WO2016019671A1 - 主动式光栅、三维显示装置及三维显示方法 - Google Patents

主动式光栅、三维显示装置及三维显示方法 Download PDF

Info

Publication number
WO2016019671A1
WO2016019671A1 PCT/CN2014/093616 CN2014093616W WO2016019671A1 WO 2016019671 A1 WO2016019671 A1 WO 2016019671A1 CN 2014093616 W CN2014093616 W CN 2014093616W WO 2016019671 A1 WO2016019671 A1 WO 2016019671A1
Authority
WO
WIPO (PCT)
Prior art keywords
active grating
light
viewer
horizontal width
active
Prior art date
Application number
PCT/CN2014/093616
Other languages
English (en)
French (fr)
Inventor
孟智明
胡巍浩
马志民
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/773,012 priority Critical patent/US10200682B2/en
Publication of WO2016019671A1 publication Critical patent/WO2016019671A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection

Definitions

  • Embodiments of the present invention relate to active gratings, three-dimensional display devices, and three-dimensional display methods.
  • a common naked-eye three-dimensional (3D) display device mainly includes a parallax barrier type and a column lens type, and the basic principle is to divide an image into a left eye image and a right eye image, after being operated by a parallax barrier and a cylindrical lens, in a display panel.
  • a plurality of mutually spaced left and right viewing zones are presented in front.
  • the left eye of the viewer When the left eye of the viewer is located in the left viewing zone and the right eye is located in the right viewing zone corresponding to the left viewing zone, the left eye of the viewer can see the corresponding left eye image, and the right eye can see the corresponding right eye image, the left eye image and The right eye image is a pair of stereo image pairs so that the brain can fuse them into a 3D image to produce a 3D display.
  • the viewer when the viewer views the displayed 3D image of the naked-eye 3D display device, it must be located at a certain position in front of the naked-eye 3D display device to see a better 3D image. Otherwise, the stereoscopic viewing effect is poor, or even impossible. See the 3D effect.
  • An object of the present invention is to provide an active grating, a three-dimensional display device, and a three-dimensional display method, which can improve the practicability of the three-dimensional display device.
  • An embodiment of the present invention provides an active grating including: a first substrate and a second substrate disposed opposite to each other; a plurality of first strip electrodes disposed at equal intervals on the second substrate facing the second substrate One side; a common electrode disposed on a side of the second substrate facing the first substrate; a light control layer between the plurality of first strip electrodes and the common electrode; and driving a circuit electrically connected to the common electrode and each of the first strip electrodes, wherein the driving circuit powers a part of the first strip electrode and breaks another part of the first strip electrode Electric to form a plurality of light-transmissive regions and a plurality of light-shielding regions arranged at intervals.
  • An embodiment of the present invention further provides a three-dimensional display device, including: a display panel disposed opposite to each other and an active grating as described above; a face recognition module configured to acquire a vertical distance of a current viewer to the active grating a first computing module, connected to the face recognition module signal Generating the theoretical level of each of the light-shielding regions of the active grating according to the vertical distance acquired by the face recognition module and the vertical distance of the viewer to the active grating and the viewer being able to see an ideal 3D image a first correspondence between the widths, calculating a theoretical horizontal width of each of the light-shielding regions when the viewer views the ideal 3D image at the current position; and adjusting modules respectively for the first computing module and the active grating
  • the driving circuit signal connection is configured to transmit a corresponding first control instruction to the driving circuit according to the theoretical horizontal width calculated by the first calculating module, and adjust an actual level of each light shielding area of the active grating
  • the width is such that the actual horizontal
  • An embodiment of the present invention further provides a three-dimensional display method, comprising: for the three-dimensional display device described above, comprising: acquiring a vertical distance of a current viewer to the active raster; according to the obtained current viewer The first correspondence between the vertical distance of the active grating and the vertical distance of the viewer to the active grating and the theoretical horizontal width of each of the light-shielding regions of the active grating when the viewer can see the ideal 3D image is calculated.
  • each of the light-shielding regions respectively has a theoretical horizontal width; the theoretical level of each of the light-shielding regions obtained according to the calculation Width, sending a corresponding first control command to the driving circuit of the active grating, adjusting an actual horizontal width of each light-shielding region of the active grating, such that the actual horizontal width is equal to the theoretical horizontal width, wherein Each of the light-shielding regions has an actual horizontal width corresponding to each other.
  • FIG. 1 is a connection diagram between components of a three-dimensional display device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the display of a three-dimensional display device according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a viewer being able to view an image displayed by a three-dimensional display device
  • FIG. 5 is a schematic structural diagram of an active grating according to an embodiment of the present disclosure.
  • Figure 6 is an arrangement of the light-shielding regions of the active grating of Figure 5;
  • Figure 7 is another arrangement of the light-shielding regions of the active grating of Figure 5.
  • a three-dimensional display device includes: a display panel 1 and an active grating 2 disposed opposite to each other; and a face recognition module configured to acquire a light-emitting side of the display panel 1 (display image side) a vertical distance from the viewer to the active grating 2; a first computing module coupled to the face recognition module; and an adjustment module coupled to the first computing module and the driver circuit of the active grating 2, wherein said
  • the face recognition module can be a face recognition camera or an infrared camera.
  • the face recognition module may be a face recognition camera, fixedly mounted on the edge of the display panel 1 and/or the edge of the active grating 2, or mounted on the outer casing of the three-dimensional display device for capturing the viewer to the active The vertical distance of the grating 2.
  • the first calculation module according to the vertical distance of the viewer to the active grating 2 measured by the face recognition module, and the vertical distance of the viewer to the active grating 2 and the shading of the active grating 2 when the viewer can see the ideal 3D image
  • the first correspondence between the theoretical horizontal widths of the regions 21 is calculated to obtain the theoretical horizontal width of each of the light-shielding regions 21 when the viewer views the ideal 3D image at the current position, wherein the theoretical horizontal widths of the respective light-shielding regions 21 are equal.
  • the adjustment module sends a corresponding first control command to the driving circuit of the active grating 2 according to the theoretical horizontal width of each of the light-shielding regions 21 obtained by the first calculation module to adjust the actual horizontal width of each light-shielding region 21 of the active grating 2
  • the actual horizontal width is equal to the theoretical horizontal width, wherein each of the light shielding regions 21 has an actual horizontal width corresponding to each other.
  • the first control command is generated by the adjustment module according to the theoretical horizontal width of each of the light shielding regions 21 calculated by the first calculation module, and the first control commands corresponding to different theoretical horizontal widths are different, but these A control command is provided to the driving circuit of the active grating 2, so that the driving circuit determines, according to the first control commands, that a part of the first strip electrode of the active grating 2 is powered on or off, thereby forming a desired level.
  • Each of the light shielding regions 21 of the width is generated by the adjustment module according to the theoretical horizontal width of each of the light shielding regions 21 calculated by the first calculation module, and the first control commands corresponding to different theoretical horizontal widths are different, but these A control command is provided to the driving circuit of the active grating 2, so that the driving circuit determines, according to the first control commands, that a part of the first strip electrode of the active grating 2 is powered on or off, thereby forming a desired level.
  • the active grating 2 is disposed opposite to the display panel 1.
  • the active grating 2 is located on the light-emitting side of the display panel 1, or is located on the light-incident side of the display panel 1, ie Located between the display panel 1 and the backlight module of the three-dimensional display device.
  • the working principle of the active grating 2 on the light-incident side of the display panel 1 is basically the same as that of the active grating 2 on the light-emitting side of the display panel 1.
  • the active grating 2 is located on the display panel 1.
  • the light exiting side is taken as an example to describe in detail the working principle of the above three-dimensional display device.
  • the active grating 2 is located on the light-emitting side of the display panel 1.
  • the active grating 2 includes a plurality of light-shielding regions 21 and a plurality of light-transmitting regions 22 arranged at intervals, and the horizontal widths of the light-shielding regions 21 are equal and spaced. The distances are also equal, and the horizontal widths of the respective light-transmitting regions 22 are equal, and the spacing distances are also equal.
  • the display panel 1 of the three-dimensional display device has five viewpoints, and the five viewpoint periods are cyclically arranged; the light emitted from the display panel 1 passes through the active grating 2 to form a plurality of viewing zones respectively corresponding to five viewpoints, that is, corresponding a plurality of viewing zones corresponding to the second viewing point, a plurality of viewing zones corresponding to the second viewing point, a plurality of viewing zones corresponding to the fourth viewing point, and a plurality of viewing zones corresponding to the fifth viewing point,
  • a plurality of viewing zones corresponding to the first viewing point are collectively referred to as a first viewing zone
  • a plurality of viewing zones corresponding to the second viewing point are collectively referred to as a second viewing zone
  • a plurality of viewing zones corresponding to the third viewing point are collectively referred to as a first viewing zone.
  • the three viewing zones collectively refer to the plurality of viewing zones corresponding to the fourth viewing point as the fourth viewing zone, and the plurality of viewing zones corresponding to the fifth viewing point are collectively referred to as the fifth viewing zone, between the five viewing zones and the active grating
  • the vertical distance is equal.
  • the 3D images viewed are images obtained by shooting different angles of a certain scene, and each angle has a certain parallax.
  • the images displayed by the respective viewing zones of the first to fifth viewing zones are only slightly different due to the difference in shooting angles.
  • the left eye of the viewer is in the left viewing zone in the viewing zone,
  • the right eye is in the right viewport in the viewport so that the viewer can view the ideal 3D image.
  • the viewer when the viewer views the five viewing zones in front of the active grating 2, the viewer can view the ideal 3D image; when the viewer does not view the above five viewing zones, for example, the viewer is opposite to the display panel 1 Moving forward or backward, that is, when the vertical distance between the viewer and the active grating 2 is changed, in order to ensure that the viewer can also view the ideal 3D image, the three-dimensional display device provided by the embodiment will be active according to the current audience.
  • each of the light-shielding regions 21 of the movable grating 2 is such that the respective viewing zone positions formed by the respective viewpoints passing through the active grating 2 are moved forward or backward relative to the active grating 2 to coincide with the position of the viewer, thereby enabling the viewer to Ability to see the ideal 3D image.
  • the face recognition module acquires the vertical distance of the viewer to the active grating 2; the first calculation module is based on the vertical distance between the current viewer and the active grating 2, And a first correspondence between the vertical distance of the viewer to the active grating 2 and the theoretical horizontal width of each of the light-shielding regions 21 of the active grating 2 when the viewer can see the ideal 3D image, and the calculation obtains that the viewer is in the current position and can view The theoretical horizontal width of each light-shielding region 21 corresponding to the ideal 3D image; the adjustment module sends the corresponding first control command to the driving circuit of the active grating 2 according to the theoretical horizontal width calculated by the first calculation module, and adjusts the active mode
  • the actual horizontal width of each of the light-shielding regions 21 of the grating 2 is such that the actual horizontal width is equal to the theoretical horizontal width; when the actual horizontal width of each of the light-shielding regions 21 is equal to the
  • the vertical distance r of the viewer to the active grating is equal to the length of AB.
  • the triangle ABC and the triangle ADE shown in FIG. 3 can be constructed according to the transmission path of the light, and the triangle ABC and the triangle ADE are similar triangles.
  • the triangle ABC and the triangle ADE are similar triangles.
  • the side BC is the theoretical horizontal width of each light-shielding region of the active grating, denoted by f
  • the edge DE is the corresponding number of viewpoint widths on the display panel, represented by (n-1)*p, where n is on the display panel 1.
  • the total number of viewpoints is constant.
  • p is the sub-pixel width on the display panel 1, which is a constant
  • the side AB is the vertical distance from the viewer to the active grating, and is represented by r
  • the edge BD For the vertical distance of the active grating to the display panel, denoted by d, and the above corresponding values are substituted into the above relation to obtain:
  • f is the theoretical horizontal width of each of the light-shielding regions of the active grating
  • r is the vertical distance from the viewer to the active grating
  • n is the number of viewpoints of the display panel
  • p is the display panel
  • the sub-pixel width is a constant
  • d is the vertical distance between the active grating and the display panel.
  • the first calculation module obtains, according to the vertical distance of the viewer to the active grating 2 obtained by the face recognition module, and the above formula 1, by calculation: when the vertical distance of the viewer to the active grating is different, the viewer can view the ideal The theoretical horizontal width f of the light-shielding region 21 corresponding to the 3D image.
  • the adjusting module generates a first control command corresponding to the theoretical horizontal width according to the theoretical horizontal width obtained by the first calculating module, and sends the first control command to the driving circuit of the active grating 2 to adjust each of the active gratings 2
  • the actual horizontal width of the light-shielding region 21 is such that the actual horizontal width is equal to the theoretical horizontal width; thus, the light emitted from the display panel 1 passes through the active grating 2 to form a new viewing zone, and the newly formed viewing zones coincide with the position of the viewer. In order to ensure that the viewer can see the ideal 3D image.
  • adjusting the horizontal width of the light shielding region 21 is to change the two ends of the light shielding region 21 to the center position. the distance.
  • the three-dimensional display device can automatically adjust the shading of the active grating 2 according to the vertical distance of the viewer to the active grating.
  • the horizontal width of the area 21 is such that each view position formed by the respective viewpoints of the display panel 1 after passing through the active grating 2 coincides with the position of the viewer, thereby enabling the viewer to view the desired 3D image. Therefore, compared with the existing three-dimensional display device viewer, the three-dimensional display device provided by the embodiment of the present invention can change the position of the viewing zone according to the position coordinates of the viewer, so that the viewer can view the desired 3D image. It is not necessary to view an ideal 3D image at a fixed viewing zone position, which greatly improves the usability of the three-dimensional display device.
  • the viewer if only one viewer views the three-dimensional display device provided by the embodiment, the viewer must be within the variable range of the viewing zone of the three-dimensional display device, and the vertical distance of the three-dimensional display device according to the current viewer to the active grating By adjusting each light-shielding region 21 of the active grating
  • the horizontal width makes the newly formed viewport coincide with the position of the viewer, so that the viewer can view the ideal 3D image; if there are multiple viewers viewing the three-dimensional display device, all viewers must be located in the viewport of the three-dimensional display device.
  • all viewers must be in the same row of positions in front of the display panel 1 (the vertical distance of each viewer to the active grating is equal), and also to ensure a certain distance between the viewers, so as to ensure the audience You can see the ideal 3D image.
  • the vertical distances of the viewers to the active grating 2 are equal, such as each viewer sitting on a long sofa in front of the three-dimensional display device; however, the horizontal spacing between the viewers is more difficult to ensure, As a result, some viewers may not be able to view the ideal 3D image.
  • the foregoing three-dimensional display device may further include a second computing module separately connected to the face recognition module and the adjustment module; the face recognition module is further configured to acquire the current front of the active grating 2 The horizontal spacing between adjacent viewers in the same row; the second calculation module is based on the horizontal spacing between the current adjacent viewers, and the maximum horizontal spacing between adjacent viewers and the viewer can view the desired 3D image The second correspondence between the offsets of the interference regions of the active grating 2 is calculated, and the offset of each interference region of the active grating 2 corresponding to the current 3D image is obtained.
  • the face recognition module acquires the vertical distance of each viewer in front of the active grating 2 to the active grating 2, and acquires the horizontal spacing between each adjacent two viewers.
  • the horizontal spacing between any two adjacent viewers can be measured by continuing to refer to FIG. 2 to show that the panel 1 has five viewpoints, three viewers in front of the active grating 2 are viewing the naked eye 3D image, and the three
  • the vertical distance between the audience and the active grating 2 is equal (three viewers are located in the same row in front of the active grating 2), and the face recognition module obtains the viewpoint corresponding to the first viewer as 1.
  • the second audience The corresponding viewpoint is 3, and the third viewer corresponding to the viewpoint is 4, according to the corresponding viewpoints of the three viewers, thereby determining that the first viewer and the second viewer respectively correspond to the viewpoint spacing of 2, the second The corresponding distance between the viewer and the third viewer is 1.
  • the first viewer and the third viewer respectively have a viewpoint spacing of 2, thereby determining the horizontal spacing D1 between the first viewer and the second viewer. Equal to 2tp, the horizontal spacing D2 between the second viewer and the third viewer is equal to 1tp, and the horizontal spacing D3 between the first viewer and the third viewer is 2tp; wherein p is the display surface
  • the sub-pixel width of the board 1 and t is the number of sub-pixels included in the unit viewpoint interval, which is a constant.
  • the horizontal spacing D1 between the first viewer and the second viewer and the horizontal spacing D3 between the first viewer and the third viewer are the largest, respectively 2tp.
  • n is the number of viewpoints of the display panel 1, which is a constant
  • N is the viewpoint corresponding to one of the two adjacent viewers having the largest horizontal spacing
  • D is the horizontal spacing between the two viewpoints corresponding to two adjacent viewers having the largest horizontal spacing.
  • the second calculation module calculates, according to the horizontal spacing between adjacent viewers and the above formula 2, the offset of each interference zone corresponding to the viewer when viewing the ideal 3D image; the adjustment module generates corresponding corresponding according to the offset a second control command, and transmitting the second control command to the driving circuit of the active grating 2, adjusting the relative positions of the light shielding regions 21 on the active grating 2, so that the interference regions of the active grating 2 and the adjacent ones
  • the intermediate position between the two viewers corresponds to ensure that the viewer can see the ideal 3D image. It is worth mentioning that, in order to simplify the structure of the three-dimensional display device, the first calculation module, the adjustment module and the second calculation module are exemplarily integrated in the same information processor.
  • the viewing area of the device is within a variable range.
  • the process of automatically adjusting the active raster by the three-dimensional display device is performed by most of the viewers in the same row, ie After the active grating 2 (the horizontal width of the light-shielding region 21) is adjusted, the viewer who satisfies the above conditions can view the ideal 3D image, and the viewer who does not satisfy the above condition cannot view the ideal 3D image.
  • the three-dimensional display device may further include a reminder module connected to the adjustment module signal, and a display module connected to the alert module signal.
  • the reminding module is configured to send a reminder message to a viewer who cannot view the ideal 3D image, and notify the viewer to move to a specific location to view an ideal 3D image; the display module displays the reminder information to the viewer.
  • the adjustment module adjusts the horizontal width of each light-shielding region of the active grating 2 and the relative position of each light-shielding region on the active grating
  • the face recognition module detects the first viewer, the second viewer, and the third The left and right eyes of the viewer are respectively located in the viewing zone corresponding to the ideal 3D image, and the left and right eyes of the fourth viewer are not located in the viewing zone corresponding to the ideal 3D image
  • the reminding module sends a reminder message to the fourth
  • the viewer informs the fourth viewer that the user should be able to view the desired 3D image by moving to a certain position to improve the viewing experience of the viewer, and the display module displays the position coordinates corresponding to the viewer when the desired 3D image can be viewed.
  • an embodiment of the present invention further provides an active grating, including: a first substrate 3 and a second substrate 4 disposed oppositely, and the first substrate 3 is provided with a plurality of first strips arranged at equal intervals
  • the electrode 6, the second substrate 4 is provided with a common electrode 7, a light control layer 5 between the plurality of first strip electrodes 6 and the common electrode 7, and the first strip electrode 6 and the common electrode 7, respectively.
  • a driving circuit electrically connected; the driving circuit powers a part of the first strip electrodes 6, and powers off another part of the first strip electrodes 6 to form a plurality of light transmissive regions 22 and a plurality of shading regions arranged at intervals twenty one.
  • the common electrode 7 on the second substrate 4 is a flat electrode, or a plurality of second strip electrodes disposed opposite to the plurality of first strip electrodes 6 on the first substrate 3.
  • the light control layer 5 may be a liquid crystal layer or an electrochromic layer.
  • the active grating is also referred to as a liquid crystal grating
  • the first substrate 3 and the second substrate 4 of the liquid crystal grating are respectively
  • a polarizer is further disposed on the surface facing away from the liquid crystal layer, or one substrate of the liquid crystal grating shares a polarizer with the display panel, and the other substrate is provided with a polarizer on a surface facing away from the liquid crystal layer.
  • the light control layer 5 is a liquid crystal layer
  • the common electrode 7 is a flat electrode; when the driving circuit powers a part of the first strip electrode 6 and powers off another part 6, the power is turned on.
  • the liquid crystal molecules in the liquid crystal layer corresponding to the first strip electrode are deflected to block the passage of light to form a light-shielding region; and the liquid crystal layer in the liquid crystal layer corresponding to each of the first strip electrodes of the power-off (unpowered) The child does not deflect and does not block the passage of light to form a light transmitting region.
  • the light-transmitting regions of each of the light-shielding regions constitute a desired grating.
  • the width of any first strip electrode 6 is the minimum width change value of each light-shielding region 21 on the active grating 2, and therefore, the smaller the width of the first strip electrode 6 is, the better, in order to further improve the three-dimensional
  • the display effect of the display device is exemplarily such that the width of the first strip electrode 6 is equal to the width of the sub-pixel of the display panel 1.
  • the adjustment module calculates the theoretical horizontal width of each light-shielding region 21 calculated according to the first calculation module and each interference region calculated by the second calculation module.
  • the offset, the process of adjusting the active grating 2 is as follows:
  • each strip represents a corresponding area of a first strip electrode 6
  • each shading area 21 occupies a corresponding area of four first strip electrodes 6
  • each light transmissive area 22 occupies two Corresponding area of the first strip electrode 6.
  • each of the light-shielding regions 21 occupies a corresponding region of the three first strip electrodes 6, and each of the light-transmitting regions 22 occupies three strip-shaped electrodes 6 Corresponding area; by changing the horizontal width of each of the light-shielding areas 21 (from four occupied in FIG. 6 to three occupied in FIG. 7), it is possible to ensure that the viewer can view the ideal 3D image.
  • the above-mentioned active grating is divided into two types: normal black mode and normally white mode according to the display mode.
  • the active grating of the normally black mode is transparent when power is applied, and is opaque when not powered, and the white mode is normally
  • the active grating is opaque when powered up and transparent when not powered. Since the naked-eye 3D display technology has not been fully promoted, that is, the 3D film source on the market is less, and the mainstream is the 2D film source. Therefore, the active grating provided in the above embodiment can be an active grating in the normally white mode.
  • the active grating is a transparent body, so that the three-dimensional display device becomes a common 2D display device, which can adapt to a wider audience demand.
  • the embodiment of the present invention further provides a three-dimensional display method for the above three-dimensional display device, including:
  • Step 101 Obtain a vertical distance of the current viewer to the active raster.
  • the viewer position coordinates located in front of the active grating 2 can be acquired by the face recognition module.
  • a certain sub-pixel on the display panel 1 can be used as a coordinate origin. Therefore, the audience can be obtained according to the position coordinates of the viewer.
  • Step 102 according to the obtained vertical distance of the current viewer to the active grating, and the vertical distance between the viewer and the active grating and the theoretical horizontal width of each light-shielding region of the active grating when the viewer can see the ideal 3D image.
  • the first correspondence relationship calculates a theoretical horizontal width of each of the light-shielding regions corresponding to the viewer when the viewer views the ideal 3D image at the current position, wherein each of the light-shielding regions has a corresponding theoretical horizontal width.
  • the specific calculation process can be completed by the first calculation module.
  • Step 103 Send a corresponding first control command to the driving circuit according to the calculated theoretical horizontal width of each light-shielding region, and adjust the actual horizontal width of each light-shielding region of the active grating 2 so that the actual horizontal width is equal to the theoretical horizontal width.
  • the actual horizontal width corresponding to each of the light-shielding regions is equal.
  • the process of adjusting the horizontal width of each of the light-shielding regions of the active grating 2 can be specifically controlled by the adjustment module.
  • the first correspondence may be:
  • f is the theoretical horizontal width of each of the light-shielding regions of the active grating (the number of sub-pixels)
  • r is the vertical distance from the viewer to the active grating 2
  • n is the number of viewpoints of the display panel 1.
  • p is the sub-pixel width on the display panel 1, which is a constant
  • d is the vertical distance between the active grating 2 and the display panel 1.
  • the adjusting module generates a corresponding first control command to the driving circuit of the active grating according to the theoretical horizontal width of each light-shielding area corresponding to the current 3D image that the viewer can view; the driving circuit is active according to the first control instruction A part of the first strip electrode of the grating is powered, and another part of the first strip electrode of the active grating is powered off, thereby forming a plurality of light-transmissive regions and a plurality of light-shielding regions arranged at intervals, and forming a light-shielding region
  • the actual horizontal width is equal to the theoretical horizontal width, which in turn ensures that the viewer can view the desired 3D image at the current position.
  • the three-dimensional display device can automatically adjust the horizontal width of each light-shielding region of the active grating according to the vertical distance of the viewer to the active grating to ensure the viewer.
  • the device can be displayed in three dimensions at any position. If there are multiple viewers at the same time in the three-dimensional display device, in order for each viewer to see the ideal 3D image, these viewers should be located in the same row in front of the three-dimensional display device, that is, the vertical of each viewer to the active grating needs to be ensured. The distance is equal, and at the same time, a certain distance is also guaranteed. If the horizontal interval between two adjacent viewers changes, according to the display principle of the three-dimensional display device, the left eye or the right eye of the viewer may correspond to the interference region of the active grating, thereby causing the viewer to fail to see the ideal. 3D image.
  • the three-dimensional display method may further include:
  • n is the number of viewpoints of the display panel, is a constant, and N is the correspondence of one of two adjacent viewers having the largest horizontal spacing
  • D is the horizontal spacing between the two viewpoints corresponding to two adjacent viewers having the largest horizontal spacing.
  • the second calculating module determines a maximum horizontal interval between adjacent viewers according to the horizontal spacing between adjacent viewers, and then calculates, according to the above formula, each active grating corresponding to the viewer to view the ideal 3D image.
  • the offset of the interference zone The adjusting module calculates the offset of each interference region of the active grating obtained by the second calculating module, generates a corresponding second control command, and sends the second control command to the driving circuit of the active grating; the driving circuit is configured according to the first a second control command, charging a portion of the first strip electrode of the active grating, and discharging another portion of the first strip electrode of the active grating to form a plurality of transparent regions spaced apart from each other on the active grating a plurality of light-shielding regions, and each of the light-shielding regions formed on the active grating after receiving the second control command is moved to the left or the entire right by the respective light-shielding regions formed on the active grating before receiving the second control command.
  • the three-dimensional display device and the three-dimensional display method according to the embodiment of the present invention when the viewer is located within the variable range value of the viewing area of the three-dimensional display device provided by the embodiment of the present invention, according to the position coordinates of the viewer (the audience)
  • the horizontal distance to each of the light-shielding regions of the active grating is automatically adjusted, so that the respective viewing zone positions formed by the active gratings of the display panel coincide with the position of the viewer, so that the viewer can view The ideal 3D image.
  • the three-dimensional display device provided by the embodiment of the present invention can change the position of the viewing zone according to the position coordinates of the viewer, so that the viewer does not need to view the ideal 3D image in a fixed viewing zone position, which greatly improves the image.
  • the practicality of the three-dimensional display device is not limited to the position coordinates of the viewer, so that the viewer does not need to view the ideal 3D image in a fixed viewing zone position, which greatly improves the image.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geometry (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

一种主动式光栅(2)、三维显示装置及三维显示方法。三维显示装置包括:相对设置的显示面板(1)和主动式光栅(2);人脸识别模块,构造为获取当前观众到主动式光栅(2)的垂直距离;第一计算模块,与人脸识别模块信号连接,计算获得观众在当前位置观看到理想的3D图像时各遮光区域(21)的理论水平宽度;以及调整模块,分别与第一计算模块和主动式光栅(2)的驱动电路信号连接,构造为发送相应的第一控制指令给驱动电路,调整主动式光栅(2)的各遮光区域(21)的实际水平宽度,使实际水平宽度与理论水平宽度相等。该三维显示装置,能够根据观众的位置坐标改变视区位置,使得观众不需要在固定的视区位置就能观看到理想的3D图像,大大提高了三维显示装置的实用性。

Description

主动式光栅、三维显示装置及三维显示方法 技术领域
本发明的实施例涉及主动式光栅、三维显示装置及三维显示方法。
背景技术
目前,常见的裸眼三维(3D)显示装置主要包括视差屏障式和柱透镜式,其基本原理是将图像分为左眼图像和右眼图像,经过视差屏障和柱透镜的作用后,在显示面板前方呈现多个相互间隔的左视区和右视区。当观众左眼位于左视区,右眼位于与左视区对应的右视区时,观众左眼能看到对应的左眼图像,右眼能看到对应的右眼图像,左眼图和右眼图是一对立体图像对,这样大脑就可以将它们融合成3D画面,从而产生3D显示效果。
然而,观众在观看上述裸眼3D显示装置的显示的3D图像时,必须位于裸眼3D显示装置前方的某些特定位置才能可看到效果较好的3D图像,否则立体观视效果较差,甚至无法看到3D效果。
发明内容
本发明的目的在于提供一种主动式光栅、三维显示装置及三维显示方法,能够够提高三维显示装置的实用性。
本发明的实施例提供一种主动式光栅,包括:相对设置的第一基板和第二基板;多个第一条状电极,等间隔设置在所述第一基板的面对所述第二基板的一侧;公共电极,设置在所述第二基板的面对所述第一基板的一侧;光控制层,位于所述多个第一条状电极和所述公共电极之间;以及驱动电路,分别与所述公共电极和各所述第一条状电极电连接,其中所述驱动电路对一部分所述第一条状电极进行加电,对另一部分所述第一条状电极进行断电,以形成相互间隔排列的多个透光区域和多个遮光区域。
本发明的实施例还提供了一种三维显示装置,包括:相对设置的显示面板和如以上所述的主动式光栅;人脸识别模块,构造为获取当前观众到所述主动式光栅的垂直距离;第一计算模块,与所述人脸识别模块信号连接,构 造为根据所述人脸识别模块所获取的所述垂直距离,以及观众到所述主动式光栅的垂直距离与观众能够看到理想的3D图像时所述主动式光栅的各遮光区域的理论水平宽度之间的第一对应关系,计算获得观众在当前位置观看到理想的3D图像时各所述遮光区域的理论水平宽度;以及调整模块,分别与所述第一计算模块和所述主动式光栅的驱动电路信号连接,构造为根据所述第一计算模块计算获得的所述理论水平宽度,发送相应的第一控制指令给所述驱动电路,调整所述主动式光栅的各遮光区域的实际水平宽度,使所述实际水平宽度与所述理论水平宽度相等,其中,各所述遮光区域分别对应的实际水平宽度相等,各所述遮光区域对应的理论水平宽度相等。
本发明的实施例还提供了一种三维显示方法,包括:用于以上所述的三维显示装置,包括:获取当前观众到所述主动式光栅的垂直距离;根据所获取的当前观众到所述主动式光栅的垂直距离,以及观众到所述主动式光栅的垂直距离与观众能够看到理想的3D图像时所述主动式光栅的各遮光区域的理论水平宽度之间的第一对应关系,计算获得观众在当前位置观看到理想的3D图像时各所述遮光区域的理论水平宽度,其中,各所述遮光区域分别对应的理论水平宽度相等;根据所计算获得的各所述遮光区域的理论水平宽度,发送相应的第一控制指令给所述主动式光栅的驱动电路,调整所述主动式光栅的各遮光区域的实际水平宽度,使所述实际水平宽度与所述理论水平宽度相等,其中,各所述遮光区域分别对应的实际水平宽度相等。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本发明实施例提供的三维显示装置的各部件之间的连接关系图;
图2为本发明实施例提供的三维显示装置的显示原理图;
图3为观众能够观看到三维显示装置所显示的图像时的示意图;
图4为本发明实施例提供的三维显示装置的各部件之间的另一种连接关系;
图5为本发明实施例提供的主动式光栅的结构示意图;
图6为图5中主动式光栅的各遮光区域的一种排布;以及
图7为图5中主动式光栅的各遮光区域的另一种排布。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面将结合说明书附图,对本发明实施例中的技术方案进行详细描述。
实施例一
请参阅图1和图2,本发明实施例提供的三维显示装置包括:相对设置的显示面板1和主动式光栅2;人脸识别模块,构造为获取位于显示面板1的出光侧(显示图像侧)的观众到主动式光栅2的垂直距离;第一计算模块,与人脸识别模块信号连接;以及调整模块,分别与第一计算模块和主动式光栅2的驱动电路信号连接,其中,所述人脸识别模块可为人脸识别摄像机或红外摄像机。示例性地,人脸识别模块可以为人脸识别摄像机,固定安装在显示面板1的边缘和/或主动式光栅2的边缘,或,安装在三维显示装置的外壳上,用于获取观众到主动式光栅2的垂直距离。
第一计算模块根据人脸识别模块所测得的观众到主动式光栅2的垂直距离,以及观众到主动式光栅2的垂直距离与观众能够看到理想的3D图像时主动式光栅2的各遮光区域21的理论水平宽度之间的第一对应关系,计算获得观众在当前位置观看到理想的3D图像时各遮光区域21的理论水平宽度,其中,各遮光区域21的理论水平宽度相等。
调整模块根据第一计算模块计算获得的各遮光区域21的理论水平宽度,发送相应的第一控制指令给主动式光栅2的驱动电路,以调整主动式光栅2的各遮光区域21的实际水平宽度,使实际水平宽度与理论水平宽度相等,其中,各遮光区域21分别对应的实际水平宽度相等。需要说明的是,上述第一控制指令是调整模块根据第一计算模块计算获得的各遮光区域21的理论水平宽度生成的,不同的理论水平宽度对应的第一控制指令也不同,但这些第 一控制指令都是提供给主动式光栅2的驱动电路,以使驱动电路根据这些第一控制指令确定该给主动式光栅2的一部分第一条状电极加电或断电,从而形成所需水平宽度的各遮光区域21。
示例性地,在上述三维显示装置中,主动式光栅2与显示面板1相对设置,可选地,主动式光栅2位于显示面板1的出光侧,或,位于显示面板1的入光侧,即位于显示面板1和三维显示装置的背光模组之间。因主动式光栅2位于显示面板1的入光侧的工作原理与主动式光栅2位于显示面板1的出光侧的工作原理基本相同,下文为了描述方便,将以主动式光栅2位于显示面板1的出光侧为例,来详细描述上述三维显示装置的工作原理。
继续参阅图2,主动式光栅2位于显示面板1的出光侧,主动式光栅2包括相互间隔排列的多个遮光区域21和多个透光区域22,各遮光区域21的水平宽度相等,且间隔距离也相等,各透光区域22的水平宽度相等,且间隔距离也相等。假设三维显示装置的显示面板1具有五个视点,并且这五个视点周期循环排列;从显示面板1射出的光经过主动式光栅2后形成分别与五个视点对应的多个视区,即对应第一视点的多个视区,对应第二视点的多个视区,对应第三视点的多个视区,对应第四视点的多个视区以及对应第五视点的多个视区,为了描述方便,将对应第一视点的多个视区统称为第一视区,将对应第二视点的多个视区统称为第二视区,将对应第三视点的多个视区统称为第三视区,将对应第四视点的多个视区统称为第四视区,以及将对应第五视点的多个视区统称为第五视区,这五个视区与主动式光栅之间的垂直距离相等。观众在上述视区观看时,所观看到的3D图像分别为对某一场景不同角度进行拍摄而得到的图像,各角度之间具有一定视差。第一视区至第五视区各个视区所显示的图像仅有由于拍摄角度的不同导致的细微差别,观众位于其中一个视区时,观众的左眼在该视区中的左视区、右眼在该视区中的右视区,如此观众才能够观看到理想的3D图像。
根据上述描述可知,当观众在主动式光栅2前方的五个视区观看时,观众能够观看到理想的3D图像;当观众不在上述五个视区观看时,例如,观众相对于显示面板1向前或向后移动,即当观众与主动式光栅2之间的垂直距离发生了改变后,为了保证观众还能观看到理想的3D图像,本实施例提供的三维显示装置会根据当前观众到主动式光栅2的垂直距离,自动调整主 动式光栅2的各遮光区域21的水平宽度,使各视点经过主动式光栅2后形成的各视区位置相对主动式光栅2进行前移或后移,以与观众所在位置重合,从而使观众能够观看到理想的3D图像。
示例性地,当观众到主动式光栅的垂直距离发生改变后,人脸识别模块获取观众到主动式光栅2的垂直距离;第一计算模块根据当前观众与主动式光栅2之间的垂直距离,以及观众到主动式光栅2的垂直距离与观众能够看到理想的3D图像时主动式光栅2的各遮光区域21的理论水平宽度之间的第一对应关系,计算获得观众处于当前位置能够观看到理想的3D图像时所对应的各遮光区域21的理论水平宽度;调整模块根据第一计算模块计算获得的理论水平宽度,发送相应的第一控制指令给主动式光栅2的驱动电路,调整主动式光栅2的各遮光区域21的实际水平宽度,使实际水平宽度与理论水平宽度相等;当各遮光区域21的实际水平宽度与理论水平宽度相等时,显示面板1发出的光经过主动式光栅2后形成新的视区,并且新形成的这些视区与观众所在位置重合,从而可以保证观众能够观看到理想的3D图像。
示例性地,请参阅图3,当观众位于A点视区时,此时观众到主动式光栅的垂直距离r等于AB的长度。为了使观众处于A点视区能够观看到理想的3D图像,按照光线的传输路径,可以构建图3所示的三角形ABC和三角形ADE,且三角形ABC和三角形ADE为相似三角形。如图3中所示,为避免干扰,当眼睛只看到一个视点,而其他视点都被光栅挡住,则能看到最佳观看效果,根据相似三角形定律,得到如下关系式:
Figure PCTCN2014093616-appb-000001
其中,边BC为主动式光栅的每个遮光区域的理论水平宽度,用f表示,边DE为显示面板上对应的视点数宽度,用(n-1)*p表示,n为显示面板1上的视点总数,为常数,在本实施例中视点总数n=5,p为显示面板1上的亚像素宽度,为常数,边AB为观众到主动式光栅的垂直距离,用r表示,边BD为主动式光栅到显示面板的垂直距离,用d表示,将上述各对应值代入上述关系式得到:
Figure PCTCN2014093616-appb-000002
对上述公式进行变形后即可得到公式一:
Figure PCTCN2014093616-appb-000003
其中,f为主动式光栅的每个遮光区域的理论水平宽度,r为观众到所述主动式光栅的垂直距离,n为所述显示面板的视点数,为常数,p为所述显示面板上的亚像素宽度,为常数,d为所述主动式光栅与所述显示面板之间的垂直距离。
第一计算模块根据人脸识别模块所获得的观众到主动式光栅2的垂直距离,以及上述公式一,通过计算可获得:当观众到主动式光栅的垂直距离不同时,观众能够观看到理想的3D图像时所对应的遮光区域21的理论水平宽度f。调整模块根据第一计算模块计算获得的理论水平宽度,生成与理论水平宽度对应的第一控制指令,并将该第一控制指令发送给主动式光栅2的驱动电路,调整主动式光栅2的各遮光区域21的实际水平宽度,使实际水平宽度与理论水平宽度相等;从而使显示面板1发出的光经过主动式光栅2后形成新的视区,且新形成的这些视区与观众所在位置重合,进而可以保证观众能够观看到理想的3D图像。
需要说明的是,上述在调整各遮光区域21的水平宽度时,每个遮光区域21的中心位置不变,因此,调整遮光区域21的水平宽度即为改变遮光区域21的两端到该中心位置的距离。
从上述技术方案可知,当观众位于本发明实施例提供的三维显示装置的视区可变范围之内时,三维显示装置能够根据观众到主动式光栅的垂直距离自动调整主动式光栅2的各遮光区域21的水平宽度,使得显示面板1的各视点经过主动式光栅2后形成的各视区位置与观众所在位置重合,从而使得观众能够观看到理想的3D图像。因此,与现有的三维显示装置观众需要在固定的视区位置才能观看到理想的3D图像相比,本发明实施例提供的三维显示装置,能够根据观众的位置坐标改变视区位置,使得观众不需要在固定的视区位置就能观看到理想的3D图像,大大提高了三维显示装置的实用性。
在上述实施方式中,如果只有一个观众观看本实施例提供的三维显示装置时,该观众必须位于三维显示装置的视区可变范围之内,三维显示装置根据当前观众到主动式光栅的垂直距离,通过调整主动式光栅的各遮光区域21 的水平宽度,使新形成的视区与观众所在位置重合,从而使得观众能够观看到理想的3D图像;如果有多个观众观看上述三维显示装置时,所有观众必须位于三维显示装置的视区可变范围之内,同时所有观众必需在显示面板1前方的同一排位置(各观众到主动式光栅的垂直距离相等),且还要保证各观众之间间隔一定的距离,如此,才能保证各观众都能观看到理想的3D图像。然而在现实中,比较容易保证各观众到主动式光栅2的垂直距离相等,如各观众都坐在三维显示装置前方的一个长条形沙发上;但各观众之间的水平间距比较难保证,从而导致有的观众可能不能观看到理想的3D图像。
请参阅图4,为了解决上述问题,上述三维显示装置还可以进一步包括分别与人脸识别模块和调整模块信号连接的第二计算模块;人脸识别模块还构造为获取当前位于主动式光栅2前方的同一排各相邻观众之间的水平间距;第二计算模块根据当前各相邻观众之间的水平间距,以及各相邻观众之间的最大水平间距与观众可观看到理想的3D图像时主动式光栅2的各干扰区的偏移量之间的第二对应关系,计算获得当前各观众观看到理想的3D图像时所对应的主动式光栅2的各干扰区的偏移量;调整模块根据第二计算模块计算获得的偏移量,发送相应的第二控制指令给主动式光栅2的驱动电路,调整各遮光区域21在主动式光栅2上的相对位置,使主动式光栅2的各干扰区与相邻的两个观众之间的中间位置对应。
示例性地,人脸识别模块获取位于主动式光栅2前方的各观众到主动式光栅2的垂直距离,以及获取各相邻两个观众之间的水平间距。任意相邻两个观众之间的水平间距可以通过如下方式测得:继续参阅图2,以显示面板1具有五个视点、主动式光栅2前方有三个观众在观看裸眼3D图像、且这三个观众与主动式光栅2之间的垂直距离相等(三个观众位于主动式光栅2前方的同一排)为例,人脸识别模块获取第一个观众所对应的视点为1、第二个观众所对应的视点为3、第三个观众所对应的视点为4,根据三个观众所分别对应的视点,从而确定第一个观众和第二个观众所分别对应的视点间距为2、第二个观众和第三个观众所分别对应的视点间距为1、第一个观众和第三个观众所分别对应的视点间距为2,进而确定第一个观众和第二个观众之间的水平间距D1等于2tp、第二个观众和第三个观众之间的水平间距D2等于1tp、第一个观众和第三个观众之间的水平间距D3为2tp;其中,p为显示面 板1的亚像素宽度,t为单位视点间距中包括的亚像素的个数,为常数。由上可知,第一个观众、第二个观众之间的水平间距D1以及第一个观众、第三个观众之间的水平间距D3最大,分别为2tp。
为了使观众可观看到理想的3D图像,需保证主动式光栅2的各干扰区与相邻的两个观众之间的中间位置对应,各干扰区所对应的视点间距满足如下公式:stp=ntp-[Ntp+1/2max(D1,D2,D3)],对该公式进行变形后得到公式二:
Figure PCTCN2014093616-appb-000004
其中,s为主动式光栅的每个干扰区的偏移量,n为显示面板1的视点数,为常数,N为具有最大水平间距的两个相邻观众中其中一个观众所对应的视点,D为具有最大水平间距的两个相邻观众所分别对应的两个视点之间的水平间距。需要说明的是,公式二中的各个变量和常数的单位都用视点的个数表示。
第二计算模块根据各相邻观众之间的水平间距以及上述公式二,计算获得观众观看到理想的3D图像时所对应的各干扰区的偏移量;调整模块根据该偏移量生成相应的第二控制指令,并将该第二控制指令发送给主动式光栅2的驱动电路,调整各遮光区域21在主动式光栅2上的相对位置,使主动式光栅2的各干扰区与相邻的两个观众之间的中间位置对应,从而可以保证各观众都能够观看到理想的3D图像。值得一提的是,为了简化三维显示装置的结构,示例性地,所述第一计算模块、所述调整模块和所述第二计算模块集成在同一个信息处理器中。
在上述实施方式中,如果有多个观众观看上述三维显示装置时,要保证所有观众都能观看理想的3D图像,所有观众只能位于主动式光栅2前方的同一排,且观众必须位于三维显示装置的视区可变范围之内。如果有其中一个或数个观众与大多数观众不是位于同一排或超出了视区可变范围时,上述三维显示装置自动调整主动式光栅的过程是以大多数位于同一排的观众进行的,即主动式光栅2(遮光区域21的水平宽度)调整后,满足上述条件的观众能观看到理想的3D图像,而不满足上述条件的观众不能观看到理想的3D图像。
然而,不满足上述条件的观众可能不清楚需要满足上述条件才能观看到理想的3D图像,为此,上述三维显示装置还可以包括与调整模块信号连接的提醒模块,与提醒模块信号连接的显示模块;所述提醒模块用于发出提醒信息给不能观看到理想3D图像的观众,告知该观众移动到特定位置后可观看到理想3D图像;所述显示模块向观众显示所述提醒信息。示例性地,当调整模块调整主动式光栅2的各遮光区域的水平宽度和各遮光区域在主动式光栅上的相对位置后,若是人脸识别模块检测到第一观众、第二观众和第三观众的左右眼分别位于观看到理想的3D图像所对应的视区内,而第四观众的左右眼没有位于观看到理想的3D图像所对应的视区内时,提醒模块发出提醒信息给第四观众,告知第四观众应该移动到某个位置就可以观看到理想的3D图像,提高观众的观看体验,显示模块显示观众可观看到理想的3D图像时所对应的位置坐标。
实施例二
请参阅图5,本发明实施例同时还提供了一种主动式光栅,包括:相对设置的第一基板3和第二基板4,第一基板3上设有等间隔排列的多个第一条状电极6,第二基板4上设有公共电极7,位于多个第一条状电极6和公共电极7之间的光控制层5,以及分别与各第一条状电极6和公共电极7电连接的驱动电路;驱动电路对一部分第一条状电极6进行加电,对另一部分第一条状电极6进行断电,以形成相互间隔排列的多个透光区域22和多个遮光区域21。
示例性地,第二基板4上的公共电极7为平板状电极,或为与第一基板3上的多个第一条状电极6一一相对设置的多个第二条状电极。光控制层5可以为液晶层或电致变色层,当光控制层5为液晶层时,此时主动式光栅也称为液晶光栅,并在液晶光栅的第一基板3和第二基板4分别背向液晶层的面上还分别设有偏光片,或,液晶光栅的一个基板与显示面板公用一个偏光片,另一个基板背向液晶层的面上设有一个偏光片。
在本实施例中,光控制层5为液晶层,公共电极7为平板状电极;当驱动电路对一部分第一条状电极6进行加电,对另一部分6进行断电时,与通电的各第一条状电极所对应的液晶层中液晶分子发生偏转,阻挡光通过,形成遮光区域;与断电(未加电)的各第一条状电极所对应的液晶层中液晶分 子不发生偏转,不阻挡光通过,形成透光区域。各遮光区域各透光区域构成所需的光栅。
显然,任一第一条状电极6的宽度即为主动式光栅2上的各遮光区域21的最小宽度变化值,因此,该第一条状电极6的宽度越小越好,为了进一步提高三维显示装置的显示效果,示例性地,第一条状电极6的宽度与显示面板1的亚像素的宽度相等。
示例性地,当三维显示装置采用本实施例提供的主动式光栅时,调整模块根据第一计算模块计算获得的每个遮光区域21的理论水平宽度和第二计算模块计算获得的每个干扰区的偏移量,调整主动式光栅2的过程如下:
在主动式光栅2的驱动电路未接收第一控制指令时,驱动电路保持当前对各第一条状电极6的加电或断电,使各透光区域22和各遮光区域21的水平宽度保持不变;如图6所示,每个条带代表一条第一条状电极6的对应区域,每个遮光区域21占用四条第一条状电极6的对应区域,各透光区域22占用两条第一条状电极6的对应区域。当观众到主动式光栅的垂直距离改变后,第一计算模块计算出观众在当前能够观看到理想的3D图像所对应的遮光区域的理论水平宽度,调整模块根据该理论水平宽度,发送第一控制指令给主动式光栅的驱动电路,改变加电第一条状电极6的个数和断电第一条状电极6的个数,从而改变第一基板3和第二基板4之间的液晶层的液晶分子的偏转情况,进而改变遮光区域21的水平宽度,值得一提的是,在改变遮光区域21的水平宽度时,相邻的两个遮光区域21中心距不变,位于相邻的两个遮光区域21之间的透光区域22(狭缝)变化。水平宽度被改变后的各遮光区域21如图7所示,此时每个遮光区域21占用三条第一条状电极6的对应区域,每个透光区域22占用三条第一条状电极6的对应区域;通过改变各遮光区域21的水平宽度(从图6所示占用四条改变为图7所示占用三条),从而可以保证观众能够观看到理想的3D图像。
调整模块根据每个干扰区的偏移量,通过调整各遮光区域21在主动式光栅2上的相对位置的过程与上述基本相同,故此不在赘述。需要注意的是,在改变各遮光区域21在主动式光栅2上的相对位置后,各遮光区域21的水平宽度保持不变,只有在观众到主动式光栅2的垂直距离改变时,各遮光区域21的水平宽度才会相应的改变。
值得一提的是,上述主动式光栅按显示模式分为常黑模式和常白模式两种,其中,常黑模式的主动式光栅在加电时透明、不加电时不透明,常白模式的主动式光栅在加电时不透明、不加电时透明。由于目前裸眼3D显示技术并未得到全面推广,即市面上的3D片源较少,占据主流的为2D片源,因此,上述实施例提供的主动式光栅可以常白模式的主动式光栅,当各第一条状电极6均未被加电驱动时,该主动式光栅是一个透明体,使得三维显示装置变为普通的2D显示装置,可适应更广泛的观众需求。
实施例三
本发明实施例还提供了一种针对上述三维显示装置的三维显示方法,包括:
步骤101、获取当前观众到主动式光栅的垂直距离。
示例性地,可通过人脸识别模块获取位于主动式光栅2前方的观众位置坐标,例如可以以显示面板1上的某个亚像素为坐标原点,因此,根据观众的位置坐标即可获得观众到主动式光栅的垂直距离,以及当前观众所对应的视点坐标。
步骤102、根据所获取的当前观众到主动式光栅的垂直距离,以及观众到主动式光栅的垂直距离与观众能够看到理想的3D图像时主动式光栅的各遮光区域的理论水平宽度之间的第一对应关系,计算获得观众在当前位置观看到理想的3D图像时所对应的各遮光区域的理论水平宽度,其中,各遮光区域分别对应的理论水平宽度相等。具体计算过程可由第一计算模块完成。
步骤103、根据所计算获得的各遮光区域的理论水平宽度,发送相应的第一控制指令给驱动电路,调整主动式光栅2的各遮光区域的实际水平宽度,使实际水平宽度与理论水平宽度相等,其中,各遮光区域分别对应的实际水平宽度相等。主动式光栅2的各遮光区域的水平宽度的调整过程具体可由调整模块控制。
示例性地,在上述步骤102中,第一对应关系可以为:
Figure PCTCN2014093616-appb-000005
其中,f为主动式光栅的每个遮光区域的理论水平宽度(单位是亚像素的个数),r为观众到主动式光栅2的垂直距离,n为显示面板1的视点数, 为常数,p为显示面板1上的亚像素宽度,为常数,d为主动式光栅2与显示面板1之间的垂直距离。详细推导过程在上文已有详细描述,故此不再赘述。第一计算模块利用上述公式,以及当前观众到主动式光栅的垂直距离,计算获得观众处于当前位置可观看到理想的3D图像所对应的主动式光栅的各遮光区域的理论水平宽度。
调整模块根据当前观众可观看到理想的3D图像所对应的各遮光区域的理论水平宽度,生成相应的第一控制指令给主动式光栅的驱动电路;驱动电路根据该第一控制指令,对主动式光栅的一部分第一条状电极进行加电,对主动式光栅的另一部分第一条状电极进行断电,从而形成相互间隔排列的多个透光区域和多个遮光区域,且形成的遮光区域的实际水平宽度与理论水平宽度相等,进而可以保证观众处于当前位置能够观看到理想的3D图像。
观众在观看采用上述三维显示方法进行显示的三维显示装置时,如果是一个观众,三维显示装置可以根据观众到主动式光栅的垂直距离,自动调整主动式光栅的各遮光区域的水平宽度,保证观众处于任何位置都能够三维显示装置。如果有多个观众在同时该三维显示装置时,为了使每个观众都能看到理想的3D图像,这些观众应该位于三维显示装置前方的同一排,即需要保证各观众到主动式光栅的垂直距离相等,同时,还要保证一定的间隔距离。如果相邻的两个观众之间的水平间隔发生了改变,根据三维显示装置的显示原理,会导致观众的左眼或右眼与主动式光栅的干扰区对应,从而导致观众无法看到理想的3D图像。
为此,为了保证在相邻观众之间的水平距离改变后观众还能够看到三维显示装置所显示的3D图像,上述三维显示方法还可以包括:
获取当前位于显示面板前方的同一排各相邻观众之间的水平间距;
根据所获取的当前各相邻观众之间的水平间距,以及各相邻观众之间的最大水平间距与观众可观看到理想的3D图像时主动式光栅的各干扰区的偏移量之间的第二对应关系,计算获得当前观众观看到理想的3D图像所对应的主动式光栅的各干扰区的偏移量;
根据所计算获得的各干扰区的偏移量,发送相应的第二控制指令给驱动电路,调整各遮光区域在所述主动式光栅上的相对位置,使主动式光栅的各干扰区与相邻的两个观众之间的中间位置对应。
示例性地,上述第二对应关系式可以为:
Figure PCTCN2014093616-appb-000006
其中,s为所述主动式光栅的各干扰区的偏移量,n为所述显示面板的视点数,为常数,N为具有最大水平间距的两个相邻观众中其中一个观众的所对应的视点,D为具有最大水平间距的两个相邻观众所分别对应的两个视点之间的水平间距。
第二计算模块根据各相邻观众之间的水平间距,确定各相邻观众之间的最大水平间隔,然后根据上述公式计算获得观众可观看到理想的3D图像时所对应的主动式光栅的各干扰区的偏移量。调整模块根据第二计算模块计算获得的主动式光栅的各干扰区的偏移量,生成相应的第二控制指令并将该第二控制指令发送给主动式光栅的驱动电路;驱动电路根据该第二控制指令,对主动式光栅的一部分第一条状电极进行充电,对主动式光栅的另一部分第一条状电极进行放电,以在主动式光栅上形成相互间隔排列的多个透光区域和多个遮光区域,且接收第二控制指令后形成在主动式光栅上的各所述遮光区域相对接收第二控制指令前形成在主动式光栅上的各遮光区域进行了整体左移或整体右移;如此调整了主动式光栅的各干扰区的位置,使各干扰区与相邻的两个观众之间的中间位置对应,进而可以保证观众处于当前位置能够观看到理想的3D图像。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明的实施例可借助软件加必需的通用硬件的方式来实现,当然也可以通过硬件而实现。基于这样的理解,本发明实施例的技术方案本质上可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,硬盘或光盘等。
对于根据本发明实施例的主动式光栅、三维显示装置和三维显示方法,当观众位于本发明实施例提供的三维显示装置的视区可变范围值之内时,能够根据观众的位置坐标(观众到主动式光栅的垂直距离)自动调整主动式光栅的各遮光区域的水平宽度,使得显示面板的各视点经过主动式光栅后形成的各视区位置与观众所在位置重合,从而使得观众能够观看到理想的3D图像。因此,与现有的三维显示装置观众需要在固定的视区位置才能观看到理 想的3D图像相比,本发明实施例提供的三维显示装置,能够根据观众的位置坐标改变视区位置,使得观众不需要在固定的视区位置就能观看到理想的3D图像,大大提高了三维显示装置的实用性。
以上所述,仅为本发明的实施例,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
本申请要求于2014年8月8日递交的中国专利申请第201410390048.8号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (19)

  1. 一种主动式光栅,包括:
    相对设置的第一基板和第二基板;
    多个第一条状电极,等间隔设置在所述第一基板的面对所述第二基板的一侧;
    公共电极,设置在所述第二基板的面对所述第一基板的一侧;
    光控制层,位于所述多个第一条状电极和所述公共电极之间;以及
    驱动电路,分别与所述公共电极和各所述第一条状电极电连接,
    其中所述驱动电路对一部分所述第一条状电极进行加电,对另一部分所述第一条状电极进行断电,以形成相互间隔排列的多个透光区域和多个遮光区域。
  2. 根据权利要求1所述的主动式光栅,其中所述光控制层为液晶层或电致变色层。
  3. 根据权利要求1所述的主动式光栅,其中所述公共电极为平板状电极或为与所述多个第一条状电极一一相对设置的多个第二条状电极。
  4. 根据权利要求1所述的主动式光栅,其中所述多个遮光区域对应于被加电的所述第一条状电极。
  5. 一种三维显示装置,包括:
    相对设置的显示面板和如权利要求1-4中任一项所述的主动式光栅;
    人脸识别模块,构造为获取当前观众到所述主动式光栅的垂直距离;
    第一计算模块,与所述人脸识别模块信号连接,构造为根据所述人脸识别模块所获取的所述垂直距离,以及观众到所述主动式光栅的垂直距离与观众能够看到理想的3D图像时所述主动式光栅的各遮光区域的理论水平宽度之间的第一对应关系,计算获得观众在当前位置观看到理想的3D图像时各所述遮光区域的理论水平宽度;以及
    调整模块,分别与所述第一计算模块和所述主动式光栅的驱动电路信号连接,构造为根据所述第一计算模块计算获得的所述理论水平宽度,发送相应的第一控制指令给所述驱动电路,调整所述主动式光栅的各遮光区域的实际水平宽度,使所述实际水平宽度与所述理论水平宽度相等,其中,各所述 遮光区域分别对应的实际水平宽度相等,各所述遮光区域对应的理论水平宽度相等。
  6. 根据权利要求5所述的三维显示装置,其中所述第一对应关系为:
    Figure PCTCN2014093616-appb-100001
    其中,f为所述主动式光栅的每个遮光区域的理论水平宽度,r为观众到所述主动式光栅的垂直距离,n为所述显示面板的视点数,p为所述显示面板上的亚像素宽度,d为所述主动式光栅与所述显示面板之间的垂直距离。
  7. 根据权利要求5所述的三维显示装置,还包括:
    第二计算模块,分别与所述人脸识别模块和所述调整模块信号连接。
  8. 根据权利要求7所述的三维显示装置,其中所述人脸识别模块还构造为获取当前位于显示面板出光侧的同一排各相邻观众之间的水平间距,所述第二计算模块根据当前各相邻观众之间的水平间距,以及各相邻观众之间的最大水平间距与观众可观看到理想的3D图像时所述主动式光栅的各干扰区的偏移量之间的第二对应关系,计算获得当前各观众观看到理想的3D图像时所述主动式光栅的各干扰区的偏移量,所述调整模块根据所述第二计算模块计算获得的所述偏移量,发送相应的第二控制指令给所述驱动电路,调整各所述遮光区域在所述主动式光栅上的相对位置,使所述主动式光栅的各干扰区与相邻的两个观众之间的中间位置对应。
  9. 根据权利要求8所述的三维显示装置,其中所述第二对应关系式为:
    Figure PCTCN2014093616-appb-100002
    其中,s为所述主动式光栅的每个干扰区的偏移量,n为所述显示面板的视点数,N为具有最大水平间距的两个相邻观众中其中一个观众所对应的视点,D为具有最大水平间距的两个相邻观众所分别对应的两个视点之间的水平间距。
  10. 根据权利要求7所述的三维显示装置,其中所述第一计算模块、所述调整模块和所述第二计算模块集成在同一个信息处理器中。
  11. 根据权利要求5-10中任一项所述的三维显示装置,其中所述人脸识别模块设于所述显示面板的边缘和/或所述主动式光栅的边缘。
  12. 根据权利要求5-10中任一项所述的三维显示装置,还包括:与所述调整模块信号连接的提醒模块,该提醒模块被构造为发出提醒信息给不能观看到理想3D图像的观众,且告知该观众移动到特定位置后可观看到理想3D图像。
  13. 根据权利要求12所述的三维显示装置,还包括:显示模块,与所述提醒模块信号连接,且被构造为向观众显示所述提醒信息。
  14. 一种三维显示方法,用于如权利要求5-13中任一项所述的三维显示装置,包括:
    获取当前观众到所述主动式光栅的垂直距离;
    根据所获取的当前观众到所述主动式光栅的垂直距离,以及观众到所述主动式光栅的垂直距离与观众能够看到理想的3D图像时所述主动式光栅的各遮光区域的理论水平宽度之间的第一对应关系,计算获得观众在当前位置观看到理想的3D图像时各所述遮光区域的理论水平宽度,其中,各所述遮光区域分别对应的理论水平宽度相等;
    根据所计算获得的各所述遮光区域的理论水平宽度,发送相应的第一控制指令给所述主动式光栅的驱动电路,调整所述主动式光栅的各遮光区域的实际水平宽度,使所述实际水平宽度与所述理论水平宽度相等,其中,各所述遮光区域分别对应的实际水平宽度相等。
  15. 根据权利要求14所述的三维显示方法,其中所述第一对应关系为:
    Figure PCTCN2014093616-appb-100003
    其中,f为所述主动式光栅的每个遮光区域的理论水平宽度,r为观众到所述主动式光栅的垂直距离,n为所述显示面板的视点数,p为所述显示面板上的亚像素宽度,d为所述主动式光栅与所述显示面板之间的垂直距离。
  16. 根据权利要求14所述的三维显示方法,其中根据所计算获得的各所述遮光区域的理论水平宽度,发送相应的第一控制指令给所述主动式光栅的驱动电路,调整所述主动式光栅的各遮光区域的实际水平宽度,使所述实际水平宽度与所述理论水平宽度相等的步骤包括:
    所述调整模块根据所述第一计算模块计算获得的所述理论水平宽度,生成相应的第一控制指令,并将该第一控制指令发送给所述驱动电路;
    所述驱动电路根据所述第一控制指令,对所述主动式光栅的一部分第一条状电极进行加电,对所述主动式光栅的另一部分第一条状电极进行断电,以在所述主动式光栅上形成相互间隔排列的多个透光区域和多个遮光区域,且形成的所述遮光区域的实际水平宽度与所述理论水平宽度相等。
  17. 根据权利要求14-16中任一项所述的三维显示方法,还包括:
    获取当前位于所述显示面板的出光侧的同一排各相邻观众之间的水平间距;
    根据所获取的当前各相邻观众之间的水平间距,以及各相邻观众之间的最大水平间距与观众可观看到理想的3D图像时所述主动式光栅的各干扰区的偏移量之间的第二对应关系,计算获得当前观众观看到理想的3D图像时所述主动式光栅的各干扰区的偏移量;
    根据所计算获得的各所述干扰区的偏移量,发送相应的第二控制指令给所述驱动电路,调整各所述遮光区域在所述主动式光栅上的相对位置,使所述主动式光栅的各干扰区与相邻的两个观众之间的中间位置对应。
  18. 根据权利要求17所述的三维显示方法,其中所述第二对应关系式为:
    Figure PCTCN2014093616-appb-100004
    其中,s为所述主动式光栅的各干扰区的偏移量,n为所述显示面板的视点数,N为具有最大水平间距的两个相邻观众中其中一个观众的所对应的视点,D为具有最大水平间距的两个相邻观众所分别对应的两个视点之间的水平间距。
  19. 根据权利要求14所述的三维显示方法,其中根据各所述干扰区的偏移量,发送相应的第二控制指令给所述驱动电路,调整各所述遮光区域在所述主动式光栅上的相对位置,使所述主动式光栅的各干扰区与相邻的两个观众之间的中间位置对应的步骤包括:
    所述调整模块根据所述第二计算模块计算获得的偏移量,生成相应的第二控制指令,并将该第二控制指令发送给所述主动式光栅的驱动电路;
    所述驱动电路根据所述第二控制指令,对所述主动式光栅的一部分第一条状电极进行充电,对所述主动式光栅的另一部分第一条状电极进行放电,以在所述主动式光栅上形成相互间隔排列的多个透光区域和多个遮光区域, 且接收所述第二控制指令后形成在所述主动式光栅上的各所述遮光区域相对接收所述第二控制指令前形成在所述主动式光栅上的各所述遮光区域进行了整体左移或整体右移。
PCT/CN2014/093616 2014-08-08 2014-12-11 主动式光栅、三维显示装置及三维显示方法 WO2016019671A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/773,012 US10200682B2 (en) 2014-08-08 2014-12-11 Active grating, three-dimensional display device and three-dimensional display method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410390048.8A CN104155824B (zh) 2014-08-08 2014-08-08 一种主动式光栅、裸眼3d显示装置及显示方法
CN201410390048.8 2014-08-08

Publications (1)

Publication Number Publication Date
WO2016019671A1 true WO2016019671A1 (zh) 2016-02-11

Family

ID=51881363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093616 WO2016019671A1 (zh) 2014-08-08 2014-12-11 主动式光栅、三维显示装置及三维显示方法

Country Status (3)

Country Link
US (1) US10200682B2 (zh)
CN (1) CN104155824B (zh)
WO (1) WO2016019671A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114040135A (zh) * 2021-11-05 2022-02-11 中国铁塔股份有限公司盐城市分公司 一种基于主动发光型显示技术的裸眼三维显示装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104155824B (zh) * 2014-08-08 2018-03-30 京东方科技集团股份有限公司 一种主动式光栅、裸眼3d显示装置及显示方法
KR102415502B1 (ko) * 2015-08-07 2022-07-01 삼성전자주식회사 복수의 사용자를 위한 라이트 필드 렌더링 방법 및 장치
CN105093546A (zh) 2015-08-20 2015-11-25 京东方科技集团股份有限公司 3d显示装置及其控制方法
CN106959528B (zh) * 2016-01-08 2023-09-19 京东方科技集团股份有限公司 一种显示装置
CN105589256A (zh) * 2016-03-11 2016-05-18 京东方科技集团股份有限公司 显示装置
CN107346040B (zh) * 2016-05-06 2019-12-20 深圳超多维科技有限公司 裸眼3d显示设备的光栅参数的确定方法、装置及电子设备
CN107396087B (zh) * 2017-07-31 2019-03-12 京东方科技集团股份有限公司 裸眼三维显示装置及其控制方法
CN108152982A (zh) * 2018-01-31 2018-06-12 京东方科技集团股份有限公司 一种3d显示装置
CN108495116B (zh) * 2018-03-29 2020-01-10 京东方科技集团股份有限公司 3d显示装置及其控制方法、计算机设备
US11818330B2 (en) 2019-11-29 2023-11-14 Boe Technology Group Co., Ltd. Display device and driving method thereof
CN114584754B (zh) * 2022-02-28 2023-12-26 广东未来科技有限公司 3d显示方法及相关装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101726846A (zh) * 2008-10-13 2010-06-09 华映视讯(吴江)有限公司 显示器及其光栅膜片狭缝宽度的调整方法
CN102033324A (zh) * 2010-12-17 2011-04-27 深圳创维-Rgb电子有限公司 一种光栅屏障式3d显示系统可视范围的调节方法及系统
CN102710956A (zh) * 2012-06-04 2012-10-03 天马微电子股份有限公司 一种裸眼立体追踪显示方法及装置
CN102998805A (zh) * 2012-10-26 2013-03-27 友达光电股份有限公司 立体显示器及其显示方法
CN103048835A (zh) * 2012-12-07 2013-04-17 京东方科技集团股份有限公司 一种液晶光栅及其驱动方法和立体显示装置
CN202948233U (zh) * 2012-12-14 2013-05-22 京东方科技集团股份有限公司 主动式光栅、显示装置及主动快门眼镜
CN202948226U (zh) * 2012-07-03 2013-05-22 信利半导体有限公司 一种裸眼立体显示器及其可自由控制的液晶光栅
CN103207457A (zh) * 2012-12-05 2013-07-17 深圳市亿思达显示科技有限公司 立体显示装置
CN103207456A (zh) * 2012-12-05 2013-07-17 深圳市亿思达显示科技有限公司 立体显示装置
CN103941492A (zh) * 2014-03-28 2014-07-23 京东方科技集团股份有限公司 液晶光栅基板、液晶光栅、立体显示装置
CN104155824A (zh) * 2014-08-08 2014-11-19 京东方科技集团股份有限公司 一种主动式光栅、裸眼3d显示装置及显示方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7359105B2 (en) * 2006-02-07 2008-04-15 Sharp Kabushiki Kaisha Spatial light modulator and a display device
KR100856414B1 (ko) * 2006-12-18 2008-09-04 삼성전자주식회사 입체 영상 표시 장치
KR101451565B1 (ko) * 2008-02-13 2014-10-16 삼성전자 주식회사 비안경식 입체영상 디스플레이 시스템
KR100893618B1 (ko) * 2008-03-07 2009-04-20 삼성모바일디스플레이주식회사 전자 영상 기기
CN102122077B (zh) * 2011-03-23 2012-05-23 四川大学 双狭缝光栅液晶自由立体显示器
CN103024407B (zh) * 2011-09-22 2014-12-31 乐金显示有限公司 立体图像显示设备及其驱动方法
CN103676286A (zh) * 2012-08-31 2014-03-26 京东方科技集团股份有限公司 一种液晶光栅面板、立体显示装置及显示方法
CN203433240U (zh) * 2013-07-02 2014-02-12 深圳市亿思达显示科技有限公司 液晶狭缝光栅、立体显示装置
CN103595993A (zh) * 2013-11-08 2014-02-19 深圳市奥拓电子股份有限公司 一种基于智能识别技术的led裸眼3d显示系统及其工作方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101726846A (zh) * 2008-10-13 2010-06-09 华映视讯(吴江)有限公司 显示器及其光栅膜片狭缝宽度的调整方法
CN102033324A (zh) * 2010-12-17 2011-04-27 深圳创维-Rgb电子有限公司 一种光栅屏障式3d显示系统可视范围的调节方法及系统
CN102710956A (zh) * 2012-06-04 2012-10-03 天马微电子股份有限公司 一种裸眼立体追踪显示方法及装置
CN202948226U (zh) * 2012-07-03 2013-05-22 信利半导体有限公司 一种裸眼立体显示器及其可自由控制的液晶光栅
CN102998805A (zh) * 2012-10-26 2013-03-27 友达光电股份有限公司 立体显示器及其显示方法
CN103207457A (zh) * 2012-12-05 2013-07-17 深圳市亿思达显示科技有限公司 立体显示装置
CN103207456A (zh) * 2012-12-05 2013-07-17 深圳市亿思达显示科技有限公司 立体显示装置
CN103048835A (zh) * 2012-12-07 2013-04-17 京东方科技集团股份有限公司 一种液晶光栅及其驱动方法和立体显示装置
CN202948233U (zh) * 2012-12-14 2013-05-22 京东方科技集团股份有限公司 主动式光栅、显示装置及主动快门眼镜
CN103941492A (zh) * 2014-03-28 2014-07-23 京东方科技集团股份有限公司 液晶光栅基板、液晶光栅、立体显示装置
CN104155824A (zh) * 2014-08-08 2014-11-19 京东方科技集团股份有限公司 一种主动式光栅、裸眼3d显示装置及显示方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114040135A (zh) * 2021-11-05 2022-02-11 中国铁塔股份有限公司盐城市分公司 一种基于主动发光型显示技术的裸眼三维显示装置
CN114040135B (zh) * 2021-11-05 2022-09-27 中国铁塔股份有限公司盐城市分公司 一种基于主动发光型显示技术的裸眼三维显示装置

Also Published As

Publication number Publication date
CN104155824B (zh) 2018-03-30
US20160198150A1 (en) 2016-07-07
CN104155824A (zh) 2014-11-19
US10200682B2 (en) 2019-02-05

Similar Documents

Publication Publication Date Title
WO2016019671A1 (zh) 主动式光栅、三维显示装置及三维显示方法
US10573212B2 (en) Display device and method for driving display device
US9479767B2 (en) Autostereoscopic display device and drive method
US9274346B2 (en) Multi-view auto-stereoscopic display
US9651792B2 (en) Image display apparatus
US9467686B2 (en) Stereoscopic display device for stereoscopic viewing at multiple viewing points
US10061135B2 (en) Stereoscopic image display device
TWI482999B (zh) 立體顯示裝置
JP6654281B2 (ja) 液晶レンチキュラレンズ素子及びその駆動方法、立体表示装置、端末機
KR20130068490A (ko) 디스플레이 장치 및 디스플레이 장치의 3d 영상 변환 방법
WO2016008221A1 (zh) 光栅控制方法和装置、光栅、显示面板及三维(3d)显示装置
WO2015180402A1 (zh) 显示控制方法、装置及系统
WO2015180401A1 (zh) 裸眼3d显示控制方法、装置及系统
US10194145B2 (en) 3D display device for reducing moving flicker
US20130286344A1 (en) Liquid crystal optical element and image display apparatus including the same
WO2019085628A1 (en) Viewpoint controllable three-dimensional image display apparatus and method for displaying three-dimensional image
WO2017202059A1 (zh) 液晶透镜、3d显示面板及它们的控制方法
TWI589930B (zh) 三維影像顯示裝置
EP3015906B1 (en) Display apparatus with electrochromic mirror
US9581826B2 (en) 3D display device
US9877017B2 (en) Auto-stereoscopic display apparatus and method of driving the same
US10551687B2 (en) Liquid crystal grating, display device and display method
US20130229407A1 (en) Stereo display apparatus
KR101878327B1 (ko) 영상표시장치 및 그 제조방법
TW201432315A (zh) 裸眼立體顯示裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14773012

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.06.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14899379

Country of ref document: EP

Kind code of ref document: A1