WO2016018099A1 - 안과용 치료장치 및 이의 구동 방법 - Google Patents
안과용 치료장치 및 이의 구동 방법 Download PDFInfo
- Publication number
- WO2016018099A1 WO2016018099A1 PCT/KR2015/007994 KR2015007994W WO2016018099A1 WO 2016018099 A1 WO2016018099 A1 WO 2016018099A1 KR 2015007994 W KR2015007994 W KR 2015007994W WO 2016018099 A1 WO2016018099 A1 WO 2016018099A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- treatment
- light
- area
- treatment area
- unit
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
- A61F9/00821—Methods or devices for eye surgery using laser for coagulation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/00736—Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/00736—Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
- A61F9/00754—Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments for cutting or perforating the anterior lens capsule, e.g. capsulotomes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
- A61N5/0616—Skin treatment other than tanning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
- A61F2009/00844—Feedback systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
- A61F2009/00844—Feedback systems
- A61F2009/00851—Optical coherence topography [OCT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
- A61F2009/00861—Methods or devices for eye surgery using laser adapted for treatment at a particular location
- A61F2009/00863—Retina
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
- A61F2009/00861—Methods or devices for eye surgery using laser adapted for treatment at a particular location
- A61F2009/0087—Lens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
- A61F2009/00861—Methods or devices for eye surgery using laser adapted for treatment at a particular location
- A61F2009/00872—Cornea
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F9/00—Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
- A61F9/007—Methods or devices for eye surgery
- A61F9/008—Methods or devices for eye surgery using laser
- A61F2009/00897—Scanning mechanisms or algorithms
Definitions
- the present invention relates to a laser treatment apparatus and a driving method thereof, and more particularly, to an ophthalmic treatment apparatus and a driving method thereof for detecting a state of a treatment area in which treatment is performed and controlling treatment contents.
- laser treatment devices are widely used in various diseases such as skin diseases, eye diseases, neurological diseases, joint diseases, gynecological diseases.
- the present invention is to solve the above problems, and to provide an ophthalmic treatment device and a driving method thereof that can monitor in real time the state changes inside the tissue of the treatment area during treatment and proceed with the treatment based on this.
- the present invention forms a treatment light generating unit for generating a treatment beam, the path from which the treatment light generated from the treatment light generation to the treatment region located in the fundus (fundus)
- the beam delivery unit may detect a detection beam along a path of the treatment light, detect speckle pattern information of the detection light reflected or reflected from the treatment area, and detect the state information of the treatment area.
- It provides an ophthalmic treatment device including a monitoring unit for sensing and a control unit for controlling the driving of the treatment light generator based on the state information of the treatment area detected by the monitoring unit.
- the monitoring unit may be configured to detect the state information of the treatment area based on the interference information of the detection light scattered or reflected from the treatment area.
- the monitoring unit is configured to irradiate the detection light to the predetermined position a plurality of times to detect state information of the predetermined position.
- the monitoring unit may determine the state change of the treatment area by comparing the state information detected by each detection light with the state information detected by the detection light previously irradiated.
- the monitoring unit selectively extracts the information corresponding to the depth of interest of the state information detected by each of the detection light, and whether or not the state of the treatment area is changed to the previously examined information of the extracted depth of interest region And determine the information by comparing the information of the depth of interest region detected by the photometry.
- the depth of interest region may be a region including the RPE cell layer of the treatment region.
- the depth corresponding to the depth of interest region may be configured to be directly set by the user through an interface.
- the monitoring unit may detect a change in temperature of the treatment area generated as the treatment light is absorbed in the treatment area. If the temperature of the treatment area rises, the volume or refractive index of the tissue located in the treatment area is changed to change the optical path characteristic of the detection light, and the monitoring unit detects a change in the speckle pattern according to the optical path characteristic change of the detection light. To detect temperature changes in the treatment area.
- the monitoring unit determines that the temperature of the RPE cell continuously rises when the amount of change in the speckle pattern of the reflected detection light changes within a preset range, and the amount of change in the speckle pattern of the detected detection light is reflected. When the predetermined range is exceeded, it may be determined that the RPE cells are necrotic.
- the monitoring unit detects the light source irradiating the detection light to the treatment area, the detection unit detecting the speckle pattern of the detection light reflected from the treatment area, and the information of the portion adjacent to the RPE cell layer among the speckle patterns detected by the detection unit. It may be configured to include a processor for extracting and determining the state change of the adjacent portion of the RPE cell layer.
- control unit is configured to adjust the amount of energy delivered per unit area of the treatment area by the treatment light, based on the state information of the treatment area detected by the monitoring unit. If the change in the state information of the treatment area detected by the monitoring unit is equal to or less than a reference value, the controller may control the treatment light generator to gradually increase energy delivered per unit area of the treatment area.
- the object of the present invention described above is to drive the treatment light generating unit to irradiate the treatment light to the target position, by driving the monitoring unit irradiates the detection light to the treatment area to which the treatment light is irradiated, and is reflected from the treatment area Detecting the state information of the treatment region based on the interference information of the detection light, and controlling the operation of the treatment light generator by the controller based on the detected state information. It can also be achieved by
- the speckle pattern of the detection light may be detected to detect the state information of the treatment region.
- the detecting of the state information of the treatment area may include extracting information corresponding to the depth of interest region of the interference information by the detection light.
- detecting the state information of the treatment area may include detecting a speckle pattern from the detection light, extracting information of the depth of interest corresponding to the RPE cell layer from the speckle pattern, and the depth of interest region.
- the method may include determining a state change of the treatment area by determining an amount of the speckle pattern to be changed.
- the optimized treatment is possible by detecting the state information inside the treatment area and proceeding the treatment, and it is possible to prevent damage due to deterioration around the treatment area.
- FIG. 1 is a schematic diagram schematically showing an ophthalmic treatment device according to an embodiment of the present invention
- FIG. 2 is an enlarged cross-sectional view of region A of FIG. 1;
- FIG. 3 is a view showing a monolayer structure to which treatment light and detection light are irradiated
- FIG. 4 is a graph illustrating an example of a signal detected by a detector
- FIG. 5 is a flow chart showing a method of driving the ophthalmic treatment device of FIG.
- FIG. 6 is a flowchart specifically illustrating a step of detecting a state of a treatment area in FIG. 5;
- FIG. 7 is a graph illustrating examples of a first mode operation and a second mode operation in FIG. 5;
- FIG. 8 is a graph illustrating an example of operating the first mode of FIG. 5 according to another exemplary embodiment.
- an ophthalmic treatment apparatus for treating lesions of the fundus region such as the retina is described as an example.
- the present invention is not limited thereto, and the present invention may be applied to a treatment device for treating lesions other than the fundus region.
- it may be applied to an ophthalmic treatment device used to treat an anterior eye, such as the cornea of a patient, and may be applied to a dermatological treatment device for treating lesions such as skin pigments and blood vessels in addition to ophthalmic related lesions. It is possible.
- the ophthalmic treatment apparatus 10 includes a treatment light generator 100 that generates a treatment beam, and an aiming light generator that generates an aiming beam ( 200, and a beam delivery unit 400 forming a path through which the treatment light and the aiming light travel to the treatment area.
- the controller 300 includes a monitoring unit 300 for detecting state information of the treatment area and a control unit 500 for controlling the driving of the treatment light generator based on the information detected by the monitoring unit.
- the treatment light generating unit 100 may include a treatment light source for generating treatment light and various optical elements for processing characteristics of light generated by the treatment light source.
- the treatment light is composed of a laser, and the treatment light source may include a laser medium or a laser diode such as Nd: YAG, Ho: YAG, etc. capable of oscillating the laser.
- the electronic device may include various electrical circuits for exciting the laser, an optical filter for oscillating light of a specific wavelength among various wavelength bands, and a shutter.
- the ophthalmic treatment device 10 is for treating various lesions occurring in the ocular fundus region, such as macular degeneration, and the treatment light selectively supplies energy to a target specific position (eg, RPE cell layer). It is configured to provide.
- the therapeutic light may utilize a laser having a pulse width that is selectively absorbed by the melanosomes of RPE cells among the various cell layers forming the retina.
- a laser in the visible to near infrared region can be used.
- the aiming light generating unit 200 is a configuration for generating the aiming light irradiated to the treatment area.
- Aim light is a configuration that informs the operator where the treatment light is to be irradiated before or during the treatment light.
- Aim light is configured to have a wavelength of the visible light band, the operator can identify the treatment area by the aiming light reflected from the treatment area.
- the aiming light generated by the aiming light generator 200 may be irradiated to indicate one spot to which the treatment light is irradiated in the treatment area. Alternatively, it may be irradiated to display a plurality of spots at the same time so as to display a pattern in which the treatment light is continuously irradiated.
- the collimated light may be irradiated so as to form a lattice or boundary line image instead of a spot shape, thereby indicating an area to which the treatment light is irradiated.
- the aiming light is configured to travel along a path different from that of the treatment light.
- the collimator may be omitted.
- the beam delivery unit 400 is composed of a plurality of optical elements disposed between the treatment light generating unit 100 and the contact lens unit 600 for fixing the eye of the patient.
- the beam delivery unit constitutes an optical path through which the treatment light travels.
- the aiming light and the detection light of the monitoring unit to be described later also proceed along the beam delivery.
- the aiming light and the detection light may travel along a path including at least a part of the optical path of the treatment light.
- the collimation light or the detection light may be configured to have a light path separate from the treatment light.
- the beam delivery unit includes a plurality of beam combiners 420.
- the treatment light, the aiming light, and the probe beam may enter the beam delivery unit and be irradiated to the treatment area, respectively.
- the aiming light and the detection light reflected from the treatment area may progress toward the lens 700 where the operator's eye is located through the beam delivery unit 400, or may be incident back to the monitoring unit 300.
- the beam delivery unit 400 may include a scanner 410 for changing a position where light is irradiated.
- the scanner 410 may include at least one reflective mirror and a driving unit for rotating the same, and may change the position where the light is irradiated while the rotational position of the reflective mirror on which the light is reflected is changed.
- the beam delivery unit 400 may further include an optical element (not shown) such as a plurality of optical lenses and optical filters for focusing or dispersing light.
- an optical element such as a plurality of optical lenses and optical filters for focusing or dispersing light.
- the contact lens unit 600 may be provided at the end of the beam delivery unit 400.
- the contact lens unit 600 is a portion in contact with the eye of the patient, and serves to fix the eye of the patient during the procedure.
- the contact lens unit 600 may include a lens through which light travels, and in some cases, may include a suction device that fixes the eye of the patient.
- FIG. 2 is an enlarged cross-sectional view of region A of FIG. 1.
- 2A is a diagram showing retinal tissue of a patient corresponding to a treatment area.
- Such retinal tissues are generally internal limiting layer, nerve fiber layer, ganglion cell layer, inner plexiform layer, inner nuclear layer, outer reticular It consists of ten layers of an outer plexiform layer, an outer nuclear layer, an external limiting layer, a photo receptor layer and an RPE layer (retinal pigment epithelial layer).
- the RPE cell layer forms a boundary layer in the rear direction among the ten layers above, and is formed in a tight junction structure.
- the Bruch's membrane is located below the RPE layer.
- the RPE layer serves to supply nutrients and oxygen to the photoreceptor from blood vessels located under the choroid and to discharge waste products generated from the photoreceptor through the choroid.
- the ophthalmic treatment device selectively irradiates RPE cells by irradiating therapeutic light to RPE cells that do not perform their normal function, thereby inducing regeneration of new RPE cells.
- the treatment light generated by the treatment light generator 100 has a predetermined wavelength corresponding to the visible light or the near infrared region.
- Light of the wavelength is transmitted to the cell layer (first cell layer to the ninth cell layer) located in front of the retina with little absorption, and then absorbed by melanosomes existing inside the RPE cells of the RPE cell layer. Therefore, as the therapeutic light is irradiated and the amount of energy absorbed by the melanosomes increases, the temperature of the melanosomes rises, thereby causing thermal damage to the RPE cells.
- microbubble occurs on the surface of the melanosomes as the temperature rises, and that RPE cells are selectively necrotic as the microbubbles grow gradually.
- new RPE cells are regenerated and treated at the position of the RPE cells in which thermal damage has occurred.
- the ophthalmic treatment apparatus of the present embodiment includes a monitoring unit 300, and the monitoring unit 300 detects state information of the treatment area while the treatment is in progress.
- the monitoring unit 300 is configured to irradiate the detection light to the treatment site and to acquire scattering and speckle pattern information of the treatment site.
- the detection light reaching the treatment area through the beam delivery unit 400 is received by the monitoring unit 300 by traveling backward through the path reflected by the media of the treatment area.
- the detection light is composed of light having a wavelength that is less absorbed by the tissue and excellent in transmittance.
- the detection light irradiated into the treatment area travels inwardly from the surface of the retina and is scattered or reflected through tissues or interfaces having different refractive indices.
- the interference information of the reflected detection light may include speckle information at each position while reaching the RPE cell layer from the surface of the treatment area.
- the monitoring unit 300 is configured to analyze the change in the interference information of the received detection light, to detect the state change information of the treatment area.
- the state change information of the treatment region may include at least one of information on temperature change, volume change, refractive index change, or movement of cells generated in the treatment region while the treatment light is irradiated.
- the temperature of the tissue is increased, thereby changing the volume of the tissue, changing the tissue characteristics, or moving some tissues to change the propagation characteristics of the light passing through the tissue (for example, Optical path length, speckle patterns, etc.). Therefore, the characteristic of the detected detection light changes while the treatment is in progress, and the monitoring unit 300 may detect a change in the state of the treatment area based on the characteristic change of the received detection light.
- the monitoring unit 300 may be configured using an optical coherent tomography (OCT) device.
- OCT optical coherent tomography
- Such an OCT device is configured to acquire tomographic information of tissue using interference information of light.
- TD OCT time domain OCT
- SD OCT spectral domain OCT
- SS OCT wet source OCT
- the conventional OCT is to obtain the tomography information while moving the horizontal coordinates (B-scan), in this embodiment through the Z-scan without a separate B-scan while monitoring the specific treatment position And to acquire tomographic information of the tissue at the same location.
- the monitoring unit 300 includes a light source 310, a light splitter 320, a reference beam reflector 330, a detector 340, and the like. It is configured to include a processor 350.
- the light source 310 may be a light source that generates a low coherent beam in case of SD OCT, and may use a swept source light source that may change the wavelength of light in case of SS OCT.
- the light from the light source 310 passes through the light splitter 320 and is split into two light beams, the detection light and the reference light.
- the reference light travels in the direction of the reference light reflector along the first path P1 and then is reflected from the reference light reflector 330.
- the detection light travels along the second path P2, proceeds through the beam delivery unit 400 to the treatment area, and is then reflected. A part of the reflected detection light and the reference light are combined at the light splitter 320 and are incident to the detector 340.
- the combined detection light and the reference light may generate interference, and the detector 340 may detect the speckle state information of the treatment area by using the interference information of the detected detection light and the reference light.
- the detector 340 may use an array detector in the case of SD OCT, and may use a photo diode in case of SS OCT.
- the detection unit 340 may obtain state information according to the depth of the treatment area by using a signal obtained by performing Fourier transform by separating the wavelengths by wavelength bands.
- the signal detected by the detection unit 340 may acquire various types of information on the treatment area according to the processing contents.
- the speckle pattern information of the detection light may be obtained.
- the speckle pattern refers to an intensity pattern generated by mutual interference between light rays constituting light.
- the speckle pattern may form a different pattern according to the position of the optical path, and each speckle pattern reflects scattering information and surface characteristics of the reflective surface generated as light passes through the tissue.
- the interference pattern between the light beams is changed, and the speckle pattern at the corresponding position is changed.
- the state information of the treatment area is reflected in the speckle pattern of the detection light detected by the detection unit 340. Therefore, it is possible to detect the change in the speckle pattern during the treatment, and to detect the minute state change of the treatment area such as the temperature rise, the change in tissue thickness, the change in refractive index, and the movement of the tissue.
- the processor 350 analyzes the change of the signal (eg, the speckle pattern) detected by the detector 340 to determine the change of state of the treatment area.
- state change information may be provided to the controller 500 so that the treatment contents may be changed to reflect the change.
- the monitoring unit 300 irradiates the detection light to the treatment area S while the treatment is in progress, and detects the change of state information of the treatment area by using the reflected detection light (see FIG. 3).
- the light source 310 irradiates the detection light to the treatment area (S) a plurality of times while the treatment is in progress.
- the detector 340 continuously detects a signal by the detected detection light.
- the signal obtained by the detection unit by the detection light includes state information of the treatment area at that time. Therefore, the monitoring unit 300 according to the present exemplary embodiment may acquire the state information of the treatment area during treatment in real time.
- the processor 350 may detect whether the treatment area is changed by comparing signals detected by the respective detection lights.
- the signal detected by the detection unit 340 by each detection light eg, n-th detection light
- the detection light eg, n-1 th detection light
- the signal to be subjected to the cross correlation calculation may be a speckle pattern signal detected by the detector, or other types of signals.
- the signal detected by the detection unit includes information on all depths of the fundus corresponding to the traveling path of the detection light.
- the signal obtained by one detection light may include all the state information of the photoreceptive layer, the RPE cell layer, and the Burk membrane layer from the surface of the retina (see FIG. 3). Therefore, in the present embodiment, after selectively extracting only information of a specific region of interest (hereinafter, referred to as a 'depth of interest' region) Dsel among signals detected by the detector, the state is based on the extracted information of the depth of interest region. You can detect the change.
- the processor 350 may determine information of the depth of interest by the corresponding detection light (eg, the n th detection light) and the depth of interest area by the previously detected detection light (eg, the n ⁇ 1 th detection light). The information can be correlated to determine whether the state changes. (Here, the detection light is irradiated at the same position without the B-scan progressing while the detection light is continuously irradiated)
- the amount of computation to be processed is considerably reduced compared to performing the computation using the entire detected signal, thereby enabling fast computation. Therefore, the time required for analyzing the status information can be minimized to enable near real-time monitoring.
- the rate of change is significantly higher than the case of comparing the entire signal when selecting and comparing only signals in the depth of interest area where the state change is most active. It appears large. Therefore, it is possible to accurately determine whether the state of the treatment area changes.
- the depth of interest area Dsel may be a tissue that is a target during treatment, a tissue in which state change occurs first, or a depth area in which tissue having a large amount of state change is located.
- most of the treatment light is absorbed by the RPE cell layer, and the state changes as the temperature of the RPE cell layer rises.
- the region adjacent to the RPE cell layer is set as the depth of interest region, but various other applications are possible.
- the depth of interest region may be differently set according to the treatment lesion.
- the depth of interest area Dsel may use a predetermined value
- the user may configure the depth of interest Dsel through an interface (not shown) in consideration of the treatment lesion and the characteristics of the patient. Since the state and thickness of the retina are different according to the patient, it is possible to set the depth of interest in consideration of a retinal tomography image of the patient taken during the examination.
- the processor 350 compares the extracted signals of the depth of interest area Dsel to determine a change of state of the treatment area, and the determination method may be configured in various ways.
- the amount of change in the extracted signal is less than the preset value (first set value) compared to the previous signal, it is determined that there is no change in the state of the treatment area, and when the amount of change is more than the preset value, the state of the treatment area is changed. It can be judged that.
- the detection signal changes sequentially while the temperature of the RPE cells sequentially rises.
- the detection signal may be discontinuously changed at the time when the RPE cells are necrotic (eg, when the RPE cells are destroyed). Therefore, when the amount of change in the extracted signal is less than or equal to the preset value (second set value), the processor 350 determines that the temperature is continuously rising while the RPE cells are not necrotic, and the amount of change is preset. If it is above the value, it can be determined that the RPE cells are necrotic.
- the change amount of the extracted signal may be compared with previously stored reference data to determine the temperature of the treatment area, and based on this, a change in the state of the treatment area may be estimated and determined. While the therapeutic light is irradiated, before the RPE cells are necrotic (the point of thermal damage occurs), the amount of change in the signal detected is small even when the temperature is continuously increased, while the signal change detected at the time of necrosis is rapidly generated. Therefore, it is difficult to predict the timing of necrosis of RPE cells or to adjust the treatment contents in consideration of the temperature of RPE cells before necrosis of RPE cells.
- the ophthalmic treatment apparatus may include reference data about a signal value (or a change amount of the signal) detected by the detection light and temperature information corresponding thereto.
- the processor may determine the temperature information of the depth of interest area in real time by comparing the signal detected by the detection light during treatment with reference data, and may control the treatment contents in consideration of this.
- the monitoring unit 300 may selectively detect and process the signal information corresponding to the depth of interest area Dsel, in particular, the depth of the RPE cell, thereby detecting the state information of the RPE cell during treatment. have.
- the monitoring unit 300 may selectively detect and process the signal information corresponding to the depth of interest area Dsel, in particular, the depth of the RPE cell, thereby detecting the state information of the RPE cell during treatment. have.
- the controller 500 controls the operation of various components such as the treatment light generator 100, the aiming light generator 200, and the beam delivery unit 400.
- the state information of the treatment area detected by the monitoring unit 300 is transmitted to the control unit 500, and the control unit 500 may control various components based on the state information of the treatment area.
- the controller 500 may control the operation of the treatment light generator 100 according to the state information of the treatment region.
- various parameters of the treatment light may be controlled such as the output of the treatment light, the pulse time of the treatment light, the time between pulses constituting the treatment light, or the degree of focus of the treatment light.
- the ophthalmic treatment apparatus 10 may monitor the progress of the treatment in the monitoring unit, and may proceed to the optimal treatment by adjusting the treatment contents in consideration of the treatment.
- the control of the treatment contents in consideration of the progress of the treatment may be designed in various ways.
- a method of driving the ophthalmic treatment apparatus according to the present embodiment will be described as an example.
- FIG. 5 is a flowchart illustrating a method of driving the ophthalmic treatment device of FIG. 1.
- the eye of the patient is fixed to the contact lens unit 600 (S10).
- the controller 500 drives the treatment light generator 100 to irradiate the treatment light in the first mode M1 to the fundus of the patient fixed to the contact lens unit 600 (S20).
- the treatment light is irradiated a plurality of times, and the energy provided to the unit area of the treatment area per unit time is irradiated in a pattern of sequentially increasing from a low magnitude. Thereby, excessive energy can be delivered to the treatment area to prevent damage to adjacent tissues.
- the monitoring unit 300 irradiates the detection light to a position where the treatment light is irradiated a plurality of times, and receives the reflected detection light to continuously detect the state of the treatment area (S30). .
- each detection light may be controlled to be irradiated at the same time as the treatment light, or to alternately irradiate the detection light and the treatment light.
- FIG. 6 is a flowchart specifically illustrating a step of detecting a state of a treatment area in FIG. 5. Hereinafter, this step will be described in more detail with reference to FIG. 6.
- the light source of the monitoring unit 300 irradiates the detection light to the treatment area to which the treatment light is irradiated (S31).
- the irradiated detection light propagates to the inner side of the retina corresponding to the treatment area and then is scattered or reflected.
- the detector 340 detects the speckle pattern of the detected light from the interference information between the detected light and the scattered or reflected light (S32).
- the speckle pattern of the detection light may include information according to each depth of the retinal tomography layer through which the detection light passes.
- a speckle pattern for a region of interest ie, a region including an RPE cell layer
- the RPE cell layer is the area where the state change is most sensitive to the treatment light. Accordingly, the detector 340 or the processor 350 excludes information on unnecessary depth areas of the speckle pattern of the detection light, and extracts the speckle pattern information of the RPE cell layer of interest.
- the processor 350 determines the state of the treatment region, specifically, the state of the RPE cell layer of the treatment region based on the extracted speckle pattern change information of the RPE cell layer (S34).
- the processor 350 may determine the speckle pattern information of the RPE cell layer by the detection light (for example, the n th detection light) and the RPE cell layer of the previous detection light (eg, the n-1 th detection light).
- the state of the treatment area is detected by cross correlation of the speckle pattern information to detect the amount of change.
- the speckle pattern information of the RPE cell layer by the detection light for example, the n th detection light
- the speckle pattern information of the RPE cell layer by the first detection light for example, the first detection light. It is also possible to detect the state of the treatment area by cross correlation.
- FIG. 6 illustrates a step by one of the plurality of detection lights irradiated during the monitoring process
- the step (S31 to S34) described above is performed for all detection lights while the plurality of detection lights are irradiated.
- the state information of the RPE cell layer of the treatment area can be continuously detected during the treatment.
- the reference value may be variously designed according to the treatment content.
- the reference value may be set in consideration of the amount of change generated during thermal damage of the treatment area, or may be set in consideration of a corresponding amount of change when the treatment area reaches a specific temperature.
- the controller 500 may control to continue treatment in the first mode M1 currently in progress. On the other hand, if it is determined that the state information of the treatment area exceeds the reference value, the controller 500 may control the treatment light generator to switch to the second mode M2 to operate (S50).
- FIG. 7 is a graph illustrating examples of a first mode operation and a second mode operation in FIG. 5.
- the treatment light generating unit 100 in the first mode M1, the treatment light generating unit 100 generates the treatment light so that energy transmitted to the unit area of the treatment area per unit time is sequentially increased.
- M2 in the second mode (M2), it is determined that the temperature of the RPE cells has risen to a temperature adjacent to the preset temperature, and the energy delivered to the unit area of the treatment area per unit time does not increase any more and maintains the current state.
- Therapeutic light can be generated (FIG. 7A).
- the treatment light may be generated to reduce the increase in the energy delivered to the unit area compared to the first mode (b of FIG. 7).
- the monitoring unit 300 monitors state information of the treatment region based on a signal that is continuously detected. In addition, continuously determining whether a signal (eg, a signal corresponding to necrosis of RPE cells) is detected whether or not the RPE cells have reached a predetermined temperature.
- a signal eg, a signal corresponding to necrosis of RPE cells
- the second mode (M2) operation may be continued until the treatment completion signal is detected, and when the treatment completion signal is detected, the irradiation of the treatment light to the corresponding treatment region is terminated and the next treatment region is completed.
- the treatment light irradiation position By changing the treatment light irradiation position, it is possible to proceed with treatment in another treatment area.
- the control of the first mode (M1) to sequentially increase the energy delivered to the unit area of the treatment area per unit time in FIG. was controlled in a sequential increment.
- this may be implemented as a first mode by controlling a variable other than the output of the treatment light as an example.
- the treatment light generating unit generates pulses of the same output having the same pulse duration time, but gradually reduces the off time between the pulses, thereby reducing the unit area.
- the amount of energy delivered can be sequentially increased.
- the pulses of the same output may be generated, but the pulse duration of each pulse may be gradually increased to sequentially increase the amount of energy delivered per unit area.
- the pulse duration of each pulse may be gradually increased to sequentially increase the amount of energy delivered per unit area.
- one pulse of the treatment light is irradiated to have a plurality of unit pulses having the same output, and the number of unit pulses constituting one pulse is sequentially deposited or d of FIG.
- the first mode and the second mode may be implemented in various ways, such as by sequentially increasing the amount of energy transmitted per unit area of the treatment area by gradually focusing the treatment light.
- the operation method of the ophthalmic treatment device described above has described the contents of controlling the treatment content in two modes according to the state information of the treatment area, which is a simple example for the convenience of description, the contents of the patient's lesion and Various modifications can be designed depending on the treatment area.
- the signal detected by the monitoring unit is used only to monitor the state of the treatment area.
- a separate display is provided and a tomographic image of the treatment area is displayed on the display so that the user can treat the RPE cells of the treatment area during treatment. It is also possible to configure to check the status directly.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Ophthalmology & Optometry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Eye Examination Apparatus (AREA)
- Laser Surgery Devices (AREA)
Abstract
본 발명은 안과용 치료장치 및 이의 동작 방법에 관한 것으로, 치료광(treatment beam)을 발생시키는 치료광 발생부, 상기 치료광 발생부로부터 발생된 치료광이 안저(fundus)에 위치한 치료 영역으로 진행하는 경로를 형성하는 빔 딜리버리부, 상기 치료광이 진행하는 경로를 따라 검측광(detecting beam)을 조사하고 치료 영역으로부터 산란 및 반사되는 상기 검측광의 스페클 변화 정보에 근거하여 치료 영역의 상태 정보를 감지하는 모니터링부 그리고, 상기 모니터링부에서 감지된 치료 영역의 상태 정보에 근거하여 상기 치료광 발생부의 구 동을 제어하는 제어부를 포함하는 안과용 치료장치 및 이의 동작 방법을 제공한다.
Description
본 발명은 레이저 치료장치 및 이의 구동 방법에 관한 것으로, 보다 상세하게는 치료가 진행되는 치료 영역(treatment area)의 상태를 감지하여 치료 내용을 제어하는 안과용 치료 장치 및 이의 구동 방법에 관한 것이다.
최근 들어 인체에 광을 조사하여 인체 조직에 흡수되는 광 에너지에 의해 조직의 상태를 변화시키는 방식으로 치료하는 기술이 널리 적용되고 있다. 특히, 레이저를 이용한 치료 장치는 피부 질환, 안(眼)질환, 신경 질환, 관절 질환, 부인과 질환 등 다양한 병변에 널리 사용되고 있다.
특히, 레이저를 이용한 안과용 치료 장치는 각막 성형, 녹내장 또는 백내장 수술 등의 전안부 병변을 치료하는 장치가 다수 개발되고 있으며, 최근에는 황반 변성을 비롯한 안저 영역의 각종 병변을 치료하기 위한 장치가 개발되고 있다. 그리고 이러한 수술 장치는 한국공개특허공보 제10-2014-0009846호에서도 개시되어 있다.
이와 같이 광을 이용한 안과용 치료 장치로 치료를 진행하는 경우, 치료가 진행되는 위치의 상태를 지속적으로 모니터링할 필요가 있다. 다만, 종래와 같이 CCD나 CMOS와 같은 광센서 또는 초음파 등을 이용하는 경우에는 치료 영역의 내부의 상태를 모니터링할 수 없거나 조직의 미세한 변화를 감지하는데 한계가 있었다.
본 발명은 상기한 문제점을 해결하기 위한 것으로, 치료 중 치료 영역의 조직 내부의 상태 변화를 실시간으로 모니터링하고 이에 근거하여 치료를 진행할 수 있는 안과용 치료장치 및 이의 구동 방법을 제공하기 위함이다.
상기한 목적을 달성하기 위해, 본 발명은 치료광(treatment beam)을 발생시키는 치료광 발생부, 상기 치료광 발생부로부터 발생된 치료광이 안저(fundus)에 위치한 치료 영역으로 진행하는 경로를 형성하는 빔 딜리버리부, 상기 치료광이 진행하는 경로를 따라 검측광(detecting beam)을 조사하고 치료 영역으로부터 산린 또는 반사되는 상기 검측광의 스페클 패턴(speckle pattern) 정보를 검출하여 치료 영역의 상태 정보를 감지하는 모니터링부 그리고, 상기 모니터링부에서 감지된 치료 영역의 상태 정보에 근거하여 상기 치료광 발생부의 구동을 제어하는 제어부를 포함하는 안과용 치료장치를 제공한다.
여기서, 모니터링부는 상기 치료 영역으로부터 산란 또는 반사되는 상기 검측광의 간섭 정보에 근거하여 상기 치료 영역의 상태 정보를 감지하도록 구성될 수 있다.
구체적으로, 소정 위치에 상기 치료광이 조사되는 동안 상기 모니터링부는 상기 검측광을 복수회에 걸쳐 상기 소정 위치에 조사하여 상기 소정 위치의 상태 정보를 감지하도록 구성된다. 그리고, 상기 모니터링부는 각 검측광에 의해 감지된 상태 정보를 앞서 조사된 검측광에 의해 감지된 상태 정보와 비교하여 상기 치료 영역의 상태 변화를 판단할 수 있다.
여기서, 상기 모니터링부는 상기 각 검측광에 의해 감지된 상태 정보 중 관심 깊이 영역에 해당하는 정보를 선택적으로 추출하고, 상기 치료 영역의 상태 변화 여부는 상기 추출된 관심 깊이 영역의 정보를 앞서 조사된 검측광에 의해 감지된 관심 깊이 영역의 정보와 비교하여 판단하도록 구성될 수 있다.
이때, 상기 관심 깊이 영역은 상기 치료 영역의 RPE 세포층을 포함하는 영역일 수 있다. 또는, 상기 관심 깊이 영역에 해당하는 깊이는 인터페이스를 통해 사용자가 직접 설정할 수 있도록 구성되는 것도 가능하다.
여기서, 모니터링부는 상기 치료광이 치료 영역에 흡수됨에 따라 발생되는 치료 영역의 온도 변화를 감지할 수 있다. 치료 영역의 온도가 상승하면 치료 영역에 위치한 조직의 부피 또는 굴절률이 변하여 상기 검측광이 진행하는 광로 특성이 변경되고, 상기 모니터링부는 상기 검측광이 상기 광로 특성 변화에 따른 스페클 패턴의 변화를 감지하여 치료 영역의 온도 변화를 감지할 수 있다.
일 예로, 상기 모니터링부는 상기 반사되는 검측광의 스페클 패턴의 변화량이 기 설정된 범위 내에서 변하는 경우에는 상기 RPE 세포의 온도가 연속적으로 상승하는 것으로 판단하고, 상기 반사되는 검측광의 스페클 패턴의 변화량이 기 설정된 범위를 초과하는 경우에는 상기 RPE 세포가 괴사된 것으로 판단할 수 있다.
구체적으로, 모니터링부는 상기 검측광을 치료 영역으로 조사하는 광원, 상기 치료 영역으로부터 반사되는 상기 검측광의 스페클 패턴을 검출하는 검출부 및 상기 검출부에서 검출된 스페클 패턴 중 RPE 세포층과 인접한 부분의 정보를 추출하여 상기 RPE 세포층 인접 부분의 상태 변화를 판단하는 프로세서를 포함하여 구성될 수 있다.
한편, 상기 제어부는 상기 모니터링부에서 감지된 치료 영역의 상태 정보에 근거하여, 상기 치료광에 의해 치료 영역의 단위 면적 당 전달되는 에너지의 크기를 조절하도록 구성된다. 그리고, 상기 모니터링부에서 감지된 치료 영역의 상태 정보의 변화가 기준값 이하이면, 상기 제어부는 치료 영역의 단위 면적당 전달되는 에너지가 점차적으로 증가하도록 상기 치료광 발생부를 제어할 수 있다.
한편, 전술한 본 발명의 목적은 치료광 발생부를 구동하여 타겟 위치로 치료광을 조사하는 단계, 모니터링부를 구동하여 상기 치료광이 조사되는 치료 영역으로 검측광을 조사하고, 상기 치료 영역으로부터 반사되는 상기 검측광의 간섭 정보에 근거하여 상기 치료 영역의 상태 정보를 감지하는 단계 그리고, 상기 감지된 상태 정보에 근거하여 제어부가 상기 치료광 발생부의 동작을 조절하는 단계를 포함하는 안과용 치료 장치의 구동 방법에 의해서도 달성될 수 있다.
여기서, 상기 치료 영역의 상태 정보를 감지하는 단계는 상기 검측광의 스페클 패턴을 검출하여 상기 치료 영역의 상태 정보를 감지할 수 있다. 그리고, 상기 치료 영역의 상태 정보를 감지하는 단계는 상기 검측광에 의한 간섭 정보 중 관심 깊이 영역에 해당하는 정보를 추출하는 단계를 포함하여 구성될 수 있다.
구체적으로, 상기 치료 영역의 상태 정보를 감지하는 단계는 상기 검측광으로부터 스페클 패턴을 검출하는 단계, 상기 스페클 패턴으로부터 RPE 세포층에 해당하는 관심 깊이 영역의 정보를 추출하는 단계 및 상기 관심 깊이 영역의 스페클 패턴 변화량을 판단하여 치료 영역의 상태 변화를 판단하는 단계를 포함하여 구성될 수 있다.
본 발명에 의할 경우, 치료 영역 내부의 상태 정보를 검출하여 치료를 진행함으로서 최적화된 치료가 가능하며, 치료 영역 주변의 열화로 인한 손상을 방지할 수 있다.
또한, 검측광의 스페클 패턴을 이용하여 상태 정보를 감지함으로써 미세한 상태 변화까지도 반영하여 치료를 진행하는 것이 가능하며, 획득되는 정보 중 특정 영역의 정보만을 추출하여 이를 분석함으로서 분석에 소요되는 시간을 최소화하여 실시간에 가까운 모니터링이 가능하다.
도 1은 본 발명의 일 실시예에 따른 안과용 치료 장치를 개략적으로 도시한 개략도,
도 2는 도 1의 A 영역을 확대하여 그린 단면도,
도 3은 치료광 및 검측광이 조사되는 단층 구조를 도시한 도면,
도 4는 검출부에서 검출되는 신호의 일 예를 도시한 그래프,
도 5는 도 1의 안과용 치료장치의 구동 방법을 도시한 순서도,
도 6은 도 5에서 치료 영역의 상태를 감지하는 단계를 구체적으로 도시한 순서도,
도 7은 도 5에서 제1 모드 동작 및 제2 모드 동작의 예를 도시한 그래프이고,
도 8은 다른 실시예에 따른 도 5의 제1 모드를 동작의 예를 도시한 그래프이다.
이하에서는 도면을 참고하여 본 발명의 일 실시예에 따른 안과용 치료장치에 대해 구체적으로 설명하도록 한다. 아래의 설명에서 각 구성요소의 위치 관계는 원칙적으로 도면을 기준으로 설명한다. 그리고 도면은 설명의 편의를 위해 발명의 구조를 단순화하거나 필요할 경우 과장하여 표시될 수 있다. 따라서, 본 발명이 이에 한정되는 것은 아니며 이 이외에도 각종 장치를 부가하거나, 변경 또는 생략하여 실시할 수 있음은 물론이다.
본 실시예에서는 망막과 같은 안저 영역의 병변을 치료하기 위한 안과용 치료장치를 일 예로서 설명한다. 다만, 본 발명이 이에 한정되는 것은 아니며 안저 영역 이외의 병변을 치료하는 치료 장치에도 적용될 수 있음을 알려둔다. 예를 들어, 환자의 각막과 같은 전안부의 치료에 이용되는 안과용 치료 장치에 적용되는 것도 가능하며, 안과 관련 병변 이외에도 피부 색소 및 혈관 등의 병변을 치료하기 위한 피부과용 치료 장치에 적용되는 것도 가능하다.
도 1은 본 발명의 일 실시예에 따른 안과용 치료 장치를 개략적으로 도시한 개략도이다. 도 1에 도시된 바와 같이 본 발명에 따른 안과용 치료 장치(10)는 치료광(treatment beam)을 발생하는 치료광 발생부(100), 조준광(aiming beam)을 발생시키는 조준광 발생부(200), 그리고 치료광 및 조준광이 치료 영역으로 진행하는 경로를 형성하는 빔 딜리버리부(400)를 포함하여 구성된다. 나아가, 치료 영역의 상태 정보를 감지하기 위한 모니터링부(300) 및 모니터링부에서 감지된 정보에 근거하여 치료광 발생부의 구동을 제어하는 제어부(500)를 포함하여 구성된다.
치료광 발생부(100)는 치료광을 발생시키는 치료광 광원 및 치료광 광원에서 생성되는 광의 특성을 가공하는 각종 광학 소자를 포함하여 구성될 수 있다. 치료광은 레이저로 구성되며, 치료광 광원은 레이저를 발진할 수 있는 Nd:YAG, Ho:YAG 등과 같은 레이저 매질 또는 레이저 다이오드를 포함하여 구성될 수 있다. 그리고, 레이저를 여기시키기 위한 각종 전기 회로, 다양한 파장 대역 중 특정 파장의 광을 발진시키기 위한 광학 필터, 그리고 셔터 등의 다양한 소자들을 포함할 수 있다.
본 실시예에 따른 안과용 치료 장치(10)는 황반 변성과 같이 안저 영역에서 발생하는 각종 병변을 치료하기 위한 것으로, 치료광은 목표하는 특정 위치(예를 들어, RPE 세포층)에 선택적으로 에너지를 제공할 수 있도록 구성된다. 따라서, 치료광은 망막을 형성하는 다양한 세포층 중 RPE 세포의 멜라노좀에 선택적으로 흡수되는 펄스 폭을 갖는 레이저를 이용할 수 있다. 구체적으로는 가시광선 내지 근적외선 영역의 레이저를 이용할 수 있다.
한편, 조준광 발생부(200)는 치료 영역에 조사되는 조준광을 발생시키는 구성이다. 조준광은 치료광을 조사하기 이전 또는 치료광이 조사되는 동안 시술자에게 치료광이 조사될 위치를 알려주는 구성이다. 조준광은 가시광 대역의 파장을 갖도록 구성되며, 시술자는 치료 영역에서 반사된 조준광에 의해 치료 영역을 확인할 수 있다.
조준광 발생부(200)에서 발생되는 조준광은 치료 영역에서 치료광이 조사되는 하나의 스팟(spot)를 표시하도록 조사될 수도 있다. 또는 치료광이 연속적으로 조사되는 패턴을 표시할 수 있도록, 동시에 복수의 스팟을 표시하도록 조사되는 것도 가능하다.
이 이외에도, 조준광은 스팟 형태가 아니라 격자 형태 또는 경계선 형태의 상이 맺히도록 조사되어, 치료광이 조사되는 영역을 표시하는 것도 가능하다. 이 경우, 조준광은 치료광과 상이한 경로를 따라 진행하여 조사되도록 구성된다.
다만, 모니터와 같은 별도의 인터페이스를 통해 시술자가 치료 영역을 확인하는 것이 가능한 경우, 조준광 발생부를 생략하여 실시하는 것도 가능하다.
한편, 빔 딜리버리부(400)는 치료광 발생부(100) 및 환자의 눈을 고정시키는 컨택트 렌즈부(600)의 사이에 배치되는 복수개의 광학 소자로 구성된다. 빔 딜리버리부는 치료광이 진행하는 광 경로를 구성한다. 그리고, 조준광 및 후술할 모니터링부의 검측광 또한 빔 딜리버리를 따라 진행한다. 이 경우, 조준광 및 검측광은 치료광의 광 경로 중 적어도 일부를 포함하는 경로를 따라 진행할 수 있다. 다만, 조준광 또는 검측광이 치료광과 별도의 광 경로를 갖도록 구성하는 것도 가능하다.
구체적으로, 도 1에 도시된 바와 같이, 빔 딜리버리부는 복수개의 빔 컴바이너(beam combiner)(420)를 구비한다. 이에 의해, 치료광, 조준광 및 검측광(probe beam)은 각각 빔 딜리버리부로 진입하여 치료 영역으로 조사될 수 있다. 그리고, 치료 영역으로부터 반사되는 조준광과 검측광은 각각 빔 딜리버리부(400)를 통해 시술자의 눈이 위치하는 렌즈(700) 방향으로 진행하거나, 모니터링부(300)로 다시 입사될 수 있다.
빔 딜리버리부(400)는 광이 조사되는 위치를 변경시키기 위한 스캐너(410)를 포함할 수 있다. 스캐너(410)는 적어도 하나 이상의 반사거울 및 이를 회전시키는 구동부를 포함하여 구성될 수 있고, 광이 반사되는 반사거울의 회전 위치가 바뀌면서 광이 조사되는 위치를 변경시킬 수 있다.
이 이외에도, 빔 딜리버리부(400)는 광을 집속시키거나 분산시키기 위한 복수개의 광학 렌즈 및 광학 필터 등의 광학 소자(미도시)를 더 포함하여 구성될 수 있다.
빔 딜리버리부(400)의 말단에는 컨택트 렌즈부(600)가 구비될 수 있다. 컨택트 렌즈부(600)는 환자의 눈과 접촉하는 부위이며, 시술중 환자의 눈이 움직이지 않도록 고정시키는 역할을 수행한다. 컨택트 렌즈부(600)는 광이 진행하는 렌즈를 포함하며, 경우에 따라 환자의 눈을 고정시키는 석션 장치를 포함하여 구성될 수 있다.
도 2는 도 1의 A 영역을 확대하여 그린 단면도이다. 도 2의 A는 치료 영역에 해당하는 환자의 망막 조직을 도시한 도면이다. 이러한 망막의 조직은 일반적으로 내경계층(internal limiting layer), 신경 섬유층(nerve fiber layer), 신경절세포층(ganglion cell layer), 내망상층(inner plexiform layer), 내과립층(inner nuclear layer), 외망상층(outer plexiform layer), 외과립층(outer nuclear layer), 외경계층(external limiting layer), 광수용 세포층(photo receptor layer), RPE 층(retinal pigment epithelial layer)의 10개의 층으로 이루어진다.
이 중 RPE 세포층은 위의 10개의 층 중 후측 방향의 경계층을 형성하며, 타이트 정션(tight junction)구조로 형성된다. 그리고 RPE 층의 하측으로는 맥락막(Bruch's membrane)이 위치한다. 이러한 RPE 층은 맥락막 하부에 위치하는 혈관 등으로부터 영양분 및 산소를 광 수용체(photo receptor)에 공급하고, 광 수용체로부터 생성되는 노폐물을 맥락막을 통해 배출하는 역할을 한다.
여기서, RPE 층을 형성하는 일부의 RPE 세포가 정상적인 기능을 수행하지 못하게 되면, 해당 RPE 세포와 대응되는 위치의 광 수용체들은 정상적으로 영양 또는 산소가 공급되지 않아 괴사하게 된다. 따라서, 본 실시예에 따른 안과용 치료장치는 정상적인 기능을 수행하지 못하는 RPE 세포에 치료광을 조사하여 RPE 세포를 선택적으로 괴사시키고, 이로 인해 새로운 RPE 세포의 재생을 유도할 수 있다.
구체적으로, 치료광 발생부(100)에서 발생되는 치료광은 가시광선 또는 근적외선 영역에 해당하는 기 설정된 파장을 갖는다. 해당 파장의 광은 망막의 전방에 위치하는 세포층(첫 번째 세포층 내지 아홉 번째 세포층)에는 거의 흡수되지 않고 투과한 후, RPE 세포층의 RPE 세포 내부에 존재하는 멜라노좀에 흡수된다. 따라서, 치료광이 조사되어 멜라노좀에 흡수되는 에너지의 양이 증가함에 따라 멜라노좀의 온도가 상승하여 해당 RPE 세포에 열적 손상이 발생한다. 이는 온도가 상승함에 따라 멜라노좀의 표면에 미세기포(microbubble)이 발생하고, 미세기포가 점차적으로 성장함에 따라 해당 RPE 세포가 선택적으로 괴사되는 것으로 이해된다. 그리고, 열적 손상이 발생한 RPE 세포의 위치에는 새로운 RPE 세포가 재생되어 치료가 이루어진다.
여기서, 치료광이 지나치게 많이 조사되면, 치료광이 조사된 RPE 세포 뿐 아니라 인접한 RPE 세포와 광 수용체에도 열적 손상이 발생할 수 있다. 따라서, 본 실시예의 안과용 치료장치는 모니터링부(300)를 구비하고, 모니터링부(300)가 치료가 진행되는 동안 치료 영역의 상태 정보를 감지한다.
다시, 도 1을 중심으로 설명하면, 모니터링부(300)는 검측광을 치료 부위로 조사시키고, 치료 부위의 산란 및 스페클 패턴 정보를 획득하도록 구성된다. 이러한 빔 딜리버리부(400)를 통해 치료 영역에 도달한 검측광은 치료 영역의 매질들에 의해 반사되어 진행된 경로를 역행하여 모니터링부(300)로 수광된다.
여기서, 검측광은 조직에 흡수되는 성질이 적고 투과성이 우수한 파장의 광으로 구성된다. 치료 영역으로 조사된 검측광은 망막의 표면으로부터 내측으로 진행하면서, 굴절률이 상이한 조직 또는 경계면을 통과하며 산란되거나 반사된다. 따라서, 반사된 검측광의 간섭 정보는 치료 영역의 표면으로부터 RPE 세포층에 이르는 동안 각 위치의 스페클 정보를 포함할 수 있다.
이에, 모니터링부(300)는 수광된 검측광의 간섭 정보 변화를 분석하여, 치료 영역의 상태 변화 정보를 감지하도록 구성된다. 여기서, 치료 영역의 상태 변화 정보라 함은 치료광이 조사되는 동안 치료 영역에서 발생하는 조직의 온도 변화, 부피 변화, 굴절율 변화 또는 세포들의 이동 여부에 관한 정보 중 적어도 하나를 포함할 수 있다.
치료 영역에 치료광이 조사되면 조직의 온도가 상승하고, 이에 의해 조직의 부피가 변화하거나, 조직 특성이 변화하거나, 일부 조직이 이동하여 조직을 통과하는 광의 진행 특성이 변화한다(예를 들어, 광로 길이, 스페클(speckle) 패턴 등). 따라서, 치료가 진행되는 동안 반사되는 검측광의 특성이 변화하게 되며, 모니터링부(300)는 수광되는 검측광의 특성 변화에 근거하여 치료 영역의 상태 변화를 감지하는 것이 가능하다.
구체적으로, 본 실시예에 따른 모니터링부(300)는 OCT(Optical Coherent Tomography) 장치를 이용하여 구성될 수 있다. 이러한 OCT 장치는 광의 간섭 정보를 이용하여 조직의 단층 정보를 취득하는 구성이다. 구동 방식 및 측정 방식에 따라 TD OCT(Time Domain OCT), SD OCT(spectral domain OCT), SS OCT(swept source OCT) 등의 종류가 있으며, 본 실시예에서는 SD OCT 또는 SS OCT를 이용할 수 있다. 다만, 종래의 OCT는 수평 방향 좌표를 옮겨가면서(B-scan) 단층 정보를 획득하는 것에 비해, 본 실시예에서는 특정 치료 위치에 대해 모니터링을 진행하는 동안에는 별도의 B-scan 없이 Z-scan을 통해 동일한 위치에서 조직의 단층 정보를 취득하도록 구성된다.
도 1에 도시된 바와 같이, 모니터링부(300)는 광원(light source)(310), 광 분배기(beam splitter)(320), 기준광 반사부(reference beam reflector)(330), 검출부(340) 및 프로세서(350)를 포함하여 구성된다.
광원(310)은 SD OCT의 경우 저 간섭광(low coherent beam)을 발생시키는 광원일 수 있고, SS OCT의 경우 광의 파장을 변화시킬 수 있는 스웹트 소스(swept source) 광원을 이용할 수 있다.
광원(310)으로부터 나온 광은 광 분배기(320)를 통과하면서 검측광과 기준광의 2개의 광으로 분할된다. 기준광은 제1 경로(P1)를 따라 기준광 반사부 방향으로 진행한 후, 기준광 반사부(330)로부터 반사된다. 검측광은 제2 경로(P2)를 따라 진행하여 빔 딜리버리부(400)를 통해 치료 영역까지 진행한 후 반사된다. 반사된 검측광과 기준광의 일부는 광 분배기(320)에서 결합되어 검출부(340)로 입사된다.
결합된 검측광과 기준광은 간섭이 발생되며, 검출부(340)는 수광되는 검측광과 기준광의 간섭 정보를 이용하여 치료 영역의 스페클 상태 정보를 감지할 수 있다. 여기서, 검출부(340)는 SD OCT의 경우 어레이 디텍터(array detector)를 이용하며, SS OCT의 경우 포토다이오드(photo diode)를 이용하여 구성할 수 있다.
이러한 검출부(340)는 검측광과 기준광이 결합되어 입사되면, 이를 파장대별로 분리하여 푸리에 변환(Fourier transform) 처리한 신호를 이용하여 치료 영역의 깊이에 따른 상태 정보를 획득하는 것이 가능하다. 검출부(340)에서 검출되는 신호는 가공 내용에 따라 치료 영역에 대한 다양한 형태의 정보를 획득하는 것이 가능하며, 본 실시예의 경우 검측광의 스페클 패턴(speckle pattern) 정보를 획득할 수 있다.
스페클 패턴은 광을 구성하는 광선 사이의 상호 간섭에 의해 발생하는 강도 패턴(intensity pattern)을 의미한다. 이러한 스페클 패턴은 광로의 위치에 따라 상이한 패턴을 형성할 수 있으며, 각 스페클 패턴에는 광이 조직을 통과하면서 발생하는 산란 정보 및 반사면의 표면 특성 등이 반영된다. 그리고, 광 경로상에 미세한 변화가 발생하게 되면 광선 사이의 간섭 패턴이 변화하여 해당 위치의 스페클 패턴이 변화하게 된다.
이처럼, 검출부(340)에서 검출하는 검측광의 스페클 패턴에는 치료 영역의 상태 정보가 반영된다. 따라서, 치료 중 스페클 패턴의 변화를 감지하여, 온도 상승, 조직 두께의 변화, 굴절율의 변화, 조직의 이동 등 치료 영역의 미세한 상태 변화를 파악하는 것이 가능하다.
따라서, 프로세서(350)는 검출부(340)에서 검출되는 신호(예를 들어, 스페클 패턴)의 변화를 분석하여 치료 영역의 상태 변화를 판단한다. 그리고, 치료 영역의 상태 변화가 감지되면, 이를 반영하여 치료 내용을 변경할 수 있도록 상태 변화 정보를 제어부(500)에 제공할 수 있다.
도 3은 치료광 및 검측광이 조사되는 안저의 단층 구조를 도시한 도면이다. 전술한 바와 같이, 모니터링부(300)는 치료가 진행되는 동안 치료 영역(S)로 검측광을 조사하고 반사되는 검측광을 이용하여 치료 영역의 상태 정보 변화를 감지한다(도 3 참조).
보다 구체적으로, 광원(310)은 치료가 진행되는 동안 치료 영역(S)으로 복수회에 걸쳐 검측광을 조사한다. 그리고, 검출부(340)는 반사되는 검측광에 의한 신호를 지속적으로 검출한다. 검측광에 의해 검출부에서 얻어지는 신호는 해당 시점에서 치료 영역의 상태 정보를 포함한다. 따라서, 본 실시예에 따른 모니터링부(300)는 치료 중 치료 영역의 상태 정보를 실시간으로 획득하는 것이 가능하다.
프로세서(350)는 각각의 검측광에 의해 검출되는 신호를 비교하는 방식으로, 치료 영역의 상태 변화 여부를 감지할 수 있다. 예를 들어, 각 검측광(예를 들어, n 번째 검측광)에 의해 검출부(340)에서 검출된 신호는 앞서 조사된 검측광(예를 들어, n-1 번째 검측광)에 의해 검출된 신호와 상호 상관(cross correlation) 분석된 값을 근거로 상태 변화 여부를 판단하는 것이 가능하다. 또는 각 검측광에 의해 검출된 신호와 기준이 되는 검측광(예를 들어, 1번째 검측광)에 의해 검출된 신호를 상호 상관 분석된 값을 근거로 상태 변화 여부를 판단하는 것도 가능하다. 본 실시예에서 상호 상관 관계를 연산하는 대상이 되는 신호는 검출부에서 검출된 스페클 패턴 신호이나, 이 이외에도 다양한 형태의 신호를 이용하는 것도 가능하다.
도 4는 프로세서부에서 획득되는 신호의 일 예를 도시한 그래프이다. 여기서, 검출부에서 검출되는 신호는 검측광의 진행 경로에 해당하는 안저의 모든 깊이에 대한 정보를 포함한다. 구체적으로, 하나의 검측광에 의해 획득되는 신호는 망막 표면으로부터, 광수용층, RPE 세포층, 부르크막층의 상태 정보를 모두 포함할 수 있다(도 3 참조). 따라서, 본 실시예에서는 검출부에서 검출된 신호 중 관심이 있는 특정 영역(이하, '관심 깊이 영역'이라함)(Dsel)의 정보만을 선택적으로 추출한 후, 추출된 관심 깊이 영역의 정보에 근거하여 상태 변화 여부를 감지할 수 있다.
구체적으로, 어느 하나의 검측광에 의해 신호가 검출되면 이 중 관심 깊이 영역(Dsel)의 정보만을 추출한다. 그리고 프로세서(350)는 해당 검측광(예를 들어, n번째 검측광)에 의한 관심 깊이 영역의 정보와 앞서 조사된 검측광(예를 들어, n-1번째 검측광)에 의한 관심 깊이 영역의 정보를 상호 상관시켜 상태 변화 여부를 판단할 수 있다. (여기서, 검측광이 연속적으로 조사되는 동안 B-scan이 진행되지 않은 상태로 동일한 위치에 검측광이 조사된다)
이 경우, 검출된 신호 전체를 이용하여 연산처리를 하는 것에 비해 처리해야하는 연산량이 현저하게 감소하여 빠른 연산이 가능하다. 따라서, 상태 정보를 분석하는데 소요되는 시간을 최소화시켜 실시간에 가까운 모니터링이 가능하다.
나아가, 이전 신호와 현재 신호 사이의 변화를 감지하는 연산을 수행함에 있어, 상태 변화가 가장 활발하게 나타나는 관심 깊이 영역의 신호만을 선택하여 비교하는 경우, 신호 전체를 비교하는 경우에 비해, 변화율이 현저히 크게 나타난다. 따라서, 치료 영역의 상태 변화 여부를 정확하게 판단하는 것이 가능하다.
여기서, 관심 깊이 영역(Dsel)은 치료 중 타겟이 되는 조직이거나, 상태 변화가 가장 먼저 발생하는 조직이거나, 상태 변화량이 큰 조직이 위치하는 깊이 영역일 수 있다. 본 실시예에 따른 안과용 치료 장치(10)는 전술한 바와 같이 치료광의 대부분이 RPE 세포층에 흡수되어, RPE 세포층의 온도가 상승하면서 상태가 변화하므로, 본 실시예에서는 관심 깊이 영역을 RPE 세포층을 포함하는 깊이로 설정할 수 있다. 예를 들어, 망막 표면으로부터 외측 방향(도 3을 기준으로 하측 방향)으로 두께의 50% 지점으로부터 100% 지점에 이르는 영역을 관심 깊이 영역으로 설정하는 것도 가능하고, 보다 구체적으로는 망막 표면으로부터 망막 두께의 70% 지점으로부터 100% 지점에 이르는 영역을 관심 깊이 영역으로 설정하는 것도 가능하다.
본 실시예에서는 안저 영역의 병변을 치료하는 장치를 중심으로 설명하기 때문에 RPE 세포층과 인접한 영역을 관심 깊이 영역으로 설정하였으나, 이 이외에도 다양한 응용이 가능하다. 예를 들어, 각막을 치료하는 경우에는 스트로마 내 특정 깊이 영역을 관심 깊이 영역으로 설정하는 것도 가능하고, 이 이외도 치료 병변에 따라 관심 깊이 영역을 상이하게 설정할 수 있다.
이러한 관심 깊이 영역(Dsel)은 기 설정된 값을 이용하는 것도 가능하나, 본 실시예에서는 사용자가 치료 병변 및 환자의 특성을 고려하여 인터페이스(미도시)를 통해 설정할 수 있도록 구성할 수 있다. 환자에 따라 망막의 상태 및 두께가 상이하므로, 검진시 촬영된 환자의 망막 단층 영상 등을 고려하여 관심 깊이 영역을 설정하는 것이 가능하다.
이와 같이, 프로세서(350)는 추출된 관심 깊이 영역(Dsel)의 신호를 비교하여 치료 영역의 상태 변화를 판단하며, 이러한 판단 방식은 다양한 방식으로 구성될 수 있다.
일 예로, 추출된 신호의 변화량이 이전 신호와 비교하여 기 설정된 값(제1 설정값) 이하인 경우 치료 영역의 상태 변화가 없는 것으로 판단하고, 변화량이 기 설정된 값 이상인 경우 치료 영역의 상태 변화가 있는 것으로 판단할 수 있다.
다른 예로, 전술한 바와 같이 치료광이 조사됨에 따라 RPE 세포의 온도가 상승하게 되면 미세기포가 발생하면서 점차적으로 RPE 세포의 부피가 팽창하게 된다. 따라서, 이와 같이 RPE 세포의 온도가 순차적으로 상승하는 동안 검출 신호는 순차적으로 변화한다. 그리고, 치료가 계속됨에 따라 RPE 세포가 괴사되는 시점(예를 들어, RPE 세포의 파괴 시점)에서는 상기 검출 신호가 불연속적으로 변화할 수 있다. 따라서, 프로세서(350)는 추출된 신호의 변화량이 기 설정된 값(제2 설정값) 이하인 경우에는 RPE 세포가 괴사되지 않은 상태에서 온도가 지속적으로 상승하고 있는 상태인 것으로 판단하고, 변화량이 기 설정된 값 이상인 경우 RPE 세포가 괴사된 것으로 판단할 수 있다.
또 다른 예로, 추출된 신호의 변화량을 기 저장된 레퍼런스 데이터와 비교하여 치료 영역의 온도를 판단하고, 이를 근거로 치료 영역의 상태 변화를 예상 및 판단할 수 있다. 치료광이 조사되는 동안, RPE 세포가 괴사되는 시점(열적 손상 발생 시점) 이전에는 온도가 지속적으로 상승함에도 검출되는 신호의 변화량이 미세한 반면, 괴사되는 시점에서 검출되는 신호 변화가 급격하게 발생된다. 따라서, RPE 세포가 괴사되기 이전에는 RPE 세포의 괴사되는 시점을 예측하거나 RPE 세포의 온도를 고려하여 치료 내용을 조절하는 것이 곤란하다. 따라서, 안과용 치료장치는 검측광에 의해 검출되는 신호 값(또는 신호의 변화량)과 이에 해당하는 온도 정보에 대한 레퍼런스 데이터를 구비할 수 있다. 그리고, 프로세서는 치료 중 검측광에 검출되는 신호를 레퍼런스 데이터와 비교하여 관심 깊이 영역의 온도 정보를 실시간으로 판단하며, 이를 고려하여 치료 내용을 제어하는 것이 가능하다.
이와 같이, 본 실시예에 따른 모니터링부(300)는 관심 깊이 영역(Dsel), 특히 RPE 세포의 깊이에 해당하는 신호 정보를 선택적으로 추출하여 처리함으로서, 치료 중 RPE 세포의 상태 정보를 감지할 수 있다. 특히, 치료 중 RPE 세포의 치료가 완료되는 시점의 정보 뿐 아니라, 치료 과정 중 온도가 상승하는 동안의 미세한 상태 변화까지 모니터링 하는 것이 가능하다. 따라서, 본 실시예에 의할 경우 치료광의 과잉 조사로 인해 인접 조직에 열적 손상이 가해지는 것을 방지할 수 있고, 원하는 만큼의 에너지를 정확하게 전달함으로서 최적의 치료를 진행하는 것이 가능하다.
한편, 제어부(500)는 치료광 발생부(100), 조준광 발생부(200), 빔 딜리버리부(400) 등 각종 구성요소의 동작을 제어하는 구성이다. 이때, 모니터링부(300)에서 감지된 치료 영역의 상태 정보는 제어부(500)로 전달되고, 제어부(500)는 치료 영역의 상태 정보에 근거하여 각종 구성요소를 제어할 수 있다.
그 중에서도 제어부(500)는 치료 영역의 상태 정보에 따라 치료광 발생부(100)의 동작을 제어할 수 있다. 예를 들어, 치료광의 출력, 치료광의 펄스 시간, 치료광을 구성하는 펄스 사이의 시간 또는 치료광의 집속 정도 등 치료광의 파라미터를 다양하게 제어할 수 있다.
이와 같이, 본 실시예에 따른 안과용 치료장치(10)는 모니터링부에서 치료 진행 과정을 모니터링 하고, 이를 고려하여 제어부에서 치료 내용을 조절함으로서 최적의 치료를 진행할 수 있다. 치료 진행 과정을 고려한 치료 내용의 제어는 다양한 방식으로 설계될 수 있으며, 이하에서는 일 예로서 본 실시예에 따른 안과용 치료장치의 구동 방법을 설명한다.
도 5는 도 1의 안과용 치료장치의 구동 방법을 도시한 순서도이다. 환자의 병변에 대한 검사 결과에 따라 치료 영역이 결정되면, 환자의 안구를 컨택트 렌즈부(600)에 고정시킨다(S10).
그리고, 제어부(500)는 치료광 발생부(100)을 구동하여 컨택트 렌즈부(600)에 고정된 환자의 안저로 제1 모드(M1)로 치료광을 조사한다(S20). 제1 모드에서 치료광은 복수회에 걸쳐 조사되며, 단위 시간 당 치료 영역의 단위 면적으로 제공되는 에너지가 낮은 크기부터 순차적으로 증가하는 패턴으로 조사된다. 이에 의해, 치료 영역으로 과도한 에너지를 전달하여 인접 조직에 손상이 발생하는 것을 방지할 수 있다.
전술한 단계가 진행되는 동안, 모니터링부(300)는 복수회에 걸쳐 치료광이 조사되는 위치로 검측광을 조사하고, 반사되는 검측광을 수광하여 치료 영역의 상태를 지속적으로 감지한다(S30). 이때, 각각의 검측광은 치료광과 동시에 조사되거나, 검측광과 치료광이 번갈아가며 조사되도록 제어될 수 있다.
도 6은 도 5에서 치료 영역의 상태를 감지하는 단계를 구체적으로 도시한 순서도이다. 이하에서는 도 6을 참고하여, 본 단계를 보다 상세하게 설명한다.
우선, 모니터링부(300)의 광원은 치료광이 조사되는 치료 영역으로 검측광을 조사한다(S31). 조사된 검측광은 치료 영역에 해당하는 망막의 내측까지 진행한 후 산란 또는 반사된다.
그리고, 검출부(340)는 산란 또는 반사되는 검측광과 기준광의 간섭 정보로부터 검측광의 스페클 패턴을 검출한다(S32). 여기서, 검측광의 스페클 패턴은 검측광이 통과한 망막 단층의 각각의 깊이에 따른 정보가 포함될 수 있다.
검출된 스페클 패턴 중 관심 깊이 영역, 즉 RPE 세포층을 포함하는 일부 영역에 대한 스페클 패턴을 추출한다(S33). RPE 세포층은 치료광에 의해 상태 변화가 가장 민감하게 발생하는 영역이다. 따라서, 검출부(340) 또는 프로세서(350)는 검측광의 스페클 패턴 중 불필요한 깊이 영역에 대한 정보는 제외시키고, 관심이 있는 RPE 세포층의 스페클 패턴 정보를 추출한다.
프로세서(350)는 추출된 RPE 세포층의 스페클 패턴 변화 정보에 근거하여 치료 영역의 상태, 구체적으로는 치료 영역의 RPE 세포층의 상태를 판단한다(S34). 이때, 프로세서(350)는 본 검측광(예를 들어, n번째 검측광)에 의한 RPE 세포층의 스페클 패턴 정보와 이전 검측광(예를 들어, n-1번째 검측광)에 의한 RPE 세포층의 스페클 패턴 정보를 상호 상관(cross correlation)시켜 변화량을 검출하는 방식으로 치료 영역의 상태를 감지한다. 또는 본 검측광(예를 들어, n번째 검측광)에 의한 RPE 세포층의 스페클 패턴 정보와 최초 검측광(예를 들어, 1번째 검측광)에 의한 RPE 세포층의 스페클 패턴 정보를 상호 상관(cross correlation)시켜 변화량을 검출하는 방식으로 치료 영역의 상태를 감지하는 것도 가능하다.
도 6에서는 모니터링 과정에서 조사되는 복수개의 검측광 중 하나의 검측광에 의한 단계를 도시하고 있으나, 본 단계는 복수개의 검측광이 조사되는 동안 모든 검측광에 대해 전술한 단계(S31 내지 S34)를 반복적으로 수행함으로서 치료 중 지속적으로 치료 영역의 RPE 세포층의 상태 정보를 감지할 수 있다.
다시, 도 6을 중심으로 설명하면, 전술한 단계를 통해 감지된 치료 영역의 상태 정보가 감지되면, 상태 정보가 기 설정된 기준값 이상으로 변화했는지 여부를 판단한다(S40). 본 단계는 전술한 단계에서 진행한 스페클 패턴의 변화량이 기 설정된 기준값의 이상인지 여부로 판단한다. 여기서, 기준값은 치료 내용에 따라 다양하게 설계될 수 있다. 일 예로, 기준값은 치료 영역의 열적 손상시 발생되는 변화량을 고려하여 설정될 수 있으며, 또는 치료 영역이 특정 온도에 도달한 경우에 상응하는 변화량을 고려하여 설정될 수 있다.
본 단계를 통해, 치료 영역의 상태 정보가 기준값 이하인 것으로 판단되면, 제어부(500)는 현재 진행 중인 제1 모드(M1)로 치료를 지속할 수 있도록 제어할 수 있다. 반면, 치료 영역의 상태 정보가 기준값을 초과한 것으로 판단되면, 제어부(500)는 치료광 발생부가 제2 모드(M2)로 전환하여 동작하도록 제어할 수 있다(S50).
도 7은 도 5에서 제1 모드 동작 및 제2 모드 동작의 예를 도시한 그래프이다. 전술한 바와 같이, 제1 모드(M1)에서 치료광 발생부(100)은 단위 시간 당 치료 영역의 단위 면적으로 전달되는 에너지가 순차적으로 증가하도록 치료광을 발생시킨다. 이에 비해, 제2 모드(M2)에서는 RPE 세포의 온도가 기 설정된 온도와 인접한 온도로 상승한 것으로 판단하고, 단위 시간 당 치료 영역의 단위 면적으로 전달되는 에너지가 더 이상 증가하지 않고 현 상태를 유지하도록 치료광을 발생시킬 수 있다(도 7의 a). 또는, 제1 모드에 비해 단위 면적으로 전달되는 에너지의 증가 폭을 줄이도록 치료광을 발생키는 것도 가능하다(도 7의 b).
이와 같이, 제2 모드(M2)로 치료광이 조사되는 동안에도 모니터링부(300)는 지속적으로 검출되는 신호에 근거하여 치료 영역의 상태 정보를 모니터링한다. 그리고, RPE 세포가 기 설정된 온도에 도달하였는지 여부에 대한 신호(예를 들어, RPE 세포가 괴사되는 것에 대응되는 신호)가 감지되는지 여부를 지속적으로 판단한다.
위의 과정을 통해, 치료 완료 신호가 감지되기 전까지는 제2 모드(M2) 동작을 지속할 수 있고, 치료 완료 신호가 감지되는 시점에서는 해당 치료 영역에 치료광을 조사하는 것을 종료하고 다음 치료 영역으로 치료광 조사 위치를 변경하여 다른 치료 영역에서 치료를 진행하는 것이 가능하다.
이상에서 설명한 안과용 치료장치의 구동 방법을 진행함에 있어, 단위 시간 당 치료 영역의 단위 면적으로 전달되는 에너지를 순차적으로 증가시키는 제1 모드(M1)를 제어함에 있어 도 7에서는 치료광 펄스의 출력을 순차적으로 증가시키는 방식으로 제어하였다. 다만, 이는 일 예로서 치료광의 출력 이외의 다른 변수를 제어하여 제1 모드를 구현하는 것도 가능하다.
도 8은 다른 실시예에 따른 도 5의 제1 모드 동작의 예를 도시한 그래프이다. 예를 들어, 도 8의 a와 같이 치료광 발생부가 동일한 펄스 지속 시간(pulse duration time)을 갖는 동일한 출력의 펄스를 발생시키되, 각 펄스 사이의 오프 시간(off time)을 점차적으로 줄임으로서 단위 면적 당 전달되는 에너지의 크기를 순차적으로 증가시킬 수 있다. 또는 도 8의 b와 같이 동일한 출력의 펄스를 발생시키되 각 펄스의 펄스 지속 시간을 점차적으로 증가시킴으로서 단위 면적 당 전달되는 에너지의 크기를 순차적으로 증가시킬 수 있다. 이 이외에도, 도 8의 c와 같이 치료광의 하나의 펄스가 동일한 출력을 갖는 복수개의 단위 펄스로 이루어지도록 조사하되, 하나의 펄스를 구성하는 단위 펄스의 개수를 순차적으로 증착시키거나, 도 8의 d와 같이 치료광을 점차적으로 집속시키는 방식으로 치료 영역의 단위 면적당 전달되는 에너지의 크기를 순차적으로 증가시키도록 구성하는 등 다양한 방식으로 제1 모드 및 제2 모드를 구현할 수 있다.
또한, 전술한 안과용 치료장치의 동작 방법에서는 치료 영역의 상태 정보에 따라 두 개의 모드로 치료 내용을 제어하는 내용을 설명하였으나, 이는 설명의 편의를 위해 단순한 예를 구성한 것이며, 환자의 병변 내용 및 치료 영역에 따라 다양하게 변형하여 설계할 수 있음은 물론이다.
나아가, 본 실시예에서는 모니터링부에서 검출한 신호를 치료 영역의 상태를 모니터링하는 용도로만 활용하였으나, 별도의 디스플레이를 구비하고 치료 영역의 단층 영상을 디스플레이에 표시하여 사용자가 치료 중 치료 영역의 RPE 세포 상태를 직접 확인할 수 있도록 구성하는 것도 가능하다.
이상, 본 발명의 일 실시예에 대해 상세하게 기술하였으나, 본 발명이 상기 실시예에 한정되는 것은 아니다. 본 발명이 속하는 기술 분야에 대해 통상의 지식을 가진 사람이면, 첨부된 청구범위에 정의된 본 발명의 기술적 특징의 범위를 벗어나지 않으면서 본 발명을 여러 가지로 변형 또는 변경하여 실시할 수 있음은 밝혀둔다.
Claims (20)
- 치료광(treatment beam)을 발생시키는 치료광 발생부;상기 치료광 발생부로부터 발생된 치료광이 안저(fundus)에 위치한 치료 영역으로 진행하는 경로를 형성하는 빔 딜리버리부;상기 치료 영역으로 검측광(detecting beam)을 조사하고, 상기 치료 영역으로부터 산란 또는 반사되는 상기 검측광의 간섭 정보에 근거하여 치료 영역의 상태 정보를 감지하는 모니터링부; 그리고,상기 모니터링부에서 감지된 상기 치료 영역의 상태 정보에 근거하여 상기 치료광 발생부의 동작을 제어하는 제어부;를 포함하는 안과용 치료장치.
- 제1항에 있어서,상기 모니터링부는 상기 치료 영역으로부터 산란 또는 반사되는 상기 검측광의 스페클 패턴(speckle pattern) 정보를 검출하여 상기 치료 영역의 상태 정보를 감지하는 것을 특징으로 하는 안과용 치료장치.
- 제1항에 있어서,상기 치료광이 하나의 치료 위치에 조사되는 동안 상기 모니터링부는 상기 검측광을 복수회에 걸쳐 상기 치료 위치에 조사하여 상기 치료 위치의 상태 정보를 감지하는 것을 특징으로 하는 안과용 치료장치.
- 제3항에 있어서,상기 모니터링부는 각 검측광에 의해 감지된 상태 정보를 앞서 조사된 검측광에 의해 감지된 상태 정보와 비교하여 상기 치료 영역의 상태 변화를 판단하는 것을 특징으로 하는 안과용 치료장치.
- 제4항에 있어서,상기 모니터링부는 상기 각 검측광에 의해 감지된 상태 정보 중 관심 깊이 영역에 해당하는 정보를 선택적으로 추출하고,상기 추출된 관심 깊이 영역의 정보를 앞서 조사된 검측광에 의해 감지된 관심 깊이 영역의 정보와 비교하여 상기 치료 영역의 상태 변화 여부를 판단하는 것을 특징으로 하는 안과용 치료장치.
- 제5항에 있어서,상기 관심 깊이 영역은 상기 치료 영역 내측의 RPE 세포층이 위치하는 깊이 영역을 포함하는 것을 특징으로 하는 안과용 치료장치.
- 제5항에 있어서,상기 관심 깊이 영역에 해당하는 깊이는 인터페이스를 통해 사용자가 직접 설정할 수 있도록 구성되는 것을 특징으로 하는 안과용 치료장치.
- 제1항에 있어서,상기 모니터링부는 상기 치료광이 치료 영역에 흡수됨에 따라 발생되는 치료 영역의 온도 변화를 감지하는 것을 특징으로 하는 것을 특징으로 하는 안과용 치료장치.
- 제1항에 있어서,치료 영역의 온도가 상승하면 치료 영역에 위치한 조직의 부피 또는 굴절률이 변하여 상기 검측광이 진행하는 광로 특성이 변경되고,상기 모니터링부는 상기 검측광이 상기 광로 특성 변화에 따른 스페클 패턴의 변화를 감지하여 치료 영역의 온도 변화를 감지하는 것을 특징으로 하는 안과용 치료장치.
- 제9항에 있어서,상기 모니터링부는 상기 반사되는 검측광의 스페클 패턴이 기 설정된 범위 내에서 변하는 경우에는 상기 RPE 세포의 온도가 연속적으로 상승하는 것으로 판단하고, 상기 반사된느 검측광의 스페클 패턴의 변화량이 기 설정된 범위를 초과하는 경우 상기 RPE 세포가 괴사된 것으로 판단하는 것을 특징으로 하는 안과용 치료장치.
- 제1항에 있어서, 상기 모니터링부는상기 검측광을 치료 영역으로 조사하는 광원,상기 치료 영역으로부터 반사되는 상기 검측광의 스페클 패턴을 검출하는 검출부 및상기 검출부에서 검출된 스페클 패턴 중 RPE 세포층과 인접한 부분의 정보를 추출하여, 상기 RPE 세포 인접 부분의 상태 변화를 판단하는 프로세서를 포함하여 구성되는 것을 특징으로 하는 안과용 치료장치.
- 제1항에 있어서,상기 제어부는 상기 모니터링부에서 감지된 치료 영역의 상태 정보에 근거하여, 상기 치료광에 의해 치료 영역의 단위 면적 당 전달되는 에너지의 크기를 조절하는 것을 특징으로 하는 안과용 치료 장치.
- 제12항에 있어서,상기 모니터링부에서 감지된 치료 영역의 상태 정보의 변화가 기준값 이하이면, 상기 제어부는 치료 영역의 단위 면적당 전달되는 에너지가 점차적으로 증가하도록 상기 치료광 발생부를 제어하는 것을 특징으로 하는 안과용 치료 장치.
- 제13항에 있어서,상기 제어부는 상기 치료광 발생부로부터 조사되는 치료광의 펄스의 출력을 순차적으로 증가시켜, 치료 영역의 단위 면적 당 전달되는 에너지를 증가시키는 것을 특징으로 하는 안과용 치료 장치.
- 제13항에 있어서,상기 제어부는 상기 치료광 발생부로부터 조사되는 상기 치료광의 펄스 지속 시간(pulse duration time)을 증가시키거나, 상기 치료광의 펄스 사이의 오프 시간(off time)을 순차적으로 감소시켜, 치료 영역의 단위 면적 당 전달되는 에너지를 증가시키는 것을 특징으로 하는 안과용 치료장치.
- 제13항에 있어서,상기 치료광 발생부로부터 발생되는 상기 치료광은 펄스 파형으로 구성되고, 각각의 펄스는 복수개의 단위 펄스로 이루어지며,상기 제어부는 상기 펄스를 구성하는 단위 펄스의 개수를 순차적으로 증가시켜, 치료 영역의 단위 면적 당 전달되는 에너지를 증가시키는 것을 특징으로 하는 안과용 치료 장치.
- 치료광 발생부를 구동하여 타겟 위치로 치료광을 조사하는 단계;모니터링부를 구동하여 상기 치료광이 조사되는 치료 영역으로 검측광을 조사하고, 상기 치료 영역으로부터 반사되는 상기 검측광의 간섭 정보에 근거하여 상기 치료 영역의 상태 정보를 감지하는 단계; 그리고,상기 감지된 상태 정보에 근거하여 제어부가 상기 치료광 발생부의 동작을 조절하는 단계;를 포함하는 안과용 치료 장치의 구동 방법.
- 제17항에 있어서,상기 치료 영역의 상태 정보를 감지하는 단계는 상기 검측광의 스페클 패턴을 검출하여 상기 치료 영역의 상태 정보를 감지하는 것을 특징으로 하는 안과용 치료 장치의 구동 방법.
- 제17항에 있어서,상기 치료 영역의 상태 정보를 감지하는 단계는 상기 검측광에 의한 간섭 정보 중 관심 깊이 영역에 해당하는 정보를 추출하는 단계를 포함하여 구성되는 것을 특징으로 하는 안과용 치료 장치의 구동 방법.
- 제17항에 있어서, 상기 치료 영역의 상태 정보를 감지하는 단계는상기 검측광으로부터 스페클 패턴을 검출하는 단계;상기 스페클 패턴으로부터 RPE 세포층에 해당하는 관심 깊이 영역의 정보를 추출하는 단계; 및상기 관심 깊이 영역의 정보의 상기 스페클 패턴 변화량을 판단하여 치료 영역의 상태 변화를 판단하는 단계;를 포함하는 것을 특징으로 하는 안과용 치료 장치의 구동 방법.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/500,451 US10898376B2 (en) | 2014-07-30 | 2015-07-30 | Ophthalmic treatment device and method for driving same |
EP15828054.5A EP3192478B1 (en) | 2014-07-30 | 2015-07-30 | Ophthalmic treatment device |
US17/158,512 US11833079B2 (en) | 2014-07-30 | 2021-01-26 | Ophthalmic treatment device and method for driving same |
US18/501,946 US20240074901A1 (en) | 2014-07-30 | 2023-11-03 | Ophthalmic treatment device and method for driving same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140097481A KR101663583B1 (ko) | 2014-07-30 | 2014-07-30 | 안과용 치료장치 및 이의 구동 방법 |
KR10-2014-0097481 | 2014-07-30 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/500,451 A-371-Of-International US10898376B2 (en) | 2014-07-30 | 2015-07-30 | Ophthalmic treatment device and method for driving same |
US17/158,512 Continuation US11833079B2 (en) | 2014-07-30 | 2021-01-26 | Ophthalmic treatment device and method for driving same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016018099A1 true WO2016018099A1 (ko) | 2016-02-04 |
Family
ID=55217879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/007994 WO2016018099A1 (ko) | 2014-07-30 | 2015-07-30 | 안과용 치료장치 및 이의 구동 방법 |
Country Status (4)
Country | Link |
---|---|
US (3) | US10898376B2 (ko) |
EP (1) | EP3192478B1 (ko) |
KR (1) | KR101663583B1 (ko) |
WO (1) | WO2016018099A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210030588A1 (en) * | 2018-04-03 | 2021-02-04 | Lutronic Corporation | Ophthalmic treatment apparatus and control method therefor |
US11213427B2 (en) | 2017-08-17 | 2022-01-04 | Lutronic Vision Inc. | Disposable contact lens for optical treatment systems |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101663583B1 (ko) * | 2014-07-30 | 2016-10-07 | 주식회사 루트로닉 | 안과용 치료장치 및 이의 구동 방법 |
KR101558948B1 (ko) * | 2015-08-11 | 2015-10-08 | 김유인 | 레이저 펄스파의 첨두치를 이용한 의료용 피부주름 개선장치 |
KR101855420B1 (ko) * | 2015-08-24 | 2018-05-08 | 주식회사 루트로닉 | 광학 치료장치 및 이의 제어방법 |
KR101859571B1 (ko) * | 2016-07-27 | 2018-05-21 | 주식회사 루트로닉 | 안과용 치료장치 및 이의 제어방법 |
KR101902862B1 (ko) * | 2016-07-27 | 2018-10-01 | 주식회사 루트로닉 | 안과용 치료장치 및 이의 제어방법 |
KR101871451B1 (ko) | 2017-06-07 | 2018-06-26 | 단국대학교 천안캠퍼스 산학협력단 | 결막 모세혈관 이미징 장치 및 방법 |
WO2019031846A1 (ko) * | 2017-08-11 | 2019-02-14 | 주식회사 루트로닉 | 안과용 치료장치 및 이의 제어방법 |
KR102020841B1 (ko) * | 2017-08-11 | 2019-09-11 | 주식회사 루트로닉 | 안과용 치료장치 및 이의 제어방법 |
WO2019132982A1 (en) * | 2017-12-29 | 2019-07-04 | Xinova, LLC | Systems and methods for measuring postlens tear film thickness |
US11110006B2 (en) | 2018-09-07 | 2021-09-07 | Vialase, Inc. | Non-invasive and minimally invasive laser surgery for the reduction of intraocular pressure in the eye |
KR102191633B1 (ko) * | 2019-02-08 | 2020-12-16 | 주식회사 루트로닉 | 안과용 치료장치 및 이의 제어방법 |
KR102577406B1 (ko) * | 2021-02-25 | 2023-09-12 | 부산대학교 산학협력단 | 적응광학 기반의 초고해상도 인공시각 장치 및 그 동작 방법 |
EP4331542A1 (en) * | 2022-08-31 | 2024-03-06 | Oculox Technologies SA | Apparatus for providing retinal therapy, method for tracking a change in retinal cells' functional modification |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006517028A (ja) * | 2003-01-16 | 2006-07-13 | メディツィニシェス ラザーツェントラム リューベック ゲゼルシャフト ミット ベシュレンクテル ハフツング | 無接触温度モニタ及び制御方法及び装置 |
JP2009523556A (ja) * | 2006-01-20 | 2009-06-25 | レンサー, インク. | レーザービームを眼の水晶体に送達するためのシステム及び装置 |
JP2012213634A (ja) * | 2011-03-31 | 2012-11-08 | Nidek Co Ltd | 眼科用レーザ治療装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2233727T3 (es) * | 1994-08-18 | 2005-06-16 | Carl Zeiss Meditec Ag | Aparato quirurgico asistido por tomografia de coherencia optica. |
DE19814095C2 (de) * | 1998-03-30 | 2003-08-14 | Zeiss Carl Jena Gmbh | Verfahren und Anordnung zur Kontrolle und Steuerung der Behandlungsparameter an einem ophthalmologischen Behandlungsgerät |
US7792249B2 (en) * | 2007-12-23 | 2010-09-07 | Oraya Therapeutics, Inc. | Methods and devices for detecting, controlling, and predicting radiation delivery |
US20090275929A1 (en) * | 2008-04-30 | 2009-11-05 | Amo Development, Llc | System and method for controlling measurement in an eye during ophthalmic procedure |
DE102010012810A1 (de) * | 2010-03-23 | 2011-09-29 | Carl Zeiss Meditec Ag | Vorrichtung und Verfahren zur Steuerung einer Lasertherapie des Auges |
JP5842330B2 (ja) * | 2010-12-27 | 2016-01-13 | 株式会社ニデック | 眼底光凝固レーザ装置 |
KR101417843B1 (ko) | 2012-07-13 | 2014-07-14 | 주식회사 루트로닉 | 안과용 치료장치 |
JP5956883B2 (ja) * | 2012-09-13 | 2016-07-27 | 株式会社トプコン | レーザ治療装置 |
US10420676B2 (en) * | 2013-12-09 | 2019-09-24 | Lutronic Vision Inc. | Ophthalmic treatment device, method for controlling ophthalmic treatment device, and fundus lesion treatment method |
KR101814444B1 (ko) * | 2014-05-09 | 2018-01-03 | 루트로닉 비전, 인크. | 안과용 치료장치 |
KR101663583B1 (ko) * | 2014-07-30 | 2016-10-07 | 주식회사 루트로닉 | 안과용 치료장치 및 이의 구동 방법 |
-
2014
- 2014-07-30 KR KR1020140097481A patent/KR101663583B1/ko active IP Right Grant
-
2015
- 2015-07-30 US US15/500,451 patent/US10898376B2/en active Active
- 2015-07-30 WO PCT/KR2015/007994 patent/WO2016018099A1/ko active Application Filing
- 2015-07-30 EP EP15828054.5A patent/EP3192478B1/en active Active
-
2021
- 2021-01-26 US US17/158,512 patent/US11833079B2/en active Active
-
2023
- 2023-11-03 US US18/501,946 patent/US20240074901A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006517028A (ja) * | 2003-01-16 | 2006-07-13 | メディツィニシェス ラザーツェントラム リューベック ゲゼルシャフト ミット ベシュレンクテル ハフツング | 無接触温度モニタ及び制御方法及び装置 |
JP2009523556A (ja) * | 2006-01-20 | 2009-06-25 | レンサー, インク. | レーザービームを眼の水晶体に送達するためのシステム及び装置 |
JP2012213634A (ja) * | 2011-03-31 | 2012-11-08 | Nidek Co Ltd | 眼科用レーザ治療装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11213427B2 (en) | 2017-08-17 | 2022-01-04 | Lutronic Vision Inc. | Disposable contact lens for optical treatment systems |
US20210030588A1 (en) * | 2018-04-03 | 2021-02-04 | Lutronic Corporation | Ophthalmic treatment apparatus and control method therefor |
Also Published As
Publication number | Publication date |
---|---|
US10898376B2 (en) | 2021-01-26 |
EP3192478A4 (en) | 2018-05-02 |
EP3192478B1 (en) | 2021-07-07 |
US20210145636A1 (en) | 2021-05-20 |
US11833079B2 (en) | 2023-12-05 |
EP3192478A1 (en) | 2017-07-19 |
KR101663583B1 (ko) | 2016-10-07 |
US20170216090A1 (en) | 2017-08-03 |
US20240074901A1 (en) | 2024-03-07 |
KR20160015044A (ko) | 2016-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016018099A1 (ko) | 안과용 치료장치 및 이의 구동 방법 | |
WO2015170947A1 (ko) | 안과용 치료장치 | |
WO2018021781A1 (ko) | 안과용 치료장치 및 이의 제어방법 | |
WO2015088226A1 (ko) | 안과용 치료장치, 안과용 치료장치의 제어방법 및 안저 병변 치료 방법 | |
WO2018021780A1 (ko) | 안과용 치료장치 및 이의 제어방법 | |
BRPI0718863B1 (pt) | sistema para fotomanipulação não disruptiva ou minimamente disruptiva do cristalino de um olho animal ou humano | |
KR101855420B1 (ko) | 광학 치료장치 및 이의 제어방법 | |
WO2016024841A1 (ko) | 안과용 치료장치 및 이의 제어방법 | |
JP2023513178A (ja) | 直接レーザ線維柱帯形成方法及び装置 | |
WO2019194519A1 (ko) | 안과용 치료장치 및 이의 제어방법 | |
KR102191632B1 (ko) | 안과용 치료장치 및 이의 제어방법 | |
WO2020130449A1 (ko) | 안과용 치료장치 및 이의 제어방법 | |
KR102191633B1 (ko) | 안과용 치료장치 및 이의 제어방법 | |
WO2019031846A1 (ko) | 안과용 치료장치 및 이의 제어방법 | |
KR102020841B1 (ko) | 안과용 치료장치 및 이의 제어방법 | |
WO2019203373A1 (ko) | 안과용 치료장치 및 이의 제어방법 | |
KR20140104585A (ko) | 안과용 수술장치, 이의 제어 방법 및 이를 이용한 수술 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15828054 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15500451 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2015828054 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015828054 Country of ref document: EP |