KR102020841B1 - 안과용 치료장치 및 이의 제어방법 - Google Patents

안과용 치료장치 및 이의 제어방법 Download PDF

Info

Publication number
KR102020841B1
KR102020841B1 KR1020170104951A KR20170104951A KR102020841B1 KR 102020841 B1 KR102020841 B1 KR 102020841B1 KR 1020170104951 A KR1020170104951 A KR 1020170104951A KR 20170104951 A KR20170104951 A KR 20170104951A KR 102020841 B1 KR102020841 B1 KR 102020841B1
Authority
KR
South Korea
Prior art keywords
treatment
light
monitoring
interference signal
unit
Prior art date
Application number
KR1020170104951A
Other languages
English (en)
Other versions
KR20190017593A (ko
Inventor
김종민
김기훈
김봉균
Original Assignee
주식회사 루트로닉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 루트로닉 filed Critical 주식회사 루트로닉
Priority to PCT/KR2018/009034 priority Critical patent/WO2019031846A1/ko
Publication of KR20190017593A publication Critical patent/KR20190017593A/ko
Application granted granted Critical
Publication of KR102020841B1 publication Critical patent/KR102020841B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0008Apparatus for testing the eyes; Instruments for examining the eyes provided with illuminating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/067Radiation therapy using light using laser light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00844Feedback systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61N2005/067

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Vascular Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Laser Surgery Devices (AREA)

Abstract

본 발명은 안과용 치료장치 및 이의 제어방법에 관한 것으로, 안저의 치료 위치로 치료광을 조사하는 치료광 조사부, 상기 치료 위치로 검측광을 조사하고, 반사되는 상기 검측광과 기 설정된 경로로 진행하는 기준광에 의한 간섭 신호의 주파수 특성에 근거하여 상기 치료 위치의 상태 정보를 모니터링하는 모니터링부 및 상기 모니터링부에서 감지된 상태정보에 근거하여 상기 치료광 조사부의 동작을 제어하는 제어부를 포함하는 안과용 치료장치 및 이의 제어방법을 제공한다. 본 발명에 의할 경우, 타겟 조직으로의 최적 치료가 가능하고, 치료 안전ㄴ성을 향상시킬 수 있다.

Description

안과용 치료장치 및 이의 제어방법 {AN OPHTHALMIC TREATMENT APPARATUS AND METHOD FOR CONTROLLING THAT}
본 발명은 안과용 치료장치 및 이의 제어방법에 관한 것으로, 보다 상세하게는 치료가 진행되는 동안 타겟 조직의 상태를 감지하여 치료 내용을 제어하는 안과용 치료장치 및 이의 제어방법에 관한 것이다.
최근 들어, 인체 조직에 광을 조사하여 조직의 상태를 변화시켜 병변을 치료하는 기술이 널리 적용되고 있다. 특히, 레이저를 이용한 치료 기술은 다양한 안과 관련 병변에 널리 사용되고 있다. 예를 들어, 각막 성형, 녹내장 치료 및 백내장 수술 등의 전안부 병변을 치료하는 장치가 널리 상용화되었으며, 최근에는 황반 변성 등의 안저 영역에 발생하는 병변을 치료하는 장치가 개발되고 있다.
이러한 치료장치는 레이저를 타겟 조직으로 조사하여 에너지를 전달하고, 이에 의해 조직의 상태 변화를 유도한다. 다만, 타겟 조직으로 에너지가 과다하게 전달되면 인접한 조직까지 손상이 발생하는 문제가 발생하게 되며, 특히 안과 병변 치료시에는 시력 손상까지 야기할 수 있어 치명적일 수 있다. 반면, 타겟 조직에 충분한 에너지가 전달되지 않을 경우, 치료가 제대로 이루어지지 않는 문제점이 있다. 따라서, 불필요한 손상을 방지하고 적합한 치료를 진행할 수 있도록, 치료 중 타겟 조직의 상태를 정밀하게 모니터링하는 기술이 필요하다.이에 대한민국 공개특허공보 10-2014-0009844호와 같이 조직 상태를 모니터링하는 기술이 제안되고 있으며, 실시간으로 모니터링하는데 적합하도록 연산 속도가 빠르고 정확하게 상태 변화를 파악할 수 있도록 다양한 기술들이 연구개발되고 있다.
본 발명은 치료 중 치료 영역의 상태 변화를 실시간으로 모니터링하고, 이에 근거하여 치료를 진행할 수 있는 안과용 치료장치 및 이의 제어방법을 제공하기 위함이다.
상기한 목적을 달성하기 위해, 본 발명은, 안저의 치료 위치로 치료광을 조사하는 치료광 조사부, 상기 치료 위치로 검측광을 조사하고, 반사되는 상기 검측광과 기 설정된 경로로 진행하는 기준광에 의한 간섭 신호의 주파수 특성에 근거하여 상기 치료 위치의 상태 정보를 모니터링하는 모니터링부 및 상기 모니터링부에서 감지된 상태정보에 근거하여 상기 치료광 조사부의 동작을 제어하는 제어부를 포함하는 안과용 치료장치를 제공한다.
구체적으로, 모니터링부는, 상기 반사된 검측광과 상기 기준광이 중첩되어 진행하는 경로를 형성하는 간섭 광학계, 상기 간섭 광학계를 따라 진행하는 상기 검측광 및 상기 기준광을 수광하여 상기 간섭 신호를 검출하는 검출부 및 상기 검출부에서 검출된 상기 간섭 신호의 주파수 특성을 분석하는 프로세서를 포함하여 구성된다.
그리고, 상기 치료광 조사부는 하나의 치료 위치에 복수회에 걸쳐 치료광을 조사하도록 제어되고, 상기 모니터링부는 상기 각각의 치료광에 따른 상기 간섭 신호의 주파수 특성을 분석하여 상기 치료 위치의 상태 정보를 모니터링한다. 특히, 프로세서는 앞서 검출된 간섭 신호의 주파수 특성과 현재 검출된 간섭 신호의 주파수 특성을 비교하여 상기 치료 위치의 상태 정보를 모니터링 할 수 있다.
일 예로, 상기 치료광 조사시, 상기 간섭 신호 중 제1 주파수 구역에 해당하는 신호의 크기가 정상 상태 대비 또는 앞서 검출된 간섭 신호 대비하여 증가한 것으로 판단되면, 치료광이 상기 치료 위치에 정상적으로 조사된 것으로 판단할 수 있다. 반면, 상기 모니터링부에서 상기 치료 위치에 정상적으로 조사되지 않은 것으로 판단되면, 제어부는 표시부를 통해 사용자에게 이상 발생 사실을 표시하도록 제어될 수 있다.
다른 예로, 치료광이 복수회에 걸쳐 치료광이 조사되는 동안, 상기 간섭 신호 중 제2 주파수 구역에 해당하는 신호의 크기가 기 설정된 기준 이상으로 증가한 것으로 판단되면 모니터링부는 상기 타겟 조직에서 목표한 상태변화가 이루어진 것으로 판단할 수 있다. 이 경우, 제어부는 해당 치료 위치로 치료광을 조사하는 것을 중지하거나, 상기 치료 위치로 기 설정된 조사 패턴으로 치료광을 추가 조사 한 후 치료광 조사를 중지하도록 제어할 수 있다.
나아가, 모니터링부는 상기 간섭 신호로부터 상기 치료 위치의 관심 영역에 해당하는 신호를 선택적으로 추출하고, 상기 추출된 관심 영역에 해당하는 신호의 주파수 특성에 근거하여 상기 관심 영역의 상태 정보를 모니터링하는 것도 가능하다.
한편, 상기한 목적을 달성하기 위해, 본 발명은, 치료광 발생부에서 발생된 치료광을 안저의 치료 위치로 조사하는 단계, 상기 치료 위치로 검측광을 조사하고 반사되는 상기 검측광과 기 설정된 경로로 진행하는 기준광에 의한 간섭 신호의 주파수 특성을 이용하여 상기 치료 위치의 상태 정보를 모니터링하는 단계 및, 상기 모니터링부에서 감지된 상태 정보에 근거하여 상기 치료광의 파라미터를 제어하는 단계를 포함하는 안과용 치료장치의 제어 방법을 제공할 수도 있다.
본 발명에 의할 경우, 치료광이 조사되는 동안 치료광이 치료 위치, 나아가, 치료 위치에 배치되는 타겟 조직으로 정상적으로 조사되는지 여부를 확인함으로써,정상적으로 치료가 진행되는지 여부를 실시간으로 확인할 수 있다.
또한, 치료광이 반복하여 조사되는 동안 타겟 조직의 치료 완료 시점을 모니터링하면서 치료를 진행함으로써, 인접 조직의 손상을 최소화하면서 최적의 치료를 진행할 수 있는 장점이 있다.
도 1은 본 발명의 일 실시예에 따른 안과용 치료장치를 개략적으로 도시한 개략도,
도 2는 도 1의 A 영역을 확대하여 그린 단면도,
도 3은 도 1의 모니터링부의 구성을 개략적으로 도시한 블록도,
도 4는 모니터링부에서 생성되는 시간에 따른 단층 이미지,
도 5는 도 4의 특정 시점에서 간섭 신호의 형태를 파장 영역에서 도시한 그래프,
도 6은 모니터링부에서 ROI의 간섭 신호를 추출하는 단계를 도시한 블록도,
도 7은 도 4의 특정 시점에서 간섭 신호의 파장 특성을 도시한 그래프,
도 8은 본 실시예에 따른 안과용 치료장치의 제어방법을 도시한 순서도,
도 9는 도 8의 제1 치료 위치의 치료 단계의 순서를 도시한 순서도,
도 10은 도 9에서 제1 모니터링 및 제2 모니터링 단계를 도시한 순서도,
도 11은 제1 치료 위치에 조사되는 치료광을 패턴을 도시한 그래프이고,
도 12는 본 발명을 이용하여 전안부 병변을 치료하는 모습을 도시한 단면도이다.
이하에서는 도면을 참고하여 본 발명의 실시예에 따른 안과용 치료장치 및 이의 제어방법에 대해 구체적으로 설명한다. 아래의 설명에서 각 구성요소의 위치 관계는 원칙적으로 도면을 기준으로 설명한다. 도면은 설명의 편의를 위해 발명의 구조를 단순화하거나 필요할 경우 과장하여 표시될 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니며 이 이외에도 각종 장치를 부가하거나, 변경 또는 생략하여 실시될 수 있다.
이하에서 설명되는 안과용 치료장치는 안저 병변을 치료하는 장치로 설명되나, 본 발명은 안저 병변 이외의 다른 병변을 치료하는 치료 장치에도 적용될 수 있다. 예를 들어, 녹내장 치료와 같은 전안부 병변을 치료하는 치료 장치에 적용될 수 있으며, 피부 조직의 병변을 치료하는 치료 장치에 적용될 수도 있다. 이처럼, 이하에서 설명하는 안과용 치료장치에 본 발명이 한정되는 것은 아니며, 다른 병변을 광학적으로 치료하는 치료장치에도 널리 활용될 수 있음을 밝혀둔다.
그리고, 이하에서 '치료 영역'이라함은 치료가 필요한 영역으로서, 소정 면적 또는 소정 길이 구간으로서의 영역을 의미할 수 있다. 그리고, '치료 위치'는 치료 영역 내에 포함되는 위치로서, 소정 좌표에 위치한 스팟으로서의 위치를 의미할 수 있다. 나아가, '타겟 조직'은 치료의 대상이 되는 조직을 의미한다. 특정 치료 위치에 깊이에 따라 복수의 조직이 층별 구조를 형성하고 있는 경우, 타겟 조직은 전부 또는 일부 깊이 구간에 위치하는 조직일 수 있다. 즉, 광이 스팟 형태로 특정 '치료 위치'로 조사되면, 해당 치료 위치의 특정 깊이 구간에 위치하는 '타겟 조직'으로 대부분의 에너지가 전달될 수 있다. 또한, 소정 면적의 '치료 영역'을 치료하기 위해, 치료 영역 내에 위치하는 복수의 '치료 위치'에 순차적으로 광을 조사하여 치료를 진행할 수 있다.
도 1은 본 발명의 일 실시예에 따른 안과용 치료장치를 개략적으로 도시한 개략도이다. 본 발명에 따른 안과용 치료장치(10)는 안저의 치료 영역에 치료광을 조사하여 치료를 진행하는 장치로, 치료광을 발생시켜 안저로 조사하는 치료광 조사부를 포함한다. 도 1에 도시된 바와 같이, 치료광 조사부는 치료광(treatment beam)을 발생시키는 치료광 발생부(100) 및 치료광 발생부에서 발생된 치료광을 안저로 전달하기 위한 빔 딜리버리부(400)를 포함하여 구성된다. 그리고, 치료광이 조사되는 치료 위치의 상태 정보를 감지하기 위한 모니터링부(300) 및 모니터링부에서 감지되는 정보에 근거하여 각종 구성요소를 제어하는 제어부(500)를 포함한다. 나아가, 치료광이 조사되는 위치를 표시하기 위한 조준광을 발생시키는 조준광 발생부(200)를 더 포함할 수 있다.
치료광 발생부(100)는 치료광 광원 및 치료광원에서 생성되는 광의 특성을 가공(modulation)하는 각종 광학 소자를 포함하여 구성된다. 본 실시예에서는 치료광으로써 레이저를 이용한다. 따라서, 치료광 광원은 레이저를 발생시킬 수 있는 Nd:YAG, Ho:YAG 등과 같은 레이저 매질 또는 레이저 다이오드를 포함하여 구성될 수 있다. 치료광 광원은 병변 내용 또는 타겟 위치의 조직의 특성을 고려하여 적합한 파장, 펄스폭(pulse width), 출력을 갖는 레이저를 발생시킨다. 나아가, 레이저를 발생시키기 위한 각종 전기 회로, 광학필터 및 셔터 등의 다양한 소자들을 포함할 수 있다.
빔 딜리버리부(400)는 복수의 광학소자로 구성되며, 치료광이 진행하는 광 경로를 구성한다. 따라서, 치료광 발생부(100)에서 발생된 치료광은 빔 딜리버리부(400)를 따라 안저 방향으로 진행하여 안저의 치료 위치에 조사될 수 있다.
이러한 빔 딜리버리부(400)는 후술할 조준광 및 모니터링부의 검측광(probe beam)이 진행하는 광 경로 일부를 형성할 수도 있다. 도 1에 도시된 바와 같이, 빔 딜리버리부(400)는 복수의 빔 컴바이너(beam combiner)(410)를 구비하여, 조준광 및/또는 검측광이 이를 통해 합류하여 안저 방향으로 조사될 수 있다. 그리고, 안저에서 반사된 조준광과 검측광은 각각 빔 딜리버리부(400)를 통해 시술자의 눈이 위치하는 방향으로 진행하거나 모니터링부(300)로 다시 수광될 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니며, 조준광 및/또는 검측광은 치료광의 조사 경로와 구분되는 별도의 광 경로를 형성하도록 구성되는 것도 가능하다.
빔 딜리버리부(400)는 광이 조사되는 위치를 변경시키는 스캐너(420)를 포함한다. 스캐너(420)는 적어도 하나 이상의 반사거울 및 이를 회전시키는 구동유닛을 포함하여 구성된다. 따라서, 반사거울의 회전 위치를 변경시키면서, 반사거울에 의해 반사되는 광의 조사 위치를 변경시킬 수 있다. 또한, 도 1에서는 도시되지 않았으나, 빔 딜리버리부(400)는 광을 집속시키거나 분산시키기 위한 복수의 광학 렌즈, 광학 필터 등의 광학 소자를 더 포함하여 구성될 수 있다. 따라서, 이를 통과하는 치료광은 이러한 광학 소자에 의해 스팟 사이즈를 비롯한 일부 파라미터가 제어될 수 있다.
빔 딜리버리부(400)의 말단에는 대안부(object part)(430)가 구비된다. 대안부(430)는 치료 대상이 되는 환자의 눈이 위치하는 구성으로, 대물렌즈 또는 환자의 눈과 접촉하는 컨택트 렌즈를 포함한다. 또한, 환자의 눈을 고정시킬 수 있도록, 환자의 전안부를 흡입하여 고정시키는 석션 장치를 더 포함할 수 있다.
한편, 조준광 발생부(200)는 안저 영역으로 조사되는 조준광(aiming beam)을 발생시킨다. 조준광은 치료광을 조사하기 이전, 또는 치료광이 조사되는 동안 시술자가 치료광이 조사되는 위치를 확인할 수 있도록, 치료광이 조사되는 치료 위치로 조사되어 해당 위치를 표시하는 구성이다. 일 예로, 조준광은 가시광 대역의 파장을 갖고, 시술자는 안저에서 반사된 조준광에 의해 치료 위치를 확인할 수 있다.
조준광 발생부(200)에서 발생된 조준광은 전술한 바와 같이 빔 딜리버리부(400)를 따라 치료광과 동일한 치료 위치로 조사될 수 있다. 이 경우, 조준광은 단일 스팟 형태로 치료 위치에 조사된다. 다만, 필요에 따라, 치료 영역 내 치료광이 조사되는 복수의 치료 위치를 표시할 수 있도록, 조준광은 복수의 스팟으로 이루어진 패턴으로 안저에 조사될 수도 있다. 또는, 조준광은 격자 형태 또는 경계선 형태로 조사되어, 치료광이 조사되는 치료 영역을 표시할 수도 있다.
다만, 시술자가 디스플레이와 같은 별도의 인터페이스를 통해 치료광이 조사되는 위치를 확인하는 것이 가능한 경우, 조준광 발생부를 생략하여 실시할 수도 있다.
이상에서 설명한 바와 같이, 치료광 조사부는 치료광 발생부(100) 및 빔 딜리버리부(400)를 포함하여 구성되고, 치료광 발생부(100)에서 발생된 치료광은 빔 딜리버리부(400) 및 대안부(430)를 통해 안저의 치료 위치로 조사된다. 그리고, 조준광 조사부는 조준광 발생부(200) 및 빔 딜리버리부(400)를 포함하여 구성되며, 조준광 발생부(200)에서 발생된 조준광 또한 빔 딜리버리부(400) 및 대안부(430)를 통해 안저의 치료 위치로 조사된다.
도 2는 도 1의 A 영역을 확대하여 그린 단면도이다. 도 2의 A는 치료 영역에 해당하는 환자의 안저 조직, 특히 망막 조직을 도시한 도면이다. 이러한 망막의 조직은 일반적으로 내경계층(internal limiting layer), 신경 섬유층(nerve fiber layer), 신경절세포층(ganglion cell layer), 내망상층(inner plexiform layer), 내과립층(inner nuclear layer), 외망상층(outer plexiform layer), 외과립층(outer nuclear layer), 외경계층(external limiting layer), 광수용 세포층(photo receptor layer), RPE 층(retinal pigment epithelial layer)의 10개의 층으로 이루어진다(망막 표면으로부터 내측 깊이 방향).
이 중 RPE 세포층은 위의 10개의 층 중 후측 방향의 경계층을 형성하며, 타이트 정션(tight junction)구조로 형성된다. 그리고 RPE 층의 하측으로는 브루크 막(Bruch's membrane)이 위치한다. 이러한 RPE 층은 맥락막(choroid)에 위치하는 혈관 등으로부터 영양분 및 산소를 공급받아 광 수용체(photo receptor)에 영양분을 공급하고, 광 수용체로부터 생성되는 노폐물을 브루크 막을 통해 배출하는 역할을 수행한다.
RPE 층을 형성하는 PRE 세포의 일부가 정상적인 기능을 수행하지 못하게 되면, 해당 RPE 세포의 전방에 위치하는 광 수용체들은 정상적으로 영양 및 산소가 공급되지 않아 괴사할 수 있다. 이를 치료하기 위해, 본 실시예에 따른 안과용 치료장치는 RPE 세포층에 선택적으로 치료광을 조사하여 에너지를 전달함으로써, 새로운 RPE 세포의 재생을 유도하는 치료를 진행한다.
보다 구체적으로 설명하면, 치료광은 가시광선 또는 근적외선 영역의 파장을 갖는다. 이러한 치료광은 망막의 전방에 위치하는 세포층(첫 번째 세포층 내지 아홉 번째 세포층)에는 거의 흡수되지 않고 투과한 후, RPE 세포 내부에 존재하는 멜라노좀에 흡수된다. 멜라노좀에 흡수되는 에너지의 양이 증가함에 따라 RPE 세포는 온도가 상승하면서 상태가 변화하고, 이에 의해 상태가 변화된 RPE 세포는 건강한 RPE 세포로 대체된다. 이는 온도가 상승함에 따라 멜라노좀의 표면에서 미세기포(microbubble)이 발생하여 점차적으로 성장하고, 이에 의해 해당 RPE 세포가 선택적으로 괴사되어 새로운 RPE 세포가 유도되는 것으로 예상하고 있다.
이러한 치료 중, 치료광이 조사됨에 따라 해당 위치의 효과적으로 에너지가 전달되었는지 여부를 확인하는 것이 곤란하다. 특히, 타겟 위치에 해당하는 RPE 세포에 에너지가 정상적으로 전달되고 있는지를 확인할 필요가 있다. 또한, RPE 세포에 지나치게 많은 양의 에너지가 전달되면, 타겟 조직에 해당하는 RPE 세포 뿐 아니라 인접한 광 수용체까지 손상되어 시력 손상을 야기할 우려가 있다. 따라서, 본 실시예에 따른 안과용 치료장치는 도 1에 도시된 바와 같이 모니터링부를 구비하고, 모니터링부를 통해 치료 중 조직의 상태 변화를 모니터링하여 치료 경과를 실시간으로 확인할 수 있다.
모니터링부(300)는 치료광이 조사되는 치료 위치로 검측광을 조사하고, 반사되는 검측광의 간섭 신호를 이용하여 치료 위치의 상태 변화 정보를 감지하는 구성이다. 여기서, 치료 위치의 상태 정보라 함은, 치료광이 조사에 의해 치료 위치에 발생하는 조직의 온도 변화, 부피 변화, 굴절율 변화, 열적 변성 또는 세포의 이동 여부에 관한 정보 중 적어도 하나를 포함할 수 있다. 여기서, 열적 변성이라함은 온도 상승에 의해 야기되는 조직의 특성 변화, 조직의 괴사 또는 조직의 재생을 의미할 수 있으며, 이러한 열적 변성에 의해 조직의 치료가 이루어질 수 있다.
모니터링부(300)는 조직의 상태정보를 모니터링할 수 있는 다양한 장치를 단독 또는 조합하여 구성할 수 있으며, 본 실시예에서는 광 간섭 단층 영상을 획득할 수 있는 OCT 장치를 이용하여 모니터링부(300)를 구성할 수 있다. 이러한 OCT 장치는 간섭 발생 원리 측정 방식에 따라 TD OCT, SD OCT, SS OCT 등 다양한 종류가 존재하며, 본 실시예에서는 다양한 OCT 중 어느 하나를 택일하여 사용할 수 있다.
도 3은 도 1의 모니터링부의 구성을 개략적으로 도시한 블록도이다. 이하에서는, 도 3을 참조하여 모니터링부의 구성을 구체적으로 설명한다. 도 3에 도시된 바와 같이, 모니터링부(300)는 치료 위치로 조사되는 검측광을 발생시키는 광원(310), 치료 위치에서 반사된 검측광과 기준광이 중첩되어 진행하는 경로를 형성하는 간섭 광학계(320), 상기 간섭 광학계를 따라 진행하는 검측광 및 기준광을 수광하여 간섭 신호를 검출하는 검출부(330) 및 검출부에서 검출된 간섭 신호를 분석하는 프로세서(340)를 포함하여 구성된다.
광원(310)은 치료 위치의 상태를 모니터링하는데 이용되는 모니터링광을 발생시키는 구성이다. 광원(310)에서 조사된 광은 간섭 광학계를 따라 진행하면서 검측광과 기준광으로 분배되고, 각각의 경로를 따라 진행한 후 다시 결합되어 간섭 신호를 형성한다.
구체적으로, 간섭 광학계는 광 분배기(321), 기준광 경로(P1), 검측광 경로(P2) 및 중첩 경로(P3)를 포함하여 구성된다. 광원(310)에서 발생된 광은 광 분배기(321)를 통과하며 검측광과 기준광으로 분배된다. 검측광은 검측광 경로(P2)를 따라 진행하여 빔 딜리버리부(400)를 통해 치료 위치로 조사된다. 조사된 검측광은 치료 위치 중 적어도 타겟 조직이 배치된 깊이까지 투과하여 진행한 후 반사된다. 검측광은 치료 위치를 깊이 방향으로 투과하면서 단층 특성에 따라 산란, 굴절, 반사 등의 과정을 거쳐 검측광의 파라미터가 변하게 된다. 따라서, 반사된 검측광은 치료 위치의 깊이 방향으로 단층을 형성하는 조직의 정보를 포함한다. 반사된 검측광은 조사된 경로를 역행하여, 검측광 경로(P2)를 따라 광 분배기(321) 방향으로 진행한다. 한편, 검측광과 분리된 기준광은 기준광 경로(P1)를 따라 진행한 후 광 분배기(321) 측으로 복귀한다. 반사된 검측광 및 복귀한 기준광은 광 분배기(321)를 통과하면서 결합되어 중첩 경로(P3)를 통과한다. 그리고, 중첩 경로(P3)를 통과하는 검측광 및 기준광은 간섭 현상이 발생한다.
검출부(330)는 중첩 경로(P3)를 진행하는 검측광 및 기준광을 수광한다. 검출부(330)는 다양한 검출소자를 이용하여 구성될 수 있으며, 본 실시예에서는 일 예로서 밸런스 디텍터(balace detector)를 이용하여 구성될 수 있다. 검출부(330)에서 검출되는 신호는 검측광과 기준광에 의한 간섭 신호를 포함한다. 이러한 간섭 신호는 치료 위치 깊이에 따른 조직의 상태 정보를 포함하며, 간섭 신호를 필터링, 변환, 추출하는 방식 등을 통해 분석함하여 치료 위치의 상태 정보를 모니터링할 수 있다.
검출부(330)에서 검출된 간섭 신호는 프로세서(340)로 전달된다. 프로세서(340)는 검출부(330)에서 검출된 아날로그 형태의 간섭 신호를 디지털 신호로 변환하고, 푸리에 변환을 통해 주파수 도메인 신호로 변환한 후, 이를 공간 도메인으로 변환하여 치료 위치의 깊이에 따른 이미지를 생성한다. 이러한 단계에서 얻어지는 신호에 근거하여, 치료 위치의 상태 정보를 모니터링하고, 상태 변화 여부를 판단할 수 있다.
도 4는 모니터링부에서 생성되는 시간에 따른 단층 이미지이다. 일반적으로, 모니터링부의 스캔 방향을 정의함에 있어, 검측광이 진행하는 깊이 방향 스캔을 A 스캔이라고 하고, 깊이 방향과 직각을 형성하는 수평 방향 스캔을 B 스캔이라 한다. 본 실시예의 모니터링부(300)는 A 스캔과 B 스캔을 모두 진행하여 치료 영역의 2차원 단층 이미지를 생성하는 것도 가능하다. 다만, 본 실시예에서는, 빠른 주기로 조직의 상태 변화를 모니터링할 수 있도록, 하나의 치료 위치에 치료가 이루어지는 동안 해당 치료 위치에 대한 A 스캔을 반복하여 진행하도록 구성된다. 따라서, 하나의 치료 위치에 대해 전술한 모니터링 과정이 기 설정된 주기로 반복하여 이루어지고, 시간에 따라 순차적으로 획득된 단층 정보를 조합하여 도 4와 같은 이미지를 획득할 수 있다. 즉, 도 4에서 수직축은 치료 위치의 깊이축이며, 수평축은 A 스캔의 회차(number of A scan) 또는 치료가 이루어지는 시간축일 수 있다.
도 4에 표시된 정보를 분석하면, 치료광 레이저가 조사되지 않은 동안에는 단층 이미지가 일정한 모습을 유지한다. 그리고, 치료광 레이저가 조사된 시점에서 특정 깊이에서 상태 변화가 발생한 것을 확인할 수 있다. 이처럼, 본 실시예에 따른 안과용 치료장치(10)는 간섭 신호를 이용하여 치료 위치의 상태 정보를 감지하고 판단하는 것이 가능하다.
모니터링부(300)에서 치료 위치의 상태 정보를 감지하고, 상태 변화를 판단하는 방식은 다양한 방식을 이용할 수 있다.
우선, 도 4와 같이, 간섭 정보를 이용하여 치료 깊이에 따른 이미지를 생성한 후, 깊이별 이미지에 근거하여 치료 위치의 상태 변화를 판단할 수 있다. 이러한 방식은 직관적으로 상태 변화를 판단할 수 있는 장점이 있으나, 단층 구조의 시각적인 변화를 수반하지 않은 변화를 모니터링 하는 것은 한계가 있다. 또는, 검출부에서 검출된 간섭 신호의 세기(intensity)에 근거하여 치료 위치의 상태 변화를 판단할 수 있다. 이 경우, 치료 위치 단층 구조의 시각적인 변화를 수반하지 않는 변화까지도 모니터링할 수 있으나, 변화를 야기할 수 있는 다양한 변수(조직의 열적 변성, 세포의 파괴, 움직임 등)들을 구분하여 모니터링하는 것이 곤란하다.
따라서, 본 실시예에 따른 모니터링부(300)는 간섭 신호의 주파수 분포 특성을 분석하고, 이에 근거하여 치료 위치의 상태 정보를 모니터링 하도록 구성된다. 간섭 신호는 다양한 주파수 신호의 조합으로 구성된다. 전술한 바와 같이, 조직의 상태가 변화함에 따라 간섭 신호 또한 변화된 값을 갖는데, 실험 결과 조직의 상태 변화를 야기하는 원인 및 상태 변화 정도에 따라 간섭 신호를 구성하는 각 주파수의 신호의 분포가 상이하게 나타나는 것을 확인하였다.
도 5는 도 4의 특정 시점에서의 간섭 신호의 주파수 분포를 도시한 그래프이다. 도 4에서 a는 치료광 레이저가 조사되지 않은 시점에서 검출된 간섭 신호의 주파수 분포를 나타낸 것이고, b는 치료광 레이저가 조사된 시점에서 검출된 간섭 신호의 주파수 분포를 나타낸 것이다. 이때, 주파수 크기를 나타내는 수평축은 샘플링 주파수의 배수로 표시된 정규화 주파수(normalized frequency) 값으로 표시할 수 있다.
도 5에 도시된 것과 같이, 치료광 레이저가 조사되지 않은 시점의 간섭 신호는 저주파수 영역(정규화된 주파수 0~0.25 영역)을 제외하고는 신호의 크기가 상대적으로 작고, 주파수 분포도 주파수 대역에 따라 크기 편차가 큰 모습을 보인다(정규화 주파수 0.3, 0.5, 0.62, 0.74, 0.88에 해당하는 신호가 작음). 이에 비해, 치료광 레이저가 조사된 시점은 간섭 신호는 저주파수 영역(정규화된 주파수 0~0.25 영역)을 제외하고, 신호의 크기가 상대적으로 큰 값을 유지하고, a에 비해 모든 대역의 주파수 성분을 상대적으로 고르게 포함하고 있다. 이는 치료광 조사시 조직의 열적 팽창이 이루어지면서 각 조직들에 미세한 진동들이 발생하여, 간섭 신호의 주파수 분포 변화가 야기되는 것으로 판단하고 있다.
이처럼, 조직의 상태 변화에 따라 간섭 신호의 주파수 분포가 변화하므로, 간섭 신호의 주파수 분포에 근거하여 조직의 상태 정보를 파악할 수 있다. 이러한 주파수 분포에 근거하여 조직 상태 정보를 판단하는 방식은 다양한 방식을 고려할 수 있다. 일 예로, 특정 주파수 대역(예를 들어, 정규화된 주파수의 0.3 내지 0.6 구간)의 크기, 평균 주파수, 전체 주파수 대역의 표준 편차 등 주파수 분포 특성을 나타내는 다양한 수치 중 어느 하나를 대표값으로 하여 이를 비교하는 방식으로 조직의 상태 정보를 파악할 수 있다. 또한, 이러한 대표값을 비교함에 있어, 해당 시점의 대표값(n번째 A스캔에 의한 검출값)을 기 설정된 기준값과 비교하는 방식도 가능하며, 앞선 시점에 검출된 신호의 대표값(n-1번째 A스캔에 의한 대표값)과 비교하는 방식으로 상태 변화를 판단하는 것도 가능하다.
일 예로서, 본 실시예의 모니터링부(300)는, 간섭 신호 중 제1 주파수 구역의 신호가 정상 상태의 신호(치료광이 조사되지 않은 상태의 간섭 신호 중 제1 주파수 구역의 신호) 대비 증가한 것으로 나타나면 치료광이 정상적으로 조사된 것으로 판단할 수 있다. 예를 들어, 제1 주파수 구역은 정규화 주파수 0.3 내지 0.6에 해당하는 값일 수 있다. 이러한 제1 주파수 구역의 평균값이 10dB를 초과하거나, 정상 상태의 신호 평균값 대비 1.5배를 초과하는 경우, 치료광이 정상적으로 조사되어 치료 위치에 에너지가 유효하게 전달된 것으로 판단할 수 있다. 반면, 해당 조건을 만족하지 못한 것으로 판단되면, 치료광이 정상적으로 조사되지 않은 것으로 판단하는 것이 가능하다.
다른 예로서, 본 실시예의 모니터링부(300)는, 치료광 조사에 의해 치료 위치의 타겟 조직이 목표한 상태 변화가 발생했는지 여부도 모니터링할 수 있다. 본 실시예에 따른 안과용 치료장치는, 전술한 바와 같이, 치료 위치의 RPE 세포 조직으로 치료광을 조사하여 RPE 세포의 상태를 변화시키는 방식으로 치료를 진행한다. 전술한 바와 같이, RPE 세포에서 목표한 상태 변화시 RPE 세포 내부에서 미세 기포가 발생하는 등의 새로운 이벤트가 발생한다. 이에 의해, 간섭 정보에는 새로운 주파수 신호가 포함되며, 모니터링부(300)는 간섭 정보의 주파수 특성을 분석함으로써 RPE 세포에서 목표한 상태 변화가 발생하였는지 여부를 모니터링할 수 있다. 여기서, 모니터링부(300)는 간섭 정보 중 제2 주파수 구역에 해당하는 신호가 증가한 것으로 분석되면, 타겟 위치에 목표한 상태 변화 발생한 것으로 판단할 수 있다. 예를 들어, 제2 주파수 구역은 정규화 주파수 0.5 내지 0.7에 해당하는 값일 수 있다. 이러한 제2 주파수 구역의 평균값이, 바로 직전에 검출된 간섭 신호의 제2 주파수 구역 평균값과 비교하여, 1.2배 이상 증가하면 목표한 상태 변화가 발생한 것으로 판단할 수 있다.
이와 같이, 모니터링부(300)는 간섭 신호의 주파수 특성값 중 모니터링하고자 하는 정보가 차별성 있게 표시될 수 있는 특성값을 대표값으로 설정하고, 이에 근거하여 조직의 상태 정보를 판단할 수 있다. 다만, 판단 기준 및 판단 방식은 모니터링하고자 하는 특정 상태, 타겟 위치, 관심있는 이벤트 정보, 간섭 신호 발생 및 분석 특성 등에 따라서 다양한 방식으로 구성할 수 있다. 다만, 간섭 신호 중 저주파수 영역(정규화된 주파수 0~0.25)의 신호는 DC 신호에 의한 노이즈의 비중이 크므로, 간섭 신호 중 저주파수 영역은 제외한 값을 기초로 상태 정보를 판단하는 것이 바람직하다.
나아가, 또 다른 예로서, 본 실시예에 따른 모니터링부(300)는, 간섭 신호 중 관심 영역(ROI, region of interest)에 해당하는 신호만을 추출하고, 이의 주파수 분포에 근거하여 치료 위치의 상태를 모니터링하는 것도 가능하다. 도 6은 모니터링부에서 ROI의 간섭 신호를 추출하는 단계를 도시한 블록도이다. 전술한 바와 같이, 모니터링부(300)는 검출부(330)를 통해 간섭 신호가 검출되면 이를 디지털 신호로 변환한다. 변환된 디지털 신호는 푸리에 변환에 의해 주파수 도메인 신호로 변환된다. 전술한 두 예에서는 본 단계에서 간섭 신호의 주파수 특성을 분석하나, 본 예에서는 ROI에 해당하는 간섭 신호를 추출하는 단계를 더 포함할 수 있다. 다만, 주파수 도메인 신호에서는 ROI의 신호만을 직접적으로 추출하는 것이 곤란하므로, 주파수 도메인 신호를 이미지 생성을 위한 신호로 변환하는 단계를 수행한다. 본 단계는 푸리에 역변환 등을 통해 공간 도메인의 신호로 변환되며, 하나의 A scan에 의한 간섭 정보는 깊이축에 대한 신호로 변환된다. 이러한 깊이축에 대한 신호 중 ROI에 해당하는 깊이 구간 신호만을 추출한다. 일 예로, ROI는 안저를 형성하는 망막 단층 중 RPE 층이며, RPE 층의 깊이 구간에 해당하는 신호만을 추출할 수 있다. 이와 같이 추출된 ROI의 신호는 다시 푸리에 변환을 통해 주파수 도메인 신호로 변환된다. 그리고, 모니터링부(300)는 추출된 ROI에 해당하는 간섭 신호의 주파수 특성을 분석할 수 있다.
ROI 간섭 신호의 주파수 특성 분석은 전술한 예와 유사한 방식으로 진행할 수 있다. 예를 들어, 제1 주파수 구역에 해당하는 신호 크기의 증가 여부에 따라 치료광 조사시 해당 관심 영역에 에너지가 전달되었는지 여부를 판단할 수 있다. 또한, 제2 주파수 구역에 해당하는 신호 크기의 중가 여부에 따라 관심 영역에서 목표한 상태 변화가 발생하였는지 여부를 판단할 수 있다. 이와 같이, ROI 간섭 신호를 추출하여 주파수 특성을 분석할 경우, 관심 영역 이외의 조직에서 발생한 이벤트에 의한 영향을 최소화할 수 있어, 정확한 모니터링이 가능한 장점이 있다.
이상에서는, 간섭 신호의 주파수 특성을 이용하여 조직의 상태 변화를 감지하는 구성을 중심으로 설명하였으나, 주파수가 아닌 간섭 신호의 파장 특성을 이용하여 조직의 상태 변화를 감지하는 것도 가능하다. 실험 결과, 파장 및 파수 영역에서의 간섭신호의 콘트라스트(contrast) 변화가 치료광이 조사되는 시점과 조사되지 않는 시점에서 상이하게 나타나는 것을 감지하였다. 따라서, 검출된 간섭 신호의 파장 특성에 근거하여 치료 위치의 상태정보를 모니터링하는 것도 가능하다.
도 7은 도 4의 특정 시점에서 간섭 신호의 파장 특성을 도시한 그래프이다. 구체적으로, 도 7의 그래프는 특정 시점도 7의 a는 치료광이 조사되기 이전 시점, b는 치료광이 조사되는 동안, 그리고 c는 치료광이 조사된 후의 파장 특성을 도시한 것이다. 각 그래프는, 해당 시점에서 간섭 신호의 파장 영역(λ)에 대한 시그널 세기(intensity)값을 나타낸 것이며, 각 세기 값은 아래의 관계식으로 변환된 파수(k) 영역에서의 시그널 세기값일 수 있다.
Figure 112017080013060-pat00001
도 7에 도시된 것과 같이, 특정 파장 구역의 세기값은 치료광이 조사되는 동안 변화하는 것을 확인할 수 있다. 따라서, 세기값 변화 특성이 파장 구역의 세기값 평균, 세기값 편차 등을 대표값으로 하고, 이를 비교함으로써 조직의 상태 변화를 모니터링할 수 있다. 예를 들어, 도 7에 도시된 바와 같이, 치료광이 조사되는 시점에서 제1 파장 구역(예를 들어, 800nm 내지 900nm 또는 820nm 내지 860nm를 포함하는 구역)에서 세기값 평균이 크고, 인접한 파장과 비교하여 세기값의 편차가 적은 특성을 확인할 수 있는 바, 이러한 특성을 이용하여 조직의 상태 변화(예를 들어, 치료광 조사를 통해 조직에서 에너지 흡수)를 감지하는 것도 가능하다.
다시, 도 1을 참조하여 설명하면, 제어부(500)는 안과용 치료 장치의 각종 구성요소들의 동작을 제어하는 구성이다. 제어부(500)는 치료광 발생부(100), 빔 딜리버리부(400), 조준광 발생부(200), 모니터링부(300) 등의 각종 구성요소의 동작을 제어한다. 이에 의해, 치료광의 조사 여부는 물론, 치료광의 조사 위치, 조사 패턴, 치료광의 파라미터, 모니터링 주기 등 각종 동작이 제어된다. 여기서, 제어부(500)는 전술한 모니터링부(300)에서 모니터링 된 조직의 상태 정보를 전달받고, 이에 근거하여 각종 구성요소의 동작을 제어한다. 이하에서는 모니터링 정보에 근거한 제어부(500)의 제어를 예를 들어 설명한다.
일 예로, 제어부(500)는 치료광 조사부를 구동하여 환자의 안저에 치료광을 조사한다. 그리고, 모니터링부(300)는 치료광 조사시 치료광이 조사된 치료 위치의 상태 정보를 모니터링한다. 이때, 모니터링부(300)는 검출된 간섭 정보의 주파수 분석을 통해 치료 위치에 치료광이 정상적으로 조사되었는지 여부를 판단한다. 모니터링 결과, 치료광이 정상적으로 치료 위치에 조사된 것으로 판단되면, 제어부(500)는 기 설정된 치료 내용에 따라 치료광을 조사하도록 제어할 수 있다. 반면, 모니터링 결과, 치료광이 정상적으로 치료 위치에 조사되지 않은 것으로 판단되면, 제어부(500)는 치료광의 세기를 증가하는 방향으로 파라미터를 조절하거나, 치료 중 이상이 발생한 것으로 판단하고 표시부(600)를 통해 사용자에게 이상 사실을 알리도록 제어할 있다.
또 다른 예로, 제어부(500)는 특징 치료 위치에 배치된 타겟 조직에 충분한 에너지를 전달할 수 있도록, 동일한 치료 위치로 복수회에 걸쳐 치료광을 조사하도록 치료광 조사부를 제어할 수 있다. 이때, 모니터링부(300)는 동일한 위치에 치료광이 조사되는 주기와 동일하거나 빠른 주기로 검측광을 조사하여 치료 위치의 상태 정보를 모니터링이 이루어진다. 제어부(500)는, 모니터링부(300)에서 모니터링한 결과 타겟 위치에서 목표한 상태 변화가 발생하지 않은 것으로 감지되면, 타겟 위치로 전달되는 에너지의 양이 순차적으로 증가할 수 있도록 치료광의 파라미터를 제어한다. 예를 들어, 목표한 상태 변화가 발행할 때까지, 복수의 치료광이 조사되며, 이때 치료광의 출력을 순차적으로 증가할 수 있다. 그리고, 모니터링부(300)에서 타겟 위치에서 목표한 상태 변화가 발생된 것으로 판단되면, 해당 위치의 치료 완료 시점이 도래한 것으로 판단하고, 해당 위치에 치료광을 조사하는 것을 정지시키거나, 기 설정된 패턴으로 치료광을 조사한 후 치료광을 조사하는 것을 정지시킬 수 있다.
이와 같이, 본 실시예에 따른 안과용 치료장치는 치료 중 치료 위치의 조직 상태 정보를 실시간으로 모니터링할 수 있어, 조직 상태를 근거한 치료가 가능하다. 특히, 간섭 신호 중 주파수 특성에 근거하여 모니터링을 진행함으로써, 시각적으로 나타나지 않은 미세한 상태 변화를 감지할 수 있어 최적 치료가 가능하며, 부작위 방식의 이상 발생 또한 실시간으로 감지할 수 있어 안전 성능을 향상시킬 수 있다.
이하에서는 도 8 내지 11을 참조하여, 본 실시예에 따른 안과용 치료장치의 제어방법을 구체적으로 설명한다.
도 8은 본 실시예에 따른 안과용 치료장치의 제어방법을 도시한 순서도이다. 도 8에 도시된 바와 같이, 우선 환자의 병변을 진단한 후 안저의 치료 영역 및 치료 내용을 결정한다(S100). 그리고, 치료 영역 내에 치료광을 조사하여 치료를 진행할 복수의 치료 위치를 결정한다(S200). 치료 위치의 개수 및 간격은 환자의 병변 상태 및 치료광의 조사 강도 등에 따라서 결정될 수 있다. 이에 의해, 복수의 치료 위치가 결정되면, 제1 치료 위치에 대한 치료를 진행한다(S300). 그리고, 제1 치료 위치에 대한 치료가 종료되면, 치료 위치를 변경하여 제2 치료 위치에서 제1 치료 위치와 동일한 방식으로 치료를 진행한다(S400). 그리고, 나머지 치료 위치 또한 동일한 방식으로 순차적으로 진행할 수 있다.
도 9는 도 8의 제1 치료 위치의 치료 단계의 순서를 도시한 순서도이다.
제1 치료 위치를 치료하기 위해, 제어부(500)는 빔 딜리버리부(400)를 제어하여, 치료광이 제1 조사 위치로 조사될 수 있도록 광 경로를 형성한다(S10). 이때, 제어부는 조준광 광원을 구동하여 조준광을 해당 위치로 조사함으로써, 사용자에게 치료광의 조사될 위치를 표시할 수 있다.
치료광이 조사되는 위치가 결정되면, 제어부(500)는 치료광 조사부를 제어하여, 치료광을 조사한다(S20). 치료광은 전술한 바와 같이 타겟 조직인 RPE 세포에 선택적으로 에너지를 전달할 수 있는 파장을 갖는 레이저로 구성된다. 제1 치료 위치에 치료광이 조사되면, 치료광은 치료 위치를 깊이 방향으로 진행하면서 해당 위치에 RPE 세포에 흡수되어 에너지를 전달한다.
한편, 모니터링부(300)는 조사되는 치료광에 의해 제1 치료 위치의 상태 변화를 모니터링 한다. 도 9에 도시된 바와 같이, 본 실시예의 제어방법에서는 제1 모니터링(S30)과 제2 모니터링(S40)에 의해, 두 가지 상태 정보에 대한 모니터링을 수행할 수 있다. 제1 모니터링은 치료광이 제1 치료 위치의 타겟 조직에 유효하게 에너지를 전달하도록 정상적으로 조사되었는지를 모니터링한다(S30). 제2 모니터링은 치료광 조사에 의해 제1 치료 위치의 타겟 조직에서 목표한 상태 변화가 발생하였는지 여부를 모니터링 한다(S40). 이러한 제1 모니터링 단계와 제2 모니터링 단계는 동일한 간섭 신호를 이용하여 진행되므로, 동시에 그리고 병렬적으로 진행될 수 있다.
도 10은 도 9에서 제1 모니터링 및 제2 모니터링 단계를 도시한 순서도이다. 이하에서는 도 10를 참조하여, 제1 모니터링 단계 및 제2 모니터링 단계를 구체적으로 설명한다. 도 10에 도시된 바와 같이, 우선, 치료광이 조사되는 제1 치료 위치로 모니터링 광을 조사하는 단계를 수행한다(S1). 전술한 바와 같이, 조사된 모니터링 광은 검측광과 기준광으로 분배되고, 검측광은 치료 위치로 조사된 후 반사되고, 기준광은 기준광 경로를 진행한 후 복귀된다. 그리고, 검측광과 기준광은 간섭 광학계를 통해 다시 결합되어 중첩된 상태로 검출기에 수광된다.
검출부(330)는 수광되는 검측광과 기준광으로부터 간섭 신호를 검출한다(S2). 그리고, 검출된 신호는 디지털 신호로 변환된다. 그리고, 이러한 간섭 신호는 푸리에 변환을 통해 주파수 도메인 신호로 변환된다(S3). 이처럼 변환된 주파수 도메인 신호에 근거하여 간섭 신호의 주파수 특성을 판단할 수 있다.
다만, 본 제어방법에서는 간섭 신호 중 관심 영역에 해당하는 신호만을 추출하여 모니터링할 수 있도록 추가적인 단계를 더 수행한다. 구체적으로, 변환된 주파수 도메인 신호는 역푸리에 변환을 통해 이미지 생성 신호로 변환된다(S4). 여기서, 이미지 생성 신호라 함은 제1 치료 위치의 깊이에 따른 이미지를 생성하기 위한 신호로, 깊이 좌표에 따른 값을 갖는 신호를 의미한다. 이러한 신호를 이용하여 이미지를 생성하는 단계를 별도로 수행할 수 있으나, 이에 국한되는 것은 아니다. 이미지 생성 신호로 변환되면, 이 중 관심 영역에 해당하는 깊이, 본 실시예에서는 RPE 세포층을 포함하는 깊이 구간의 신호만을 추출한다(S5). 그리고, 추출된 깊이 구간의 신호를 다시 푸리에 변환하여 주파수 도메인 신호를 생성한다(S6). 본 단계에서 얻어지는 신호를 통해 관심 영역의 주파수 특성을 확인할 수 있고, 이에 근거하여 제1 치료 위치의 RPE 층 상태 정보를 모니터링할 수 있다.
전술한 바와 같이, 제1 모니터링 단계에서는 타겟 조직인 RPE 층에 에너지가 유효하게 전달되도록 치료광이 정상적으로 조사되었는지 여부를 판단하는 단계이다. 따라서, 관심 영역 신호의 주파수 특성에 근거하여 치료광의 정상 조사 여부를 판단한다(S7). 판단 방식은 앞서 설명한 바와 같이, 관심 영역 신호의 제1 주파수 구역 신호가 기 설정된 기준을 초과하는 것으로 판단되면, 치료광이 정상적으로 조사된 것으로 판단한다. 그리고, 기 설정된 기준을 초과하지 않은 것으로 판단되면, 치료광이 정상적으로 조사되지 않은 것으로 판단한다. 여기서, 기 설정된 기준은 앞서 설명한 기준을 이용할 수 있으며, 이 이외에도 필요에 따라 다른 기준을 세팅하여 적용하는 것도 가능하다.
전술한 제1 모니터링 단계(S30)를 통해, 치료광이 정상적으로 조사되지 않은 것으로 판단되는 경우는, 치료광이 조사되지 않았거나, 잘못된 위치로 조사되었거나, 치료광이 제1 치료 위치로 조사되더라도 RPE 세포에 에너지를 전달하지 못하는 파라미터를 갖는 경우를 예상할 수 있다. 따라서, 치료광이 정상적으로 조사되지 않은 것으로 판단되면, 제어부(500)는 치료광의 조사를 정지하고(S60), 표시부(600)를 통해 이상 발생 사실을 표시하여 사용자에게 이를 알리도록 제어된다(S70).
한편, 제2 모니터링 단계는, 전술한 바와 같이, 치료광에 의해 타겟 조직인 RPE 세포층이 목적한 상태 변화가 발생했는지 여부를 판단하기 위한 것으로, 제1 치료 위치에 대한 치료 종료 시점이 도래하였는지 여부를 확인하기 위한 것이다. 제2 모니터링 단계는 제1 모니터링 단계와 비교하여, 모니터링 하고자 하는 정보가 상이하나, 동일한 간섭 신호를 이용하여 주파수 특성을 획득하고 이에 근거하여 판단하는 단계는 동일하게 수행된다. 따라서, 제2 모니터링 단계는 전술한 S1 내지 S6의 단계로부터 획득된 관심 영역의 주파수 특성에 근거하여, RPE층의 목표한 상태 변화가 발생하였는지 여부를 판단한다(S8). 판단 방식은 앞서 설명한 바와 같이, 관심 영역 신호의 제2 주파수 구역 신호가 기 설정된 기준을 이하이면, 목표한 상태 변화가 발생하지 않은 것으로 판단하고, 기 설정된 기준을 초과하면 목표한 상태 변화가 발생한 것으로 판단한다. 여기서, 기 설정된 기준은 앞서 설명한 기준과 같이, 현재 모니터링 단계(n번째 A 스캔에 의한 모니터링)에서 획득된 관심 영역 간섭 정보의 제2 주파수 구역 신호와 앞서 수행된 모니터링 단계(n-1번째 A 스캔에 의한 모니터링)에서 획득된 그것과 비교하는 방식으로 진행된다. 다만, 이러한 기준은 필요에 따라 다른 기준을 세팅하여 적용하는 것도 가능하다.
전술한 제1 모니터링 단계 및 제2 모니터링 단계를 통해, 치료광이 정상적으로 조사되었으나, RPE 세포에서 목표한 상태 변화가 없는 것으로 판단되면, 치료광을 다시 조사하여 치료를 추가적으로 진행하도록 제어한다. 이때, 제어부(500)는 보다 높은 강도의 치료가 가능하도록, 치료광의 파라미터를 조절할 수 있다(S50). 일 예로, 제어부(500)는 치료광 조사부를 제어하여, 조사되는 치료광의 출력을 증가시킬 수 있다. 다만, 이 이외에도 RPE 세포에 전달되는 에너지 양을 증가시킬 수 있도록, 치료광의 펄스 폭, 치료광 펄스 지연시간, 치료광의 스팟 사이즈와 같은 파라미터를 제어하는 것도 가능하다.
그리고, 조절된 파라미터를 갖는 치료광을 다시 제1 치료 위치로 조사하여, 전술한 S20 내지 S50의 단계를 반복적으로 수행한다. 도 11은 제1 치료 위치에 조사되는 치료광을 패턴을 도시한 그래프이다. 도 11에 도시된 바와 같이, 전술한 단계를 통해, 제1 치료 위치로 출력이 순차적으로 증가하는 패턴으로 치료광이 복수회에 걸쳐 조사된다. 이러한 과정에서, 제2 모니터링 단계를 통해, RPE 세포에서 목표한 상태 변화가 발생한 것으로 판단되면, 치료가 완료된 것으로 판단하고, 치료광 조사를 중지하고(S80), 제2 위치로 치료광 조사 위치를 변경한다(S90). 이때, 목표한 상태 변화가 발생한 것이 감지되는 즉시 치료광 조사를 중지하는 것도 가능하나, 기 설정된 패턴으로 치료광을 조사하고(예를 들어, 마지막으로 조사된 치료광의 출력으로 2회 추가 조사) 중지하도록 제어하는 것도 가능하다.
위와 같은 단계를 통해, 제1 치료 위치에 대한 치료 단계를 완료하고, 치료 위치를 변경하여, 제2 치료 위치를 비롯한 나머지 치료 위치에 대한 치료를 진행하는 방식으로 제어될 수 있다.
이상에서는, 간섭 정보의 주파수 특성을 이용하여, 제1 모니터링 및 제2 모니터링을 진행하고, 이에 근거하여 치료장치의 동작을 제어하는 방법에 대해 설명하였다. 다만, 이는 일 예이며, 전술한 단계 중 일부를 생략하거나, 변경하는 방식으로 다양하게 실시하는 것도 물론 가능하다.
일 예로서, 본 실시예와 달리 제1 모니터링과 제2 모니터링 중 어느 하나만을 수행하고, 이를 제어에 반영하도록 치료장치를 제어하는 것도 가능하다.
또한, 본 실시예에서는 제1 모니터링 단계 및 제2 모니터링 단계를 수행함에 있어, 간섭 신호 중 관심 영역에 해당하는 신호만을 추출하고 이의 주파수 특성에 근거하여 모니터링을 수행하였으나, 관심 영역 신호를 추출하는 단계를 수행하지 않고 간섭 신호 자체의 주파수 특성에 근거하여 모니터링을 수행하는 것도 가능하다(도 9의 S4 내지 S6 단계를 생략하고, S3의 주파수 신호를 이용하여 S7, S8 단계 수행). 또는, 제1 모니터링 단계 및 제2 모니터링 단계 중 어느 하나는 관심 영역 신호를 추출한 상태의 주파수 특성을 이용하고, 다른 하나는 관심 영역 추출 없이 간섭 신호의 주파수 특성을 이용하는 것도 물론 가능하다.
또한, 본 실시예서는, 치료광이 조사될 때마다 제1 모니터링 및 제2 모니터링을 모두 진행하는 것으로 설명하였으나, 제1 모니터링 단계는 최초 치료광 조사시에만 진행하여 치료광의 정상 조사여부를 판단하고, 2번째 치료광 조사부터는 생략하는 것도 가능하다.
나아가, 본 실시예에서는, 치료광 조사 주기와 모니터링 주기가 동일한 것을 전제로 설명하였으나, 치료광 조사와 모니터링이 상이한 주기로 진행될 수도 있다. 다만, 이 경우, 연속하는 치료광 조사 시점 사이에 복수회의 모니터링이 수행되는 것도 가능하고(모니터링 주기가 짧은 경우), 연속하는 치료광 조사 시점에 모니터링 단계가 생략되는 경우도 발생할 수 있다(치료광 조사 주기가 짧은 경우).
한편, 이상에서는 망막과 같은 안저 병변을 치료하는 안과용 치료장치 및 이의 제어방법을 중심으로 설명하였다. 다만, 본 발명은 안저 병변 뿐 아니라 안구 내의 다양한 조직에 관한 병변에 적용하는 것도 가능하다. 일 예로서, 본 발명은 전안부의 녹내장을 치료하기 위한 안과용 치료장치 및 이의 제어방법에 적용될 수 있으며, 이하에서는 도 12을 이용하여 이를 설명한다.
도 12는 본 발명을 이용하여 전안부 병변을 치료하는 모습을 도시한 단면도이다. 녹내장은 안압의 상승에 의한 시신경의 손상되는 병변으로, 안내(intraocular) 유체가 배출되는 경로를 확보하여 적정 안압을 유지시키는 방식으로 치료가 진행된다. 이를 위해, 본 발명에 따른 안과용 치료장치는 전안부의 림버스(Limbus) 하측에 위치하는 섬유주대(trabecualr meshwork, TM) 조직 상에 치료광을 조사하여 유체가 배출되는 특성을 개선시킬 수 있다.
도 12에 따른 안과용 치료 장치는 전술한 실시예에 따른 치료장치와 마찬가지로, 멜라노좀에 선택적으로 흡수되는 파장의 치료광을 조사하여 치료를 진행한다. 섬유주대 조직을 구성하는 섬유 주대 세포(trabecualr meshwork cell, TM cell)는 RPE 세포와 마찬가지로 멜라노좀과 같은 색소 성분을 포함한다. 따라서, 치료광이 조사되면 섬유주대 조직의 세포에 에너지가 전달되며, 이에 의해 섬유 주대 세포에 열적 손상이 발생하면서 유체의 배출 경로가 확보되어 안압을 정상적으로 유지시킬 수 있다.
전술한 실시예에서는 안저의 망막을 치료 위치로 하고 해당 치료 위치에 배치된 RPE 세포를 타겟 조직으로 하여 치료를 진행하는 것에 비해, 도 12에 따른 안과용 치료장치는 전안부의 섬유 주대 조직을 치료 위치로 하고 해당 위치에 섬유 주대 세포를 타겟 조직으로 하여 치료를 진행한다.
이를 위해, 안과용 치료장치의 대안부(430)는 반사부재를 포함한 컨택트 렌즈를 포함하여 구성된다. 이에 의해, 치료광을 비롯한 각종 광의 진행 경로는 반사 부재를 통해 치료 위치인 섬유 주대 조직으로 조사되며, 치료 위치로부터 반사되는 검측광 등의 반사광은 반사 부재(431)를 통해 안과용 치료장치의 빔 딜리버리부로 진입할 수 있다.
다만, 대안부(430)의 구조 이외에, 전술한 실시예들에서 설명한 안과용 치료장치의 구성과 동작을 비롯한 각종 제어 내용은 도 12의 안과용 치료장치에도 실질적으로 동일하게 적용될 수 있다. 이로 인해, 녹내장 치료를 진행시 간섭 정보의 주파수 특성에 근거하여 섬유 주대 세포의 상태를 모니터링하면서 치료를 진행할 수 있어, 최적 치료가 가능하며 치료 안전성이 개선될 수 있다.
이상, 본 발명의 다양한 실시예에 대해 상세하게 기술하였으나, 본 발명이 상기 실시예에 한정되는 것은 아니다. 본 발명이 속하는 기술 분야에 대해 통상의 지식을 가진 사람이면, 첨부된 청구범위에 정의된 본 발명의 기술적 특징의 범위를 벗어나지 않으면서 본 발명을 여러 가지로 변형 또는 변경하여 실시할 수 있음은 밝혀둔다.
100 : 치료광 발생부 300 : 모니터링부
400 : 빔 딜리버리부 500 : 제어부
600 : 표시부

Claims (22)

  1. 안저의 치료 위치로 치료광을 조사하는 치료광 조사부;
    상기 치료 위치로 검측광을 조사하고, 반사되는 상기 검측광과 기 설정된 경로로 진행하는 기준광에 의한 간섭 신호의 주파수 분포 변화에 근거하여 상기 치료 위치의 상태 정보를 모니터링하는 모니터링부; 및
    상기 모니터링부에서 감지된 상태정보에 근거하여 상기 치료광 조사부의 동작을 제어하는 제어부;를 포함하는 안과용 치료장치.
  2. 제1항에 있어서, 상기 모니터링부는,
    상기 반사된 검측광과 상기 기준광이 중첩되어 진행하는 경로를 형성하는 간섭 광학계;
    상기 간섭 광학계를 따라 진행하는 상기 검측광 및 상기 기준광을 수광하여 상기 간섭 신호를 검출하는 검출부; 및
    상기 검출부에서 검출된 상기 간섭 신호의 주파수 분포 변화를 분석하는 프로세서;를 포함하는 안과용 치료장치.
  3. 제2항에 있어서,
    상기 치료광 조사부는 하나의 치료 위치에 복수회에 걸쳐 치료광을 조사하도록 제어되고,
    상기 모니터링부는 상기 각각의 치료광에 따른 상기 간섭 신호의 주파수 분포 변화를 분석하여 상기 치료 위치의 상태 정보를 모니터링하는 것을 특징으로 하는 안과용 치료장치.
  4. 제3항에 있어서,
    상기 프로세서는 앞서 검출된 간섭 신호의 주파수 분포와 현재 검출된 간섭 신호의 주파수 분포를 비교하여 상기 치료 위치의 상태 정보를 모니터링 하는 것을 특징으로 하는 안과용 치료장치.
  5. 제1항에 있어서,
    상기 모니터링부는, 상기 치료광 조사시, 상기 간섭 신호 중 제1 주파수 구역에 해당하는 신호의 크기가 정상 상태 대비 또는 앞서 검출된 간섭 신호 대비하여 증가한 것으로 판단되면 치료광이 상기 치료 위치에 정상적으로 조사된 것으로 판단하는 것을 특징으로 하는 안과용 치료장치.
  6. 제5항에 있어서,
    상기 치료광 조사 중, 상기 모니터링부에서 상기 치료 위치에 정상적으로 조사되지 않은 것으로 판단되면, 제어부는 표시부를 통해 사용자에게 이상 발생 사실을 표시하는 것을 특징으로 하는 안과용 치료장치.
  7. 제1항에 있어서,
    상기 치료광 조사부는 해당 치료 위치의 타겟 조직에서 목표한 상태 변화가 이루어진 것으로 판단될 때까지 복수회에 걸쳐 치료광을 조사하도록 제어되고,
    상기 모니터링부는, 상기 복수회에 걸쳐 치료광이 조사되는 동안, 상기 간섭 신호 중 제2 주파수 구역에 해당하는 신호의 크기가 기 설정된 기준 이상으로 증가한 것으로 판단되면 상기 타겟 조직에서 목표한 상태변화가 이루어진 것으로 판단하는 것을 특징으로 하는 안과용 치료장치.
  8. 제7항에 있어서,
    상기 치료광 조사부는 해당 치료 위치의 상기 타겟 조직에서 목표한 상태변화가 이루어진 것으로 판단될 때까지 복수회에 걸쳐 치료광을 조사함에 있어, 치료광에 의해 상기 타겟 조직으로 전달되는 에너지가 순차적으로 증가하도록 제어되는 것을 특징으로 하는 안과용 치료장치.
  9. 제7항에 있어서,
    상기 모니터링부에서 상기 타겟 조직에서 목표한 상태변화가 이루어진 것으로 판단되면,
    상기 제어부는 해당 치료 위치로 치료광을 조사하는 것을 중지하거나, 상기 치료 위치로 기 설정된 조사 패턴으로 치료광을 추가 조사 한 후 치료광 조사를 중지하도록 제어하는 것을 특징으로 하는 안과용 치료장치.
  10. 제1항에 있어서,
    상기 모니터링부는 상기 간섭 신호로부터 상기 치료 위치의 관심 영역에 해당하는 신호를 추출하고,
    상기 추출된 관심 영역에 해당하는 신호의 주파수 분포 변화에 근거하여 상기 관심 영역의 상태 정보를 모니터링하는 것을 특징으로 하는 안과용 치료장치.
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 전안부의 가장자리를 따라 위치하는 치료 위치로 치료광을 조사하는 치료광 조사부;
    상기 치료 위치로 검측광을 조사하고, 반사되는 상기 검측광과 기 설정된 경로로 진행하는 기준광에 의한 간섭 신호의 주파수 분포 변화에 근거하여 상기 치료 위치의 상태 정보를 모니터링하는 모니터링부; 및
    상기 모니터링부에서 감지된 상태정보에 근거하여 상기 치료광 조사부의 동작을 제어하는 제어부;를 포함하는 안과용 치료장치.
KR1020170104951A 2017-08-11 2017-08-18 안과용 치료장치 및 이의 제어방법 KR102020841B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/009034 WO2019031846A1 (ko) 2017-08-11 2018-08-08 안과용 치료장치 및 이의 제어방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170102361 2017-08-11
KR1020170102361 2017-08-11

Publications (2)

Publication Number Publication Date
KR20190017593A KR20190017593A (ko) 2019-02-20
KR102020841B1 true KR102020841B1 (ko) 2019-09-11

Family

ID=65562356

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170104951A KR102020841B1 (ko) 2017-08-11 2017-08-18 안과용 치료장치 및 이의 제어방법

Country Status (1)

Country Link
KR (1) KR102020841B1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015100583A (ja) 2013-11-27 2015-06-04 株式会社トプコン レーザ治療システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101424714B1 (ko) * 2012-09-21 2014-08-13 주식회사 메디칼써프라이 레이저의 후산란 특성을 이용한 생체 조직의 분광학적 형태 추출 방법 및 시스템
KR101663583B1 (ko) * 2014-07-30 2016-10-07 주식회사 루트로닉 안과용 치료장치 및 이의 구동 방법
US10973576B2 (en) * 2015-08-24 2021-04-13 Lutronic Corporation Optical treatment apparatus and control method therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015100583A (ja) 2013-11-27 2015-06-04 株式会社トプコン レーザ治療システム

Also Published As

Publication number Publication date
KR20190017593A (ko) 2019-02-20

Similar Documents

Publication Publication Date Title
US11540945B2 (en) Optical surface identification for laser eye surgery
US11351060B2 (en) Interface force feedback in a laser eye surgery system
KR101663583B1 (ko) 안과용 치료장치 및 이의 구동 방법
KR101902862B1 (ko) 안과용 치료장치 및 이의 제어방법
US10588781B2 (en) Ophthalmic treatment device
KR101859571B1 (ko) 안과용 치료장치 및 이의 제어방법
US11382792B2 (en) Ophthalmic treatment device, method for controlling ophthalmic treatment device, and fundus lesion treatment method
KR20140104587A (ko) 안과용 수술장치 및 이의 제어 방법 및 이를 이용한 수술 방법
KR102000979B1 (ko) 광학 치료장치
KR102020841B1 (ko) 안과용 치료장치 및 이의 제어방법
KR102038008B1 (ko) 안과용 치료장치 및 이의 제어방법
KR102191632B1 (ko) 안과용 치료장치 및 이의 제어방법
KR102191631B1 (ko) 안과용 치료장치 및 이의 제어방법
KR102227732B1 (ko) 안과용 치료장치 및 이의 제어방법
KR102191633B1 (ko) 안과용 치료장치 및 이의 제어방법
KR101451968B1 (ko) 안과용 수술장치, 및 이의 제어 방법
WO2019031846A1 (ko) 안과용 치료장치 및 이의 제어방법
KR20140104586A (ko) 안과용 수술장치, 이의 제어 방법 및 이를 이용한 수술 방법

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant