed on a conductive substrate as an electrode (photoelectrode), a counter electrode (another electrode) disposed opposite to the electrode, and an interval between these electrodes And an electrolyte phase (or electrolyte layer) sealed in the substrate, and the photoelectric conversion element may form a dye-sensitized solar cell.
 本発明は、電極としての導電性基板上に形成された光電変換層と、前記電極に対向して配置される対極と、これらの電極間に封止された電解質相(又は電解質層)とを備えた光電変換素子の製造方法も包含する。この方法では、半導体とイオン性ポリマーと色素とを含む複数のコーティング組成物を、導電性基板に順次にコーティングして積層する工程と、焼結させることなく、複数の光電変換層が積層された積層光電変換体を形成する工程とを含んでおり、前記各コーティング剤に含まれる色素の吸収波長域又は吸収ピーク波長が互いに異なっている。すなわち、吸収波長域又は吸収ピーク波長が互いに異なる複数の色素を、それぞれコーティング組成物に含有させ、前記色素を含有する複数のコーティング組成物を、前記導電性基板に順次にコーティングして積層する工程と、焼結させることなく、複数の光電変換層が積層された積層光電変換体を形成する工程とを含んでいる。 The present invention comprises a photoelectric conversion layer formed on a conductive substrate as an electrode, a counter electrode disposed opposite to the electrode, and an electrolyte phase (or electrolyte layer) sealed between these electrodes. The manufacturing method of the provided photoelectric conversion element is also included. In this method, a plurality of coating compositions containing a semiconductor, an ionic polymer, and a pigment are sequentially coated on a conductive substrate and laminated, and a plurality of photoelectric conversion layers are laminated without sintering. A step of forming a laminated photoelectric converter, and the absorption wavelength range or the absorption peak wavelength of the dyes contained in the respective coating agents are different from each other. That is, a process in which a plurality of dyes having different absorption wavelength ranges or absorption peak wavelengths are contained in the coating composition, and a plurality of coating compositions containing the dyes are sequentially coated and laminated on the conductive substrate. And a step of forming a stacked photoelectric conversion body in which a plurality of photoelectric conversion layers are stacked without sintering.
 本発明は、積層構造の光電変換層を形成でき、簡単な構造で入射光を効率よく光電変換可能である。また、積層構造の光電変換層に異なる吸収波長域を付与することにより、光電変換効率を大きく向上できる。さらに、コーティングにより、簡便かつ効率よく積層構造の光電変換層を形成でき、焼結しなくても耐久性に優れ、長期に亘って高い光電変換特性を維持できるとともに、基板に対して高い密着性を有する積層光電変換体を形成できる。そのため、色素増感太陽電池を形成するのに有用である。 The present invention can form a photoelectric conversion layer having a laminated structure, and can efficiently photoelectrically convert incident light with a simple structure. Moreover, photoelectric conversion efficiency can be greatly improved by providing different absorption wavelength ranges to the photoelectric conversion layer having a laminated structure. Furthermore, the coating can easily and efficiently form a photoelectric conversion layer having a laminated structure, and it has excellent durability without being sintered, can maintain high photoelectric conversion characteristics over a long period of time, and has high adhesion to the substrate. It is possible to form a laminated photoelectric conversion body having Therefore, it is useful for forming a dye-sensitized solar cell.
図1は実施例で得られた色素増感太陽電池の出力特性を示す図である。FIG. 1 is a graph showing the output characteristics of the dye-sensitized solar cell obtained in the example.
 本発明では、異なる種類の色素(互いに吸収波長域又は吸収ピーク波長の異なる色素)を含む複数のコーティング組成物を用いる。各コーティング組成物は、半導体、イオン性バインダー及び色素(増感色素)を含んでおり、製膜性を有し、導電性基板と密着して光電変換層を形成できる。 In the present invention, a plurality of coating compositions containing different types of dyes (dyes having different absorption wavelength ranges or absorption peak wavelengths from each other) are used. Each coating composition contains a semiconductor, an ionic binder, and a dye (sensitizing dye), has film-forming properties, and can form a photoelectric conversion layer in close contact with a conductive substrate.
 (半導体)
 半導体としては、無機半導体、有機半導体に大別でき、無機半導体を好適に用いることができる。無機半導体としては、例えば、金属単体、金属化合物(金属酸化物、金属硫化物、金属窒化物など)などが挙げられる。なお、半導体は、光を吸収して起電力を生じさせる光半導体である場合が多い。
(semiconductor)
As a semiconductor, it can divide roughly into an inorganic semiconductor and an organic semiconductor, and an inorganic semiconductor can be used suitably. Examples of inorganic semiconductors include simple metals, metal compounds (metal oxides, metal sulfides, metal nitrides, and the like). In many cases, the semiconductor is an optical semiconductor that absorbs light and generates an electromotive force.
 無機半導体の構成元素は、例えば、周期表第2族金属(Ca、Srなど)、第3族金属(Sc、Y、Laなど)、第4族金属(Ti、Zr、Hfなど)、第5族金属(V、Nb、Taなど)、第6族金属(Cr、Mo、Wなど)、第7族金属(Mnなど)、第8族金属(Feなど)、第9族金属(Coなど)、第10族金属(Niなど)、第11族金属(Cuなど)、第12族金属(Zn、Cdなど)、第13族金属(Al、Ga、In、Tlなど)、第14族金属(Ge、Snなど)、第15族金属(As、Sb、Biなど)、第16族元素(Teなど)などから選択できる。半導体は、これらの元素を単独で又は二種以上組み合わせて含んでいてもよく、例えば、合金であってもよく、金属酸化物は複合酸化物であってもよい。半導体は、上記金属と、他の金属(アルカリ金属など)とを含んでいてもよい。 The constituent elements of the inorganic semiconductor include, for example, Group 2 metals (Ca, Sr, etc.), Group 3 metals (Sc, Y, La, etc.), Group 4 metals (Ti, Zr, Hf, etc.), Group metals (V, Nb, Ta, etc.), Group 6 metals (Cr, Mo, W, etc.), Group 7 metals (Mn, etc.), Group 8 metals (Fe, etc.), Group 9 metals (Co, etc.) , Group 10 metals (Ni, etc.), Group 11 metals (Cu, etc.), Group 12 metals (Zn, Cd, etc.), Group 13 metals (Al, Ga, In, Tl, etc.), Group 14 metals ( Ge, Sn, etc.), Group 15 metals (As, Sb, Bi, etc.), Group 16 elements (Te, etc.), etc. The semiconductor may contain these elements alone or in combination of two or more. For example, the semiconductor may be an alloy, and the metal oxide may be a composite oxide. The semiconductor may contain the above metal and another metal (such as an alkali metal).
 具体的な半導体のうち、金属酸化物としては、例えば、遷移金属酸化物[例えば、周期表第3族金属酸化物(酸化イットリウム、酸化セリウムなど)、第4族金属酸化物(酸化チタン、酸化ジルコニウム、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウムなど)、第5族金属酸化物(酸化バナジウム、酸化ニオブ、酸化タンタル(五酸化二タンタルなど)など)、第6族金属酸化物(酸化クロム、酸化タングステンなど)、第7族金属酸化物(酸化マンガンなど)、第8族金属酸化物(酸化鉄、酸化ルテニウムなど)、第9族金属酸化物(酸化コバルト、酸化イリジウム、コバルトとナトリウムとの複合酸化物など)、第10族金属酸化物(酸化ニッケルなど)、第11族金属酸化物(酸化銅など)、第12族金属酸化物(酸化亜鉛など)など]、典型金属酸化物[例えば、第2族金属酸化物(酸化ストロンチウムなど)、第13族金属酸化物(酸化ガリウム、酸化インジウムなど)、第14族金属酸化物(酸化ケイ素、酸化スズなど)、第15族金属酸化物(酸化ビスマスなど)などが例示でき;これらの金属を複数含む複合酸化物としては、例えば、第11族金属と遷移金属(第11族金属以外の遷移金属)との複合酸化物(例えば、CuYOなどの銅と第3族金属との複合酸化物)、第11族金属と典型金属の複合酸化物(例えば、CuAlO、CuGaO、CuInOなどの銅と第13族金属との複合酸化物;SrCuなどの銅と第2族金属との複合酸化物;AgInOなどの銀と第13族金属との複合酸化物など)などが例示できる。 Among specific semiconductors, examples of the metal oxide include transition metal oxides [for example, periodic table group 3 metal oxides (yttrium oxide, cerium oxide, etc.), group 4 metal oxides (titanium oxide, oxide). Zirconium, calcium titanate, strontium titanate, barium titanate, etc., Group 5 metal oxides (vanadium oxide, niobium oxide, tantalum oxide (eg, ditantalum pentoxide), etc.), Group 6 metal oxides (chromium oxide) , Tungsten oxide, etc.), Group 7 metal oxides (manganese oxide, etc.), Group 8 metal oxides (iron oxide, ruthenium oxide, etc.), Group 9 metal oxides (cobalt oxide, iridium oxide, cobalt and sodium) Complex oxides), Group 10 metal oxides (such as nickel oxide), Group 11 metal oxides (such as copper oxide), Group 12 metal oxides (such as Zinc oxide, etc.], typical metal oxides [for example, Group 2 metal oxides (eg, strontium oxide), Group 13 metal oxides (eg, gallium oxide, indium oxide, etc.), Group 14 metal oxides (silicon oxide, etc.) , Tin oxide, etc.), Group 15 metal oxides (bismuth oxide, etc.) and the like; Examples of complex oxides containing a plurality of these metals include Group 11 metals and transition metals (other than Group 11 metals) Transition oxides) (for example, complex oxides of copper and Group 3 metals such as CuYO 2 ), and complex oxides of Group 11 metals and typical metals (for example, CuAlO 2 , CuGaO 2 , CuInO 2). A composite oxide of copper and a group 13 metal such as SrCu 2 O 2 ; a composite oxide of a copper and group 2 metal such as SrCu 2 O 2 ; a composite oxide of silver and a group 13 metal such as AgInO 2 Is an example That.
 前記金属酸化物は、これらの複数の金属および酸素以外の第16族元素を含む酸化物[例えば、第11族金属と遷移金属(第11族金属以外の遷移金属)との複合酸硫化物(例えば、LaCuOSなどの銅と第3族金属との複合酸硫化物)、第11族金属と遷移金属(第11族金属以外の遷移金属)との複合酸セレン化物(例えば、LaCuOSeなどの銅と第3族金属との複合酸セレン化物)など]なども含む。 The metal oxide is an oxide containing a group 16 element other than these metals and oxygen [for example, a complex oxysulfide of a group 11 metal and a transition metal (transition metal other than the group 11 metal) ( For example, a complex acid selenide of a group 11 metal and a transition metal (a transition metal other than the group 11 metal) (for example, a copper such as LaCuOSe) Etc.) and the like.
 また、半導体は、金属窒化物(窒化タリウムなど)、金属リン化物(InPなど)、金属硫化物[例えば、CdS、硫化銅(CuS、CuS)、複合硫化物(例えば、周期表第11族金属と典型金属との複合硫化物(例えば、CuGaS、CuInSなどの銅と周期表第13族金属との複合硫化物))など]、金属セレン化物(CdSe、ZnSeなど)、金属ハロゲン化物(CuCl、CuBrなど)、周期表第13族金属-第15族金属化合物(GaAs、InSbなど)、周期表第12族金属-第16族金属化合物(CdTeなど)などの金属化合物(又は合金);金属単体(例えば、パラジウム、白金、銀、金、ケイ素、ゲルマニウム)などであってもよい。 The semiconductor includes metal nitride (such as thallium nitride), metal phosphide (such as InP), metal sulfide [for example, CdS, copper sulfide (CuS, Cu 2 S), composite sulfide (for example, periodic table 11th). Complex sulfides of group metals and typical metals (eg, complex sulfides of copper and group 13 metals of the periodic table such as CuGaS 2 and CuInS 2 )), metal selenides (CdSe, ZnSe, etc.), metal halogens Metal compounds (or alloys) such as compounds (CuCl, CuBr, etc.), Periodic Table Group 13 metal-Group 15 metal compounds (GaAs, InSb, etc.), Periodic Table Group 12 metal-Group 16 metal compounds (CdTe, etc.) ); Simple metal (for example, palladium, platinum, silver, gold, silicon, germanium) and the like.
 なお、半導体は、他の元素をドープした半導体であってもよい。半導体は、n型半導体であってもよく、p型半導体であってもよい。代表的なn型半導体としては、例えば、周期表第4族金属酸化物(酸化チタンなど)、周期表第5族金属酸化物(酸化ニオブ、酸化タンタルなど)、周期表第12族金属酸化物(酸化亜鉛など)、周期表第13族金属酸化物(酸化ガリウム、酸化インジウムなど)、周期表第14族金属酸化物(酸化スズなど)などが挙げられる。 The semiconductor may be a semiconductor doped with other elements. The semiconductor may be an n-type semiconductor or a p-type semiconductor. Typical n-type semiconductors include, for example, a periodic table group 4 metal oxide (such as titanium oxide), a periodic table group 5 metal oxide (such as niobium oxide, tantalum oxide), and a periodic table group 12 metal oxide. (Zinc oxide, etc.), periodic table group 13 metal oxides (gallium oxide, indium oxide, etc.), periodic table group 14 metal oxides (tin oxide, etc.), and the like.
 代表的なp型半導体としては、例えば、周期表第6族金属酸化物(酸化クロムなど)、周期表第7族金属酸化物(酸化マンガンなど)、周期表第8族金属酸化物(酸化鉄など)、周期表第9族金属酸化物(酸化コバルト、酸化イリジウムなど)、周期表第10族金属酸化物(酸化ニッケルなど)、周期表第11族金属酸化物(酸化銅など)、周期表第15族金属酸化物(酸化ビスマスなど)、周期表第11族金属と遷移金属又は典型金属との複合酸化物(例えば、CuYO、CuAlO、CuGaO、CuInO、SrCu、AgInOなど)、周期表第11族金属と遷移金属との複合酸硫化物(例えば、LaCuOSなど)、周期表第11族金属と遷移金属との複合酸セレン化物(例えば、LaCuOSeなど)、周期表第11族金属と典型金属との複合硫化物(例えば、CuGaS、CuInSなど)などが挙げられる。 Typical p-type semiconductors include, for example, a periodic table group 6 metal oxide (such as chromium oxide), a periodic table group 7 metal oxide (such as manganese oxide), and a periodic table group 8 metal oxide (iron oxide). Etc.), periodic table group 9 metal oxides (cobalt oxide, iridium oxide, etc.), periodic table group 10 metal oxides (nickel oxide, etc.), periodic table group 11 metal oxides (copper oxide, etc.), periodic table Group 15 metal oxides (such as bismuth oxide), complex oxides of Group 11 metals and transition metals or typical metals (for example, CuYO 2 , CuAlO 2 , CuGaO 2 , CuInO 2 , SrCu 2 O 2 , AgInO) 2 ), complex oxysulfides of periodic table Group 11 metals and transition metals (for example, LaCuOS, etc.), complex acid selenides of periodic table Group 11 metals and transition metals (for example, LaCuOSe, etc.) And composite sulfides (for example, CuGaS 2 , CuInS 2, etc.) of Group 11 metals of the periodic table and typical metals.
 これらの半導体は、単独で又は2種以上組み合わせて使用してもよい。好ましい半導体には、金属酸化物、例えば、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化スズ(SnO)、酸化インジウム(In)、酸化ガリウム(Ga)、銅-アルミニウム酸化物(CuAlO)、酸化イリジウム(IrO)、酸化ニッケル(NiO)、これらの金属酸化物のドープ体;チタン酸ストロンチウム、チタン酸バリウムなど;硫化カドミウムなどが含まれる。これらの半導体のなかでも、酸化チタン、酸化亜鉛、酸化スズなどが好ましい。特に、n型半導体、中でも酸化チタン(TiO)などのn型金属酸化物半導体が好ましい。 These semiconductors may be used alone or in combination of two or more. Preferred semiconductors include metal oxides such as titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), indium oxide (In 2 O 3 ), gallium oxide (Ga 2 O 3 ), copper -Aluminum oxide (CuAlO 2 ), iridium oxide (IrO), nickel oxide (NiO), doped materials of these metal oxides; strontium titanate, barium titanate, etc .; cadmium sulfide, etc. Of these semiconductors, titanium oxide, zinc oxide, tin oxide and the like are preferable. In particular, an n-type semiconductor, particularly an n-type metal oxide semiconductor such as titanium oxide (TiO 2 ) is preferable.
 酸化チタンの結晶形(結晶型)は、ルチル型、アナターゼ型、ブルッカイト型のいずれであってもよい。好ましい酸化チタンは、ルチル型又はアナターゼ型酸化チタンである。アナターゼ型酸化チタンを用いると、基板に対して光電変換層を長期に亘り高い密着性で形成しやすい。一方、ルチル型酸化チタンは、導電性や耐久性の点から好ましい。なお、前記のように、酸化チタンは、他の元素をドープした酸化チタンであってもよい。 The crystal form (crystal form) of titanium oxide may be any of rutile, anatase, and brookite. Preferred titanium oxide is rutile or anatase titanium oxide. When anatase type titanium oxide is used, it is easy to form a photoelectric conversion layer with high adhesion over a long period of time with respect to the substrate. On the other hand, rutile type titanium oxide is preferable from the viewpoint of conductivity and durability. As described above, the titanium oxide may be titanium oxide doped with other elements.
 半導体(例えば、酸化チタンなどの金属酸化物)の形状は、特に限定されず、粒子状、繊維状(又は針状又は棒状)、板状などであってもよい。好ましい半導体の形態は、粒子状、針状又は繊維状であってもよく、粒子状の半導体(半導体粒子)を用いてもよい。 The shape of the semiconductor (for example, a metal oxide such as titanium oxide) is not particularly limited, and may be in the form of particles, fibers (or needles or rods), plates, and the like. A preferable semiconductor form may be particulate, needle-like, or fibrous, and a particulate semiconductor (semiconductor particle) may be used.
 半導体粒子(粒子状又は針状半導体)の平均粒径(平均一次粒子径)は、1~1000nm(例えば、1~700nm)程度の範囲から選択でき、通常、ナノサイズ(ナノメータサイズ)、例えば、1~500nm(例えば、2~400nm)、好ましくは3~300nm(例えば、4~200nm)、さらに好ましくは5~100nm(例えば、6~70nm)程度であってもよく、50nm以下、例えば、1~50nm(例えば、2~40nm)、好ましくは3~30nm(例えば、4~25nm)、さらに好ましくは5~20nm(例えば、6~15nm)程度であってもよく、通常、10~50nm程度であってもよい。このようなナノメータサイズの半導体粒子は、可視光線に対する透明性が高く、少なくとも可視光の波長域を含む入射光を効率よく光電変換できる。 The average particle diameter (average primary particle diameter) of the semiconductor particles (particulate or acicular semiconductor) can be selected from the range of about 1 to 1000 nm (for example, 1 to 700 nm), and is usually nano-sized (nanometer size), for example, It may be about 1 to 500 nm (for example, 2 to 400 nm), preferably 3 to 300 nm (for example, 4 to 200 nm), more preferably about 5 to 100 nm (for example, 6 to 70 nm), and 50 nm or less, for example, 1 May be about 50 nm (for example, 2 to 40 nm), preferably about 3 to 30 nm (for example, 4 to 25 nm), more preferably about 5 to 20 nm (for example, 6 to 15 nm), and usually about 10 to 50 nm. There may be. Such nanometer-sized semiconductor particles have high transparency to visible light, and can efficiently photoelectrically convert incident light including at least the visible light wavelength region.
 針状(又は繊維状)半導体の平均繊維径は、例えば、1~300nm、好ましくは10~200nm、さらに好ましくは50~100nm程度であってもよい。また、針状(又は繊維状)半導体の平均繊維長は、10~2000nm、好ましくは50~1000nm、さらに好ましくは100~500nm程度であってもよい。針状の半導体のアスペクト比は、例えば、2~200、好ましくは5~100、さらに好ましくは20~40程度であってもよい。なお、針状又は繊維状の半導体は、ナノファイバー(例えば、酸化チタンナノファイバー(TNF))を形成してもよく、ナノチューブ(例えば、酸化チタンナノチューブ(TNT))を形成してもよい。 The average fiber diameter of the acicular (or fibrous) semiconductor may be, for example, about 1 to 300 nm, preferably 10 to 200 nm, and more preferably about 50 to 100 nm. The average fiber length of the acicular (or fibrous) semiconductor may be about 10 to 2000 nm, preferably 50 to 1000 nm, and more preferably about 100 to 500 nm. The aspect ratio of the acicular semiconductor may be, for example, about 2 to 200, preferably about 5 to 100, and more preferably about 20 to 40. Note that the needle-like or fibrous semiconductor may form nanofibers (eg, titanium oxide nanofibers (TNF)) or nanotubes (eg, titanium oxide nanotubes (TNT)).
 半導体(例えば、粒子状又は繊維状の半導体)の比表面積は、例えば、1~600m/g、好ましくは2~500m/g、さらに好ましくは3~400m/g程度であってもよい。特に、半導体粒子の比表面積は、例えば、5~600m/g(例えば、10~550m/g)、好ましくは20~500m/g(例えば、30~450m/g)、さらに好ましくは40~400m/g(例えば、50~350m/g)程度であってもよく、50m/g以上[例えば、50~500m/g、好ましくは75~450m/g、さらに好ましくは100~400m/g、特に150~350m/g(例えば、200~350m/g)]程度であってもよい。なお、繊維状又は針状の半導体の比表面積は、1~100m/g、好ましくは2~70m/g、さらに好ましくは3~50m/g(例えば、4~30m/g)程度であってもよい。 The specific surface area of the semiconductor (for example, a particulate or fibrous semiconductor) may be, for example, about 1 to 600 m 2 / g, preferably 2 to 500 m 2 / g, more preferably about 3 to 400 m 2 / g. . In particular, the specific surface area of the semiconductor particles is, for example, 5 to 600 m 2 / g (eg 10 to 550 m 2 / g), preferably 20 to 500 m 2 / g (eg 30 to 450 m 2 / g), more preferably It may be about 40 to 400 m 2 / g (for example, 50 to 350 m 2 / g), 50 m 2 / g or more [for example, 50 to 500 m 2 / g, preferably 75 to 450 m 2 / g, more preferably 100 to 400 m 2 / g, particularly 150 to 350 m 2 / g (for example, 200 to 350 m 2 / g)]. Note that the specific surface area of the fibrous or needle-like semiconductor is about 1 to 100 m 2 / g, preferably 2 to 70 m 2 / g, more preferably 3 to 50 m 2 / g (for example, 4 to 30 m 2 / g). It may be.
 なお、半導体は、市販品を利用してもよく、慣用の方法を利用して合成して使用してもよい。例えば、酸化チタンの分散液は、特許第4522886号公報などに記載の方法により得ることができる。 The semiconductor may be a commercially available product or may be synthesized using a conventional method. For example, a dispersion of titanium oxide can be obtained by the method described in Japanese Patent No. 452886.
 複数のコーティング組成物において、半導体の種類は同一又は異なっていてもよい。 In the plurality of coating compositions, the type of semiconductor may be the same or different.
 (イオン性バインダー又はイオン性ポリマー)
 本発明では、半導体とイオン性ポリマー(以下、イオン性バインダーという場合がある)とを組み合わせることにより、焼結しなくても、光電変換特性に優れた光電変換層を形成できる。この理由は定かではないが、イオン性ポリマーが半導体[特に、ナノサイズの半導体粒子(半導体ナノ粒子)]に結合(化学結合、水素結合など)して固定化されるためか、半導体の分散安定性を向上するだけでなく、半導体の励起状態と電子的にカップリングし、半導体からの電荷を輸送する電解質(固体電解質)としても機能するのかもしれない。また、イオン性ポリマーがバインダーとして作用し、光電変換特性を長期に亘って保持でき、基板に対する光電変換層(又は半導体)の密着性も向上できる。
(Ionic binder or ionic polymer)
In the present invention, by combining a semiconductor and an ionic polymer (hereinafter sometimes referred to as an ionic binder), a photoelectric conversion layer having excellent photoelectric conversion characteristics can be formed without sintering. The reason for this is not clear, but it is because the ionic polymer is immobilized by bonding (chemical bonding, hydrogen bonding, etc.) to the semiconductor [especially nano-sized semiconductor particles (semiconductor nanoparticles)]. It may not only improve the properties, but also function as an electrolyte (solid electrolyte) that electronically couples with the excited state of the semiconductor and transports charges from the semiconductor. Moreover, an ionic polymer acts as a binder, can maintain a photoelectric conversion characteristic over a long period of time, and can improve the adhesiveness of the photoelectric conversion layer (or semiconductor) with respect to a board | substrate.
 なお、光電変換層の形成には、半導体の種類に応じて、イオン性ポリマーを選択してもよく、例えば、(i)n型半導体では、アニオン性ポリマーを含むイオン性ポリマーを選択し、(ii)p型半導体では、カチオン性ポリマーを含むイオン性ポリマーを選択してもよい。 In addition, for the formation of the photoelectric conversion layer, an ionic polymer may be selected depending on the type of semiconductor. For example, in (i) an n-type semiconductor, an ionic polymer including an anionic polymer is selected, ii) For a p-type semiconductor, an ionic polymer including a cationic polymer may be selected.
 イオン性ポリマー(イオン性高分子)は、電解質性を有するポリマー(すなわち、高分子電解質)であればよく、アニオン性ポリマー、カチオン性ポリマー、両性ポリマー(アニオン性基及びカチオン性基の双方を有するポリマーなど)のいずれであってもよいが、通常、アニオン性ポリマー、カチオン性ポリマー(特にアニオン性ポリマー)を使用してもよい。特に、イオン性ポリマーは、イオン交換樹脂(又はイオン交換体又は固体高分子電解質)であってもよい。イオン性ポリマーは、単独で又は2種以上組み合わせてもよい。 The ionic polymer (ionic polymer) may be any polymer having an electrolyte property (that is, a polymer electrolyte) and has an anionic polymer, a cationic polymer, and an amphoteric polymer (both an anionic group and a cationic group). Any of an anionic polymer and a cationic polymer (especially an anionic polymer) may be used. In particular, the ionic polymer may be an ion exchange resin (or an ion exchanger or a solid polymer electrolyte). The ionic polymers may be used alone or in combination of two or more.
 アニオン性ポリマーは、通常、酸基(又は酸性基)、例えば、カルボキシル基、スルホ基(又はスルホン酸基)などを有しており、単一の酸基(又は酸性基)を有していてもよく、異種の複数の酸基(又は酸性基)を有していてもよい。なお、酸基は、その一部又は全部が中和されていてもよい。 An anionic polymer usually has an acid group (or acidic group), for example, a carboxyl group, a sulfo group (or sulfonic acid group), etc., and has a single acid group (or acidic group). It may also have a plurality of different acid groups (or acidic groups). In addition, the acid group may be partially or entirely neutralized.
 代表的なアニオン性ポリマーとしては、陽イオン交換樹脂(カチオン型イオン交換樹脂、酸型イオン交換樹脂)、例えば、カルボキシル基を有する弱酸性陽イオン交換樹脂、スルホン酸基(スルホ基)を有する強酸性陽イオン交換樹脂が例示でき、弱酸性陽イオン交換樹脂としては、例えば、(メタ)アクリル酸系樹脂(例えば、ポリ(メタ)アクリル酸;(メタ)アクリル酸-スチレン共重合体などの(メタ)アクリル酸と共重合性単量体との共重合体など)、カルボキシル基を有するフッ素含有樹脂(パーフルオロカルボン酸樹脂)などが挙げられる。 Typical anionic polymers include cation exchange resins (cationic ion exchange resins, acid type ion exchange resins), such as weakly acidic cation exchange resins having carboxyl groups, strong acids having sulfonic acid groups (sulfo groups). Examples of weakly acidic cation exchange resins include (meth) acrylic acid resins (for example, poly (meth) acrylic acid; (meth) acrylic acid-styrene copolymers ( And a fluorine-containing resin having a carboxyl group (perfluorocarboxylic acid resin).
 好ましいアニオン性ポリマーは強酸性陽イオン交換樹脂を含む。強酸性イオン交換樹脂としては、例えば、スルホ基を有するスチレン系樹脂(例えば、ポリスチレンスルホン酸、スチレン系重合体のスルホン化物など);スルホ基を有するフッ素含有樹脂(又はフッ素樹脂)、例えば、疎水性ポリ(フルオロC2-3アルキレン)主鎖と、スルホ基を有するフルオロC2-8アルキル側鎖又はスルホ基を有するフルオロC2-8アルキルエーテル側鎖とを有するフルオロスルホン酸樹脂などが挙げられる。このフルオロスルホン酸樹脂としては、フルオロアルケン(テトラフルオロエチレンなどのパーフルオロC2-3アルケンなど)と、スルホフルオロアルキル-フルオロビニルエーテル(スルホパーフルオロアルキル-パーフルオロビニルエーテルなど)との共重合体、例えば、テトラフルオロエチレンと、[2-(2-スルホテトラフルオロエトキシ)ヘキサフルオロプロポキシ]トリフルオロエチレン又は[2-(2-スルホテトラフルオロエチル)ヘキサフルオロプロポキシ]トリフルオロエチレンとの共重合体など]などのフルオロスルホン酸樹脂(特に、パーフルオロスルホン酸樹脂)などが挙げられる。なお、スルホ基を有するフッ素含有樹脂は、デュポン社から商品名「ナフィオン」シリーズなどとして入手可能であり、水溶液又は水分散液の形態で入手してもよい。 Preferred anionic polymers include strongly acidic cation exchange resins. Examples of the strongly acidic ion exchange resin include a styrene resin having a sulfo group (for example, polystyrene sulfonic acid, a sulfonated product of a styrene polymer); a fluorine-containing resin having a sulfo group (or a fluoro resin), for example, hydrophobic Fluorosulfonic acid resin having a functional poly (fluoro C 2-3 alkylene) main chain and a fluoro C 2-8 alkyl side chain having a sulfo group or a fluoro C 2-8 alkyl ether side chain having a sulfo group It is done. As this fluorosulfonic acid resin, a copolymer of fluoroalkene (perfluoro C 2-3 alkene such as tetrafluoroethylene) and sulfofluoroalkyl-fluorovinyl ether (sulfoperfluoroalkyl-perfluorovinyl ether, etc.), For example, a copolymer of tetrafluoroethylene and [2- (2-sulfotetrafluoroethoxy) hexafluoropropoxy] trifluoroethylene or [2- (2-sulfotetrafluoroethyl) hexafluoropropoxy] trifluoroethylene ] And the like (particularly perfluorosulfonic acid resin). The fluorine-containing resin having a sulfo group is available from DuPont under the trade name “Nafion” series or the like, and may be obtained in the form of an aqueous solution or an aqueous dispersion.
 カチオン性ポリマーは、通常、塩基性基(アルカリ性基)、例えば、アミノ基[例えば、アミノ基、置換アミノ基(例えば、ジメチルアミノ基などのモノ又はジアルキルアミノ基)などの第1級、第2級又は第3級アミノ基]、イミノ基(-NH-、-N<)、第4級アンモニウム塩基(例えば、トリメチルアンモニウム塩基などのトリアルキルアンモニウム塩基)などを有しており、単一の塩基性基を有していてもよく、異種の複数の塩基性基を有していてもよい。なお、塩基性基は、その一部又は全部が中和されていてもよい。 The cationic polymer is usually a primary group such as a basic group (alkaline group), for example, an amino group [for example, an amino group, a substituted amino group (for example, a mono- or dialkylamino group such as a dimethylamino group) or the like. Primary or tertiary amino group], imino group (—NH—, —N <), quaternary ammonium base (for example, trialkylammonium base such as trimethylammonium base), etc., and a single base May have a functional group, and may have a plurality of different basic groups. In addition, the basic group may be partially or completely neutralized.
 代表的なカチオン性ポリマーとしては、陰イオン交換樹脂(アニオン型イオン交換樹脂、塩基型イオン交換樹脂)、例えば、アリルアミン系単量体(例えば、アリルアミン、ジアリルアミン、ジアリルアルキルアミン(ジアリルメチルアミン、ジアリルエチルアミンなど)など)の単独又は共重合体若しくはアリルアミン系単量体と共重合性単量体との共重合体[例えば、ポリアリルアミン、アリルアミン-ジメチルアリルアミン共重合体、ジアリルアミン-二酸化硫黄共重合体など];ビニルアミン系単量体の単独又は共重合体(例えば、ポリビニルアミンなど);アミノ基を有する(メタ)アクリル系単量体の単独又は共重合体[アミノアルキル(メタ)アクリレート(例えば、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレートなどのN,N-ジアルキルアミノC1-4アルキル(メタ)アクリレート)、アミノアルキル(メタ)アクリルアミド(例えば、N,N-ジメチルアミノエチル(メタ)アクリルアミドなどのN,N-ジアルキルアミノC1-4アルキル(メタ)アクリルアミド)などの単独又は共重合体など];ヘテロ環式アミン系ポリマー[例えば、イミダゾール系ポリマー(例えば、ポリビニルイミダゾールなど)、ピリジン系ポリマー(例えば、ポリビニルピリジンなど)、ピロリドン系ポリマー(例えば、ポリビニルピロリドン)など]、アミン変性樹脂[アミン変性エポキシ樹脂、アミン変性シリコーン樹脂など]、イミン系単量体の単独又は共重合体[例えば、ポリアルキレンイミン(例えば、ポリエチレンイミンなど)など]、第4級アンモニウム塩基含有ポリマーなどが挙げられる。 Typical cationic polymers include anion exchange resins (anion-type ion exchange resins, base-type ion exchange resins), such as allylamine monomers (eg, allylamine, diallylamine, diallylalkylamine (diallylmethylamine, diallyl). Ethylamine, etc.)) or a copolymer or a copolymer of an allylamine monomer and a copolymerizable monomer [for example, polyallylamine, allylamine-dimethylallylamine copolymer, diallylamine-sulfur dioxide copolymer Etc.]; Vinylamine monomer homopolymer or copolymer (for example, polyvinylamine etc.); (meth) acrylic monomer homopolymer or copolymer having amino group [aminoalkyl (meth) acrylate (for example, N, N-dimethylaminoethyl (meth) acrylate, N N, such as N- dimethylaminopropyl (meth) acrylate, N- dialkylamino C 1-4 alkyl (meth) acrylate), aminoalkyl (meth) acrylamides (e.g., N, N- dimethylaminoethyl (meth) acrylamide N, N-dialkylamino C 1-4 alkyl (meth) acrylamide) or the like]; heterocyclic amine polymer [eg, imidazole polymer (eg, polyvinylimidazole, etc.), pyridine polymer ( For example, polyvinyl pyridine, etc.), pyrrolidone polymers (eg, polyvinyl pyrrolidone)], amine-modified resins [amine-modified epoxy resins, amine-modified silicone resins, etc.], imine monomers alone or copolymers [eg, poly Alkyleneimine (for example, For example, polyethyleneimine, etc.)], and quaternary ammonium base-containing polymers.
 第4級アンモニウム塩基含有ポリマーとしては、例えば、上記例示のアミン系ポリマーやイミン系ポリマーのアミノ基やイミノ基を第4級アンモニウム塩基化したポリマー、例えば、N,N,N-トリアルキル-N-(メタ)アクリロイルオキシアルキルアンモニウム塩[例えば、トリメチル-2-(メタ)アクリロイルオキシエチルアンモニウムクロライド、N,N-ジメチル-N-エチル-2-(メタ)アクリロイルオキシエチルアンモニウムクロライドなどのトリC1-10アルキル(メタ)アクリロイルオキシC2-4アルキルアンモニウム塩]の単独又は共重合体;ビニルアラルキルアンモニウム塩系ポリマー、例えば、N,N,N-トリアルキル-N-(ビニルアラルキル)アンモニウム塩(例えば、トリメチル-p-ビニルベンジルアンモニウムクロライド、N,N-ジメチル-N-エチル-p-ビニルベンジルアンモニウムクロライド、N,N-ジエチル-N-メチル-N-2-(4-ビニルフェニル)エチルアンモニウムクロライドなどのトリC1-10アルキル(ビニル-C6-10アリールC1-4アルキル)アンモニウム塩)、N,N-ジアルキル-N-アラルキル-N-(ビニルアラルキル)アンモニウム塩(例えば、N,N-ジメチル-N-ベンジル-p-ビニルベンジルアンモニウムクロライドなどのN,N-ジC1-10アルキル-N-C6-10アリールC1-4アルキル-N-(ビニル-C6-10アリールC1-4アルキル)アンモニウム塩)]の単独又は共重合体など;カチオン化セルロース[例えば、ヒドロキシ基含有セルロース誘導体(例えば、ヒドロキシエチルセルロースなどのヒドロキシC2-4アルキルセルロース)と第4級アンモニウム塩基(例えば、トリアルキルアンモニウム塩基など)を有するエポキシ化合物(例えば、N,N,N-トリアルキル-N-グリシジルアンモニウム塩)との反応物]、スチレン系樹脂に第4級アンモニウム塩基を導入したポリマーなどが挙げられる。 As the quaternary ammonium base-containing polymer, for example, a polymer obtained by quaternizing an amino group or imino group of the above-described amine-based polymer or imine-based polymer, for example, N, N, N-trialkyl-N -(Meth) acryloyloxyalkylammonium salts [for example, tri-C 1 such as trimethyl-2- (meth) acryloyloxyethylammonium chloride, N, N-dimethyl-N-ethyl-2- (meth) acryloyloxyethylammonium chloride, etc. -10 alkyl (meth) acryloyloxy C 2-4 alkylammonium salt] or a copolymer thereof; vinylaralkylammonium salt-based polymer, for example, N, N, N-trialkyl-N- (vinylaralkyl) ammonium salt ( For example, trimethyl-p-vinyl Emissions Jill chloride, N, N-dimethyl -N- ethyl -p- vinylbenzyl ammonium chloride, N, N-diethyl -N- tri C 1 such as methyl -N-2- (4- vinylphenyl) ethyl ammonium chloride -10 alkyl (vinyl-C 6-10 aryl C 1-4 alkyl) ammonium salt), N, N-dialkyl-N-aralkyl-N- (vinylaralkyl) ammonium salt (eg, N, N-dimethyl-N— N, N-diC 1-10 alkyl- NC 6-10 aryl C 1-4 alkyl-N- (vinyl-C 6-10 aryl C 1-4 alkyl) such as benzyl-p-vinylbenzylammonium chloride Ammonium salt)] homopolymer or copolymer, etc .; cationized cellulose [eg, hydroxy group-containing cellulose Derivatives (e.g., hydroxy C 2-4 alkyl cellulose such as hydroxyethyl cellulose) and the quaternary ammonium salt (e.g., trialkyl ammonium bases etc.) epoxy compound having a (e.g., N, N, N-trialkyl -N- glycidyl Reaction products with ammonium salts), polymers obtained by introducing quaternary ammonium bases into styrene resins, and the like.
 なお、カチオン性セルロース(カチオン化セルロース)は、(株)ダイセルから、商品名「ジェルナー」、ポリアリルアミンは、ニットーボーメディカル(株)から商品名「PAA」シリーズ、アミン変性シリコーン樹脂は、信越化学工業(株)から、商品名「KF」シリーズなどとして入手できる。 Cationic cellulose (cationized cellulose) is from Daicel Co., Ltd. under the trade name “Gerner”, polyallylamine is from Nito-Bo Medical Co., Ltd. under the trade name “PAA”, and amine-modified silicone resins are from Shin-Etsu Chemical Co., Ltd. It can be obtained from Co., Ltd. as the product name “KF” series.
 第4級アンモニウム塩基含有ポリマーにおいて、塩としては、例えば、ハロゲン化物塩(例えば、塩化物、臭化物、ヨウ化物など)、カルボン酸塩(例えば、酢酸塩などのアルカン酸塩)、スルホン酸塩などが挙げられる。 In the quaternary ammonium base-containing polymer, examples of the salt include halide salts (for example, chloride, bromide, iodide, etc.), carboxylates (for example, alkane salts such as acetate), sulfonates, etc. Is mentioned.
 好ましいカチオン性ポリマーは、第4級アンモニウム塩基含有ポリマーなどの強塩基性のカチオン性ポリマー(陰イオン交換樹脂)が挙げられる。 A preferable cationic polymer includes a strongly basic cationic polymer (anion exchange resin) such as a quaternary ammonium base-containing polymer.
 なお、イオン性ポリマーは、アニオン性又はカチオン性ポリマーのみで構成してもよく、他のイオン性ポリマー(例えば、両性ポリマーなど)と組み合わせてもよい。イオン性ポリマー全体に対するアニオン性又はカチオン性ポリマーの割合は、例えば、30重量%以上(例えば、40~99重量%)、好ましくは50重量%以上(例えば、60~98重量%)、さらに好ましくは70重量%以上(例えば、80~97重量%)であってもよい。 The ionic polymer may be composed of only an anionic or cationic polymer, or may be combined with another ionic polymer (for example, an amphoteric polymer). The ratio of the anionic or cationic polymer to the whole ionic polymer is, for example, 30% by weight or more (for example, 40 to 99% by weight), preferably 50% by weight or more (for example, 60 to 98% by weight), and more preferably It may be 70% by weight or more (for example, 80 to 97% by weight).
 イオン性ポリマーの水溶液又は水分散液のpHは、酸性、中性、アルカリ性のいずれであってもよく、イオン性ポリマーに応じてpHを選択してもよい。例えば、イオン性ポリマーのpH(25℃)は、10以下(例えば、0.1~8)の範囲から選択してもよく、例えば、0.2~7(例えば、0.3~5)、好ましくは0.5~4(例えば、0.7~3)、さらに好ましくは1~3程度であってもよい。 The pH of the aqueous solution or dispersion of the ionic polymer may be acidic, neutral or alkaline, and the pH may be selected according to the ionic polymer. For example, the pH (25 ° C.) of the ionic polymer may be selected from the range of 10 or less (eg, 0.1 to 8), for example, 0.2 to 7 (eg, 0.3 to 5), Preferably, it may be 0.5 to 4 (for example, 0.7 to 3), more preferably about 1 to 3.
 また、比較的pHが大きいイオン性ポリマーを用いると、半導体(例えば、酸化チタンナノ粒子)の凝集を抑制できるためか、光電変換特性をより一層向上できる場合がある。また、基板に対する密着性を効率よく向上できる場合もある。このようなイオン性ポリマーのpH(25℃)は、例えば、3以上(例えば、4~14)、好ましくは5以上(例えば、6~13)、さらに好ましくは7以上(例えば、7~12)程度であってもよい。 In addition, when an ionic polymer having a relatively high pH is used, aggregation of semiconductors (for example, titanium oxide nanoparticles) may be suppressed, so that the photoelectric conversion characteristics may be further improved. Moreover, the adhesiveness with respect to a board | substrate may be improved efficiently. The pH (25 ° C.) of such an ionic polymer is, for example, 3 or more (for example, 4 to 14), preferably 5 or more (for example, 6 to 13), and more preferably 7 or more (for example, 7 to 12). It may be a degree.
 特に、アニオン性ポリマー(例えば、強酸性イオン交換樹脂)又はアニオン性ポリマーを含むイオン性ポリマーのpH(25℃)は、例えば、4~14(例えば、5~13)、好ましくは5.5~12(例えば、7~12)、さらに好ましくは6~11(例えば、7~9)程度であってもよい。 In particular, the pH (25 ° C.) of an anionic polymer (eg, a strongly acidic ion exchange resin) or an ionic polymer containing an anionic polymer is, for example, 4 to 14 (eg, 5 to 13), preferably 5.5 to It may be about 12 (for example, 7 to 12), more preferably about 6 to 11 (for example, 7 to 9).
 カチオン性ポリマー(例えば、強塩基性陰イオン交換樹脂)又はカチオン性ポリマーを含むイオン性ポリマーのpH(25℃)は、5以上(例えば、6~14)の範囲から選択でき、例えば、7~14(例えば、8~13)、好ましくは9~13(例えば、9.5~13)、さらに好ましくは10~13程度であってもよい。 The pH (25 ° C.) of the cationic polymer (eg, strongly basic anion exchange resin) or the ionic polymer including the cationic polymer can be selected from the range of 5 or more (eg, 6 to 14), for example, 7 to It may be 14 (for example, 8 to 13), preferably 9 to 13 (for example, 9.5 to 13), and more preferably about 10 to 13.
 pHは、慣用の方法(例えば、塩基で中和する方法や酸で中和する方法など)により調整できる。なお、中和された酸基において、カウンターイオンとしては、例えば、アルカリ金属(例えば、リチウム、ナトリウム、カリウムなど)、第三級アミンなどであってもよい。 PH can be adjusted by a conventional method (for example, a method of neutralizing with a base or a method of neutralizing with an acid). In the neutralized acid group, the counter ion may be, for example, an alkali metal (for example, lithium, sodium, potassium, etc.), a tertiary amine, or the like.
 なお、イオン性ポリマー(アニオン性ポリマーなど)は、架橋構造を有していてもよいが、架橋構造を有していない(又は架橋度が非常に低い)イオン性ポリマーが好ましい。 The ionic polymer (anionic polymer or the like) may have a crosslinked structure, but an ionic polymer that does not have a crosslinked structure (or has a very low degree of crosslinking) is preferable.
 イオン性ポリマー(イオン交換樹脂)において、イオン交換容量は、0.1~5.0meq/g(例えば、0.15~4.0meq/g)、好ましくは0.2~3.0meq/g(例えば、0.3~2.0meq/g)、さらに好ましくは0.4~1.5meq/g(例えば、0.5~1.0meq/g)程度であってもよい。 In the ionic polymer (ion exchange resin), the ion exchange capacity is 0.1 to 5.0 meq / g (for example, 0.15 to 4.0 meq / g), preferably 0.2 to 3.0 meq / g ( For example, it may be about 0.3 to 2.0 meq / g), more preferably about 0.4 to 1.5 meq / g (for example, 0.5 to 1.0 meq / g).
 なお、イオン性ポリマーの分子量は、溶媒に対して溶解もしくは分散できる範囲であれば特に制限されない。なお、スルホ基を有するフッ素含有樹脂(フッ素樹脂)などはナノメータサイズで分散し、正確に分子量が測定できない場合がある。 The molecular weight of the ionic polymer is not particularly limited as long as it is in a range that can be dissolved or dispersed in a solvent. In addition, a fluorine-containing resin having a sulfo group (fluororesin) or the like is dispersed in a nanometer size, and the molecular weight may not be measured accurately.
 一般に、バインダーの割合が大きくなると、光電変換効率が低下するように思われるが、イオン性ポリマーを用いることにより、高い光電変換特性を有する光電変換層を形成できるだけでなく、導電性基板に対する光電変換層の密着性及び隣接する光電変換層の密着性で向上できる。そのため、本発明では、半導体に対するイオン性ポリマーの量的割合が多くても、光電変換特性及び基板に対する密着性を高めることができる。イオン性ポリマーの割合は、半導体100重量部に対して、1~100重量部程度の範囲から選択でき、例えば、3~75重量部(例えば、4~60重量部)、好ましくは5~50重量部(例えば、6~40重量部)、さらに好ましくは7~30重量部(例えば、10~25重量部)、通常、5~20重量部(例えば、10~15重量部)程度であってもよい。なお、イオン性ポリマーの量が少なすぎると、密着性が低下するおそれがあり、多すぎると、光電変換特性が低下するおそれがある。 In general, it seems that the photoelectric conversion efficiency decreases as the proportion of the binder increases, but by using an ionic polymer, not only can a photoelectric conversion layer with high photoelectric conversion characteristics be formed, but also photoelectric conversion with respect to a conductive substrate. It can improve by the adhesiveness of a layer and the adhesiveness of an adjacent photoelectric converting layer. Therefore, in this invention, even if the quantitative ratio of the ionic polymer with respect to a semiconductor is large, a photoelectric conversion characteristic and the adhesiveness with respect to a board | substrate can be improved. The ratio of the ionic polymer can be selected from the range of about 1 to 100 parts by weight with respect to 100 parts by weight of the semiconductor, for example, 3 to 75 parts by weight (for example, 4 to 60 parts by weight), preferably 5 to 50 parts by weight. Parts (eg 6 to 40 parts by weight), more preferably 7 to 30 parts by weight (eg 10 to 25 parts by weight), usually 5 to 20 parts by weight (eg 10 to 15 parts by weight). Good. In addition, when there is too little quantity of an ionic polymer, there exists a possibility that adhesiveness may fall, and when too large, there exists a possibility that a photoelectric conversion characteristic may fall.
 なお、複数のコーティング組成物において、イオン性ポリマーの種類は同一又は異なっていてもよい。 In the plurality of coating compositions, the type of ionic polymer may be the same or different.
 (色素)
 増感剤(増感色素、光増感色素)として機能する色素は、例えば、有機色素、無機色素(例えば、炭素系顔料、クロム酸塩系顔料、カドミウム系顔料、フェロシアン化物系顔料、金属酸化物系顔料、ケイ酸塩系顔料、リン酸塩系顔料など)などであってもよい。色素は単独で又は2種以上組み合わせてもよい。
(Dye)
Dyes that function as sensitizers (sensitizing dyes, photosensitizing dyes) include, for example, organic dyes, inorganic dyes (for example, carbon pigments, chromate pigments, cadmium pigments, ferrocyanide pigments, metals) Oxide pigments, silicate pigments, phosphate pigments, etc.). The dyes may be used alone or in combination of two or more.
 有機色素(有機染料又は有機顔料)としては、慣用又は公知の色素が使用でき、例えば、ルテニウム錯体色素、オスミウム錯体色素、ポルフィリン系色素(マグネシウムポルフィリン、亜鉛ポルフィリンなど)、クロロフィル系色素(クロロフィルなど)、キサンテン系色素(ローダミンB、スルホローダミンB、エリスロシンなど)、シアニン系(又はポリメチン系)色素(メロシアニン、キノシアニン、クリプトシアニンなど)、フタロシアニン系色素(この色素は、「TT1」色素と称されるように、有機溶媒に対する溶解性を高めるための複数のアルキル基(3つのt-ブチル基など)とカルボキシル基とを有していてもよい)、アゾ系色素、ペリレン系色素、ペリノン系色素、クマリン系色素、キノン系色素、キノンイミン系色素、ジフェニルメタン系色素、トリフェニルメタン系色素、インジゴ系色素、ピラゾロン系色素、スチルベン系色素、チアゾール系色素、キノリン系色素、アクリジン系色素、アントラキノン系色素、スクアリリウム系色素、アゾメチン系色素、キノフタロン系色素、キナクリドン系色素、インドリン系色素(「D149」色素と称される色素など)、イソインドリン系色素、ニトロソ系色素、ピロロピロール系色素、キサンテン系色素、カルバゾール系色素(例えば、「MK-2」色素と称される色素(2-シアノ-3-[5’’’-(9-エチル-9H-カルバゾール-3-イル]-3’,3”,3’’’,4-テトラ-n-ヘキシル-[2,2’,5’,2”,5”,25’’’]-クアテル チオフェン-5-イル]アクリル酸)など)、塩基性色素(メチレンブルー、ベーシックブルー12など)などが挙げられる。 As the organic dye (organic dye or organic pigment), conventional or known dyes can be used. For example, ruthenium complex dyes, osmium complex dyes, porphyrin dyes (magnesium porphyrin, zinc porphyrin, etc.), chlorophyll dyes (chlorophyll, etc.) Xanthene dyes (rhodamine B, sulforhodamine B, erythrosine, etc.), cyanine (or polymethine) dyes (merocyanine, quinocyanine, cryptocyanine, etc.), phthalocyanine dyes (this dye is referred to as “TT1” dye) A plurality of alkyl groups (such as three t-butyl groups) and a carboxyl group for enhancing solubility in organic solvents), azo dyes, perylene dyes, perinone dyes, Coumarin dye, quinone dye, quinone imine color , Diphenylmethane dyes, triphenylmethane dyes, indigo dyes, pyrazolone dyes, stilbene dyes, thiazole dyes, quinoline dyes, acridine dyes, anthraquinone dyes, squarylium dyes, azomethine dyes, quinophthalone dyes Quinacridone dyes, indoline dyes (such as dyes referred to as “D149” dyes), isoindoline dyes, nitroso dyes, pyrrolopyrrole dyes, xanthene dyes, carbazole dyes (for example, “MK-2”) A dye called a dye (2-cyano-3- [5 ′ ″-(9-ethyl-9H-carbazol-3-yl] -3 ′, 3 ″, 3 ′ ″, 4-tetra-n- Hexyl- [2,2 ′, 5 ′, 2 ″, 5 ″, 25 ′ ″]-quaterlthiophen-5-yl] acrylic acid), etc. ), Basic dyes (methylene blue, basic blue 12, etc.) and the like.
 さらに、色素は、チオフェン系又はアクリル酸系色素(3-{5’-[N,N-ビス(9,9-ジメチルフルオレン-2-イル)フェニル]-2,2’-ビスチオフェン-5-イル}-2-シアノアクリル酸(「JK2」色素と称される場合がある)、2-シアノ-3-(5-(4-エトキシフェニル)チオフェン-2-イル)アクリル酸(「P5」色素と称される場合がある)など)、チアゾール系色素(3-カルボキシメチル-5-(3-(4-スルホブチル)-2(3H)-ベンゾチアゾリデン)-2-チオキソ-4-チアゾリジノン ナトリウム塩(「NK3705」色素)など)、金属フリーのパンクロマチック色素(例えば、電子供与体としてのフェノキサジンと電子受容体としてのローダミンとが導入された色素)などであってもよい。 Further, the dye may be a thiophene or acrylic acid dye (3- {5 ′-[N, N-bis (9,9-dimethylfluoren-2-yl) phenyl] -2,2′-bisthiophene-5 Yl} -2-cyanoacrylic acid (sometimes referred to as “JK2” dye), 2-cyano-3- (5- (4-ethoxyphenyl) thiophen-2-yl) acrylic acid (“P5” dye) And thiazole dyes (3-carboxymethyl-5- (3- (4-sulfobutyl) -2 (3H) -benzothiazolidene) -2-thioxo-4-thiazolidinone sodium Salts (such as “NK3705” dyes), metal-free panchromatic dyes (for example, dyes into which phenoxazine as an electron donor and rhodamine as an electron acceptor are introduced). It may be.
 前記ルテニウム錯体色素としては、ルテニウムのピリジン系錯体、例えば、ルテニウムのビピリジン錯体[例えば、シス-ビス(イソチオシアナト)ビス(2,2’-ビピリジル-4,4’-ジカルボキシラト)ルテニウム(II)ビステトラブチルアンモニウム(別名:「N719」色素、「レッドダイ」)、シス-ビス(イソチオシアナト)ビス(2,2’-ビピリジル-4,4’-ジカルボキシラト)ルテニウム(II)(別名:「N3」色素)、シス-ビス(イソチオシアナト)(2,2’-ビピリジル-4,4’-ジカルボキシラト)(2,2’-ビピリジル-4,4’-ジノニル)ルテニウム(II)(別名:Z-907色素)、シス-ビス(イソチオシアナト)ビス(2,2’-ビピリジル-4,4’-ジカルボキシラト)ルテニウム(II)、シス-ビス(シアニド)(2,2’-ビピリジル-4,4’-ジカルボキシラト)ルテニウム(II)、トリス(2,2’-ビピリジル-4,4’-ジカルボキシラト)ルテニウム(II)ジクロリド、シス-ビス(チオシアナト)ビス(2,2’-ビキノリル-4,4’-ジカルボキシラト)ルテニウム(II)など];ルテニウムのターピリジン錯体[例えば、トリス(イソチオシアナト)ルテニウム(II)-2,2’:6’,2’’-ターピリジン-4,4’,4’’-トリカルボン酸 トリステトラブチルアンモニウム塩(別名:「N749」色素,「ブラックダイ」)など]などが例示できる。このようなピリジン系錯体は、ピリジンカルボン酸単位(ピリジンカルボン酸、ビピリジルジカルボン酸、ターピリジルトリカルボン酸から選択された少なくとも一種)と、イソチオシアナトとがルテニウムに配位し、高い光電変換効率をもたらす場合が多い。ルテニウム錯体色素には、フェナントロリンとの錯体なども含まれる。 Examples of the ruthenium complex dye include ruthenium pyridine complexes, such as ruthenium bipyridine complexes [for example, cis-bis (isothiocyanato) bis (2,2′-bipyridyl-4,4′-dicarboxylato) ruthenium (II)]. Bistetrabutylammonium (also known as “N719” dye, “Red dye”), cis-bis (isothiocyanato) bis (2,2′-bipyridyl-4,4′-dicarboxylato) ruthenium (II) (also known as “N3”) Dye), cis-bis (isothiocyanato) (2,2′-bipyridyl-4,4′-dicarboxylato) (2,2′-bipyridyl-4,4′-dinonyl) ruthenium (II) (also known as Z) -907 dye), cis-bis (isothiocyanato) bis (2,2′-bipyridyl-4,4′-dicarboxylato) ruteniu (II), cis-bis (cyanide) (2,2′-bipyridyl-4,4′-dicarboxylato) ruthenium (II), tris (2,2′-bipyridyl-4,4′-dicarboxylato) Ruthenium (II) dichloride, cis-bis (thiocyanato) bis (2,2′-biquinolyl-4,4′-dicarboxylato) ruthenium (II) and the like]; ruthenium terpyridine complexes [eg tris (isothiocyanato) ruthenium ( II) -2,2 ′: 6 ′, 2 ″ -terpyridine-4,4 ′, 4 ″ -tricarboxylic acid tristetrabutylammonium salt (also known as “N749” dye, “black dye”), etc.] It can be illustrated. In such a pyridine complex, a pyridinecarboxylic acid unit (at least one selected from pyridinecarboxylic acid, bipyridyldicarboxylic acid, and terpyridyltricarboxylic acid) and isothiocyanate coordinate to ruthenium, resulting in high photoelectric conversion efficiency. There are many. Ruthenium complex dyes include complexes with phenanthroline.
 色素(ルテニウムのピリジン系錯体を含む)は市販品を用いてもよく、公知の文献、例えば、J.Am.Chem.Soc.115(1993)6382、J.Am.Chem.Soc.123(2001)1613、Inorganica Chimica Acta.322(2001)7などを参照して合成してもよい。 As the dye (including ruthenium pyridine complex), a commercially available product may be used, and known documents such as J. Am. Chem. Soc. 115 (1993) 6382, J. Am. Chem. Soc. 123 (2001). ) 1613, Inorganica Chimica Acta.322 (2001) 7, etc.
 これらの色素は単独で又は二種以上組み合わせて使用してもよい。なお、複数の色素を組み合わせて吸収波長域を拡げてもよいが、複数の色素を混合して半導体に担持又は固定すると、色素間のエネルギー遷移により、失活し、光電変換効率が低下する場合がある。 These pigments may be used alone or in combination of two or more. The absorption wavelength range may be expanded by combining a plurality of dyes, but when a plurality of dyes are mixed and supported or fixed on a semiconductor, they are deactivated due to energy transition between the dyes and the photoelectric conversion efficiency decreases. There is.
 複数のコーティング組成物(又はコーティング剤)は、それぞれ、異なる吸収波長域又は吸収ピーク波長を有する色素を含有していればよく、複数の色素を積層形態で複数の光電変換層に含有させることにより、光電変換効率を大きく向上できる。例えば、積層形態の光電変換層に含まれる複数の色素は、太陽光の放射スペクトルの全波長域に亘り吸収できるのが好ましく、全体として、少なくとも可視領域又は可視光域(例えば、波長域400~700nmの光線)、好ましくは紫外領域(例えば、200~400nm)及び/又は赤外領域(例えば、700~1800nm)の波長域を含む可視領域、特に、200~1500nm(例えば、300~1300nm)程度の波長域を吸収可能であるのが好ましい。なお、成書によって異なる波長域が記載されているように、前記可視領域、紫外領域及び赤外領域の前記波長は厳密な数値ではなく、上記各領域の波長は概ねの指標として記載するものである。そのため、可視光域を、例えば、波長域300~800nm(例えば、380~730nm、特に400~700nm)とすることもできる。 The plurality of coating compositions (or coating agents) only need to contain pigments having different absorption wavelength ranges or absorption peak wavelengths, respectively, and by incorporating a plurality of pigments into a plurality of photoelectric conversion layers in a laminated form. The photoelectric conversion efficiency can be greatly improved. For example, it is preferable that the plurality of dyes contained in the photoelectric conversion layer in the laminated form can be absorbed over the entire wavelength region of the emission spectrum of sunlight, and as a whole, at least the visible region or the visible light region (for example, the wavelength region 400 to 400). 700 nm light), preferably in the visible region including the wavelength region of the ultraviolet region (eg 200 to 400 nm) and / or the infrared region (eg 700 to 1800 nm), in particular about 200 to 1500 nm (eg 300 to 1300 nm). It is preferable that it is possible to absorb the wavelength region. In addition, as the different wavelength regions are described depending on the books, the wavelengths in the visible region, the ultraviolet region, and the infrared region are not strict numerical values, and the wavelengths in the respective regions are described as approximate indicators. is there. Therefore, the visible light region can be, for example, a wavelength region of 300 to 800 nm (for example, 380 to 730 nm, particularly 400 to 700 nm).
 複数の色素は、例えば、紫外領域に吸収波長域又は吸収ピーク波長を有する色素と、可視光領域に吸収波長域又は吸収ピーク波長を有する色素と、赤外領域に吸収波長域又は吸収ピーク波長を有する色素とに分類することもでき;紫外域及び可視光域に吸収波長域又は吸収ピーク波長を有する色素と、赤外領域に吸収波長域又は吸収ピーク波長を有する色素とに分類することもでき;紫外域及び可視光域に吸収波長域又は吸収ピーク波長を有する色素と、可視光域及び赤外領域に吸収波長域又は吸収ピーク波長を有する色素とに分類することもできる。代表的な色素の吸収波長域を示すと、例えば、「JK2」色素は450~550nm程度の波長域にブロードな吸収を示し、「P5」色素は390~430nm程度に吸収域を示し、「N719」色素は540nmに吸収ピークを有し、380~410nm程度の波長域と530~550nm程度の波長域とに吸収を示し、「N749」色素は600nm付近に吸収ピークを有し、370~420nm程度の波長域と590~610nm程度の波長域とに吸収を示し、「MK-2」色素は480nmに吸収ピークを有し、450~650nm程度の波長域にブロードな吸収域を示し、「TT1」色素などのフタロシアニン系色素は680~710nm程度にシャープな吸収域を示す。そのため、本発明では、吸収波長域の異なる複数の色素を組み合わせて積層型光電変換層を形成する。 The plurality of dyes include, for example, a dye having an absorption wavelength region or an absorption peak wavelength in the ultraviolet region, a dye having an absorption wavelength region or an absorption peak wavelength in the visible light region, and an absorption wavelength region or an absorption peak wavelength in the infrared region. Can also be classified into dyes having an absorption wavelength region or absorption peak wavelength in the ultraviolet region and visible light region, and dyes having an absorption wavelength region or absorption peak wavelength in the infrared region. A dye having an absorption wavelength range or absorption peak wavelength in the ultraviolet range and visible light range, and a dye having an absorption wavelength range or absorption peak wavelength in the visible light range and infrared range can also be classified. As for the absorption wavelength range of a typical dye, for example, “JK2” dye shows broad absorption in a wavelength range of about 450 to 550 nm, “P5” dye shows an absorption range of about 390 to 430 nm, and “N719” “The dye has an absorption peak at 540 nm and absorption in a wavelength range of about 380 to 410 nm and a wavelength range of about 530 to 550 nm, and“ N749 ”dye has an absorption peak at around 600 nm and about 370 to 420 nm. The “MK-2” dye has an absorption peak at 480 nm and a broad absorption range at a wavelength range of about 450 to 650 nm, “TT1”. Phthalocyanine dyes such as dyes show a sharp absorption range at about 680 to 710 nm. Therefore, in the present invention, a stacked photoelectric conversion layer is formed by combining a plurality of dyes having different absorption wavelength ranges.
 なお、複数の色素の吸収波長域又は吸収ピーク波長(特に吸収ピーク波長)は、互いに、10nm以上(例えば、10~200nm程度)、好ましくは20nm以上(例えば、20~200nm程度)、さらに好ましくは30nm以上(例えば、30~150nm程度)ずれているのが好ましく、通常、10~150nm(例えば、25~120nm)、好ましくは20~100nm(例えば、30~100nm又は30~80nm)程度離れている場合が多い。 The absorption wavelength region or absorption peak wavelength (especially absorption peak wavelength) of the plurality of dyes is 10 nm or more (for example, about 10 to 200 nm), preferably 20 nm or more (for example, about 20 to 200 nm), more preferably. It is preferably shifted by 30 nm or more (for example, about 30 to 150 nm), usually 10 to 150 nm (for example, 25 to 120 nm), preferably 20 to 100 nm (for example, 30 to 100 nm or 30 to 80 nm). There are many cases.
 より具体的には、色素「P5」色素を含む第1のコーティング組成物、「N719」色素を含む第2のコーティング組成物、「N749」色素を含む第3のコーティング組成物を調製し、各コーティング組成物を導電性基板に順次に塗布することにより、積層型の光電変換層を形成してもよく、「N719」色素を含む第1のコーティング組成物、「N749」色素を含む第2のコーティング組成物を調製し、各コーティング組成物を導電性基板に順次に塗布することにより、積層型の光電変換層を形成してもよい。なお、変換効率を損なわない又は向上できる組合せであれば、各コーティング組成物には単一の色素に限らず、複数の色素を含有させてもよい。 More specifically, a first coating composition containing a dye “P5” dye, a second coating composition containing an “N719” dye, a third coating composition containing an “N749” dye are prepared, By sequentially applying the coating composition to the conductive substrate, a stacked photoelectric conversion layer may be formed. The first coating composition containing the “N719” dye, the second coating containing the “N749” dye. A multilayer photoelectric conversion layer may be formed by preparing a coating composition and sequentially applying each coating composition to a conductive substrate. In addition, as long as it is a combination which does not impair or improve conversion efficiency, each coating composition may contain not only a single pigment but a plurality of pigments.
 なお、色素は、通常、半導体(又は多孔質半導体表面)に担持又は付着(又は固定化)した形態で光電変換層に含まれる。色素は、吸着(物理吸着)、化学結合などにより半導体に付着(又は固定化)してもよい。そのため、半導体に対して付着又は結合しやすい色素、例えば、カルボキシル基、エステル基、スルホ基、シアノ基などの官能基を有する色素(例えば、「N719」色素、「N749」色素などのカルボキシル基を有するルテニウム色素、「TT1」色素などのカルボキシル基を有するフタロシアニン色素、「JK2」色素、「P5」色素、「MK-2」色素などのカルボキシル基及びシアノ基を有するカルバゾール系色素やチオフェン系色素又はアクリル酸系色素、「NK3705」色素などのスルホ基などを有するチアゾール系色素など)を選択してもよい。このような色素は、酸化チタンなどの半導体表面と結合して脱離しにくいだけでなく、半導体の励起状態と電子的にカップリングし、光電変換効率を高める上で有用であると思われる。 In addition, a pigment | dye is normally contained in a photoelectric converting layer with the form carry | supported or adhere | attached (or fixed) on the semiconductor (or porous semiconductor surface). The dye may be attached (or immobilized) to the semiconductor by adsorption (physical adsorption), chemical bonding, or the like. Therefore, a dye that easily adheres to or bonds to a semiconductor, for example, a dye having a functional group such as a carboxyl group, an ester group, a sulfo group, or a cyano group (for example, a carboxyl group such as an “N719” dye or an “N749” dye) A ruthenium dye, a phthalocyanine dye having a carboxyl group, such as a “TT1” dye, a carbazole dye or a thiophene dye having a carboxyl group and a cyano group, such as a “JK2” dye, a “P5” dye, and an “MK-2” dye, An acrylic acid dye or a thiazole dye having a sulfo group such as “NK3705” dye) may be selected. Such a dye is not only difficult to bind to and desorb from a semiconductor surface such as titanium oxide, but is also considered to be useful in increasing the photoelectric conversion efficiency by electronically coupling with the excited state of the semiconductor.
 色素の割合(付着又は吸着割合)は、例えば、半導体およびイオン性バインダー又はイオン性ポリマーと関連づけて、下記式の範囲となるように選択してもよい。 The ratio (adhesion or adsorption ratio) of the dye may be selected so as to be in the range of the following formula in association with the semiconductor and the ionic binder or ionic polymer, for example.
     0<(I×I+D×D)/S≦1
(式中、Iはイオン性バインダー又はイオン性ポリマー中のイオン性基の数、Iはイオン性基1個あたりの占有面積、Dは色素(色素分子)の数、Dは色素1個あたりの占有面積、Sは、半導体の表面積を示す。)
 上記式において、Iはイオン性基の総数であり、例えば、イオン性バインダー又はイオン性ポリマーのイオン交換容量(meq/g)にイオン性バインダー又はイオン性ポリマーの重量(g)及びアボガドロ数を乗算することにより算出でき、通常、I×I<Sである。I、Dは、それぞれ、イオン性基1つの占有面積(m)、色素1分子の占有面積(m)であり、占有面積としては、分子の投影において最大の投影面積を用いることができる。
0 <(I A × I S + D A × D S) / S S ≦ 1
(Wherein, I A is the number of ionic groups of the ionic binder or ionic polymers, I S is the number of occupied area per ionic group, D A dye (dye molecules), D S dye (Occupied area per piece, S S indicates the surface area of the semiconductor.)
In the above formula, I A is the total number of ionic groups, for example, the weight (g) and Avogadro number of ionic binder or ionic polymer to the ion exchange capacity of the ion binder or ionic polymer (meq / g) It can be calculated by multiplication, and usually I A × I S <S S. I S, D S, respectively, an ionic group one occupied area (m 2), a occupation area of the dye molecule (m 2), as the occupied area, the use of the maximum projected area in the projection of the molecule Can do.
 コーティング組成物は、半導体に対して吸着量又は固定化可能な量の色素を含んでいればよく、色素の割合は、半導体100重量部に対して、例えば、0.1~20重量部(例えば、0.5~15重量部)、好ましくは1~10重量部(例えば、1.5~8重量部)、さらに好ましくは2~6重量部(例えば、3~5重量部)程度であってもよい。 The coating composition only needs to contain an amount of the dye that can be adsorbed or immobilized on the semiconductor, and the amount of the dye is, for example, 0.1 to 20 parts by weight (for example, 100 parts by weight of the semiconductor) 0.5 to 15 parts by weight), preferably 1 to 10 parts by weight (for example, 1.5 to 8 parts by weight), more preferably about 2 to 6 parts by weight (for example, 3 to 5 parts by weight). Also good.
 コーティング組成物は、溶媒を含んでいてもよい。溶媒は、水及び/又は有機溶媒であってもよく、有機溶媒としては、例えば、アルコール類(メタノール、エタノール、イソプロパノール、ブタノールなどのアルカノール類)、炭化水素類(トルエン、キシレンなどの芳香族炭化水素類、ヘキサンなどの脂肪族炭化水素類、シクロヘキサンなどの脂環族炭化水素類)、ハロゲン化炭化水素類(例えば、ジクロロメタン、クロロホルムなどのハロアルカン類)、エステル類(酢酸エチル、酢酸ブチルなど)、ケトン類(アセトン、メチルエチルケトン、シクロヘキサノンなど)、エーテル類(ジオキサン、テトラヒドロフランなどの環状エーテル類、ジイソプロピルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテルなどの鎖状エーテル)、セロソルブ類(メチルセロソルブ、エチルセロソルブ、ブチルセロソルブなどのエチレングリコールモノアルキルエーテル)、カルビトール類(メチルカルビトール、エチルカルビトール、ブチルカルビトールなどのジエチレングリコールモノアルキルエーテル)、セロソルブアセテート類(メチルセロソルブアセテートなどのセロソルブアセテート、並びにセロソルブアセテートに類するプロピレングリコールモノメチルエーテルモノアセテートなど)、カルビトールアセテート類、ニトリル類(例えば、アセトニトリル、ベンゾニトリルなど)、ニトロ系溶媒(例えば、ニトロベンゼンなど)などが挙げられる。溶媒は、単独で又は2種以上組み合わせてもよい。 The coating composition may contain a solvent. The solvent may be water and / or an organic solvent. Examples of the organic solvent include alcohols (alkanols such as methanol, ethanol, isopropanol and butanol) and hydrocarbons (aromatic carbonization such as toluene and xylene). Hydrogen, aliphatic hydrocarbons such as hexane, alicyclic hydrocarbons such as cyclohexane), halogenated hydrocarbons (for example, haloalkanes such as dichloromethane and chloroform), esters (ethyl acetate, butyl acetate, etc.) , Ketones (acetone, methyl ethyl ketone, cyclohexanone, etc.), ethers (cyclic ethers such as dioxane, tetrahydrofuran, chain ethers such as diisopropyl ether, propylene glycol monomethyl ether, diethylene glycol dimethyl ether), celloso (Ethylene glycol monoalkyl ethers such as methyl cellosolve, ethyl cellosolve, butyl cellosolve), carbitols (diethylene glycol monoalkyl ethers such as methyl carbitol, ethyl carbitol, butyl carbitol), cellosolve acetates (such as methyl cellosolve acetate) Cellosolve acetate, and propylene glycol monomethyl ether monoacetate similar to cellosolve acetate), carbitol acetates, nitriles (eg acetonitrile, benzonitrile, etc.), nitro solvents (eg nitrobenzene, etc.), and the like. The solvents may be used alone or in combination of two or more.
 溶媒を含む組成物において、固形分(又は不揮発性成分)の割合は、コーティング方法などに応じて、例えば、0.1~60重量%(例えば、1~50重量%)、好ましくは5~40重量%(例えば、10~30重量%)程度であってもよい。本発明では、半導体を含む固形分が高濃度であっても、半導体の分散安定性を高めることができる。 In the composition containing the solvent, the ratio of the solid content (or non-volatile component) is, for example, 0.1 to 60% by weight (eg 1 to 50% by weight), preferably 5 to 40%, depending on the coating method and the like. It may be about wt% (for example, 10 to 30 wt%). In the present invention, the dispersion stability of the semiconductor can be improved even when the solid content including the semiconductor is high.
 なお、コーティング組成物は、慣用の方法、例えば、半導体(酸化チタンなど)とイオン性ポリマーと色素とを混合して調製してもよく、予め半導体(など)に色素を吸着又は固定化した非焼結半導体(非焼結酸化チタンなど)とイオン性ポリマーとを混合して調製してもよい。通常、イオン性ポリマーの溶液又は分散液(水分散液など)と半導体(酸化チタンなど)と色素とを混合分散して調製する場合が多い。また、複数のコーティング組成物は、吸収波長域又は吸収ピーク波長の異なる色素ごとに調製してもよい。なお、溶媒を含むコーティング組成物のpHは、特に限定されず、イオン性ポリマーのpHと同様の範囲から選択でき、pH調整は適当な段階で行うことができ、例えば、イオン性ポリマーの溶液又は分散液のpHを調製して、半導体および色素と混合してもよい。 The coating composition may be prepared by a conventional method, for example, mixing a semiconductor (such as titanium oxide), an ionic polymer, and a dye, or a non-adsorbed or immobilized dye on a semiconductor (such as) in advance. You may prepare by mixing a sintered semiconductor (non-sintered titanium oxide etc.) and an ionic polymer. Usually, it is often prepared by mixing and dispersing a solution or dispersion of an ionic polymer (such as an aqueous dispersion), a semiconductor (such as titanium oxide), and a dye. Moreover, you may prepare a several coating composition for every pigment | dye from which an absorption wavelength range or an absorption peak wavelength differs. The pH of the coating composition containing the solvent is not particularly limited and can be selected from the same range as the pH of the ionic polymer. The pH can be adjusted at an appropriate stage, for example, a solution of the ionic polymer or The pH of the dispersion may be adjusted and mixed with the semiconductor and the dye.
 本発明のコーティング組成物は、コーティングにより複数の光電変換層を積層し、厚み方向に異なる色素領域を有する積層型光電変換層又は積層光電変換体(積層体)を形成するのに有用である。 The coating composition of the present invention is useful for laminating a plurality of photoelectric conversion layers by coating to form a laminated photoelectric conversion layer or a laminated photoelectric converter (laminated body) having different dye regions in the thickness direction.
 [積層光電変換体およびその製造方法]
 本発明の積層光電変換体は、複数の光電変換層が積層された光電変換層を備えており、通常、導電性基板上に形成できる。導電性基板は、導電体のみで構成してもよいが、通常、ベース基板と、この基板上に形成された導電層(又は導電膜)とを備えていてもよい。
[Laminated Photoelectric Converter and Method for Producing the Same]
The laminated photoelectric conversion body of the present invention includes a photoelectric conversion layer in which a plurality of photoelectric conversion layers are stacked, and can usually be formed on a conductive substrate. The conductive substrate may be composed of only a conductor, but may usually include a base substrate and a conductive layer (or conductive film) formed on the substrate.
 ベース基板としては、無機基板(例えば、ガラス基板、セラミックス基板など)、プラスチック基板又はプラスチックフィルム[例えば、ポリエステル系樹脂(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート)、ポリカーボネート系樹脂、シクロオレフィン系樹脂、ポリプロピレン系樹脂、セルロース系樹脂(セルローストリアセテートなど)、ポリエーテル系樹脂(ポリエーテルスルホンなど)、ポリスルフィド系樹脂(ポリフェニレンスルフィドなど)、ポリイミド系樹脂などのプラスチックで形成された基板又はフィルムなど]などが挙げられる。本発明では、半導体の焼結工程が不要であるため、ベース基板としてプラスチック基板(プラスチックフィルム)を使用できる。ベース基板は、通常、透明基板である。 As the base substrate, an inorganic substrate (for example, a glass substrate, a ceramic substrate, etc.), a plastic substrate or a plastic film [for example, a polyester resin (for example, polyethylene terephthalate, polyethylene naphthalate), a polycarbonate resin, a cycloolefin resin, polypropylene -Based resins, cellulose-based resins (such as cellulose triacetate), polyether-based resins (such as polyethersulfone), polysulfide-based resins (such as polyphenylene sulfide), and substrates or films formed of plastics such as polyimide resins] It is done. In the present invention, since a semiconductor sintering step is unnecessary, a plastic substrate (plastic film) can be used as the base substrate. The base substrate is usually a transparent substrate.
 導電層は、例えば、導電性金属酸化物[例えば、酸化スズ、酸化インジウム、酸化亜鉛、アンチモンドープ金属酸化物(アンチモンドープ酸化スズなど)、錫ドープ金属酸化物(錫ドープ酸化インジウムなど)、アルミニウムドープ金属酸化物(アルミニウムドープ酸化亜鉛など)、ガリウムドープ金属酸化物(ガリウムドープ酸化亜鉛など)、フッ素ドープ金属酸化物(フッ素ドープ酸化スズなど)など]などで形成できる。これらの導電層は、前記成分を単独で又は2種以上組み合わせて形成してもよい。導電層は、通常、透明導電層であってもよい。 The conductive layer may be, for example, a conductive metal oxide [eg, tin oxide, indium oxide, zinc oxide, antimony-doped metal oxide (such as antimony-doped tin oxide), tin-doped metal oxide (such as tin-doped indium oxide), aluminum Doped metal oxide (such as aluminum-doped zinc oxide), gallium-doped metal oxide (such as gallium-doped zinc oxide), fluorine-doped metal oxide (such as fluorine-doped tin oxide), and the like. These conductive layers may be formed by combining the above components alone or in combination of two or more. The conductive layer may usually be a transparent conductive layer.
 導電性基板(又はその導電層)に、複数のコーティング組成物(又はインク)を順次にコーティングして積層することにより導電性基板上に積層光電変換体を形成できる。なお、複数のコーティング組成物(又はインク)には、それぞれ、吸収波長域又は吸収ピーク波長が互いに異なる複数の色素が含有されている。この方法では、焼結することなく各光電変換層を形成できる。そのため、積層光電変換体においては、それぞれ複数の色素を層状の形態で各光電変換層に含有させることができる。 A laminated photoelectric conversion body can be formed on a conductive substrate by sequentially coating and laminating a plurality of coating compositions (or inks) on the conductive substrate (or its conductive layer). The plurality of coating compositions (or inks) each contain a plurality of pigments having different absorption wavelength ranges or absorption peak wavelengths. In this method, each photoelectric conversion layer can be formed without sintering. Therefore, in the laminated photoelectric conversion body, a plurality of dyes can be contained in each photoelectric conversion layer in a layered form.
 複数のコーティング組成物による光電変換層の積層数は、特に制限されず、例えば、2~10層(例えば、2~7層)程度であってもよく、通常、2~5層(例えば、2~4層)、特に2又は3層であってもよい。例えば、吸収ピーク波長又は吸収波長域が異なる複数の色素を用い、異なる波長域を吸収する複数の光電変換層を積層すればよい。例えば、導電性基板に、第1の色素と半導体とを含む第1の光電変換層と、第2の色素と半導体とを含む第2の光電変換層とを積層してもよく、さらに第2の光電変換層に第3の色素と半導体とを含む第3の光電変換層を積層してもよい。なお、複数の光電変換層において、複数の色素の吸収波長域又は吸収ピーク波長(特に吸収ピーク波長)は、前記と同様であり、各光電変換層は互いに、例えば、10nm以上(例えば、10~200nm程度)、特に20~100nm(例えば、30~80nm)程度離れていてもよく、10~150nm程度離れていてもよい。 The number of stacked photoelectric conversion layers with a plurality of coating compositions is not particularly limited, and may be, for example, about 2 to 10 layers (for example, 2 to 7 layers), and usually 2 to 5 layers (for example, 2 layers). ~ 4 layers), in particular 2 or 3 layers. For example, a plurality of dyes having different absorption peak wavelengths or absorption wavelength ranges may be used, and a plurality of photoelectric conversion layers that absorb different wavelength ranges may be stacked. For example, a first photoelectric conversion layer including a first dye and a semiconductor and a second photoelectric conversion layer including a second dye and a semiconductor may be stacked on the conductive substrate, and the second photoelectric conversion layer may be stacked. A third photoelectric conversion layer containing a third dye and a semiconductor may be stacked on the photoelectric conversion layer. In the plurality of photoelectric conversion layers, the absorption wavelength region or the absorption peak wavelength (particularly the absorption peak wavelength) of the plurality of dyes is the same as described above, and each photoelectric conversion layer is, for example, 10 nm or more (for example, 10 to About 200 nm), particularly about 20 to 100 nm (for example, 30 to 80 nm), or about 10 to 150 nm.
 複数のコーティング組成物(又はインク)のコーティングの順序は特に制限されず、吸収波長の異なる複数の光電変換層(例えば、隣接する光電変換層)を積層した積層体では、互いに異なる吸収波長域又は吸収ピーク波長を有する色素(特に、吸収ピーク波長を有する色素)を任意の光電変換層に含有させてもよく、複数の色素の吸収ピーク波長又は吸収波長域と、光電変換層の積層順序(積層位置)とを関連づけてもよい。例えば、短波長(例えば、少なくとも可視光域の波長、又は紫外域乃至可視光域の波長)を吸収する光電変換層を、長波長(例えば、少なくとも近赤外域の波長、又は可視光域乃至近赤外域の波長)を吸収する光電変換層よりも入射側(受光側)に位置させてもよく、入射側と透過側との間の中間に位置させてもよい。より具体的には、吸収ピーク波長又は吸収波長域が短波長域にある第1の色素を含有する第1のコーティング組成物、吸収ピーク波長又は吸収波長域が長波長域にある第2の色素を含有する第2のコーティング組成物、吸収ピーク波長又は吸収波長域が中間波長域にある第3の色素を含有する第3のコーティング組成物を用いるとすると、入射側(導電基板又は受光側)の光電変換層から透過側の光電変換層に至る複数の光電変換層を、第2のコーティング組成物/第3のコーティング組成物/第1のコーティング組成物の順序、第3のコーティング組成物/第2のコーティング組成物/第1のコーティング組成物の順序、第2のコーティング組成物/第1のコーティング組成物/第3のコーティング組成物の順序などでコーティングして形成してもよい。 The order of coating of the plurality of coating compositions (or inks) is not particularly limited, and in a laminate in which a plurality of photoelectric conversion layers having different absorption wavelengths (for example, adjacent photoelectric conversion layers) are stacked, different absorption wavelength ranges or A dye having an absorption peak wavelength (particularly, a dye having an absorption peak wavelength) may be contained in an arbitrary photoelectric conversion layer, the absorption peak wavelength or absorption wavelength region of a plurality of dyes, and the stacking order of the photoelectric conversion layers (lamination Position). For example, a photoelectric conversion layer that absorbs a short wavelength (for example, at least a wavelength in the visible light region, or a wavelength in the ultraviolet region to a visible light region) is changed to a long wavelength (for example, a wavelength in the near infrared region, or a visible light region or near It may be positioned on the incident side (light receiving side) of the photoelectric conversion layer that absorbs (wavelength in the infrared region), or may be positioned in the middle between the incident side and the transmission side. More specifically, the first coating composition containing the first dye whose absorption peak wavelength or absorption wavelength region is in the short wavelength region, and the second dye whose absorption peak wavelength or absorption wavelength region is in the long wavelength region When the third coating composition containing a second coating composition containing a third dye containing a third dye having an absorption peak wavelength or an absorption wavelength range in the intermediate wavelength range is used, the incident side (conductive substrate or light receiving side) A plurality of photoelectric conversion layers from the photoelectric conversion layer to the transmission side photoelectric conversion layer are divided into the order of the second coating composition / third coating composition / first coating composition, third coating composition / Coated in the order of second coating composition / first coating composition, second coating composition / first coating composition / third coating composition, etc. It may be.
 好ましい態様では、短波長(例えば、少なくとも可視光域の波長、又は紫外域乃至可視光域の波長)を吸収する光電変換層が、長波長(例えば、少なくとも近赤外域の波長、又は可視光域乃至近赤外域の波長)を吸収する光電変換層よりも受光側に位置し、入射側(導電基板又は受光側)の光電変換層に含まれる色素は、透過側の光電変換層に含まれる色素の吸収ピーク波長よりも、短波長域に吸収ピーク波長を有している。すなわち、積層された複数の光電変換層は、受光側の光電変換層から透過側の光電変換層にいくにつれて、吸収波長域又は吸収ピーク波長が連続的又は段階的に短波長から長波長にシフトした複数の色素を順次に含有する。換言すれば、受光側に短波長域(例えば、可視光域の短波長域)を吸収可能な色素を含む色素増感光電変換層が形成され、透過側に長波長域(例えば、可視光域の長波長域)を吸収可能な色素を含む色素増感光電変換層が形成されている。複数の光電変換層において、受光側の光電変換層は、可視光域の短波長域(例えば、300~600nm、好ましくは350~580nm、さらに好ましくは370~570nm程度)に吸収ピーク波長を有する第1の色素を含有していてもよい。また、受光側と反対側(透過側)の光電変換層は、可視光域の長波長域(例えば、550~800nm、好ましくは570~750nm、さらに好ましくは580~700nm程度)に吸収ピーク波長を有する第2の色素を含有していてもよい。さらに、複数の色素の吸収ピーク波長(特に、第1の色素と第2の色素との吸収ピーク波長、又は隣接する光電変換層に含有される色素の吸収ピーク波長)は、受光側の光電変換層と、受光側に対する反対側(透過側)の光電変換層とで、10nm以上離れていてもよく、例えば、10~200nm(例えば、20~200nm)、好ましくは30~200nm(例えば、30~170nm)、さらに好ましくは50~150nm程度離れていてもよく、30~150nm(例えば、50~130nm)程度離れていてもよい。例えば、第1の色素の吸収ピーク波長は第2の色素の吸収ピーク波長よりも短波長、例えば、前記ピーク波長の差と同様に、10nm以上(例えば、10~200nm、好ましくは20~200nm、さらに好ましくは50~150nm程度)だけ短波長であってもよい。 In a preferred embodiment, the photoelectric conversion layer that absorbs a short wavelength (for example, a wavelength in the visible light region or a wavelength in the ultraviolet region to the visible light region) has a long wavelength (for example, a wavelength in the near infrared region or a visible light region). The dye contained in the photoelectric conversion layer on the incident side (conductive substrate or light reception side) is located closer to the light receiving side than the photoelectric conversion layer absorbing the wavelength in the near infrared region), and the dye contained in the photoelectric conversion layer on the transmission side. It has an absorption peak wavelength in a shorter wavelength region than the absorption peak wavelength. That is, in the plurality of stacked photoelectric conversion layers, the absorption wavelength range or the absorption peak wavelength shifts from a short wavelength to a long wavelength continuously or step by step from the light receiving side photoelectric conversion layer to the transmission side photoelectric conversion layer. The plurality of dyes are sequentially contained. In other words, a dye-sensitized photoelectric conversion layer containing a dye capable of absorbing a short wavelength region (for example, a short wavelength region in the visible light region) is formed on the light receiving side, and a long wavelength region (for example, a visible light region in the transmission side). A dye-sensitized photoelectric conversion layer containing a dye capable of absorbing (long wavelength region) is formed. Among the plurality of photoelectric conversion layers, the photoelectric conversion layer on the light receiving side has an absorption peak wavelength in a short wavelength region of the visible light region (for example, about 300 to 600 nm, preferably about 350 to 580 nm, more preferably about 370 to 570 nm). 1 pigment may be contained. In addition, the photoelectric conversion layer on the side opposite to the light receiving side (transmission side) has an absorption peak wavelength in the long wavelength region of the visible light region (for example, about 550 to 800 nm, preferably about 570 to 750 nm, more preferably about 580 to 700 nm). You may contain the 2nd pigment | dye which has. Furthermore, the absorption peak wavelengths of the plurality of dyes (in particular, the absorption peak wavelengths of the first dye and the second dye, or the absorption peak wavelengths of the dyes contained in the adjacent photoelectric conversion layer) are photoelectric conversions on the light receiving side. The layer and the photoelectric conversion layer opposite to the light receiving side (transmission side) may be separated by 10 nm or more, for example, 10 to 200 nm (for example, 20 to 200 nm), preferably 30 to 200 nm (for example, 30 to 30 nm). 170 nm), more preferably about 50 to 150 nm, or about 30 to 150 nm (for example, 50 to 130 nm). For example, the absorption peak wavelength of the first dye is shorter than the absorption peak wavelength of the second dye, for example, 10 nm or more (eg, 10 to 200 nm, preferably 20 to 200 nm, like the difference in the peak wavelength) Further preferably, the wavelength may be as short as about 50 to 150 nm.
 このような積層形態の光電変換層(積層体)は、例えば、前記複数の色素の吸収ピーク波長又は吸収波長域と、光電変換層の積層順序との関係に基づいて、導電性基板に、複数のコーティング組成物を順次にコーティングすることにより形成できる。前記第1乃至第3のコーティング組成物を用いる場合、積層形態の光電変換層は、例えば、導電性基板を、第1のコーティング組成物/第3のコーティング組成物/第2のコーティング組成物の順序でコーティングして形成してもよく、第1のコーティング組成物/第2のコーティング組成物/第3のコーティング組成物の順序でコーティングすることにより形成してもよい。 For example, a plurality of photoelectric conversion layers (laminates) in a stacked form are formed on the conductive substrate based on the relationship between the absorption peak wavelength or absorption wavelength range of the plurality of dyes and the stacking order of the photoelectric conversion layers. These coating compositions can be sequentially coated. In the case where the first to third coating compositions are used, the stacked photoelectric conversion layer may be formed of, for example, a conductive substrate, a first coating composition / third coating composition / second coating composition. It may be formed by coating in order, or by coating in the order of first coating composition / second coating composition / third coating composition.
 塗布方法は、特に限定されず、例えば、エアーナイフコート法、ロールコート法、グラビアコート法、ブレードコート法、ドクターブレード法、スキージ法、ディップコート法、スプレー法、スピンコート法、インクジェット印刷法などであってもよい。また、塗布後、塗膜を所定の温度(例えば、室温~150℃程度、好ましくは50~120℃程度の温度)で乾燥させてもよい。なお、複数のコーティング組成物の塗布において、隣接する光電変換層の界面で色素が混入するのを抑制するため、コーティング組成物を塗布する工程と、塗膜を乾燥する工程とを繰り返し、光電変換層を積層してもよい。このような乾燥工程で形成された乾燥した光電変換層にさらにコーティング組成物を塗布して乾燥させることにより、隣接する光電変換層の境界領域での色素の混入を防止でき、複数の色素を厚み方向に順次に層状に明瞭に形成できる。 The coating method is not particularly limited. For example, air knife coating method, roll coating method, gravure coating method, blade coating method, doctor blade method, squeegee method, dip coating method, spray method, spin coating method, ink jet printing method, etc. It may be. Further, after coating, the coating film may be dried at a predetermined temperature (eg, room temperature to about 150 ° C., preferably about 50 to 120 ° C.). In addition, in application | coating of several coating composition, in order to suppress that a pigment | dye mixes in the interface of an adjacent photoelectric converting layer, the process of apply | coating a coating composition and the process of drying a coating film are repeated, and photoelectric conversion is carried out. Layers may be stacked. By applying a coating composition to the dried photoelectric conversion layer formed in such a drying step and drying it, it is possible to prevent mixing of the dye in the boundary region between adjacent photoelectric conversion layers, and to increase the thickness of multiple dyes. It can be clearly formed in layers sequentially in the direction.
 本発明では、高温(例えば、500℃以上)で加熱して半導体を焼結(又は焼成)することなく、高い光電変換特性(さらには、耐久性や基板に対する密着性)を有する光電変換層を形成できる。 In the present invention, a photoelectric conversion layer having high photoelectric conversion characteristics (further, durability and adhesion to a substrate) is obtained without sintering (or baking) the semiconductor by heating at a high temperature (for example, 500 ° C. or higher). Can be formed.
 積層形態の光電変換層の合計厚みは、例えば、0.1~100μm(例えば、0.5~70μm)、好ましくは1~50μm(例えば、3~30μm)、さらに好ましくは5~20μm程度であってもよい。また、各光電変換層の厚みは、積層数、色素の吸光係数などに応じて、0.01~50μm(例えば、0.5~30μm、特に1~15μm)程度の範囲から選択できる。なお、各光電変換層及び全体の厚みは、コーティング回数(積層回数)により自由に調整可能である。 The total thickness of the stacked photoelectric conversion layers is, for example, about 0.1 to 100 μm (for example, 0.5 to 70 μm), preferably 1 to 50 μm (for example, 3 to 30 μm), and more preferably about 5 to 20 μm. May be. The thickness of each photoelectric conversion layer can be selected from a range of about 0.01 to 50 μm (for example, 0.5 to 30 μm, particularly 1 to 15 μm) depending on the number of layers, the extinction coefficient of the dye, and the like. In addition, each photoelectric conversion layer and the total thickness can be freely adjusted by the number of coatings (number of laminations).
 入射光を効率よく光電変換するため、受光側の光電変換層の厚みTrと透過側の光電変換層の厚みTtとの割合は、Tr/Tt=10/90~95/5(例えば、20/80~90/10)程度の範囲から選択でき、10/90~80/20(例えば、20/80~75/25)、好ましくは30/70~70/30(例えば、40/60~65/35)程度であってもよい。受光側の光電変換層の厚みTrを大きくすると、入射光を効率よく吸収して光電変換効率を高めることができる。特に、受光側に短波長を吸収可能な光電変換層を形成し、受光側の光電変換層の厚みTrを大きくするのが好ましい。 In order to photoelectrically convert incident light, the ratio between the thickness Tr of the photoelectric conversion layer on the light receiving side and the thickness Tt of the photoelectric conversion layer on the transmission side is Tr / Tt = 10/90 to 95/5 (for example, 20 / 80/90/10) and can be selected from the range of 10/90 to 80/20 (for example, 20/80 to 75/25), preferably 30/70 to 70/30 (for example, 40/60 to 65 / 35) may be sufficient. Increasing the thickness Tr of the photoelectric conversion layer on the light receiving side can absorb incident light efficiently and increase the photoelectric conversion efficiency. In particular, it is preferable to form a photoelectric conversion layer capable of absorbing short wavelengths on the light receiving side and to increase the thickness Tr of the photoelectric conversion layer on the light receiving side.
 導電性基板上に形成された積層光電変換体(積層型色素増感光電変換体又は積層体)は、導電層と光電変換層とを有しており、光電変換素子を構成する電極(光電極)として利用できる。特に、吸収光が異なる複数の光電変換層を形成しているため、単一の構造でありながら、短波長域から長波長域に至る入射光を効率よく光電変換できる。そのため、構造がシンプルでありながら、高い変換効率を実現できる。 A laminated photoelectric conversion body (laminated dye-sensitized photoelectric conversion body or laminated body) formed on a conductive substrate has a conductive layer and a photoelectric conversion layer, and an electrode (photoelectrode) constituting a photoelectric conversion element ). In particular, since a plurality of photoelectric conversion layers having different absorption lights are formed, incident light from a short wavelength region to a long wavelength region can be efficiently photoelectrically converted while having a single structure. Therefore, high conversion efficiency can be realized while the structure is simple.
 [光電変換素子及びその製造方法]
 導電性基板上に形成された積層光電変換体(光電極)を備えた光電変換素子は、光電変換可能な種々の用途に利用でき、代表的には太陽電池(色素増感太陽電池)に利用できる。
[Photoelectric conversion element and manufacturing method thereof]
A photoelectric conversion element provided with a laminated photoelectric conversion body (photoelectrode) formed on a conductive substrate can be used for various applications capable of photoelectric conversion, and typically used for a solar cell (dye-sensitized solar cell). it can.
 太陽電池は、例えば、電極としての導電性基板上に形成された積層光電変換体と、この電極(電極の光電変換層側)に対向して配置される対極と、これらの電極間に封止された電解質相(又は電解質層)とを備えている。このような光電変換素子は、前記積層光電変換体を製造するのと同様の工程、例えば、吸収波長域又は吸収ピーク波長が互いに異なる複数の色素を、それぞれコーティング組成物に含有させ、前記色素を含有する複数のコーティング組成物を、前記導電性基板に順次にコーティングして積層する工程と、半導体を焼結させることなく、複数の光電変換層が積層された積層光電変換体を形成する工程とを含む方法により製造できる。前記電解質相(又は電解質)は、両電極の周縁部を封止剤[例えば、熱可塑性樹脂(アイオノマー樹脂など)、熱硬化性樹脂(エポキシ樹脂、シリコーン樹脂など)などを含む封止剤]で封止処理することにより、両電極間の空間又は空隙内に封入されている。 A solar cell is, for example, a laminated photoelectric conversion body formed on a conductive substrate as an electrode, a counter electrode disposed opposite to the electrode (on the photoelectric conversion layer side of the electrode), and sealed between these electrodes An electrolyte phase (or electrolyte layer). In such a photoelectric conversion element, the same process as that for producing the laminated photoelectric converter, for example, a coating composition containing a plurality of dyes having different absorption wavelength ranges or absorption peak wavelengths, A step of sequentially coating and laminating a plurality of coating compositions containing the conductive substrate, and a step of forming a laminated photoelectric conversion body in which a plurality of photoelectric conversion layers are laminated without sintering the semiconductor; It can manufacture by the method containing. The electrolyte phase (or electrolyte) is a sealant [for example, a sealant containing a thermoplastic resin (such as an ionomer resin), a thermosetting resin (such as an epoxy resin or a silicone resin)) on the periphery of both electrodes. By sealing, it is enclosed in a space or gap between both electrodes.
 なお、半導体がn型半導体であるとき、対極は正極(積層体は負極)を形成し、半導体がp型半導体であるとき、対極は負極(積層体は正極)を形成する。 When the semiconductor is an n-type semiconductor, the counter electrode forms a positive electrode (the stacked body is a negative electrode), and when the semiconductor is a p-type semiconductor, the counter electrode forms a negative electrode (the stacked body is a positive electrode).
 対極は、前記積層光電変換体と同様に、導電性基板と、この導電性基板上(又は導電性基板の導電層上)に形成された触媒層(正極触媒層又は負極触媒層)とを備えており、対極の導電層又は触媒層は、積層光電変換体(又は電極)と対向して配置される。なお、還元能力を有する導電層では、必ずしも触媒層を設ける必要はない。対極の導電性基板は、前記と同様の基板の他、ベース基板上に導電層と触媒層とを兼ね備えた層(導電触媒層)を形成した基板などであってもよい。また、触媒層(正極触媒層又は負極触媒層)は、特に限定されず、導電性金属(金、白金など)、カーボンなどで形成できる。 The counter electrode includes a conductive substrate and a catalyst layer (a positive electrode catalyst layer or a negative electrode catalyst layer) formed on the conductive substrate (or on the conductive layer of the conductive substrate) in the same manner as the stacked photoelectric conversion body. The conductive layer or the catalyst layer of the counter electrode is disposed so as to face the stacked photoelectric conversion body (or electrode). Note that a catalyst layer is not necessarily provided in a conductive layer having a reducing ability. The conductive substrate for the counter electrode may be a substrate in which a layer having both a conductive layer and a catalyst layer (conductive catalyst layer) is formed on a base substrate in addition to the same substrate as described above. The catalyst layer (positive electrode catalyst layer or negative electrode catalyst layer) is not particularly limited, and can be formed of a conductive metal (such as gold or platinum), carbon, or the like.
 触媒層(正極触媒層又は負極触媒層)は、非多孔質層(又は非多孔性層)であってもよく、多孔質層であってもよい。多孔質層(多孔質触媒層)は、多孔性触媒成分(多孔質触媒成分)で構成してもよく、多孔性成分(多孔質成分)とこの多孔性成分に担持された触媒成分とで構成してもよく、これらを組み合わせて構成してもよい。すなわち、多孔質層(多孔質触媒層)は、多孔性を有するとともに、触媒として機能する。 The catalyst layer (positive electrode catalyst layer or negative electrode catalyst layer) may be a non-porous layer (or non-porous layer) or a porous layer. The porous layer (porous catalyst layer) may be composed of a porous catalyst component (porous catalyst component), and is composed of a porous component (porous component) and a catalyst component supported on the porous component. Alternatively, these may be combined. That is, the porous layer (porous catalyst layer) has porosity and functions as a catalyst.
 多孔性触媒成分としては、例えば、金属微粒子(例えば、白金黒など)、多孔質カーボン[活性炭、グラファイト、ケッチェンブラック、ファーネスブラック、アセチレンブラックなどのカーボンブラック(カーボンブラック集合体)、カーボンナノチューブ(カーボンナノチューブ集合体)など]などが挙げられる。これらの成分は、単独で又は2種以上組み合わせてもよい。多孔質触媒成分として、活性炭などを使用してもよい。 Examples of the porous catalyst component include metal fine particles (for example, platinum black), porous carbon [carbon black (carbon black aggregate) such as activated carbon, graphite, ketjen black, furnace black, acetylene black, carbon nanotube ( Carbon nanotube aggregate)) and the like. These components may be used alone or in combination of two or more. Activated carbon or the like may be used as the porous catalyst component.
 多孔性成分としては、上記多孔質カーボンの他、金属化合物粒子[例えば、前記例示の導電性金属酸化物(例えば、錫ドープ酸化インジウムなど)の粒子(微粒子)など]などが挙げられる。これらの成分も単独で又は2種以上組み合わせてもよい。また、触媒成分としては、導電性金属(例えば、白金)などが挙げられる。 Examples of the porous component include metal compound particles [e.g., particles (fine particles) of the above-described conductive metal oxide (e.g., tin-doped indium oxide)] in addition to the porous carbon. These components may be used alone or in combination of two or more. Examples of the catalyst component include a conductive metal (for example, platinum).
 多孔性触媒成分及び多孔性成分の形状(又は形態)は、特に限定されず、粒子状、繊維状などであってもよく、好ましくは粒子状である。粒子状の多孔性触媒成分及び多孔性成分(多孔性粒子)の平均粒径は、例えば、1~1000μm(例えば、10~500μm)、好ましくは30~300μm(例えば、40~200μm)、さらに好ましくは50~150μm(例えば、70~100μm)程度であってもよい。多孔性触媒成分及び多孔性成分のBET比表面積は、例えば、1~4000m/g(例えば、20~3000m/g)、好ましくは50~2000m/g(例えば、100~1500m/g)、さらに好ましくは200~1000m/g(例えば、300~500m/g)程度であってもよい。 The shape (or form) of the porous catalyst component and the porous component is not particularly limited, and may be particulate or fibrous, and is preferably particulate. The average particle diameter of the particulate porous catalyst component and the porous component (porous particles) is, for example, 1 to 1000 μm (for example, 10 to 500 μm), preferably 30 to 300 μm (for example, 40 to 200 μm), and more preferably May be about 50 to 150 μm (for example, 70 to 100 μm). The BET specific surface area of the porous catalyst component and the porous component is, for example, 1 to 4000 m 2 / g (for example, 20 to 3000 m 2 / g), preferably 50 to 2000 m 2 / g (for example, 100 to 1500 m 2 / g). ), More preferably about 200 to 1000 m 2 / g (for example, 300 to 500 m 2 / g).
 なお、多孔質層(多孔質触媒層)は、必要に応じて、バインダー成分、例えば、樹脂成分[例えば、セルロース誘導体(メチルセルロースなど)などの熱可塑性樹脂;エポキシ樹脂などの熱硬化性樹脂]などを含んでいてもよい。バインダー成分の割合は、多孔質層(多孔質触媒層)全体に対して、例えば、0.1~50重量%(例えば、1~40重量%)、好ましくは2~30重量%(例えば、3~20重量%)、さらに好ましくは5~15重量%程度であってもよい。 The porous layer (porous catalyst layer) may be a binder component, for example, a resin component [for example, a thermoplastic resin such as a cellulose derivative (such as methylcellulose); a thermosetting resin such as an epoxy resin] or the like. May be included. The ratio of the binder component is, for example, 0.1 to 50% by weight (for example, 1 to 40% by weight), preferably 2 to 30% by weight (for example, 3%) with respect to the entire porous layer (porous catalyst layer). ˜20 wt%), more preferably about 5 to 15 wt%.
 電極(対極)は、少なくとも多孔質層を備えている場合が多く、通常、少なくとも基板(導電性基板であってもよい基板)と多孔質触媒層とを備えている。代表的な多孔質層を有する電極(対極)は、(i)導電性基板と、この導電性基板(又は導電層)上に形成され、多孔性触媒成分で構成された多孔質触媒層とを備えた電極(又は積層体)、(ii)導電性基板と、この導電性基板上に形成され、多孔性成分および触媒成分(例えば、触媒成分が担持された多孔性成分)を含む多孔質触媒層とを備えた電極(又は積層体)などであってもよい。 The electrode (counter electrode) often includes at least a porous layer, and usually includes at least a substrate (a substrate that may be a conductive substrate) and a porous catalyst layer. An electrode (counter electrode) having a representative porous layer includes (i) a conductive substrate and a porous catalyst layer formed on the conductive substrate (or conductive layer) and composed of a porous catalyst component. Electrode (or laminate) provided, (ii) a conductive substrate, and a porous catalyst formed on the conductive substrate and containing a porous component and a catalyst component (for example, a porous component carrying the catalyst component) The electrode (or laminated body) provided with the layer etc. may be sufficient.
 多孔質層(多孔質触媒層)の厚みは、例えば、0.1~100μm、好ましくは0.5~50μm、さらに好ましくは1~30μm程度であってもよい。 The thickness of the porous layer (porous catalyst layer) may be, for example, about 0.1 to 100 μm, preferably 0.5 to 50 μm, more preferably about 1 to 30 μm.
 電解質層は、電解質と溶媒とを含む電解液で形成してもよく、電解質を含む固体層(又はゲル)で形成してもよい。電解液の電解質としては、特に限定されず、汎用の電解質、例えば、ハロゲン(ハロゲン分子)とハロゲン化物塩との組み合わせ[例えば、臭素と臭化物塩との組み合わせ、ヨウ素とヨウ化物塩との組み合わせなど]などが挙げられる。ハロゲン化物塩を構成するカウンターイオン(カチオン)としては、金属イオン[例えば、アルカリ金属イオン(例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、セシウムイオンなど)、アルカリ土類金属イオン(例えば、マグネシウムイオン、カルシウムイオンなど)など]、第4級アンモニウムイオン[テトラアルキルアンモニウム塩、ピリジニウム塩、イミダゾリウム塩(例えば、1,2-ジメチル-3-プロピルイミダゾリウム塩)など]などが挙げられる。電解質は、単独で又は2種以上組み合わせてもよい。 The electrolyte layer may be formed of an electrolytic solution containing an electrolyte and a solvent, or may be formed of a solid layer (or gel) containing an electrolyte. The electrolyte of the electrolytic solution is not particularly limited, and is a general-purpose electrolyte, for example, a combination of a halogen (halogen molecule) and a halide salt [for example, a combination of bromine and bromide salt, a combination of iodine and iodide salt, etc. ] Etc. are mentioned. Counter ions (cations) constituting the halide salt include metal ions [for example, alkali metal ions (for example, lithium ions, sodium ions, potassium ions, cesium ions, etc.), alkaline earth metal ions (for example, magnesium ions, Quaternary ammonium ion [tetraalkylammonium salt, pyridinium salt, imidazolium salt (eg, 1,2-dimethyl-3-propylimidazolium salt)] and the like. The electrolytes may be used alone or in combination of two or more.
 好ましい電解質には、ヨウ素とヨウ化物塩との組み合わせ、特に、ヨウ素と、ヨウ化金属塩[例えば、アルカリ金属塩(ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウムなど]や第4級アンモニウム塩などとの組み合わせが挙げられる。 Preferred electrolytes include combinations of iodine and iodide salts, particularly iodine and metal iodide salts [for example, alkali metal salts (lithium iodide, sodium iodide, potassium iodide, etc.), quaternary ammonium salts, etc. And the combination.
 電解液の溶媒としては、特に限定されず、例えば、アルコール類(例えば、メタノール、エタノール、ブタノールなどのアルカノール類;エチレングリコール、ジエチレングリコール、ポリエチレングリコールなどのグリコール類)、ニトリル類(アセトニトリル、メトキシアセトニトリル、プロピオニトリル、バレロニトリル、3-メトキシプロピオニトリル、ベンゾニトリルなど)、カーボネート類(エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネートなど)、ラクトン類(γ-ブチロラクトンなど)、エーテル類(1,2-ジメトキシエタン、ジメチルエーテル、ジエチルエーテルなどの鎖状エーテル類;テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキソラン、4-メチルジオキソランなどの環状エーテル類)、スルホラン類(スルホランなど)、スルホキシド類(ジメチルスルホキシドなど)、アミド類(N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなど)、水などが挙げられる。溶媒は単独で又は2種以上組み合わせてもよい。 The solvent of the electrolytic solution is not particularly limited, and examples thereof include alcohols (for example, alkanols such as methanol, ethanol, and butanol; glycols such as ethylene glycol, diethylene glycol, and polyethylene glycol), and nitriles (acetonitrile, methoxyacetonitrile, Propionitrile, valeronitrile, 3-methoxypropionitrile, benzonitrile, etc.), carbonates (ethylene carbonate, propylene carbonate, diethyl carbonate, etc.), lactones (γ-butyrolactone, etc.), ethers (1,2-dimethoxy) Chain ethers such as ethane, dimethyl ether and diethyl ether; rings such as tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane and 4-methyldioxolane Ethers), sulfolane (such as sulfolane), sulfoxides (dimethyl sulfoxide, etc.), amides (N, N-dimethylformamide, N, N- dimethylacetamide, etc.), and water. The solvents may be used alone or in combination of two or more.
 なお、前記のように、イオン性ポリマーのpHを調整する場合、光電変換素子においてもイオン性ポリマーのpHを前記と同様の範囲に調整してもよい。このようなpH調整の観点から、電解液の成分はpH調整に影響を及ぼさない成分を好適に使用してもよい。例えば、電解液として、中性溶媒又は非酸性溶媒(又は非プロトン性溶媒)を好適に使用してもよい。 As described above, when the pH of the ionic polymer is adjusted, the pH of the ionic polymer may be adjusted in the same range as described above also in the photoelectric conversion element. From the viewpoint of such pH adjustment, a component that does not affect pH adjustment may be suitably used as the component of the electrolytic solution. For example, a neutral solvent or a non-acidic solvent (or an aprotic solvent) may be suitably used as the electrolytic solution.
 なお、電解液において、電解質の濃度は、例えば、0.01~10M、好ましくは0.03~8M、さらに好ましくは0.05~5M程度であってもよい。また、ハロゲン(ヨウ素など)とハロゲン化物塩(ヨウ化物塩など)とを組み合わせる場合、これらの割合は、ハロゲン/ハロゲン化物塩(モル比)=1/0.5~1/100、好ましくは1/1~1/50、さらに好ましくは1/2~1/30程度であってもよい。 In the electrolytic solution, the concentration of the electrolyte may be, for example, about 0.01 to 10M, preferably 0.03 to 8M, and more preferably about 0.05 to 5M. Further, when a halogen (iodine etc.) and a halide salt (iodide salt etc.) are combined, the ratio thereof is halogen / halide salt (molar ratio) = 1 / 0.5 to 1/100, preferably 1 / 1 to 1/50, more preferably about 1/2 to 1/30.
 また、固体層の電解質としては、前記例示の電解質の他、固体状電解質{例えば、樹脂成分[例えば、チオフェン系重合体(例えば、ポリチオフェンなど)、カルバゾール系重合体(例えば、ポリ(N-ビニルカルバゾール)など)など]、低分子有機成分(例えば、ナフタレン、アントラセン、フタロシアニンなど)などの有機固体成分;ヨウ化銀などの無機固体成分など}などが挙げられる。これらの成分は、単独で又は2種以上組み合わせてもよい。 In addition to the electrolytes exemplified above, solid electrolytes {eg, resin components [eg, thiophene polymers (eg, polythiophene)], carbazole polymers (eg, poly (N-vinyl) Carbazole) and the like], organic solid components such as low molecular weight organic components (eg, naphthalene, anthracene, phthalocyanine, etc.); inorganic solid components such as silver iodide} and the like. These components may be used alone or in combination of two or more.
 なお、固体層は、前記電解質や電解液をゲル基材[例えば、熱可塑性樹脂(ポリエチレングリコール、ポリメチルメタクリレートなど)、熱硬化性樹脂(エポキシ樹脂など)など]に保持させた固体層であってもよい。 The solid layer is a solid layer in which the electrolyte or electrolytic solution is held on a gel base material [for example, thermoplastic resin (polyethylene glycol, polymethyl methacrylate, etc.), thermosetting resin (epoxy resin, etc.), etc.]. May be.
 このような構造の光電変換素子は、単一の素子でありながら、短波長域から長波長域に至るまでの広い波長域を吸収して効率よく光電変換でき、太陽電池として適している。また、複数のセルを配設したタンデム型光電変換素子に比べて、極めてシンプルな構造で、光電変換効率を向上できる。さらに、吸収波長の異なる光電変換層の間に電極基板、電解液などが介在しないため、光吸収の損失が少なく、高価な導電性基板などの部材を削減でき、光電変換素子を安価に製造できる。 Although the photoelectric conversion element having such a structure is a single element, it can absorb a wide wavelength range from a short wavelength range to a long wavelength range and efficiently perform photoelectric conversion, and is suitable as a solar cell. In addition, compared with a tandem photoelectric conversion element in which a plurality of cells are arranged, the photoelectric conversion efficiency can be improved with a very simple structure. Furthermore, since no electrode substrate, electrolyte, or the like is interposed between photoelectric conversion layers having different absorption wavelengths, there is little loss of light absorption, members such as expensive conductive substrates can be reduced, and photoelectric conversion elements can be manufactured at low cost. .
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
 (実施例1)
 アニオン性ポリマー(5重量%ナフィオン分散液(デュポン社製、「nafion DE520」、イオン交換容量0.9meq/g、pH(25℃)=1、1分子当たりの占有面積約0.024nm))をイソプロピルアルコールで2倍希釈した後、5重量%水酸化リチウム水溶液(水酸化リチウム(東京化成(株)製)をイオン交換水に溶解させて調製)で中和してpH7の2.5重量%ナフィオン分散液を調製した。
(Example 1)
Anionic polymer (5% by weight Nafion dispersion (manufactured by DuPont, “nafion DE520”, ion exchange capacity 0.9 meq / g, pH (25 ° C.) = 1, occupied area per molecule about 0.024 nm 2 )) Was diluted with isopropyl alcohol twice and neutralized with a 5 wt% aqueous lithium hydroxide solution (prepared by dissolving lithium hydroxide (manufactured by Tokyo Chemical Industry Co., Ltd.) in ion-exchanged water) to give 2.5 wt. % Nafion dispersion was prepared.
 この2.5重量%ナフィオン分散液200重量部に「N719」色素(solaronix社製、分子量1188.57、1分子あたりの占有面積約1nm)0.9重量部を添加して溶解させた後、酸化チタン粒子(日本アエロジル(株)製、「P25」、平均一次粒子径30nm、比表面積約40m/g、アナターゼ型/ルチル型=80/20(重量比)の混合物)30重量部を添加し、混合して光電変換インク1(短波長吸収用インク)を調製した。 After adding and dissolving 0.9 parts by weight of “N719” dye (solaronix, molecular weight: 1188.57, occupied area of about 1 nm 2 per molecule) in 200 parts by weight of this 2.5% by weight Nafion dispersion. , 30 parts by weight of titanium oxide particles (mixture of Nippon Aerosil Co., Ltd., “P25”, average primary particle size 30 nm, specific surface area about 40 m 2 / g, anatase type / rutile type = 80/20 (weight ratio)) It added and mixed and the photoelectric conversion ink 1 (ink for short wavelength absorption) was prepared.
 また「N719」色素に代えて「N749」色素(solaronix社製、分子量1188.57、1分子あたりの占有面積約1nm)を用いる以外、上記と同様にして光電変換インク2(長波長吸収用インク)を調製した。 Further, in place of the “N719” dye, the “N749” dye (manufactured by solaronix, molecular weight 1188.57, occupied area of about 1 nm 2 per molecule) was used in the same manner as described above, and the photoelectric conversion ink 2 (for long wavelength absorption) Ink) was prepared.
 得られた光電変換インク1を、スキージ法によりITO付ガラス基板(ジオマテック製、サイズ12mm×25mm、表面抵抗10Ω/□)のITO層側に塗布した後、大気中90℃で乾燥して光電変換層1(短波長吸収層)を形成した。続いて光電変換層1の上に光電変換インク2をスキージ法により塗布した後、大気中90℃で乾燥させて光電変換層2(長波長吸収層)を形成した。積層した光電変換層を所定のサイズ(4mm×4mm)にカットして余分な膜を除去し、厚み10μm(光電変換層1の厚み6μm、光電変換層2の厚み4μm)の積層型光電変換層を形成した。 The obtained photoelectric conversion ink 1 was applied to the ITO layer side of a glass substrate with ITO (Geomatec, size 12 mm × 25 mm, surface resistance 10Ω / □) by a squeegee method, and then dried at 90 ° C. in the atmosphere to perform photoelectric conversion. Layer 1 (short wavelength absorption layer) was formed. Subsequently, the photoelectric conversion ink 2 was applied on the photoelectric conversion layer 1 by the squeegee method, and then dried in the atmosphere at 90 ° C. to form the photoelectric conversion layer 2 (long wavelength absorption layer). The laminated photoelectric conversion layer is cut into a predetermined size (4 mm × 4 mm) to remove an excess film, and a laminated photoelectric conversion layer having a thickness of 10 μm (photoelectric conversion layer 1 thickness 6 μm, photoelectric conversion layer 2 thickness 4 μm). Formed.
 積層型光電変換層に対する対極として、ITO付ガラス基板(ジオマテック(株)製、10Ω/□)のITO層に、スパッタリング法により厚み0.003μmの白金薄膜(電極)を形成した。 As a counter electrode for the laminated photoelectric conversion layer, a platinum thin film (electrode) having a thickness of 0.003 μm was formed on the ITO layer of a glass substrate with ITO (manufactured by Geomatic Co., Ltd., 10Ω / □) by a sputtering method.
 両ガラス基板の周囲にスペーサ(三井・デュポンポリケミカル(株)製、「ハイミラン」)を配して、積層型光電変換層の光電変換層側)と対極の白金薄膜とを対向させ、両電極間に形成された空隙(又は封止材で封止された空間)内に電解液を充填し、電解液注入口をエポキシ樹脂で塞ぎ、色素増感太陽電池を作製した。なお、電解液には、ヨウ素0.05M、ヨウ化リチウム0.1M、1,2-ジメチル-3-プロピルイミダゾリウムヨージド0.5M、4-tert-ブチルピリジン0.5Mを含むアセトニトリル溶液を用いた。 Spacers (Mitsui / DuPont Polychemical Co., Ltd., “High Milan”) are placed around both glass substrates, and the photoelectric conversion layer side of the laminated photoelectric conversion layer is opposed to the counter electrode platinum thin film. A space (or a space sealed with a sealing material) formed between them was filled with an electrolytic solution, and the electrolytic solution injection port was closed with an epoxy resin to produce a dye-sensitized solar cell. The electrolyte solution was an acetonitrile solution containing 0.05M iodine, 0.1M lithium iodide, 0.5M 1,2-dimethyl-3-propylimidazolium iodide, 0.5M 4-tert-butylpyridine. Using.
 (比較例1)
 実施例1で調製した光電変換インク1(「N719」色素、短波長吸収用)をスキージ法によりITO付ガラス基板のITO層側に塗布した後、大気中90℃で乾燥して光電変換層1(短波長吸収層)を形成し、実施例1と同様に光電変換層をカットし、厚み10μm(光電変換層1の厚み10μm)の光電変換層を有する色素増感太陽電池を得た。
(Comparative Example 1)
The photoelectric conversion ink 1 prepared in Example 1 (“N719” dye, for short wavelength absorption) was applied to the ITO layer side of the glass substrate with ITO by the squeegee method, and then dried in the atmosphere at 90 ° C. to obtain the photoelectric conversion layer 1. (Short wavelength absorption layer) was formed, the photoelectric conversion layer was cut in the same manner as in Example 1, and a dye-sensitized solar cell having a photoelectric conversion layer having a thickness of 10 μm (thickness of photoelectric conversion layer 1 of 10 μm) was obtained.
 (比較例2)
 比較例1の光電変換インク1に代えて、実施例1で調製した光電変換インク2(「N749」色素、長波長吸収用)を用いる以外、上記比較例1と同様にして色素増感太陽電池を作製した。
(Comparative Example 2)
A dye-sensitized solar cell was prepared in the same manner as in Comparative Example 1 except that the photoelectric conversion ink 2 prepared in Example 1 (“N749” dye, for long wavelength absorption) was used instead of the photoelectric conversion ink 1 in Comparative Example 1. Was made.
 (実施例2)
 実施例1において、N719色素に代えて、MK-2色素(綜研化学(株)製)を用い、光電変換層1の厚みを3μm、光電変換層2の厚みを7μmとする以外は実施例1と同様にして、色素増感太陽電池を作製した。
(Example 2)
In Example 1, MK-2 dye (manufactured by Soken Chemical Co., Ltd.) was used instead of N719 dye, and the thickness of the photoelectric conversion layer 1 was 3 μm and the thickness of the photoelectric conversion layer 2 was 7 μm. In the same manner as above, a dye-sensitized solar cell was produced.
 実施例1,2及び比較例1,2で得られた色素増感太陽電池をソーラーシミュレーター(三永電機製作所(株)製「XES-301S+EL-100」)を用い、AM 1.5、100mW/cm、25℃の条件で評価した。得られた色素増感太陽電池の出力特性を図1に示す。 The dye-sensitized solar cells obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were subjected to AM 1.5, 100 mW / mm using a solar simulator (“XES-301S + EL-100” manufactured by Mitsunaga Electric Co., Ltd.). Evaluation was performed under conditions of cm 2 and 25 ° C. The output characteristics of the obtained dye-sensitized solar cell are shown in FIG.
 図1から明らかなように、積層型光電変換層を形成すると、光電変換効率を大きく向上できる。 As is clear from FIG. 1, when a stacked photoelectric conversion layer is formed, the photoelectric conversion efficiency can be greatly improved.
 (実施例3)
 実施例1において、ITO付きガラス基板に代えて、ITO付ポリエチレンテレフタレート(PET)フィルム(アルドリッチ社製、サイズ30×50mm、ITO層の厚み0.12μm)を用いる以外は実施例1と同様にして、色素増感太陽電池を作製したところ、実施例1と同様の出力特性が得られた。
(Example 3)
In Example 1, instead of the glass substrate with ITO, a polyethylene terephthalate (PET) film with ITO (manufactured by Aldrich, size 30 × 50 mm, thickness of ITO layer 0.12 μm) was used in the same manner as in Example 1. When a dye-sensitized solar cell was produced, the same output characteristics as in Example 1 were obtained.
 本発明の積層型光電変換体(積層体)は、吸収波長の異なる複数の光電変換層を有しており、光電変換素子(色素増感太陽電池など)を形成するのに有用である。さらに、焼結することなく、コーティングにより積層型光電変換体(積層体)を形成できるため、光電変換層又は光電変換素子を容易に形成できる。 The laminated photoelectric conversion body (laminated body) of the present invention has a plurality of photoelectric conversion layers having different absorption wavelengths, and is useful for forming a photoelectric conversion element (such as a dye-sensitized solar cell). Furthermore, since a stacked photoelectric conversion body (laminated body) can be formed by coating without sintering, a photoelectric conversion layer or a photoelectric conversion element can be easily formed.

Claims (9)

  1.  半導体とイオン性ポリマーと色素とを含む光電変換層が積層された積層光電変換体であって、前記積層光電変換体が、複数の前記光電変換層の積層により形成され、各光電変換層に含まれる色素の吸収波長域又は吸収ピーク波長が異なっている積層光電変換体。 A laminated photoelectric conversion body in which photoelectric conversion layers including a semiconductor, an ionic polymer, and a dye are stacked, wherein the stacked photoelectric conversion body is formed by stacking a plurality of the photoelectric conversion layers and is included in each photoelectric conversion layer Laminated photoelectric converters having different absorption wavelength ranges or absorption peak wavelengths.
  2.  受光側に短波長域を吸収可能な色素を含む光電変換層が形成され、透過側に長波長域を吸収可能な色素を含む光電変換層が形成されている請求項1記載の積層光電変換体。 The laminated photoelectric conversion body according to claim 1, wherein a photoelectric conversion layer containing a dye capable of absorbing a short wavelength region is formed on the light receiving side, and a photoelectric conversion layer containing a dye capable of absorbing a long wavelength region is formed on the transmission side. .
  3.  コーティングにより形成された複数の光電変換層において、受光側の光電変換層が300~600nmに吸収ピーク波長を有する第1の色素を含有し、受光側と反対側の光電変換層が550~800nmに吸収ピーク波長を有する第2の色素を含有し、第1の色素の吸収ピーク波長が第2の色素の吸収ピーク波長よりも10nm以上短波長である請求項1又は2記載の積層光電変換体。 In the plurality of photoelectric conversion layers formed by coating, the light-receiving side photoelectric conversion layer contains a first dye having an absorption peak wavelength at 300 to 600 nm, and the photoelectric conversion layer opposite to the light-receiving side has a thickness of 550 to 800 nm. 3. The laminated photoelectric converter according to claim 1, comprising a second dye having an absorption peak wavelength, wherein the absorption peak wavelength of the first dye is 10 nm or more shorter than the absorption peak wavelength of the second dye.
  4.  半導体が、酸化チタンナノ粒子、酸化亜鉛ナノ粒子、酸化スズナノ粒子から選択された少なくとも1種を含み、イオン性ポリマーがスルホ基を有するフッ素含有樹脂を含み、イオン性ポリマーの割合が、半導体100重量部に対して1~100重量部である請求項1~3のいずれかに記載の積層光電変換体。 The semiconductor contains at least one selected from titanium oxide nanoparticles, zinc oxide nanoparticles, and tin oxide nanoparticles, the ionic polymer contains a fluorine-containing resin having a sulfo group, and the proportion of the ionic polymer is 100 parts by weight of the semiconductor The laminated photoelectric conversion body according to any one of claims 1 to 3, wherein the amount is 1 to 100 parts by weight based on the weight.
  5.  半導体とイオン性ポリマーと色素とを含み、導電性基板に、複数の光電変換層を形成するためのコーティング組成物のセットであって、複数のコーティング組成物が、それぞれ、互いに異なる吸収波長域又は吸収ピーク波長を有する色素を含有している複数のコーティング組成物のセット。 A set of a coating composition for forming a plurality of photoelectric conversion layers on a conductive substrate, comprising a semiconductor, an ionic polymer, and a dye, wherein the plurality of coating compositions each have a different absorption wavelength range or A set of a plurality of coating compositions containing a dye having an absorption peak wavelength.
  6.  導電性基板に、半導体とイオン性ポリマーと色素とを含む複数のコーティング組成物を塗布し、光電変換層を形成する方法において、各コーティング剤に含まれる色素の吸収波長域又は吸収ピーク波長が互いに異なっており、前記複数のコーティング組成物を、導電性基板に順次にコーティングして積層し、焼結させることなく、積層光電変換体を製造する方法。 In a method of applying a plurality of coating compositions containing a semiconductor, an ionic polymer, and a dye to a conductive substrate to form a photoelectric conversion layer, the absorption wavelength range or absorption peak wavelength of the dye contained in each coating agent is mutually A method for producing a laminated photoelectric converter without coating the plurality of coating compositions sequentially on a conductive substrate, laminating and sintering.
  7.  請求項1~4のいずれかに記載の積層光電変換体を備えている光電変換素子。 A photoelectric conversion element comprising the laminated photoelectric conversion body according to any one of claims 1 to 4.
  8.  電極としての導電性基板上に形成された請求項1~4のいずれかに記載の積層光電変換体と、前記電極に対向して配置される対極と、これらの電極間に封止された電解質相とを備えた請求項7記載の光電変換素子。 The laminated photoelectric conversion body according to any one of claims 1 to 4, formed on a conductive substrate as an electrode, a counter electrode disposed to face the electrode, and an electrolyte sealed between these electrodes The photoelectric conversion element of Claim 7 provided with the phase.
  9.  電極としての導電性基板上に形成された光電変換層と、前記電極に対向して配置される対極と、これらの電極間に封止された電解質相とを備えた光電変換素子の製造方法であって、半導体とイオン性ポリマーと色素とを含み、各コーティング剤に含まれる色素の吸収波長域又は吸収ピーク波長が互いに異なる複数のコーティング組成物を、導電性基板に順次にコーティングして積層する工程と、焼結させることなく、複数の光電変換層が積層された積層光電変換体を形成する工程とを含む光電変換素子の製造方法。 A method for producing a photoelectric conversion element comprising a photoelectric conversion layer formed on a conductive substrate as an electrode, a counter electrode disposed opposite to the electrode, and an electrolyte phase sealed between the electrodes. A plurality of coating compositions containing a semiconductor, an ionic polymer, and a dye and having different absorption wavelength ranges or absorption peak wavelengths of the dye contained in each coating agent are sequentially coated and laminated on the conductive substrate. The manufacturing method of a photoelectric conversion element including the process and the process of forming the laminated photoelectric conversion body by which the several photoelectric converting layer was laminated | stacked, without making it sinter.
PCT/JP2015/067699 2014-08-06 2015-06-19 Photoelectric conversion layer and photoelectric conversion element provided with same WO2016021308A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-160602 2014-08-06
JP2014160602A JP2016039212A (en) 2014-08-06 2014-08-06 Photoelectric conversion layer and photoelectric conversion element including the same

Publications (1)

Publication Number Publication Date
WO2016021308A1 true WO2016021308A1 (en) 2016-02-11

Family

ID=55263586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067699 WO2016021308A1 (en) 2014-08-06 2015-06-19 Photoelectric conversion layer and photoelectric conversion element provided with same

Country Status (3)

Country Link
JP (1) JP2016039212A (en)
TW (1) TW201606827A (en)
WO (1) WO2016021308A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6885202B2 (en) * 2017-06-02 2021-06-09 日本精工株式会社 Manufacturing method of photoelectric conversion element
JP2023082409A (en) * 2021-12-02 2023-06-14 株式会社ダイセル Paste for photoelectric conversion layer and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243466A (en) * 1999-02-23 2000-09-08 Aisin Seiki Co Ltd Photoelectric transducer
WO2014013734A1 (en) * 2012-07-18 2014-01-23 東京エレクトロン株式会社 Method for manufacturing dye-sensitized solar cell, and dye-sensitized solar cell
WO2014017536A1 (en) * 2012-07-27 2014-01-30 株式会社ダイセル Photoelectric conversion layer composition and photoelectric conversion element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243466A (en) * 1999-02-23 2000-09-08 Aisin Seiki Co Ltd Photoelectric transducer
WO2014013734A1 (en) * 2012-07-18 2014-01-23 東京エレクトロン株式会社 Method for manufacturing dye-sensitized solar cell, and dye-sensitized solar cell
WO2014017536A1 (en) * 2012-07-27 2014-01-30 株式会社ダイセル Photoelectric conversion layer composition and photoelectric conversion element

Also Published As

Publication number Publication date
TW201606827A (en) 2016-02-16
JP2016039212A (en) 2016-03-22

Similar Documents

Publication Publication Date Title
US10366842B2 (en) Dye-sensitized solar cell and method for manufacturing thereof
JP5191647B2 (en) Titanium oxide film, titanium oxide film electrode film structure, and dye-sensitized solar cell
US7790980B2 (en) Dye for dye sensitized photovoltaic cell and dye sensitized photovoltaic cell prepared using the same
KR20080094021A (en) Dye sensitization photoelectric converter
JP2005235725A (en) Dye-sensitized solar cell module
JP6082007B2 (en) Composition for photoelectric conversion layer and photoelectric conversion element
JP2006024574A (en) Dye-sensitized solar cell module
JP6082006B2 (en) Composition for photoelectric conversion layer and photoelectric conversion element
WO2012101939A1 (en) Dye-sensitized solar cell and method for manufacturing same
WO2016021308A1 (en) Photoelectric conversion layer and photoelectric conversion element provided with same
JP6310178B2 (en) Composition for photoelectric conversion element and photoelectric conversion element
JP2011228312A (en) Functional device
JP5095148B2 (en) Working electrode substrate and photoelectric conversion element
JP6487218B2 (en) Photoelectric conversion layer and photoelectric conversion element provided with the same
JP2003297445A (en) Coating composition for photoelectric conversion element
US20150122322A1 (en) Wet-type solar cell and wet-type solar cell module
JP2012156070A (en) Method for forming photocatalyst film in dye-sensitized solar battery, and dye-sensitized solar battery
JP2017220509A (en) Photoelectric conversion element
WO2012070562A1 (en) Photoelectric transducer and production method therefor
JP2013200960A (en) Photoelectric conversion element module and manufacturing method thereof
JP2011222430A (en) Method of forming photocatalyst film in dye-sensitized solar cell
JP2012156071A (en) Method for forming photocatalyst film in dye-sensitized solar battery, and dye-sensitized solar battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15830439

Country of ref document: EP

Kind code of ref document: A1