WO2016020962A1 - Solar power generation system - Google Patents

Solar power generation system Download PDF

Info

Publication number
WO2016020962A1
WO2016020962A1 PCT/JP2014/070421 JP2014070421W WO2016020962A1 WO 2016020962 A1 WO2016020962 A1 WO 2016020962A1 JP 2014070421 W JP2014070421 W JP 2014070421W WO 2016020962 A1 WO2016020962 A1 WO 2016020962A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
solar power
generation system
unit
array
Prior art date
Application number
PCT/JP2014/070421
Other languages
French (fr)
Japanese (ja)
Inventor
宮坂 徹
秀明 土井
成弥 田中
鈴木 学
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to PCT/JP2014/070421 priority Critical patent/WO2016020962A1/en
Publication of WO2016020962A1 publication Critical patent/WO2016020962A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/10Cleaning arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a system for generating electricity from sunlight.
  • the present invention relates to a photovoltaic power generation system installed in a desert.
  • Patent document 1 is mentioned as a patent document.
  • a desert can be considered as a solar power generation system and installation location.
  • desert dust adheres and accumulates on the photovoltaic power generation system.
  • the prior art does not give sufficient consideration to the efficient removal of the deposited and accumulated dust.
  • the present invention is characterized in that dust is removed using a temperature difference.
  • FIG. 6 is a diagram for explaining the operation of the rotation mechanism 102 (part 2);
  • FIG. 6 is a diagram for explaining the operation of the rotation mechanism 102 (part 3);
  • FIG. 4 is a diagram for explaining the operation of the rotation mechanism 102 (No. 4).
  • FIG. 6 is a diagram for explaining the operation of the rotation mechanism 102 (part 2);
  • FIG. 6 is a diagram for explaining the operation of the rotation mechanism 102 (part 3);
  • FIG. 4 is a diagram for explaining the operation of the rotation mechanism 102 (No. 4).
  • FIG. 6 is a diagram illustrating Example 2. The figure explaining the operation
  • FIG. 4 is a diagram for explaining operations of the first bimetal 1000 and the second bimetal 1002 (part 4); The figure explaining the example holding the solar power generation array 107 by the frames 108 and 109.
  • FIG. 4 is a diagram for explaining operations of the first bimetal 1000 and the second bimetal 1002 (part 4); The figure explaining the example holding the solar power generation array 107 by the frames 108 and 109.
  • a solar power generation system having a solar power generation unit and a rotating unit that rotates the solar power generation unit around a part of the solar power generation unit according to temperature is disclosed.
  • a solar power generation system having an impact force generating member that collides with a rotated solar power generation unit is disclosed.
  • the solar power generation unit includes a solar power generation array, a first frame that holds the first end of the solar power generation array, and a second frame that holds the second end of the solar power generation array.
  • a solar power generation system having the following.
  • a solar power generation system having a third frame that holds the lower portion of the solar power generation array is disclosed.
  • the rotating unit has a cylinder, a piston disposed inside the cylinder, a rod, and a holding unit rotatably connected to the rod, and the holding unit holds the solar power generation unit.
  • the first space and the second space are formed by the cylinder and the piston, the medium is in the second space, the rod is arranged on the second space side, and the volume of the medium is changed according to the temperature change.
  • a solar power generation system that changes and a holding unit holds and releases a solar power generation unit according to a change in volume is disclosed.
  • the rotating unit discloses a photovoltaic power generation system including a bimetal.
  • the solar power generation unit includes a solar power generation array, a first frame that holds the first end of the solar power generation array, and a second frame that holds the second end of the solar power generation array.
  • a solar power generation system having the following.
  • a solar power generation system in which a solar power generation unit includes a solar power generation array and a third frame that holds a lower portion of the solar power generation array.
  • FIG. 1 is a front view of the photovoltaic power generation system of this embodiment.
  • Fig.2 (a) is sectional drawing explaining the solar energy power generation system of a present Example from a side surface.
  • FIG.2 (b) is a figure explaining the solar energy power generation system of a present Example from the back.
  • the solar power generation system is arranged to stand on the ground 112.
  • the solar power generation system has a solar power generation unit 111.
  • the solar power generation unit 111 includes a solar power generation array 107 and frames 108, 109, and 110 that hold the solar power generation array 107.
  • a plurality of first modules 106 are arranged on the front side of the solar power generation array 107.
  • the module 106 is a module in which cells composed of at least one of a silicon crystalline material, a silicon amorphous material, and a compound semiconductor material are arranged in a predetermined unit.
  • the solar power generation array 107 also includes wiring for transmitting the generated electricity to the outside.
  • the solar power generation array 107 is firmly held by being fitted into the frames 108, 109, and 110.
  • the frame 108 is connected to the leg 101 via the rotating unit 105.
  • the frame 109 is connected to the leg 100 via the rotating unit 103.
  • the solar power generation unit 111 can be rotated in the direction of the arrow 205 by the rotating units 105 and 103. Since the legs 100 and 101 stand on the ground 112, the solar power generation unit 111 also intersects the ground (specifically, an elevation angle of 45 ° or more with respect to the ground 112, more specifically substantially 90). °) along.
  • a plurality of second modules 201 are arranged on the back side of the solar power generation array 107 as shown in FIG.
  • the first module 106 on the front side of the solar power generation 107 and the second module 201 on the back side in this manner, power generation can be efficiently performed even when the position of the sun changes with time.
  • the solar power generation system includes a rotating mechanism 102 that operates according to temperature, and a plate 104 that applies an impact force to the solar power generation unit 111.
  • the rotation mechanism 102 is connected to the leg 100, and the plate 104 is disposed so as to connect the leg 100 and the leg 101 to the back side of the solar power generation unit 111.
  • FIG. 3 is a cross-sectional view illustrating details of the frame 110 and the solar power generation array 107 in particular.
  • the frame 110 protrudes from the solar power generation array 107 to hold the solar power generation array 107. Therefore, desert dust 301 and 302 may accumulate as shown in FIG.
  • FIG. 4 is a diagram for explaining the rotation mechanism 102 in detail.
  • the rotation mechanism 102 includes a cylinder 402, a piston 403, a rod 407 connected to the piston 403, a holding unit 409, a rotating unit 408 that rotatably connects the rod 407 and the holding unit 409, and a pin 413.
  • the pin 413 may be connected to the leg 100.
  • the cylinder 402 will be described in detail.
  • the cylinder 402 is divided into a first space 404 and a second space 405 by a piston 403.
  • the rod 407 is disposed on the second space 405 side so as to be connected to the piston 407.
  • the second space 405 is filled with a medium 406.
  • the medium 406 changes its volume according to temperature and includes liquid and gas.
  • the holding unit 409 holds the solar power generation unit 111 by the first protrusion 410 and the second protrusion 411.
  • An inclined surface 412 is formed on the second protrusion 411 side.
  • FIG. 9 is a diagram illustrating changes in the positions of the rotation mechanism 102 (particularly the holding unit 409) and the solar power generation unit 111 with respect to time.
  • the vertical axis 901 in FIG. 9 represents the position, and the horizontal axis 902 represents the time.
  • the state of FIG. 4 be an initial state.
  • the desert air temperature is a predetermined initial temperature T 0 at a predetermined time (t 0 in FIG. 9) and the volume of the medium is V 0 .
  • T 1 ⁇ T 0
  • the volume of the medium 406 decreases because the temperature has decreased.
  • the piston 403, the rod 407, the holding unit 409, and the solar power generation unit 111 held by the holding unit 409 move in the direction of the arrow 501.
  • the movement amount per unit time of the solar power generation unit 111 and the movement amount per unit time of the holding unit 409 can be substantially equated.
  • the holding unit 409 rotates in the direction of the arrow 503.
  • the holding of the solar power generation unit 111 is released, and the solar power generation unit 111 moves in the direction of the arrow 502.
  • the solar power generation unit 111 is fixed so that one end thereof can rotate.
  • the solar power generation unit 111 tries to return to the initial position Y 0 by the moment from the moment when the holding of the holding unit 409 is released. Since the movement amount of the holding unit 409 after t 1 depends on the desert temperature, it can be expressed by reference numeral 904, and the movement amount of the solar power generation unit 111 can be expressed by reference numeral 905.
  • the solar power generation unit 111 as shown in FIG. 6 impinges on the plate 104.
  • the dust shown in FIG. 3 and the dust attached to the solar power generation unit 111 are effectively removed by the impact force generated during the collision (in other words, impulse).
  • dust can be removed regardless of human hands by rotating the solar power generation unit 111 around a part of the rotation center according to the desert temperature (in other words, by generating a moment). . Further, by using the impact force (in other words, impulse), dust can be removed more effectively than simply swinging the solar power generation unit 111.
  • FIG. 10 is a diagram for explaining this embodiment.
  • the first bimetal 1000 is disposed on the leg 100
  • the second bimetal 1002 is disposed on the solar power generation unit 111.
  • a protrusion 1001 is formed on the first bimetal 1000.
  • An inclined surface 1003 is formed on the protrusion 1001.
  • the state shown in FIG. 10 is assumed to be an initial state at a predetermined temperature T 0 .
  • T 1 ⁇ T 0
  • the second bimetal 1002 curves in the direction of the arrow 1004.
  • the curved second bimetal 1002 moves by the inclined surface 1004.
  • the solar power generation unit 111 moves in the direction of the arrow 1004 as shown in FIG.
  • the position of the solar power generation unit 111 is held by the protrusion 1001.
  • T 2 > T 1
  • the first bimetal 1000 is bent in the direction of the arrow 1005 as shown in FIG.
  • the holding of the solar power generation unit 111 is released, the solar power generation unit 111 moves in the direction of the arrow 1006 as in the first embodiment, and collides with the plate 104 as shown in FIG.
  • the solar power generation system may be configured to hold the end of the solar power generation array 107 by the frames 108 and 109 without using the frame 110.
  • the mechanism for removing dust is not limited to the contents of this embodiment. Those based on the idea of removing dust according to the temperature (for example, the temperature of the place where the photovoltaic power generation system is installed) are within the scope of the disclosure of this specification. Further, the shape of the plate 104 is not limited to the contents of this embodiment. It is within the scope of the disclosure of the present specification that is based on the idea of removing dust by impact force (in other words, impulse).

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A solar power generation system can be expected to be installed, for example, in a desert. Installing a solar power generation system in a desert, however, is not easy. A reason for that is that dust in the desert is attached to and accumulates on the solar power generation system. Therefore, one feature of the present invention is that dust is removed using a temperature difference. According to the present invention, dust can be efficiently removed.

Description

太陽光発電システムSolar power system
 本発明は太陽光から電気を発電するシステムに関する。特に本発明は砂漠に設置される太陽光発電システムに関する。 The present invention relates to a system for generating electricity from sunlight. In particular, the present invention relates to a photovoltaic power generation system installed in a desert.
 環境負荷が化石燃料より小さい再生可能なエネルギとして太陽光発電が注目されている。特許文献としては特許文献1が挙げられる。 Solar power generation is attracting attention as a renewable energy whose environmental impact is smaller than fossil fuels. Patent document 1 is mentioned as a patent document.
特開2001-44477号公報JP 2001-44477 A
 太陽光発電システムと設置場所としては例えば砂漠が考えられる。しかし、砂漠に太陽光発電システムを設置するのは容易ではない。その理由は、砂漠の塵埃が太陽光発電システムに付着堆積するからである。この付着堆積した塵埃を効率よく除去する点について従来技術は十分な配慮を行っていない。 For example, a desert can be considered as a solar power generation system and installation location. However, it is not easy to install a solar power generation system in the desert. The reason is that desert dust adheres and accumulates on the photovoltaic power generation system. The prior art does not give sufficient consideration to the efficient removal of the deposited and accumulated dust.
 本発明は温度差を利用して塵埃を除去する点を1つの特徴とする。 The present invention is characterized in that dust is removed using a temperature difference.
 本発明によれば効率よく塵埃を除去できる。 According to the present invention, dust can be removed efficiently.
実施例1の太陽光発電システムの正面図。The front view of the solar energy power generation system of Example 1. FIG. 実施例1の太陽光発電システムの断面図、背面図。Sectional drawing of the solar energy power generation system of Example 1, and a rear view. 特にフレーム110、及び太陽発電アレイ107の詳細を説明する断面図。In particular, a cross-sectional view illustrating details of the frame 110 and the solar power generation array 107. 回転機構102を詳細に説明する図。The figure explaining the rotation mechanism 102 in detail. 回転機構102の動作を説明する図(その1)。The figure explaining the operation | movement of the rotation mechanism 102 (the 1). 回転機構102の動作を説明する図(その2)。FIG. 6 is a diagram for explaining the operation of the rotation mechanism 102 (part 2); 回転機構102の動作を説明する図(その3)。FIG. 6 is a diagram for explaining the operation of the rotation mechanism 102 (part 3); 回転機構102の動作を説明する図(その4)。FIG. 4 is a diagram for explaining the operation of the rotation mechanism 102 (No. 4). 時間に対する回転機構102(特に保持部409)、及び太陽発電ユニット111の位置の変化を示す図。The figure which shows the change of the position of the rotation mechanism 102 (especially holding | maintenance part 409) with respect to time, and the solar power generation unit 111. FIG. 実施例2を説明する図。FIG. 6 is a diagram illustrating Example 2. 第1のバイメタル1000、第2のバイメタル1002の動作を説明する図(その1)。The figure explaining the operation | movement of the 1st bimetal 1000 and the 2nd bimetal 1002 (the 1). 第1のバイメタル1000、第2のバイメタル1002の動作を説明する図(その2)。The figure explaining the operation | movement of the 1st bimetal 1000 and the 2nd bimetal 1002 (the 2). 第1のバイメタル1000、第2のバイメタル1002の動作を説明する図(その3)。The figure explaining the operation | movement of the 1st bimetal 1000 and the 2nd bimetal 1002 (the 3). 第1のバイメタル1000、第2のバイメタル1002の動作を説明する図(その4)。FIG. 4 is a diagram for explaining operations of the first bimetal 1000 and the second bimetal 1002 (part 4); フレーム108、109によって太陽発電アレイ107を保持する例を説明する図。The figure explaining the example holding the solar power generation array 107 by the frames 108 and 109. FIG.
 実施例では、太陽発電ユニットと、温度に応じて太陽発電ユニットの一部を回転中心として太陽発電ユニットを回転させる回転部と、を有する太陽光発電システムを開示する。 In an embodiment, a solar power generation system having a solar power generation unit and a rotating unit that rotates the solar power generation unit around a part of the solar power generation unit according to temperature is disclosed.
 また、実施例では、回転した太陽発電ユニットと衝突する衝撃力発生部材を有する太陽光発電システムを開示する。 Also, in the embodiment, a solar power generation system having an impact force generating member that collides with a rotated solar power generation unit is disclosed.
 また、実施例では、太陽発電ユニットが、太陽発電アレイと、太陽発電アレイの第1の端部を保持する第1のフレーム、及び太陽発電アレイの第2の端部を保持する第2のフレームと、を有する太陽光発電システムを開示する。 In the embodiment, the solar power generation unit includes a solar power generation array, a first frame that holds the first end of the solar power generation array, and a second frame that holds the second end of the solar power generation array. And a solar power generation system having the following.
 また、実施例では、太陽発電アレイの下部を保持する第3のフレームを有する太陽光発電システムを開示する。 Also, in the embodiment, a solar power generation system having a third frame that holds the lower portion of the solar power generation array is disclosed.
 また、実施例では、回転部が、シリンダーと、シリンダーの内部に配置されたピストンと、ロッドと、ロッドに回転可能に接続された保持部と、を有し、保持部が太陽発電ユニットの保持し、シリンダーとピストンによって第1の空間と第2の空間が形成され、第2の空間には媒体があり、ロッドが第2の空間側に配置され、媒体の体積が温度の変化に応じて変化し、保持部が体積の変化に応じて太陽発電ユニットの保持、及び解除を行う太陽光発電システムを開示する。 Further, in the embodiment, the rotating unit has a cylinder, a piston disposed inside the cylinder, a rod, and a holding unit rotatably connected to the rod, and the holding unit holds the solar power generation unit. The first space and the second space are formed by the cylinder and the piston, the medium is in the second space, the rod is arranged on the second space side, and the volume of the medium is changed according to the temperature change. A solar power generation system that changes and a holding unit holds and releases a solar power generation unit according to a change in volume is disclosed.
 また、実施例では、回転部はバイメタルを含む太陽光発電システムを開示する。 In the embodiment, the rotating unit discloses a photovoltaic power generation system including a bimetal.
 また、実施例では、太陽発電ユニットが、太陽発電アレイと、太陽発電アレイの第1の端部を保持する第1のフレーム、及び太陽発電アレイの第2の端部を保持する第2のフレームと、を有する太陽光発電システムを開示する。 In the embodiment, the solar power generation unit includes a solar power generation array, a first frame that holds the first end of the solar power generation array, and a second frame that holds the second end of the solar power generation array. And a solar power generation system having the following.
 また、実施例では、太陽発電ユニットが、太陽発電アレイと、太陽発電アレイの下部を保持する第3のフレームを有する太陽光発電システムを開示する。 In the embodiment, a solar power generation system is disclosed in which a solar power generation unit includes a solar power generation array and a third frame that holds a lower portion of the solar power generation array.
 以下、上記及びその他の本発明の新規な特徴と効果について図面を参酌して説明する。 Hereinafter, the above and other novel features and effects of the present invention will be described with reference to the drawings.
 図1は本実施例の太陽光発電システムの正面図である。図2(a)は本実施例の太陽光発電システムを側面から説明する断面図である。図2(b)は本実施例の太陽光発電システムを背面から説明する図である。太陽発電システムは地面112に立つよう配置される。太陽光発電システムは太陽発電ユニット111を有する。太陽発電ユニット111は太陽発電アレイ107、及び太陽発電アレイ107を保持するフレーム108、109、及び110を有する。太陽発電アレイ107の表側には第1のモジュール106が複数個配置されている。モジュール106はシリコン結晶系材料、シリコン非結晶質系材料、及び化合物半導体系材料の少なくとも1つによって構成されたセルを所定の単位で配列したものである。太陽発電アレイ107は発電した電気を外部に送電するための配線も含む。太陽発電アレイ107はフレーム108、109、及び110にはめ込まれることで強固に保持される。 FIG. 1 is a front view of the photovoltaic power generation system of this embodiment. Fig.2 (a) is sectional drawing explaining the solar energy power generation system of a present Example from a side surface. FIG.2 (b) is a figure explaining the solar energy power generation system of a present Example from the back. The solar power generation system is arranged to stand on the ground 112. The solar power generation system has a solar power generation unit 111. The solar power generation unit 111 includes a solar power generation array 107 and frames 108, 109, and 110 that hold the solar power generation array 107. A plurality of first modules 106 are arranged on the front side of the solar power generation array 107. The module 106 is a module in which cells composed of at least one of a silicon crystalline material, a silicon amorphous material, and a compound semiconductor material are arranged in a predetermined unit. The solar power generation array 107 also includes wiring for transmitting the generated electricity to the outside. The solar power generation array 107 is firmly held by being fitted into the frames 108, 109, and 110.
 フレーム108は回転部105を介して脚101に接続される。フレーム109は回転部103を介して脚100へ接続される。図2(a)に示すように回転部105、103によって太陽発電ユニット111は矢印205の向きへ回転することが可能である。脚100、及び脚101が地面112に立つことで、太陽発電ユニット111も地面に対して交差する方向(具体的には地面112を基準に仰角45°以上、さらに具体的には実質的に90°)に沿って配置される。 The frame 108 is connected to the leg 101 via the rotating unit 105. The frame 109 is connected to the leg 100 via the rotating unit 103. As shown in FIG. 2A, the solar power generation unit 111 can be rotated in the direction of the arrow 205 by the rotating units 105 and 103. Since the legs 100 and 101 stand on the ground 112, the solar power generation unit 111 also intersects the ground (specifically, an elevation angle of 45 ° or more with respect to the ground 112, more specifically substantially 90). °) along.
 なお、図2(b)に示すように太陽発電アレイ107の裏側には第2のモジュール201が複数個配置されている。このように太陽発電107の表側に第1のモジュール106、裏側に第2のモジュール201を配置することによって太陽の位置が時刻によって変わった場合でも、効率的に発電を行うことができる。 Note that a plurality of second modules 201 are arranged on the back side of the solar power generation array 107 as shown in FIG. By arranging the first module 106 on the front side of the solar power generation 107 and the second module 201 on the back side in this manner, power generation can be efficiently performed even when the position of the sun changes with time.
 詳細は後述するが、太陽光発電システムは温度に応じて動作する回転機構102、及び太陽発電ユニット111に衝撃力を付与する板104を有する。回転機構102は脚100に接続されており、板104は太陽発電ユニット111の裏面側に脚100と脚101を接続するように配置されている。 Although details will be described later, the solar power generation system includes a rotating mechanism 102 that operates according to temperature, and a plate 104 that applies an impact force to the solar power generation unit 111. The rotation mechanism 102 is connected to the leg 100, and the plate 104 is disposed so as to connect the leg 100 and the leg 101 to the back side of the solar power generation unit 111.
 図3は特にフレーム110、及び太陽発電アレイ107の詳細を説明する断面図である。フレーム110は太陽発電アレイ107を保持するため太陽発電アレイ107よりも突出している。そのため砂漠の塵埃301、302は図3に示すように堆積する場合がある。 FIG. 3 is a cross-sectional view illustrating details of the frame 110 and the solar power generation array 107 in particular. The frame 110 protrudes from the solar power generation array 107 to hold the solar power generation array 107. Therefore, desert dust 301 and 302 may accumulate as shown in FIG.
 図4は回転機構102を詳細に説明する図である。回転機構102はシリンダー402と、ピストン403、及びピストン403に接続されたロッド407、保持部409、ロッド407と保持部409を回転可能に接続する回転部408、ピン413を有する。ピン413は脚100に接続される場合もある。 FIG. 4 is a diagram for explaining the rotation mechanism 102 in detail. The rotation mechanism 102 includes a cylinder 402, a piston 403, a rod 407 connected to the piston 403, a holding unit 409, a rotating unit 408 that rotatably connects the rod 407 and the holding unit 409, and a pin 413. The pin 413 may be connected to the leg 100.
  シリンダー402について詳細に説明する。シリンダー402はピストン403によって第1の空間404と第2の空間405に分割される。ロッド407は第2の空間405側にピストン407と接続するよう配置される。第2の空間405には媒体406が充填されている。媒体406は温度に応じて体積を変化させるものであり、液体、気体を含む。 The cylinder 402 will be described in detail. The cylinder 402 is divided into a first space 404 and a second space 405 by a piston 403. The rod 407 is disposed on the second space 405 side so as to be connected to the piston 407. The second space 405 is filled with a medium 406. The medium 406 changes its volume according to temperature and includes liquid and gas.
  次に、保持部409の詳細について説明する。保持部409は第1の突起410、及び第2の突起411によって太陽発電ユニット111を保持するものである。第2の突起411側には傾斜面412が形成されている。 Next, details of the holding unit 409 will be described. The holding unit 409 holds the solar power generation unit 111 by the first protrusion 410 and the second protrusion 411. An inclined surface 412 is formed on the second protrusion 411 side.
  次に、図4~図9を用いて回転機構102の動作について説明する。図9は時間に対する回転機構102(特に保持部409)、及び太陽発電ユニット111の位置の変化を示す図である。図9の縦軸901は位置を表現し、横軸902は時刻を表現している。 Next, the operation of the rotating mechanism 102 will be described with reference to FIGS. FIG. 9 is a diagram illustrating changes in the positions of the rotation mechanism 102 (particularly the holding unit 409) and the solar power generation unit 111 with respect to time. The vertical axis 901 in FIG. 9 represents the position, and the horizontal axis 902 represents the time.
  図4の状態を初期状態とする。図4では砂漠の気温は所定時刻(図9のt0)で所定の初期温度T0であり、媒体の体積はV0であるとする。図4の状態から砂漠の気温がT1(<T0)と変化した場合は、図5を用いて説明できる。図5では気温が低くなったため、媒体406の体積は減少する。その結果ピストン403、ロッド407、保持部409、及び保持部409に保持された太陽発電ユニット111は矢印501の方向へ移動する。太陽発電ユニット111は保持部409によって保持されているため、太陽発電ユニット111の単位時間当たりの移動量と保持部409の単位時間当たりの移動量は実質的に同視でき、図9では符号903によって表現できる。保持部409の第1の突起410が図9の時刻t1でピン413に接触すると、保持部409は矢印503の方向へ回転する。その結果太陽発電ユニット111の保持は解除され、太陽発電ユニット111は矢印502の方向へ移動することになる。太陽発電ユニット111は図2(a)に示すように一方の端部が回転可能なように固定されている。よって、太陽発電ユニット111は保持部409の保持が解除された瞬間からモーメントによって初期位置Y0へ戻ろうとする。t1以降の保持部409の移動量は砂漠の気温に依存するので符号904で表現でき、太陽発電ユニット111の移動量は符号905によって表現できる。 Let the state of FIG. 4 be an initial state. In FIG. 4, it is assumed that the desert air temperature is a predetermined initial temperature T 0 at a predetermined time (t 0 in FIG. 9) and the volume of the medium is V 0 . When the desert temperature changes from T 1 (<T 0 ) in the state of FIG. 4, this can be explained using FIG. In FIG. 5, the volume of the medium 406 decreases because the temperature has decreased. As a result, the piston 403, the rod 407, the holding unit 409, and the solar power generation unit 111 held by the holding unit 409 move in the direction of the arrow 501. Since the solar power generation unit 111 is held by the holding unit 409, the movement amount per unit time of the solar power generation unit 111 and the movement amount per unit time of the holding unit 409 can be substantially equated. In FIG. Can express. When the first protrusion 410 of the holding unit 409 contacts the pin 413 at time t 1 in FIG. 9, the holding unit 409 rotates in the direction of the arrow 503. As a result, the holding of the solar power generation unit 111 is released, and the solar power generation unit 111 moves in the direction of the arrow 502. As shown in FIG. 2A, the solar power generation unit 111 is fixed so that one end thereof can rotate. Therefore, the solar power generation unit 111 tries to return to the initial position Y 0 by the moment from the moment when the holding of the holding unit 409 is released. Since the movement amount of the holding unit 409 after t 1 depends on the desert temperature, it can be expressed by reference numeral 904, and the movement amount of the solar power generation unit 111 can be expressed by reference numeral 905.
  その後、図9の時刻t2では、図6に示すように太陽発電ユニット111は板104に衝突する。衝突の際に発生した衝撃力(その他の表現としては力積)によって、図3に示す塵埃や太陽発電ユニット111に付着した塵埃は効果的に除去される。 Then, at time t 2 in FIG. 9, the solar power generation unit 111 as shown in FIG. 6 impinges on the plate 104. The dust shown in FIG. 3 and the dust attached to the solar power generation unit 111 are effectively removed by the impact force generated during the collision (in other words, impulse).
  その後、図7に示すように砂漠の気温がT2(>T1)となると、媒体406の体積は増加する。その結果ピストン403、ロッド407、保持部409は矢印702の方向へ移動する。保持部409が太陽発電ユニット111に接触すると、傾斜面412が形成されていることによって保持部409は矢印701の方向に回転する。 Then, as shown in FIG. 7, when the desert air temperature reaches T 2 (> T 1 ), the volume of the medium 406 increases. As a result, the piston 403, the rod 407, and the holding portion 409 move in the direction of the arrow 702. When the holding unit 409 comes into contact with the solar power generation unit 111, the holding unit 409 rotates in the direction of the arrow 701 due to the formation of the inclined surface 412.
 そして、図8に示すように砂漠の気温がT3(≒T0)となると、太陽発電ユニット111は再度保持部409に保持される。 Then, as shown in FIG. 8, when the desert temperature reaches T 3 (≈T 0 ), the solar power generation unit 111 is held by the holding unit 409 again.
 このように実施例1は砂漠の気温に応じて太陽発電ユニット111をその一部を回転中心として回転させること(その他の表現としてはモーメントを発生させることで)で人手によらず塵埃を除去できる。また、衝撃力(その他の表現としては力積)を利用することで単純に太陽発電ユニット111を揺らすよりも効果的に塵埃を除去できる。 As described above, according to the first embodiment, dust can be removed regardless of human hands by rotating the solar power generation unit 111 around a part of the rotation center according to the desert temperature (in other words, by generating a moment). . Further, by using the impact force (in other words, impulse), dust can be removed more effectively than simply swinging the solar power generation unit 111.
 次に実施例2について説明する。実施例2では実施例1と異なる部分について説明する。図10は本実施例を説明する図である。本実施例は脚100に第1のバイメタル1000を配置し、太陽発電ユニット111に第2のバイメタル1002を配置する。第1のバイメタル1000には突起1001が形成されている。突起1001には傾斜面1003が形成されている。 Next, Example 2 will be described. In the second embodiment, parts different from the first embodiment will be described. FIG. 10 is a diagram for explaining this embodiment. In this embodiment, the first bimetal 1000 is disposed on the leg 100, and the second bimetal 1002 is disposed on the solar power generation unit 111. A protrusion 1001 is formed on the first bimetal 1000. An inclined surface 1003 is formed on the protrusion 1001.
 図10の状態を所定の温度T0での初期状態とする。図11のよう砂漠の気温がT1(<T0)にとなった場合、第2のバイメタル1002は矢印1004の方向に湾曲する。湾曲した第2のバイメタル1002は傾斜面1004によって移動する。その結果、図12に示すように太陽発電ユニット111は矢印1004の方向に移動する。太陽発電ユニット111の位置は突起1001によって保持される。その後、砂漠の気温がT2(>T1)となると、図13に示すように第1のバイメタル1000は矢印1005の方向へ湾曲する。その結果、太陽発電ユニット111の保持は解除され、太陽発電ユニット111は実施例1と同様に矢印1006の向きに移動し、図14に示すように板104に衝突する。 The state shown in FIG. 10 is assumed to be an initial state at a predetermined temperature T 0 . When the desert air temperature reaches T 1 (<T 0 ) as shown in FIG. 11, the second bimetal 1002 curves in the direction of the arrow 1004. The curved second bimetal 1002 moves by the inclined surface 1004. As a result, the solar power generation unit 111 moves in the direction of the arrow 1004 as shown in FIG. The position of the solar power generation unit 111 is held by the protrusion 1001. Thereafter, when the desert temperature reaches T 2 (> T 1 ), the first bimetal 1000 is bent in the direction of the arrow 1005 as shown in FIG. As a result, the holding of the solar power generation unit 111 is released, the solar power generation unit 111 moves in the direction of the arrow 1006 as in the first embodiment, and collides with the plate 104 as shown in FIG.
 以上、本発明の実施例について説明したが、本発明は実施例に限定されない。例えば、図15に示すように太陽光発電システムはフレーム110を用いず、フレーム108、109によって太陽発電アレイ107の端部を保持する構成しても良い。図15の場合、脚100と脚101との距離を規定するフレーム1007によって、脚100と脚101とを接続することが望ましい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the embodiments. For example, as shown in FIG. 15, the solar power generation system may be configured to hold the end of the solar power generation array 107 by the frames 108 and 109 without using the frame 110. In the case of FIG. 15, it is desirable to connect the leg 100 and the leg 101 by a frame 1007 that defines the distance between the leg 100 and the leg 101.
 さらに、塵埃を除去する機構は本実施例の内容に限定されない。温度(例えば、太陽光発電システムが設置される場所の温度)に応じて塵埃を除去する思想に基づくものは本明細書の開示の範囲内である。さらに、板104の形状も本実施例の内容に限定されない。衝撃力(その他の表現としては力積)によって塵埃を除去する思想に基づくものは本明細書の開示の範囲内である。 Furthermore, the mechanism for removing dust is not limited to the contents of this embodiment. Those based on the idea of removing dust according to the temperature (for example, the temperature of the place where the photovoltaic power generation system is installed) are within the scope of the disclosure of this specification. Further, the shape of the plate 104 is not limited to the contents of this embodiment. It is within the scope of the disclosure of the present specification that is based on the idea of removing dust by impact force (in other words, impulse).
100,101・・・脚
102・・・回転機構
103,105,408・・・回転部
104・・・板
106・・・モジュール
107・・・太陽発電アレイ
108,109,110・・・フレーム
111・・・太陽発電ユニット
112・・・地面
201・・・第2のモジュール
301、302・・・塵埃
402・・・シリンダー
403・・・ピストン
404・・・第1の空間
405・・・第2の空間
406・・・媒体
407・・・ロッド
409・・・保持部
410・・・第1の突起
411・・・第2の突起
412・・・傾斜面
413・・・ピン
1000・・・第1のバイメタル
1001・・・突起
1002・・・第2のバイメタル
1003・・・傾斜面
1007・・・フレーム
100, 101 ... leg 102 ... rotating mechanism 103, 105, 408 ... rotating part 104 ... plate 106 ... module 107 ... solar power generation array 108, 109, 110 ... frame 111 ... Solar power generation unit 112 ... Ground 201 ... Second module 301, 302 ... Dust 402 ... Cylinder 403 ... Piston 404 ... First space 405 ... Second Space 406 ... medium 407 ... rod 409 ... holding part 410 ... first protrusion 411 ... second protrusion 412 ... inclined surface 413 ... pin 1000 ... first 1 bimetal 1001 ... projection 1002 ... second bimetal 1003 ... inclined surface 1007 ... frame

Claims (10)

  1.  太陽発電ユニットと、
     温度に応じて前記太陽発電ユニットの一部を回転中心として前記太陽発電ユニットを回転させる回転部と、を有する太陽光発電システム。
    A solar power unit,
    And a rotating unit that rotates the solar power generation unit around a part of the solar power generation unit according to temperature.
  2.  請求項1に記載の太陽光発電システムにおいて、
     回転した前記太陽発電ユニットと衝突する衝撃力発生部材を有する太陽光発電システム。
    In the photovoltaic power generation system according to claim 1,
    A solar power generation system having an impact force generation member that collides with the rotated solar power generation unit.
  3.  請求項2に記載の太陽光発電システムにおいて、
     前記太陽発電ユニットは、
      太陽発電アレイと、
      前記太陽発電アレイの第1の端部を保持する第1のフレーム、及び前記太陽発電アレイの第2の端部を保持する第2のフレームと、を有する太陽光発電システム。
    The photovoltaic power generation system according to claim 2,
    The solar power generation unit is
    A solar array,
    A solar power generation system comprising: a first frame that holds a first end of the solar power generation array; and a second frame that holds a second end of the solar power generation array.
  4.  請求項3に記載の太陽光発電システムにおいて、
     前記太陽発電アレイの下部を保持する第3のフレームを有する太陽光発電システム。
    In the solar power generation system according to claim 3,
    The solar power generation system which has a 3rd flame | frame holding the lower part of the said solar power generation array.
  5.  請求項4に記載の太陽光発電システムにおいて、
     前記回転部は、シリンダーと、前記シリンダーの内部に配置されたピストンと、ロッドと、前記ロッドに回転可能に接続された保持部と、を有し、
     前記保持部は前記太陽発電ユニットの保持し、
     前記シリンダーと前記ピストンによって第1の空間と第2の空間が形成され、前記第2の空間には媒体があり、
      前記ロッドは前記第2の空間側に配置され、
      前記媒体の体積は前記温度の変化に応じて変化し、
      前記保持部は前記体積の変化に応じて前記太陽発電ユニットの保持、及び解除を行う太陽光発電システム。
    In the solar power generation system according to claim 4,
    The rotating part has a cylinder, a piston disposed inside the cylinder, a rod, and a holding part rotatably connected to the rod,
    The holding unit holds the solar power generation unit,
    The cylinder and the piston form a first space and a second space, and the second space has a medium,
    The rod is disposed on the second space side;
    The volume of the medium changes according to the change in temperature,
    The said holding | maintenance part is a solar power generation system which hold | maintains and cancel | releases the said solar power generation unit according to the change of the said volume.
  6.  請求項4に記載の太陽光発電システムにおいて、
     前記回転部はバイメタルを含む太陽光発電システム。
    In the solar power generation system according to claim 4,
    The rotating part is a solar power generation system including a bimetal.
  7.  請求項1に記載の太陽光発電システムにおいて、
     前記太陽発電ユニットは、
      太陽発電アレイと、
      前記太陽発電アレイの第1の端部を保持する第1のフレーム、及び前記太陽発電アレイの第2の端部を保持する第2のフレームと、を有する太陽光発電システム。
    In the photovoltaic power generation system according to claim 1,
    The solar power generation unit is
    A solar array,
    A solar power generation system comprising: a first frame that holds a first end of the solar power generation array; and a second frame that holds a second end of the solar power generation array.
  8.  請求項1に記載の太陽光発電システムにおいて、
     前記太陽発電ユニットは、
      太陽発電アレイと、
     前記太陽発電アレイの下部を保持する第3のフレームを有する太陽光発電システム。
    In the photovoltaic power generation system according to claim 1,
    The solar power generation unit is
    A solar array,
    The solar power generation system which has a 3rd flame | frame holding the lower part of the said solar power generation array.
  9.  請求項1に記載の太陽光発電システムにおいて、
     前記回転部は、シリンダーと、前記シリンダーの内部に配置されたピストンと、ロッドと、前記ロッドに回転可能に接続された保持部と、を有し、
     前記保持部は前記太陽発電ユニットの保持し、
     前記シリンダーと前記ピストンによって第1の空間と第2の空間が形成され、前記第2の空間には媒体があり、
      前記ロッドは前記第2の空間側に配置され、
      前記媒体の体積は前記温度の変化に応じて変化し、
      前記保持部は前記体積の変化に応じて前記太陽発電ユニットの保持、及び解除を行う太陽光発電システム。
    In the photovoltaic power generation system according to claim 1,
    The rotating part has a cylinder, a piston disposed inside the cylinder, a rod, and a holding part rotatably connected to the rod,
    The holding unit holds the solar power generation unit,
    The cylinder and the piston form a first space and a second space, and the second space has a medium,
    The rod is disposed on the second space side;
    The volume of the medium changes according to the change in temperature,
    The said holding | maintenance part is a solar power generation system which hold | maintains and cancel | releases the said solar power generation unit according to the change of the said volume.
  10.  請求項1に記載の太陽光発電システムにおいて、
     前記回転部はバイメタルを含む太陽光発電システム。
    In the photovoltaic power generation system according to claim 1,
    The rotating part is a solar power generation system including a bimetal.
PCT/JP2014/070421 2014-08-04 2014-08-04 Solar power generation system WO2016020962A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/070421 WO2016020962A1 (en) 2014-08-04 2014-08-04 Solar power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/070421 WO2016020962A1 (en) 2014-08-04 2014-08-04 Solar power generation system

Publications (1)

Publication Number Publication Date
WO2016020962A1 true WO2016020962A1 (en) 2016-02-11

Family

ID=55263270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070421 WO2016020962A1 (en) 2014-08-04 2014-08-04 Solar power generation system

Country Status (1)

Country Link
WO (1) WO2016020962A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113242009A (en) * 2021-05-10 2021-08-10 陈倩 Solar photovoltaic power generation device for smart power grid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269524A (en) * 2005-03-22 2006-10-05 Nippon Telegr & Teleph Corp <Ntt> Solar power generating apparatus
JP2007227533A (en) * 2006-02-22 2007-09-06 Msk Corp Snow melting system in solar power generating apparatus
JP2010103201A (en) * 2008-10-22 2010-05-06 Sumitomo Electric Ind Ltd Solar power generating apparatus and vehicle sensing device
JP2010155308A (en) * 2008-12-26 2010-07-15 Mitsui Eng & Shipbuild Co Ltd Cleaning robot system and method of controlling the same
JP2011060836A (en) * 2009-09-07 2011-03-24 Ohbayashi Corp Solar cell module device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269524A (en) * 2005-03-22 2006-10-05 Nippon Telegr & Teleph Corp <Ntt> Solar power generating apparatus
JP2007227533A (en) * 2006-02-22 2007-09-06 Msk Corp Snow melting system in solar power generating apparatus
JP2010103201A (en) * 2008-10-22 2010-05-06 Sumitomo Electric Ind Ltd Solar power generating apparatus and vehicle sensing device
JP2010155308A (en) * 2008-12-26 2010-07-15 Mitsui Eng & Shipbuild Co Ltd Cleaning robot system and method of controlling the same
JP2011060836A (en) * 2009-09-07 2011-03-24 Ohbayashi Corp Solar cell module device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113242009A (en) * 2021-05-10 2021-08-10 陈倩 Solar photovoltaic power generation device for smart power grid
CN113242009B (en) * 2021-05-10 2022-05-17 珠海华成电力设计院股份有限公司 Solar photovoltaic power generation device for smart power grid

Similar Documents

Publication Publication Date Title
JP6492458B2 (en) Photovoltaic power generation system and panel cleaning method
KR101338597B1 (en) Generater apparatus using film type of piezoelectric element and solarcell
CN102498250B (en) Photovoltaic module attached to guardrail
JP2011526425A5 (en)
WO2015029978A1 (en) Sunlight tracking device
WO2011135568A3 (en) Cleaning system for solar reflectors/collectors
JP2012256783A5 (en)
CN102290470A (en) Solar cell device
WO2016020962A1 (en) Solar power generation system
JP6188636B2 (en) Solar cell module mount
KR20100025208A (en) Solar tracking device
KR101496832B1 (en) Reflecting Apparatus for Solar Photovoltaic Power Generation
JP2014007272A (en) Photovoltaic power generation system and method for controlling the same
KR20120003883U (en) A fixing structure for frame of solar cell and post
US9203343B2 (en) Devices for optimizing individual solar modules/collector modules and composite collector module groups and stabilizing the operation thereof against environmental influences, especially wind and particles and objects carried along by the wind
KR20110009023U (en) Apparatus Condensing for Solar Photovoltaic Generation
KR101058712B1 (en) Wind power amplification and reverse resistance eliminator for vertical wind power generation
KR101563524B1 (en) Power generating device mounted on the building
JP6121184B2 (en) Inclined mounting structure for solar panel
KR20130048366A (en) Tracking the sun and mirror reflection concentrative solar power system
KR102088045B1 (en) Power generating apparatus
CN112332755A (en) A photovoltaic product installation component that is used for small-size anti-drop on roof
JP4960524B2 (en) Hybrid solar panel
CN101338737A (en) Solar energy water motor
KR101182834B1 (en) Ray of sun generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14899401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP