WO2016017382A1 - Contactless charging system and contactless power supply device - Google Patents

Contactless charging system and contactless power supply device Download PDF

Info

Publication number
WO2016017382A1
WO2016017382A1 PCT/JP2015/069642 JP2015069642W WO2016017382A1 WO 2016017382 A1 WO2016017382 A1 WO 2016017382A1 JP 2015069642 W JP2015069642 W JP 2015069642W WO 2016017382 A1 WO2016017382 A1 WO 2016017382A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
charging system
diagnosis
diagnostic information
self
Prior art date
Application number
PCT/JP2015/069642
Other languages
French (fr)
Japanese (ja)
Inventor
康裕 鈴木
孝治 比嘉
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2016017382A1 publication Critical patent/WO2016017382A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • This invention relates to a contactless charging system, and more particularly to a contactless charging system having a self-diagnosis function.
  • EV vehicles electric vehicles driven by electric motors and plug-in hybrid vehicles (PHV vehicles) driven by the combined use of electric motors and gasoline engines
  • PHY vehicles plug-in hybrid vehicles
  • EV cars and PHV cars are equipped with a battery, and the vehicle is driven by driving a motor with electric energy stored in the battery.
  • a charging system for EV cars and PHV cars there is generally a method in which a power supply stand is installed in each of a plurality of parking spaces provided in a parking lot, and charging is performed while the vehicle is parked in the parking space. It is.
  • a contact charging system in which the power supply stand and the vehicle are connected by a dedicated charging cable, and a principle of electromagnetic induction or resonance while the power supply stand and the vehicle are kept in a non-contact state.
  • a non-contact charging system that supplies power by using a power source.
  • each power supply stand may have a self-diagnosis function for diagnosing whether or not the own device functions normally. preferable. Since each power supply station has a self-diagnosis function, a maintenance worker who is in charge of system maintenance and inspection can easily grasp the power supply station in a failure state.
  • Patent Document 1 describes an invention of a power supply stand having a self-diagnosis function that periodically detects an abnormality in a power supply, wiring, and the like and outputs it to a display means (notification device).
  • Patent Document 1 has a problem that the power supply stand becomes expensive because display means for displaying the result of the self-diagnosis is individually provided in each power supply stand.
  • the present invention has been made to solve such a problem, and provides a non-contact charging system capable of grasping a power supply station in a failure state without providing a display means individually for each power supply station. For the purpose.
  • a contactless charging system includes a power supply device (power supply stand) that performs self-diagnosis and transmits state information of the own device, and a terminal device that receives the state information. Composed.
  • non-contact power supply apparatus (non-contact power supply stand) according to the present invention performs self-diagnosis and transmits the status information of the own machine.
  • the non-contact charging system According to the non-contact charging system according to the present invention, it is possible to grasp a power supply stand in a failure state without providing display means individually for each power supply stand.
  • the non-contact charging system 100 includes a power supply station 10 to 30 installed in each of the parking spaces S1 to S3 in the parking lot, and a dedicated terminal 40 carried by a maintenance worker in charge of maintenance and inspection of the power supply stations 10 to 30. It is composed of In addition, power supply coils 15 to 35 and vehicle detection sensors 16 to 36 of the power supply stations 10 to 30 are installed on the ground of the parking spaces S1 to S3, respectively.
  • a wireless communication connection is established between the power supply stand 10 installed in the parking space S ⁇ b> 1 and the electric vehicle 50, and then a high frequency is applied to the power supply coil 15 of the power supply stand 10. Power is supplied. This high frequency power is transmitted to the power receiving coil 53 of the electric vehicle 50 according to the principle of electromagnetic induction or resonance, and charging of a vehicle battery (not shown) is performed.
  • the configurations of the power supply stations 10 to 30 and the dedicated terminal 40 in the non-contact charging system 100 according to this embodiment will be described in order.
  • the power supply stands 10 to 30 all have the same configuration, the power supply stand 10 will be described as an example.
  • the power supply stand 10 includes a wireless communication unit 11, a control unit 12, a power conversion unit 13, a matching unit 14, a power supply coil 15, a vehicle detection sensor 16, and an antenna 17.
  • the wireless communication unit 11 is a wireless communication module based on the ZigBee standard, modulates various data input from the control unit 12 and radiates it as a radio signal from the antenna 17, and demodulates a radio signal received by the antenna 17. The data is extracted and output to the control means 12.
  • the control means 12 is constituted by a microcomputer, and controls the wireless communication means 11, the power conversion means 13, and the matching means 14.
  • the control unit 12 switches the power conversion unit 13 and the matching unit 14 while performing wireless communication with the electric vehicle 50 via the wireless communication unit 11. By controlling, the supply of charging power to the electric vehicle 50 is controlled.
  • the memory of the control means 12 stores a self-diagnosis program 18 for diagnosing whether or not the power supply stand 10 functions normally. At the time of self-diagnosis of the power supply station 10, the control unit 12 performs wireless communication with the dedicated terminal 40 via the wireless communication unit 11, and status information and diagnosis obtained as a result of the self-diagnosis of the power supply station 10. Send information.
  • the power conversion means 13 converts AC power supplied from the system power source into high frequency power having a higher frequency.
  • the matching means 14 matches the impedances of the power conversion means 13 and the feeding coil 15.
  • the high-frequency power output from the matching means 14 is supplied to the feeding coil 15.
  • the vehicle detection sensor 16 detects that the electric vehicle 50 is parked in the parking space S1 where the power supply stand 10 is installed.
  • the dedicated terminal 40 includes a wireless communication unit 41, a control unit 42, a liquid crystal panel 43, and an antenna 44.
  • the wireless communication unit 41 is a wireless communication module based on the ZigBee standard, modulates various data input from the control unit 42 and emits it as a radio signal from the antenna 44, and demodulates a radio signal received by the antenna 44. The data is extracted and output to the control means 42.
  • the control means 42 is constituted by a microcomputer, performs wireless communication with the power supply stations 10 to 30 via the wireless communication means 41, and obtains status information obtained as a result of self-diagnosis of the power supply stations 10 to 30 Get diagnostic information.
  • a list of diagnostic information obtained as a result of self-diagnosis of the power supply stations 10 to 30 is displayed on the liquid crystal panel 43.
  • Each control means of the power supply stations 10 to 30 periodically carries out a self-diagnosis to check whether or not the own machine functions normally (S101).
  • the power supply stand 10 will be described as an example.
  • the self-diagnosis program 18 stored in the memory of the control means 12, the disconnection of the power supply coil 15, the failure of the vehicle detection sensor 16, etc. are inspected. Diagnostic information as shown in FIG. The same applies to the power supply stands 20 and 30.
  • each control unit of the power supply stations 10 to 30 determines whether or not the own device is in a state in which the power supply operation can be performed based on the diagnostic information generated in step S101 (S102).
  • the machine status (“normal” or “failure” and “severity”) is determined (S103).
  • the power supply stand 10 is in a normal state in which the power supply operation can be performed, but the power supply stands 20 and 30 are in a failure state in which the power supply operation cannot be performed.
  • the degree is “1”, and the failure severity of the power supply stand 30 is “5”.
  • each control unit of the power supply stations 10 to 30 creates a beacon signal as shown in FIG. 6 based on the state of the own device determined in step S103 (S104), and the wireless communication unit makes a cycle of 100 ms. Broadcasting is performed (S105).
  • this beacon signal is periodically broadcast by each of the power supply stations 10 to 30 to notify the electric vehicle 50 in the parking lot of its own identifier.
  • the state information of the own device is transmitted in the normal data field of the beacon signal of the ZigBee standard that each of the power supply stations 10 to 30 regularly broadcasts.
  • the wireless communication means 41 of the dedicated terminal 40 carried by the maintenance worker scans the frequency band in which the beacon signal is transmitted (S106), and receives the beacon signal transmitted from each of the power supply stations 10 to 30. (S107).
  • the control means 42 of the dedicated terminal 40 creates a stand list as shown in FIG. 7 based on the reception result of the beacon signal (S108).
  • the stand list of FIG. 7 shows a list of power supply stations that can receive the beacon signal and their state information.
  • the control means 42 of the dedicated terminal 40 extracts only the failed power supply station from the stand list created in step S108, and creates a failure stand list as shown in FIG. 8 (S109).
  • the wireless communication means 41 of the dedicated terminal 40 first establishes a secure wireless communication connection with the power supply station 20 from among the power supply stations included in the failure stand list of FIG. Information is requested (S111). Receiving this, the power supply station 20 returns the diagnostic information generated in step S101 (S112). The wireless communication means 41 of the dedicated terminal 40 disconnects the secure wireless communication connection after receiving the diagnostic information returned from the power supply station 20 (S113).
  • the wireless communication means 41 of the dedicated terminal 40 establishes a secure wireless communication connection with the power supply station 30 included in the failure stand list (S114), and requests diagnostic information (S115). Receiving this, the power supply station 30 returns the diagnostic information generated in step S101 (S116). The wireless communication means 41 of the dedicated terminal 40 disconnects the secure wireless communication connection after receiving the diagnostic information returned from the power supply station 30 (S117). Finally, the control means 42 of the dedicated terminal 40 displays a list of the diagnostic information of the power supply stations 20 and 30 received in steps S112 and S116 on the liquid crystal panel 43 in the format as shown in FIG. 9 (S118). .
  • each of the power supply stations 10 to 30 performs self-diagnosis and periodically transmits the status information of its own device on a beacon signal to perform maintenance work.
  • the dedicated terminal 40 carried by the employee receives these status information.
  • the status information is transmitted on the beacon signal periodically transmitted by each of the power supply stations 10 to 30, but the dedicated terminal 40 requests the status information from each of the power supply stations 10 to 30, and In response to this request, status information may be returned from each of the power supply stations 10 to 30 to the dedicated terminal 40.
  • the status information and diagnostic information of each power supply station 10-30 are connected to each power supply station 10-30 in a wired or wireless manner. It is also possible to collect the information in one server and wirelessly transmit it from this server to the dedicated terminal 40. Further, the communication standard of the wireless communication means is not limited to ZigBee, but may be another communication standard.
  • Each of the power supply stations 10 to 30 may stop periodic transmission of beacons after returning diagnostic information to the dedicated terminal 40. By stopping the periodic transmission of beacons, the power consumption of the power supply station can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

In the present invention, a contactless charging system comprises the following: power supply stations that are respectively disposed in parking spaces in a parking lot; and a dedicated terminal carried by a maintenance worker who is in charge of maintenance and inspection of the power supply stations. Each of the power supply stations performs self-diagnosis and then periodically transmits the status information obtained thereby on a beacon signal, and the dedicated terminal carried by the maintenance worker receives such status information.

Description

非接触充電システムおよび非接触給電装置Non-contact charging system and non-contact power feeding device
 この発明は、非接触充電システムに係り、特に自己診断機能を有する非接触充電システムに関する。 This invention relates to a contactless charging system, and more particularly to a contactless charging system having a self-diagnosis function.
 電気モータによって走行する電気自動車(EV車)や電気モータとガソリンエンジンとの併用によって走行するプラグインハイブリッド車(PHV車)の普及が始まっている。これらEV車やPHV車にはバッテリが搭載されており、バッテリに蓄えられた電気エネルギーによってモータを駆動することにより車両の走行が行われる。 The spread of electric vehicles (EV vehicles) driven by electric motors and plug-in hybrid vehicles (PHV vehicles) driven by the combined use of electric motors and gasoline engines has begun. These EV cars and PHV cars are equipped with a battery, and the vehicle is driven by driving a motor with electric energy stored in the battery.
 現在、EV車やPHV車用の充電システムとしては、駐車場内に設けられた複数の駐車スペースにそれぞれ給電スタンドを設置し、車両が駐車スペースに駐車している間に充電を行う方式が一般的である。また、給電スタンドから車両への電力供給の方法としては、給電スタンドと車両を専用の充電ケーブルで接続する接触充電システムと、給電スタンドと車両を非接触状態に保ったまま電磁誘導または共鳴の原理を利用して電力供給を行う非接触充電システムとがある。 Currently, as a charging system for EV cars and PHV cars, there is generally a method in which a power supply stand is installed in each of a plurality of parking spaces provided in a parking lot, and charging is performed while the vehicle is parked in the parking space. It is. As a method for supplying power from the power supply stand to the vehicle, a contact charging system in which the power supply stand and the vehicle are connected by a dedicated charging cable, and a principle of electromagnetic induction or resonance while the power supply stand and the vehicle are kept in a non-contact state. And a non-contact charging system that supplies power by using a power source.
 非接触充電システムにおいて、特に大型駐車場のように多数の給電スタンドが設置されている場合には、各給電スタンドは自機が正常に機能するか否かを診断する自己診断機能を有することが好ましい。各給電スタンドが自己診断機能を有することにより、システムの保守点検を担当するメンテナンス作業員は、故障状態にある給電スタンドを容易に把握することができる。特許文献1には、電源や配線等の異常を定期的に検出して表示手段(報知装置)に出力する自己診断機能を有する給電スタンドの発明が記載されている。 In a non-contact charging system, especially when a large number of power supply stands are installed as in a large parking lot, each power supply stand may have a self-diagnosis function for diagnosing whether or not the own device functions normally. preferable. Since each power supply station has a self-diagnosis function, a maintenance worker who is in charge of system maintenance and inspection can easily grasp the power supply station in a failure state. Patent Document 1 describes an invention of a power supply stand having a self-diagnosis function that periodically detects an abnormality in a power supply, wiring, and the like and outputs it to a display means (notification device).
特開2013-115833号公報JP 2013-115833 A
 しかしながら、特許文献1に記載の発明では、自己診断の結果を表示するための表示手段が各給電スタンドに個別に設けられているため、給電スタンドが高価になってしまうという問題がある。 However, the invention described in Patent Document 1 has a problem that the power supply stand becomes expensive because display means for displaying the result of the self-diagnosis is individually provided in each power supply stand.
 この発明はこのような問題を解決するためになされたものであり、各給電スタンドに個別に表示手段を設けることなく故障状態にある給電スタンドを把握することができる、非接触充電システムを提供することを目的とする。 The present invention has been made to solve such a problem, and provides a non-contact charging system capable of grasping a power supply station in a failure state without providing a display means individually for each power supply station. For the purpose.
 上記の課題を解決するために、この発明に係る非接触充電システムは、自己診断を実施して自機の状態情報を送信する給電装置(給電スタンド)と、状態情報を受信する端末装置とから構成される。 In order to solve the above problems, a contactless charging system according to the present invention includes a power supply device (power supply stand) that performs self-diagnosis and transmits state information of the own device, and a terminal device that receives the state information. Composed.
 また、この発明に係る非接触給電装置(非接触給電スタンド)は、自己診断を実施して自機の状態情報を送信する。 Further, the non-contact power supply apparatus (non-contact power supply stand) according to the present invention performs self-diagnosis and transmits the status information of the own machine.
 この発明に係る非接触充電システムによれば、各給電スタンドに個別に表示手段を設けることなく故障状態にある給電スタンドを把握することができる。 According to the non-contact charging system according to the present invention, it is possible to grasp a power supply stand in a failure state without providing display means individually for each power supply stand.
この発明の実施の形態に係る非接触充電システムの構成を示す図である。It is a figure which shows the structure of the non-contact charge system which concerns on embodiment of this invention. この発明の実施の形態に係る非接触充電システムにおける給電スタンドの構成を示す図である。It is a figure which shows the structure of the electric power feeding stand in the non-contact charge system which concerns on embodiment of this invention. この発明の実施の形態に係る非接触充電システムにおける専用端末の構成を示す図である。It is a figure which shows the structure of the exclusive terminal in the non-contact charge system which concerns on embodiment of this invention. この発明の実施の形態に係る非接触充電システムにおける自己診断処理の詳細を示す図である。It is a figure which shows the detail of the self-diagnosis process in the non-contact charge system which concerns on embodiment of this invention. この発明の実施の形態に係る非接触充電システムにおける診断情報の一例を示す図である。It is a figure which shows an example of the diagnostic information in the non-contact charge system which concerns on embodiment of this invention. この発明の実施の形態に係る非接触充電システムにおけるビーコン信号の一例を示す図である。It is a figure which shows an example of the beacon signal in the non-contact charge system which concerns on embodiment of this invention. この発明の実施の形態に係る非接触充電システムにおけるスタンドリストの一例を示す図である。It is a figure which shows an example of the stand list in the non-contact charge system which concerns on embodiment of this invention. この発明の実施の形態に係る非接触充電システムにおける故障スタンドリストの一例を示す図である。It is a figure which shows an example of the failure stand list in the non-contact charge system which concerns on embodiment of this invention. この発明の実施の形態に係る非接触充電システムにおける診断情報の一覧の一例を示す図である。It is a figure which shows an example of the list of the diagnostic information in the non-contact charge system which concerns on embodiment of this invention.
 以下、この発明の実施の形態について添付図面に基づいて説明する。
実施の形態.
 この発明の実施の形態に係る非接触充電システム100の構成を図1に示す。
 非接触充電システム100は、駐車場内の各駐車スペースS1~S3にそれぞれ設置される給電スタンド10~30と、給電スタンド10~30の保守点検を担当するメンテナンス作業員によって携行される専用端末40とから構成されている。また、各駐車スペースS1~S3の地面には、給電スタンド10~30の給電コイル15~35と車両検知センサ16~36とがそれぞれ設置されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
Embodiment.
A configuration of a non-contact charging system 100 according to an embodiment of the present invention is shown in FIG.
The non-contact charging system 100 includes a power supply station 10 to 30 installed in each of the parking spaces S1 to S3 in the parking lot, and a dedicated terminal 40 carried by a maintenance worker in charge of maintenance and inspection of the power supply stations 10 to 30. It is composed of In addition, power supply coils 15 to 35 and vehicle detection sensors 16 to 36 of the power supply stations 10 to 30 are installed on the ground of the parking spaces S1 to S3, respectively.
 例えば、電気自動車50が駐車スペースS1に駐車すると、駐車スペースS1に設置されている給電スタンド10と電気自動車50との間で無線通信接続が確立された後、給電スタンド10の給電コイル15に高周波電力が供給される。この高周波電力が電磁誘導または共鳴の原理によって電気自動車50の受電コイル53に伝達され、図示しない車載バッテリへの充電が行われる。 For example, when the electric vehicle 50 is parked in the parking space S <b> 1, a wireless communication connection is established between the power supply stand 10 installed in the parking space S <b> 1 and the electric vehicle 50, and then a high frequency is applied to the power supply coil 15 of the power supply stand 10. Power is supplied. This high frequency power is transmitted to the power receiving coil 53 of the electric vehicle 50 according to the principle of electromagnetic induction or resonance, and charging of a vehicle battery (not shown) is performed.
 以下、この実施の形態に係る非接触充電システム100における給電スタンド10~30と専用端末40の構成について順に説明する。ただし、給電スタンド10~30の構成は全て同一であるため、給電スタンド10を例にとって説明する。 Hereinafter, the configurations of the power supply stations 10 to 30 and the dedicated terminal 40 in the non-contact charging system 100 according to this embodiment will be described in order. However, since the power supply stands 10 to 30 all have the same configuration, the power supply stand 10 will be described as an example.
(給電スタンドの構成)
 まず、給電スタンド10の構成について図2を参照して説明する。給電スタンド10は、無線通信手段11と、制御手段12と、電力変換手段13と、整合手段14と、給電コイル15と、車両検知センサ16と、アンテナ17とを備えている。
(Configuration of power supply stand)
First, the configuration of the power supply stand 10 will be described with reference to FIG. The power supply stand 10 includes a wireless communication unit 11, a control unit 12, a power conversion unit 13, a matching unit 14, a power supply coil 15, a vehicle detection sensor 16, and an antenna 17.
 無線通信手段11は、ZigBee規格に基づく無線通信モジュールであり、制御手段12から入力される各種データを変調してアンテナ17から電波信号として放射すると共に、アンテナ17によって受信される電波信号を復調してデータを抽出し、制御手段12に出力する。 The wireless communication unit 11 is a wireless communication module based on the ZigBee standard, modulates various data input from the control unit 12 and radiates it as a radio signal from the antenna 17, and demodulates a radio signal received by the antenna 17. The data is extracted and output to the control means 12.
 制御手段12は、マイクロコンピュータによって構成されており、無線通信手段11、電力変換手段13、および整合手段14を制御する。給電スタンド10から電気自動車50への充電を行う際には、制御手段12は、無線通信手段11を介して電気自動車50との間で無線通信を行いながら、電力変換手段13および整合手段14を制御することによって、電気自動車50への充電電力の供給を制御する。 The control means 12 is constituted by a microcomputer, and controls the wireless communication means 11, the power conversion means 13, and the matching means 14. When charging the electric vehicle 50 from the power supply station 10, the control unit 12 switches the power conversion unit 13 and the matching unit 14 while performing wireless communication with the electric vehicle 50 via the wireless communication unit 11. By controlling, the supply of charging power to the electric vehicle 50 is controlled.
 また、制御手段12のメモリには、給電スタンド10が正常に機能するか否かを診断する自己診断プログラム18が記憶されている。給電スタンド10の自己診断の際には、制御手段12は、無線通信手段11を介して専用端末40との間で無線通信を行い、給電スタンド10の自己診断の結果として得られる状態情報や診断情報を送信する。 The memory of the control means 12 stores a self-diagnosis program 18 for diagnosing whether or not the power supply stand 10 functions normally. At the time of self-diagnosis of the power supply station 10, the control unit 12 performs wireless communication with the dedicated terminal 40 via the wireless communication unit 11, and status information and diagnosis obtained as a result of the self-diagnosis of the power supply station 10. Send information.
 電力変換手段13は、系統電源から供給される交流電力をより周波数の高い高周波電力に変換する。 The power conversion means 13 converts AC power supplied from the system power source into high frequency power having a higher frequency.
 整合手段14は、電力変換手段13と給電コイル15のインピーダンスを整合させる。 The matching means 14 matches the impedances of the power conversion means 13 and the feeding coil 15.
 給電コイル15には、整合手段14から出力された高周波電力が供給される。 The high-frequency power output from the matching means 14 is supplied to the feeding coil 15.
 車両検知センサ16は、給電スタンド10が設置されている駐車スペースS1に電気自動車50が駐車したことを検知する。 The vehicle detection sensor 16 detects that the electric vehicle 50 is parked in the parking space S1 where the power supply stand 10 is installed.
(専用端末の構成)
 次に、専用端末40の構成について図3を参照して説明する。専用端末40は、無線通信手段41と、制御手段42と、液晶パネル43と、アンテナ44とを備えている。
(Dedicated terminal configuration)
Next, the configuration of the dedicated terminal 40 will be described with reference to FIG. The dedicated terminal 40 includes a wireless communication unit 41, a control unit 42, a liquid crystal panel 43, and an antenna 44.
 無線通信手段41は、ZigBee規格に基づく無線通信モジュールであり、制御手段42から入力される各種データを変調してアンテナ44から電波信号として放射すると共に、アンテナ44によって受信される電波信号を復調してデータを抽出し、制御手段42に出力する。 The wireless communication unit 41 is a wireless communication module based on the ZigBee standard, modulates various data input from the control unit 42 and emits it as a radio signal from the antenna 44, and demodulates a radio signal received by the antenna 44. The data is extracted and output to the control means 42.
 制御手段42は、マイクロコンピュータによって構成されており、無線通信手段41を介して給電スタンド10~30との間で無線通信を行い、給電スタンド10~30の自己診断の結果として得られる状態情報や診断情報を取得する。 The control means 42 is constituted by a microcomputer, performs wireless communication with the power supply stations 10 to 30 via the wireless communication means 41, and obtains status information obtained as a result of self-diagnosis of the power supply stations 10 to 30 Get diagnostic information.
 液晶パネル43には、給電スタンド10~30の自己診断の結果として得られる診断情報の一覧が表示される。 A list of diagnostic information obtained as a result of self-diagnosis of the power supply stations 10 to 30 is displayed on the liquid crystal panel 43.
(非接触充電システム100における自己診断処理)
 次に、この実施の形態に係る非接触充電システム100における自己診断処理について、図4を参照して説明する。
(Self-diagnosis processing in the non-contact charging system 100)
Next, the self-diagnosis process in the non-contact charging system 100 according to this embodiment will be described with reference to FIG.
 給電スタンド10~30の各制御手段は、自機が正常に機能するか否かを検査する自己診断を定期的に実施する(S101)。例えば、給電スタンド10を例にとって説明すると、制御手段12のメモリ内に記憶されている自己診断プログラム18を実行することによって、給電コイル15の断線、車両検知センサ16の故障等を検査し、図5に示されるような診断情報を生成する。給電スタンド20,30についても同様である。 Each control means of the power supply stations 10 to 30 periodically carries out a self-diagnosis to check whether or not the own machine functions normally (S101). For example, the power supply stand 10 will be described as an example. By executing the self-diagnosis program 18 stored in the memory of the control means 12, the disconnection of the power supply coil 15, the failure of the vehicle detection sensor 16, etc. are inspected. Diagnostic information as shown in FIG. The same applies to the power supply stands 20 and 30.
 次に、給電スタンド10~30の各制御手段は、ステップS101で生成された診断情報に基いて自機が給電動作を行うことが可能な状態にあるか否かを判定し(S102)、自機の状態(「正常」または「故障」並びに「重篤度」)を確定する(S103)。図4の例では、給電スタンド10は給電動作を行うことが可能な正常状態であるが、給電スタンド20と30は給電動作を行うことができない故障状態であり、給電スタンド20の故障の重篤度は「1」、給電スタンド30の故障の重篤度は「5」である。 Next, each control unit of the power supply stations 10 to 30 determines whether or not the own device is in a state in which the power supply operation can be performed based on the diagnostic information generated in step S101 (S102). The machine status (“normal” or “failure” and “severity”) is determined (S103). In the example of FIG. 4, the power supply stand 10 is in a normal state in which the power supply operation can be performed, but the power supply stands 20 and 30 are in a failure state in which the power supply operation cannot be performed. The degree is “1”, and the failure severity of the power supply stand 30 is “5”.
 続いて、給電スタンド10~30の各制御手段は、ステップS103で確定した自機の状態に基いて図6に示されるようなビーコン信号を作成し(S104)、無線通信手段によって100msの周期でブロードキャスする(S105)。元来、このビーコン信号は各給電スタンド10~30が駐車場内の電気自動車50に自機の識別子を通知するために定期的にブロードキャストしているものである。この実施の形態では、各給電スタンド10~30が定期的にブロードキャストしているZigBee規格のビーコン信号の通常データのフィールドに、自機の状態情報を乗せて送信する。 Subsequently, each control unit of the power supply stations 10 to 30 creates a beacon signal as shown in FIG. 6 based on the state of the own device determined in step S103 (S104), and the wireless communication unit makes a cycle of 100 ms. Broadcasting is performed (S105). Originally, this beacon signal is periodically broadcast by each of the power supply stations 10 to 30 to notify the electric vehicle 50 in the parking lot of its own identifier. In this embodiment, the state information of the own device is transmitted in the normal data field of the beacon signal of the ZigBee standard that each of the power supply stations 10 to 30 regularly broadcasts.
 一方、メンテナンス作業員によって携行される専用端末40の無線通信手段41は、ビーコン信号の送信される周波数帯域のスキャンを実施し(S106)、各給電スタンド10~30から送信されるビーコン信号を受信する(S107)。専用端末40の制御手段42は、ビーコン信号の受信結果に基いて図7に示されるようなスタンドリストを作成する(S108)。図7のスタンドリストには、ビーコン信号を受信することができた給電スタンドとそれらの状態情報の一覧が示されている。 On the other hand, the wireless communication means 41 of the dedicated terminal 40 carried by the maintenance worker scans the frequency band in which the beacon signal is transmitted (S106), and receives the beacon signal transmitted from each of the power supply stations 10 to 30. (S107). The control means 42 of the dedicated terminal 40 creates a stand list as shown in FIG. 7 based on the reception result of the beacon signal (S108). The stand list of FIG. 7 shows a list of power supply stations that can receive the beacon signal and their state information.
 次に、専用端末40の制御手段42は、ステップS108で作成されたスタンドリストから故障状態の給電スタンドのみを抽出し、図8に示されるような故障スタンドリストを作成する(S109)。続いて、専用端末40の無線通信手段41は、図8の故障スタンドリストに含まれている給電スタンドの中からまず給電スタンド20との間でセキュアな無線通信接続を確立し(S110)、診断情報を要求する(S111)。これを受信した給電スタンド20は、ステップS101で生成された診断情報を返信する(S112)。専用端末40の無線通信手段41は、給電スタンド20から返信された診断情報を受信した後、セキュアな無線通信接続を切断する(S113)。 Next, the control means 42 of the dedicated terminal 40 extracts only the failed power supply station from the stand list created in step S108, and creates a failure stand list as shown in FIG. 8 (S109). Subsequently, the wireless communication means 41 of the dedicated terminal 40 first establishes a secure wireless communication connection with the power supply station 20 from among the power supply stations included in the failure stand list of FIG. Information is requested (S111). Receiving this, the power supply station 20 returns the diagnostic information generated in step S101 (S112). The wireless communication means 41 of the dedicated terminal 40 disconnects the secure wireless communication connection after receiving the diagnostic information returned from the power supply station 20 (S113).
 続いて、専用端末40の無線通信手段41は、故障スタンドリストに含まれている給電スタンド30との間でセキュアな無線通信接続を確立し(S114)、診断情報を要求する(S115)。これを受信した給電スタンド30は、ステップS101で生成された診断情報を返信する(S116)。専用端末40の無線通信手段41は、給電スタンド30から返信された診断情報を受信した後、セキュアな無線通信接続を切断する(S117)。最後に、専用端末40の制御手段42は、ステップS112、S116で受信された給電スタンド20と30の各診断情報を、図9に示されるような形式で液晶パネル43に一覧表示させる(S118)。 Subsequently, the wireless communication means 41 of the dedicated terminal 40 establishes a secure wireless communication connection with the power supply station 30 included in the failure stand list (S114), and requests diagnostic information (S115). Receiving this, the power supply station 30 returns the diagnostic information generated in step S101 (S116). The wireless communication means 41 of the dedicated terminal 40 disconnects the secure wireless communication connection after receiving the diagnostic information returned from the power supply station 30 (S117). Finally, the control means 42 of the dedicated terminal 40 displays a list of the diagnostic information of the power supply stations 20 and 30 received in steps S112 and S116 on the liquid crystal panel 43 in the format as shown in FIG. 9 (S118). .
 以上説明したように、この実施の形態に係る非接触充電システム100では、各給電スタンド10~30は、自己診断を実施して自機の状態情報をビーコン信号に乗せて定期送信し、メンテナンス作業員が携行する専用端末40がこれらの状態情報を受信する。これにより、各給電スタンド10~30に個別に表示手段を設けることなく故障状態にある給電スタンドを把握することができるため、給電スタンドを安価に構成することができる。 As described above, in the non-contact charging system 100 according to this embodiment, each of the power supply stations 10 to 30 performs self-diagnosis and periodically transmits the status information of its own device on a beacon signal to perform maintenance work. The dedicated terminal 40 carried by the employee receives these status information. As a result, it is possible to grasp the power supply stand in a failure state without providing display means individually for each of the power supply stations 10 to 30, and thus the power supply stand can be configured at low cost.
 その他の実施の形態.
 上記の実施の形態では、各給電スタンド10~30が定期的に送信しているビーコン信号に乗せて状態情報を送信したが、専用端末40が各給電スタンド10~30に状態情報を要求し、この要求に応答して各給電スタンド10~30から専用端末40に状態情報を返信するようにしてもよい。
Other embodiments.
In the above embodiment, the status information is transmitted on the beacon signal periodically transmitted by each of the power supply stations 10 to 30, but the dedicated terminal 40 requests the status information from each of the power supply stations 10 to 30, and In response to this request, status information may be returned from each of the power supply stations 10 to 30 to the dedicated terminal 40.
 また、各給電スタンド10~30の状態情報や診断情報を専用端末40に送信する際には、各給電スタンド10~30の状態情報や診断情報を各給電スタンド10~30と有線または無線で接続された1つのサーバに集め、このサーバから専用端末40に無線送信するようにしてもよい。
 また、無線通信手段の通信規格はZigBeeに限らず、他の通信規格でもよい。
 また、各給電スタンド10~30は、専用端末40へ診断情報を返信した後に、ビーコンの定期送信を停止してもよい。ビーコンの定期送信を停止することで、給電スタンドの消費電力を低減することができる。
Further, when transmitting the status information and diagnostic information of each power supply station 10-30 to the dedicated terminal 40, the status information and diagnostic information of each power supply station 10-30 are connected to each power supply station 10-30 in a wired or wireless manner. It is also possible to collect the information in one server and wirelessly transmit it from this server to the dedicated terminal 40.
Further, the communication standard of the wireless communication means is not limited to ZigBee, but may be another communication standard.
Each of the power supply stations 10 to 30 may stop periodic transmission of beacons after returning diagnostic information to the dedicated terminal 40. By stopping the periodic transmission of beacons, the power consumption of the power supply station can be reduced.

Claims (6)

  1.  自己診断を実施して自機の状態情報を送信する給電装置と、
     前記状態情報を受信する端末装置と
    から構成される、非接触充電システム。
    A power supply device that performs self-diagnosis and transmits status information of the own device; and
    A non-contact charging system including a terminal device that receives the state information.
  2.  前記給電装置は、前記状態情報を自機が定期的に送信するビーコン信号に乗せて送信する、請求項1に記載の非接触充電システム。 The contactless charging system according to claim 1, wherein the power supply device transmits the state information on a beacon signal periodically transmitted by the own device.
  3.  前記端末装置は、前記状態情報を送信した給電装置に対して診断情報の要求を送信し、
     前記診断情報の要求を受信した給電装置は、前記自己診断の結果として得られる診断情報を返信し、
     前記端末装置は、前記診断情報を受信して表示部に表示する、請求項1または2に記載の非接触充電システム。
    The terminal device transmits a request for diagnostic information to the power supply device that transmitted the state information,
    The power supply apparatus that has received the request for diagnostic information returns diagnostic information obtained as a result of the self-diagnosis,
    The non-contact charging system according to claim 1, wherein the terminal device receives the diagnostic information and displays the diagnostic information on a display unit.
  4.  自己診断を実施して自機の状態情報を送信する、非接触給電装置。 A non-contact power feeding device that performs self-diagnosis and transmits the status information of its own machine.
  5.  前記状態情報を自機が定期的に送信するビーコン信号に乗せて送信する、請求項4に記載の非接触給電装置。 The non-contact power feeding device according to claim 4, wherein the state information is transmitted on a beacon signal periodically transmitted by the own device.
  6.  診断情報の要求を受信すると、前記自己診断の結果として得られる診断情報を返信する、請求項4または5に記載の非接触給電装置。 The contactless power feeding device according to claim 4 or 5, wherein upon receiving a request for diagnostic information, the diagnostic information obtained as a result of the self-diagnosis is returned.
PCT/JP2015/069642 2014-07-30 2015-07-08 Contactless charging system and contactless power supply device WO2016017382A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014154741A JP2016032397A (en) 2014-07-30 2014-07-30 Noncontact charging system and noncontact power supply device
JP2014-154741 2014-07-30

Publications (1)

Publication Number Publication Date
WO2016017382A1 true WO2016017382A1 (en) 2016-02-04

Family

ID=55217287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069642 WO2016017382A1 (en) 2014-07-30 2015-07-08 Contactless charging system and contactless power supply device

Country Status (2)

Country Link
JP (1) JP2016032397A (en)
WO (1) WO2016017382A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6998983B2 (en) 2020-03-26 2022-01-18 本田技研工業株式会社 Failure determination device and failure determination method for relative position acquisition system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121869A (en) * 2008-11-20 2010-06-03 Daikin Ind Ltd Indoor unit and air conditioner
JP2010263665A (en) * 2009-04-30 2010-11-18 Nitto Electric Works Ltd Electric vehicle charging station
JP2012249400A (en) * 2011-05-27 2012-12-13 Nissan Motor Co Ltd Non-contact power supply device
JP2013125334A (en) * 2011-12-13 2013-06-24 Nippon Yunishisu Kk Charging stand network system, and authentication method for charging stand for electric vehicle
WO2014157092A1 (en) * 2013-03-29 2014-10-02 日産自動車株式会社 Contactless electricity supply system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121869A (en) * 2008-11-20 2010-06-03 Daikin Ind Ltd Indoor unit and air conditioner
JP2010263665A (en) * 2009-04-30 2010-11-18 Nitto Electric Works Ltd Electric vehicle charging station
JP2012249400A (en) * 2011-05-27 2012-12-13 Nissan Motor Co Ltd Non-contact power supply device
JP2013125334A (en) * 2011-12-13 2013-06-24 Nippon Yunishisu Kk Charging stand network system, and authentication method for charging stand for electric vehicle
WO2014157092A1 (en) * 2013-03-29 2014-10-02 日産自動車株式会社 Contactless electricity supply system

Also Published As

Publication number Publication date
JP2016032397A (en) 2016-03-07

Similar Documents

Publication Publication Date Title
CN107079245B (en) Establishing charging communication between a charging station and a vehicle
EP2899059B1 (en) Contactless charging system, charging station, and method of controlling contactless charging system
CN102013708B (en) Battery charge state transmission device and external charging system
KR101725703B1 (en) Contactless electricity supply system
US9751419B2 (en) Vehicle wireless charging guidance system and method
KR101735986B1 (en) Contactless electricity supply system
JP5749357B1 (en) Storage vehicle, charge management system, and charge management method
WO2012160667A1 (en) Vehicle information acquiring apparatus, vehicle information supplying apparatus, and information communicating system of vehicle having vehicle information acquiring apparatus and vehicle information supplying apparatus
WO2014141565A1 (en) Non-contact charging system
WO2019087822A1 (en) Charging communication control device, on-vehicle machine, charging communication control system, and charging communication control method
JP2019086841A (en) Mobile vehicle rescue system, server, and mobile vehicle rescue method
WO2017038277A1 (en) Charging system and charger
CN105743151A (en) Charging Vehicle, Charging System And Driving Method Of Charging System
JP2015116012A (en) Parking support system and wireless power supply system
JP2014045574A (en) Non-contact charging system and battery-mounted vehicle used in that system
WO2016017382A1 (en) Contactless charging system and contactless power supply device
JP2014168318A (en) Non-contact charging system
JP2016032395A (en) Noncontact charging system, power supply stand and battery mounting vehicle
JP2016100984A (en) Pairing method for non-contact charge system
JP6213012B2 (en) Non-contact charging system, vehicle and power supply device
WO2015045920A1 (en) Non-contact charging system, vehicle, and power-feeding device
JP2015027181A (en) Non-contact charging system and battery-mounted vehicle used in the same
US20200384877A1 (en) Method for operating a charging station, for a motor vehicle, and corresponding charging station
JP2016032398A (en) Noncontact charging system, power supply stand and battery mounting vehicle
JP2015012713A (en) Non-contact charging system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826955

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15826955

Country of ref document: EP

Kind code of ref document: A1