WO2016021003A1 - Engine-starting control device, and engine-starting control method - Google Patents

Engine-starting control device, and engine-starting control method Download PDF

Info

Publication number
WO2016021003A1
WO2016021003A1 PCT/JP2014/070738 JP2014070738W WO2016021003A1 WO 2016021003 A1 WO2016021003 A1 WO 2016021003A1 JP 2014070738 W JP2014070738 W JP 2014070738W WO 2016021003 A1 WO2016021003 A1 WO 2016021003A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
engine
power supply
storage means
starter motor
Prior art date
Application number
PCT/JP2014/070738
Other languages
French (fr)
Japanese (ja)
Inventor
匡史 岩本
手塚 淳
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2014/070738 priority Critical patent/WO2016021003A1/en
Publication of WO2016021003A1 publication Critical patent/WO2016021003A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines

Definitions

  • the present invention relates to an engine start control device and an engine start control method.
  • a system that includes a battery and a capacitor as power storage means, and starts the engine by supplying power from the battery to the starter motor and operating the starter motor when the engine is started (Mazda Technical Report No. 30). (2012), pp. 37-42, “Development of Deceleration Energy Regeneration System“ i-ELOOP ””.
  • An engine start control apparatus includes at least a dischargeable power storage unit, a starter motor that rotates by electric power supplied from the power storage unit, and starts the engine, and a voltage that detects a voltage of the power storage unit Detection means, a first power supply passage that is a passage for supplying power from the power storage means to the starter motor, and a passage that supplies power from the power storage means to the starter motor and is more resistant than the first power supply passage.
  • a second power supply passage having a high value.
  • the engine start control device further selects the second power supply path when the voltage of the power storage means is higher than a predetermined threshold voltage when starting the engine, and the voltage of the power storage means is set to a predetermined threshold value. When the voltage is equal to or lower than the voltage, selection means for selecting the first power supply path is provided.
  • FIG. 1 is a diagram showing a configuration of an engine start system including an engine start control device according to an embodiment.
  • FIG. 2 is a flowchart showing a processing procedure when starting the engine by supplying electric power from the capacitor to the starter motor.
  • FIG. 3 is a diagram for explaining the current flowing through the starter motor in accordance with the voltage of the capacitor when the engine is started using the conventional engine start control device.
  • FIG. 4 is a diagram for explaining the current flowing through the starter motor in accordance with the voltage of the capacitor when the engine is started using the engine start control device according to the embodiment.
  • FIG. 5 is a diagram for explaining the current flowing through the starter motor according to the voltage of the capacitor when the resistance value of the resistor in the ICR relay is reduced.
  • FIG. 6 is a diagram for explaining the current flowing through the starter motor according to the voltage of the capacitor when the resistance value of the resistor in the ICR relay is increased.
  • FIG. 1 is a diagram showing a configuration of a vehicle engine start system including an engine start control device according to an embodiment.
  • the engine start control device in this embodiment is mounted on a vehicle such as a gasoline vehicle equipped with a gasoline engine, a diesel vehicle equipped with a diesel engine, and a hybrid vehicle equipped with an engine and a motor as a travel drive source.
  • the battery 1 is a lead acid battery, for example, and supplies power to the starter motor 4 and / or the electric load 9.
  • the capacitor (power storage means) 2 is, for example, an electric double layer capacitor.
  • the capacitor 2 is characterized in that it is less deteriorated due to charge / discharge than the battery 1 and can be charged / discharged in a short time.
  • the electric power generated by the regenerative operation of the alternator 6 is charged in the capacitor 2 during regenerative braking of the vehicle. However, this regenerative power can be charged to the battery 10 via the DC / DC converter 3.
  • the electric power of the capacitor 2 can be supplied to the electric load 9 and the starter motor 4.
  • the time of regenerative braking of the vehicle includes a time when a brake operation is performed by the driver and a time when the driver decelerates by releasing the accelerator pedal while the vehicle is traveling.
  • the starter motor (starting motor) 4 is rotationally driven by the supplied electric power, rotates the crankshaft, and starts the engine 10.
  • the engine 10 and the alternator 6 are shown at positions apart from each other, but the alternator 4 is actually disposed close to the regenerative operation by the rotational force of the engine 10.
  • a DC / DC converter 3 is provided between the battery 1 and the capacitor 2.
  • the DC / DC converter 3 adjusts the voltage when power is supplied from the capacitor 2 to the starter motor 4, the electric load 9, and the battery 1. Further, when power is supplied from the battery 1 to the capacitor 2, the voltage is adjusted (current value is limited). Control of the DC / DC converter 3 is performed by a controller 7 which will be described later.
  • the DC / DC converter 3 can be electrically connected between the battery 1 and the capacitor 2 and electrically disconnects the battery 1 and the capacitor 2 after the ignition switch (not shown) is turned off. This is because when the ignition switch is turned off and the battery 1 and the capacitor 2 are electrically connected, power is continuously supplied from the battery 1 to the capacitor 2, and the self-discharge of the capacitor 2 This is because the power of both the capacitor 2 and the battery 1 is lost.
  • the changeover switch 5 is controlled by a controller 7 described later, and switches the power supply route to the starter motor 4 between the battery 1 and the capacitor 2 based on a command signal from the controller 7.
  • the voltage sensor (voltage detection means) 8 detects the voltage of the capacitor 2.
  • An ICR (Inrush Current Reduction) relay 11 is a relay whose internal resistance changes according to ON / OFF of the relay, and is provided on a line 12 connecting the capacitor 2 and the changeover switch 5.
  • the line 12 is provided in parallel with a line connecting the capacitor 2 and the changeover switch 5 via the DC / DC converter 3.
  • the ICR relay 11 When the ICR relay 11 is on, the line 11b passing through the resistor 11a provided therein is conducted, and when the ICR relay 11 is off, the line 11c without a resistor is conducted.
  • On / off of the ICR relay 11 is controlled by the controller 7.
  • Controller (selection means) 7 controls the entire vehicle. In particular, the controller 7 performs an engine start process described later.
  • the vehicle including the engine start control device includes the battery 1 and the capacitor 2, and supplies power to the starter motor 4 from either the battery 1 or the capacitor 2.
  • the engine 10 can be started.
  • the present invention relates to control in the case of starting the engine 10 by supplying electric power from the capacitor 2 to the starter motor 4.
  • This engine start includes not only the initial start based on the engine start operation of the driver, but also the engine restart after the so-called idling stop and the so-called coast stop that automatically stops the engine during inertial running while the vehicle is running. This includes restarting the engine after a while.
  • FIG. 2 is a flowchart showing a processing procedure when power is supplied from the capacitor 2 to the starter motor 4 to start the engine 10. The process starting from step S1 is performed by the controller 7.
  • step S1 it is determined whether or not the voltage of the capacitor 2 detected by the voltage sensor 8 is higher than a predetermined threshold voltage.
  • the predetermined threshold voltage is a determination voltage for switching on / off of the ICR relay 11, and is determined by a method described later. If it is determined that the voltage of the capacitor 2 is higher than the predetermined threshold voltage, the process proceeds to step S2, and if it is determined that the voltage of the capacitor 2 is equal to or lower than the predetermined threshold voltage, the process proceeds to step S3.
  • step S2 the ICR relay 11 is turned on.
  • step S3 the ICR relay 11 is turned off.
  • step S4 a control signal for setting the power supply source of the starter motor 4 to the capacitor 2 is transmitted to the changeover switch 5.
  • the changeover switch 5 connects the starter motor 4 and the capacitor 2 based on this control signal. Thereby, the line 12 connecting the capacitor 2 and the changeover switch 5 is conducted.
  • step S5 a starter relay (not shown) is turned on, and power is supplied from the capacitor 2 to the starter motor 4, whereby the starter motor 4 is operated and the engine 10 is started.
  • the ICR relay 11 is not provided on the line 12 connecting the capacitor 2 and the changeover switch 5 in FIG.
  • FIG. 3 is a diagram for explaining the current flowing through the starter motor 4 according to the voltage of the capacitor 2 when the engine is started using a conventional engine start control device.
  • line L1 and line L2 indicate the relationship of the terminal voltage of the capacitor 2 with respect to the current (starter current in the figure) flowing through the starter motor 4 when the engine is started.
  • the line L1 indicates that the voltage of the capacitor 2 is the highest voltage.
  • the line L2 indicates the case where the voltage of the capacitor 2 is the lowest voltage.
  • a region between the line L1 and the line L2 is a working voltage range of the capacitor 2.
  • Line L3 shows the relationship between the voltage drop amount obtained by adding the voltage drop of the harness and the voltage drop due to the resistance of the starter motor 4 to the current flowing through the starter motor 4 when the engine is started.
  • the voltage drop of the harness is a voltage drop generated in the harness connecting between the capacitor 2 and the starter motor 4.
  • a current Ia at the intersection of the line L3 and the line L2 is a current that flows to the starter motor 4 when the voltage of the capacitor 2 is the lowest voltage.
  • the current Ib at the intersection of the line L3 and the line L1 is a current that flows to the starter motor 4 when the voltage of the capacitor 2 is the highest voltage.
  • the current flowing through the starter motor 4 at the time of engine start varies greatly depending on the voltage of the capacitor 2. Since the current Ib flowing through the starter motor 4 at the maximum voltage of the capacitor 2 is large, a method of providing a large resistance in the current path from the capacitor 2 to the starter motor 4 is considered so that the life of the starter motor 4 is not deteriorated by this current Ib. It is done. However, when a large resistance is provided, if the voltage of the capacitor 2 is low, a current sufficient for starting the engine may not flow to the starter motor 4, and the startability of the engine 10 is deteriorated.
  • the starter motor 4 has a high voltage when the voltage of the capacitor 2 is high. Since the flowing current increases, the life of the starter motor 4 is deteriorated.
  • FIG. 4 is a diagram for explaining a current flowing through the starter motor 4 according to the voltage of the capacitor 2 when the engine is started using the engine start control device according to the embodiment.
  • the lines L1 to L3 are the same as the lines L1 to L3 in FIG. However, in the engine start control device according to the embodiment, the ICR relay 11 is provided on the line 12 connecting the capacitor 2 and the changeover switch 5 in FIG. 1, and the line L3 in FIG. The line when off.
  • the line L3 indicates a line when the ICR relay 11 is off, while the line L4 indicates a line when the ICR relay 11 is on. That is, the line L4 in FIG. 4 shows the voltage drop of the harness, the voltage drop due to the resistance of the starter motor 4 with respect to the current flowing through the starter motor 4 when the engine is started, and the voltage of the ICR relay 11 when the ICR relay 11 is on. The relationship with the voltage drop allowance added to the drop is shown.
  • the ICR relay 11 is turned on, the current from the capacitor 2 flows through the resistor 11 a provided inside the ICR relay 11.
  • the voltage drop of the ICR relay 11 is a voltage drop caused by a current flowing through the resistor 11a.
  • the ICR relay 11 when the voltage of the capacitor 2 is equal to or lower than a predetermined threshold voltage, the ICR relay 11 is turned off.
  • the voltage drop margin for the current flowing through the starter motor 4 when the engine is started when the ICR relay 11 is off is a line L3. Therefore, the current Ia at the intersection of the line L3 and the line L2 becomes a current that flows to the starter motor 4 when the voltage of the capacitor 2 is the lowest voltage. Further, the current Ic at the intersection of the line L3 and the line L5 becomes a current that flows through the starter motor 4 when the voltage of the capacitor 2 is a predetermined threshold voltage.
  • the ICR relay 11 When the voltage of the capacitor 2 becomes higher than a predetermined threshold voltage, the ICR relay 11 is turned on. A voltage drop margin with respect to a current flowing through the starter motor 4 when the engine is started when the ICR relay 11 is on is a line L4. Therefore, the current at the intersection of the line L4 and the line L5 becomes the current that flows to the starter motor 4 when the voltage of the capacitor 2 is the predetermined threshold voltage. Further, the current Ic at the intersection of the line L4 and the line L3 is a current that flows to the starter motor 4 when the voltage of the capacitor is the highest voltage.
  • the minimum value of the current flowing through the starter motor 4 when the engine is started is Ia.
  • the highest value was Ib.
  • the minimum value of the current flowing through the starter motor 4 when the engine is started is Ia and the maximum value is Ic (Ic ⁇ Ib). That is, the width (current difference) of the current flowing through the starter motor 4 at the time of starting the engine with respect to the fluctuation range of the voltage of the capacitor 2 is small. As a result, even when the voltage of the capacitor 2 fluctuates greatly, the time required to start the engine does not change significantly, so that the driver does not feel uncomfortable when starting the engine.
  • the maximum value (Ic) of the current flowing through the starter motor 4 when the ICR relay 11 is turned on is the same as the maximum value (Ic) of the current flowing through the starter motor 4 when the ICR relay 11 is turned off.
  • the resistance value of the resistor 11a in the ICR relay 11 and a predetermined threshold voltage are set. The reason for this will be described below.
  • FIG. 5 is a diagram for explaining the current flowing through the starter motor 4 according to the voltage of the capacitor 2 when the resistance value of the resistor 11a in the ICR relay 11 is reduced.
  • the case where the resistance value of the resistor 11a is reduced is a case where the resistance value is reduced with reference to the resistance value for realizing the state shown in FIG.
  • a line L3a is a line when the ICR relay 11 is OFF, and the voltage drop of the harness and the voltage drop due to the resistance of the starter motor 4 are added to the current flowing through the starter motor 4 when the engine is started.
  • the relationship with the voltage drop is shown.
  • a line L4a is a line when the ICR relay 11 is on. The voltage drop of the harness, the voltage drop due to the resistance of the starter motor 4 with respect to the current flowing through the starter motor 4 when the engine is started, and the ICR relay 11 The relationship with the voltage drop allowance which added the voltage drop part of the ICR relay 11 at the time of ON is shown.
  • the predetermined threshold voltage (line L5a) is set so that the current flowing through the starter motor 4 becomes Ia when the ICR relay 11 is switched from OFF to ON.
  • the ICR relay 11 When the voltage of the capacitor 2 becomes higher than a predetermined threshold voltage, the ICR relay 11 is turned on.
  • the current Ia at the intersection of the line L4a and the line L5a is a current that flows to the starter motor 4 when the voltage of the capacitor 2 is a predetermined threshold voltage.
  • the current Id at the intersection of the line L4a and the line L1 is a current that flows to the starter motor 4 when the voltage of the capacitor is the highest voltage.
  • the starter motor 4 has a larger current value Ic when the ICR relay 11 is on and off than when the Ic is the same (see FIG. 4). The maximum value of the flowing current increases (Id> Ic).
  • FIG. 6 is a diagram for explaining the current flowing through the starter motor 4 according to the voltage of the capacitor 2 when the resistance value of the resistor 11a in the ICR relay 11 is increased.
  • the case where the resistance value of the resistor 11a is increased is a case where the resistance value is increased based on the resistance value for realizing the state shown in FIG.
  • a line L3b is a line when the ICR relay 11 is OFF, and the voltage drop of the harness and the voltage drop due to the resistance of the starter motor 4 are added to the current flowing through the starter motor 4 when the engine is started.
  • the relationship with the voltage drop is shown.
  • a line L4b is a line when the ICR relay 11 is on. The voltage drop of the harness, the voltage drop due to the resistance of the starter motor 4 with respect to the current flowing through the starter motor 4 when the engine is started, and the ICR relay 11 The relationship with the voltage drop allowance which added the voltage drop part of the ICR relay 11 at the time of ON is shown.
  • a predetermined threshold voltage (line L5b) is set so that the current flowing through the starter motor 4 becomes Ia when the ICR relay 11 is switched from OFF to ON.
  • the ICR relay 11 When the voltage of the capacitor 2 is equal to or lower than a predetermined threshold voltage, the ICR relay 11 is off. Therefore, the current Ie at the intersection of the line L3b and the line L5b becomes a current that flows to the starter motor 4 when the voltage of the capacitor 2 is a predetermined threshold voltage. Therefore, when the ICR relay 11 is turned on and off, the maximum value of the current flowing through the starter motor 4 is larger than when the maximum value of the current flowing through the starter motor 4 is the same as Ic (see FIG. 4) ( Ie> Ic).
  • the engine start control device when the voltage of the capacitor 2 is equal to or lower than the predetermined threshold voltage when the engine 10 is started, power is supplied from the capacitor 2 to the starter motor 4.
  • the first power supply passage (line 12, line 11c) which is a passage is selected and the voltage of the capacitor 2 is higher than a predetermined threshold voltage, the first power supply passage having a resistance value higher than that of the first power supply passage.
  • Two power supply paths (line 12, line 11b) are selected.
  • the maximum current that flows to the starter motor 4 when the first power supply passage is selected and the maximum current that flows to the starter motor 4 when the second power supply passage is selected are substantially the same.
  • the resistance value and threshold voltage of the second power supply passage are set. Thereby, the electric current which flows into the starter motor 4 can be suppressed most.
  • an ICR relay 11 having a resistor 11 a provided therein is provided between the capacitor 2 and the starter motor 4, and the first power supply path is a resistor 11 a provided inside the ICR relay 11.
  • the second power supply path is a power supply path that passes through a resistor 11 a provided inside the ICR relay 11.
  • the embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
  • power is supplied from the capacitor 2 to the starter motor 4 to start the engine.
  • the power supply source to the starter motor is not limited to the capacitor, for example, lithium ion A battery such as a battery may be used.
  • the present invention is particularly effective when applied to a system that supplies power to a starting motor for starting an engine from power storage means whose voltage varies greatly depending on the state of charge.
  • the engine 1 may be started by driving the alternator 4 as a starting motor instead of the starter motor 4.

Abstract

This engine-starting control device is provided with: an electrical storage means capable of at least electrical discharge; a starting electric motor which starts an engine as a result of being rotationally driven by electric power supplied from the electrical storage means; a voltage detection means for detecting the voltage of the electrical storage means; a first electric-power supply passage for supplying the electric power from the electrical storage means to the starting electric motor; a second electric-power supply passage which is for supplying the electric power from the electrical storage means to the starting electric motor, and which has a higher resistance value than the first electric-power supply passage; and a selection means which, in cases when the voltage of the electrical storage means is higher than a prescribed threshold voltage when starting the engine, selects the second electric-power supply passage, and which, in cases when the voltage of the electrical storage means is equal to or less than the prescribed threshold voltage when starting the engine, selects the first electric-power supply passage.

Description

エンジンの始動制御装置およびエンジンの始動制御方法Engine start control device and engine start control method
 本発明は、エンジンの始動制御装置およびエンジンの始動制御方法に関する。 The present invention relates to an engine start control device and an engine start control method.
 従来、蓄電手段としてバッテリとキャパシタを備え、エンジン始動時には、バッテリからスタータモータに電力を供給してスタータモータを作動させることによって、エンジン始動を行うシステムが知られている(マツダ技報No.30(2012)、37-42頁、「減速エネルギ回生システム“i-ELOOP”の開発」参照)。 2. Description of the Related Art Conventionally, a system is known that includes a battery and a capacitor as power storage means, and starts the engine by supplying power from the battery to the starter motor and operating the starter motor when the engine is started (Mazda Technical Report No. 30). (2012), pp. 37-42, “Development of Deceleration Energy Regeneration System“ i-ELOOP ””.
 ここで、バッテリの代わりにキャパシタからスタータモータに電力を供給して、エンジン始動を行う方法も考えられる。しかしながら、キャパシタは充電状態(SOC)に応じて電圧が大きく変動するため、キャパシタ電圧が高い場合と低い場合とでエンジン始動の時間が異なり、ドライバに違和感を与えてしまう。 Here, it is conceivable to start the engine by supplying power from the capacitor to the starter motor instead of the battery. However, since the voltage of the capacitor greatly varies depending on the state of charge (SOC), the engine start time differs depending on whether the capacitor voltage is high or low, which gives the driver a sense of incongruity.
 本発明は、キャパシタから始動用電動機に電力を供給してエンジン始動を行う場合に、キャパシタ電圧が高い場合と低い場合とで生じるエンジン始動時間の差を小さくする技術を提供することを目的とする。 It is an object of the present invention to provide a technique for reducing the difference in engine start time that occurs between when the capacitor voltage is high and when the engine is started when power is supplied from the capacitor to the starter motor. .
 本発明の一態様におけるエンジンの始動制御装置は、少なくとも放電可能な蓄電手段と、蓄電手段から供給される電力により回転駆動してエンジンを始動させる始動用電動機と、蓄電手段の電圧を検出する電圧検出手段と、蓄電手段から始動用電動機に電力を供給する通路である第1の電力供給通路と、蓄電手段から始動用電動機に電力を供給する通路であり、第1の電力供給通路よりも抵抗値が高い第2の電力供給通路とを備える。エンジンの始動制御装置はさらに、エンジンの始動時に、蓄電手段の電圧が所定のしきい値電圧よりも高い場合は、第2の電力供給通路を選択し、蓄電手段の電圧が所定のしきい値電圧以下の場合は、第1の電力供給通路を選択する選択手段を備える。 An engine start control apparatus according to an aspect of the present invention includes at least a dischargeable power storage unit, a starter motor that rotates by electric power supplied from the power storage unit, and starts the engine, and a voltage that detects a voltage of the power storage unit Detection means, a first power supply passage that is a passage for supplying power from the power storage means to the starter motor, and a passage that supplies power from the power storage means to the starter motor and is more resistant than the first power supply passage. A second power supply passage having a high value. The engine start control device further selects the second power supply path when the voltage of the power storage means is higher than a predetermined threshold voltage when starting the engine, and the voltage of the power storage means is set to a predetermined threshold value. When the voltage is equal to or lower than the voltage, selection means for selecting the first power supply path is provided.
 本発明の実施形態については、添付された図面とともに以下に詳細に説明される。 Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
図1は、一実施の形態におけるエンジンの始動制御装置を含むエンジン始動系の構成を示す図である。FIG. 1 is a diagram showing a configuration of an engine start system including an engine start control device according to an embodiment. 図2は、キャパシタからスタータモータに電力を供給してエンジンの始動を行う際の処理手順を示すフローチャートである。FIG. 2 is a flowchart showing a processing procedure when starting the engine by supplying electric power from the capacitor to the starter motor. 図3は、従来のエンジン始動制御装置を用いてエンジン始動を行う場合に、キャパシタの電圧に応じてスタータモータに流れる電流を説明するための図である。FIG. 3 is a diagram for explaining the current flowing through the starter motor in accordance with the voltage of the capacitor when the engine is started using the conventional engine start control device. 図4は、一実施の形態におけるエンジンの始動制御装置を用いてエンジン始動を行う場合に、キャパシタの電圧に応じてスタータモータに流れる電流を説明するための図である。FIG. 4 is a diagram for explaining the current flowing through the starter motor in accordance with the voltage of the capacitor when the engine is started using the engine start control device according to the embodiment. 図5は、ICRリレー内の抵抗の抵抗値を小さくした場合に、キャパシタの電圧に応じてスタータモータに流れる電流を説明するための図である。FIG. 5 is a diagram for explaining the current flowing through the starter motor according to the voltage of the capacitor when the resistance value of the resistor in the ICR relay is reduced. 図6は、ICRリレー内の抵抗の抵抗値を大きくした場合に、キャパシタの電圧に応じてスタータモータに流れる電流を説明するための図である。FIG. 6 is a diagram for explaining the current flowing through the starter motor according to the voltage of the capacitor when the resistance value of the resistor in the ICR relay is increased.
 図1は、一実施の形態におけるエンジンの始動制御装置を含む、車両のエンジン始動系の構成を示す図である。本実施形態におけるエンジンの始動制御装置は、ガソリンエンジンを搭載するガソリン車、ディーゼルエンジンを搭載するディーゼル車、走行駆動源としてエンジンおよびモータを備えるハイブリッド車などの車両に搭載される。 FIG. 1 is a diagram showing a configuration of a vehicle engine start system including an engine start control device according to an embodiment. The engine start control device in this embodiment is mounted on a vehicle such as a gasoline vehicle equipped with a gasoline engine, a diesel vehicle equipped with a diesel engine, and a hybrid vehicle equipped with an engine and a motor as a travel drive source.
 バッテリ1は、例えば、鉛酸バッテリであり、スタータモータ4および/または電気負荷9に電力を供給する。 The battery 1 is a lead acid battery, for example, and supplies power to the starter motor 4 and / or the electric load 9.
 キャパシタ(蓄電手段)2は、例えば、電気二重層キャパシタである。キャパシタ2は、バッテリ1に比べて、充放電による劣化が少なく、短時間で充放電を行うことができるという特徴がある。車両の回生制動時等において、オルタネータ6の回生運転によって発電された電力は、キャパシタ2に充電される。ただし、この回生発電電力は、DC/DCコンバータ3を介して、バッテリ10に充電することも可能である。キャパシタ2の電力は、電気負荷9やスタータモータ4に供給可能である。なお、車両の回生制動時とは、ドライバによるブレーキ操作が行われた時や、車両の走行中に、ドライバがアクセルペダルを離して減速する時などが含まれる。 The capacitor (power storage means) 2 is, for example, an electric double layer capacitor. The capacitor 2 is characterized in that it is less deteriorated due to charge / discharge than the battery 1 and can be charged / discharged in a short time. The electric power generated by the regenerative operation of the alternator 6 is charged in the capacitor 2 during regenerative braking of the vehicle. However, this regenerative power can be charged to the battery 10 via the DC / DC converter 3. The electric power of the capacitor 2 can be supplied to the electric load 9 and the starter motor 4. Note that the time of regenerative braking of the vehicle includes a time when a brake operation is performed by the driver and a time when the driver decelerates by releasing the accelerator pedal while the vehicle is traveling.
 スタータモータ(始動用電動機)4は、供給された電力によって回転駆動して、クランクシャフトを回転させて、エンジン10を始動させる。なお、図1では、エンジン10とオルタネータ6を離れた位置に示しているが、オルタネータ4はエンジン10の回転力によって回生運転を行うため、実際には近くに配置されている。 The starter motor (starting motor) 4 is rotationally driven by the supplied electric power, rotates the crankshaft, and starts the engine 10. In FIG. 1, the engine 10 and the alternator 6 are shown at positions apart from each other, but the alternator 4 is actually disposed close to the regenerative operation by the rotational force of the engine 10.
 バッテリ1とキャパシタ2との間には、DC/DCコンバータ3が設けられている。DC/DCコンバータ3は、キャパシタ2からスタータモータ4や電気負荷9、バッテリ1に電力を供給する際に、電圧を調整する。また、バッテリ1からキャパシタ2に電力を供給する際に、電圧を調整(電流値を制限)する。DC/DCコンバータ3の制御は、後述するコントローラ7によって行われる。 A DC / DC converter 3 is provided between the battery 1 and the capacitor 2. The DC / DC converter 3 adjusts the voltage when power is supplied from the capacitor 2 to the starter motor 4, the electric load 9, and the battery 1. Further, when power is supplied from the battery 1 to the capacitor 2, the voltage is adjusted (current value is limited). Control of the DC / DC converter 3 is performed by a controller 7 which will be described later.
 DC/DCコンバータ3は、また、バッテリ1とキャパシタ2との間を電気的に断続可能であり、図示しないイグニッションスイッチのオフ後には、バッテリ1とキャパシタ2との間を電気的に切断する。これは、イグニッションスイッチのオフ後にバッテリ1とキャパシタ2との間を電気的に接続していると、バッテリ1からキャパシタ2に電力が供給され続けることになり、また、キャパシタ2の自己放電によって、キャパシタ2およびバッテリ1の双方の電力が失われるからである。 The DC / DC converter 3 can be electrically connected between the battery 1 and the capacitor 2 and electrically disconnects the battery 1 and the capacitor 2 after the ignition switch (not shown) is turned off. This is because when the ignition switch is turned off and the battery 1 and the capacitor 2 are electrically connected, power is continuously supplied from the battery 1 to the capacitor 2, and the self-discharge of the capacitor 2 This is because the power of both the capacitor 2 and the battery 1 is lost.
 切替スイッチ5は、後述するコントローラ7によって制御され、コントローラ7からの指令信号に基づいて、スタータモータ4への電力供給ルートを、バッテリ1とキャパシタ2との間で切り替える。 The changeover switch 5 is controlled by a controller 7 described later, and switches the power supply route to the starter motor 4 between the battery 1 and the capacitor 2 based on a command signal from the controller 7.
 電圧センサ(電圧検出手段)8は、キャパシタ2の電圧を検出する。 The voltage sensor (voltage detection means) 8 detects the voltage of the capacitor 2.
 ICR(Inrush Current Reduction)リレー11は、リレーのオン/オフに応じて内部の抵抗が変化するリレーであり、キャパシタ2と切替スイッチ5とを接続するライン12に設けられている。ライン12は、DC/DCコンバータ3を介してキャパシタ2と切替スイッチ5とを接続するラインと並列に設けられている。ICRリレー11のオン時には、内部に設けられた抵抗11aを通るライン11bが導通し、ICRリレー11のオフ時には、抵抗が設けられていないライン11cが導通する。ICRリレー11のオン/オフは、コントローラ7によって制御される。 An ICR (Inrush Current Reduction) relay 11 is a relay whose internal resistance changes according to ON / OFF of the relay, and is provided on a line 12 connecting the capacitor 2 and the changeover switch 5. The line 12 is provided in parallel with a line connecting the capacitor 2 and the changeover switch 5 via the DC / DC converter 3. When the ICR relay 11 is on, the line 11b passing through the resistor 11a provided therein is conducted, and when the ICR relay 11 is off, the line 11c without a resistor is conducted. On / off of the ICR relay 11 is controlled by the controller 7.
 コントローラ(選択手段)7は、車両全体の制御を行う。特に、コントローラ7は、後述するエンジン始動処理を行う。 Controller (selection means) 7 controls the entire vehicle. In particular, the controller 7 performs an engine start process described later.
 上述したように、一実施の形態におけるエンジンの始動制御装置を備えた車両は、バッテリ1とキャパシタ2とを備えており、バッテリ1およびキャパシタ2のいずれか一方からスタータモータ4に電力を供給してエンジン10を始動することができる。本発明は、キャパシタ2からスタータモータ4に電力を供給してエンジン10を始動する場合の制御に関する。このエンジン始動には、ドライバのエンジン始動操作に基づく初回始動だけでなく、いわゆるアイドリングストップを行った後のエンジン再始動や、車両走行中の惰性走行時にエンジンを自動停止する、いわゆるコーストストップを行った後のエンジン再始動なども含まれる。 As described above, the vehicle including the engine start control device according to the embodiment includes the battery 1 and the capacitor 2, and supplies power to the starter motor 4 from either the battery 1 or the capacitor 2. Thus, the engine 10 can be started. The present invention relates to control in the case of starting the engine 10 by supplying electric power from the capacitor 2 to the starter motor 4. This engine start includes not only the initial start based on the engine start operation of the driver, but also the engine restart after the so-called idling stop and the so-called coast stop that automatically stops the engine during inertial running while the vehicle is running. This includes restarting the engine after a while.
 図2は、キャパシタ2からスタータモータ4に電力を供給してエンジン10の始動を行う際の処理手順を示すフローチャートである。ステップS1から始まる処理は、コントローラ7によって行われる。 FIG. 2 is a flowchart showing a processing procedure when power is supplied from the capacitor 2 to the starter motor 4 to start the engine 10. The process starting from step S1 is performed by the controller 7.
 ステップS1では、電圧センサ8によって検出されたキャパシタ2の電圧が所定のしきい値電圧より高いか否かを判定する。所定のしきい値電圧は、ICRリレー11のオン/オフを切り替えるための判定電圧であり、後述する方法により決定する。キャパシタ2の電圧が所定のしきい値電圧より高いと判定すると、ステップS2に進み、キャパシタ2の電圧が所定のしきい値電圧以下であると判定すると、ステップS3に進む。 In step S1, it is determined whether or not the voltage of the capacitor 2 detected by the voltage sensor 8 is higher than a predetermined threshold voltage. The predetermined threshold voltage is a determination voltage for switching on / off of the ICR relay 11, and is determined by a method described later. If it is determined that the voltage of the capacitor 2 is higher than the predetermined threshold voltage, the process proceeds to step S2, and if it is determined that the voltage of the capacitor 2 is equal to or lower than the predetermined threshold voltage, the process proceeds to step S3.
 ステップS2では、ICRリレー11をオンする。 In step S2, the ICR relay 11 is turned on.
 一方、ステップS3では、ICRリレー11をオフする。 On the other hand, in step S3, the ICR relay 11 is turned off.
 ステップS4では、スタータモータ4の電力供給源をキャパシタ2とするための制御信号を切替スイッチ5に送信する。切替スイッチ5は、この制御信号に基づいて、スタータモータ4とキャパシタ2との間を接続する。これにより、キャパシタ2と切替スイッチ5とを結ぶライン12は導通する。 In step S4, a control signal for setting the power supply source of the starter motor 4 to the capacitor 2 is transmitted to the changeover switch 5. The changeover switch 5 connects the starter motor 4 and the capacitor 2 based on this control signal. Thereby, the line 12 connecting the capacitor 2 and the changeover switch 5 is conducted.
 ステップS5では、図示しないスタータリレーをオンして、キャパシタ2からスタータモータ4へと電力を供給することによって、スタータモータ4を作動させて、エンジン10の始動を行う。 In step S5, a starter relay (not shown) is turned on, and power is supplied from the capacitor 2 to the starter motor 4, whereby the starter motor 4 is operated and the engine 10 is started.
 一実施の形態におけるエンジンの始動制御装置の制御効果を説明するために、最初に、従来のエンジン始動制御装置の制御結果について説明する。従来のエンジン始動制御装置では、図1のキャパシタ2と切替スイッチ5とを結ぶライン12上にICRリレー11が設けられていない。 First, in order to explain the control effect of the engine start control device in one embodiment, the control result of the conventional engine start control device will be described. In the conventional engine start control device, the ICR relay 11 is not provided on the line 12 connecting the capacitor 2 and the changeover switch 5 in FIG.
 図3は、従来のエンジン始動制御装置を用いてエンジン始動を行う場合に、キャパシタ2の電圧に応じてスタータモータ4に流れる電流を説明するための図である。図3において、線L1および線L2は、エンジン始動時にスタータモータ4に流れる電流(図中、スタータ電流)に対するキャパシタ2の端子電圧の関係を示しており、線L1はキャパシタ2の電圧が最高電圧の場合、線L2はキャパシタ2の電圧が最低電圧の場合をそれぞれ示している。線L1と線L2との間の領域がキャパシタ2の使用電圧範囲である。 FIG. 3 is a diagram for explaining the current flowing through the starter motor 4 according to the voltage of the capacitor 2 when the engine is started using a conventional engine start control device. In FIG. 3, line L1 and line L2 indicate the relationship of the terminal voltage of the capacitor 2 with respect to the current (starter current in the figure) flowing through the starter motor 4 when the engine is started. The line L1 indicates that the voltage of the capacitor 2 is the highest voltage. In this case, the line L2 indicates the case where the voltage of the capacitor 2 is the lowest voltage. A region between the line L1 and the line L2 is a working voltage range of the capacitor 2.
 線L3は、エンジン始動時にスタータモータ4に流れる電流に対する、ハーネスの電圧降下分とスタータモータ4の抵抗による電圧降下分とを加算した電圧降下代との関係を示す。ハーネスの電圧降下分とは、キャパシタ2とスタータモータ4との間を接続しているハーネスで生じる電圧降下である。この線L3と線L2との交点における電流Iaが、キャパシタ2の電圧が最低電圧のときにスタータモータ4に流れる電流である。また、線L3と線L1との交点における電流Ibが、キャパシタ2の電圧が最高電圧のときにスタータモータ4に流れる電流である。 Line L3 shows the relationship between the voltage drop amount obtained by adding the voltage drop of the harness and the voltage drop due to the resistance of the starter motor 4 to the current flowing through the starter motor 4 when the engine is started. The voltage drop of the harness is a voltage drop generated in the harness connecting between the capacitor 2 and the starter motor 4. A current Ia at the intersection of the line L3 and the line L2 is a current that flows to the starter motor 4 when the voltage of the capacitor 2 is the lowest voltage. Further, the current Ib at the intersection of the line L3 and the line L1 is a current that flows to the starter motor 4 when the voltage of the capacitor 2 is the highest voltage.
 従来のエンジン始動制御装置では、キャパシタ2の電圧に応じて、エンジン始動時にスタータモータ4に流れる電流が大きく異なってしまう。キャパシタ2の最高電圧時にスタータモータ4に流れる電流Ibは大きいため、この電流Ibによってスタータモータ4の寿命が悪化しないように、キャパシタ2からスタータモータ4への電流経路に大きい抵抗を設ける方法が考えられる。しかし、大きい抵抗を設けた場合、キャパシタ2の電圧が低い場合には、エンジン始動に十分な電流がスタータモータ4に流れなくなる可能性があり、エンジン10の始動性が悪化する。 In the conventional engine start control device, the current flowing through the starter motor 4 at the time of engine start varies greatly depending on the voltage of the capacitor 2. Since the current Ib flowing through the starter motor 4 at the maximum voltage of the capacitor 2 is large, a method of providing a large resistance in the current path from the capacitor 2 to the starter motor 4 is considered so that the life of the starter motor 4 is not deteriorated by this current Ib. It is done. However, when a large resistance is provided, if the voltage of the capacitor 2 is low, a current sufficient for starting the engine may not flow to the starter motor 4, and the startability of the engine 10 is deteriorated.
 一方、キャパシタ2の最低電圧時にスタータモータ4に十分な電流が流れるように、キャパシタ2からスタータモータ4への電流経路に小さい抵抗を設けると、キャパシタ2の電圧が高い場合に、スタータモータ4に流れる電流が大きくなるため、スタータモータ4の寿命が悪化してしまう。 On the other hand, if a small resistance is provided in the current path from the capacitor 2 to the starter motor 4 so that a sufficient current flows through the starter motor 4 at the lowest voltage of the capacitor 2, the starter motor 4 has a high voltage when the voltage of the capacitor 2 is high. Since the flowing current increases, the life of the starter motor 4 is deteriorated.
 図4は、一実施の形態におけるエンジンの始動制御装置を用いてエンジン始動を行う場合に、キャパシタ2の電圧に応じてスタータモータ4に流れる電流を説明するための図である。線L1~L3は、図3の線L1~L3と同じである。ただし、一実施の形態におけるエンジンの始動制御装置では、図1のキャパシタ2と切替スイッチ5とを結ぶライン12上にICRリレー11が設けられており、図4の線L3は、ICRリレー11がオフの場合の線である。 FIG. 4 is a diagram for explaining a current flowing through the starter motor 4 according to the voltage of the capacitor 2 when the engine is started using the engine start control device according to the embodiment. The lines L1 to L3 are the same as the lines L1 to L3 in FIG. However, in the engine start control device according to the embodiment, the ICR relay 11 is provided on the line 12 connecting the capacitor 2 and the changeover switch 5 in FIG. 1, and the line L3 in FIG. The line when off.
 上述したように、線L3は、ICRリレー11がオフの場合の線を示しているのに対して、線L4は、ICRリレー11がオンの場合の線を示している。すなわち、図4の線L4は、エンジン始動時にスタータモータ4に流れる電流に対する、ハーネスの電圧降下分と、スタータモータ4の抵抗による電圧降下分と、ICRリレー11のオン時におけるICRリレー11の電圧降下分とを加算した電圧降下代との関係を示す。ICRリレー11のオン時には、キャパシタ2からの電流がICRリレー11の内部に設けられている抵抗11aに流れる。ICRリレー11の電圧降下分とは、抵抗11aに電流が流れることにより生じる電圧降下である。 As described above, the line L3 indicates a line when the ICR relay 11 is off, while the line L4 indicates a line when the ICR relay 11 is on. That is, the line L4 in FIG. 4 shows the voltage drop of the harness, the voltage drop due to the resistance of the starter motor 4 with respect to the current flowing through the starter motor 4 when the engine is started, and the voltage of the ICR relay 11 when the ICR relay 11 is on. The relationship with the voltage drop allowance added to the drop is shown. When the ICR relay 11 is turned on, the current from the capacitor 2 flows through the resistor 11 a provided inside the ICR relay 11. The voltage drop of the ICR relay 11 is a voltage drop caused by a current flowing through the resistor 11a.
 図4ではまた、ICRリレー11のオン/オフを切り替えるための所定のしきい値電圧を示す線L5も示している。 4 also shows a line L5 indicating a predetermined threshold voltage for switching the ICR relay 11 on / off.
 本実施形態では、キャパシタ2の電圧が所定のしきい値電圧以下の場合、ICRリレー11をオフとする。ICRリレー11のオフの時におけるエンジン始動時のスタータモータ4に流れる電流に対する電圧降下代は、線L3である。従って、線L3と線L2との交点における電流Iaが、キャパシタ2の電圧が最低電圧のときにスタータモータ4に流れる電流となる。また、線L3と線L5との交点における電流Icがキャパシタ2の電圧が所定のしきい値電圧のときにスタータモータ4に流れる電流となる。 In this embodiment, when the voltage of the capacitor 2 is equal to or lower than a predetermined threshold voltage, the ICR relay 11 is turned off. The voltage drop margin for the current flowing through the starter motor 4 when the engine is started when the ICR relay 11 is off is a line L3. Therefore, the current Ia at the intersection of the line L3 and the line L2 becomes a current that flows to the starter motor 4 when the voltage of the capacitor 2 is the lowest voltage. Further, the current Ic at the intersection of the line L3 and the line L5 becomes a current that flows through the starter motor 4 when the voltage of the capacitor 2 is a predetermined threshold voltage.
 キャパシタ2の電圧が所定のしきい値電圧より高くなると、ICRリレー11はオンとなる。ICRリレー11のオンの時におけるエンジン始動時のスタータモータ4に流れる電流に対する電圧降下代は、線L4である。従って、線L4と線L5との交点における電流が、キャパシタ2の電圧が所定のしきい値電圧のときにスタータモータ4に流れる電流となる。また、線L4と線L3との交点における電流Icがキャパシタの電圧が最高電圧のときにスタータモータ4に流れる電流となる。 When the voltage of the capacitor 2 becomes higher than a predetermined threshold voltage, the ICR relay 11 is turned on. A voltage drop margin with respect to a current flowing through the starter motor 4 when the engine is started when the ICR relay 11 is on is a line L4. Therefore, the current at the intersection of the line L4 and the line L5 becomes the current that flows to the starter motor 4 when the voltage of the capacitor 2 is the predetermined threshold voltage. Further, the current Ic at the intersection of the line L4 and the line L3 is a current that flows to the starter motor 4 when the voltage of the capacitor is the highest voltage.
 図3、図4から明らかなように、従来のエンジン始動制御装置では、キャパシタ2の電圧が最低電圧と最高電圧の間である場合、エンジン始動時にスタータモータ4に流れる電流の最小値はIaで最高値はIbであった。しかし、本実施形態のエンジンの始動制御装置によれば、エンジン始動時にスタータモータ4に流れる電流の最小値はIaで最高値はIc(Ic<Ib)となる。すなわち、キャパシタ2の電圧の変動幅に対する、エンジン始動時のスタータモータ4に流れる電流の幅(電流差)が小さくなっている。これにより、キャパシタ2の電圧が大きく変動する場合でも、エンジン始動に要する時間が大幅に変わることはないので、エンジン始動時にドライバに違和感を与えることがなくなる。 As apparent from FIGS. 3 and 4, in the conventional engine start control device, when the voltage of the capacitor 2 is between the minimum voltage and the maximum voltage, the minimum value of the current flowing through the starter motor 4 when the engine is started is Ia. The highest value was Ib. However, according to the engine start control device of the present embodiment, the minimum value of the current flowing through the starter motor 4 when the engine is started is Ia and the maximum value is Ic (Ic <Ib). That is, the width (current difference) of the current flowing through the starter motor 4 at the time of starting the engine with respect to the fluctuation range of the voltage of the capacitor 2 is small. As a result, even when the voltage of the capacitor 2 fluctuates greatly, the time required to start the engine does not change significantly, so that the driver does not feel uncomfortable when starting the engine.
 ここで、本実施形態では、ICRリレー11のオン時にスタータモータ4に流れる電流の最大値(Ic)がICRリレー11のオフ時にスタータモータ4に流れる電流の最大値(Ic)と同じになるように、ICRリレー11内の抵抗11aの抵抗値と所定のしきい値電圧とを設定する。この理由を以下で説明する。 Here, in the present embodiment, the maximum value (Ic) of the current flowing through the starter motor 4 when the ICR relay 11 is turned on is the same as the maximum value (Ic) of the current flowing through the starter motor 4 when the ICR relay 11 is turned off. The resistance value of the resistor 11a in the ICR relay 11 and a predetermined threshold voltage are set. The reason for this will be described below.
 図5は、ICRリレー11内の抵抗11aの抵抗値を小さくした場合に、キャパシタ2の電圧に応じてスタータモータ4に流れる電流を説明するための図である。抵抗11aの抵抗値を小さくした場合とは、上述した図4に示す状態を実現するための抵抗値を基準として抵抗値を小さくした場合である。 FIG. 5 is a diagram for explaining the current flowing through the starter motor 4 according to the voltage of the capacitor 2 when the resistance value of the resistor 11a in the ICR relay 11 is reduced. The case where the resistance value of the resistor 11a is reduced is a case where the resistance value is reduced with reference to the resistance value for realizing the state shown in FIG.
 図5において、線L3aは、ICRリレー11がオフの場合の線であり、エンジン始動時にスタータモータ4に流れる電流に対する、ハーネスの電圧降下分とスタータモータ4の抵抗による電圧降下分とを加算した電圧降下代との関係を示す。また、線L4aは、ICRリレー11がオンの場合の線であり、エンジン始動時にスタータモータ4に流れる電流に対する、ハーネスの電圧降下分と、スタータモータ4の抵抗による電圧降下分と、ICRリレー11のオン時におけるICRリレー11の電圧降下分とを加算した電圧降下代との関係を示す。ここでは、ICRリレー11がオフからオンに切り替わった時にスタータモータ4に流れる電流がIaとなるように、所定のしきい値電圧(線L5a)を設定する。 In FIG. 5, a line L3a is a line when the ICR relay 11 is OFF, and the voltage drop of the harness and the voltage drop due to the resistance of the starter motor 4 are added to the current flowing through the starter motor 4 when the engine is started. The relationship with the voltage drop is shown. A line L4a is a line when the ICR relay 11 is on. The voltage drop of the harness, the voltage drop due to the resistance of the starter motor 4 with respect to the current flowing through the starter motor 4 when the engine is started, and the ICR relay 11 The relationship with the voltage drop allowance which added the voltage drop part of the ICR relay 11 at the time of ON is shown. Here, the predetermined threshold voltage (line L5a) is set so that the current flowing through the starter motor 4 becomes Ia when the ICR relay 11 is switched from OFF to ON.
 キャパシタ2の電圧が所定のしきい値電圧より高くなると、ICRリレー11はオンとなる。この場合、線L4aと線L5aとの交点における電流Iaが、キャパシタ2の電圧が所定のしきい値電圧のときにスタータモータ4に流れる電流となる。また、線L4aと線L1との交点における電流Idがキャパシタの電圧が最高電圧のときにスタータモータ4に流れる電流となる。この場合、図5から明らかなように、ICRリレー11のオン時とオフ時とにおいて、スタータモータ4に流れる電流の最大値がIcで同じ場合(図4参照)と比べて、スタータモータ4に流れる電流の最大値が大きくなる(Id>Ic)。 When the voltage of the capacitor 2 becomes higher than a predetermined threshold voltage, the ICR relay 11 is turned on. In this case, the current Ia at the intersection of the line L4a and the line L5a is a current that flows to the starter motor 4 when the voltage of the capacitor 2 is a predetermined threshold voltage. Further, the current Id at the intersection of the line L4a and the line L1 is a current that flows to the starter motor 4 when the voltage of the capacitor is the highest voltage. In this case, as apparent from FIG. 5, the starter motor 4 has a larger current value Ic when the ICR relay 11 is on and off than when the Ic is the same (see FIG. 4). The maximum value of the flowing current increases (Id> Ic).
 図6は、ICRリレー11内の抵抗11aの抵抗値を大きくした場合に、キャパシタ2の電圧に応じてスタータモータ4に流れる電流を説明するための図である。抵抗11aの抵抗値を大きくした場合とは、上述した図4に示す状態を実現するための抵抗値を基準として抵抗値を大きくした場合である。 FIG. 6 is a diagram for explaining the current flowing through the starter motor 4 according to the voltage of the capacitor 2 when the resistance value of the resistor 11a in the ICR relay 11 is increased. The case where the resistance value of the resistor 11a is increased is a case where the resistance value is increased based on the resistance value for realizing the state shown in FIG.
 図6において、線L3bは、ICRリレー11がオフの場合の線であり、エンジン始動時にスタータモータ4に流れる電流に対する、ハーネスの電圧降下分とスタータモータ4の抵抗による電圧降下分とを加算した電圧降下代との関係を示す。また、線L4bは、ICRリレー11がオンの場合の線であり、エンジン始動時にスタータモータ4に流れる電流に対する、ハーネスの電圧降下分と、スタータモータ4の抵抗による電圧降下分と、ICRリレー11のオン時におけるICRリレー11の電圧降下分とを加算した電圧降下代との関係を示す。ここでは、ICRリレー11がオフからオンに切り替わった時にスタータモータ4に流れる電流がIaとなるように、所定のしきい値電圧(線L5b)を設定する。 In FIG. 6, a line L3b is a line when the ICR relay 11 is OFF, and the voltage drop of the harness and the voltage drop due to the resistance of the starter motor 4 are added to the current flowing through the starter motor 4 when the engine is started. The relationship with the voltage drop is shown. A line L4b is a line when the ICR relay 11 is on. The voltage drop of the harness, the voltage drop due to the resistance of the starter motor 4 with respect to the current flowing through the starter motor 4 when the engine is started, and the ICR relay 11 The relationship with the voltage drop allowance which added the voltage drop part of the ICR relay 11 at the time of ON is shown. Here, a predetermined threshold voltage (line L5b) is set so that the current flowing through the starter motor 4 becomes Ia when the ICR relay 11 is switched from OFF to ON.
 キャパシタ2の電圧が所定のしきい値電圧以下の場合、ICRリレー11はオフである。従って、線L3bと線L5bとの交点における電流Ieが、キャパシタ2の電圧が所定のしきい値電圧のときにスタータモータ4に流れる電流となる。従って、ICRリレー11のオン時とオフ時とにおいて、スタータモータ4に流れる電流の最大値がIcで同じ場合(図4参照)と比べて、スタータモータ4に流れる電流の最大値が大きくなる(Ie>Ic)。 When the voltage of the capacitor 2 is equal to or lower than a predetermined threshold voltage, the ICR relay 11 is off. Therefore, the current Ie at the intersection of the line L3b and the line L5b becomes a current that flows to the starter motor 4 when the voltage of the capacitor 2 is a predetermined threshold voltage. Therefore, when the ICR relay 11 is turned on and off, the maximum value of the current flowing through the starter motor 4 is larger than when the maximum value of the current flowing through the starter motor 4 is the same as Ic (see FIG. 4) ( Ie> Ic).
 以上の通り、ICRリレー11のオン時とオフ時とにおいて、スタータモータ4に流れる電流の最大値が同じ場合に、スタータモータ4に流れる電流を最も抑制することができる。 As described above, when the maximum value of the current flowing through the starter motor 4 is the same when the ICR relay 11 is turned on and off, the current flowing through the starter motor 4 can be most suppressed.
 以上、一実施の形態におけるエンジンの始動制御装置によれば、エンジン10の始動時に、キャパシタ2の電圧が所定のしきい値電圧以下の場合には、キャパシタ2からスタータモータ4に電力を供給する通路である第1の電力供給通路(ライン12、ライン11c)を選択し、キャパシタ2の電圧が所定のしきい値電圧より高い場合には、第1の電力供給通路よりも抵抗値が高い第2の電力供給通路(ライン12、ライン11b)を選択する。これにより、キャパシタ2の電圧が高い場合には、抵抗値が高い第2の電力供給通路を介してキャパシタ2からスタータモータ4に電力を供給するので、スタータモータ4に大きな電流が流れるのを防ぐことができ、スタータモータ4の寿命が悪化するのを抑制することができる。また、キャパシタ2の電圧が所定のしきい値電圧以下の場合には、抵抗値が低い第1の電力供給通路を介してキャパシタ2からスタータモータ4に電力を供給するので、エンジン10を始動するために十分な電流をスタータモータ4に流すことができ、良好なエンジン始動性を確保することができる。 As described above, according to the engine start control device in the embodiment, when the voltage of the capacitor 2 is equal to or lower than the predetermined threshold voltage when the engine 10 is started, power is supplied from the capacitor 2 to the starter motor 4. When the first power supply passage (line 12, line 11c) which is a passage is selected and the voltage of the capacitor 2 is higher than a predetermined threshold voltage, the first power supply passage having a resistance value higher than that of the first power supply passage. Two power supply paths (line 12, line 11b) are selected. As a result, when the voltage of the capacitor 2 is high, power is supplied from the capacitor 2 to the starter motor 4 via the second power supply path having a high resistance value, thereby preventing a large current from flowing through the starter motor 4. It is possible to suppress the deterioration of the life of the starter motor 4. When the voltage of the capacitor 2 is equal to or lower than a predetermined threshold voltage, power is supplied from the capacitor 2 to the starter motor 4 through the first power supply path having a low resistance value, so the engine 10 is started. Therefore, a sufficient current can be supplied to the starter motor 4, and good engine startability can be ensured.
 また、第1の電力供給通路が選択された場合にスタータモータ4に流れる最大電流と、第2の電力供給通路が選択された場合にスタータモータ4に流れる最大電流が略同じとなるように、第2の電力供給通路の抵抗値およびしきい値電圧は設定されている。これにより、スタータモータ4に流れる電流を最も抑制することができる。 Further, the maximum current that flows to the starter motor 4 when the first power supply passage is selected and the maximum current that flows to the starter motor 4 when the second power supply passage is selected are substantially the same. The resistance value and threshold voltage of the second power supply passage are set. Thereby, the electric current which flows into the starter motor 4 can be suppressed most.
 さらに、キャパシタ2とスタータモータ4との間には、内部に抵抗11aが設けられたICRリレー11が設けられており、第1の電力供給通路は、ICRリレー11の内部に設けられた抵抗11aを通らない電力供給通路であり、第2の電力供給通路は、ICRリレー11の内部に設けられた抵抗11aを通る電力供給通路である。これにより、ICRリレー11のオン/オフによって容易に、第1の電力供給通路と第2の電力供給通路とを切り替えることができる。 Further, an ICR relay 11 having a resistor 11 a provided therein is provided between the capacitor 2 and the starter motor 4, and the first power supply path is a resistor 11 a provided inside the ICR relay 11. The second power supply path is a power supply path that passes through a resistor 11 a provided inside the ICR relay 11. Thereby, the first power supply path and the second power supply path can be easily switched by turning on / off the ICR relay 11.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。例えば、上述した実施形態では、キャパシタ2からスタータモータ4に電力を供給してエンジン始動を行うものとして説明したが、スタータモータへの電力供給源はキャパシタに限定されることはなく、例えばリチウムイオン電池のような電池であってもよい。なお、本発明は、充電状態に応じて電圧が大きく変動する蓄電手段から、エンジンを始動するための始動用電動機に電力を供給するシステムに適用すると、特に大きい効果が得られる。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent. For example, in the above-described embodiment, power is supplied from the capacitor 2 to the starter motor 4 to start the engine. However, the power supply source to the starter motor is not limited to the capacitor, for example, lithium ion A battery such as a battery may be used. It should be noted that the present invention is particularly effective when applied to a system that supplies power to a starting motor for starting an engine from power storage means whose voltage varies greatly depending on the state of charge.
 また、スタータモータ4の代わりにオルタネータ4を始動用電動機として駆動することによって、エンジン1の始動を行ってもよい。 Alternatively, the engine 1 may be started by driving the alternator 4 as a starting motor instead of the starter motor 4.

Claims (4)

  1.  少なくとも放電可能な蓄電手段と、
     前記蓄電手段から供給される電力により回転駆動してエンジンを始動させる始動用電動機と、
     前記蓄電手段の電圧を検出する電圧検出手段と、
     前記蓄電手段から前記始動用電動機に電力を供給する通路である第1の電力供給通路と、
     前記蓄電手段から前記始動用電動機に電力を供給する通路であり、前記第1の電力供給通路よりも抵抗値が高い第2の電力供給通路と、
     前記エンジンの始動時に、前記蓄電手段の電圧が所定のしきい値電圧よりも高い場合は、前記第2の電力供給通路を選択し、前記蓄電手段の電圧が前記所定のしきい値電圧以下の場合は、前記第1の電力供給通路を選択する選択手段と、
    を備えるエンジンの始動制御装置。
    At least a dischargeable power storage means;
    A starting electric motor that is rotated by electric power supplied from the power storage means and starts the engine;
    Voltage detection means for detecting the voltage of the power storage means;
    A first power supply path that is a path for supplying power from the power storage means to the starting motor;
    A passage for supplying power from the power storage means to the starter motor, a second power supply passage having a resistance value higher than that of the first power supply passage;
    When the engine is started, if the voltage of the power storage means is higher than a predetermined threshold voltage, the second power supply passage is selected, and the voltage of the power storage means is less than or equal to the predetermined threshold voltage. A selection means for selecting the first power supply path;
    An engine start control device comprising:
  2.  請求項1に記載のエンジンの始動制御装置において、
     前記第1の電力供給通路が選択された場合に前記始動用電動機に流れる最大電流と、前記第2の電力供給通路が選択された場合に前記始動用電動機に流れる最大電流が略同じとなるように、前記第2の電力供給通路の抵抗値および前記しきい値電圧は設定されている、
    エンジンの始動制御装置。
    The engine start control device according to claim 1,
    The maximum current flowing through the starting motor when the first power supply passage is selected and the maximum current flowing through the starting motor when the second power supply passage is selected are substantially the same. In addition, the resistance value of the second power supply passage and the threshold voltage are set.
    Engine start control device.
  3.  請求項1または請求項2に記載のエンジンの始動制御装置において、
     前記蓄電手段と前記始動用電動機との間には、内部に抵抗が設けられたICRリレーが設けられており、
     前記第1の電力供給通路は、前記ICRリレー内部に設けられた抵抗を通らない電力供給通路であり、前記第2の電力供給通路は、前記ICRリレー内部に設けられた抵抗を通る電力供給通路である、
    エンジンの始動制御装置。
    The engine start control device according to claim 1 or 2,
    Between the power storage means and the starting motor, there is provided an ICR relay provided with a resistance inside,
    The first power supply path is a power supply path that does not pass through a resistor provided in the ICR relay, and the second power supply path is a power supply path that passes through a resistor provided in the ICR relay. Is,
    Engine start control device.
  4.  蓄電手段から始動用電動機に電力を供給して前記始動用電動機を回転駆動させることによりエンジンを始動させるエンジンの始動制御方法において、
     前記エンジンの始動時に前記蓄電手段の電圧を検出し、
     検出された前記蓄電手段の電圧が所定のしきい値電圧以下の場合には、第1の電力供給通路を介して前記蓄電手段から前記始動用電動機に電力を供給し、検出された前記蓄電手段の電圧が前記所定のしきい値電圧よりも高い場合には、前記第1の電力供給通路よりも抵抗値が高い第2の電力供給通路を介して前記蓄電手段から前記始動用電動機に電力を供給する、
    エンジンの始動制御方法。
    In the engine start control method for starting the engine by supplying electric power from the power storage means to the starter motor and rotating the starter motor,
    Detecting the voltage of the power storage means at the start of the engine;
    When the detected voltage of the power storage means is equal to or lower than a predetermined threshold voltage, power is supplied from the power storage means to the starter motor via the first power supply path, and the detected power storage means Is higher than the predetermined threshold voltage, electric power is supplied from the power storage means to the starter motor via the second power supply path having a resistance value higher than that of the first power supply path. Supply,
    Engine start control method.
PCT/JP2014/070738 2014-08-06 2014-08-06 Engine-starting control device, and engine-starting control method WO2016021003A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/070738 WO2016021003A1 (en) 2014-08-06 2014-08-06 Engine-starting control device, and engine-starting control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/070738 WO2016021003A1 (en) 2014-08-06 2014-08-06 Engine-starting control device, and engine-starting control method

Publications (1)

Publication Number Publication Date
WO2016021003A1 true WO2016021003A1 (en) 2016-02-11

Family

ID=55263309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070738 WO2016021003A1 (en) 2014-08-06 2014-08-06 Engine-starting control device, and engine-starting control method

Country Status (1)

Country Link
WO (1) WO2016021003A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106696955A (en) * 2017-02-24 2017-05-24 潍柴动力股份有限公司 Starting signal obtaining circuit and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012097759A (en) * 2012-02-24 2012-05-24 Denso Corp Starter
JP2012102640A (en) * 2010-11-09 2012-05-31 Denso Corp Starter control device
JP2013540929A (en) * 2010-08-27 2013-11-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for operating a vehicle starter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540929A (en) * 2010-08-27 2013-11-07 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for operating a vehicle starter
JP2012102640A (en) * 2010-11-09 2012-05-31 Denso Corp Starter control device
JP2012097759A (en) * 2012-02-24 2012-05-24 Denso Corp Starter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106696955A (en) * 2017-02-24 2017-05-24 潍柴动力股份有限公司 Starting signal obtaining circuit and method

Similar Documents

Publication Publication Date Title
US10377245B2 (en) Vehicle power source
US20180233943A1 (en) Power supply system for vehicle
US10946751B2 (en) Power supply device for vehicle
US20150008734A1 (en) Vehicle power supply device
JP6172087B2 (en) Vehicle power supply control device
JP6107679B2 (en) Vehicle control device
WO2015092886A1 (en) Internal combustion engine control circuit and internal combustion engine control method
JP2015009792A (en) Vehicle power supply device
JP6384601B2 (en) Power system
JP6669274B2 (en) Vehicle power supply system control method and vehicle power supply system
JP6654890B2 (en) Power supply for vehicles
JP2017212808A (en) Power supply device for vehicle
JP6543069B2 (en) Power supply for vehicles
JP6136792B2 (en) Vehicle power supply
CN110654247A (en) Power supply device for vehicle
WO2017150124A1 (en) Power supply device and method for controlling power supply device
JP6493177B2 (en) Control device for electric vehicle
WO2016021003A1 (en) Engine-starting control device, and engine-starting control method
JP2008154383A (en) Controller for vehicle generators
JP2013091454A (en) Power feed system for idle stop vehicle
JP6719353B2 (en) Power supply control device and power supply control system
JP5810905B2 (en) Motor control device
JP6079725B2 (en) Vehicle power supply control device
JP2015063933A (en) Start control unit of engine
JP2015031270A (en) Engine automatic stop/start control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14899362

Country of ref document: EP

Kind code of ref document: A1