WO2016021032A1 - Projecting display device - Google Patents

Projecting display device Download PDF

Info

Publication number
WO2016021032A1
WO2016021032A1 PCT/JP2014/070948 JP2014070948W WO2016021032A1 WO 2016021032 A1 WO2016021032 A1 WO 2016021032A1 JP 2014070948 W JP2014070948 W JP 2014070948W WO 2016021032 A1 WO2016021032 A1 WO 2016021032A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing plate
light
duct
substrate member
display device
Prior art date
Application number
PCT/JP2014/070948
Other languages
French (fr)
Japanese (ja)
Inventor
片山 猛
勇人 清水
近藤 義広
哲樹 西村
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to PCT/JP2014/070948 priority Critical patent/WO2016021032A1/en
Publication of WO2016021032A1 publication Critical patent/WO2016021032A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating

Definitions

  • the present invention relates to a projection display device, for example, a liquid crystal projection display device that projects an image on a screen using a liquid crystal panel.
  • a projection display device In a projection display device, light from a light source is irradiated onto a liquid crystal panel, etc., and light intensity modulation (also referred to as spatial light modulation) that changes the intensity of light for each pixel is performed on the liquid crystal panel.
  • light intensity modulation also referred to as spatial light modulation
  • There is a liquid crystal projection display device (hereinafter also referred to as a liquid crystal projector) that enlarges and projects the optical image onto a screen or the like.
  • liquid crystal projectors are desired from the market to improve image quality by reducing the size of the housing and increasing the brightness of the light source.
  • the downsizing of the casing causes an increase in heat generation density due to the heat generating components and a decrease in the amount of cooling air due to an increase in pressure loss, and the increase in brightness leads to an increase in temperature of the liquid crystal panel and the like due to an increase in light energy. Therefore, if sufficient cooling means is not used, the image quality is deteriorated. Therefore, it is essential to develop a cooling structure capable of improving the cooling efficiency in order to meet the market needs.
  • the duct tip is a nozzle type and a fan having high pressure is required, the cost of the fan is increased, and further problems such as increased fan noise occur.
  • An object of the present invention is to provide a technique capable of improving the performance of a projection display device.
  • the projection type display device of the present invention is combined with a light source, a polarizing plate and a substrate member that change the intensity of light emitted from the light source, and a light combining unit that combines light passing through the polarizing plate and the substrate member.
  • a fan that supplies air to at least one of the polarizing plate and the substrate member. Further, the air is guided to at least one of the polarizing plate and the substrate member, and a duct disposed obliquely with respect to the light passage surface of at least one of the polarizing plate and the substrate member is provided.
  • the first opening for blowing out the air of the duct is formed elongated along the lateral width of the polarizing plate or the substrate member.
  • the projection type display device of the present invention is combined with a light source, a polarizing plate and a substrate member that change the intensity of light emitted from the light source, and a light combining unit that combines light passing through the polarizing plate and the substrate member. And a fan that supplies air to at least one of the polarizing plate and the substrate member. Further, the air is guided to at least one of the polarizing plate and the substrate member, and a duct disposed obliquely with respect to the light passage surface of at least one of the polarizing plate and the substrate member is provided. Have.
  • the first opening for blowing out the air of the duct is formed to be elongated along the lateral width of the polarizing plate or the substrate member, and the air blown out of the duct is out of the polarizing plate and the substrate member.
  • the duct is arranged so as to hit at least one of the light passage surfaces in the center in the height direction.
  • the projection type display device of the present invention is combined with a light source, a polarizing plate and a substrate member that change the intensity of light emitted from the light source, and a light combining unit that combines light passing through the polarizing plate and the substrate member.
  • a fan that supplies air to at least one of the polarizing plate and the substrate member.
  • it has a duct for guiding the air to at least one of the polarizing plate and the substrate member.
  • the polarizing plate or the substrate member has the air blown from the duct, It arrange
  • the performance and reliability of the projection display device can be improved.
  • FIG. 2 is a perspective view showing an example of an internal structure in which the upper housing and the drive substrate are removed from the projection display device shown in FIG. 1.
  • FIG. 2 is a perspective view showing an example of an internal structure in which an upper casing, a drive substrate, and a projection optical system are removed from the projection display device shown in FIG. 1.
  • It is a top view which shows an example of a structure of the prism unit in the projection type display apparatus shown in FIG.
  • FIG. 8 is a partially enlarged perspective view showing an example of the structure near the tip of the duct shown in FIG. 7.
  • FIG. 7 It is a block diagram which shows the blowing state of the air by the duct of the modification of Embodiment 1 of this invention.
  • FIG. 7 It is a block diagram which shows the test method which confirms the effect at the time of using the duct of Embodiment 1 of this invention.
  • FIG. 2 It is a fragmentary perspective view which shows the blowing state of the air by the nozzle type duct which this inventor performed comparative examination.
  • the constituent elements are not necessarily indispensable unless otherwise specified and clearly considered essential in principle. Needless to say.
  • FIG. 1 is a plan view showing an example of a schematic structure of a projection optical system in the projection display apparatus according to Embodiment 1 of the present invention.
  • the incident side polarizing plate 7a, the outgoing side polarizing plate 7b, and the liquid crystal panel 6 absorb light that could not be transmitted or reflected and generate heat. Since these optical components have a low allowable temperature, they are cooled by cooling air 72 guided to the optical components through a ventilation duct (see FIG. 2) 71 using a panel cooling fan (fan) 70.
  • FIGS. 2 is a perspective view showing an example of an internal structure in which the upper housing and the drive substrate are removed from the projection display device shown in FIG. 1
  • FIG. 3 is a perspective view showing the upper housing, the drive substrate, and the projection in the projection display device shown in FIG. It is a perspective view which shows an example of the internal structure which removed the optical system.
  • the optical component on which the B light and the G light are incident may be cooled by the B panel cooling fan 70a, or the optical component on which the R light is incident may be cooled by the RG panel cooling fan 70b. It is also possible to cool with separate fans.
  • the size of the ventilation duct discharge port 71b (71bR, 71bG, 71bB) is such that the incident side polarizing plate 7a (7aR, 7aG, 7aB), the outgoing side polarizing plate 7b (7bR, 7bG, 7bB), the liquid crystal panel 6 (6R, 6G, 6B) is determined in consideration of all temperature balances.
  • FIG. 5 is a configuration diagram showing a state of blowing air by a nozzle-type duct that the present inventor has compared and examined.
  • liquid crystal panel 6 for R light and B light and the polarizing plates 7a and 7b are not shown, and only the cross section of the G optical path at the same position as the AA cross section of FIG. 4 is shown.
  • the nozzle-type duct 101 described here is formed so that the cross-sectional area at the outlet 102 at the tip thereof is narrower than the side cross-sectional area (the cross-sectional area on the base end side) of the inlet of the nozzle-type duct 101. It has been done. That is, the outlet 102 has a shape that is tapered (see FIG. 6 described later) in both the vertical direction and the horizontal direction. Accordingly, in the nozzle type duct 101, the air 73 blown out from the blowout opening 102 hits the incident side polarizing plate 7a and the like locally.
  • the duct 105 shown in FIG. 7 guides the air 73 blown out from the opening (first opening) 103 to at least one of the polarizing plate 7 and the liquid crystal panel 6.
  • the air 73 is disposed so as to be obliquely applied to at least one of the light passage surfaces.
  • the duct 105 has a tapered shape in which the height direction (H) is smaller in the height direction (H) than the width direction (I) of the duct 105 toward the opening 103 at the tip. It is. That is, the opening 103 at the tip has a horizontally long shape and the duct 105 has a tapered shape (the rectangular width of the opening 103 is larger in the horizontal width 103b than in the vertical width 103a).
  • the shape of the opening 103 at the tip of the duct 105 disposed obliquely with respect to the irradiated object is an elongated shape along the horizontal direction.
  • the wind speed and directivity of the air 73 can be improved.
  • the air 73 hitting the liquid crystal panel 6 or the polarizing plate 7 from the oblique direction flows along the surface of the liquid crystal panel 6 or the polarizing plate 7 so as to rub the surface, and as a result,
  • the heat transfer performance (cooling efficiency) of the entire surface of the liquid crystal panel 6 and the polarizing plate 7 can be enhanced.
  • the performance of the liquid crystal projector 1 of the first embodiment can be improved.
  • the air 73 blown out from the opening 103 of the duct 105 is the center where the liquid crystal panel 6 (or the polarizing plate 7) generates the largest amount of heat.
  • the duct 105 is arranged so as to hit the vicinity.
  • the duct 105 is arranged so that the air 73 blown out from the opening 103 formed in an elongated shape hits the central portion in the height direction of the light passage surface 6a of the liquid crystal panel 6 (or the polarizing plate 7).
  • the central portion in the height direction of the light passage surface 6a of the liquid crystal panel 6 is the center of three regions obtained by dividing the height into three equal parts in the height direction of the liquid crystal panel 6, as shown in FIG. (In FIG. 7, the region between T1 and T2). That is, the duct 105 is arranged so that the air 73 hits the region (center portion) between T1 and T2 of the light passage surface 6a of the liquid crystal panel 6.
  • the air 73 can be applied to the central portion of the liquid crystal panel 6 (or the polarizing plate 7) in the height direction where the heat generation amount is the largest, and the cooling efficiency of the liquid crystal panel 6 (or the polarizing plate 7) can be increased. .
  • the performance and reliability of the liquid crystal projector 1 can be improved, noise reduction and cost reduction can be achieved.
  • the duct 105 has a temperature relative to the incident side polarizing plate 7a, the outgoing side polarizing plate 7b, and the liquid crystal panel 6 for the R light, G light, and B light shown in FIG. It may be installed for parts that need to be reduced. That is, it may be used in combination with cooling by the parallel flow 75 from the ventilation duct discharge port 71bG shown in FIG. Specifically, if the nozzle type duct 101 shown in FIG. 5 is replaced with the duct 105 of the first embodiment, cooling using the duct 105 is employed only for cooling the light incident surface side of the incident side polarizing plate 7a, For the remaining parts, cooling by parallel flow 75 may be employed.
  • FIG. 9 is a configuration diagram showing a state in which air is blown by a duct according to a modification of the first embodiment of the present invention.
  • the duct 105 shown in FIG. 9 is configured such that the air 74 hits another liquid crystal panel 6 or another polarizing plate 7 disposed at a position facing the liquid crystal panel 6 or the polarizing plate 7 with the duct 105 interposed therebetween. It has an opening 104 formed.
  • the opening 104 is formed to be elongated along the horizontal width (horizontal direction) of the liquid crystal panel 6 or the polarizing plate 7. That is, the opening 104 is also formed in an elongated shape such as a rectangle.
  • the air 74 blown out from the opening 104 of the duct 105 is blown toward the other liquid crystal panel 6 or the other polarizing plate 7 disposed on the opposite side.
  • the other liquid crystal panel 6 or the other polarizing plate 7 disposed on the opposite side can be cooled.
  • the other liquid crystal panel 6 and the other polarizing plate 7 can be cooled without adding a new duct separately from the duct 105 disposed obliquely with respect to the liquid crystal panel 6.
  • the duct 105 may be formed of a transparent material that transmits light.
  • a transparent material for example, acrylic, polycarbonate or glass.
  • the duct 105 is formed of a transparent material that transmits light, the duct 105 can be disposed near the liquid crystal panel 6 and the polarizing plate 7. In this case, since the duct 105 allows light to pass, it does not significantly hinder the optical path.
  • the air 73 can be applied to the liquid crystal panel 6 and the polarizing plate 7 without diffusing. Thereby, it can cool, without reducing the cooling efficiency of the liquid crystal panel 6 or the polarizing plate 7.
  • the temperature of the liquid crystal panel 6 is changed while changing the vertical width 103 a of the rectangular opening 103 of the duct 105 and the blowing height (target) of the air 73 to the liquid crystal panel 6.
  • the temperature transition was confirmed for the highest part.
  • the input power to the liquid crystal panel 6 and the supply conditions of the air 73 were the same.
  • the distance between the opening 103 of the duct 105 and the collision portion (R portion) between the air 73 of the liquid crystal panel 6 is constant.
  • FIG. 11 shows the transition of the maximum temperature of the liquid crystal panel 6 when the vertical width 103a of the opening 103 of the duct 105 of FIG. 10 and the target height y of the air 73 blown to the liquid crystal panel 6 are changed. Yes.
  • the duct 105 it is preferable to arrange the duct 105 so that the air 73 blown out from the opening 103 of the duct 105 hits the central portion in the height direction of the liquid crystal panel 6 or the polarizing plate 7, but from the test results shown in FIG. It is most preferable to arrange the duct 105 so that 73 hits the center in the height direction of the liquid crystal panel 6 or the polarizing plate 7 (position where the height y is 0 mm).
  • FIG. 12 is a block diagram showing an example of the state of air blowing by the duct of the projection display device according to the second embodiment of the present invention.
  • the cooling efficiency of the optical components such as the liquid crystal panel 6 and the polarizing plate 7 can be improved, the lifetime of these optical components and the increase in luminance can be achieved as in the first embodiment. Furthermore, since it is not necessary to attach a fan having a high pressure, it is possible to prevent the cost of the fan from increasing.
  • the performance and reliability of the liquid crystal projector can be improved, and the noise and cost can be reduced.
  • either one or both of the liquid crystal panel 6 and the polarizing plate 7 are disposed so as to be inclined with respect to the vertical direction, and the duct 105 is not disposed obliquely with respect to the inclined liquid crystal panel 6 and the polarizing plate 7.
  • one or both of the liquid crystal panel 6 and the polarizing plate 7 may be inclined with respect to the vertical direction, and the duct 105 may be further inclined with respect to the inclined liquid crystal panel 6 and polarizing plate 7. May be arranged diagonally.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)

Abstract

A projecting display device, having a light source for emitting light, a polarizing plate (7) and a liquid crystal panel (6) for changing the intensity of the light emitted by the light source, a light synthesis prism (8) for synthesizing the light that has passed through the polarizing plate (7) and the liquid crystal panel (6), a projecting lens (9) disposed on the optical path of the light, and a duct (105) disposed so that air (73) strikes the light-passing surface (6a) of the liquid crystal panel (6) diagonally. An opening (103) of the duct (105) through which air (73) is blown out is formed in an oblong configuration along the lateral width of the liquid crystal panel (6).

Description

投射型表示装置Projection display
 本発明は、投射型表示装置、例えば、液晶パネルを用いてスクリーン上に映像を投射する液晶投射型表示装置に関する。 The present invention relates to a projection display device, for example, a liquid crystal projection display device that projects an image on a screen using a liquid crystal panel.
 投射型表示装置には、光源からの光を液晶パネル等に照射させ、液晶パネルにて画素毎に光の強弱(濃淡)を変える光強度変調(空間光変調ともいう)を行い、さらに光学像を形成し、その光学像をスクリーン等に拡大投影する液晶投射型表示装置(以降、液晶プロジェクタともいう)がある。 In a projection display device, light from a light source is irradiated onto a liquid crystal panel, etc., and light intensity modulation (also referred to as spatial light modulation) that changes the intensity of light for each pixel is performed on the liquid crystal panel. There is a liquid crystal projection display device (hereinafter also referred to as a liquid crystal projector) that enlarges and projects the optical image onto a screen or the like.
 この種の投射型表示装置では、内部に複数の発熱源(例えば光源のランプ、液晶パネル、偏光板、ランプを駆動する電源等)を有しており、これらの発熱源から生じる熱により、光学部品の寿命が短くなるので、例えば液晶パネルの温度は70℃以下とする必要がある。 This type of projection display device has a plurality of heat sources (for example, a light source lamp, a liquid crystal panel, a polarizing plate, a power source for driving the lamp, etc.) inside, and the heat generated from these heat sources causes optical Since the life of the parts is shortened, for example, the temperature of the liquid crystal panel needs to be 70 ° C. or lower.
 近年、液晶プロジェクタは筐体の小型化、光源の高輝度化による画質向上等が市場より望まれている。筺体の小型化は、発熱部品による発熱密度の増加や、圧力損失の増大による冷却風量の低下を招き、高輝度化は、光のエネルギ増加による液晶パネル等の温度上昇を招く。したがって、十分な冷却手段を講じなければ、画質の劣化が生じるため、市場のニーズに対応するためには冷却効率の向上を可能とする冷却構造の開発が必須である。 In recent years, liquid crystal projectors are desired from the market to improve image quality by reducing the size of the housing and increasing the brightness of the light source. The downsizing of the casing causes an increase in heat generation density due to the heat generating components and a decrease in the amount of cooling air due to an increase in pressure loss, and the increase in brightness leads to an increase in temperature of the liquid crystal panel and the like due to an increase in light energy. Therefore, if sufficient cooling means is not used, the image quality is deteriorated. Therefore, it is essential to develop a cooling structure capable of improving the cooling efficiency in order to meet the market needs.
 このような背景から、液晶パネルや偏光板等の発熱部品にエアーを吹き付ける冷却用のダクトが提案されている。例えば、特開2013-178416号公報(特許文献1)に開示された技術は、投射型表示装置の液晶パネルまたは偏光板(以後、液晶パネル他と記載)の表面を冷却するために、液晶パネル他に対しノズル型のダクトを傾斜させて配置し、このノズル型のダクトから斜めにエアーを吹き付けるものである。 From such a background, cooling ducts for blowing air to heat generating parts such as liquid crystal panels and polarizing plates have been proposed. For example, the technique disclosed in Japanese Patent Application Laid-Open No. 2013-178416 (Patent Document 1) uses a liquid crystal panel to cool the surface of a liquid crystal panel or polarizing plate (hereinafter referred to as a liquid crystal panel or the like) of a projection display device. A nozzle type duct is inclined with respect to the other, and air is blown obliquely from this nozzle type duct.
特開2013-178416号公報JP 2013-178416 A
 しかしながら、上記特許文献1に開示された技術においては、液晶パネル他に対し斜めに配置されたノズル型のダクトから吹き出したエアーは、液晶パネル他の一部分に当たり液晶パネル他を部分的に冷却するため、液晶パネル他からの放熱量が少なく、液晶パネル他全体の冷却効率を向上させることは困難である。 However, in the technique disclosed in Patent Document 1, air blown from a nozzle-type duct disposed obliquely with respect to the liquid crystal panel or the like hits another part of the liquid crystal panel and partially cools the liquid crystal panel or the like. The amount of heat released from the liquid crystal panel and the like is small, and it is difficult to improve the cooling efficiency of the entire liquid crystal panel and the like.
 また、ダクト先端がノズル型であり高圧力を有するファンが必要なため、ファンのコストが高くなり、さらに、ファンの騒音も大きくなる等の課題が発生する。 Also, since the duct tip is a nozzle type and a fan having high pressure is required, the cost of the fan is increased, and further problems such as increased fan noise occur.
 本発明の目的は、投射型表示装置における性能を向上させることができる技術を提供することにある。 An object of the present invention is to provide a technique capable of improving the performance of a projection display device.
 本発明の上記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、以下のとおりである。 Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
 本発明の投射型表示装置は、光源と、上記光源から放たれた光の強度を変える偏光板および基板部材と、上記偏光板および上記基板部材を通過した光を合成する光合成部と、合成された光の光路上に配置された投射レンズと、上記偏光板と上記基板部材のうちの少なくとも何れか一方にエアーを供給するファンと、を有するものである。さらに、上記エアーを上記偏光板と上記基板部材のうちの少なくとも何れか一方に導き、上記偏光板と上記基板部材のうちの少なくとも何れか一方の光通過面に対して斜めに配置されたダクトを有しており、上記ダクトの上記エアーを吹き出す第1開口部は、上記偏光板もしくは上記基板部材の横幅に沿って細長く形成されている。 The projection type display device of the present invention is combined with a light source, a polarizing plate and a substrate member that change the intensity of light emitted from the light source, and a light combining unit that combines light passing through the polarizing plate and the substrate member. And a fan that supplies air to at least one of the polarizing plate and the substrate member. Further, the air is guided to at least one of the polarizing plate and the substrate member, and a duct disposed obliquely with respect to the light passage surface of at least one of the polarizing plate and the substrate member is provided. The first opening for blowing out the air of the duct is formed elongated along the lateral width of the polarizing plate or the substrate member.
 本発明の投射型表示装置は、光源と、上記光源から放たれた光の強度を変える偏光板および基板部材と、上記偏光板および上記基板部材を通過した光を合成する光合成部と、合成された光の光路上に配置された投射レンズと、上記偏光板と上記基板部材のうちの少なくとも何れか一方にエアーを供給するファンと、を有するものである。さらに、上記エアーを上記偏光板と上記基板部材のうちの少なくとも何れか一方に導き、上記偏光板と上記基板部材のうちの少なくとも何れか一方の光通過面に対して斜めに配置されたダクトを有している。さらに、上記ダクトの上記エアーを吹き出す第1開口部は、上記偏光板もしくは上記基板部材の横幅に沿って細長く形成され、上記ダクトから吹き出した上記エアーが、上記偏光板と上記基板部材のうちの少なくとも何れか一方の上記光通過面の高さ方向の中央部に当たるように上記ダクトが配置されている。 The projection type display device of the present invention is combined with a light source, a polarizing plate and a substrate member that change the intensity of light emitted from the light source, and a light combining unit that combines light passing through the polarizing plate and the substrate member. And a fan that supplies air to at least one of the polarizing plate and the substrate member. Further, the air is guided to at least one of the polarizing plate and the substrate member, and a duct disposed obliquely with respect to the light passage surface of at least one of the polarizing plate and the substrate member is provided. Have. Furthermore, the first opening for blowing out the air of the duct is formed to be elongated along the lateral width of the polarizing plate or the substrate member, and the air blown out of the duct is out of the polarizing plate and the substrate member. The duct is arranged so as to hit at least one of the light passage surfaces in the center in the height direction.
 本発明の投射型表示装置は、光源と、上記光源から放たれた光の強度を変える偏光板および基板部材と、上記偏光板および上記基板部材を通過した光を合成する光合成部と、合成された光の光路上に配置された投射レンズと、上記偏光板と上記基板部材のうちの少なくとも何れか一方にエアーを供給するファンと、を有するものである。さらに、上記エアーを上記偏光板と上記基板部材のうちの少なくとも何れか一方に導くダクトを有しており、上記偏光板または上記基板部材は、上記ダクトから吹き出した上記エアーが、上記偏光板と上記基板部材のうちの少なくとも何れか一方の光通過面に対して斜めに当たるように配置されている。 The projection type display device of the present invention is combined with a light source, a polarizing plate and a substrate member that change the intensity of light emitted from the light source, and a light combining unit that combines light passing through the polarizing plate and the substrate member. And a fan that supplies air to at least one of the polarizing plate and the substrate member. Furthermore, it has a duct for guiding the air to at least one of the polarizing plate and the substrate member. The polarizing plate or the substrate member has the air blown from the duct, It arrange | positions so that it may contact | abut diagonally with respect to the light passage surface of at least any one of the said board | substrate members.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば、以下のとおりである。 Among the inventions disclosed in the present application, the effects obtained by typical ones will be briefly described as follows.
 投射型表示装置の性能及び信頼性を向上させることができる。 The performance and reliability of the projection display device can be improved.
本発明の実施の形態1の投射型表示装置における投射光学系の概略構造の一例を示す平面図である。It is a top view which shows an example of schematic structure of the projection optical system in the projection type display apparatus of Embodiment 1 of this invention. 図1に示す投射型表示装置において上側筐体とドライブ基板を取り除いた内部構造の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of an internal structure in which the upper housing and the drive substrate are removed from the projection display device shown in FIG. 1. 図1に示す投射型表示装置において上側筐体とドライブ基板と投射光学系を取り除いた内部構造の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of an internal structure in which an upper casing, a drive substrate, and a projection optical system are removed from the projection display device shown in FIG. 1. 図1に示す投射型表示装置におけるプリズムユニットの構成の一例を示す平面図である。It is a top view which shows an example of a structure of the prism unit in the projection type display apparatus shown in FIG. 本願発明者が比較検討を行ったノズル型ダクトによるエアーの吹き付け状態を示す構成図である。It is a block diagram which shows the blowing state of the air by the nozzle type duct which this inventor performed comparative examination. 本願発明者が比較検討を行ったノズル型ダクトによるエアーの吹き付け状態を示す部分斜視図である。It is a fragmentary perspective view which shows the blowing state of the air by the nozzle type duct which this inventor performed comparative examination. 図1に示す投射型表示装置に設けられたダクトによるエアーの吹き付け状態の一例を示す構成図である。It is a block diagram which shows an example of the blowing state of the air by the duct provided in the projection type display apparatus shown in FIG. 図7に示すダクトの先端付近の構造の一例を示す部分拡大斜視図である。FIG. 8 is a partially enlarged perspective view showing an example of the structure near the tip of the duct shown in FIG. 7. 本発明の実施の形態1の変形例のダクトによるエアーの吹き付け状態を示す構成図である。It is a block diagram which shows the blowing state of the air by the duct of the modification of Embodiment 1 of this invention. 本発明の実施の形態1のダクトを用いた場合の効果を確認する試験方法を示す構成図である。It is a block diagram which shows the test method which confirms the effect at the time of using the duct of Embodiment 1 of this invention. 図10に示す試験の結果を示すデータ図である。It is a data figure which shows the result of the test shown in FIG. 本発明の実施の形態2の投射型表示装置のダクトによるエアーの吹き付け状態の一例を示す構成図である。It is a block diagram which shows an example of the blowing state of the air by the duct of the projection type display apparatus of Embodiment 2 of this invention.
 以下の実施の形態では特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。 In the following embodiments, the description of the same or similar parts will not be repeated in principle unless particularly necessary.
 さらに、以下の実施の形態では便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明などの関係にある。 Further, in the following embodiment, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments, but they are not irrelevant to each other unless otherwise specified. The other part or all of the modifications, details, supplementary explanations, and the like are related.
 また、以下の実施の形態において、要素の数など(個数、数値、量、範囲などを含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合などを除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良いものとする。 Also, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), particularly when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and it may be more or less than the specific number.
 また、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。 Further, in the following embodiments, the constituent elements (including element steps) are not necessarily indispensable unless otherwise specified and clearly considered essential in principle. Needless to say.
 また、以下の実施の形態において、構成要素等について、「Aからなる」、「Aよりなる」、「Aを有する」、「Aを含む」と言うときは、特にその要素のみである旨明示した場合等を除き、それ以外の要素を排除するものでないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲等についても同様である。 Further, in the following embodiments, regarding constituent elements and the like, when “consisting of A”, “consisting of A”, “having A”, and “including A” are specifically indicated that only those elements are included. It goes without saying that other elements are not excluded except in the case of such cases. Similarly, in the following embodiments, when referring to the shapes, positional relationships, etc. of the components, etc., the shapes are substantially the same unless otherwise specified, or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、図面をわかりやすくするために平面図であってもハッチングを付す場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof will be omitted. Further, even a plan view may be hatched for easy understanding of the drawing.
 (実施の形態1)
 図1は本発明の実施の形態1の投射型表示装置における投射光学系の概略構造の一例を示す平面図である。
(Embodiment 1)
FIG. 1 is a plan view showing an example of a schematic structure of a projection optical system in the projection display apparatus according to Embodiment 1 of the present invention.
 本実施の形態1では、投射型表示装置の一例として、図1に示す液晶プロジェクタ1を取り上げて説明する。 In the first embodiment, a liquid crystal projector 1 shown in FIG. 1 will be described as an example of a projection display device.
 まず、図1に示す投射光学系について説明すると、液晶プロジェクタ(投射型表示装置)1は、光源ユニット3と、光源ユニット3からの光の照度分布の一様化を図るとともに色を分離し、かつ液晶パネル(基板部材、(ライトバルブともいう))6(6R、6G、6B)に光を照射する光学ユニット4と、プリズムユニット5とで構成されている。プリズムユニット5は、各液晶パネル6(6R、6G、6B)で形成された光像を光合成プリズム(光合成部)8で合成して投射レンズ9により投射するものである。 First, the projection optical system shown in FIG. 1 will be described. A liquid crystal projector (projection type display device) 1 aims to make the illuminance distribution of the light from the light source unit 3 and the light source unit 3 uniform and separate colors. The liquid crystal panel (substrate member, also referred to as a light valve) 6 (6R, 6G, 6B) is composed of an optical unit 4 and a prism unit 5. The prism unit 5 synthesizes the light image formed by each liquid crystal panel 6 (6R, 6G, 6B) by the light combining prism (light combining unit) 8 and projects it by the projection lens 9.
 光源ユニット3は、超高圧水銀ランプ、LED光、レーザー光等のランプ(光源)3aから放たれる光を光の束として(以後、光束と記載)出射する構成となっており、さらに紫外線をカットするランプレンズ3bを備えている。 The light source unit 3 is configured to emit light emitted from a lamp (light source) 3a such as an ultra-high pressure mercury lamp, LED light, or laser light as a bundle of light (hereinafter referred to as a luminous flux), and further to emit ultraviolet rays. A lamp lens 3b for cutting is provided.
 そして、ランプ3aから出射した光束は、一対のマルチレンズアレイ401、402を通過後、偏光変換素子403で振動方向が一定方向の直線偏光に変換される。 The light beam emitted from the lamp 3a passes through the pair of multi-lens arrays 401 and 402, and is then converted into linearly polarized light whose vibration direction is a fixed direction by the polarization conversion element 403.
 その後、集光レンズ404を通った偏光方向が一定の光束は、ダイクロイックミラー408により、例えばR光(赤色帯域の光)は反射され、G光(緑色帯域の光)とB光(青色帯域の光)は透過されて2色の光に分離され、さらにG光とB光はダイクロイックミラー409によりG光とB光に分離される。 After that, the light beam having a constant polarization direction passing through the condenser lens 404 is reflected by the dichroic mirror 408, for example, R light (red band light), G light (green band light) and B light (blue band light). Light) is transmitted and separated into two colors of light, and G light and B light are separated into G light and B light by a dichroic mirror 409.
 R光、G光、B光に分離された光は、各々、プリズムユニット5に入射する。例えば、R光は、ダイクロイックミラー408で反射し、さらに反射ミラー405で反射され、コンデンサレンズ410を通してプリズムユニット5に入射する。また、ダイクロイックミラー408で透過されたG光およびB光のうち、G光はダイクロイックミラー409で反射され、コンデンサレンズ411を通してプリズムユニット5に入射する。さらに、B光はダイクロイックミラー409を透過し、第1リレーレンズ413で集光され、その後、反射ミラー406で反射され、第2リレーレンズ414で集光される。さらに、反射ミラー407で反射され、その後、コンデンサレンズ412にて集光され、プリズムユニット5に入射する。 The lights separated into R light, G light, and B light respectively enter the prism unit 5. For example, the R light is reflected by the dichroic mirror 408, further reflected by the reflection mirror 405, and enters the prism unit 5 through the condenser lens 410. Of the G light and B light transmitted by the dichroic mirror 408, the G light is reflected by the dichroic mirror 409 and enters the prism unit 5 through the condenser lens 411. Further, the B light passes through the dichroic mirror 409, is collected by the first relay lens 413, is then reflected by the reflection mirror 406, and is collected by the second relay lens 414. Further, the light is reflected by the reflection mirror 407, then condensed by the condenser lens 412, and enters the prism unit 5.
 また、プリズムユニット5は、光合成プリズム8の相隣接する3面にR光用液晶パネル6R、G光用液晶パネル6G、B光用液晶パネル6Bが、それぞれ入射偏光板7aR、7aG、7aBと、出射偏光板7bR、7bG、7bBとの間に配置され、光合成プリズム8の残りの面に投射レンズ9が装着されたものである。各偏光板(7a、7b)は、偏光膜と、それを保持する板状保持部材(光源である光源ユニット3からの光を透過する機能または反射する機能を有するガラス基板等)とを少なくとも具備する。 The prism unit 5 includes an R light liquid crystal panel 6R, a G light liquid crystal panel 6G, and a B light liquid crystal panel 6B on the three adjacent surfaces of the light combining prism 8, and incident polarizing plates 7aR, 7aG, and 7aB, respectively. The projection lens 9 is mounted on the remaining surface of the light combining prism 8 which is disposed between the output polarizing plates 7bR, 7bG and 7bB. Each polarizing plate (7a, 7b) includes at least a polarizing film and a plate-like holding member (a glass substrate having a function of transmitting or reflecting light from the light source unit 3 as a light source) that holds the polarizing film. To do.
 プリズムユニット5に入射したR光、G光、B光は、各色光の入射側偏光板7a(RGB)、液晶パネル6(6R、6G、6B)、出射側偏光板7b(RGB)を通過し、ランプ3aから放たれた光の強度を変える。すなわち、ランプ3aから放たれた光は、偏光板(7a、7b)と液晶パネル6を通過することでその強度が変調される。そして、変調された光は、光合成プリズム8によって合成され、その後、光路上に配置された投射レンズ9に入射し、さらに、投射レンズ9により拡大投影され、図示しないスクリーンに表示される。 The R light, G light, and B light incident on the prism unit 5 pass through the incident-side polarizing plate 7a (RGB), the liquid crystal panel 6 (6R, 6G, 6B), and the outgoing-side polarizing plate 7b (RGB) of each color light. The intensity of the light emitted from the lamp 3a is changed. That is, the intensity of the light emitted from the lamp 3a is modulated by passing through the polarizing plates (7a, 7b) and the liquid crystal panel 6. Then, the modulated light is combined by the light combining prism 8, and then enters the projection lens 9 disposed on the optical path, and is further enlarged and projected by the projection lens 9 and displayed on a screen (not shown).
 なお、入射側偏光板7a、出射側偏光板7b、液晶パネル6は透過または反射できなかった光を吸収し発熱する。これらの光学部品は許容温度が低いため、パネル冷却ファン(ファン)70を用いて通風ダクト(図2参照)71を介して上記光学部品に導かれる冷却用のエアー72によって冷却される。 The incident side polarizing plate 7a, the outgoing side polarizing plate 7b, and the liquid crystal panel 6 absorb light that could not be transmitted or reflected and generate heat. Since these optical components have a low allowable temperature, they are cooled by cooling air 72 guided to the optical components through a ventilation duct (see FIG. 2) 71 using a panel cooling fan (fan) 70.
 また、光源ユニット3は、ランプ3aで電力を光に変換する際、非常に高温となる。そこで、冷却ファン10を用いて光源ユニット3を冷却している。 Moreover, the light source unit 3 becomes very hot when the electric power is converted into light by the lamp 3a. Therefore, the light source unit 3 is cooled using the cooling fan 10.
 次に、上記投射光学系を筐体に搭載した液晶プロジェクタについて図2および図3を用いて説明する。図2は図1に示す投射型表示装置において上側筐体とドライブ基板を取り除いた内部構造の一例を示す斜視図、図3は図1に示す投射型表示装置において上側筐体とドライブ基板と投射光学系を取り除いた内部構造の一例を示す斜視図である。 Next, a liquid crystal projector in which the projection optical system is mounted on a housing will be described with reference to FIGS. 2 is a perspective view showing an example of an internal structure in which the upper housing and the drive substrate are removed from the projection display device shown in FIG. 1, and FIG. 3 is a perspective view showing the upper housing, the drive substrate, and the projection in the projection display device shown in FIG. It is a perspective view which shows an example of the internal structure which removed the optical system.
 図2および図3に示すように、液晶プロジェクタ1では、電源ユニット2からの電源供給を受けて、光源ユニット3より光が出射し、光学ユニット4に入射する。冷却ファン10は、光源ユニット3に隣接して配置され、光源ユニット3と電源ユニット2との間に配置されている。 As shown in FIGS. 2 and 3, the liquid crystal projector 1 receives power from the power supply unit 2, emits light from the light source unit 3, and enters the optical unit 4. The cooling fan 10 is disposed adjacent to the light source unit 3 and is disposed between the light source unit 3 and the power supply unit 2.
 図2に示すように、光学ユニット4に入射した光は、図1で先述した通り、最終的に投射レンズ9によって拡大され、図示していないスクリーンに投影される。 As shown in FIG. 2, the light incident on the optical unit 4 is finally enlarged by the projection lens 9 and projected onto a screen (not shown) as described above with reference to FIG.
 なお、プリズムユニット5の冷却には複数の冷却ファンを用いる場合もある。図3に示すように、例えばBパネル冷却ファン70aは、B光の入射する側の光学部品を冷却し、RGパネル冷却ファン70bは、R光とG光の入射する側の光学部品を冷却している。 A plurality of cooling fans may be used for cooling the prism unit 5. As shown in FIG. 3, for example, the B panel cooling fan 70a cools the optical component on the side where the B light is incident, and the RG panel cooling fan 70b cools the optical component on the side where the R light and G light are incident. ing.
 この構成は様々考えられ、Bパネル冷却ファン70aでB光とG光が入射する光学部品を冷却してもよいし、RGパネル冷却ファン70bでR光が入射する光学部品を冷却しても構わないし、それぞれ別個のファンで冷却することも可能である。 Various configurations are conceivable. The optical component on which the B light and the G light are incident may be cooled by the B panel cooling fan 70a, or the optical component on which the R light is incident may be cooled by the RG panel cooling fan 70b. It is also possible to cool with separate fans.
 図2に示す通風ダクト71は、図3に示す内部に設置されたパネル冷却ファン70を用いて通風ダクト吸気口71aより外気を取り入れる。通風ダクト吸気口71aから防塵フィルタ11を介して取り込まれたエアー72は、図2に示す通風ダクト71を通り、図1に示すプリズムユニット5の入射側偏光板7a(7aR、7aG、7aB)、出射側偏光板7b(7bR、7bG、7bB)、液晶パネル6(6R、6G、6B)を冷却する。 The ventilation duct 71 shown in FIG. 2 takes in outside air from the ventilation duct intake port 71a using the panel cooling fan 70 installed in the interior shown in FIG. Air 72 taken in from the ventilation duct intake port 71a through the dust filter 11 passes through the ventilation duct 71 shown in FIG. 2, and enters the polarizing plate 7a (7aR, 7aG, 7aB) of the prism unit 5 shown in FIG. The exit side polarizing plate 7b (7bR, 7bG, 7bB) and the liquid crystal panel 6 (6R, 6G, 6B) are cooled.
 次に、図4を用いてプリズムユニット5について説明する。図4は図1に示す投射型表示装置におけるプリズムユニットの構成の一例を示す平面図である。 Next, the prism unit 5 will be described with reference to FIG. FIG. 4 is a plan view showing an example of the configuration of the prism unit in the projection display device shown in FIG.
 プリズムユニット5では、入射側偏光板7a(7aR、7aG、7aB)、出射側偏光板7b(7bR、7bG、7bB)、液晶パネル6(6R、6G、6B)が、光合成プリズム8を囲むようにR光、G光、B光毎にそれぞれ配置されている。そして、各部品間の隙間の部品下部に設けられた通風ダクト吐出口71b(71bR、71bG、71bB)よりエアー72が供給される。通風ダクト吐出口71b(71bR、71bG、71bB)のサイズは、入射側偏光板7a(7aR、7aG、7aB)、出射側偏光板7b(7bR、7bG、7bB)、液晶パネル6(6R、6G、6B)について全ての温度バランスを考慮の上、決定する。 In the prism unit 5, the incident side polarizing plate 7 a (7 a R, 7 a G, 7 a B), the outgoing side polarizing plate 7 b (7 b R, 7 b G, 7 b B), and the liquid crystal panel 6 (6 R, 6 G, 6 B) are surrounded by the light combining prism 8. It is arranged for each of R light, G light, and B light. And the air 72 is supplied from the ventilation duct discharge port 71b (71bR, 71bG, 71bB) provided in the component lower part of the clearance gap between each component. The size of the ventilation duct discharge port 71b (71bR, 71bG, 71bB) is such that the incident side polarizing plate 7a (7aR, 7aG, 7aB), the outgoing side polarizing plate 7b (7bR, 7bG, 7bB), the liquid crystal panel 6 (6R, 6G, 6B) is determined in consideration of all temperature balances.
 次に、図5を用いて、本願発明者が検討した比較例の構造について説明する。図5は、本願発明者が比較検討を行ったノズル型ダクトによるエアーの吹き付け状態を示す構成図である。 Next, the structure of a comparative example examined by the present inventor will be described with reference to FIG. FIG. 5 is a configuration diagram showing a state of blowing air by a nozzle-type duct that the present inventor has compared and examined.
 ここでは、より分かり易く図示するために、R光、B光の液晶パネル6、偏光板7a,7bは図示せず、図4のA-A断面と同じ位置におけるG光路の断面のみを示す。 Here, for easier understanding, the liquid crystal panel 6 for R light and B light and the polarizing plates 7a and 7b are not shown, and only the cross section of the G optical path at the same position as the AA cross section of FIG. 4 is shown.
 入射側偏光板7a、出射側偏光板7bは、それぞれ偏光作用を持つ入射偏光板偏光膜7aa、出射偏光板偏光膜7baとこれらの偏光膜を支える入射偏光板ガラス基板7ab、出射偏光板ガラス基板7bbで形成される。入射偏光板偏光膜7aa、出射偏光板偏光膜7baには偏光フィルム等の有機素材、もしくはアルミ等の金属の蒸着膜が用いられる。また、入射偏光板ガラス基板7ab、出射偏光板ガラス基板7bbには一般的な無機アルカリガラスや水晶ガラス、サファイアガラス等が用いられる。 The incident side polarizing plate 7a and the outgoing side polarizing plate 7b are respectively an incident polarizing plate polarizing film 7aa having a polarizing action, an outgoing polarizing plate polarizing film 7ba, an incident polarizing plate glass substrate 7ab that supports these polarizing films, and an outgoing polarizing plate glass substrate 7bb. It is formed. The incident polarizing plate polarizing film 7aa and the outgoing polarizing plate polarizing film 7ba are made of an organic material such as a polarizing film or a vapor deposition film of a metal such as aluminum. Moreover, general inorganic alkali glass, crystal glass, sapphire glass, etc. are used for the incident polarizing glass substrate 7ab and the outgoing polarizing glass substrate 7bb.
 そして、液晶パネル6Gは、接続用フレキシブル基板81Gを介してドライブ基板80と接続されている。 The liquid crystal panel 6G is connected to the drive substrate 80 via a connection flexible substrate 81G.
 図5に示す比較例は、ノズル型ダクト101を用いたものであり、入射側偏光板7aに対して斜めにノズル型ダクト101を設置し、ノズル型ダクト101の吹き出し口102からエアー73を入射側偏光板7aに対して斜め方向から吹き付けて光学部品である入射側偏光板7aを冷却するものである。 The comparative example shown in FIG. 5 uses a nozzle duct 101, and the nozzle duct 101 is installed obliquely with respect to the incident-side polarizing plate 7 a, and air 73 is incident from the outlet 102 of the nozzle duct 101. The incident side polarizing plate 7a, which is an optical component, is cooled by spraying the side polarizing plate 7a from an oblique direction.
 ここで説明するノズル型ダクト101は、その先端の吹き出し口102における断面積が、ノズル型ダクト101の流入口の側部断面積(基端部側の断面積)に対して狭くなるように形成されたものである。すなわち、吹き出し口102が、縦方向と横方向との両方向において先細り(後述する図6参照)となった形状のものである。したがって、ノズル型ダクト101においては、その吹き出し口102から吹き出したエアー73は、入射側偏光板7a等に局所的に当たることになる。 The nozzle-type duct 101 described here is formed so that the cross-sectional area at the outlet 102 at the tip thereof is narrower than the side cross-sectional area (the cross-sectional area on the base end side) of the inlet of the nozzle-type duct 101. It has been done. That is, the outlet 102 has a shape that is tapered (see FIG. 6 described later) in both the vertical direction and the horizontal direction. Accordingly, in the nozzle type duct 101, the air 73 blown out from the blowout opening 102 hits the incident side polarizing plate 7a and the like locally.
 次に、図6を用いて入射側偏光板7aに対してノズル型ダクト101から出るエアー73を入射側偏光板7aの冷却手段とする場合の課題について説明する。図6は本願発明者が比較検討を行ったノズル型ダクトによるエアーの吹き付け状態を示す部分斜視図である。 Next, a problem in the case where the air 73 exiting from the nozzle duct 101 is used as a cooling means for the incident side polarizing plate 7a with respect to the incident side polarizing plate 7a will be described with reference to FIG. FIG. 6 is a partial perspective view showing the air blowing state by the nozzle-type duct that the present inventor has compared and examined.
 液晶パネル6または入射側偏光板7aに対して配置されたノズル型ダクト101から出るエアー73を、液晶パネル6または入射側偏光板7aの冷却手段とする構造では、図6に示すように、自由空間中に突出したノズル型ダクト101を有している。そして、通風ダクト吐出口71bG側から入射側偏光板7aに対して平行に流入させていたエアー72に加えて、入射側偏光板7aに対してノズル型ダクト101からエアー73を局所的に衝突(P部)させることで部品冷却を実施していた。 In the structure in which the air 73 exiting from the nozzle duct 101 arranged with respect to the liquid crystal panel 6 or the incident side polarizing plate 7a is used as a cooling means for the liquid crystal panel 6 or the incident side polarizing plate 7a, as shown in FIG. It has a nozzle duct 101 protruding into the space. Then, in addition to the air 72 that has flowed in parallel from the ventilation duct discharge port 71bG side to the incident side polarizing plate 7a, the air 73 from the nozzle duct 101 collides with the incident side polarizing plate 7a locally ( P part) was carried out to cool the parts.
 この場合、ノズル型ダクト101から吹き出たエアー73は、入射側偏光板7aの表面の一部分のみを冷却するため、入射側偏光板7a全体を冷却することができず、部分的に冷やされた箇所の周囲の箇所では入射側偏光板7aの温度が上昇してしまうという課題が存在する。 In this case, the air 73 blown out from the nozzle duct 101 cools only a part of the surface of the incident-side polarizing plate 7a, so that the entire incident-side polarizing plate 7a cannot be cooled, and is partially cooled. There is a problem that the temperature of the incident-side polarizing plate 7a rises at a location around the.
 また、ノズル型ダクト101の吹き出し口102の大きさが小さく、ダクト流路の圧力損失が増加するため、高圧力を有するファンが必要となり、そのため、ファンのコストが増大するという課題が発生する。 Also, since the size of the outlet 102 of the nozzle-type duct 101 is small and the pressure loss of the duct flow path increases, a fan having a high pressure is required, which causes a problem that the cost of the fan increases.
 さらに、液晶パネル6、入射側偏光板7aおよび出射側偏光板7bを通過する光を遮らないようにノズル型ダクト101を配置する必要があり、その結果、入射側偏光板7aとノズル型ダクト101に設けた吹き出し口102との距離が離れてしまい、エアー73を入射側偏光板7aの狙った部分に当てることができないという課題も発生する。 Further, it is necessary to arrange the nozzle type duct 101 so as not to block the light passing through the liquid crystal panel 6, the incident side polarizing plate 7a and the outgoing side polarizing plate 7b. As a result, the incident side polarizing plate 7a and the nozzle type duct 101 are arranged. This causes a problem that the air 73 cannot be applied to the targeted portion of the incident-side polarizing plate 7a because the distance from the air outlet 102 provided in the screen is increased.
 そこで上述の液晶パネル6または偏光板に対して配置されたノズル型ダクト101から吹き出るエアー73を液晶パネル6または偏光板の冷却手段とする構造を鑑み、上記課題を解決する本実施の形態1の液晶プロジェクタ1の特徴部分について、図7および図8を用いて説明する。 Therefore, in view of the structure in which the air 73 blown out from the nozzle duct 101 arranged with respect to the liquid crystal panel 6 or the polarizing plate is used as a cooling means for the liquid crystal panel 6 or the polarizing plate, the first embodiment that solves the above-described problem is provided. Characteristic portions of the liquid crystal projector 1 will be described with reference to FIGS.
 図7は図1に示す投射型表示装置に設けられたダクトによるエアーの吹き付け状態の一例を示す構成図、図8は図7に示すダクトの先端付近の構造の一例を示す部分拡大斜視図である。 FIG. 7 is a block diagram showing an example of a state of air blowing by a duct provided in the projection display device shown in FIG. 1, and FIG. 8 is a partially enlarged perspective view showing an example of the structure near the tip of the duct shown in FIG. is there.
 図7に示すダクト105は、その開口部(第1開口部)103から吹き出すエアー73を、偏光板7と液晶パネル6のうちの少なくとも何れか一方に導き、偏光板7と液晶パネル6のうちの少なくとも何れか一方の光通過面に対してエアー73が斜めに当たるように配置されている。 The duct 105 shown in FIG. 7 guides the air 73 blown out from the opening (first opening) 103 to at least one of the polarizing plate 7 and the liquid crystal panel 6. The air 73 is disposed so as to be obliquely applied to at least one of the light passage surfaces.
 ここでは、ダクト105が、液晶パネル6の光通過面6aに対して斜め前方からエアー73が当たるように配置されている場合を説明する。 Here, a case will be described in which the duct 105 is arranged so that the air 73 strikes the light passage surface 6a of the liquid crystal panel 6 from diagonally forward.
 つまり、ダクト105は、液晶パネル6の光通過面6aに対して斜めに配置されている。この時、光通過面6aに対するダクト105の設置角度θは、0°<θ<90°である。そして、単純に冷却効率が高いのは、90°の方向(光通過面6aに対して直角方向)からエアー73を吹き付けた場合であるが、90°の方向は、光路と重なるため配置困難である。そこで、なるべく90°に近い角度となるようにダクト105を配置することが好ましい。 That is, the duct 105 is disposed obliquely with respect to the light passage surface 6 a of the liquid crystal panel 6. At this time, the installation angle θ of the duct 105 with respect to the light passage surface 6a is 0 ° <θ <90 °. The cooling efficiency is simply high when the air 73 is blown from the 90 ° direction (perpendicular to the light passage surface 6a), but the 90 ° direction overlaps the optical path and is difficult to arrange. is there. Therefore, it is preferable to arrange the duct 105 so that the angle is as close to 90 ° as possible.
 なお、ダクト105は、液晶パネル6の下方に配置することが好ましい。これは、液晶パネル6や偏光板7の下方には、エアー72の通路が設けられており、光学部品の部品配置を考慮した場合にも部品配置の大きな妨げにはならないためである。 The duct 105 is preferably disposed below the liquid crystal panel 6. This is because a passage for air 72 is provided below the liquid crystal panel 6 and the polarizing plate 7, and the arrangement of the components is not a great hindrance when considering the arrangement of the components of the optical components.
 また、ダクト105は、図8に示すように、そのエアー73を吹き出す開口部103が、偏光板7もしくは液晶パネル6の横幅に沿って細長く形成されている。 Further, as shown in FIG. 8, the duct 105 has an opening 103 for blowing out the air 73 formed elongated along the lateral width of the polarizing plate 7 or the liquid crystal panel 6.
 すなわち、開口部103は、例えば、図4に示す液晶パネル6Gの横幅の方向S(水平方向)に沿った方向に細長く形成されている。つまり、液晶パネル6Gの横幅の方向S(水平方向)に沿った方向に細長い長方形として形成されている。 That is, the opening 103 is formed elongated in a direction along the horizontal width direction S (horizontal direction) of the liquid crystal panel 6G shown in FIG. That is, the liquid crystal panel 6G is formed as a long and narrow rectangle in the direction along the horizontal direction S (horizontal direction).
 言い換えれば、ダクト105は、図8に示すように、その先端の開口部103に向かうにつれてダクト105の幅方向(I)に比べて高さ方向(H)の方が小さくなる割合が大きい先細り形状である。つまり、先端の開口部103が横長の形状で、かつダクト105が先細り形状となっている(開口部103の長方形は、縦幅103aより横幅103bの方が大きい)。 In other words, as shown in FIG. 8, the duct 105 has a tapered shape in which the height direction (H) is smaller in the height direction (H) than the width direction (I) of the duct 105 toward the opening 103 at the tip. It is. That is, the opening 103 at the tip has a horizontally long shape and the duct 105 has a tapered shape (the rectangular width of the opening 103 is larger in the horizontal width 103b than in the vertical width 103a).
 ただし、開口部103の細長い形状としては、長方形に限らず、楕円や菱形等の細長い形状であってもよい。 However, the elongated shape of the opening 103 is not limited to a rectangle, and may be an elongated shape such as an ellipse or a rhombus.
 本実施の形態1では、被照射体(例えば、液晶パネル6の光通過面6a)に対して斜めに配置されたダクト105の先端の開口部103の形状を、水平方向に沿った細長い形状とすることにより、エアー73の風速および指向性を高めることができる。これにより、図7に示すように、液晶パネル6または偏光板7に斜め方向から当たったエアー73が液晶パネル6または偏光板7の表面に沿って、かつ表面を擦るように流れ、その結果、液晶パネル6や偏光板7の表面全体の伝熱性能(冷却効率)を高めることができる。 In the first embodiment, the shape of the opening 103 at the tip of the duct 105 disposed obliquely with respect to the irradiated object (for example, the light passage surface 6a of the liquid crystal panel 6) is an elongated shape along the horizontal direction. By doing so, the wind speed and directivity of the air 73 can be improved. Thereby, as shown in FIG. 7, the air 73 hitting the liquid crystal panel 6 or the polarizing plate 7 from the oblique direction flows along the surface of the liquid crystal panel 6 or the polarizing plate 7 so as to rub the surface, and as a result, The heat transfer performance (cooling efficiency) of the entire surface of the liquid crystal panel 6 and the polarizing plate 7 can be enhanced.
 したがって、偏光板7や液晶パネル6等の光学部品の長寿命化や高輝度化を図ることができる。さらに、高圧力を有するファンを取り付けなくて済むため、ファンのコストが増大することを防止できる。 Therefore, it is possible to extend the life and increase the brightness of optical components such as the polarizing plate 7 and the liquid crystal panel 6. Furthermore, since it is not necessary to attach a fan having a high pressure, it is possible to prevent the cost of the fan from increasing.
 これにより、液晶プロジェクタ1の低騒音化およびコスト低減化を図ることができる。 As a result, the liquid crystal projector 1 can be reduced in noise and cost.
 以上により、本実施の形態1の液晶プロジェクタ1の性能を向上させることができる。 As described above, the performance of the liquid crystal projector 1 of the first embodiment can be improved.
 なお、ダクト105の開口部103から吹き出したエアー73は液晶パネル6または偏光板7に到達するまでに拡散するが、液晶パネル6または偏光板7の横幅より外側に広がった部分の風は、液晶パネル6または偏光板7の冷却には寄与せずロスとなる。したがって、図8に示すダクト105の開口部103の横幅103bは、液晶パネル6または偏光板7の冷却面(例えば光通過面6a)の横幅以下とすることが望ましい。 The air 73 blown out from the opening 103 of the duct 105 diffuses before reaching the liquid crystal panel 6 or the polarizing plate 7, but the wind at the portion extending outside the lateral width of the liquid crystal panel 6 or the polarizing plate 7 It does not contribute to the cooling of the panel 6 or the polarizing plate 7 and is lost. Therefore, the lateral width 103b of the opening 103 of the duct 105 shown in FIG. 8 is desirably equal to or smaller than the lateral width of the cooling surface (for example, the light passage surface 6a) of the liquid crystal panel 6 or the polarizing plate 7.
 また、開口部103から吹き出したエアー73の拡散の仕方については、エアー73の速度分布により把握することができる。エアー73の速度分布は、開口部103の横幅103bをb、エアー73の進行方向の開口部103からの距離をx、エアー73が開口部103を通過するときの平均風速をu0、エアー73の進行方向と垂直方向の開口部103の横幅103bの中心からの距離をy、エアー73の進行方向の速度をu、エアー73の進行方向の最高速度をumaxとした時、umax=3.4×√{b/(2x)}×u0、および、u/umax=exp{-57×(y/x)×(y/x)}で示すことができる。 Further, the diffusion method of the air 73 blown out from the opening 103 can be grasped by the velocity distribution of the air 73. The velocity distribution of the air 73 is such that the width 103b of the opening 103 is b, the distance from the opening 103 in the traveling direction of the air 73 is x, the average wind speed when the air 73 passes through the opening 103 is u0, When the distance from the center of the lateral width 103b of the opening 103 in the traveling direction and the vertical direction is y, the speed in the traveling direction of the air 73 is u, and the maximum speed in the traveling direction of the air 73 is umax, umax = 3.4 × {B / (2x)} × u0 and u / umax = exp {−57 × (y / x) × (y / x)}.
 一方、開口部103の縦幅103aは、広すぎるとエアー73の風速および指向性が低下し、狭すぎるとエアー73の風量低下および圧力損失増大により冷却効率が低下する。したがって、ダクト105の形状およびファンの風量-静圧特性から最適な寸法を決めることが望ましい。 On the other hand, if the vertical width 103a of the opening 103 is too wide, the wind speed and directivity of the air 73 are lowered, and if it is too narrow, the cooling efficiency is lowered due to a reduction in the air volume of the air 73 and an increase in pressure loss. Therefore, it is desirable to determine an optimum dimension from the shape of the duct 105 and the air volume-static pressure characteristics of the fan.
 次に、本実施の形態1の液晶プロジェクタ1では、図7に示すように、ダクト105の開口部103から吹き出したエアー73が、液晶パネル6(または偏光板7)の最も発熱量が大きいセンター付近に当たるようにダクト105を配置している。 Next, in the liquid crystal projector 1 according to the first embodiment, as shown in FIG. 7, the air 73 blown out from the opening 103 of the duct 105 is the center where the liquid crystal panel 6 (or the polarizing plate 7) generates the largest amount of heat. The duct 105 is arranged so as to hit the vicinity.
 すなわち、細長い形状に形成された開口部103から吹き出したエアー73が液晶パネル6(または偏光板7)の光通過面6aの高さ方向の中央部に当たるようにダクト105が配置されている。 That is, the duct 105 is arranged so that the air 73 blown out from the opening 103 formed in an elongated shape hits the central portion in the height direction of the light passage surface 6a of the liquid crystal panel 6 (or the polarizing plate 7).
 ここで、液晶パネル6の光通過面6aの高さ方向の中央部とは、図7に示すように、液晶パネル6の高さ方向において、その高さを3等分した3つの領域の中央の領域(図7中、T1とT2の間の領域)を示すものである。つまり、エアー73が液晶パネル6の光通過面6aのT1とT2の間の領域(中央部)に当たるようにダクト105を配置する。 Here, the central portion in the height direction of the light passage surface 6a of the liquid crystal panel 6 is the center of three regions obtained by dividing the height into three equal parts in the height direction of the liquid crystal panel 6, as shown in FIG. (In FIG. 7, the region between T1 and T2). That is, the duct 105 is arranged so that the air 73 hits the region (center portion) between T1 and T2 of the light passage surface 6a of the liquid crystal panel 6.
 これにより、液晶パネル6(または偏光板7)の最も発熱量が大きい高さ方向の中央部にエアー73を当てることができ、液晶パネル6(または偏光板7)の冷却効率を高めることができる。 Thereby, the air 73 can be applied to the central portion of the liquid crystal panel 6 (or the polarizing plate 7) in the height direction where the heat generation amount is the largest, and the cooling efficiency of the liquid crystal panel 6 (or the polarizing plate 7) can be increased. .
 その結果、液晶パネル6や偏光板7等の光学部品の長寿命化や高輝度化を図ることができる。これにより、高圧力を有するファンを取り付けなくて済むため、ファンのコストが増大することを防止できる。 As a result, it is possible to extend the lifetime and increase the brightness of optical components such as the liquid crystal panel 6 and the polarizing plate 7. Thereby, since it is not necessary to attach the fan which has a high pressure, it can prevent that the cost of a fan increases.
 その結果、液晶プロジェクタ1の性能及び信頼性の向上、また低騒音化およびコスト低減化を図ることができる。 As a result, the performance and reliability of the liquid crystal projector 1 can be improved, noise reduction and cost reduction can be achieved.
 なお、本実施の形態1の液晶プロジェクタ1において、ダクト105は、図4に示すR光、G光、B光それぞれに対する入射側偏光板7a、出射側偏光板7b、液晶パネル6に対して温度的に低減が必要な部品に対して設置すればよい。つまり、図5に示す通風ダクト吐出口71bGからの平行流75による冷却との併用でもよい。具体的には、図5に示すノズル型ダクト101を本実施の形態1のダクト105に置き換えれば、入射側偏光板7aの光入射面側の冷却にのみダクト105を用いた冷却を採用し、残りの部品については平行流75による冷却を採用してもよい。 In the liquid crystal projector 1 according to the first embodiment, the duct 105 has a temperature relative to the incident side polarizing plate 7a, the outgoing side polarizing plate 7b, and the liquid crystal panel 6 for the R light, G light, and B light shown in FIG. It may be installed for parts that need to be reduced. That is, it may be used in combination with cooling by the parallel flow 75 from the ventilation duct discharge port 71bG shown in FIG. Specifically, if the nozzle type duct 101 shown in FIG. 5 is replaced with the duct 105 of the first embodiment, cooling using the duct 105 is employed only for cooling the light incident surface side of the incident side polarizing plate 7a, For the remaining parts, cooling by parallel flow 75 may be employed.
 次に、本実施の形態1の変形例について説明する。図9は、本発明の実施の形態1の変形例のダクトによるエアーの吹き付け状態を示す構成図である。 Next, a modification of the first embodiment will be described. FIG. 9 is a configuration diagram showing a state in which air is blown by a duct according to a modification of the first embodiment of the present invention.
 図9に示す変形例は、液晶パネル6の光通過面6aに対して斜めに配置されたダクト105の根元(基端部)から先端部の開口部103までの範囲に、液晶パネル6または偏光板7に対してダクト105を挟んで対向する位置に設けられた他の液晶パネル6または他の偏光板7に向けて開口部(第2開口部)104を形成したものである。 In the modification shown in FIG. 9, the liquid crystal panel 6 or the polarized light is in a range from the root (base end portion) of the duct 105 disposed obliquely with respect to the light passage surface 6 a of the liquid crystal panel 6 to the opening 103 at the distal end portion. An opening (second opening) 104 is formed toward another liquid crystal panel 6 or another polarizing plate 7 provided at a position facing the plate 7 with a duct 105 interposed therebetween.
 すなわち、図9に示すダクト105は、液晶パネル6または偏光板7に対してダクト105を挟んで対向する位置に配置された他の液晶パネル6または他の偏光板7にエアー74が当たるように形成された開口部104を有している。 That is, the duct 105 shown in FIG. 9 is configured such that the air 74 hits another liquid crystal panel 6 or another polarizing plate 7 disposed at a position facing the liquid crystal panel 6 or the polarizing plate 7 with the duct 105 interposed therebetween. It has an opening 104 formed.
 その際、開口部104も、開口部103と同様に、液晶パネル6もしくは偏光板7の横幅(水平方向)に沿って細長く形成されている。すなわち、開口部104も、長方形等の細長い形状に形成されている。 At that time, similarly to the opening 103, the opening 104 is formed to be elongated along the horizontal width (horizontal direction) of the liquid crystal panel 6 or the polarizing plate 7. That is, the opening 104 is also formed in an elongated shape such as a rectangle.
 これにより、ダクト105の開口部103から吹き出すエアー73に加えて、ダクト105の開口部104から吹き出したエアー74を、対面に配置された他の液晶パネル6または他の偏光板7に向けて吹き付けることができ、対面に配置された他の液晶パネル6または他の偏光板7の冷却を行うことができる。 Thereby, in addition to the air 73 blown out from the opening 103 of the duct 105, the air 74 blown out from the opening 104 of the duct 105 is blown toward the other liquid crystal panel 6 or the other polarizing plate 7 disposed on the opposite side. The other liquid crystal panel 6 or the other polarizing plate 7 disposed on the opposite side can be cooled.
 これにより、液晶パネル6に対して斜めに配置されたダクト105とは別に新たなダクトを追加することなく、他の液晶パネル6および他の偏光板7を冷却することができる。 Thus, the other liquid crystal panel 6 and the other polarizing plate 7 can be cooled without adding a new duct separately from the duct 105 disposed obliquely with respect to the liquid crystal panel 6.
 なお、対面に配置された他の液晶パネル6または他の偏光板7に向けて配置した開口部104の横幅および縦幅は、開口部103の場合と同様に最適な寸法を決めることが望ましい。 It should be noted that it is desirable that the horizontal and vertical widths of the opening 104 arranged toward the other liquid crystal panel 6 or the other polarizing plate 7 arranged facing each other are determined to be optimal dimensions as in the case of the opening 103.
 次に、実施の形態1の他の変形例を説明する。ダクト105は、光を通す透明な材料によって形成されていてもよい。例えば、アクリル、ポリカーボネートもしくはガラス等である。 Next, another modification of the first embodiment will be described. The duct 105 may be formed of a transparent material that transmits light. For example, acrylic, polycarbonate or glass.
 このようにダクト105が光を通す透明な材料によって形成されていることにより、ダクト105を液晶パネル6や偏光板7の近くに配置することができる。この場合、ダクト105が光を通すため、光路の大きな妨げにはならない。 As described above, since the duct 105 is formed of a transparent material that transmits light, the duct 105 can be disposed near the liquid crystal panel 6 and the polarizing plate 7. In this case, since the duct 105 allows light to pass, it does not significantly hinder the optical path.
 ダクト105を液晶パネル6や偏光板7の近くに配置することができるため、エアー73を拡散させることなく液晶パネル6や偏光板7に当てることができる。これにより、液晶パネル6や偏光板7の冷却効率を下げることなく、冷却することができる。 Since the duct 105 can be disposed near the liquid crystal panel 6 and the polarizing plate 7, the air 73 can be applied to the liquid crystal panel 6 and the polarizing plate 7 without diffusing. Thereby, it can cool, without reducing the cooling efficiency of the liquid crystal panel 6 or the polarizing plate 7. FIG.
 次に、図10および図11を用いて本実施の形態1のダクトを用いた場合の効果の確認試験について説明する。図10は、本発明の実施の形態1のダクトを用いた場合の効果を確認する試験方法を示す構成図、図11は図10に示す試験の結果を示すデータ図である。 Next, a confirmation test of the effect when the duct according to the first embodiment is used will be described with reference to FIGS. 10 and 11. FIG. 10 is a block diagram showing a test method for confirming the effect when the duct of Embodiment 1 of the present invention is used, and FIG. 11 is a data diagram showing the results of the test shown in FIG.
 本試験では、図10に示すように、ダクト105の長方形の開口部103の縦幅103aと、液晶パネル6へのエアー73の吹き付け高さ(狙い)とを変えながら、液晶パネル6の温度が最も高くなる部分について温度推移を確認した。試験では、液晶パネル6への投入電力、エアー73の供給条件は同一とした。また、ダクト105の開口部103と、液晶パネル6のエアー73との衝突部分(R部)との距離は一定とした。 In this test, as shown in FIG. 10, the temperature of the liquid crystal panel 6 is changed while changing the vertical width 103 a of the rectangular opening 103 of the duct 105 and the blowing height (target) of the air 73 to the liquid crystal panel 6. The temperature transition was confirmed for the highest part. In the test, the input power to the liquid crystal panel 6 and the supply conditions of the air 73 were the same. The distance between the opening 103 of the duct 105 and the collision portion (R portion) between the air 73 of the liquid crystal panel 6 is constant.
 図11は、図10のダクト105の開口部103の縦幅103aと、液晶パネル6へのエアー73の吹き付けの狙い高さyとを変えた場合の液晶パネル6の最高温度の推移を示している。 FIG. 11 shows the transition of the maximum temperature of the liquid crystal panel 6 when the vertical width 103a of the opening 103 of the duct 105 of FIG. 10 and the target height y of the air 73 blown to the liquid crystal panel 6 are changed. Yes.
 図11によれば、ダクト105の開口部103の縦幅103aと、液晶パネル6へのエアー73の吹き付けの狙い高さyとを変えることで、液晶パネル6の最高温度が変化していることがわかる。 According to FIG. 11, the maximum temperature of the liquid crystal panel 6 is changed by changing the vertical width 103 a of the opening 103 of the duct 105 and the target height y of the air 73 blown to the liquid crystal panel 6. I understand.
 具体的には、ダクト105の開口部103の縦幅103aが2mm、液晶パネル6へのエアー73の吹き付けの狙い高さyが0mmであれば、液晶パネル6の温度を最も低くすることができる。 Specifically, when the vertical width 103a of the opening 103 of the duct 105 is 2 mm and the target height y of the air 73 blown to the liquid crystal panel 6 is 0 mm, the temperature of the liquid crystal panel 6 can be lowest. .
 このことから、部品面に対して斜め方向に配置されたダクト105の開口部103の形状を長方形等の細長い形状とし、かつ開口部103から吹き出したエアー73が液晶パネル6または偏光板7の高さ方向のセンター付近(中央部)に当たるようにダクト105を配置することにより、液晶パネル6や偏光板7の冷却効率を向上できるということが分かった。 For this reason, the shape of the opening 103 of the duct 105 disposed obliquely with respect to the component surface is a long and narrow shape such as a rectangle, and the air 73 blown out from the opening 103 is high in the liquid crystal panel 6 or the polarizing plate 7. It has been found that the cooling efficiency of the liquid crystal panel 6 and the polarizing plate 7 can be improved by arranging the duct 105 so as to be in the vicinity of the center in the vertical direction (center portion).
 なお、ダクト105の開口部103から吹き出したエアー73が液晶パネル6または偏光板7の高さ方向の中央部に当たるようにダクト105を配置することが好ましいが、図11に示す試験結果から、エアー73が液晶パネル6または偏光板7の高さ方向の中央(高さyが0mmの位置)に当たるようにダクト105を配置することが最も好ましい。 It is preferable to arrange the duct 105 so that the air 73 blown out from the opening 103 of the duct 105 hits the central portion in the height direction of the liquid crystal panel 6 or the polarizing plate 7, but from the test results shown in FIG. It is most preferable to arrange the duct 105 so that 73 hits the center in the height direction of the liquid crystal panel 6 or the polarizing plate 7 (position where the height y is 0 mm).
 (実施の形態2)
 図12は本発明の実施の形態2の投射型表示装置のダクトによるエアーの吹き付け状態の一例を示す構成図である。
(Embodiment 2)
FIG. 12 is a block diagram showing an example of the state of air blowing by the duct of the projection display device according to the second embodiment of the present invention.
 本実施の形態2の液晶プロジェクタ(投射型表示装置)について説明する。ここでは、より分かり易く図示するために、R光、B光の入射する偏光板、液晶パネルは図示せず、図4におけるA-A断面と同じ位置におけるG光路の断面のみを示す。 A liquid crystal projector (projection display device) according to the second embodiment will be described. Here, for easier understanding, the polarizing plate and the liquid crystal panel on which R light and B light are incident are not shown, and only the cross section of the G optical path at the same position as the AA cross section in FIG. 4 is shown.
 上述の実施の形態1では、入射側偏光板7a、出射側偏光板7b、液晶パネル6に対して斜めに配置したダクト105からエアー73を吹き付けて、入射側偏光板7a、出射側偏光板7b、液晶パネル6を冷却する場合を説明した。 In the first embodiment described above, the air 73 is blown from the duct 105 disposed obliquely with respect to the incident side polarizing plate 7a, the outgoing side polarizing plate 7b, and the liquid crystal panel 6, and the incident side polarizing plate 7a and the outgoing side polarizing plate 7b. The case where the liquid crystal panel 6 is cooled has been described.
 しかしながら、入射側偏光板7a、出射側偏光板7b、液晶パネル6等の部品の配置間隔が狭まり、ダクト105を配置する空間が確保できないことが起き得る。また、部品間隔が狭まると、圧力損失が増えてしまうために、パネル冷却ファン70(図1参照)からのエアー73の流量が減り、温度上昇による信頼性低下に繋がり兼ねない。圧力損失の増加に対応するためには、パネル冷却ファン70の回転数を上げればよいが、騒音の面で課題が生じる。 However, the arrangement interval of components such as the incident-side polarizing plate 7a, the outgoing-side polarizing plate 7b, and the liquid crystal panel 6 is narrowed, and a space for arranging the duct 105 cannot be secured. Moreover, since the pressure loss increases when the component interval is narrowed, the flow rate of the air 73 from the panel cooling fan 70 (see FIG. 1) is reduced, which may lead to a decrease in reliability due to a temperature rise. In order to cope with the increase in pressure loss, the number of rotations of the panel cooling fan 70 may be increased, but a problem arises in terms of noise.
 そこで、本実施の形態2では、液晶パネル6、偏光板7のどちらか一方、または両方を垂直方向に対して傾斜させて配置し、これによって、ダクト105から吹き出したエアー73が、液晶パネル6と偏光板7の表面(例えば、液晶パネル6の光通過面6a)に斜めに当たるようにするものである。その結果、部品間隔が狭くてダクト105を斜めに配置できない場合であっても冷却効率を向上させることができる。 Therefore, in the second embodiment, either one or both of the liquid crystal panel 6 and the polarizing plate 7 are disposed so as to be inclined with respect to the vertical direction, whereby the air 73 blown out from the duct 105 is transferred to the liquid crystal panel 6. And the surface of the polarizing plate 7 (for example, the light passage surface 6a of the liquid crystal panel 6) is obliquely applied. As a result, the cooling efficiency can be improved even when the interval between parts is narrow and the duct 105 cannot be disposed obliquely.
 この時、液晶パネル6および偏光板7の表面と、ダクト105の相対位置関係および開口部103(図8参照)を実施の形態1のように最適化することで、冷却効率を向上させることができる。 At this time, the cooling efficiency can be improved by optimizing the surface of the liquid crystal panel 6 and the polarizing plate 7, the relative positional relationship of the duct 105, and the opening 103 (see FIG. 8) as in the first embodiment. it can.
 そして、液晶パネル6や偏光板7等の光学部品の冷却効率を向上できることで、上記実施の形態1と同様に、これら光学部品の長寿命化や高輝度化を図ることができる。さらに、高圧力を有するファンを取り付けなくて済むため、ファンのコストが増大することを防止できる。 Further, since the cooling efficiency of the optical components such as the liquid crystal panel 6 and the polarizing plate 7 can be improved, the lifetime of these optical components and the increase in luminance can be achieved as in the first embodiment. Furthermore, since it is not necessary to attach a fan having a high pressure, it is possible to prevent the cost of the fan from increasing.
 これにより、液晶プロジェクタの性能及び信頼性の向上、また低騒音化およびコスト低減化を図ることができる。 As a result, the performance and reliability of the liquid crystal projector can be improved, and the noise and cost can be reduced.
 なお、液晶パネル6、偏光板7のどちらか一方、または両方を垂直方向に対して傾斜させて配置し、ダクト105は、傾斜させた液晶パネル6や偏光板7に対して斜めに配置しなくても良いし、液晶パネル6、偏光板7のどちらか一方、または両方を垂直方向に対して傾斜させて配置した上で、さらにダクト105も、傾斜させた液晶パネル6や偏光板7に対して斜めに配置してもよい。 Note that either one or both of the liquid crystal panel 6 and the polarizing plate 7 are disposed so as to be inclined with respect to the vertical direction, and the duct 105 is not disposed obliquely with respect to the inclined liquid crystal panel 6 and the polarizing plate 7. Alternatively, one or both of the liquid crystal panel 6 and the polarizing plate 7 may be inclined with respect to the vertical direction, and the duct 105 may be further inclined with respect to the inclined liquid crystal panel 6 and polarizing plate 7. May be arranged diagonally.
 以上、上記実施の形態1は、液晶パネル6または偏光板7に対して斜めに配置したダクト105により光学部品の冷却効率を向上させるダクト構成について述べたものである。そして、上記実施の形態2は、液晶パネル6または偏光板7のどちらか一方、または両方を垂直方向に対して傾斜させて配置し、これによって、光学部品の冷却効率を向上させる構成について述べたものである。 As described above, the first embodiment has described the duct configuration for improving the cooling efficiency of the optical component by the duct 105 disposed obliquely with respect to the liquid crystal panel 6 or the polarizing plate 7. In the second embodiment, the configuration in which one or both of the liquid crystal panel 6 and the polarizing plate 7 are inclined with respect to the vertical direction, thereby improving the cooling efficiency of the optical component has been described. Is.
 また、本発明者によってなされた発明を発明の実施の形態に基づき具体的に説明したが、本発明は前記発明の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。 Further, the invention made by the present inventor has been specifically described based on the embodiments of the invention. However, the present invention is not limited to the embodiments of the invention, and various modifications can be made without departing from the scope of the invention. It goes without saying that it is possible.
 なお、本発明は上記した実施の形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 Note that the present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
 また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加、削除、置換をすることが可能である。なお、図面に記載した各部材や相対的なサイズは、本発明を分かりやすく説明するため簡素化・理想化しており、実装上はより複雑な形状となる。 Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. . In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment. In addition, each member and relative size which were described in drawing are simplified and idealized in order to demonstrate this invention clearly, and it becomes a more complicated shape on mounting.
  1 液晶プロジェクタ(投射型表示装置)
 3a ランプ(光源)
  4 光学ユニット
  6 液晶パネル(基板部材)
 6a 光通過面
  7 偏光板
 7a 入射側偏光板
 7b 出射側偏光板
  8 光合成プリズム(光合成部)
  9 投射レンズ
 70 パネル冷却ファン(ファン)
 72,73,74,エアー
103 開口部(第1開口部)
104 開口部(第2開口部)
105 ダクト
1 Liquid crystal projector (projection display)
3a lamp (light source)
4 Optical unit 6 Liquid crystal panel (substrate member)
6a Light passing surface 7 Polarizing plate 7a Incident side polarizing plate 7b Outgoing side polarizing plate 8 Photosynthesis prism (photosynthesis unit)
9 Projection lens 70 Panel cooling fan (fan)
72, 73, 74, air 103 opening (first opening)
104 opening (second opening)
105 duct

Claims (11)

  1.  光を放つ光源と、
     前記光源から放たれた光の強度を変える偏光板および基板部材と、
     前記偏光板および前記基板部材を通過した光を合成する光合成部と、
     前記光合成部によって合成された光の光路上に配置された投射レンズと、
     前記偏光板と前記基板部材のうちの少なくとも何れか一方にエアーを供給するファンと、
     前記エアーを前記偏光板と前記基板部材のうちの少なくとも何れか一方に導き、前記偏光板と前記基板部材のうちの少なくとも何れか一方の光通過面に対して斜めに配置されたダクトと、
     を有し、
     前記ダクトの前記エアーを吹き出す第1開口部は、前記偏光板もしくは前記基板部材の横幅に沿って細長く形成されている、投射型表示装置。
    A light source that emits light;
    A polarizing plate and a substrate member for changing the intensity of light emitted from the light source;
    A photosynthesis unit for synthesizing light that has passed through the polarizing plate and the substrate member;
    A projection lens disposed on the optical path of the light combined by the light combining unit;
    A fan for supplying air to at least one of the polarizing plate and the substrate member;
    The air is guided to at least one of the polarizing plate and the substrate member, and a duct disposed obliquely with respect to the light passage surface of at least one of the polarizing plate and the substrate member;
    Have
    The projection type display device, wherein the first opening for blowing out the air of the duct is formed to be elongated along the lateral width of the polarizing plate or the substrate member.
  2.  光を放つ光源と、
     前記光源から放たれた光の強度を変える偏光板および基板部材と、
     前記偏光板および前記基板部材を通過した光を合成する光合成部と、
     前記光合成部によって合成された光の光路上に配置された投射レンズと、
     前記偏光板と前記基板部材のうちの少なくとも何れか一方にエアーを供給するファンと、
     前記エアーを前記偏光板と前記基板部材のうちの少なくとも何れか一方に導き、前記偏光板と前記基板部材のうちの少なくとも何れか一方の光通過面に対して斜めに配置されたダクトと、
     を有し、
     前記ダクトの前記エアーを吹き出す第1開口部は、前記偏光板もしくは前記基板部材の横幅に沿って細長く形成され、
     前記ダクトから吹き出した前記エアーが、前記偏光板と前記基板部材のうちの少なくとも何れか一方の前記光通過面の高さ方向の中央部に当たるように前記ダクトが配置されている、投射型表示装置。
    A light source that emits light;
    A polarizing plate and a substrate member for changing the intensity of light emitted from the light source;
    A photosynthesis unit for synthesizing light that has passed through the polarizing plate and the substrate member;
    A projection lens disposed on the optical path of the light combined by the light combining unit;
    A fan for supplying air to at least one of the polarizing plate and the substrate member;
    The air is guided to at least one of the polarizing plate and the substrate member, and a duct disposed obliquely with respect to the light passage surface of at least one of the polarizing plate and the substrate member;
    Have
    The first opening for blowing out the air of the duct is formed elongated along the lateral width of the polarizing plate or the substrate member,
    The projection display device, wherein the duct is arranged so that the air blown out from the duct hits a central portion in a height direction of the light passage surface of at least one of the polarizing plate and the substrate member. .
  3.  請求項1または2に記載の投射型表示装置において、
     前記ダクトは、前記偏光板または前記基板部材に対し前記ダクトを挟んで対向する位置に配置された他の偏光板または他の基板部材に前記エアーが当たるように形成された第2開口部を有し、
     前記第2開口部は、前記偏光板もしくは前記基板部材の横幅に沿って細長く形成されている、投射型表示装置。
    In the projection type display device according to claim 1 or 2,
    The duct has a second opening formed so that the air hits another polarizing plate or another substrate member disposed at a position facing the polarizing plate or the substrate member with the duct interposed therebetween. And
    The projection display device, wherein the second opening is formed to be elongated along the lateral width of the polarizing plate or the substrate member.
  4.  請求項1,2または3に記載の投射型表示装置において、
     前記ダクトは、その先端の前記第1開口部に向かうにつれて前記ダクトの幅方向に比べて高さ方向の大きさが小さくなる割合が大きい先細り形状である、投射型表示装置。
    In the projection type display device according to claim 1, 2, or 3,
    The projection display device according to claim 1, wherein the duct has a tapered shape in which a ratio in which a size in a height direction becomes smaller as compared with a width direction of the duct is increased toward the first opening at a tip thereof.
  5.  光を放つ光源と、
     前記光源から放たれた光の強度を変える偏光板および基板部材と、
     前記偏光板および前記基板部材を通過した光を合成する光合成部と、
     前記光合成部によって合成された光の光路上に配置された投射レンズと、
     前記偏光板と前記基板部材のうちの少なくとも何れか一方にエアーを供給するファンと、
     前記エアーを前記偏光板と前記基板部材のうちの少なくとも何れか一方に導くダクトと、
     を有し、
     前記偏光板または前記基板部材は、前記ダクトから吹き出した前記エアーが、前記偏光板と前記基板部材のうちの少なくとも何れか一方の光通過面に対して斜めに当たるように配置されている、投射型表示装置。
    A light source that emits light;
    A polarizing plate and a substrate member for changing the intensity of light emitted from the light source;
    A photosynthesis unit for synthesizing light that has passed through the polarizing plate and the substrate member;
    A projection lens disposed on the optical path of the light combined by the light combining unit;
    A fan for supplying air to at least one of the polarizing plate and the substrate member;
    A duct for guiding the air to at least one of the polarizing plate and the substrate member;
    Have
    The projection type in which the polarizing plate or the substrate member is disposed so that the air blown out from the duct is obliquely applied to a light passage surface of at least one of the polarizing plate and the substrate member. Display device.
  6.  請求項5に記載の投射型表示装置において、
     前記ダクトは、その前記エアーを吹き出す第1開口部が、前記偏光板または前記基板部材の横幅に沿って細長く形成されている、投射型表示装置。
    In the projection type display device according to claim 5,
    The duct is a projection type display device in which a first opening for blowing out the air is formed to be elongated along the lateral width of the polarizing plate or the substrate member.
  7.  請求項6に記載の投射型表示装置において、
     前記ダクトから吹き出した前記エアーが、前記偏光板と前記基板部材のうちの少なくとも何れか一方の前記光通過面の高さ方向の中央部に当たるように前記ダクトが配置されている、投射型表示装置。
    In the projection type display device according to claim 6,
    The projection display device, wherein the duct is arranged so that the air blown out from the duct hits a central portion in a height direction of the light passage surface of at least one of the polarizing plate and the substrate member. .
  8.  請求項5,6または7に記載の投射型表示装置において、
     前記ダクトは、前記偏光板または前記基板部材に対し前記ダクトを挟んで対向する位置に配置された他の偏光板または他の基板部材に前記エアーが当たるように形成された第2開口部を有し、
     前記第2開口部は、前記偏光板もしくは前記基板部材の横幅に沿って細長く形成されている、投射型表示装置。
    In the projection type display device according to claim 5, 6 or 7,
    The duct has a second opening formed so that the air hits another polarizing plate or another substrate member disposed at a position facing the polarizing plate or the substrate member with the duct interposed therebetween. And
    The projection display device, wherein the second opening is formed to be elongated along the lateral width of the polarizing plate or the substrate member.
  9.  請求項1~8の何れか1項に記載の投射型表示装置において、
     前記ダクトは、光を通す材料によって形成されている、投射型表示装置。
    The projection display device according to any one of claims 1 to 8,
    The said duct is a projection type display apparatus formed of the material which lets light pass.
  10.  請求項1~9の何れか1項に記載の投射型表示装置において、
     前記基板部材は、液晶パネルである、投射型表示装置。
    The projection display device according to any one of claims 1 to 9,
    The projection display device, wherein the substrate member is a liquid crystal panel.
  11.  請求項1~10の何れか1項に記載の投射型表示装置において、
     前記光合成部は、光合成プリズムである、投射型表示装置。
    The projection display device according to any one of claims 1 to 10,
    The light combining unit is a projection display device that is a light combining prism.
PCT/JP2014/070948 2014-08-07 2014-08-07 Projecting display device WO2016021032A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/070948 WO2016021032A1 (en) 2014-08-07 2014-08-07 Projecting display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/070948 WO2016021032A1 (en) 2014-08-07 2014-08-07 Projecting display device

Publications (1)

Publication Number Publication Date
WO2016021032A1 true WO2016021032A1 (en) 2016-02-11

Family

ID=55263338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070948 WO2016021032A1 (en) 2014-08-07 2014-08-07 Projecting display device

Country Status (1)

Country Link
WO (1) WO2016021032A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111381417A (en) * 2018-12-29 2020-07-07 Tcl集团股份有限公司 Light source cooling system, laser, and projector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281948A (en) * 1993-03-30 1994-10-07 Sanyo Electric Co Ltd Liquid crystal projector
JPH09197364A (en) * 1996-01-23 1997-07-31 Fujitsu Ltd Liquid crystal projector and method for cooling the projector
JP2008058385A (en) * 2006-08-29 2008-03-13 Seiko Epson Corp Projector
JP2010061004A (en) * 2008-09-05 2010-03-18 Sanyo Electric Co Ltd Projection type video display device
JP2013097230A (en) * 2011-11-02 2013-05-20 Seiko Epson Corp Projector
JP2013178416A (en) * 2012-02-29 2013-09-09 Hitachi Consumer Electronics Co Ltd Liquid crystal projector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281948A (en) * 1993-03-30 1994-10-07 Sanyo Electric Co Ltd Liquid crystal projector
JPH09197364A (en) * 1996-01-23 1997-07-31 Fujitsu Ltd Liquid crystal projector and method for cooling the projector
JP2008058385A (en) * 2006-08-29 2008-03-13 Seiko Epson Corp Projector
JP2010061004A (en) * 2008-09-05 2010-03-18 Sanyo Electric Co Ltd Projection type video display device
JP2013097230A (en) * 2011-11-02 2013-05-20 Seiko Epson Corp Projector
JP2013178416A (en) * 2012-02-29 2013-09-09 Hitachi Consumer Electronics Co Ltd Liquid crystal projector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111381417A (en) * 2018-12-29 2020-07-07 Tcl集团股份有限公司 Light source cooling system, laser, and projector

Similar Documents

Publication Publication Date Title
JP6168387B2 (en) Light source device and image projection device provided with the same
JP5618120B2 (en) Light emitting device, light source device, and projector using the light source device
JP2015036708A (en) Light source device and image projection apparatus including light source device
JPWO2015166553A1 (en) Cooling structure of illumination optical system and projection display device
JP4944452B2 (en) Image projection device
JP6645667B2 (en) Projection display device
US9645478B2 (en) Cooling device, image projection apparatus, and electronic apparatus
TWI447509B (en) Heat dissipation device of porjector optical mechanical
JP5898526B2 (en) LCD projector
WO2018042816A1 (en) Image projection device
JP2012203350A (en) Cooling apparatus and projector
WO2016021032A1 (en) Projecting display device
JP5685692B2 (en) Projection-type LCD device
JP4585820B2 (en) Light source device, optical device, and image projection device
JP4067029B2 (en) Optical device
JP5038043B2 (en) Image projection device
JP2013145259A (en) Projector
JP4145595B2 (en) LCD projector
US6808296B2 (en) Cooling apparatus for optical engine assembly
JP2011075763A (en) Projection type video display device
WO2018042813A1 (en) Image projection device
JP2016126205A (en) projector
JP6584133B2 (en) Light source device and image projection device
JP5735549B2 (en) LCD projector
JP2007171390A (en) Projection type display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14899285

Country of ref document: EP

Kind code of ref document: A1