WO2016019584A1 - 无线承载处理方法、用户设备和基站 - Google Patents

无线承载处理方法、用户设备和基站 Download PDF

Info

Publication number
WO2016019584A1
WO2016019584A1 PCT/CN2014/084021 CN2014084021W WO2016019584A1 WO 2016019584 A1 WO2016019584 A1 WO 2016019584A1 CN 2014084021 W CN2014084021 W CN 2014084021W WO 2016019584 A1 WO2016019584 A1 WO 2016019584A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
user equipment
bearer
request
rlc
Prior art date
Application number
PCT/CN2014/084021
Other languages
English (en)
French (fr)
Inventor
张涛
蔺波
时洁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201480029196.5A priority Critical patent/CN105519165B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201811583651.2A priority patent/CN109548188B/zh
Priority to PCT/CN2014/084021 priority patent/WO2016019584A1/zh
Priority to MX2017001655A priority patent/MX369878B/es
Priority to JP2017506850A priority patent/JP6531163B2/ja
Priority to KR1020177006353A priority patent/KR101982304B1/ko
Priority to EP19203964.2A priority patent/EP3661251B1/en
Priority to BR112017002601-5A priority patent/BR112017002601B1/pt
Priority to RU2017107480A priority patent/RU2656092C1/ru
Priority to EP14899514.5A priority patent/EP3171625B1/en
Publication of WO2016019584A1 publication Critical patent/WO2016019584A1/zh
Priority to US15/426,847 priority patent/US10736172B2/en
Priority to RU2018115756A priority patent/RU2682181C1/ru

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • Radio bearer processing method user equipment, and base station
  • the present invention relates to the field of wireless communication technologies, and in particular, to a radio bearer processing method, a user equipment, and a base station. Background technique
  • FIG. 1 is a schematic diagram of the protocol stack architecture of the MCG bearer and the split bearer, as shown in Figure 1:
  • UE User Equipment
  • PDCP Packet Data Convergence Protocol
  • Radio Link Control hereinafter referred to as a Radio Link Control
  • the RLC entity is represented by PDCP1 and m-RLCl in Figure 1, and the m-RLCl entity is associated with a corresponding medium access control (MAC) entity m-MAC
  • MAC medium access control
  • the m-MAC entity corresponds to a first base station (Master eNB, hereinafter referred to as MeNB).
  • MeNB first base station
  • Each protocol entity in the UE has its own peer-to-peer protocol entity on the network side, where the PDCP1 entity, the m-RLCl entity and the peer-to-peer protocol entity of the m-MAC entity are in the MeNB, respectively, peer-to-peer p-PDCP1 entities, peer-to-peer pm-RLCl entity and peer pm-MAC entity. All downlink data packets carried by the MCG are sent to the peer pm-MAC entity via the peer p-PDCP1 entity to the peer pm-RLCl entity, and then sent by the peer pm-MAC entity to the m-MAC entity through the air interface, and then m - The MAC entity finally delivers the received data packet to the PDCP1 entity via the m-RLCl entity.
  • the transmission path of the upstream packet carried by the MCG is exactly the opposite of the transmission path of the downstream packet.
  • the two RLC entities are represented by m-RLC2 and s-RLC, respectively.
  • the m-RLC2 entity is associated with the above-mentioned m-MAC entity
  • the s-RLC entity is associated with the s-MAC entity, where the m-MAC entity corresponds to the first base station MeNB, and the s-MAC entity corresponds to the second base station (Secondary eNB, below) Referred to as SeNB).
  • Each protocol entity in the UE has its own peer-to-peer protocol entity on the network side, where the PDCP2 entity, the m-RLC2 entity and the peer-to-peer protocol entity of the m-MAC entity are in the MeNB, respectively, peer p-PDCP2, peer pm - RLC2 and peer pm-MAC; the s-RLC entity and the peer-to-peer protocol entity of the s-MAC entity are in the SeNB, respectively a peer ps-RLC entity and a peer ps-MAC entity.
  • a part of the downlink data packets carried by the split is sent to the peer pm-MAC entity via the peer p-PDCP2 entity to the peer pm-RLC2 entity, and then sent by the peer pm-MAC entity to the m-MAC entity through the air interface, and then The m-MAC entity finally delivers the received part of the data packet to the PDCP2 entity via the m-RLC2 entity, and the rest of the downlink data packet carried by the split is sent to the pair via the interface between the MeNB and the SeNB via the peer p-PDCP2 entity.
  • the peer ps-RLC entity submits the part of the data packet to the peer ps-MAC entity, and then the peer ps-MAC entity sends the part of the data packet to the s-MAC entity through the air interface, and then s- The MAC entity finally delivers this part of the data packet to the PDCP2 entity via the s-RLC entity.
  • the transmission path of the uplink data packet carried by the split is exactly the opposite of the transmission path of its downlink data packet.
  • the MCG bearer and the split bearer can be mutually transformed according to factors such as changes in the channel environment and the need to transmit data.
  • it is determined by the MeNB whether to convert the split bearer of the UE into an MCG bearer according to the measurement report sent by the UE to the SeNB, and separately notify when needed.
  • the UE and the SeNB need to release the s-MAC entity and the s-RLC entity of the Split bearer, and the SeNB needs to release the peer ps-MAC entity and the peer ps-RLC entity of the Split bearer.
  • the MeNB When the MCG bearer needs to be re-transformed into a Split bearer, the MeNB also decides whether to convert the MCG bearer back to the Split bearer according to another measurement report sent by the UE to the SeNB, and notifies the UE and the UE when needed.
  • the SeNB the UE needs to re-establish the s-MAC entity and the s-RLC entity for the bearer, and the SeNB also needs to re-establish the peer ps-MAC entity and the peer ps-RLC entity for the bearer.
  • the embodiment of the present invention provides a radio bearer processing method, a user equipment, and a base station, which are used to overcome the signaling load caused by the network in the existing bearer processing mode, and introduce a large signaling delay, and have a low Defects in the efficiency of resource use.
  • a first aspect of the embodiments of the present invention provides a radio bearer processing method, including: a user equipment suspending data transmission carried on a second base station;
  • the user equipment sends a suspension indication to the first base station, where the suspension indication is used to instruct the user equipment to suspend the data transmission carried on the second base station.
  • the user equipment suspends data transmission carried on the second base station, including:
  • the user equipment performs the following operations: suspending a radio link control entity s-RLC in the user equipment that is associated with the bearer and corresponding to the second base station;
  • the user equipment performs the following operations: resetting a medium access control entity s-MAC associated with the bearer and corresponding to the second base station in the user equipment;
  • the user equipment suspends data transmission carried on the second base station, including:
  • the user equipment receives a suspend command sent by the first base station, where the suspend command is used to instruct the user equipment to suspend the data transmission carried on the second base station;
  • the user equipment performs the following operations according to the suspension command:
  • the user equipment performs the following operations:
  • the suspension indication is further used to indicate that the first base station sends a suspension request to the second base station, where the suspension request is used to request the The second base station suspends the data transmission carried on the second base station.
  • the user equipment sends a suspension to the first base station After the instructions, it also includes:
  • the user equipment sends a recovery indication to the first base station, where the recovery indication is used to instruct the first base station to send a recovery request to the second base station, where the recovery request is used to request the second base station to recover Data transmission carried on the second base station.
  • the user equipment sends a suspension to the first base station After the instructions, it also includes:
  • the recovery command is sent by the first base station after determining, according to the second measurement result, that the data transmission carried by the second base station needs to be restored.
  • the first measurement result and The second measurement result is a result obtained by the user equipment measuring at least one of the following measurement objects:
  • a radio link state between the user equipment and the second base station, a signal strength of the second base station, and a signal quality of the second base station, where the user equipment is to be sent by using the bearer The number or size of the packets.
  • a second aspect of the embodiments of the present invention provides a radio bearer processing method, including: receiving, by a first base station, a suspension indication sent by a user equipment;
  • the method further includes:
  • the first base station sends a suspension request to the second base station, where the suspension request is used to request the second base station to suspend the data transmission carried on the second base station.
  • the first base station sends a suspension request to the second base station, where the suspension request is used for Requesting the second base station to suspend the data transmission carried on the second base station, including:
  • the first base station sends the suspension request to the second base station, where the suspension request is used to request the second base station to perform the following operations:
  • the method further includes:
  • the first base station sends a first recovery request to the second base station according to the recovery indication, where the first recovery request is used to request the second base station to resume data transmission on the second base station.
  • the first base station sends a first recovery request to the second base station according to the recovery indication, where The first recovery request is used to request the second base station to resume the data transmission that is carried on the second base station, and includes: The first base station sends a first recovery request to the second base station according to the recovery indication, where the first recovery request is used to request the second base station to perform the following operations:
  • the first recovery request is used to request the second base station to perform the following operations: reset a media access control entity ps-MAC associated with the bearer in the second base station;
  • the method further includes:
  • the first base station determines that the data transmission that is to be carried on the second base station needs to be restored, Also includes:
  • Determining, by the first base station, that the data transmission carried on the second base station needs to be restored including:
  • the first base station determines, according to the second measurement result, that the data transmission carried on the second base station needs to be restored.
  • the first base station sends a resume command to the user equipment, where the resume command is used to indicate the The user equipment recovers the data transmission carried on the second base station, including:
  • the first base station sends a recovery command to the user equipment, where the recovery command is used to instruct the user equipment to re-establish the user equipment associated with the bearer and corresponding to the second base station.
  • the radio link controls the entity S-RLC and recovers the s-RLC.
  • the first base station sends a second recovery request to the second base station, where the second recovery request is And the requesting, by the second base station, to recover the data transmission that is carried on the second base station, including:
  • the first base station sends a second recovery request to the second base station, where the second recovery request is used to request the second base station to perform the following operations:
  • the second recovery request is used to request the second base station to perform the following operations: reset a medium access control entity ps-MAC associated with the bearer in the second base station;
  • a third aspect of the embodiments of the present invention provides a radio bearer processing method, including: the second base station suspending data transmission carried on the second base station;
  • the second base station sends a suspension indication to the first base station, where the suspension indication is used to instruct the second base station to suspend the data transmission carried on the second base station.
  • the second base station suspending data transmission carried on the second base station including:
  • the second base station performs the following operations:
  • the suspension indication is further used to indicate that the first base station sends a hang to a user equipment
  • the suspending command is used to instruct the user equipment to suspend the data transmission carried on the second base station.
  • the method further includes: Receiving a recovery request sent by the first base station;
  • the second base station recovers the data transmission carried on the second base station according to the recovery request.
  • the second base station recovers the data carried on the second base station according to the recovery request Transmission, including:
  • the second base station reconstructs, according to the recovery request, a radio link control entity ps-RLC associated with the bearer in the second base station, and restores the ps-RLC.
  • the measurement result is The results obtained by measuring at least one of the following measurement objects:
  • a fourth aspect of the embodiments of the present invention provides a user equipment, including:
  • a processing module configured to suspend data transmission carried on the second base station
  • a sending module configured to send a suspension indication to the first base station, where the suspension indication is used to instruct the user equipment to suspend the data transmission carried on the second base station.
  • the processing module includes: a determining unit, configured to determine, according to the first measurement result, that the data transmission carried on the second base station needs to be suspended;
  • a processing unit that performs the following operations:
  • processing unit is configured to perform the following operations:
  • the user equipment further includes: a receiving module, configured to receive a suspend command sent by the first base station, where the suspend command is used to indicate the user equipment Suspending the data transmission carried on the second base station;
  • the processing unit is further configured to perform the following operations:
  • the processing unit is further configured to perform the following operations:
  • the suspension indication is further used to indicate that the first base station sends a suspension request to the second base station, where the suspension request is used to request the The second base station suspends the data transmission carried on the second base station.
  • the determining unit is further configured to be used according to the second The measurement result determines that the data transmission carried on the second base station needs to be restored;
  • the processing unit is further configured to re-establish the radio link control entity s-RLC in the user equipment that is associated with the bearer and that is corresponding to the second base station, and restore the s-RLC;
  • the processing module further includes: a sending unit, configured to send a recovery indication to the first base station, where the recovery indication is used to instruct the first base station to send a recovery request to the second base station, where the recovery request is used to request a location
  • the second base station recovers the data transmission carried on the second base station.
  • the sending unit is further configured to use the second The measurement result is sent to the first base station;
  • the processing unit is further configured to receive a recovery command sent by the first base station, and re-establish the user equipment associated with the bearer and corresponding to the second base station according to the recovery command.
  • the radio link control entity s-RLC, and recovering the s-RLC, the recovery command is that the first base station determines, according to the second measurement result, that the bearer needs to be restored on the second base station The data is sent after transmission.
  • a fifth aspect of the embodiment of the present invention provides a first base station, including:
  • a receiving module configured to receive a suspension indication sent by the user equipment
  • a processing module configured to determine, according to the suspension indication, that the user equipment suspends the data transmission carried on the second base station.
  • the first base station further includes: a sending module, configured to send a suspension request to the second base station, where the suspension request is used to request the second The base station suspends the data transmission carried on the second base station.
  • the sending module is specifically configured to:
  • the receiving module is further configured to: receive a recovery indication sent by the user equipment;
  • the sending module is further configured to: send, according to the recovery indication, a first recovery request to the second base station, where the first recovery request is used to request the second base station to resume the bearer on the second base station Data transfer.
  • the sending module is specifically configured to:
  • the first base station further includes: a determining module, configured to recover, according to the determined need, the data transmission carried on the second base station;
  • the sending module is further configured to: send a recovery command to the user equipment, and send a second recovery request to the second base station, where the recovery command is used to instruct the user equipment to restore the bearer in the second Data transmission on the base station, the second recovery request is used to request the second base station to recover the data transmission carried on the second base station.
  • the receiving module is further configured to:
  • the determining module is further configured to determine, according to the second measurement result, that the data transmission carried on the second base station needs to be restored.
  • the sending module is specifically configured to:
  • the sending module is specifically configured to:
  • a sixth aspect of the embodiment of the present invention provides a second base station, including:
  • a processing module configured to suspend data transmission carried on the second base station
  • a sending module configured to send a suspension indication to the first base station, where the suspension indication is used to instruct the second base station to suspend the data transmission carried on the second base station.
  • the processing module includes: a determining unit, configured to determine, according to the measurement result, that the data transmission carried on the second base station needs to be suspended;
  • a processing unit that performs the following operations:
  • the processing unit is configured to perform the following operations:
  • the suspension indication is further used to indicate that the first base station sends a suspension command to the user equipment And the suspending command is used to instruct the user equipment to suspend the data transmission carried on the second base station.
  • the second base station further includes:
  • a receiving module configured to receive a recovery request sent by the first base station
  • the processing module is further configured to recover the data transmission carried on the second base station according to the recovery request.
  • the processing module is specifically configured to: And reconstructing, according to the recovery request, a radio link control entity ps-RLC associated with the bearer in the second base station, and restoring the ps-RLC.
  • the measurement result is obtained by the second base station measuring at least one of the following measurement objects Result:
  • a seventh aspect of the embodiments of the present invention provides a user equipment, including: a memory and a processor connected to the memory, where the memory is used to store a set of program codes, and the processor is used to invoke The program code stored in the memory performs the method according to any one of the first aspect of the embodiments of the present invention and the various possible implementation manners of the first aspect.
  • An eighth aspect of the embodiments of the present invention provides a first base station, including: a memory and a processor connected to the memory, wherein the memory is configured to store a set of program codes, where the processor is used by The program code stored in the memory is invoked to perform the method of any of the second aspect of the embodiments of the present invention and the various possible implementations of the second aspect.
  • a ninth aspect of the embodiments of the present invention provides a second base station, including: a memory and a processor connected to the memory, wherein the memory is configured to store a set of program codes, and the processor is configured to: The program code stored in the memory is invoked to perform the method of any of the third aspect of the embodiments of the present invention and the various possible implementation manners of the third aspect.
  • the radio bearer processing method, the user equipment, and the base station are provided by the embodiment of the present invention.
  • the user equipment After the user equipment suspends the data transmission carried on the second base station, the user equipment sends a message to the first base station to indicate that the user equipment suspends the bearer in the second A suspend indication of data transmission on the base station. Since the user equipment can decide whether to suspend the data transmission carried on the second base station, and does not need to interact with the first base station, the first base station determines whether to suspend the data transmission carried on the second base station, saving signaling.
  • the suspending manner stops the data transmission of the bearer on the second base station without deleting the bearer-related protocol entity, so that when the data transmission carried on the second base station is resumed, there is no need to re-establish the correlation. Protocol entity, effectively improving the wireless bearer resources Use efficiency.
  • FIG. 1 is a schematic diagram of a protocol stack architecture of an MCG bearer and a split bearer
  • FIG. 2 is a schematic diagram of signaling interaction between a MCG bearer and a split bearer in the prior art
  • FIG. 3 is a flowchart of a radio bearer processing method according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of signaling interaction of a radio bearer processing method according to Embodiment 2 of the present invention
  • FIG. 5 is a schematic diagram of signaling interaction of a radio bearer processing method according to Embodiment 3 of the present invention
  • FIG. 7 is a flowchart of a radio bearer processing method according to Embodiment 5 of the present invention
  • FIG. 9 is a schematic diagram of signaling interaction of a radio bearer processing method according to Embodiment 7 of the present invention
  • FIG. 10(a) and FIG. 10(b) are schematic diagrams of signaling interaction of a radio bearer processing method according to Embodiment 8 of the present invention
  • FIG. 11 is a schematic structural diagram of a user equipment according to Embodiment 9 of the present invention.
  • FIG. 12 is a schematic structural diagram of a first base station according to Embodiment 10 of the present invention.
  • FIG. 13 is a schematic structural diagram of a second base station according to Embodiment 11 of the present invention.
  • FIG. 14 is a schematic structural diagram of a user equipment according to Embodiment 12 of the present invention.
  • FIG. 15 is a schematic structural diagram of a first base station according to Embodiment 13 of the present invention.
  • FIG. 16 is a schematic structural diagram of a second base station according to Embodiment 14 of the present invention. detailed description
  • FIG. 3 is a flowchart of a method for processing a radio bearer according to Embodiment 1 of the present invention, as shown in FIG.
  • the method provided in this embodiment is particularly applicable to an LTE system, and the method specifically includes: Step 101: A user equipment suspends data transmission carried on a second base station;
  • Step 102 The user equipment sends a suspension indication to the first base station, where the suspension indication is used to instruct the user equipment to suspend the data transmission carried on the second base station.
  • the SCG bearer In the LTE system, in addition to the MCG bearer and the split bearer, there is another type of bearer: a secondary cell group (hereinafter referred to as SCG) bearer, and the SCG bearer is similar to the split bearer, and can also perform mutual interaction with the MCG bearer. Conversion.
  • SCG secondary cell group
  • the SCG bearer is similar to the split bearer, and can also perform mutual interaction with the MCG bearer. Conversion.
  • the PDCP entity and the RLC entity are represented by s-PDCP and S-RLC2, respectively, and the S-RLC2 entity and the corresponding MAC entity.
  • the s-MAC is associated, and the s-MAC entity corresponds to the SeNB.
  • Each of the protocol entities in the UE has its own peer-to-peer protocol entity on the network side, where the s-PDCP entity, the S-RLC2 entity, and the peer-to-peer protocol entity of the s-MAC entity are respectively in the SeNB, which are peer-to-peer ps-PDCP entities, respectively.
  • Peer-to-peer ps-RLC2 entity and peer-to-peer ps-MAC entity peer-to-peer ps-MAC entity.
  • All downlink data packets carried by the SCG are sent to the peer ps-MAC entity via the peer ps-PDCP entity to the peer ps-RLC2 entity, and then sent by the peer ps-MAC entity to the s-MAC entity through the air interface, and then s - The MAC entity finally delivers the received data packet to the s-PDCP entity via the S-RLC2 entity.
  • the transmission path of the uplink data packet carried by the SCG is exactly opposite to the transmission path of its downstream data packet.
  • FIG. 2 is a schematic diagram of signaling interaction between the MCG bearer and the split bearer in the prior art.
  • the bearer is carried by the split.
  • the processing method of the Split bearer is to convert it into an MCG bearer when it cannot meet the communication requirements, and then convert it to a Split bearer when it subsequently meets the communication requirements.
  • whether the mutual conversion between the MCG bearer and the split bearer needs to be performed is determined by the MeNB according to the measurement report that the UE performs measurement reporting on the SeNB, and the MCG is implemented.
  • the UE and the SeNB need to re-establish or delete the protocol entity related to the split bearer respectively.
  • due to the mobility of the UE as the UE suddenly approaches the SeNB, it will cause frequent conversion between the MCG bearer and the Split bearer, which often leads to heavier signaling load and signaling.
  • the radio bearer processing method provided by the embodiment of the present invention implements processing on a radio bearer in the following manner. It should be noted that the method provided by the implementation of the present invention is particularly applicable to the case of processing a Split bearer or an SCG bearer. The following embodiment will be described by taking a Split bearer as an example. The SCG bearer is similar to the related protocol. Simple replacement of the entity, not to repeat.
  • the first base station in the following embodiments refers to the primary base station MeNB, and the second base station refers to the secondary base station SeNB.
  • FIG. 4 is a schematic diagram of signaling interaction of a radio bearer processing method according to Embodiment 2 of the present invention.
  • the UE may decide whether to perform the suspension processing on the split load.
  • the data transmission carried on the second base station is suspended, wherein the meaning of suspend is equivalent to stopping.
  • the user equipment suspends data transmission carried on the second base station, which is specifically implemented as follows:
  • the user equipment determines, according to the first measurement result, that the data transmission carried on the second base station needs to be suspended. specifically:
  • the user equipment UE performs the following operations:
  • the user equipment performs the following operations:
  • the first measurement result is a result obtained by the user equipment UE measuring at least one of the following measurement objects:
  • the premise of performing the method in this embodiment is that the UE and the MeNB and the SeNB have been established.
  • Set up the Split carrier. Determining to suspend data transmission of the Split bearer on the SeNB when determining, by the first measurement result obtained by performing measurement on at least one of the foregoing preset measurement objects, that the Split bearer is not suitable for data transmission on the SeNB .
  • the UE determines to suspend the transmission of the split bearer on the SeNB, that is, the UE decides that the downlink data of the split bearer is no longer received from the SeNB, and the uplink data carried by the split is not sent to the SeNB.
  • the UE may make the above decision according to the measurement result of the SeNB.
  • the UE performs radio link monitoring (Radio Link Monitoring, hereinafter referred to as RLM) on the SeNB, and determines that a radio link failure (Rain Link Failure, hereinafter referred to as RLF) occurs on the radio link between the UE and the SeNB according to the RLM.
  • RLM Radio Link Monitoring
  • RLF Radio Link Failure
  • the suspension decision is made; for example, the UE measures the strength or quality of the signal of the SeNB, and determines that the signal strength or quality of the SeNB is lower than a preset threshold according to the measurement result, and the UE makes the suspension decision.
  • the UE may also make the suspension decision according to the number of data packets to be transmitted carried by the split or the buffer state of the data packet to be transmitted by the split.
  • the suspension decision is made, for example, when the UE determines that the split carries the number of data packets to be transmitted or the buffer size of the data packet to be transmitted carried by the split is less than a preset value.
  • the UE After the UE makes the above decision to suspend the split bearer, it first needs to suspend the protocol entity associated with the split bearer in itself. Specifically, the UE may suspend: the UE suspends the radio link control entity s-RLC associated with the split bearer and corresponding to the second base station SeNB, or is implemented by: the UE resetting itself and the The split carries the medium access control entity S-MAC associated with the second base station SeNB, and suspends itself and the
  • the split carries a radio link control entity s-RLC associated with and corresponding to the second base station SeNB.
  • the resetting the s-MAC entity specifically includes: clearing the buffer used by the s-MAC, reinitializing the state variable used by the s-MAC, stopping the timer used by the s-MAC, and the like; suspending the s-RLC entity Specifically, the s-RLC stops the processing of the data packet, such as stopping sending or receiving the data packet.
  • the UE sends a suspension indication to the MeNB, where the suspension indication is used to indicate that the UE suspends data transmission of the split on the second base station SeNB.
  • the suspension indication may further include a suspension reason.
  • the suspension reason included in the suspension indication may be The reason for triggering the RLF.
  • the user equipment after the user equipment suspends the data transmission carried on the second base station, the user equipment sends a suspension indication to the first base station to instruct the user equipment to suspend the data transmission carried on the second base station. Since the user equipment can decide whether to suspend the data transmission carried on the second base station, it is not necessary to interact with the first base station, so that the first base station determines whether to suspend the data transmission carried on the second base station, thereby saving signaling overhead.
  • the data transmission carried on the second base station is stopped in a suspended manner, and the bearer-related protocol entity does not need to be deleted, so that the data transmission carried on the second base station is not restarted after the subsequent data transmission is resumed.
  • the protocol entity effectively improves the efficiency of the use of radio bearer resources.
  • the foregoing suspension indication is further used to instruct the MeNB to send a suspension request to the SeNB, where the suspension request is used to request the SeNB to suspend the data transmission carried by the SeNB, so that the SeNB is suspended according to the Requesting to suspend the data transfer carried by the Split.
  • the MeNB after receiving the suspension indication sent by the UE, the MeNB sends a suspension request to the SeNB according to the suspension indication, and after receiving the suspension request, the SeNB may suspend the SeNB and the Split.
  • Carrying an associated radio link control entity ps-RLC may also reset a medium access control entity ps-MAC associated with the bearer in the SeNB, suspending the second base station associated with the bearer
  • the radio link control entity ps-RLC The process of resetting the ps-MAC entity carried by the split and suspending the ps-RLC entity carried by the split is similar to the process of the UE resetting the s-MAC entity of the split bearer and suspending the s-RLC entity of the split bearer.
  • the SeNB resets the media access control entity ps-MAC associated with the Split bearer in the SeNB, which is an optional step, when the s-MAC is reset when the UE hangs, corresponding The SeNB only needs to reset the ps-MAC.
  • the method further includes: the UE interacting with the MeNB according to the second measurement result, and recovering the data transmission carried by the split on the SeNB.
  • the second measurement result is a result obtained by the UE measuring at least one of the following measurement objects: a radio link state between the UE and the SeNB, a signal strength of the SeNB, a signal quality of the SeNB, and the UE is configured by the Split The number or size of packets sent.
  • the UE interacts with the MeNB according to the second measurement result, and restores the data transmission carried by the split on the SeNB, which may be implemented in the manner shown in FIG. 5:
  • the UE sends a recovery indication to the MeNB, where the recovery indication is used to instruct the MeNB to send a recovery request to the SeNB, where the recovery request is used to request the SeNB to resume the data transmission carried by the SeNB.
  • the UE determines, according to the second measurement result, that the data transmission that is to be carried on the SeNB needs to be restored, and may be implemented by: the UE determining, according to the second measurement result, whether to restore the data transmission that is carried by the split on the SeNB;
  • the UE If yes, the UE re-establishes the radio link control entity s-RLC associated with the SDP bearer and corresponding to the SeNB, and restores the s-RLC; the UE sends a recovery indication to the MeNB, so that the MeNB The recovery indication sends a first recovery request to the SeNB, so that the SeNB recovers the data transmission of the Split bearer on the SeNB according to the first recovery request.
  • the UE may make the above restoration decision according to a new measurement result to the SeNB.
  • the UE performs radio link monitoring (Radio Link Monitoring, hereinafter referred to as RLM) on the SeNB, and determines that the radio link between the UE and the SeNB resumes the normal connection according to the RLM, and the UE makes the above-mentioned recovery decision; for example, the UE performs the SeNB.
  • RLM Radio Link Monitoring
  • the strength or quality of the signal is measured, and the signal strength or quality of the SeNB is determined to be higher than a preset threshold according to the measurement result, the UE makes the foregoing restoration decision; the UE may also use the number of data packets to be sent carried by the Split or the Split.
  • the cached state of the bearer to be transmitted packet makes the above decision. For example, when the UE determines that the number of data packets to be transmitted carried by the split or the buffer size of the to-be-transmitted data packet carried by the split is greater than a preset value, the foregoing restoration decision is made.
  • the SeNB reestablishes the radio link control entity ps-RLC associated with the Split bearer in the SeNB, and restores the ps-RLC; or resets the SeNB and the Split bearer.
  • the associated medium access control entity ps-MAC reestablishes the radio link control entity ps-RLC associated with the Split bearer in the SeNB and recovers the ps-RLC.
  • the reconstructing the ps-RLC entity includes: sending the data packet that has been successfully received to the MeNB; discarding the data packet that needs to be sent but has not been successfully sent; stopping and resetting the timer used by the ps-RLC entity and restarting Initialize the state variables used by the ps-RLC entity, and so on. Restoring the ps-RLC entity begins the processing of the data packet by the ps-RLC entity.
  • the measurement report shown in FIG. 5 corresponds to the second measurement result described in this embodiment.
  • the UE interacts with the MeNB according to the second measurement result, and restores the data transmission that is carried by the split on the SeNB, and may also be implemented in the manner shown in FIG. 4 or FIG.
  • the UE sends the second measurement result to the MeNB, so that the MeNB determines, according to the second measurement result, whether the data transmission carried by the split on the SeNB is restored.
  • the UE receives a recovery command sent by the MeNB, and re-establishes in the UE according to the recovery command, and is associated with the Split bearer.
  • the radio link control entity s-RLC corresponding to the SeNB recovers the s-RLC.
  • the recovery command includes a bearer identifier of the split bearer.
  • the MeNB may send a second recovery request to the SeNB in addition to the foregoing recovery command to the UE, and the SeNB performs the following operations according to the second restoration request: Reestablishing the radio link control entity ps associated with the bearer in the SeNB.
  • the measurement reports shown in Figs. 4 and 6 correspond to the second measurement results described in the embodiment. It can be seen from FIG. 4, FIG. 5 and FIG. 6 that the difference between the embodiment shown in FIG. 5 and FIG. 6 is mainly whether the MeNB determines whether to restore the Split bearer or the UE determines to restore the Split bearer, and the UE can determine that the resume Split bearer can be further reduced. Air interface signaling overhead.
  • the difference between the embodiment shown in FIG. 4 and the embodiment shown in FIG. 6 is mainly that after the MeNB in FIG. 4 receives the suspension indication sent by the UE, since the UE has suspended the Split bearer, it is no longer sent to the SeNB. The SeNB receives the data packet of the corresponding Split bearer. Therefore, in order to further avoid the useless processing load of the SeNB, the MeNB sends a suspend request to the SeNB, so that the SeNB also suspends its own data transmission to the Split bearer.
  • the user equipment can decide whether to suspend the data transmission carried by the split on the second base station, and the first base station does not need to interact with the first base station to determine whether to suspend data of a certain split to be carried on the second base station.
  • the transmission is saved, and the signaling overhead is saved.
  • the data transmission that stops the Split-bearing on the SeNB is implemented by suspending, and the protocol entity associated with the Split bearer does not need to be deleted, so that the suspended split is subsequently restarted in the SeNB.
  • the data transmission is implemented by restoring the Split bearer. It is not necessary to re-establish the Split bearer.
  • the protocol entity effectively improves the efficiency of the use of the radio bearer resources.
  • the user equipment can also decide whether to restore the data transmission on the split bearer, and further save the signaling overhead.
  • the UE determines whether to suspend the bearer.
  • the UE may perform the corresponding suspension according to the suspend command issued by the MeNB. Start operation.
  • the UE receives a suspend command sent by the MeNB, where the suspend command is used to instruct the UE to suspend the data transmission of the split bearer on the SeNB, where the suspend command may be the MeNB according to another suspend indication.
  • the other pending indication sent by the UE is that the SeNB suspends the data transmission of the Split bearer to the MeNB, and the suspend command may be that the MeNB decides to suspend according to the first measurement result reported by the UE.
  • the Split is generated by itself after data transmission on the SeNB.
  • the UE performs the following operations according to the pending command:
  • the UE performs the following operations:
  • a radio link control entity s-RLC associated with the bearer and corresponding to the SeNB in the UE is suspended.
  • FIG. 7 is a flowchart of a method for processing a radio bearer according to Embodiment 5 of the present invention. As shown in FIG. 7, the method includes:
  • Step 201 The first base station receives a suspension indication sent by the user equipment, where the suspension indication is that the user equipment determines, according to the first measurement result, that the data transmission that is carried on the second base station is suspended, and is sent;
  • Step 202 The first base station determines, according to the suspension indication, that the user equipment suspends data transmission carried by the second base station.
  • the premise of performing the method in this embodiment is that a split 7 load has been established between the UE and the MeNB and the SeNB.
  • the first measurement result obtained by the UE according to the measurement of at least one of the preset measurement objects determines that the Split bearer is not suitable for data transmission on the SeNB, it is determined to suspend the data transmission of the Split bearer on the SeNB.
  • the UE may decide to suspend the data transmission of the Split bearer on the SeNB by:
  • the UE performs the following operations:
  • the UE performs the following operations:
  • a radio link control entity s-RLC associated with the bearer and corresponding to the SeNB in the UE is suspended.
  • the first measurement result is a result obtained by the UE measuring at least one of the following preset measurement objects:
  • the UE may make the above decision according to the measurement result of the SeNB. For example, the UE performs radio link monitoring (Radio Link Monitoring, hereinafter referred to as RLM) on the SeNB, and determines that a radio link failure (Rain Link Failure, hereinafter referred to as RLF) occurs on the radio link between the UE and the SeNB according to the RLM.
  • RLM Radio Link Monitoring
  • RLF Radio Link Failure
  • the above decision is made; for example, the UE measures the strength or quality of the signal of the SeNB, and determines that the signal strength or quality of the SeNB is lower than a preset threshold according to the measurement result, and the UE makes the above decision.
  • the UE may also make the above decision according to the number of data packets to be transmitted carried by the split or the buffer status of the data packet to be transmitted carried by the split. For example, when the UE determines that the number of data packets to be transmitted carried by the split or the buffer size of the data packet to be transmitted carried by the split is less than a preset value, the foregoing decision is made.
  • the UE determines to suspend the transmission of the split bearer on the SeNB, that is, the UE decides that the downlink data of the split bearer is no longer received from the SeNB, and the uplink data carried by the split is not sent to the SeNB.
  • the resetting the s-MAC entity specifically includes: clearing the cache used by the s-MAC, reinitializing the state variable used by the s-MAC, stopping the timer used by the s-MAC, etc. Etc.
  • Suspending the s-RLC entity specifically includes stopping the processing of the data packet by the s-RLC, such as stopping sending or receiving the data packet.
  • the UE sends the suspension indication to the MeNB, and after receiving the suspension indication, the MeNB determines that the UE suspends the data transmission carried by the split on the SeNB.
  • the user equipment after the user equipment suspends the data transmission carried on the second base station, the user equipment sends a suspension indication to the first base station to instruct the user equipment to suspend the data transmission carried on the second base station. Since the user equipment can decide whether to suspend the data transmission carried on the second base station, it is not necessary to interact with the first base station, so that the first base station determines whether to suspend the data transmission carried on the second base station, thereby saving signaling overhead.
  • the data transmission carried on the second base station is stopped in a suspended manner, and the bearer-related protocol entity does not need to be deleted, so that when the data transmission of the bearer on the second base station is resumed, the related protocol does not need to be re-established. The entity effectively improves the efficiency of using radio bearer resources.
  • the MeNB after receiving the suspension indication sent by the UE, the MeNB further includes:
  • the MeNB sends a suspend request to the SeNB, where the suspend request is used to request the SeNB to suspend the data transmission carried on the SeNB, so that the SeNB performs the following operations according to the suspend request: suspending the SeNB associated with the bearer The radio link control entity ps-RLC; or, the SeNB performs the following operations according to the suspension request: resetting a medium access control entity ps-MAC associated with the bearer in the SeNB; suspending the SeNB and the The associated radio link control entity ps-RLC is carried. It can be understood that the SeNB resets the medium access control entity ps-MAC associated with the Split bearer in the SeNB, which is an optional step. When the s-MAC is reset when the UE hangs, the corresponding The SeNB only needs to reset the ps-MAC.
  • the MeNB further includes: the MeNB receiving the recovery indication sent by the UE, where the recovery indication carries the bearer identifier of the Split bearer, where the recovery indication is performed. Determining, according to the second measurement result, that the UE needs to recover the data transmission that is sent by the Split bearer on the SeNB, and sent;
  • the MeNB sends a first recovery request to the SeNB according to the recovery indication, where the first recovery request is used to request the SeNB to recover the data transmission carried by the SeNB, so that the SeNB recovers the Split bearer according to the first recovery request. Data transfer.
  • the UE may be configured to perform a measurement on the preset measurement object every certain period of time, and when the UE determines to suspend the Split bearer according to a certain measurement result, the SeNB is suspended in the SeNB. After the data transmission is performed, another measurement result obtained by the UE in a subsequent measurement determines that the Split bearer is restored when the data can be continuously transmitted through the Split bearer, thereby sending a recovery indication to the MeNB, as shown in FIG. Show.
  • the UE may make the above restoration decision according to a new measurement result of the preset measurement object, that is, the second measurement result. For example, the UE performs radio link monitoring (Radio Link Monitoring, hereinafter referred to as RLM) on the SeNB, and determines, according to the RLM, that the radio link between the UE and the SeNB resumes the normal connection, the UE makes the above-mentioned recovery decision; for example, the UE performs the SeNB.
  • RLM Radio Link Monitoring
  • the strength or the quality of the signal is measured, and the signal strength or quality of the SeNB is determined to be higher than the preset threshold according to the measurement result, the UE makes the foregoing restoration decision; for example, the UE may also use the number of data packets to be sent carried by the Split or The cache state of the to-be-sent packet carried by the split makes the above decision.
  • the recovery decision is made when the UE determines that the number of data packets to be transmitted carried by the split or the buffer size of the data packet to be transmitted carried by the split is greater than a preset value.
  • the MeNB After receiving the recovery indication sent by the UE, the MeNB sends a first recovery request to the SeNB according to the recovery indication, so that the SeNB recovers the data transmission carried by the split on the SeNB according to the first restoration request.
  • the SeNB after receiving the foregoing first recovery request, performs the following operations according to the first recovery request: reestablishing a radio link control entity ps-RLC associated with the bearer in the SeNB, and restoring the ps- Or performing the following operations according to the first recovery request: resetting a medium access control entity ps-MAC associated with the bearer in the SeNB; reestablishing a radio link control entity associated with the bearer in the SeNB ps-RLC, and recovering the ps-RLC, where rebuilding the ps-RLC entity specifically includes: transmitting the data packet that has been successfully received to the MeNB; discarding the data packet that needs to be sent but has not been successfully sent; stopping and resetting The timer used by the ps-RLC entity and the state variables used to reinitialize the ps-RLC entity, and so on. Restoring the ps-RLC entity begins the processing of the data packet by the ps-RLC entity.
  • the foregoing recovery request sent by the MeNB may further include a cause indication, where the cause indication is used to indicate a reason for restoring the split bearer.
  • the cause indication is used to indicate a reason for restoring the split bearer.
  • the RLF of the radio link between the UE and the SeNB may be RLF, which means that the RLF between the UE and the SeNB has been eliminated.
  • the recovery request may include two lists, one of which is used to contain the required The identifier of the bearer to be added by the SeNB, another list is used to include the identifier of the bearer that needs to be released by the SeNB, and the identifier of the split bearer to be restored is included in both lists, in this way, the SeNB is required to recover the Split. Hosted.
  • the MeNB further includes:
  • the MeNB determines that the data transmission carried on the SeNB needs to be restored
  • the MeNB sends a recovery command to the user equipment, and sends a second recovery request to the SeNB, where the recovery command is used to instruct the UE to recover the data transmission carried by the SeNB, and the second recovery request is used to request the SeNB. Restoring the data transmission carried on the SeNB.
  • the MeNB determines that the data transmission that is to be carried on the SeNB needs to be restored, and may be implemented by: determining, by the MeNB, whether the data transmission carried by the split on the SeNB is restored;
  • the MeNB sends a recovery command to the UE, and sends a second recovery request to the SeNB, so that the UE and the SeNB resume the data transmission carried on the SeNB according to the recovery command and the second recovery request, respectively.
  • the MeNB determines whether to restore the data transmission carried by the split on the SeNB, which can be implemented as follows:
  • the MeNB determines, according to the second measurement result, whether the data transmission carried by the split on the SeNB is restored.
  • the determination may also be implemented as follows. Whether to restore the data transmission carried by the split on the SeNB: the UE sends the second measurement result to the MeNB, and the MeNB determines, according to the second measurement result, whether to resume the data transmission of the Split bearer on the SeNB. Similarly, if the second measurement indicates that the data can be transmitted on the SeNB through the split bearer, it is determined to restore the data transmission carried by the split on the SeNB.
  • the MeNB may determine, according to other factors, whether to restore the data transmission carried by the split on the SeNB, for example, according to factors such as the number of data packets to be sent on the split bearer.
  • the MeNB sends a recovery command to the UE, so that the UE recovers according to the recovery command.
  • the Split carries data transmissions on the SeNB. Specifically, the UE re-establishes a radio link control entity s-RLC associated with the bearer and corresponding to the SeNB according to the recovery command, and restores the s-RLC.
  • the MeNB further sends a second recovery request to the SeNB, so that the SeNB resumes the data transmission of the Split bearer on the SeNB according to the second recovery request.
  • the SeNB performs the following operations according to the second recovery request: reestablishing a radio link control entity ps-RLC associated with the bearer in the SeNB, and recovering the ps-RLC; or, according to the second recovery Requesting to perform the following operations: resetting a medium access control entity ps-MAC associated with the bearer in the SeNB; reconstructing a radio link control entity ps-RLC associated with the bearer of the SeNB, and restoring the ps-RLC .
  • the first base station determines whether to suspend data transmission on the bearer, thereby saving signaling overhead;
  • the suspend mode stops the data transmission on the second base station, and does not need to delete the bearer-related protocol entity, so that when the data transmission on the second base station is resumed, the bearer is restored.
  • the bearer-related protocol entity is established, and the use efficiency of the radio bearer resource is effectively improved.
  • the user equipment can also decide whether to restore the data transmission of the bearer on the second base station, and further save signaling overhead.
  • FIG. 8 is a flowchart of a radio bearer processing method according to Embodiment 6 of the present invention. As shown in FIG. 8, the method includes:
  • Step 301 The second base station suspends data transmission carried on the second base station.
  • Step 302 The second base station sends a suspension indication to the first base station, where the suspension indication is used to indicate the The second base station suspends the data transmission carried on the second base station.
  • the split bearer is still taken as an example.
  • the above embodiments are all introduced from the perspective of the UE actively triggering the process of suspending the split bearer.
  • the SeNB may trigger a process of suspending data transmission carried by the split on the second base station.
  • the SeNB may determine, according to the measurement result, that the data transmission that is carried on the SeNB needs to be suspended. Specifically, it can be realized by the following judgments:
  • the SeNB performs the following operations: suspending the non-associated with the bearer in the SeNB The line link control entity ps-RLC; or, the SeNB performs the following operations: resetting the medium access control entity ps-MAC associated with the bearer in the SeNB; suspending the radio link associated with the bearer in the SeNB Control entity ps-RLC.
  • the measurement result according to the determining, by the SeNB, that the SeNB needs to suspend the data transmission carried on the second base station is referred to as a first measurement result, and the first measurement result is different from the measurement result of the other UE below.
  • the SeNB may make the foregoing suspension decision according to the measurement of the strength or quality of the uplink signal sent by the UE, and the SeNB may also make the foregoing suspension decision according to whether the entity ps-RLC reaches the maximum number of downlink retransmissions, that is, the ps.
  • the ps-RLC will repeatedly send the data packet after the RLC sends a data packet to the UE, and if the number of times the ps-RLC repeatedly sends the same data packet reaches the preset value, the SeNB will do The above pending decision is made.
  • the SeNB sends a suspension indication to the MeNB.
  • the suspension indication carries the bearer identifier of the split bearer, so that the MeNB determines the corresponding UE according to the bearer identifier included in the suspension indication, and further according to the
  • the suspending instruction sends a suspend command to the determined UE, so that the UE suspends the data transmission carried by the split on the SeNB according to the suspend command.
  • the suspending operation of the UE has been described in the foregoing embodiment, and is no longer described. Narration.
  • the UE still measures at least one of the following preset measurement objects every certain period of time: the radio link state between the UE and the SeNB, and the signal strength of the SeNB The signal quality of the SeNB, and the number or size of the data packets to be sent by the UE by using the Split.
  • the UE may determine whether to restore the data transmission carried by the split on the SeNB according to the measurement result, that is, the second measurement result.
  • the UE may make the foregoing restoration decision according to the second measurement result. For example, UE pair
  • the SeNB performs radio link monitoring (Radio Link Monitoring, hereinafter referred to as RLM), and determines that the radio link between the UE and the SeNB resumes the normal connection according to the RLM, and the UE makes the above-mentioned recovery decision; for example, the strength of the signal of the UE to the SeNB. Or the quality is measured, and the signal strength or quality of the SeNB is determined to be higher than the preset threshold according to the measurement result, the UE makes the foregoing restoration decision; for example, the UE may also according to the number of data packets to be sent carried by the Split. The above decision is made by the amount or the buffer status of the data packet to be transmitted carried by the Split. For example, when the UE determines the number of data packets to be transmitted carried by the Split or the buffer size of the data packet to be transmitted carried by the Split is greater than a preset value, the foregoing restoration decision is made.
  • RLM Radio Link Monitoring
  • the UE may also send the foregoing second measurement result to the MeNB, and the MeNB determines, according to the second measurement result, whether to resume the data transmission of the Split bearer on the SeNB.
  • the judgment for determining the recovery is similar to the condition for the UE to judge, and will not be described again.
  • the MeNB After the MeNB determines, according to the second measurement result, that the data transmission needs to be resumed on the SeNB, as shown in FIG. 9, the MeNB sends a recovery request to the SeNB, and the SeNB recovers the Split bearer according to the recovery request. Data transmission on the SeNB. Specifically, the SeNB re-establishes the radio link control entity ps-RLC associated with the split bearer in the SeNB according to the recovery request, and restores the ps-RLC.
  • the MeNB may further send a recovery command to the UE, so that the UE recovers the data transmission of the split bearer.
  • FIG. 10(a) and FIG. 10(b) are schematic diagrams of signaling interaction of a radio bearer processing method according to Embodiment 8 of the present invention, as shown in FIG. 10(a), implemented in FIG.
  • the UE actively triggers the suspension of the Split bearer, and the MeNB does not send the pending indication sent by the UE.
  • the SeNB may determine that it is also suspended according to its own measurement of the uplink signal strength or quality of the UE, or according to the measurement result of the number of retransmissions of the radio link control entity ps-RLC.
  • the data carried by the split is transmitted, and the medium access control entity ps-MAC associated with the split bearer in the SeNB is reset, and the radio link control entity ps-RLC associated with the split bearer in the SeNB is suspended.
  • the SeNB after receiving the recovery request sent by the MeNB, the SeNB only needs to reestablish the radio link control entity ps-RLC corresponding to the Split bearer in the SeNB, and restore the radio link corresponding to the Split bearer in the SeNB.
  • the control entity ps-RLC does not need to reset the media access control entity ps-MAC corresponding to the split bearer in the SeNB.
  • the SeNB may trigger the suspend stream of the split bearer regardless of whether the MeNB sends a suspend request to the SeNB. Cheng. Since the radio channel environment experienced by the UE and the SeNB is similar at a similar time, the two have similarities to the measurement results of the counterpart signal or the link between the two, and therefore, the suspension request of the MeNB is not received, and the SeNB It is also possible to decide whether to suspend the data transmission carried by the Split on the SeNB according to the measurement result thereof.
  • the second base station can autonomously decide whether to suspend the data transmission on the split bearer, and does not need to interact with the first base station, thereby saving signaling overhead.
  • stopping the split bearer in the second manner by suspending the split bearer The data transmission on the base station does not need to delete the protocol entity associated with the split bearer, so that when the data transmission on the second base station is resumed, the method of restoring the split bearer is implemented, and the split bearer does not need to be re-established.
  • the related protocol entity effectively improves the efficiency of the use of the radio bearer resources.
  • the user equipment can also decide whether to resume the data transmission on the second base station by the split, and further save the signaling overhead.
  • FIG. 11 is a schematic structural diagram of a user equipment according to Embodiment 9 of the present invention. As shown in FIG. 11, the user equipment includes:
  • the processing module 11 is configured to suspend data transmission carried on the second base station
  • the sending module 12 is configured to send a suspension indication to the first base station, where the suspension indication is used to instruct the user equipment to suspend the data transmission carried on the second base station.
  • processing module 11 includes:
  • the determining unit 111 is configured to determine, according to the first measurement result, that the data transmission carried on the second base station needs to be suspended;
  • the processing unit 112 is configured to perform the following operations:
  • processing unit 112 is configured to perform the following operations:
  • the user equipment further includes:
  • the receiving module 21 is configured to receive a suspend command sent by the first base station, where the suspend command Instructing the user equipment to suspend the data transmission carried on the second base station; correspondingly, the processing unit 112 is further configured to:
  • processing unit 112 is further configured to perform the following operations:
  • the suspending indication is further configured to instruct the first base station to send a suspend request to the second base station, where the suspend request is used to request the second base station to suspend the bearer in the Data transmission on the second base station.
  • the determining unit 111 is further configured to determine, according to the second measurement result, that the data transmission carried on the second base station needs to be restored;
  • the processing unit is further configured to re-establish the radio link control entity s-RLC in the user equipment that is associated with the bearer and that is corresponding to the second base station, and restore the s-RLC;
  • the processing module 11 further includes:
  • the sending unit 113 is configured to send a recovery indication to the first base station, where the recovery indication is used to instruct the first base station to send a recovery request to the second base station, where the recovery request is used to request the second base station Restoring the data transmission carried on the second base station.
  • the sending unit 113 is further configured to send the second measurement result to the first base station
  • the processing unit 112 is further configured to receive a recovery command sent by the first base station, and re-establish the wireless chain in the user equipment that is associated with the bearer and that is corresponding to the second base station according to the recovery command. And the s-RLC is restored, the recovery command is that the first base station determines, according to the second measurement result, that the bearer needs to recover the data transmission sent by the second base station, and then sends the s-RLC. of.
  • the user equipment in this embodiment may be used to implement the technical solution of the method embodiment shown in FIG. 3, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 12 is a schematic structural diagram of a first base station according to Embodiment 10 of the present invention, as shown in FIG.
  • the first base station includes:
  • the receiving module 31 is configured to receive a suspension indication sent by the user equipment.
  • the processing module 32 is configured to determine, according to the suspension indication, that the user equipment suspends the data transmission carried on the second base station.
  • the sending module 33 is configured to send a suspension request to the second base station, where the suspension request is used to request the second base station to suspend the data transmission carried on the second base station.
  • the sending module 33 is specifically configured to:
  • the receiving module 31 is further configured to:
  • the sending module 33 is further configured to: send, according to the recovery indication, a first recovery request to the second base station, where the first recovery request is used to request the second base station to recover the bearer in the second base station Data transfer on.
  • sending module 33 is specifically configured to:
  • the first base station further includes:
  • a determining module 34 configured to recover, according to the determined need, the data transmission carried on the second base station
  • the sending module 33 is further configured to: send a recovery command to the user equipment, and send a second recovery request to the second base station, where the recovery command is used to instruct the user equipment to restore the bearer in the first Data transmission on the second base station, where the second restoration request is used to request the second base station to recover the data transmission carried on the second base station.
  • the receiving module 31 is further configured to:
  • the determining module 34 is further configured to determine, according to the second measurement result, that the data transmission carried on the second base station needs to be restored.
  • sending module 33 is specifically configured to:
  • sending module 33 is specifically configured to:
  • the first measurement result and the second measurement result are results obtained by the user equipment measuring at least one of the following measurement objects: a radio link state between the user equipment and the second base station, a signal strength of the second base station, a signal quality of the second base station, and a data packet of the user equipment that is to be sent by the user equipment Quantity or size.
  • the first base station in this embodiment may be used to perform the technical solution of the method embodiment shown in FIG. 7.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 13 is a schematic structural diagram of a second base station according to Embodiment 11 of the present invention. As shown in FIG. 13, the second base station includes:
  • the processing module 41 is configured to suspend data transmission carried on the second base station
  • the sending module 42 is configured to send a suspension indication to the first base station, where the suspension indication is used to instruct the second base station to suspend the data transmission carried on the second base station.
  • processing module 41 includes:
  • a determining unit 411 configured to determine, according to the measurement result, that the data transmission carried on the second base station needs to be suspended
  • the processing unit 412 is configured to perform the following operations:
  • the suspending indication is further configured to instruct the first base station to send a suspend command to the user equipment, where the suspend command is used to instruct the user equipment to suspend the bearer in the second Data transmission on the base station.
  • the second base station further includes:
  • the receiving module 43 is configured to receive a recovery request sent by the first base station
  • the processing module 41 is further configured to recover the data transmission carried on the second base station according to the recovery request.
  • processing module 41 is specifically configured to:
  • the measurement result is that the second base station compares at least one of the following measurement objects
  • the second base station in this embodiment may be used to perform the technical solution of the method embodiment shown in FIG. 8.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 14 is a schematic structural diagram of a user equipment according to Embodiment 12 of the present invention. As shown in FIG. 14, the user equipment includes:
  • the radio bearer processing method shown in FIG. 3 suspending data transmission carried on the second base station;
  • the user equipment further includes a transmitter 53, the transmitter 53 is connected to the processor 52 via a bus, and the transmitter is configured to send a suspension indication to the first base station, where the suspension indication is used to indicate the user The device suspends the data transmission carried on the second base station.
  • the processor 52 is further configured to determine, according to the first measurement result, that the data transmission carried on the second base station needs to be suspended; the processor 52 is further configured to: suspend the a radio link control entity s-RLC associated with the bearer and corresponding to the second base station; or the processor 52 is further configured to: reset the user equipment and a medium access control entity s-MAC associated with the second base station; suspending a radio link control entity associated with the bearer and corresponding to the second base station in the user equipment s-RLC.
  • the user equipment further includes a receiver 54, the receiver 54 is configured to receive a suspend command sent by the first base station, where the suspend command is used to instruct the user equipment to suspend the bearer Data transmission on the second base station;
  • the processor 52 is further configured to: suspend, according to the suspension command, a radio link control entity s-RLC associated with the bearer and corresponding to the second base station in the user equipment; Or the processor 52 is further configured to: according to the suspending command, perform: resetting a medium access control entity s of the user equipment that is associated with the bearer and corresponding to the second base station MAC; suspending a radio link control entity s-RLC associated with the bearer and corresponding to the second base station in the user equipment. Further, the suspending indication is further configured to instruct the first base station to send a suspend request to the second base station, where the suspend request is used to request the second base station to suspend the bearer in the Data transmission on the second base station.
  • the processor 52 is further configured to determine, according to the second measurement result, that the data transmission that is carried on the second base station needs to be restored; to reconstruct the user equipment that is associated with the bearer and The radio link control entity s-RLC corresponding to the second base station, and recovering the s-RLC.
  • the transmitter 53 is further configured to send a recovery indication to the first base station, where the recovery indication is used to instruct the first base station to send a recovery request to the second base station, where the recovery request is used to request the The second base station recovers the data transmission carried on the second base station.
  • the transmitter 53 is further configured to send the second measurement result to the first base station
  • the receiver 54 is further configured to receive a recovery command sent by the first base station
  • the processor 52 is further configured to re-establish the radio link control entity s-RLC associated with the bearer and corresponding to the second base station in the user equipment according to the recovery command, and restore the s - RLC, the recovery command is sent by the first base station after determining, according to the second measurement result, that the data transmission carried by the second base station needs to be restored.
  • the first measurement result and the second measurement result are results obtained by the user equipment measuring at least one of the following measurement objects:
  • a radio link state between the user equipment and the second base station a signal strength of the second base station, a signal quality of the second base station, and a data packet of the user equipment that is to be sent by the user equipment Quantity or size.
  • FIG. 15 is a schematic structural diagram of a first base station according to Embodiment 13 of the present invention. As shown in FIG. 15, the first base station includes:
  • a receiver 61 configured to receive a suspension indication sent by the user equipment
  • the first base station further includes a transmitter 64, configured to send a suspension request to the second base station, where the suspension request is used to request the second base station to suspend the bearer on the second base station. data transmission.
  • the transmitter 64 is further configured to send the suspension request to the second base station, where the suspension request is used to request the second base station to perform the following operations: suspending the second base station a radio link control entity ps-RLC associated with the bearer; or the suspend request is for requesting the second base station to perform the following operations: resetting, in the second base station, associated with the bearer a medium access control entity ps-MAC; suspending a radio link control entity ps-RLC associated with the bearer in the second base station.
  • the receiver 61 is further configured to receive a recovery indication sent by the user equipment, where the transmitter 64 is further configured to send, according to the recovery indication, a first recovery request to the second base station, where A recovery request is for requesting the second base station to resume the data transmission carried on the second base station.
  • the transmitter 64 is further configured to send a first recovery request to the second base station according to the recovery indication, where the first recovery request is used to request the second base station to perform the following operations: a radio link control entity ps-RLC associated with the bearer in the second base station, and recovering the ps-RLC; or the first recovery request is used to request the second base station to perform the following operations: a medium access control entity ps-MAC associated with the bearer in the second base station; reconstructing a radio link control entity ps-RLC associated with the bearer in the second base station, and restoring the ps -RLC.
  • processor 63 is further configured to determine that the data transmission carried on the second base station needs to be restored
  • the transmitter 64 is further configured to send a recovery command to the user equipment, and send a second recovery request to the second base station, where the recovery command is used to instruct the user equipment to restore the bearer in the second Data transmission on the base station, the second recovery request is used to request the second base station to recover the data transmission carried on the second base station.
  • the receiver 61 is further configured to receive the second measurement result sent by the user equipment
  • the processor 63 is further configured to determine, according to the second measurement result, that the data transmission carried on the second base station needs to be restored. Further, the transmitter 64 is further configured to send a recovery command to the user equipment, where the recovery command is used to instruct the user equipment to re-establish the user equipment associated with the bearer and corresponding to the second base station.
  • the radio link controls the entity s-RLC and recovers the s-RLC.
  • the transmitter 64 is further configured to send a second recovery request to the second base station, where the second recovery request is used to request the second base station to perform the following operations: reestablishing the second base station and And carrying the associated radio link control entity ps-RLC and recovering the ps-RLC; or the second recovery request is used to request the second base station to perform the following operations: resetting the second base station And a medium access control entity ps-MAC associated with the bearer; reconstructing a radio link control entity ps-RLC associated with the bearer in the second base station, and restoring the ps-RLC.
  • FIG. 16 is a schematic structural diagram of a second base station according to Embodiment 14 of the present invention. As shown in FIG. 16, the second base station includes:
  • the memory 71 is configured to store a set of program codes
  • the processor 72 is configured to invoke program code stored in the memory 71 to execute as shown in the figure.
  • the radio bearer processing method shown in FIG. 8 the data transmission carried on the second base station is suspended;
  • the transmitter 73 is connected to the processor 72 by a bus, the transmitter 73 is configured to send a suspension indication to the first base station, where the suspension indication is used to indicate that the second base station hangs The data transmission carried on the second base station.
  • the processor 72 is further configured to determine, according to the measurement result, that the data transmission that is carried on the second base station needs to be suspended; the processor 72 is further configured to: suspend the a radio link control entity ps-RLC associated with the bearer in the second base station; or the processor 72 is further configured to: perform: resetting a media connection associated with the bearer in the second base station Incoming control entity ps-MAC; suspending a radio link control entity ps-RLC associated with the bearer in the second base station.
  • the suspending indication is further configured to instruct the first base station to send a suspend command to the user equipment, where the suspend command is used to instruct the user equipment to suspend the bearer on the second base station. Data transfer.
  • the second base station further includes: a receiver 74, configured to receive a recovery request sent by the first base station;
  • the processor 72 is further configured to recover the data transmission carried on the second base station according to the recovery request.
  • the processor 72 is further configured to reconstruct, according to the recovery request, a radio link control entity ps-RLC associated with the bearer in the second base station, and restore the ps-RLC.
  • the measurement result is a result obtained by the second base station measuring at least one of the following measurement objects:

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种无线承载处理方法、用户设备和基站,该方法包括:用户设备挂起承载在第二基站上的数据传输;所述用户设备向第一基站发送挂起指示,所述挂起指示用于指示所述用户设备挂起了所述承载在所述第二基站上的数据传输。用户设备自主决定挂起承载,挂起过程无需与第一基站交互,节省了信令开销;挂起的方式停止承载在第二基站上的数据传输,无需删除该承载相关的协议实体,在重新开始该承载在第二基站上的数据传输时,便无需重新建立相关的协议实体,提高了无线承载资源的使用效率。

Description

无线承载处理方法、 用户设备和基站
技术领域
本发明属于无线通信技术领域, 具体是涉及一种无线承载处理方法、 用 户设备和基站。 背景技术
在长期演进项目 (Long Term Evolution, 以下简称 LTE) 中, 为了满 足用户对无线承载峰值速率的更高需求, 提供了两种类型的无线承载 ( Radio Bearer, 以下简称 RB ) , 一种称为主小区组 ( Master Cell Group, 以下简称 MCG ) 承载, 另外一种称为分离 (Split) 承载。 其中, Split承 载具有比 MCG承载更高的峰值速率。 图 1为 MCG承载和 Split承载的协 议栈架构示意图, 如图 1所示:
在用户设备(User Equipement, 以下简称 UE) 内部, 与一个 MCG承 载相关联的有一个分组数据汇聚协议 (Packet Data Convergence Protocol, 以下简称 PDCP ) 实体和一个无线链路控制 (Radio Link Control, 以下简 称 RLC )实体,在图 1中该 PDCP实体和 RLC实体分别用 PDCP1和 m-RLCl 表示, m-RLCl实体和对应的一个媒质接入控制(Medium Access Control, 以下简称 MAC )实体 m-MAC相关联, m-MAC实体对应第一基站(Master eNB, 以下简称 MeNB ) 。 UE中各协议实体在网络侧都有各自的对等协议 实体, 其中 PDCP1实体, m-RLCl实体和 m-MAC实体的对等协议实体在 MeNB中,分别为对等 p-PDCPl实体,对等 pm-RLCl实体和对等 pm-MAC 实体。 MCG 承载的所有下行数据包都经由对等 p-PDCPl 实体到对等 pm-RLCl实体再到对等 pm-MAC实体, 然后由对等 pm-MAC实体通过空 口发送给 m-MAC实体,然后 m-MAC实体将接收到的数据包经由 m-RLCl 实体最终递交给 PDCP1实体。 MCG承载的上行数据包的传输路径和其下 行数据包的传输路径正好相反。
在 UE内部,与一个 Split承载相关联的有一个 PDCP2实体和两个 RLC 实体, 在图 1 中这两个 RLC实体分别用 m-RLC2和 s-RLC表示, 其中 m-RLC2实体和上述 m-MAC实体相关联, s-RLC实体和 s-MAC实体相关 联, 其中, m-MAC实体对应第一基站 MeNB , s-MAC实体对应第二基站 ( Secondary eNB , 以下简称 SeNB ) 。 UE中各协议实体在网络侧都有各 自的对等协议实体, 其中 PDCP2实体, m-RLC2实体和 m-MAC实体的对 等协议实体在 MeNB 中, 分别为对等 p-PDCP2, 对等 pm-RLC2 和对等 pm-MAC; s-RLC实体和 s-MAC实体的对等协议实体在 SeNB中, 分别为 对等 ps-RLC实体和对等 ps-MAC实体。 Split承载的下行数据包中的一部 分经由对等 p-PDCP2实体到对等 pm-RLC2实体再到对等 pm-MAC实体, 然后由对等 pm-MAC实体通过空口发送给 m-MAC实体, 然后 m-MAC实 体将接收到的这部分数据包经由 m-RLC2实体最终递交给 PDCP2实体, Split承载的下行数据包的其余部分经由对等 p-PDCP2实体经过 MeNB和 SeNB之间的接口发送给对等 ps-RLC实体, 对等 ps-RLC实体将这部分数 据包递交给对等 ps-MAC实体, 然后对等 ps-MAC实体通过空口将这部分 数据包发送给 s-MAC实体, 然后 s-MAC实体将接收到的这部分数据包经 由 s-RLC实体最终递交给 PDCP2实体。 Split承载的上行数据包的传输路 径和其下行数据包的传输路径正好相反。
MCG承载与 Split承载之间可以根据信道环境的变化、 传输数据的需 求等因素相互转变。但是,现有技术中当需要将一个 Split承载转变成 MCG 承载时, 是由 MeNB根据 UE发送的对 SeNB的测量报告来决定是否将该 UE的 Split承载转变成 MCG承载, 并在需要时分别通知 UE和 SeNB , UE需要释放该 Split承载的 s-MAC实体和 s-RLC实体, SeNB需要释放该 Split承载的对等 ps-MAC实体和对等 ps-RLC实体。 后续当需要将转变后 的 MCG承载再转变成 Split承载时,也是由 MeNB根据 UE发送的对 SeNB 的另一测量报告来决定是否将该 MCG承载转变回 Split承载,并在需要时 分别通知 UE和 SeNB , UE需要为该承载重新建立 s-MAC实体和 s-RLC 实体, SeNB也需要为该承载重新建立对等 ps-MAC实体和对等 ps-RLC实 体。
上述的现有方式中, UE与 MeNB之间将会存在较多的空口信令交互, MeNB与 SeNB之间也会存在较多的骨干网信令交互, 从而增加了网络的 信令负荷, 并且引入了较大的信令时延, 而且释放与重新建立承载的相关 协议实体, 也会导致较低的资源使用效率。 发明内容
本发明实施例提供了一种无线承载处理方法、 用户设备和基站, 用以 克服现有承载处理方式中导致网络的信令负荷较重,引入较大的信令时延, 且具有较低的资源使用效率的缺陷。
本发明实施例第一方面提供了一种无线承载处理方法, 包括: 用户设备挂起承载在第二基站上的数据传输;
所述用户设备向第一基站发送挂起指示, 所述挂起指示用于指示所述 用户设备挂起所述承载在所述第二基站上的数据传输。
在第一方面的第一种可能的实现方式中, 所述用户设备挂起承载在第 二基站上的数据传输, 包括:
所述用户设备根据第一测量结果确定需要挂起所述承载在所述第二 基站上的数据传输;
所述用户设备执行以下操作: 挂起所述用户设备中与所述承载相关联 且与所述第二基站对应的无线链路控制实体 s-RLC;
或者, 所述用户设备执行以下操作: 重置所述用户设备中与所述承载 相关联且与所述第二基站对应的媒质接入控制实体 s-MAC;
挂起所述用户设备中与所述承载相关联且与所述第二基站对应的无 线链路控制实体 s-RLC。
在第一方面的第二种可能的实现方式中, 所述用户设备挂起承载在第 二基站上的数据传输, 包括:
所述用户设备接收所述第一基站发送的挂起命令, 所述挂起命令用于 指示所述用户设备挂起所述承载在所述第二基站上的数据传输;
所述用户设备根据所述挂起命令, 执行以下操作:
挂起所述用户设备中与所述承载相关联且与所述第二基站对应的无 线链路控制实体 s-RLC;
或者, 所述用户设备执行以下操作:
重置所述用户设备中与所述承载相关联且与所述第二基站对应的媒 质接入控制实体 s-MAC; 挂起所述用户设备中与所述承载相关联且与所述第二基站对应的无 线链路控制实体 s-RLC。
在第一方面的第三种可能的实现方式中, 所述挂起指示还用于指示所 述第一基站向所述第二基站发送挂起请求, 所述挂起请求用于请求所述第 二基站挂起所述承载在所述第二基站上的数据传输。
根据第一方面、第一方面的第一种、第二种或第三种可能的实现方式, 在第一方面的第四种可能的实现方式中, 所述用户设备向第一基站发送挂 起指示之后, 还包括:
所述用户设备根据第二测量结果确定需要恢复所述承载在所述第二 基站上的数据传输;
所述用户设备重建所述用户设备中与所述承载相关联且与所述第二 基站对应的所述无线链路控制实体 s-RLC, 并恢复所述 s-RLC;
所述用户设备向所述第一基站发送恢复指示, 所述恢复指示用于指示 所述第一基站向所述第二基站发送恢复请求, 所述恢复请求用于请求所述 第二基站恢复所述承载在所述第二基站上的数据传输。
根据第一方面、第一方面的第一种、第二种或第三种可能的实现方式, 在第一方面的第五种可能的实现方式中, 所述用户设备向第一基站发送挂 起指示之后, 还包括:
所述用户设备将第二测量结果发送给所述第一基站;
所述用户设备接收所述第一基站发送的恢复命令, 根据所述恢复命令 重建所述用户设备中与所述承载相关联且与所述第二基站对应的所述无 线链路控制实体 s-RLC, 并恢复所述 s-RLC , 所述恢复命令为所述第一基 站根据所述第二测量结果确定需要恢复所述承载在所述第二基站上的数 据传输后发送的。
根据第一方面的第一种、 第二种、 第三种、 第四种或第五种可能的实 现方式, 在第一方面的第六种可能的实现方式中, 所述第一测量结果和所 述第二测量结果为所述用户设备对以下测量对象中的至少一种进行测量 获得的结果:
所述用户设备与所述第二基站之间的无线链路状态、 所述第二基站的 信号强度、 所述第二基站的信号质量、 所述用户设备通过所述承载待发送 的数据包的数量或者大小。
本发明实施例第二方面提供了一种无线承载处理方法, 包括: 第一基站接收用户设备发送的挂起指示;
所述第一基站根据所述挂起指示确定所述用户设备挂起所述承载在 所述第二基站上的数据传输。
在第二方面的第一种可能的实现方式中, 所述第一基站接收用户设备 发送的挂起指示之后, 还包括:
所述第一基站向所述第二基站发送挂起请求, 所述挂起请求用于请求 所述第二基站挂起所述承载在所述第二基站上的数据传输。
根据第二方面的第一种可能的实现方式, 在第二方面的第二种可能的 实现方式中, 所述第一基站向所述第二基站发送挂起请求, 所述挂起请求 用于请求所述第二基站挂起所述承载在所述第二基站上的数据传输, 包 括:
所述第一基站向所述第二基站发送所述挂起请求, 所述挂起请求用于 请求所述第二基站执行以下操作:
挂起所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC; 或者, 所述挂起请求用于请求所述第二基站执行以下操作:
重置所述第二基站中与所述承载相关联的媒质接入控制实体 ps-MAC;
挂起所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC。 在第二方面的第三种可能的实现方式中, 所述第一基站接收用户设备 发送的挂起指示之后, 还包括:
所述第一基站接收所述用户设备发送的恢复指示;
所述第一基站根据所述恢复指示向所述第二基站发送第一恢复请求, 所述第一恢复请求用于请求所述第二基站恢复所述承载在所述第二基站 上的数据传输。
根据第二方面的第三种可能的实现方式, 在第二方面的第四种可能的 实现方式中, 所述第一基站根据所述恢复指示向所述第二基站发送第一恢 复请求, 所述第一恢复请求用于请求所述第二基站恢复所述承载在所述第 二基站上的数据传输, 包括: 所述第一基站根据所述恢复指示向所述第二基站发送第一恢复请求, 所述第一恢复请求用于请求所述第二基站执行以下操作:
重建所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC, 并恢复所述 ps-RLC;
或者, 所述第一恢复请求用于请求所述第二基站执行以下操作: 重置所述第二基站中与所述承载相关联的媒质接入控制实体 ps-MAC;
重建所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC , 并恢复所述 ps-RLC。
在第二方面的第五种可能的实现方式中, 所述第一基站接收用户设备 发送的挂起指示之后, 还包括:
所述第一基站确定需要恢复所述承载在所述第二基站上的数据传输; 所述第一基站向所述用户设备发送恢复命令, 并向所述第二基站发送 第二恢复请求, 所述恢复命令用于指示所述用户设备恢复所述承载在所述 第二基站上的数据传输, 所述第二恢复请求用于请求所述第二基站恢复所 述承载在所述第二基站上的数据传输。
根据第二方面的第五种可能的实现方式, 在第二方面的第六种可能的 实现方式中, 所述第一基站确定需要恢复所述承载在所述第二基站上的数 据传输之前, 还包括:
所述第一基站接收所述用户设备发送的第二测量结果;
所述第一基站确定需要恢复所述承载在所述第二基站上的数据传输, 包括:
所述第一基站根据所述第二测量结果确定需要恢复所述承载在所述 第二基站上的数据传输。
根据第二方面的第五种可能的实现方式, 在第二方面的第七种可能的 实现方式中, 所述第一基站向所述用户设备发送恢复命令, 所述恢复命令 用于指示所述用户设备恢复所述承载在所述第二基站上的数据传输, 包 括:
所述第一基站向所述用户设备发送恢复命令, 所述恢复命令用于指示 所述用户设备重建所述用户设备中与所述承载相关联且与第二基站对应 的无线链路控制实体 S-RLC, 并恢复所述 s-RLC。
根据第二方面的第五种可能的实现方式, 在第二方面的第八种可能的 实现方式中, 所述第一基站向所述第二基站发送第二恢复请求, 所述第二 恢复请求用于请求所述第二基站恢复所述承载在所述第二基站上的数据 传输, 包括:
所述第一基站向所述第二基站发送第二恢复请求, 所述第二恢复请求 用于请求所述第二基站执行以下操作:
重建所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC, 并恢复所述 ps-RLC;
或者, 所述第二恢复请求用于请求所述第二基站执行以下操作: 重置所述第二基站中与所述承载相关联的媒质接入控制实体 ps-MAC;
重建所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC , 并恢复所述 ps-RLC。
本发明实施例第三方面提供了一种无线承载处理方法, 包括: 第二基站挂起承载在所述第二基站上的数据传输;
所述第二基站向第一基站发送挂起指示, 所述挂起指示用于指示所述 第二基站挂起所述承载在所述第二基站上的数据传输。
在第三方面的第一种可能的实现方式中, 所述第二基站挂起承载在所 述第二基站上的数据传输, 包括:
所述第二基站根据测量结果确定需要挂起所述承载在所述第二基站 上的数据传输;
所述第二基站执行以下操作:
挂起所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC; 或者, 所述第二基站执行以下操作:
重置所述第二基站中与所述承载相关联的媒质接入控制实体 ps-MAC;
挂起所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC。 根据第三方面的第一种可能的实现方式, 在第三方面的第二种可能的 实现方式中, 所述挂起指示还用于指示所述第一基站向用户设备发送挂起 命令, 所述挂起命令用于指示所述用户设备挂起所述承载在所述第二基站 上的数据传输。
根据第三方面的第一种可能的实现方式, 在第三方面的第三种可能的 实现方式中, 所述第二基站向第一基站发送挂起指示之后, 还包括: 所述第二基站接收所述第一基站发送的恢复请求;
所述第二基站根据所述恢复请求恢复所述承载在所述第二基站上的 数据传输。
根据第三方面的第三种可能的实现方式, 在第三方面的第四种可能的 实现方式中, 所述第二基站根据所述恢复请求恢复所述承载在所述第二基 站上的数据传输, 包括:
所述第二基站根据所述恢复请求重建所述第二基站中与所述承载相 关联的无线链路控制实体 ps-RLC, 并恢复所述 ps-RLC。
根据第三方面的第一种、 第二种、 第三种或第四种可能的实现方式, 在第三方面的第五种可能的实现方式中, 所述测量结果为所述第二基站对 以下测量对象中的至少一种进行测量获得的结果:
所述用户设备的上行信号的强度、 所述用户设备的上行信号的质量、 所述无线链路控制实体 ps-RLC的重传次数。
本发明实施例第四方面提供了一种用户设备, 包括:
处理模块, 用于挂起承载在第二基站上的数据传输;
发送模块, 用于向第一基站发送挂起指示, 所述挂起指示用于指示所 述用户设备挂起所述承载在所述第二基站上的数据传输。
在第四方面的第一种可能的实现方式中, 所述处理模块, 包括: 确定单元, 用于根据第一测量结果确定需要挂起所述承载在所述第二 基站上的数据传输;
处理单元, 用于执行以下操作:
挂起所述用户设备中与所述承载相关联且与所述第二基站对应的无 线链路控制实体 s-RLC;
或者, 所述处理单元用于执行以下操作:
重置所述用户设备中与所述承载相关联且与所述第二基站对应的媒 质接入控制实体 s-MAC; 挂起所述用户设备中与所述承载相关联且与所述第二基站对应的无 线链路控制实体 s-RLC。
在第四方面的第二种可能的实现方式中, 所述用户设备还包括: 接收模块, 用于接收所述第一基站发送的挂起命令, 所述挂起命令用 于指示所述用户设备挂起所述承载在所述第二基站上的数据传输;
所述处理单元还用于执行以下操作:
挂起所述用户设备中与所述承载相关联且与所述第二基站对应的无 线链路控制实体 s-RLC;
所述处理单元还用于执行以下操作:
重置所述用户设备中与所述承载相关联且与所述第二基站对应的媒 质接入控制实体 s-MAC;
挂起所述用户设备中与所述承载相关联且与所述第二基站对应的无 线链路控制实体 s-RLC。
在第四方面的第三种可能的实现方式中, 所述挂起指示还用于指示所 述第一基站向所述第二基站发送挂起请求, 所述挂起请求用于请求所述第 二基站挂起所述承载在所述第二基站上的数据传输。
根据第四方面、第四方面的第一种、第二种或第三种可能的实现方式, 在第四方面的第四种可能的实现方式中, 所述确定单元, 还用于根据第二 测量结果确定需要恢复所述承载在所述第二基站上的数据传输;
所述处理单元, 还用于重建所述用户设备中与所述承载相关联且与所 述第二基站对应的所述无线链路控制实体 s-RLC, 并恢复所述 s-RLC; 所述处理模块还包括:发送单元,用于向所述第一基站发送恢复指示, 所述恢复指示用于指示所述第一基站向所述第二基站发送恢复请求, 所述 恢复请求用于请求所述第二基站恢复所述承载在所述第二基站上的数据 传输。
根据第四方面、第四方面的第一种、第二种或第三种可能的实现方式, 在第四方面的第五种可能的实现方式中, 所述发送单元, 还用于将第二测 量结果发送给所述第一基站;
所述处理单元, 还用于接收所述第一基站发送的恢复命令, 根据所述 恢复命令重建所述用户设备中与所述承载相关联且与所述第二基站对应 的所述无线链路控制实体 s-RLC, 并恢复所述 s-RLC, 所述恢复命令为所 述第一基站根据所述第二测量结果确定需要恢复所述承载在所述第二基 站上的数据传输后发送的。
本发明实施例第五方面提供了一种第一基站, 包括:
接收模块, 用于接收用户设备发送的挂起指示;
处理模块, 用于根据所述挂起指示确定所述用户设备挂起所述承载在 所述第二基站上的数据传输。
在第五方面的第一种可能的实现方式中, 所述第一基站还包括: 发送模块, 用于向所述第二基站发送挂起请求, 所述挂起请求用于请 求所述第二基站挂起所述承载在所述第二基站上的数据传输。
根据第五方面的第一种可能的实现方式, 在第五方面的第二种可能的 实现方式中, 所述发送模块, 具体用于:
向所述第二基站发送所述挂起请求, 所述挂起请求用于请求所述第二 基站执行以下操作:
挂起所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC; 或者, 向所述第二基站发送所述挂起请求, 所述挂起请求用于请求所 述第二基站执行以下操作:
重置所述第二基站中与所述承载相关联的媒质接入控制实体 ps-MAC;
挂起所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC。 在第五方面的第三种可能的实现方式中, 所述接收模块还用于: 接收所述用户设备发送的恢复指示;
所述发送模块还用于: 根据所述恢复指示向所述第二基站发送第一恢 复请求, 所述第一恢复请求用于请求所述第二基站恢复所述承载在所述第 二基站上的数据传输。
根据第五方面的第三种可能的实现方式, 在第五方面的第四种可能的 实现方式中, 所述发送模块, 具体用于:
根据所述恢复指示向所述第二基站发送第一恢复请求, 所述第一恢复 请求用于请求所述第二基站执行以下操作:
重建所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC, 并恢复所述 ps-RLC;
或者, 根据所述恢复指示向所述第二基站发送第一恢复请求, 所述第 一恢复请求用于请求所述第二基站执行以下操作:
重置所述第二基站中与所述承载相关联的媒质接入控制实体 ps-MAC;
重建所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC , 并恢复所述 ps-RLC。
在第五方面的第五种可能的实现方式中, 所述第一基站还包括: 确定模块, 用于根据确定需要恢复所述承载在所述第二基站上的数据 传输;
所述发送模块还用于: 向所述用户设备发送恢复命令, 并向所述第二 基站发送第二恢复请求, 所述恢复命令用于指示所述用户设备恢复所述承 载在所述第二基站上的数据传输, 所述第二恢复请求用于请求所述第二基 站恢复所述承载在所述第二基站上的数据传输。
根据第五方面的第五种可能的实现方式, 在第五方面的第六种可能的 实现方式中, 所述接收模块还用于:
接收所述用户设备发送的第二测量结果;
所述确定模块, 还用于根据所述第二测量结果确定需要恢复所述承载 在所述第二基站上的数据传输。
根据第五方面的第五种可能的实现方式, 在第五方面的第七种可能的 实现方式中, 所述发送模块具体用于:
向所述用户设备发送恢复命令, 所述恢复命令用于指示所述用户设备 重建所述用户设备中与所述承载相关联且与第二基站对应的无线链路控 制实体 s-RLC, 并恢复所述 s-RLC。
根据第五方面的第五种可能的实现方式, 在第五方面的第八种可能的 实现方式中, 所述发送模块具体用于:
向所述第二基站发送第二恢复请求, 所述第二恢复请求用于请求所述 第二基站执行以下操作:
重建所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC , 并恢复所述 ps-RLC; 或者, 向所述第二基站发送第二恢复请求, 所述第二恢复请求用于请 求所述第二基站执行以下操作:
重置所述第二基站中与所述承载相关联的媒质接入控制实体 ps-MAC;
重建所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC, 并恢复所述 ps-RLC。
本发明实施例第六方面提供了一种第二基站, 包括:
处理模块, 用于挂起承载在所述第二基站上的数据传输;
发送模块, 用于向第一基站发送挂起指示, 所述挂起指示用于指示所 述第二基站挂起所述承载在所述第二基站上的数据传输。
在第六方面的第一种可能的实现方式中, 所述处理模块, 包括: 确定单元, 用于根据测量结果确定需要挂起所述承载在所述第二基站 上的数据传输;
处理单元, 用于执行以下操作:
挂起所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC; 或者, 所述处理单元用于执行以下操作:
重置所述第二基站中与所述承载相关联的媒质接入控制实体 ps-MAC;
挂起所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC。 根据第六方面的第一种可能的实现方式, 在第六方面的第二种可能的 实现方式中, 所述挂起指示还用于指示所述第一基站向所述用户设备发送 挂起命令, 所述挂起命令用于指示所述用户设备挂起所述承载在所述第二 基站上的数据传输。
根据第六方面的第一种可能的实现方式, 在第六方面的第三种可能的 实现方式中, 所述第二基站还包括:
接收模块, 用于接收所述第一基站发送的恢复请求;
所述处理模块, 还用于根据所述恢复请求恢复所述承载在所述第二基 站上的数据传输。
根据第六方面的第三种可能的实现方式, 在第六方面的第四种可能的 实现方式中, 所述处理模块, 具体用于: 根据所述恢复请求重建所述第二基站中与所述承载相关联的无线链 路控制实体 ps-RLC, 并恢复所述 ps-RLC。
根据第六方面的第三种可能的实现方式, 在第六方面的第五种可能的 实现方式中, 所述测量结果为所述第二基站对以下测量对象中的至少一种 进行测量获得的结果:
所述用户设备的上行信号的强度、 所述用户设备的上行信号的质量、 所述无线链路控制实体 ps-RLC的重传次数。
本发明实施例第七方面提供了一种用户设备, 其特征在于, 包括: 存储器以及与所述存储器连接的处理器, 其中, 所述存储器用于存 储一组程序代码, 所述处理器用于调用所述存储器中存储的程序代码, 执行本发明实施例第一方面及第一方面各种可能的实现方式中任一项所 述的方法。
本发明实施例第八方面提供了一种第一基站, 其特征在于, 包括: 存储器以及与所述存储器连接的处理器, 其中, 所述存储器用于存 储一组程序代码, 所述处理器用于调用所述存储器中存储的程序代码, 执行本发明实施例第二方面及第二方面各种可能的实现方式中任一项所 述的方法。
本发明实施例第九方面提供了一种第二基站, 其特征在于, 包括: 存储器以及与所述存储器连接的处理器, 其中, 所述存储器用于存 储一组程序代码, 所述处理器用于调用所述存储器中存储的程序代码, 执行本发明实施例第三方面及第三方面各种可能的实现方式中任一项所 述的方法。
本发明实施例提供的无线承载处理方法、 用户设备和基站, 用户设备 挂起承载在第二基站上的数据传输后, 向第一基站发送用于指示该用户设 备挂起了该承载在第二基站上的数据传输的挂起指示。 由于用户设备可以 自主决定是否挂起该承载在第二基站上的数据传输, 无需与第一基站交 互, 由第一基站确定是否挂起该承载在第二基站上的数据传输, 节省了信 令开销; 另外, 挂起的方式停止该承载在第二基站上的数据传输无需删除 该承载相关的协议实体, 从而在后续再重新开始该承载在第二基站上的数 据传输时, 无需重新建立相关的协议实体, 有效提高了无线承载资源的使 用效率。 附图说明
图 1为 MCG承载和 Split承载的协议栈架构示意图;
图 2为现有技术中一种 MCG承载和 Split承载间相互转换的信令交互 示意图;
图 3为本发明实施例一提供的无线承载处理方法的流程图;
图 4为本发明实施例二提供的无线承载处理方法的信令交互示意图; 图 5为本发明实施例三提供的无线承载处理方法的信令交互示意图; 图 6为本发明实施例四提供的无线承载处理方法的信令交互示意图; 图 7为本发明实施例五提供的无线承载处理方法的流程图;
图 8为本发明实施例六提供的无线承载处理方法的流程图;
图 9为本发明实施例七提供的无线承载处理方法的信令交互示意图; 图 10(a)和图 10(b)为本发明实施例八提供的无线承载处理方法的信令 交互示意图;
图 11为本发明实施例九提供的用户设备的结构示意图;
图 12为本发明实施例十提供的第一基站的结构示意图;
图 13为本发明实施例十一提供的第二基站的结构示意图;
图 14为本发明实施例十二提供的用户设备的结构示意图;
图 15为本发明实施例十三提供的第一基站的结构示意图;
图 16为本发明实施例十四提供的第二基站的结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合 本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整 地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的 实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其它实施例, 都属于本发明保护的范围。
图 3为本发明实施例一提供的无线承载处理方法的流程图, 如图 3所 示, 本实施例提供的所述方法尤其适用于 LTE系统中, 该方法具体包括: 歩骤 101、 用户设备挂起承载在第二基站上的数据传输;
歩骤 102、 所述用户设备向第一基站发送挂起指示, 所述挂起指示用 于指示所述用户设备挂起所述承载在所述第二基站上的数据传输。
在 LTE系统中, 除了 MCG承载和 Split承载外, 还有一种类型的承 载: 辅小区组 ( Secondary Cell Group , 以下简称 SCG ) 承载, SCG承载 与 Split承载类似, 也可以进行与 MCG承载间的相互转换。 在 UE内部, 与一个 SCG承载相关联的有一个 PDCP实体和一个 RLC实体, 在图 1中 该 PDCP实体和 RLC实体分别用 s-PDCP和 S-RLC2表示, S-RLC2实体和 对应的 MAC实体 s-MAC相关联, s-MAC实体对应 SeNB。 UE中各协议 实体在网络侧都有各自的对等协议实体, 其中 s-PDCP实体, S-RLC2实体 和 s-MAC实体的对等协议实体在 SeNB中, 分别为对等 ps-PDCP实体, 对等 ps-RLC2实体和对等 ps-MAC实体。 SCG承载的所有下行数据包都经 由对等 ps-PDCP实体到对等 ps-RLC2实体再到对等 ps-MAC实体, 然后 由对等 ps-MAC实体通过空口发送给 s-MAC实体, 然后 s-MAC实体将接 收到的数据包经由 S-RLC2实体最终递交给 s-PDCP实体。 SCG承载的上 行数据包的传输路径和其下行数据包的传输路径正好相反。
以 Split承载与 MCG承载间的相互转换为例, 图 2为现有技术中一种 MCG承载和 Split承载间相互转换的信令交互示意图,如图 2所示,在 LTE 系统中, 以 Split承载为例, 对于 Split承载的处理方式是在其不能满足通 信需求时将其转换为 MCG承载, 并在后续满足通信需求时再转换为 Split 承载。一种实现 MCG承载和 Split承载间相互转换的现有方案中, 是否需 要进行 MCG承载和 Split承载间的相互转换都是 MeNB根据 UE对 SeNB 进行测量上报的测量报告决定的, 而且, 在实现 MCG承载和 Split承载间 相互转换的过程中, UE和 SeNB需要分别重新建立或删除 Split承载相关 的协议实体。 同时, 在实际应用中, 由于 UE的移动性, 随着 UE忽而远 离忽而接近 SeNB , 将会引起频繁的上述 MCG承载和 Split承载间的相互 转换, 从而往往导致较重的信令负荷和信令时延, 比如图 2中将导致 4条 空口信令 (歩骤 2、 6、 8和 12 ) 和 2条主干网信令 (歩骤 4和 10 ) , 同 时, 也会导致较低的无线承载的资源使用效率。 为克服上述缺陷, 本发明实施例提供的所述无线承载处理方法通过以 下方式实现对无线承载的处理。 值得说明的是, 本发明实施提供的所述方 法尤其适用于对 Split承载或者 SCG承载进行处理的情况, 以下实施例将 以 Split承载为例进行说明, SCG承载的情形与之类似, 只是相关协议实 体的简单替换,不赘述。另外,以下实施例中的第一基站是指主基站 MeNB , 第二基站是指辅基站 SeNB。
具体地, 如图 4所示, 图 4为本发明实施例二提供的无线承载处理方 法的信令交互示意图。 本实施例中, UE可以自主决定是否进行对 Split承 载的挂起处理。 值得说明的是, 本发明实施例中, 挂起承载在第二基站上 的数据传输, 其中, 挂起 (suspend) 的含义相当于停止的意思。 具体地, 上述歩骤 101中用户设备挂起承载在第二基站上的数据传输, 具体通过如 下方式实现:
所述用户设备根据第一测量结果确定需要挂起所述承载在所述第二 基站上的数据传输。 具体地:
用户设备 UE根据第一测量结果确定是否挂起所述 Split承载在第二基 站 SeNB上的数据传输;
若是, 则用户设备 UE执行以下操作:
挂起所述用户设备中与所述承载相关联且与所述第二基站对应的无 线链路控制实体 s-RLC;
或者, 所述用户设备执行以下操作:
重置所述用户设备中与所述承载相关联且与所述第二基站对应的媒 质接入控制实体 s-MAC;
挂起所述用户设备中与所述承载相关联且与所述第二基站对应的无 线链路控制实体 s-RLC。
其中, 第一测量结果为用户设备 UE对以下测量对象中的至少一种进 行测量获得的结果:
用户设备 UE与第二基站 SeNB之间的无线链路状态、第二基站 SeNB 的信号强度、 第二基站 SeNB的信号质量、 用户设备 UE通过所述承载待 发送的数据包的数量或者大小。
执行本实施例所述方法的前提是, 在 UE和 MeNB及 SeNB间已经建 立了 Split承载。当 UE根据对上述预设的测量对象中的至少一种进行测量 获得的第一测量结果确定该 Split承载不适于在 SeNB上进行数据传输时, 决定挂起所述 Split承载在 SeNB上的数据传输。
其中, UE决定挂起该 Split承载在 SeNB上传输, 即 UE决定不再从 SeNB上接收该 Split承载的下行数据,也不再向 SeNB发送该 Split承载的 上行数据。
具体的, UE可以根据对 SeNB的测量结果做出上述决定。例如 UE对 SeNB进行无线链路监测 (Radio Link Monitoring , 以下简称 RLM ) , 根 据 RLM判断 UE和 SeNB之间的无线链路发生了无线链路失败( Radio Link Failure , 以下简称 RLF ) , 则 UE做出上述挂起决定; 再例如 UE对 SeNB 的信号的强度或者质量进行测量, 根据测量结果判定 SeNB的信号强度或 者质量低于预设门限, 则 UE做出上述挂起决定。 UE也可以根据通过该 Split承载待发送数据包的数量或者该 Split承载待发送数据包的缓存状态 做出上述挂起决定。例如当 UE判定该 Split承载待发送数据包的数量或者 该 Split承载的待发送数据包的缓存大小小于预设值时做出上述挂起决定。
当 UE做出上述挂起 Split承载的决定后,便首先需要挂起自身中与该 Split承载相关联的协议实体。 具体地, 可以通过如下方式实现: UE挂起 自身中与该 Split承载相关联且与第二基站 SeNB对应的无线链路控制实体 s-RLC ; 或者通过如下方式实现: UE重置自身中与该 Split承载相关联且 与第二基站 SeNB 对应的媒质接入控制实体 S-MAC , 并挂起自身中与该
Split承载相关联且与第二基站 SeNB对应的无线链路控制实体 s-RLC。
其中, 重置 s-MAC 实体具体包括: 清空 s-MAC 所使用的缓存, 将 s-MAC所使用的状态变量重新初始化,停止 s-MAC所使用的定时器等等; 挂起 s-RLC实体具体包括停止 s-RLC对数据包的处理,比如停止发送或接 收数据包。
进而, UE向 MeNB发送挂起指示, 该挂起指示用于指示该 UE挂起 了所述 Split承载在所述第二基站 SeNB上的数据传输。
如图 4所示, 在 UE挂起 Split承载的过程中, 仅涉及向 MeNB发送 挂起指示一条空口信令, 相比于图 2所示, 减少了一条空口信令。
可选的, 上述挂起指示中还可以包含挂起原因, 比如当 UE检测到 UE 和 SeNB的无线链路发生了 RLF时, 该挂起指示中包含的挂起原因可以是 触发该 RLF的原因。
本实施例中, 用户设备挂起承载在第二基站上的数据传输后, 向第一 基站发送用于指示该用户设备挂起了该承载在第二基站上的数据传输的 挂起指示。 由于用户设备可以自主决定是否挂起承载在第二基站上的数据 传输, 无需与第一基站交互从而由第一基站确定是否挂起该承载在第二基 站上的数据传输, 节省了信令开销; 另外, 以挂起的方式停止承载在第二 基站上的数据传输, 无需删除该承载相关的协议实体, 从而在后续再重新 开始该承载在第二基站上的数据传输时, 无需重新建立相关的协议实体, 有效提高了无线承载资源的使用效率。
可选的, 上述挂起指示还用于指示 MeNB向 SeNB发送挂起请求, 所 述挂起请求用于请求 SeNB挂起所述承载在 SeNB上的数据传输, 以使所 述 SeNB根据所述挂起请求挂起所述 Split承载的数据传输。
具体地, 如图 4所示, 当 MeNB接收到 UE发送的挂起指示之后, 根 据该挂起指示向 SeNB发送挂起请求, SeNB接收到该挂起请求之后, 可 以挂起 SeNB中与该 Split承载相关联的无线链路控制实体 ps-RLC; 也可 以重置 SeNB 中与所述承载相关联的媒质接入控制实体 ps-MAC, 挂起所 述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC。重置该 Split 承载的 ps-MAC实体, 以及挂起该 Split承载的 ps-RLC实体的过程与 UE 重置该 Split承载的 s-MAC实体以及挂起该 Split承载的 s-RLC实体的过 程类似, 不再赘述。 可以理解的是, SeNB重置 SeNB中与所述 Split承载 相关联的媒质接入控制实体 ps-MAC, 是一个可选的歩骤, 在 UE挂起时 重置了 s-MAC时, 相应的, SeNB才需要重置 ps-MAC。
进一歩地, UE向 MeNB发送挂起指示之后, 还包括: UE根据第二测 量结果与 MeNB交互, 恢复所述 Split承载在 SeNB上的数据传输。
其中, 第二测量结果为 UE对以下测量对象中的至少一种进行测量获 得的结果: UE与 SeNB之间的无线链路状态、 SeNB 的信号强度、 SeNB 的信号质量、 UE通过该 Split承载待发送的数据包的数量或者大小。
可选的, UE根据所述第二测量结果与 MeNB交互, 恢复所述 Split承 载在 SeNB上的数据传输, 可以通过如图 5所示中的方式实现:
UE根据第二测量结果确定需要恢复所述承载在 SeNB上的数据传输;
UE重建 UE中与所述承载相关联且与 SeNB对应的所述无线链路控制 实体 s-RLC, 并恢复所述 s-RLC;
UE向 MeNB发送恢复指示, 所述恢复指示用于指示 MeNB 向 SeNB 发送恢复请求, 述恢复请求用于请求 SeNB恢复所述承载在 SeNB上的数 据传输。
具体地, UE根据第二测量结果确定需要恢复所述承载在 SeNB 上的 数据传输, 可以通过如下方式实现: UE 根据第二测量结果确定是否恢复 所述 Split承载在 SeNB上的数据传输;
若是, 则 UE重建自身中与所述 Split承载相关联且与 SeNB对应的所 述无线链路控制实体 s-RLC, 并恢复所述 s-RLC; UE向 MeNB发送恢复 指示, 以使 MeNB 根据所述恢复指示向 SeNB 发送第一恢复请求, 以使 SeNB根据所述第一恢复请求恢复所述 Split承载在 SeNB上的数据传输。
具体来说, UE可以根据对 SeNB的新的测量结果做出上述恢复决定。 例如 UE对 SeNB进行无线链路监测 (Radio Link Monitoring, 以下简称 RLM ) , 根据 RLM判断 UE和 SeNB之间的无线链路重新恢复正常连接, 则 UE做出上述恢复决定; 再例如 UE对 SeNB的信号的强度或者质量进 行测量, 根据测量结果判定 SeNB的信号强度或者质量高于预设门限, 则 UE做出上述恢复决定; UE也可以根据通过该 Split承载的待发送数据包 的数量或者该 Split承载的待发送数据包的缓存状态做出上述决定。 例如 当 UE判定该 Split承载的待发送数据包的数量或者该 Split承载的待发送 数据包的缓存大小大于预设值时做出上述恢复决定。
另外, SeNB在接收到上述恢复请求后, 重建 SeNB中与所述 Split承 载相关联的无线链路控制实体 ps-RLC, 并恢复所述 ps-RLC; 或者, 重置 SeNB中与所述 Split承载相关联的媒质接入控制实体 ps-MAC,重建 SeNB 中与所述 Split 承载相关联的无线链路控制实体 ps-RLC , 并恢复所述 ps-RLC。 其中, 重建 ps-RLC实体具体比如包括: 将已经成功接收到的数 据包发送给 MeNB ; 丢弃需要发送但还未成功发送的数据包; 停止并且重 置 ps-RLC实体所使用的定时器和重新初始化 ps-RLC实体所使用的状态变 量等等。 恢复 ps-RLC实体即开始 ps-RLC实体对数据包的处理。
值得说明的是, 图 5中所示的测量报告对应本实施例中所述的第二测 量结果。 进一歩可选的, UE根据所述第二测量结果与 MeNB交互, 恢复所述 Split承载在 SeNB上的数据传输, 还可以通过如图 4或图 6所示中的方式 实现:
UE将所述第二测量结果发送给 MeNB , 以使 MeNB根据所述第二测 量结果确定是否恢复所述 Split承载在 SeNB上的数据传输;
若 MeNB根据所述第二测量结果确定需要恢复所述 Split承载在 SeNB 上的数据传输, 则 UE接收 MeNB发送的恢复命令, 并根据所述恢复命令 重建 UE中与所述 Split承载相关联且与 SeNB对应的无线链路控制实体 s-RLC, 并恢复该 s-RLC。 可选的, 该恢复命令中包含所述 Split承载的承 载标识。 此时, MeNB 除了向 UE发送上述恢复命令外, 还可以向 SeNB 发送第二恢复请求, SeNB根据该第二恢复请求执行以下操作: 重建 SeNB 中与所述承载相关联的无线链路控制实体 ps-RLC, 并恢复所述 ps-RLC; 或者, 根据该第二恢复请求执行以下操作: 重置 SeNB中与所述承载相关 联的媒质接入控制实体 ps-MAC; 重建 SeNB与所述承载相关联的无线链 路控制实体 ps-RLC, 并恢复所述 ps-RLC。
值得说明的是, 图 4和图 6中所示的测量报告对应本实施例中所述的 第二测量结果。 通过图 4、 图 5和图 6可知, 图 5和图 6所示实施例的区 别主要在于是由 MeNB确定恢复 Split承载还是由 UE确定恢复 Split承载, 通过由 UE确定恢复 Split承载可以进一歩减少空口信令开销。 并且, 图 4 所示实施例与图 6所示实施例的区别主要在于图 4中 MeNB在接收到 UE 发送的挂起指示后, 由于 UE已经挂起了 Split承载, 即不再向 SeNB发送 或从 SeNB接收相应 Split承载的数据包,因此为了进一歩避免 SeNB的无 用处理负荷, MeNB向 SeNB发送挂起请求, 以使 SeNB也挂起了自身对 该 Split承载的数据传输。
以上实施例中,由于用户设备可以自主决定是否挂起 Split承载在第二 基站上的数据传输, 无需与第一基站交互从而由第一基站确定是否挂起某 Split 承载在第二基站上的数据传输, 节省了信令开销; 另外, 停止 Split 承载在 SeNB上的数据传输是通过挂起方式实现的,无需删除 Split承载相 关的协议实体,从而在后续再重新开始该挂起的 Split承载在 SeNB上的数 据传输时, 通过恢复 Split承载的方式实现, 无需重新建立 Split承载相关 的协议实体, 有效提高了无线承载资源的使用效率; 而且, 用户设备还可 以自主决定是否恢复 Split承载上的数据传输, 进一歩节省了信令开销。
进一歩可选的, 如图 9所示, 不同于上述各实施例中由 UE自主决定 是否挂起承载的情况, 图 9中, UE还可以根据 MeNB下发的挂起命令来 执行相应的挂起操作。
具体地, UE接收 MeNB发送的挂起命令,所述挂起命令用于指示 UE 挂起所述 Split承载在 SeNB上的数据传输,其中,该挂起命令可以是 MeNB 根据另一挂起指示向 UE发送的, 该另一挂起指示是 SeNB挂起所述 Split 承载在自身上的数据传输后向 MeNB 发送的; 或者, 该挂起命令可以是 MeNB根据 UE上报的第一测量结果决定挂起所述 Split承载在 SeNB上的 数据传输后自身生成的。
UE根据所述挂起命令, 执行以下操作:
挂起 UE 中与该承载相关联且与 SeNB 对应的无线链路控制实体 s-RLC;
或者, UE执行以下操作:
重置 UE 中与所述承载相关联且与 SeNB 对应的媒质接入控制实体 s-MAC;
挂起 UE 中与所述承载相关联且与 SeNB 对应的无线链路控制实体 s-RLC。
图 7为本发明实施例五提供的无线承载处理方法的流程图, 如图 7所 示, 该方法包括:
歩骤 201、 第一基站接收用户设备发送的挂起指示, 所述挂起指示为 所述用户设备根据第一测量结果确定挂起承载在第二基站上的数据传输 后发送的;
歩骤 202、 所述第一基站根据所述挂起指示确定所述用户设备挂起所 述承载在所述第二基站上的数据传输。
仍以 Split承载为例说明, 执行本实施例所述方法的前提是, 在 UE和 MeNB及 SeNB间已经建立了 Split 7 载。 当 UE根据对预设的测量对象中 的至少一种进行测量获得的第一测量结果确定该 Split承载不适于在 SeNB 上进行数据传输时, 决定挂起所述 Split承载在 SeNB上的数据传输。 具体地, UE可以通过如下方式决定挂起所述 Split承载在 SeNB上的 数据传输:
UE根据第一测量结果确定是否挂起所述 Split承载在 SeNB上的数据 传输;
若是, 则 UE执行以下操作:
挂起 UE 中与所述承载相关联且与 SeNB 对应的无线链路控制实体 s-RLC;
或者, UE执行以下操作:
重置 UE 中与所述承载相关联且与 SeNB 对应的媒质接入控制实体 s-MAC;
挂起 UE 中与所述承载相关联且与 SeNB 对应的无线链路控制实体 s-RLC。
其中, 第一测量结果为 UE对以下预设测量对象中的至少一种进行测 量获得的结果:
UE与 SeNB之间的无线链路状态、 SeNB的信号强度、 SeNB的信号 质量、 UE通过所述承载待发送的数据包的数量或者大小。
具体的, UE可以根据对 SeNB的测量结果做出上述决定。例如 UE对 SeNB进行无线链路监测 (Radio Link Monitoring , 以下简称 RLM) , 根 据 RLM判断 UE和 SeNB之间的无线链路发生了无线链路失败( Radio Link Failure, 以下简称 RLF) , 则 UE做出上述决定; 再例如 UE对 SeNB的 信号的强度或者质量进行测量, 根据测量结果判定 SeNB的信号强度或者 质量低于预设门限, 则 UE做出上述决定。 UE也可以根据通过该 Split承 载的待发送数据包的数量或者该 Split承载的待发送数据包的缓存状态做 出上述决定。 例如当 UE判定该 Split承载的待发送数据包的数量或者该 Split承载的待发送数据包的缓存大小小于预设值时做出上述决定。
其中, UE决定挂起该 Split承载在 SeNB上传输, 即 UE决定不再从 SeNB上接收该 Split承载的下行数据,也不再向 SeNB发送该 Split承载的 上行数据。
其中, 重置 s-MAC 实体具体包括: 清空 s-MAC 所使用的缓存, 将 s-MAC 所使用的状态变量重新初始化, 停止 s-MAC 所使用的定时器等 等; 挂起 s-RLC实体具体包括停止 s-RLC对数据包的处理, 比如停止发送 或接收数据包。
进而, UE向 MeNB发送上述挂起指示, MeNB接收到该挂起指示后, 便确定 UE挂起了所述 Split承载在 SeNB上的数据传输。
本实施例中, 用户设备挂起承载在第二基站上的数据传输后, 向第一 基站发送用于指示该用户设备挂起了该承载在第二基站上的数据传输的 挂起指示。 由于用户设备可以自主决定是否挂起承载在第二基站上的数据 传输, 无需与第一基站交互从而由第一基站确定是否挂起该承载在第二基 站上的数据传输, 节省了信令开销; 另外, 以挂起的方式停止承载在第二 基站上数据传输, 无需删除该承载相关的协议实体, 从而在后续再重新开 始该承载在第二基站上数据传输时, 无需重新建立相关的协议实体, 有效 提高了无线承载资源的使用效率。
可选的, MeNB接收到 UE发送的挂起指示之后, 还包括:
MeNB 向 SeNB发送挂起请求, 所述挂起请求用于请求 SeNB挂起所 述承载在 SeNB上的数据传输,从而 SeNB根据该挂起请求执行以下操作: 挂起 SeNB中与所述承载相关联的无线链路控制实体 ps-RLC;或者, SeNB 根据所述挂起请求执行以下操作: 重置 SeNB中与所述承载相关联的媒质 接入控制实体 ps-MAC; 挂起 SeNB中与所述承载相关联的无线链路控制 实体 ps-RLC。可以理解的是, SeNB重置 SeNB中与所述 Split承载相关联 的媒质接入控制实体 ps-MAC , 是一个可选的歩骤, 在 UE挂起时重置了 s-MAC时, 相应的, SeNB才需要重置 ps-MAC。
进一歩可选的, MeNB接收到 UE发送的挂起指示之后, 还包括: MeNB接收 UE发送的恢复指示, 可选的, 该恢复指示中携带有所述 Split承载的承载标识, 所述恢复指示为该 UE根据第二测量结果确定需要 恢复所述 Split承载在 SeNB上的数据传输后发送的;
MeNB根据所述恢复指示向 SeNB发送第一恢复请求, 所述第一恢复 请求用于请求 SeNB恢复所述承载在 SeNB上的数据传输, 以使 SeNB根 据所述第一恢复请求恢复所述 Split承载的数据传输。
实际应用中, UE 可以被设置每隔一定时间周期对上述预设测量对象 进行一次测量,当 UE根据某一次的测量结果确定挂起该 Split承载在 SeNB 上的数据传输后, 该 UE在之后的某一次测量中获得的另一测量结果如果 指示可以通过 Split承载继续传输数据时, 确定恢复该 Split承载, 从而向 MeNB发送恢复指示, 如图 5中所示。
具体来说, UE 可以根据对预设测量对象的新的测量结果即第二测量 结果做出上述恢复决定。例如 UE对 SeNB进行无线链路监测(Radio Link Monitoring , 以下简称 RLM ) , 根据 RLM判断 UE和 SeNB之间的无线链 路重新恢复正常连接, 则 UE做出上述恢复决定; 再例如 UE对 SeNB的 信号的强度或者质量进行测量, 根据测量结果判定 SeNB的信号强度或者 质量高于预设门限, 则 UE做出上述恢复决定; 再例如 UE也可以根据通 过该 Split承载的待发送数据包的数量或者该 Split承载的待发送数据包的 缓存状态做出上述决定。例如当 UE判定该 Split承载的待发送数据包的数 量或者该 Split承载的待发送数据包的缓存大小大于预设值时做出上述恢 复决定。
MeNB接收到 UE发送的恢复指示后, 根据该恢复指示向 SeNB发送 第一恢复请求,以使 SeNB根据该第一恢复请求恢复所述 Split承载在 SeNB 上的数据传输。
具体地, SeNB 在接收到上述第一恢复请求后, 根据所述第一恢复请 求执行以下操作: 重建 SeNB 中与所述承载相关联的无线链路控制实体 ps-RLC, 并恢复所述 ps-RLC; 或者, 根据所述第一恢复请求执行以下操 作: 重置 SeNB 中与所述承载相关联的媒质接入控制实体 ps-MAC; 重建 SeNB 中与所述承载相关联的无线链路控制实体 ps-RLC , 并恢复所述 ps-RLC 其中, 重建 ps-RLC实体具体比如包括: 将已经成功接收到的数 据包发送给 MeNB ; 丢弃需要发送但还未成功发送的数据包; 停止并且重 置 ps-RLC实体所使用的定时器和重新初始化 ps-RLC实体所使用的状态变 量等等。 恢复 ps-RLC实体即开始 ps-RLC实体对数据包的处理。
可选的, MeNB发送的上述恢复请求中还可以包含一个原因指示, 该 原因指示用来指示恢复所述 Split承载的原因。 比如当中 UE对 SeNB进行 测量的结果为 UE和 SeNB的无线链路发生了 RLF时, 该原因指示的取值 可以是 RLF, 意味着 UE和 SeNB间的 RLF已经消除。
可选的, 该恢复请求中可以包含两个列表, 其中一个列表用来包含需 要 SeNB添加的承载的标识, 另外一个列表用来包含需要 SeNB释放的承 载的标识, 而上述需要恢复的 Split承载的标识同时包含在这两个列表中, 以这种方式告知 SeNB需要恢复该 Split承载。
进一歩可选的, MeNB接收到 UE发送的挂起指示之后, 还包括:
MeNB确定需要恢复所述承载在 SeNB上的数据传输;
MeNB向所述用户设备发送恢复命令, 并向所述 SeNB发送第二恢复 请求, 所述恢复命令用于指示 UE恢复所述承载在 SeNB上的数据传输, 所述第二恢复请求用于请求 SeNB恢复所述承载在 SeNB上的数据传输。
具体地, MeNB确定需要恢复所述承载在 SeNB上的数据传输, 可以 通过如下判断方式实现: MeNB确定是否恢复所述 Split承载在 SeNB上的 数据传输;
若是, 则 MeNB向 UE发送恢复命令, 并向 SeNB发送第二恢复请求, 以使 UE和 SeNB分别根据所述恢复命令和所述第二恢复请求恢复所述承 载在 SeNB上的数据传输。
其中, MeNB确定是否恢复所述 Split承载在 SeNB上的数据传输, 可 以通过如下方式实现:
MeNB接收 UE发送的所述第二测量结果;
MeNB根据所述第二测量结果确定是否恢复所述 Split承载在 SeNB上 的数据传输。
不同于上述 UE根据其对 SeNB的新的测量结果自主决定是否恢复所 述 Split承载在 SeNB上的数据传输, 本实施例中, 如图 4和图 6中所示, 还可以通过如下方式实现确定是否恢复所述 Split承载在 SeNB上的数据传 输: UE将第二测量结果发送给 MeNB , 由 MeNB根据该第二测量结果确 定是否恢复所述 Split承载在 SeNB上的数据传输。类似的, 若该第二测量 结果指示可以通过 Split承载继续在 SeNB上传输数据时, 则确定恢复该 Split承载在 SeNB上的数据传输。
可选的, MeNB也可以根据其他因素来确定是否恢复所述 Split承载在 SeNB上的数据传输, 比如根据其测量的该 Split承载上待发送数据包的多 少等因素。
进而, MeNB 向 UE发送恢复命令, 以使 UE根据所述恢复命令恢复 所述 Split承载在 SeNB上的数据传输。 具体的, UE根据所述恢复命令重 建 UE中与所述承载相关联且与 SeNB对应的无线链路控制实体 s-RLC, 并恢复该 s-RLC。 另外, MeNB还向 SeNB发送第二恢复请求, 以使 SeNB 根据所述第二恢复请求恢复所述 Split承载在 SeNB上的数据传输。具体的, SeNB根据所述第二恢复请求执行以下操作: 重建 SeNB 中与所述承载相 关联的无线链路控制实体 ps-RLC, 并恢复所述 ps-RLC; 或者, 根据所述 第二恢复请求执行以下操作: 重置 SeNB中与所述承载相关联的媒质接入 控制实体 ps-MAC ; 重建 SeNB 与所述承载相关联的无线链路控制实体 ps-RLC, 并恢复所述 ps-RLC。
本实施例中, 由于用户设备可以自主决定是否挂起承载上的数据传 输, 无需与第一基站交互, 由第一基站确定是否挂起承载上的数据传输, 节省了信令开销;另外, 以挂起的方式停止承载在第二基站上的数据传输, 无需删除承载相关的协议实体, 从而在后续再重新开始该承载在第二基站 上的数据传输时, 通过恢复承载的方式实现, 无需重新建立该承载相关的 协议实体, 有效提高了无线承载资源的使用效率; 而且, 用户设备还可以 自主决定是否恢复该承载在第二基站上的数据传输, 进一歩节省了信令开 销。
图 8为本发明实施例六提供的无线承载处理方法的流程图, 如图 8所 示, 该方法包括:
歩骤 301、 第二基站挂起承载在所述第二基站上的数据传输; 歩骤 302、 所述第二基站向第一基站发送挂起指示, 所述挂起指示用 于指示所述第二基站挂起了所述承载在所述第二基站上的数据传输。
仍以 Split承载为例, 以上实施例均是从 UE主动触发挂起 Split承载 的流程的角度进行了介绍。 本实施例中可选的, 还可以由 SeNB触发挂起 Split承载在所述第二基站上的数据传输的流程。 具体地, 所述 SeNB可以 根据测量结果确定需要挂起所述承载在 SeNB上的数据传输。 具体地, 可 以通过以下判断的方式实现:
SeNB 根据测量结果确定是否挂起所述承载在所述第二基站上的数据 传输;
若是, 则 SeNB执行以下操作: 挂起 SeNB中与所述承载相关联的无 线链路控制实体 ps-RLC; 或者, SeNB执行以下操作: 重置 SeNB中与所 述承载相关联的媒质接入控制实体 ps-MAC; 挂起 SeNB中与所述承载相 关联的无线链路控制实体 ps-RLC。
其中, 为了与下面的另一个 UE的测量结果区分, 将上述 SeNB确定 需要挂起承载在所述第二基站上的数据传输中所依据的测量结果称为第 一测量结果, 该第一测量结果为 SeNB对以下测量对象中的至少一种进行 测量获得的结果:
UE 的上行信号的强度、 UE 的上行信号的质量、 无线链路控制实体 ps-RLC的重传次数。 具体地, SeNB可以根据对 UE发送的上行信号的强 度或者质量的测量做出上述挂起决定, SeNB也可以根据实体 ps-RLC是否 达到了下行最大重传次数做出上述挂起决定, 即 ps-RLC向 UE发送一个 数据包之后若没有得到 UE反馈的成功接收指示则 ps-RLC会重复发送该 数据包, 当 ps-RLC重复发送同一数据包的次数达到了预设值之后, SeNB 会做出上述挂起决定。
进而, SeNB向 MeNB发送挂起指示, 可选的, 该挂起指示中携带有 所述 Split承载的承载标识, 以使 MeNB根据该挂起指示中包含的该承载 标识确定对应的 UE, 进而根据该挂起指示向确定的 UE发送挂起命令, 以使该 UE根据该挂起命令挂起所述 Split承载在 SeNB上的数据传输,UE 的挂起操作在上述实施例中已经描述, 不再赘述。
至此, 虽然 UE和 SeNB之间的 Split承载被挂起, 但是 UE仍旧每隔 一定时间周期测量以下预设测量对象中的至少一种: UE与 SeNB之间的 无线链路状态、 SeNB的信号强度、 SeNB的信号质量、 UE通过所述 Split 承载待发送的数据包的数量或者大小。 并可选的, 该 UE可以自主根据测 量结果即第二测量结果来确定是否恢复 Split承载在 SeNB上的数据传输。
具体的, UE可以根据第二测量结果做出上述恢复决定。 例如 UE对
SeNB进行无线链路监测 (Radio Link Monitoring , 以下简称 RLM) , 根 据 RLM判断 UE和 SeNB之间的无线链路重新恢复正常连接,则 UE做出 上述恢复决定; 再例如 UE对 SeNB的信号的强度或者质量进行测量, 根 据测量结果判定 SeNB的信号强度或者质量高于预设门限, 则 UE做出上 述恢复决定;再例如 UE也可以根据通过该 Split承载的待发送数据包的数 量或者该 Split承载的待发送数据包的缓存状态做出上述决定。 例如当 UE 判定该 Split承载的待发送数据包的数量或者该 Split承载的待发送数据包 的缓存大小大于预设值时做出上述恢复决定。
进一歩可选的, 如图 9所示, 该 UE也可以将上述第二测量结果发送 给 MeNB , 由该 MeNB根据该第二测量结果来确定是否恢复所述 Split承 载在 SeNB上的数据传输, 其确定恢复的判断与 UE判断的条件类似, 不 赘述。
进而, 当 MeNB根据该第二测量结果来确定需要恢复所述 Split承载 在 SeNB上的数据传输后,如图 9所示,该 MeNB向 SeNB发送恢复请求, SeNB根据该恢复请求恢复所述 Split承载在 SeNB上的数据传输。具体地, SeNB根据所述恢复请求重建 SeNB中与所述 Split承载相关联的无线链路 控制实体 ps-RLC, 并恢复所述 ps-RLC。
可选的, 在由 MeNB根据该第二测量结果确定恢复所述 Split承载在 SeNB上的数据传输后, MeNB还可以向 UE发送恢复命令, 使得 UE恢复 该 Split承载的数据传输。
进一歩可选的, 图 10(a)和图 10(b)为本发明实施例八提供的无线承载 处理方法的信令交互示意图, 如图 10(a) 所示, 在图 5所示实施例的基础 上, 以及如图 10(b)所示, 在图 6所示实施例的基础上, 在 UE主动触发挂 起 Split承载,而 MeNB在接收到 UE发送的挂起指示后并未向 SeNB发送 挂起请求的情况下, SeNB 也可以根据自身对 UE上行信号强度或质量的 测量, 或者根据对自身无线链路控制实体 ps-RLC的重传次数的测量结果 等来确定自身也挂起该 Split承载的数据传输, 并重置 SeNB 中与该 Split 承载相关联的媒质接入控制实体 ps-MAC, 并挂起 SeNB中与该 Split承载 相关联的无线链路控制实体 ps-RLC。 相应的, 在 SeNB接收到 MeNB发 送的恢复请求后,其仅需要重建 SeNB中与所述 Split承载对应的无线链路 控制实体 ps-RLC , 并恢复 SeNB中与所述 Split承载对应的无线链路控制 实体 ps-RLC , 不再需要重置 SeNB中与该 Split承载对应的媒质接入控制 实体 ps-MAC。
可以理解的是, 由 UE主动触发 Split承载的挂起流程中, 不管 MeNB 是否向 SeNB发送挂起请求, SeNB都可以触发其对该 Split承载的挂起流 程。 由于在相似的时间, UE和 SeNB所经历的无线信道环境比较类似, 两者对对方信号或者两者间链路的测量结果具有相似性, 因此, 即是未接 收到 MeNB的挂起请求, SeNB也可以根据其测量结果来决定是否挂起该 Split承载在 SeNB上的数据传输。
本实施例中,由于第二基站可以自主决定是否挂起 Split承载上的数据 传输, 无需与第一基站交互, 节省了信令开销; 另外, 通过挂起 Split承 载的方式停止 Split承载在第二基站上的数据传输, 无需删除 Split承载相 关的协议实体, 从而在后续再重新开始该挂起的 Split承载在第二基站上 的数据传输时, 通过恢复 Split承载的方式实现, 无需重新建立 Split承载 相关的协议实体, 有效提高了无线承载资源的使用效率; 而且, 用户设备 还可以自主决定是否恢复 Split承载第二基站上的数据传输, 进一歩节省 了信令开销。
图 11为本发明实施例九提供的用户设备的结构示意图,如图 11所示, 该用户设备包括:
处理模块 11, 用于挂起承载在第二基站上的数据传输;
发送模块 12, 用于向第一基站发送挂起指示, 所述挂起指示用于指示 所述用户设备挂起所述承载在所述第二基站上的数据传输。
进一歩地, 所述处理模块 11, 包括:
确定单元 111, 用于根据第一测量结果确定需要挂起所述承载在所述 第二基站上的数据传输;
处理单元 112, 用于执行以下操作:
挂起所述用户设备中与所述承载相关联且与所述第二基站对应的无 线链路控制实体 s-RLC;
或者, 所述处理单元 112用于执行以下操作:
重置所述用户设备中与所述承载相关联且与所述第二基站对应的媒 质接入控制实体 s-MAC;
挂起所述用户设备中与所述承载相关联且与所述第二基站对应的无 线链路控制实体 s-RLC。
进一歩地, 所述用户设备还包括:
接收模块 21, 用于接收所述第一基站发送的挂起命令, 所述挂起命令 用于指示所述用户设备挂起所述承载在所述第二基站上的数据传输; 相应的, 所述处理单元 112还用于执行以下操作:
挂起所述用户设备中与所述承载相关联且与所述第二基站对应的无 线链路控制实体 s-RLC;
或者, 所述处理单元 112还用于执行以下操作:
重置所述用户设备中与所述承载相关联且与所述第二基站对应的媒 质接入控制实体 s-MAC;
挂起所述用户设备中与所述承载相关联且与所述第二基站对应的无 线链路控制实体 s-RLC。
进一歩地, 所述挂起指示还用于指示所述第一基站向所述第二基站发 送挂起请求, 所述挂起请求用于请求所述第二基站挂起所述承载在所述第 二基站上的数据传输。
进一歩地, 所述确定单元 111, 还用于根据第二测量结果确定需要恢 复所述承载在所述第二基站上的数据传输;
所述处理单元, 还用于重建所述用户设备中与所述承载相关联且与所 述第二基站对应的所述无线链路控制实体 s-RLC, 并恢复所述 s-RLC; 所述处理模块 11还包括:
发送单元 113, 用于向所述第一基站发送恢复指示, 所述恢复指示用 于指示所述第一基站向所述第二基站发送恢复请求, 所述恢复请求用于请 求所述第二基站恢复所述承载在所述第二基站上的数据传输。
进一歩地, 所述发送单元 113, 还用于将第二测量结果发送给所述第 一基站;
所述处理单元 112, 还用于接收所述第一基站发送的恢复命令, 根据 所述恢复命令重建所述用户设备中与所述承载相关联且与所述第二基站 对应的所述无线链路控制实体 s-RLC, 并恢复所述 s-RLC , 所述恢复命令 为所述第一基站根据所述第二测量结果确定需要恢复所述承载在所述第 二基站上的数据传输后发送的。
本实施例的用户设备可以用于执行图 3所示方法实施例的技术方案, 其实现原理和技术效果类似, 此处不再赘述。
图 12为本发明实施例十提供的第一基站的结构示意图,如图 12所示, 该第一基站包括:
接收模块 31, 用于接收用户设备发送的挂起指示;
处理模块 32,用于根据所述挂起指示确定所述用户设备挂起所述承载 在所 二基站上的数据传输。
Figure imgf000032_0001
发送模块 33, 用于向所述第二基站发送挂起请求, 所述挂起请求用于 请求所述第二基站挂起所述承载在所述第二基站上的数据传输。
具体地, 所述发送模块 33, 具体用于:
向所述第二基站发送所述挂起请求, 所述挂起请求用于请求所述第二 基站执行以下操作:
挂起所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC; 或者, 向所述第二基站发送所述挂起请求, 所述挂起请求用于请求所 述第二基站执行以下操作:
重置所述第二基站中与所述承载相关联的媒质接入控制实体 ps-MAC;
挂起所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC。 进一歩地, 所述接收模块 31还用于:
接收所述用户设备发送的恢复指示;
所述发送模块 33 还用于: 根据所述恢复指示向所述第二基站发送第 一恢复请求, 所述第一恢复请求用于请求所述第二基站恢复所述承载在所 述第二基站上的数据传输。
进一歩地, 所述发送模块 33, 具体用于:
根据所述恢复指示向所述第二基站发送第一恢复请求, 所述第一恢复 请求用于请求所述第二基站执行以下操作:
重建所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC, 并恢复所述 ps-RLC;
或者, 根据所述恢复指示向所述第二基站发送第一恢复请求, 所述第 一恢复请求用于请求所述第二基站执行以下操作:
重置所述第二基站中与所述承载相关联的媒质接入控制实体 ps-MAC; 重建所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC, 并恢复所述 ps-RLC。
进一歩地, 所述第一基站还包括:
确定模块 34,用于根据确定需要恢复所述承载在所述第二基站上的数 据传输;
所述发送模块 33 还用于: 向所述用户设备发送恢复命令, 并向所述 第二基站发送第二恢复请求, 所述恢复命令用于指示所述用户设备恢复所 述承载在所述第二基站上的数据传输, 所述第二恢复请求用于请求所述第 二基站恢复所述承载在所述第二基站上的数据传输。
进一歩地, 所述接收模块 31还用于:
接收所述用户设备发送的第二测量结果;
所述确定模块 34,还用于根据所述第二测量结果确定需要恢复所述承 载在所述第二基站上的数据传输。
进一歩地, 所述发送模块 33具体用于:
向所述用户设备发送恢复命令, 所述恢复命令用于指示所述用户设备 重建所述用户设备中与所述承载相关联且与第二基站对应的无线链路控 制实体 s-RLC, 并恢复所述 s-RLC。
进一歩地, 所述发送模块 33具体用于:
向所述第二基站发送第二恢复请求, 所述第二恢复请求用于请求所述 第二基站执行以下操作:
重建所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC, 并恢复所述 ps-RLC;
或者, 向所述第二基站发送第二恢复请求, 所述第二恢复请求用于请 求所述第二基站执行以下操作:
重置所述第二基站中与所述承载相关联的媒质接入控制实体 ps-MAC;
重建所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC , 并恢复所述 ps-RLC。
具体地, 所述第一测量结果和所述第二测量结果为所述用户设备对以 下测量对象中的至少一种进行测量获得的结果: 所述用户设备与所述第二基站之间的无线链路状态、 所述第二基站的 信号强度、 所述第二基站的信号质量、 所述用户设备通过所述承载待发送 的数据包的数量或者大小。
本实施例的第一基站可以用于执行图 7所示方法实施例的技术方案, 其实现原理和技术效果类似, 此处不再赘述。
图 13为本发明实施例十一提供的第二基站的结构示意图, 如图 13所 示, 该第二基站包括:
处理模块 41, 用于挂起承载在所述第二基站上的数据传输;
发送模块 42, 用于向第一基站发送挂起指示, 所述挂起指示用于指示 所述第二基站挂起所述承载在所述第二基站上的数据传输。
进一歩地, 所述处理模块 41, 包括:
确定单元 411, 用于根据测量结果确定需要挂起所述承载在所述第二 基站上的数据传输;
处理单元 412, 用于执行以下操作:
挂起所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC; 或者, 所述处理单元 412用于执行以下操作:
重置所述第二基站中与所述承载相关联的媒质接入控制实体 ps-MAC;
挂起所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC。 进一歩地, 所述挂起指示还用于指示所述第一基站向所述用户设备发 送挂起命令, 所述挂起命令用于指示所述用户设备挂起所述承载在所述第 二基站上的数据传输。
进一歩地, 所述第二基站还包括:
接收模块 43, 用于接收所述第一基站发送的恢复请求;
所述处理模块 41,还用于根据所述恢复请求恢复所述承载在所述第二 基站上的数据传输。
进一歩地, 所述处理模块 41, 具体用于:
根据所述恢复请求重建所述第二基站中与所述承载相关联的无线链 路控制实体 ps-RLC, 并恢复所述 ps-RLC。
具体地, 所述测量结果为所述第二基站对以下测量对象中的至少一种 进行测量获得的结果:
所述用户设备的上行信号的强度、 所述用户设备的上行信号的质量、 所述无线链路控制实体 ps-RLC的重传次数。
本实施例的第二基站可以用于执行图 8所示方法实施例的技术方案, 其实现原理和技术效果类似, 此处不再赘述。
图 14为本发明实施例十二提供的用户设备的结构示意图, 如图 14所 示, 该用户设备包括:
存储器 51以及与所述存储器 51连接的处理器 52, 其中, 所述存储器 51用于存储一组程序代码,所述处理器 52用于调用所述存储器 51中存储 的程序代码, 以执行如图 3所示无线承载处理方法中的: 挂起承载在第二 基站上的数据传输;
所述用户设备还包括发射器 53,所述发射器 53与所述处理器 52通过 总线连接, 所述发射器用于向第一基站发送挂起指示, 所述挂起指示用于 指示所述用户设备挂起所述承载在所述第二基站上的数据传输。
进一歩地, 所述处理器 52 还用于根据第一测量结果确定需要挂起所 述承载在所述第二基站上的数据传输; 所述处理器 52还用于执行以下操 作: 挂起所述用户设备中与所述承载相关联且与所述第二基站对应的无线 链路控制实体 s-RLC; 或者, 所述处理器 52还用于执行以下操作: 重置 所述用户设备中与所述承载相关联且与所述第二基站对应的媒质接入控 制实体 s-MAC ;挂起所述用户设备中与所述承载相关联且与所述第二基站 对应的无线链路控制实体 s-RLC。
进一歩地, 所述用户设备还包括接收器 54, 所述接收器 54用于接收 所述第一基站发送的挂起命令, 所述挂起命令用于指示所述用户设备挂起 所述承载在所述第二基站上的数据传输;
所述处理器 52 还用于根据所述挂起命令, 执行以下操作: 挂起所述 用户设备中与所述承载相关联且与所述第二基站对应的无线链路控制实 体 s-RLC ; 或者, 所述处理器 52还用于根据所述挂起命令, 执行以下操 作: 重置所述用户设备中与所述承载相关联且与所述第二基站对应的媒质 接入控制实体 s-MAC;挂起所述用户设备中与所述承载相关联且与所述第 二基站对应的无线链路控制实体 s-RLC。 进一歩地, 所述挂起指示还用于指示所述第一基站向所述第二基站 发送挂起请求, 所述挂起请求用于请求所述第二基站挂起所述承载在所述 第二基站上的数据传输。
进一歩地, 所述处理器 52 还用于根据第二测量结果确定需要恢复所 述承载在所述第二基站上的数据传输; 重建所述用户设备中与所述承载相 关联且与所述第二基站对应的所述无线链路控制实体 s-RLC, 并恢复所述 s-RLC。
所述发射器 53 还用于向所述第一基站发送恢复指示, 所述恢复指示 用于指示所述第一基站向所述第二基站发送恢复请求, 所述恢复请求用于 请求所述第二基站恢复所述承载在所述第二基站上的数据传输。
进一歩地, 所述发射器 53 还用于将所述第二测量结果发送给所述第 一基站;
所述接收器 54还用于接收所述第一基站发送的恢复命令;
所述处理器 52还用于根据所述恢复命令重建所述用户设备中与所述 承载相关联且与所述第二基站对应的所述无线链路控制实体 s-RLC, 并恢 复所述 s-RLC, 所述恢复命令为所述第一基站根据所述第二测量结果确定 需要恢复所述承载在所述第二基站上的数据传输后发送的。
其中, 所述第一测量结果和所述第二测量结果为所述用户设备对以下 测量对象中的至少一种进行测量获得的结果:
所述用户设备与所述第二基站之间的无线链路状态、 所述第二基站的 信号强度、 所述第二基站的信号质量、 所述用户设备通过所述承载待发送 的数据包的数量或者大小。
图 15为本发明实施例十三提供的第一基站的结构示意图, 如图 15所 示, 该第一基站包括:
接收器 61, 用于接收用户设备发送的挂起指示;
存储器 62以及与所述存储器 62连接的处理器 63, 所述处理器 63与 所述接收器 61通过总线进行连接, 其中, 所述存储器 62用于存储一组程 序代码, 所述处理器 63用于调用所述存储器 62中存储的程序代码, 以执 行如图 7所示无线承载处理方法中的: 根据所述挂起指示确定所述用户设 备挂起所述承载在所述第二基站上的数据传输。 所述第一基站还包括发射器 64, 用于向所述第二基站发送挂起请求, 所述挂起请求用于请求所述第二基站挂起所述承载在所述第二基站上的 数据传输。
进一歩地, 所述发射器 64还用于向所述第二基站发送所述挂起请求, 所述挂起请求用于请求所述第二基站执行以下操作: 挂起所述第二基站中 与所述承载相关联的无线链路控制实体 ps-RLC ; 或者, 所述挂起请求用 于请求所述第二基站执行以下操作: 重置所述第二基站中与所述承载相关 联的媒质接入控制实体 ps-MAC; 挂起所述第二基站中与所述承载相关联 的无线链路控制实体 ps-RLC。
进一歩地, 所述接收器 61还用于接收所述用户设备发送的恢复指示; 所述发射器 64 还用于根据所述恢复指示向所述第二基站发送第一恢 复请求, 所述第一恢复请求用于请求所述第二基站恢复所述承载在所述第 二基站上的数据传输。
进一歩地, 所述发射器 64 还用于根据所述恢复指示向所述第二基站 发送第一恢复请求, 所述第一恢复请求用于请求所述第二基站执行以下操 作: 重建所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC , 并恢复所述 ps-RLC; 或者, 所述第一恢复请求用于请求所述第二基站执 行以下操作: 重置所述第二基站中与所述承载相关联的媒质接入控制实体 ps-MAC ; 重建所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC , 并恢复所述 ps-RLC。
进一歩地, 所述处理器 63 还用于确定需要恢复所述承载在所述第二 基站上的数据传输;
所述发送器 64 还用于向所述用户设备发送恢复命令, 并向所述第二 基站发送第二恢复请求, 所述恢复命令用于指示所述用户设备恢复所述承 载在所述第二基站上的数据传输, 所述第二恢复请求用于请求所述第二基 站恢复所述承载在所述第二基站上的数据传输。
进一歩地, 所述接收器 61 还用于接收所述用户设备发送的第二测量 结果;
相应的, 所述处理器 63 还用于根据所述第二测量结果确定需要恢复 所述承载在所述第二基站上的数据传输。 进一歩地, 所述发射器 64还用于向所述用户设备发送恢复命令, 所 述恢复命令用于指示所述用户设备重建所述用户设备中与所述承载相关 联且与第二基站对应的无线链路控制实体 s-RLC , 并恢复所述 s-RLC。
进一歩地, 所述发射器 64还用于向所述第二基站发送第二恢复请求, 所述第二恢复请求用于请求所述第二基站执行以下操作: 重建所述第二基 站中与所述承载相关联的无线链路控制实体 ps-RLC ,并恢复所述 ps-RLC ; 或者, 所述第二恢复请求用于请求所述第二基站执行以下操作: 重置所述 第二基站中与所述承载相关联的媒质接入控制实体 ps-MAC; 重建所述第 二基站中与所述承载相关联的无线链路控制实体 ps-RLC , 并恢复所述 ps-RLC。
图 16为本发明实施例十四提供的第二基站的结构示意图, 如图 16所 示, 该第二基站包括:
存储器 71以及与所述存储器 71连接的处理器 72, 其中, 所述存储器 71用于存储一组程序代码, 所述处理器 72用于调用所述存储器 71中存储 的程序代码, 以执行如图 8所示无线承载处理方法中的: 挂起承载在所述 第二基站上的数据传输;
发射器 73, 所述发射器 73与所述处理器 72通过总线连接, 所述发射 器 73用于向第一基站发送挂起指示, 所述挂起指示用于指示所述第二基 站挂起所述承载在所述第二基站上的数据传输。
进一歩地, 所述处理器 72 还用于根据测量结果确定需要挂起所述承 载在所述第二基站上的数据传输; 所述处理器 72还用于执行以下操作: 挂起所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC; 或 者, 所述处理器 72还用于执行以下操作: 重置所述第二基站中与所述承 载相关联的媒质接入控制实体 ps-MAC; 挂起所述第二基站中与所述承载 相关联的无线链路控制实体 ps-RLC。
进一歩地, 所述挂起指示还用于指示所述第一基站向用户设备发送挂 起命令, 所述挂起命令用于指示所述用户设备挂起所述承载在所述第二基 站上的数据传输。
进一歩地, 所述第二基站还包括: 接收器 74, 用于接收所述第一基站 发送的恢复请求; 所述处理器 72 还用于根据所述恢复请求恢复所述承载在所述第二基 站上的数据传输。
进一歩地, 所述处理器 72 还用于根据所述恢复请求重建所述第二基 站中与所述承载相关联的无线链路控制实体 ps-RLC,并恢复所述 ps-RLC。
其中, 所述测量结果为所述第二基站对以下测量对象中的至少一种进 行测量获得的结果:
所述用户设备的上行信号的强度、 所述用户设备的上行信号的质量、 所述无线链路控制实体 ps-RLC的重传次数。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分歩骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的歩骤; 而前述 的存储介质包括: R0M、 RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替 换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种无线承载处理方法, 其特征在于, 包括:
用户设备挂起承载在第二基站上的数据传输;
所述用户设备向第一基站发送挂起指示, 所述挂起指示用于指示所述 用户设备挂起所述承载在所述第二基站上的数据传输。
2、 根据权利要求 1 所述的方法, 其特征在于, 所述用户设备挂起承 载在第二基站上的数据传输, 包括:
所述用户设备根据第一测量结果确定需要挂起所述承载在所述第二 基站上的数据传输;
所述用户设备执行以下操作: 挂起所述用户设备中与所述承载相关联 且与所述第二基站对应的无线链路控制实体 s-RLC;
或者, 所述用户设备执行以下操作: 重置所述用户设备中与所述承载 相关联且与所述第二基站对应的媒质接入控制实体 s-MAC;
挂起所述用户设备中与所述承载相关联且与所述第二基站对应的无 线链路控制实体 s-RLC。
3、 根据权利要求 1 所述的方法, 其特征在于, 所述用户设备挂起承 载在第二基站上的数据传输, 包括:
所述用户设备接收所述第一基站发送的挂起命令, 所述挂起命令用于 指示所述用户设备挂起所述承载在所述第二基站上的数据传输;
所述用户设备根据所述挂起命令, 执行以下操作: 挂起所述用户设备 中与所述承载相关联且与所述第二基站对应的无线链路控制实体 s-RLC; 或者, 所述用户设备执行以下操作:
重置所述用户设备中与所述承载相关联且与所述第二基站对应的媒 质接入控制实体 s-MAC;
挂起所述用户设备中与所述承载相关联且与所述第二基站对应的无 线链路控制实体 s-RLC。
4、 根据权利要求 1 所述的方法, 其特征在于, 所述挂起指示还用于 指示所述第一基站向所述第二基站发送挂起请求, 所述挂起请求用于请求 所述第二基站挂起所述承载在所述第二基站上的数据传输。
5、 根据权利要求 1至 4中任一项所述的方法, 其特征在于, 所述用 户设备向第一基站发送挂起指示之后, 还包括:
所述用户设备根据第二测量结果确定需要恢复所述承载在所述第二 基站上的数据传输;
所述用户设备重建所述用户设备中与所述承载相关联且与所述第二 基站对应的所述无线链路控制实体 s-RLC, 并恢复所述 s-RLC;
所述用户设备向所述第一基站发送恢复指示, 所述恢复指示用于指示 所述第一基站向所述第二基站发送恢复请求, 所述恢复请求用于请求所述 第二基站恢复所述承载在所述第二基站上的数据传输。
6、 根据权利要求 1至 4中任一项所述的方法, 其特征在于所述用户 设备向第一基站发送挂起指示之后, 还包括:
所述用户设备将第二测量结果发送给所述第一基站;
所述用户设备接收所述第一基站发送的恢复命令, 根据所述恢复命令 重建所述用户设备中与所述承载相关联且与所述第二基站对应的所述无 线链路控制实体 s-RLC, 并恢复所述 s-RLC , 所述恢复命令为所述第一基 站根据所述第二测量结果确定需要恢复所述承载在所述第二基站上的数 据传输后发送的。
7、 根据权利要求 2至 6中任一项所述的方法, 其特征在于, 所述第 一测量结果和所述第二测量结果为所述用户设备对以下测量对象中的至 少一种进行测量获得的结果:
所述用户设备与所述第二基站之间的无线链路状态、 所述第二基站的 信号强度、 所述第二基站的信号质量、 所述用户设备通过所述承载待发送 的数据包的数量或者大小。
8、 一种无线承载处理方法, 其特征在于, 包括:
第一基站接收用户设备发送的挂起指示;
所述第一基站根据所述挂起指示确定所述用户设备挂起所述承载在 所述第二基站上的数据传输。
9、 根据权利要求 8 所述的方法, 其特征在于, 所述第一基站接收用 户设备发送的挂起指示之后, 还包括:
所述第一基站向所述第二基站发送挂起请求, 所述挂起请求用于请求 所述第二基站挂起所述承载在所述第二基站上的数据传输。
10、 根据权利要求 9所述的方法, 其特征在于, 所述第一基站向所述 第二基站发送挂起请求, 所述挂起请求用于请求所述第二基站挂起所述承 载在所述第二基站上的数据传输, 包括:
所述第一基站向所述第二基站发送所述挂起请求, 所述挂起请求用于 请求所述第二基站执行以下操作:
挂起所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC; 或者, 所述挂起请求用于请求所述第二基站执行以下操作:
重置所述第二基站中与所述承载相关联的媒质接入控制实体 ps-MAC;
挂起所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC。
11、 根据权利要求 8所述的方法, 其特征在于, 所述第一基站接收用 户设备发送的挂起指示之后, 还包括:
所述第一基站接收所述用户设备发送的恢复指示;
所述第一基站根据所述恢复指示向所述第二基站发送第一恢复请求, 所述第一恢复请求用于请求所述第二基站恢复所述承载在所述第二基站 上的数据传输。
12、 根据权利要求 11 所述的方法, 其特征在于, 所述第一基站根据 所述恢复指示向所述第二基站发送第一恢复请求, 所述第一恢复请求用于 请求所述第二基站恢复所述承载在所述第二基站上的数据传输, 包括: 所述第一基站根据所述恢复指示向所述第二基站发送第一恢复请求, 所述第一恢复请求用于请求所述第二基站执行以下操作:
重建所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC, 并恢复所述 ps-RLC;
或者, 所述第一恢复请求用于请求所述第二基站执行以下操作: 重置所述第二基站中与所述承载相关联的媒质接入控制实体 ps-MAC;
重建所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC , 并恢复所述 ps-RLC。
13、 根据权利要求 8所述的方法, 其特征在于, 所述第一基站接收用 户设备发送的挂起指示之后, 还包括: 所述第一基站确定需要恢复所述承载在所述第二基站上的数据传输; 所述第一基站向所述用户设备发送恢复命令, 并向所述第二基站发送 第二恢复请求, 所述恢复命令用于指示所述用户设备恢复所述承载在所述 第二基站上的数据传输, 所述第二恢复请求用于请求所述第二基站恢复所 述承载在所述第二基站上的数据传输。
14、 根据权利要求 13 所述的方法, 其特征在于, 所述第一基站确定 需要恢复所述承载在所述第二基站上的数据传输之前, 还包括:
所述第一基站接收所述用户设备发送的第二测量结果;
所述第一基站确定需要恢复所述承载在所述第二基站上的数据传输, 包括:
所述第一基站根据所述第二测量结果确定需要恢复所述承载在所述 第二基站上的数据传输。
15、 根据权利要求 13 所述的方法, 其特征在于, 所述第一基站向所 述用户设备发送恢复命令, 所述恢复命令用于指示所述用户设备恢复所述 承载在所述第二基站上的数据传输, 包括:
所述第一基站向所述用户设备发送恢复命令, 所述恢复命令用于指示 所述用户设备重建所述用户设备中与所述承载相关联且与第二基站对应 的无线链路控制实体 s-RLC, 并恢复所述 s-RLC。
16、 根据权利要求 13 所述的方法, 其特征在于, 所述第一基站向所 述第二基站发送第二恢复请求, 所述第二恢复请求用于请求所述第二基站 恢复所述承载在所述第二基站上的数据传输, 包括:
所述第一基站向所述第二基站发送第二恢复请求, 所述第二恢复请求 用于请求所述第二基站执行以下操作:
重建所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC, 并恢复所述 ps-RLC;
或者, 所述第二恢复请求用于请求所述第二基站执行以下操作: 重置所述第二基站中与所述承载相关联的媒质接入控制实体 ps-MAC;
重建所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC , 并恢复所述 ps-RLC。
17、 一种无线承载处理方法, 其特征在于, 包括:
第二基站挂起承载在所述第二基站上的数据传输;
所述第二基站向第一基站发送挂起指示, 所述挂起指示用于指示所述 第二基站挂起所述承载在所述第二基站上的数据传输。
18、 根据权利要求 17 所述的方法, 其特征在于, 所述第二基站挂起 承载在所述第二基站上的数据传输, 包括:
所述第二基站根据测量结果确定需要挂起所述承载在所述第二基站 上的数据传输;
所述第二基站执行以下操作:
挂起所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC; 或者, 所述第二基站执行以下操作:
重置所述第二基站中与所述承载相关联的媒质接入控制实体 ps-MAC;
挂起所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC。
19、 根据权利要求 18 所述的方法, 其特征在于, 所述挂起指示还用 于指示所述第一基站向用户设备发送挂起命令, 所述挂起命令用于指示所 述用户设备挂起所述承载在所述第二基站上的数据传输。
20、 根据权利要求 18 所述的方法, 其特征在于, 所述第二基站向第 一基站发送挂起指示之后, 还包括:
所述第二基站接收所述第一基站发送的恢复请求;
所述第二基站根据所述恢复请求恢复所述承载在所述第二基站上的 数据传输。
21、 根据权利要求 20所述的方法, 其特征在于, 所述第二基站根据 所述恢复请求恢复所述承载在所述第二基站上的数据传输, 包括:
所述第二基站根据所述恢复请求重建所述第二基站中与所述承载相 关联的无线链路控制实体 ps-RLC, 并恢复所述 ps-RLC。
22、 根据权利要求 18至 21中任一项所述的方法, 其特征在于, 所述 测量结果为所述第二基站对以下测量对象中的至少一种进行测量获得的 结果:
所述用户设备的上行信号的强度、 所述用户设备的上行信号的质量、 所述无线链路控制实体 ps-RLC的重传次数。
23、 一种用户设备, 其特征在于, 包括:
处理模块, 用于挂起承载在第二基站上的数据传输;
发送模块, 用于向第一基站发送挂起指示, 所述挂起指示用于指示所 述用户设备挂起所述承载在所述第二基站上的数据传输。
24、 根据权利要求 23所述的用户设备, 其特征在于, 所述处理模块, 包括:
确定单元, 用于根据第一测量结果确定需要挂起所述承载在所述第二 基站上的数据传输;
处理单元, 用于执行以下操作:
挂起所述用户设备中与所述承载相关联且与所述第二基站对应的无 线链路控制实体 s-RLC;
或者, 所述处理单元用于执行以下操作:
重置所述用户设备中与所述承载相关联且与所述第二基站对应的媒 质接入控制实体 s-MAC;
挂起所述用户设备中与所述承载相关联且与所述第二基站对应的无 线链路控制实体 s-RLC。
25、 根据权利要求 23所述的用户设备, 其特征在于, 还包括: 接收模块, 用于接收所述第一基站发送的挂起命令, 所述挂起命令用 于指示所述用户设备挂起所述承载在所述第二基站上的数据传输;
所述处理单元还用于执行以下操作:
挂起所述用户设备中与所述承载相关联且与所述第二基站对应的无 线链路控制实体 s-RLC;
或者, 所述处理单元还用于执行以下操作:
重置所述用户设备中与所述承载相关联且与所述第二基站对应的媒 质接入控制实体 s-MAC;
挂起所述用户设备中与所述承载相关联且与所述第二基站对应的无 线链路控制实体 s-RLC。
26、 根据权利要求 23 所述的用户设备, 其特征在于: 所述挂起指示 还用于指示所述第一基站向所述第二基站发送挂起请求, 所述挂起请求用 于请求所述第二基站挂起所述承载在所述第二基站上的数据传输。
27、 根据权利要求 23至 26中任一项所述的用户设备, 其特征在于: 所述确定单元, 还用于根据第二测量结果确定需要恢复所述承载在所 述第二基站上的数据传输;
所述处理单元, 还用于重建所述用户设备中与所述承载相关联且与所 述第二基站对应的所述无线链路控制实体 s-RLC, 并恢复所述 s-RLC; 所述处理模块还包括:发送单元,用于向所述第一基站发送恢复指示, 所述恢复指示用于指示所述第一基站向所述第二基站发送恢复请求, 所述 恢复请求用于请求所述第二基站恢复所述承载在所述第二基站上的数据 传输。
28、 根据权利要求 23至 26中任一项所述的用户设备, 其特征在于: 所述发送单元, 还用于将第二测量结果发送给所述第一基站;
所述处理单元, 还用于接收所述第一基站发送的恢复命令, 根据所述 恢复命令重建所述用户设备中与所述承载相关联且与所述第二基站对应 的所述无线链路控制实体 s-RLC, 并恢复所述 s-RLC, 所述恢复命令为所 述第一基站根据所述第二测量结果确定需要恢复所述承载在所述第二基 站上的数据传输后发送的。
29、 一种第一基站, 其特征在于, 包括:
接收模块, 用于接收用户设备发送的挂起指示;
处理模块, 用于根据所述挂起指示确定所述用户设备挂起所述承载在 所述第二基站上的数据传输。
30、 根据权利要求 29所述的第一基站, 其特征在于, 还包括: 发送模块, 用于向所述第二基站发送挂起请求, 所述挂起请求用于请 求所述第二基站挂起所述承载在所述第二基站上的数据传输。
31、 根据权利要求 30所述的第一基站, 其特征在于, 所述发送模块, 具体用于:
向所述第二基站发送所述挂起请求, 所述挂起请求用于请求所述第二 基站执行以下操作:
挂起所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC; 或者, 向所述第二基站发送所述挂起请求, 所述挂起请求用于请求所 述第二基站执行以下操作:
重置所述第二基站中与所述承载相关联的媒质接入控制实体 ps-MAC;
挂起所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC。
32、 根据权利要求 29所述的第一基站, 其特征在于, 所述接收模块 还用于:
接收所述用户设备发送的恢复指示;
所述发送模块还用于: 根据所述恢复指示向所述第二基站发送第一恢 复请求, 所述第一恢复请求用于请求所述第二基站恢复所述承载在所述第 二基站上的数据传输。
33、 根据权利要求 32所述的第一基站, 其特征在于, 所述发送模块, 具体用于:
根据所述恢复指示向所述第二基站发送第一恢复请求, 所述第一恢复 请求用于请求所述第二基站执行以下操作:
重建所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC, 并恢复所述 ps-RLC;
或者, 根据所述恢复指示向所述第二基站发送第一恢复请求, 所述第 一恢复请求用于请求所述第二基站执行以下操作:
重置所述第二基站中与所述承载相关联的媒质接入控制实体 ps-MAC;
重建所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC , 并恢复所述 ps-RLC。
34、 根据权利要求 29所述的第一基站, 其特征在于, 还包括: 确定模块, 用于根据确定需要恢复所述承载在所述第二基站上的数据 传输;
所述发送模块还用于: 向所述用户设备发送恢复命令, 并向所述第二 基站发送第二恢复请求, 所述恢复命令用于指示所述用户设备恢复所述承 载在所述第二基站上的数据传输, 所述第二恢复请求用于请求所述第二基 站恢复所述承载在所述第二基站上的数据传输。
35、 根据权利要求 34所述的第一基站, 其特征在于, 所述接收模块 还用于:
接收所述用户设备发送的第二测量结果;
所述确定模块, 还用于根据所述第二测量结果确定需要恢复所述承载 在所述第二基站上的数据传输。
36、 根据权利要求 34所述的第一基站, 其特征在于, 所述发送模块 具体用于:
向所述用户设备发送恢复命令, 所述恢复命令用于指示所述用户设备 重建所述用户设备中与所述承载相关联且与第二基站对应的无线链路控 制实体 s-RLC, 并恢复所述 s-RLC。
37、 根据权利要求 34所述的第一基站, 其特征在于, 所述发送模块 具体用于:
向所述第二基站发送第二恢复请求, 所述第二恢复请求用于请求所述 第二基站执行以下操作:
重建所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC, 并恢复所述 ps-RLC;
或者, 向所述第二基站发送第二恢复请求, 所述第二恢复请求用于请 求所述第二基站执行以下操作:
重置所述第二基站中与所述承载相关联的媒质接入控制实体 ps-MAC;
重建所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC , 并恢复所述 ps-RLC。
38、 一种第二基站, 其特征在于, 包括:
处理模块, 用于挂起承载在所述第二基站上的数据传输;
发送模块, 用于向第一基站发送挂起指示, 所述挂起指示用于指示所 述第二基站挂起所述承载在所述第二基站上的数据传输。
39、 根据权利要求 38所述的第二基站, 其特征在于, 所述处理模块, 包括:
确定单元, 用于根据测量结果确定需要挂起所述承载在所述第二基站 上的数据传输;
处理单元, 用于执行以下操作: 挂起所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC ; 或者, 所述处理单元用于执行以下操作:
重置所述第二基站中与所述承载相关联的媒质接入控制实体 ps-MAC ;
挂起所述第二基站中与所述承载相关联的无线链路控制实体 ps-RLC。
40、 根据权利要求 39所述的第二基站, 其特征在于, 所述挂起指示 还用于指示所述第一基站向所述用户设备发送挂起命令, 所述挂起命令用 于指示所述用户设备挂起所述承载在所述第二基站上的数据传输。
41、 根据权利要求 39所述的第二基站, 其特征在于, 还包括: 接收模块, 用于接收所述第一基站发送的恢复请求;
所述处理模块, 还用于根据所述恢复请求恢复所述承载在所述第二基 站上的数据传输。
42、 根据权利要求 41所述的第二基站, 其特征在于, 所述处理模块, 具体用于:
根据所述恢复请求重建所述第二基站中与所述承载相关联的无线链 路控制实体 ps-RLC, 并恢复所述 ps-RLC。
43、 根据权利要求 41所述的第二基站, 其特征在于, 所述测量结果为 所述第二基站对以下测量对象中的至少一种进行测量获得的结果:
所述用户设备的上行信号的强度、 所述用户设备的上行信号的质量、 所述无线链路控制实体 ps-RLC的重传次数。
44、 一种用户设备, 其特征在于, 包括:
存储器以及与所述存储器连接的处理器, 其中, 所述存储器用于存 储一组程序代码, 所述处理器用于调用所述存储器中存储的程序代码, 执行权利要求 1~7中任一项所述的方法。
45、 一种第一基站, 其特征在于, 包括:
存储器以及与所述存储器连接的处理器, 其中, 所述存储器用于存 储一组程序代码, 所述处理器用于调用所述存储器中存储的程序代码, 执行权利要求 8~16中任一项所述的方法。
46、 一种第二基站, 其特征在于, 包括:
存储器以及与所述存储器连接的处理器, 其中, 所述存储器用于存 储一组程序代码, 所述处理器用于调用所述存储器中存储的程序代码, 执行权利要求 17~22中任一项所述的方法。
PCT/CN2014/084021 2014-08-08 2014-08-08 无线承载处理方法、用户设备和基站 WO2016019584A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
KR1020177006353A KR101982304B1 (ko) 2014-08-08 2014-08-08 무선 베어러 처리 방법, 사용자 장비 및 기지국
CN201811583651.2A CN109548188B (zh) 2014-08-08 2014-08-08 无线承载处理方法、用户设备和基站
PCT/CN2014/084021 WO2016019584A1 (zh) 2014-08-08 2014-08-08 无线承载处理方法、用户设备和基站
MX2017001655A MX369878B (es) 2014-08-08 2014-08-08 Metodo de procesamiento de portadores de radio, equipo de usuario, y estacion base.
JP2017506850A JP6531163B2 (ja) 2014-08-08 2014-08-08 無線ベアラの処理方法、ユーザ機器、および基地局
CN201480029196.5A CN105519165B (zh) 2014-08-08 2014-08-08 无线承载处理方法、用户设备和基站
EP19203964.2A EP3661251B1 (en) 2014-08-08 2014-08-08 Radio bearer processing method, user equipment, and base station
EP14899514.5A EP3171625B1 (en) 2014-08-08 2014-08-08 Radio bearer processing method and base station
RU2017107480A RU2656092C1 (ru) 2014-08-08 2014-08-08 Способ обработки несущей радиосигнала, оборудование пользователя и базовая станция
BR112017002601-5A BR112017002601B1 (pt) 2014-08-08 2014-08-08 Método de processamento de portador de rádio e primeira estação base
US15/426,847 US10736172B2 (en) 2014-08-08 2017-02-07 Radio bearer processing relating to suspending data transmission
RU2018115756A RU2682181C1 (ru) 2014-08-08 2018-04-26 Способ обработки несущей радиосигнала, оборудование пользователя и базовая станция

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/084021 WO2016019584A1 (zh) 2014-08-08 2014-08-08 无线承载处理方法、用户设备和基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/426,847 Continuation US10736172B2 (en) 2014-08-08 2017-02-07 Radio bearer processing relating to suspending data transmission

Publications (1)

Publication Number Publication Date
WO2016019584A1 true WO2016019584A1 (zh) 2016-02-11

Family

ID=55263060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084021 WO2016019584A1 (zh) 2014-08-08 2014-08-08 无线承载处理方法、用户设备和基站

Country Status (9)

Country Link
US (1) US10736172B2 (zh)
EP (2) EP3661251B1 (zh)
JP (1) JP6531163B2 (zh)
KR (1) KR101982304B1 (zh)
CN (2) CN109548188B (zh)
BR (1) BR112017002601B1 (zh)
MX (1) MX369878B (zh)
RU (2) RU2656092C1 (zh)
WO (1) WO2016019584A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020511900A (ja) * 2017-03-24 2020-04-16 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 二重接続通信を提供する方法、関連するネットワークノードおよび無線端末

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3193525B1 (en) * 2014-09-12 2021-02-24 Nec Corporation Wireless station, wireless terminal and method for terminal measurement
US10219317B2 (en) * 2014-09-25 2019-02-26 Lg Electronics Inc. Method for handling of data transmission and reception for SeNB related bearer release at a user equipment in a dual connectivity system and device therefor
US10869344B2 (en) * 2015-03-19 2020-12-15 Acer Incorporated Method of radio bearer transmission in dual connectivity
CN107637121B (zh) * 2015-05-15 2021-04-06 三星电子株式会社 用于在移动通信系统中发送或接收调度请求的方法和装置
US10091115B2 (en) * 2016-03-23 2018-10-02 Apple Inc. Handling voice and non-voice data under uplink limited conditions
KR102172469B1 (ko) * 2016-05-13 2020-10-30 주식회사 케이티 이종 무선 액세스 망 간의 연동 방법 및 그 장치
CN108307522B (zh) * 2016-08-10 2022-12-20 中兴通讯股份有限公司 无线承载的处理方法及装置、终端、基站
WO2018072059A1 (en) * 2016-10-17 2018-04-26 Telefonaktiebolaget Lm Ericsson (Publ) Technique for providing multiple radio access network connectivity to terminal device
CN109151896B (zh) * 2017-06-16 2023-10-10 华为技术有限公司 传输速率控制方法和装置
ES2924196T3 (es) * 2017-06-20 2022-10-05 Beijing Xiaomi Mobile Software Co Ltd Método y dispositivo para desactivar y activar la función de replicación de paquetes del protocolo de convergencia de datos en paquetes
CN109691007B (zh) * 2018-01-05 2020-09-15 Oppo广东移动通信有限公司 一种数据承载的标识分配方法、终端设备及网络设备
KR20200035904A (ko) * 2018-09-27 2020-04-06 삼성전자주식회사 무선 통신 시스템에서 이중 접속을 수행하는 방법 및 장치.
CN111130722B (zh) * 2018-10-31 2022-02-22 维沃移动通信有限公司 一种承载的控制方法、终端及网络侧设备
WO2021007735A1 (en) * 2019-07-15 2021-01-21 Qualcomm Incorporated Rrc layer based suspend and resume for multi-sim ue
CN115866700A (zh) * 2020-06-19 2023-03-28 维沃移动通信有限公司 挂起辅小区组的方法及装置
WO2021258291A1 (en) * 2020-06-23 2021-12-30 Nec Corporation Methods, devices, and medium for communication
EP4108043A4 (en) * 2020-07-22 2023-08-23 Samsung Electronics Co., Ltd. METHOD AND DEVICE FOR HANDLING A PROTOCOL SUPPORTED BY SCG IN DUAL CONNECTIVITY TECHNOLOGY

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102870450A (zh) * 2011-05-03 2013-01-09 联发科技股份有限公司 次服务小区无线电链路监测和无线电链路失败处理
CN103581942A (zh) * 2012-07-31 2014-02-12 电信科学技术研究院 一种无线链路失败的处理方法、装置及系统
CN103581941A (zh) * 2012-07-31 2014-02-12 电信科学技术研究院 一种无线链路失败rlf的处理方法及系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101221898B1 (ko) 2005-06-14 2013-01-15 엘지전자 주식회사 이동 통신 시스템에서의 시그널링 방법
WO2014056130A1 (en) * 2012-10-08 2014-04-17 Broadcom Corporation Method and apparatus for managing dual connection establishment
US9414430B2 (en) * 2013-08-16 2016-08-09 Qualcomm, Incorporated Techniques for managing radio link failure recovery for a user equipment connected to a WWAN and a WLAN
EP2854444A1 (en) * 2013-09-27 2015-04-01 Panasonic Intellectual Property Corporation of America Efficient uplink scheduling mechanism for dual connectivity
CN105684496B (zh) * 2013-10-23 2019-05-31 Lg电子株式会社 用于报告无线电链路问题的方法及其装置
GB2519975A (en) * 2013-11-01 2015-05-13 Nec Corp Communication system
US10306695B2 (en) * 2014-01-31 2019-05-28 Qualcomm Incorporated Procedures for managing secondary eNB (SeNB) radio link failure (S-RLF) in dual connectivity scenarios
CN108306708B (zh) * 2014-03-21 2020-07-10 电信科学技术研究院 一种数据包处理方法及装置
ES2774961T3 (es) * 2014-03-21 2020-07-23 Alcatel Lucent Red de conectividad dual
JP5852193B1 (ja) * 2014-08-06 2016-02-03 株式会社Nttドコモ ユーザ装置
EP3179770B1 (en) * 2014-08-06 2020-01-01 Ntt Docomo, Inc. User equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102870450A (zh) * 2011-05-03 2013-01-09 联发科技股份有限公司 次服务小区无线电链路监测和无线电链路失败处理
CN103581942A (zh) * 2012-07-31 2014-02-12 电信科学技术研究院 一种无线链路失败的处理方法、装置及系统
CN103581941A (zh) * 2012-07-31 2014-02-12 电信科学技术研究院 一种无线链路失败rlf的处理方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3171625A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020511900A (ja) * 2017-03-24 2020-04-16 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 二重接続通信を提供する方法、関連するネットワークノードおよび無線端末
US11219085B2 (en) 2017-03-24 2022-01-04 Telefonaktiebolaget Lm Ericsson (Publ) Methods providing dual connectivity communication and related network nodes and wireless terminals
US11737165B2 (en) 2017-03-24 2023-08-22 Telefonaktiebolaget Lm Ericsson (Publ) Methods providing dual connectivity communication and related network nodes and wireless terminals

Also Published As

Publication number Publication date
CN109548188A (zh) 2019-03-29
US20170149546A1 (en) 2017-05-25
EP3171625A4 (en) 2017-08-30
BR112017002601B1 (pt) 2022-11-16
JP6531163B2 (ja) 2019-06-12
EP3171625B1 (en) 2019-11-06
RU2656092C1 (ru) 2018-05-31
CN105519165B (zh) 2020-04-14
MX369878B (es) 2019-11-25
JP2017527207A (ja) 2017-09-14
EP3661251B1 (en) 2021-12-01
CN109548188B (zh) 2020-06-16
RU2682181C1 (ru) 2019-03-15
US10736172B2 (en) 2020-08-04
MX2017001655A (es) 2017-05-09
EP3661251A1 (en) 2020-06-03
KR20170039301A (ko) 2017-04-10
EP3171625A1 (en) 2017-05-24
BR112017002601A2 (pt) 2018-07-17
KR101982304B1 (ko) 2019-05-24
CN105519165A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
WO2016019584A1 (zh) 无线承载处理方法、用户设备和基站
US10440767B2 (en) User terminal and radio communication apparatus
CN110383938B (zh) 使用节点为移动通信设备提供通信的方法
US10477430B2 (en) Radio terminal
WO2016119183A1 (zh) 无线承载重配置方法、建立方法、用户设备和基站
WO2015113254A1 (zh) 一种无线链路失败的处理方法及设备
WO2013091518A1 (zh) 一种无线保真技术的处理方法和用户设备
WO2015013869A1 (zh) 传输机制的转换方法、用户设备以及基站
WO2015043471A1 (zh) 一种无线链路失败的处理方法及装置
WO2011113378A2 (zh) 一种用户面缓冲器内存的恢复方法及装置
WO2011160504A1 (zh) 提高业务呼通率的实现方法及无线网络控制器
WO2014154132A1 (zh) 一种针对无线链路失败的网络优化方法、装置及系统
WO2012100717A1 (zh) 一种用于发起主动寻呼的方法、系统和网络网元
JP2022141908A (ja) 通信制御方法
WO2011130990A1 (zh) 基站切换中无线资源连接重建立拒绝的方法、系统和装置
CN107222883B (zh) 无线控制器备份方法、备份切换方法、装置及系统
WO2010121408A1 (zh) 一种对消息完整性保护检查失败的处理方法、设备和系统
WO2012149727A1 (zh) 无线资源的重配方法、设备和系统
WO2012162968A1 (zh) 控制数据传输的方法、装置和系统
WO2022120744A1 (zh) 数据传输处理方法及相关装置
WO2014117369A1 (zh) 通信方法、配置信息处理方法及其装置、通信系统
WO2014146252A1 (zh) 一种多服务小区配置下的检测链路的方法、设备和系统
JP6665330B2 (ja) 無線ベアラの処理方法、ユーザ機器、および基地局
WO2012167446A1 (zh) 建立承载的控制方法、通信装置、用户设备和处理器
WO2016127297A1 (zh) 一种rlc数据包重传方法及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899514

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/001655

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2017506850

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014899514

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014899514

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177006353

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017107480

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017002601

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017002601

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170208