WO2016015669A1 - 一种燃烧室传热表面结构及发动机气缸体 - Google Patents

一种燃烧室传热表面结构及发动机气缸体 Download PDF

Info

Publication number
WO2016015669A1
WO2016015669A1 PCT/CN2015/085609 CN2015085609W WO2016015669A1 WO 2016015669 A1 WO2016015669 A1 WO 2016015669A1 CN 2015085609 W CN2015085609 W CN 2015085609W WO 2016015669 A1 WO2016015669 A1 WO 2016015669A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
oblique
groove
heat transfer
load
Prior art date
Application number
PCT/CN2015/085609
Other languages
English (en)
French (fr)
Inventor
周华祥
Original Assignee
周华祥
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 周华祥 filed Critical 周华祥
Publication of WO2016015669A1 publication Critical patent/WO2016015669A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a heat transfer surface structure of a combustion chamber and an engine cylinder block, in particular to a combustion chamber of a combustion engine and a cylinder, a cylinder head, a valve, a piston and a cylinder liner of the combustion chamber of the internal combustion engine, and more particularly, to a cylinder and a cylinder of the combustion chamber
  • the heat transfer surface structure on the surface of the cover, valve, piston and cylinder liner and functional materials with catalytic hydrocarbon fuel, catalytic H 2 O vapor, high thermal resistance, low heat absorption rate and high structural strength.
  • the total heat transfer of the combustion chamber accounts for about 32% of the heat generated by the total fuel combustion. It is traditionally considered that the radiant heat transfer of the combustion chamber of the internal combustion engine accounts for 0-7% of the total heat. Now it is generally neglected in engineering or calculated by empirical formula. The inventors have discovered through long-term research or have realized that the radiation heat transfer becomes combustion within a certain temperature range.
  • the high-temperature radiation energy is mostly concentrated in the band of 1 ⁇ 5 ⁇ m, accounting for about 90% of the heat transfer.
  • the structure and its surface material composition Ni, W, Mo, Ca, K, Pt, Rh, Ce0.75O 2 Zr0.25O 2 , ⁇ -A1 2 O 3 , TiO 2 work together with gas, have catalytic hydrocarbon fuel, catalyze H 2 O vapor, high thermal resistance, low heat absorption rate, To adjust the structural strength function, there has not been a surface structure of the present invention for reducing radiation heat transfer loss, CH, CO, NO emissions, and improving thermal efficiency in the prior art.
  • the present invention aims to provide a heat transfer surface structure of a combustion chamber having a certain surface structure. Ways to reduce heat loss, reduce CH, CO emissions, match combustion organization, and improve thermal efficiency.
  • the surface structure employed in the present invention is:
  • a heat transfer surface structure of a combustion chamber the structural features of which include
  • the lateral reflection groove and the oblique reflection groove have a certain angle; the lateral reflection groove and the oblique reflection groove both have a reflective curved surface, and the length direction of the oblique reflection groove or the lateral reflection groove is perpendicular to the moving direction of the high-speed high-temperature airflow. ;
  • intersection of the lateral load surface and the oblique load surface is provided with a separate concave reflective curved surface
  • the substrate or its heated surface is made of a functional material having a catalytic hydrocarbon fuel, catalytic H 2 O vapor, high thermal resistance, low heat absorption rate, and high structural strength.
  • the high-speed high-temperature airflow according to the present invention refers to a gas flow having a temperature higher than 1173K and a speed higher than 27 m/s.
  • the heat accumulated by the reflective curved surface increases the temperature of the gas in the region near the heat transfer surface, accelerates the combustion of the unburned component, improves the combustion efficiency of the mixed gas, and reduces the emission of CH and CO.
  • the temperature of the heat transfer surface is increased, and the radiation heat transfer loss is reduced. Due to the presence of the lateral reflection grooves and the oblique reflection grooves, the contact area of the high-speed high-temperature airflow is reduced, and the high-speed convection heat transfer loss is reduced.
  • the turbulent micro-area disturbance of the high-speed high-temperature airflow on the heat transfer surface is increased, and the combustion condition of the oxygen-free, heat-receiving and chain-locking reaction of the unburned component is increased.
  • the combustion tissue is excellent for the surface of the combustion chamber. The possibility of providing etc.
  • the present invention is a combustion chamber heat transfer surface structure made of a material having a catalytic hydrocarbon fuel, a catalytic H 2 O vapor, a high thermal resistance, a low heat absorption rate, and a high structural strength.
  • the calculated value d1 ⁇ 1 mm the independent reflection curved surface is not set.
  • the reflective curved surface is a paraboloid.
  • the heating surface of the base body is a toroidal curved surface
  • the lateral reflection groove is an annular groove
  • the oblique reflection groove is a spiral groove
  • the heated surface of the substrate is planar.
  • Two adjacent lateral reflection grooves are arranged parallel to each other on the plane, and two adjacent oblique reflection grooves are arranged in parallel with each other, and one of the horizontal and oblique reflection grooves is perpendicular to the air flow, and the ⁇ angle is determined by the combustion tissue guiding angle of the combustion chamber, ⁇ (0°, 90°), this planar surface heat transfer structure application is represented by, for example, a cylinder head.
  • the heating surface of the base body is a continuously changing curved surface or a plurality of curved radius of curvature surfaces, and one of the horizontal and oblique reflecting grooves has a longitudinal direction perpendicular to the airflow direction, and the other reflective groove is The center of the base structure surface is centered to form a curved ring groove or a reflective groove arc.
  • intersection of the oblique reflection groove or the lateral reflection groove with the lateral load surface or the oblique load surface is rounded.
  • the present invention is also characterized in that the functional material has a thickness of 0.01 mm to 20 mm, and its composition and mass percentage satisfy the following relationship:
  • composition and mass percentage of the functional material satisfy the following relationship:
  • the emission of CH and CO in the internal combustion engine is mainly from the low temperature and oxygen-poor region.
  • the inner surface of the combustion chamber is a low temperature (about 229 °C), a key part of oxygen depletion, increasing the internal surface temperature, increasing air disturbance, reducing CH and CO emissions.
  • It is the main theoretical basis of the present invention which uses the reflective curved surface to reflect the focused thermal energy, increases the reflective groove to reduce the contact area between the radiation and the high-speed high-temperature gas, and increases the mixing of the air and the unburned component in the problem area.
  • the invention proposes to add a reflective curved surface, a lateral reflection groove and a diagonal reflection groove structure on the surface of the combustion chamber for the radiation heat transfer, so as to improve the temperature of the gas on the wall surface of the combustion chamber or nearby, and solve the problem that the CH and CO emissions are generated in large quantities due to the low wall temperature.
  • the radiation heat transfer loss is greatly reduced; at the same time, the high-speed gas moving at high speed in the combustion chamber and the high-speed contact area at a short distance are reduced, thereby greatly reducing the convective heat transfer loss; At the same time, the disturbance of the unburned gas component in the concave area is increased, and the unburned fuel component is subjected to the conditions of obtaining oxygen, heat, and chain reaction, so that the combustion is more fully and clean.
  • the invention provides a lateral load surface and an oblique load surface structure for the heat transfer surface that can be carried, so that the above functions of heat transfer and the load bearing function are well combined.
  • the invention cooperates with the combustion organization of the combustion chamber, and sets the ⁇ -helical angle structural parameter to improve the comprehensive combustion effect.
  • the present invention can obtain different surface structures by adjusting the structural parameters b, c, h, e, and ⁇ .
  • the invention cooperates with the gas through the structure of the combustion chamber and the surface material components Ni, W, Mo, Ca, K, Pt, Rh, Ce0.75O 2 Zr0.25O 2 , ⁇ -A1 2 O 3 , TiO 2
  • Unburned hydrocarbon fuel, H 2 O vapor has catalytic effect, can reduce CH, CO, NO emission, improve thermal efficiency, high thermal resistance, low heat absorption rate, high structural strength, and adjust the ratio to make the material adaptable. .
  • the present invention also provides an engine block, including a cylinder, which is characterized in that the inner wall of the cylinder has the above-described combustion chamber heat transfer surface structure.
  • the engine block body further includes a cylinder liner, and an inner wall of the cylinder liner has the above-described combustion chamber heat transfer surface structure.
  • a cylindrical member is embedded in an inner wall of the cylinder or the cylinder liner, and an inner wall and/or an outer wall of the tubular member has the above-described combustion chamber heat transfer surface structure.
  • the beneficial effects of the invention are that the lateral reflection groove, the oblique reflection groove and the reflective curved surface structure increase the gas temperature and accelerate the combustion of the unburned component of the combustion chamber in the range of e near the heat transfer surface.
  • the fuel combustion efficiency is improved, the CH and CO emissions are reduced, and the radiation heat transfer loss is reduced.
  • the lateral reflection groove, the oblique reflection groove and the reflective curved surface structure reduce the contact area of the high-speed high-temperature airflow and reduce the high-speed convective heat transfer loss.
  • the transverse reflection groove, the oblique reflection groove and the reflective curved surface structure increase the turbulence of the high-temperature high-temperature airflow on the heat transfer surface and disturb the heat transfer surface region, thereby enhancing the oxygen, heat and chain reaction conditions of the unburned components, so as to make the combustion more complete. More clean.
  • Transverse reflection groove and oblique It is possible to provide an ⁇ -angle structure of the reflecting groove to the surface burning structure, optimization, and the like of the combustion chamber.
  • the heat transfer surface structure material of the combustion chamber skillfully utilizes the high temperature heat energy of the combustion chamber, reduces the emission efficiency of CH, CO, and NO, and improves the thermal efficiency.
  • FIG. 1 is a schematic structural view of an embodiment of the present invention
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1;
  • Figure 3 is a cross-sectional view taken along line B-B of Figure 1;
  • Figure 4 is a cross-sectional view taken along line C-C of Figure 1;
  • Figure 5 is a structural view of each part of the combustion chamber
  • Figure 6 is a diagram showing the relationship between the gas temperature of the combustion chamber and the crank angle
  • Figure 7 is a diagram showing the relationship between the instantaneous temperature of the combustion chamber gas and the crank angle
  • Figure 8 is a distribution of cylinder liner temperature along the axis.
  • FIG. 1 to 4 schematically illustrate a combustion chamber heat transfer surface structure applied to a high temperature, high velocity gas flow, which may be a combustion chamber heat transfer surface of an internal combustion engine, an internal combustion engine combustion chamber, a thermal equipment, a tool, or the like.
  • Heat transfer surfaces may have integrated surfaces that carry mechanical loads and friction requirements in a certain area.
  • FIG. 1 is a structural layout of an embodiment of a heat transfer surface of a combustion chamber.
  • 1 is the heat transfer surface substrate of the combustion chamber.
  • a plurality of laterally arranged lateral reflection grooves 5 and a plurality of obliquely arranged oblique reflections are formed on the base body 1.
  • Shooting slot 6. 2 is a cross-sectional view of the lateral reflection groove 5 or the oblique reflection groove 6.
  • the A-A cross-sectional structure is a structure in which the reflective curved surface is distributed in the form of a groove on the surface of the heat transfer member.
  • the length direction of the reflective groove is perpendicular or at an angle to the direction of movement of the main airflow. If the main airflow is turbulent, the length direction of the reflective groove is parallel to the main assembly surface or the main machining reference surface of the machine member, or a curved ring groove or a reflective groove arc centered on the center of the surface of the mechanical structure.
  • the reference numeral 2 in the heat transfer surface structure of the combustion chamber of Fig. 1 is an independent reflection curved surface structure at the intersection of the bearing structures in the heat transfer surface structure of the combustion chamber.
  • the center line (or center plane) of the lateral load surface 3 of the load bearing structure is parallel to the center line (or center plane) of the heat reflection surface.
  • the centerline (or center plane) of the load-bearing structure oblique load surface 4 is at an angle ⁇ with the center line (or center plane) of the thermal energy reflection surface, ⁇ (0°, 90°).
  • the maximum load-bearing stress characteristic width A, length L, and characteristic load P of the selected bearing surface are selected.
  • the height of the first piston ring of the cylinder liner bearing surface of the combustion chamber of the internal combustion engine is the maximum bearing stress width A
  • the unit length of the piston ring contact arc length is L
  • the load per unit area is P.
  • the heating surface of the base body is an annular curved surface
  • the lateral reflection groove is an annular groove
  • the oblique reflection groove It is a spiral groove, such as the inner wall surface of the cylinder.
  • the heated surface of the substrate is planar.
  • Two adjacent lateral reflection grooves are arranged in parallel with each other on the plane, and two adjacent oblique reflection grooves are arranged in parallel with each other.
  • One of the horizontal and oblique reflection grooves is perpendicular to the air flow, and the ⁇ angle is determined by the combustion tissue guiding angle of the combustion chamber.
  • Surface heat transfer structure applications such as: cylinder heads.
  • the heating surface of the base body is a continuously changing curved surface or a multi-section radius of curvature curved surface
  • the length direction of one reflective groove is perpendicular to the airflow direction
  • the other is formed by forming a curved ring centered on the center of the curved surface of the machine structure. Slot or reflective groove arc.
  • the heat transfer surface structure of the combustion chamber of the machine is formed.
  • the surface structure of Figure 1 can be made by powder metallurgy, precision casting, pressure forming and mechanical processing to form the heat transfer surface structure of the combustion chamber.
  • the surface roughness Ra is 0.63 ⁇ 0.006 ⁇ m; the corners are rounded. .
  • the substrate 1 and the heat receiving surface of the embodiment are composed of a catalytic hydrocarbon fuel, a catalytic H 2 O vapor, a high thermal resistance (heat transfer coefficient: ⁇ (3.3 to 8.8) W/(m ⁇ K)), and a low heat absorption rate (20). ⁇ 40%) and high structural strength (800HV ⁇ 1000HV) functional materials, the functional material has a thickness of 5mm, and its composition and mass percentage satisfy the following relationship:
  • the temperature on the heat transfer surface and the vicinity can be increased by 2 to 88 ° C, the heat transfer heat loss is reduced by 5 to 30%, the fuel consumption rate is reduced by 1.6 to 9.6%, and the CH and CO emissions are reduced by 1 to 15%.
  • Table 1 List of components of the combustion chamber (K)
  • the present invention When the present invention is used as a heat transfer surface structure of a combustion chamber cylinder and a cylinder liner, there are a plurality of lateral reflection grooves, oblique reflection grooves, lateral load faces, and oblique load faces between the upper portion of the first piston ring of the cylinder and the top surface of the cylinder. Since the upper part of the first piston ring and the top surface of the cylinder are the combustion chamber surface and do not carry mechanical load, the c dimension can be calculated according to a small coefficient; the first piston ring and the lower surface are carrying a heat transfer surface, and the c size can be pressed Larger coefficient calculation.
  • An engine cylinder block includes a cylinder and a cylinder liner, and an inner wall of the cylinder and/or cylinder liner has the above-described combustion chamber heat transfer surface structure. More preferably, the inner wall of the cylinder or cylinder liner is embedded with a tubular member, and the inner wall and/or the outer wall of the tubular member have the above-described combustion chamber heat transfer surface structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

本发明公开了一种燃烧室传热表面结构及发动机气缸体。所述燃烧室传热表面结构包括具有受热面的基体,多条设置在受热面上横向布置的横向反射槽和多条设置在受热面上斜向布置的斜向反射槽,相邻两条横向反射槽之间为横向载荷面,相邻两条斜向反射槽之间为斜向载荷面,所述横向载荷面与斜向载荷面的交汇处设有独立凹形反射曲面;所述横向反射槽与斜向反射槽呈一定夹角;所述横向反射槽与斜向反射槽均具有反射曲面,所述横向反射槽的长度方向与高速高温气流运动方向垂直。传热表面由具有催化碳氢燃料,催化H2O蒸汽,高热阻、低热吸收率和高结构强度的功能材料制成。本发明以具有一定表面结构和其功能材料的方式减少了热损失、降低了CH、CO、NO排放、提高了热效率。

Description

一种燃烧室传热表面结构及发动机气缸体 技术领域
本发明涉及一种燃烧室传热表面结构及发动机气缸体,具体涉及内燃机燃烧室以及内燃机燃烧室的气缸、气缸盖、气门、活塞、气缸套,更具体地,涉及在燃烧室的气缸、气缸盖、气门、活塞、气缸套表面上具有的传热表面结构及具有催化碳氢燃料、催化H2O蒸汽、高热阻、低热吸收率和高结构强度的功能材料。
背景技术
在内燃机中燃烧室总传热量占总燃料燃烧产生热量的32%左右。传统的认为内燃机燃烧室辐射传热量占总热量的0-7%,现在工程上一般忽略不计或采用经验公式计算,发明人经过长期研究发现或已认识到辐射传热在一定温度范围内成为燃烧室主要传热方式。当燃烧室温度在1173K以上时,其热量传递形式以辐射为主,高温辐射能量大多数集中在1~5μm波段,约占传热量的90%,结构及其表面材料成分Ni、W、Mo、Ca、K、Pt、Rh、Ce0.75O2Zr0.25O2、γ-A12O3、TiO2对燃气共同作用,具有催化碳氢燃料,催化H2O蒸汽,高热阻,低热吸收率,调整结构强度功能,在现有技术中尚未有针对减少辐射传热损失、CH、CO、NO排放、提高热效率的本发明表面结构。
发明内容
为了减少热损失、降低CH、CO排放、配合燃烧组织、提高热效率,本发明旨在提供一种燃烧室传热表面结构,该表面结构以具有一定表面结构的 方式减少热损失、降低CH、CO排放、配合燃烧组织、提高热效率。
为了实现上述目的,本发明所采用的表面结构是:
一种燃烧室传热表面结构,其结构特点是,包括
——基体,其具有受热面;
——多条设置在受热面上横向布置的横向反射槽,相邻两条横向反射槽之间是作为承载结构的横向载荷面;
——多条设置在受热面上斜向布置的斜向反射槽,相邻两条斜向反射槽之间是作为承载结构的斜向载荷面;
所述横向反射槽与斜向反射槽呈一定夹角;所述横向反射槽与斜向反射槽均具有反射曲面,所述斜向反射槽或横向反射槽的长度方向与高速高温气流运动方向垂直;
所述横向载荷面与斜向载荷面的交汇处设有独立凹形反射曲面;
所述基体或其受热面由具有催化碳氢燃料、催化H2O蒸汽、高热阻、低热吸收率和高结构强度的功能材料制成。
本发明所述高速高温气流是指温度高于1173K,速度高于27m/s的气流。
由此,反射曲面集聚的热量在传热表面附近e的区域内,提高了此处的气体温度,加速了未燃成分的燃烧,提高了混合气的燃烧效率,降低了CH、CO的排放,提高了传热表面的温度,降低了辐射传热损失。由于横向反射槽与斜向反射槽的存在,减少了高速高温气流接触面积,减少了高速对流传热损失。由于横向反射槽与斜向反射槽的存在,增加了传热表面高速高温气流的湍流微区域扰动,增加了未燃成分的获氧、获热、链锁反应的燃烧条件。由于横向反射槽与斜向反射槽的α角的存在,为燃烧室的表面燃烧组织、优 化等提供了可能。
本发明是由具有催化碳氢燃料、催化H2O蒸汽、高热阻、低热吸收率和高结构强度的材料制成的燃烧室传热表面结构。
以下为本发明的进一步具体结构:
为了提高可燃混合气的燃烧效率,降低热损失,所述独立凹形反射曲面的开口直径d1可按d1=0.7C,深度h1=1.1326C计算,位置中心在两载荷面中心线交点处设置,当计算值d1≤1mm时,不设置独立反射曲面。
所述横向载荷面或斜向载荷面的宽度c=(0.017~0.333)A,其中承载结构最大应力承载宽度A=2mm~26mm。
所述反射曲面的聚焦中心点与所述横向载荷面或斜向载荷面之间的距离e=r-h=(-0.3~1.3)h,其中反射曲面的深度h=(0~1.618126)b,b为横向反射槽或斜向反射槽的槽宽,r为反射曲面曲率半径,b=(0.24975~0.4745)A;其中承载结构最大应力承载宽度A=2mm~26mm。
优选地,所述反射曲面为抛物面。
作为一种具体应用的结构形式,所述基体的受热面为环形曲面,所述横向反射槽为环形槽,所述斜向反射槽为螺旋槽;所述螺旋槽的螺旋角α由关系式:tgα=Φ×p/πd确定,其中:d=h+2R,R为基体曲面曲率半径,线数Φ=1~∞,螺旋角α∈(0°,90°);所述螺旋槽的螺距为p=c+b,其中所述横向载荷面或斜向载荷面的宽度c=(0.017~0.333)A,所述斜向反射槽与横向反射槽的槽宽b=(0.24975~0.4745)A;承载结构最大应力承载宽度A=2mm~26mm。这种传热结构可以用在接触高温高速气流的曲面内壁或外表面上,如气缸内壁,活塞外表面。
作为另一种具体应用的结构形式,所述基体的受热面为平面。平面上相邻两条横向反射槽相互平行布置,相邻两条斜向反射槽相互平行布置,横、斜向反射槽中一条与气流垂直,α角由燃烧室燃烧组织导向角确定,α∈(0°,90°),这种平面表面传热结构应用代表如:汽缸盖。
作为另一种具体应用的结构形式,所述基体的受热面为连续变化曲面或多段曲率半径曲面,横、斜向反射槽中的一条反射槽的长度方向与气流方向垂直,另一条反射槽以基体结构曲面中心为中心形成曲面环槽或反射沟槽弧段。
所述斜向反射槽或横向反射槽与所述横向载荷面或斜向载荷面的相交处呈圆角。
本发明的特征还在于所述功能材料的厚度为0.01mm~20mm,其组成成分及质量百分比满足如下关系:
Figure PCTCN2015085609-appb-000001
以上各组分含量之和为100%;所述w(Pt、Rh)=m1(Pt)/m2(Rh)=5/1。
进一步优选所述功能材料的组成成分及质量百分比满足如下关系:
Figure PCTCN2015085609-appb-000002
在内燃机中的排放中CH、CO的排放主要来源于低温贫氧区域,燃烧室内表面是低温(229℃左右)、贫氧的重点部位,提高内表面温度、增加空气扰动、降低CH、CO排放是本发明的主要理论依据,采用反射曲面反射聚焦热能、增加反射沟槽降低辐射与高速高温气体接触面积、增加问题区域空气与未燃成分扰动混合是本发明具体结构。
本发明针对辐射传热提出了在燃烧室表面增设反射曲面、横向反射槽、斜向反射槽结构,用以提高燃烧室壁面或附近气体温度,解决由于壁面温度低大量产生CH、CO排放物难题,由于此温度的提高和减少了近距离辐射表面积,使辐射传热损失大为减少;同时由于在燃烧室内高速运动的高温气体与近距离高速接触面积减少,大幅降低了对流传热损失;又同时增加了凹面区域未燃气体成分的扰动,使未燃燃料成分得到获氧、获热、链锁反应的条件,使燃烧更为充分与洁净。
本发明对于可能承载的传热表面设置了横向载荷面、斜向载荷面结构,使上述传热等功能与承载功能得到良好的结合。
本发明为配合燃烧室燃烧地组织,设置了α螺旋角结构参数,使燃烧综合效果提高。
本发明通过调整结构参数b、c、h、e、α,可获得不同要求的表面结构。
本发明通过燃烧室结构与表面材料成分Ni、W、Mo、Ca、K、Pt、Rh、Ce0.75O2Zr0.25O2、γ-A12O3、TiO2;对燃气共同作用,对其中未燃碳氢燃料,H2O蒸汽具有催化作用,可降低CH、CO、NO排放、提高热效率,同时具有高热阻,低热吸收率,高的结构强度,调整其配比可使材料具有适应性。
基于同一个发明构思,本发明还提供了一种发动机气缸体,包括气缸,其结构特点是,所述气缸的内壁具有上述的燃烧室传热表面结构。
进一步地,所述发动机气缸体还包括气缸套,所述气缸套的内壁具有上述的燃烧室传热表面结构。
进一步地,所述气缸或气缸套的内壁嵌设有筒状部件,该筒状部件的内壁和/或外壁具有上述的燃烧室传热表面结构。
与现有技术相比,本发明的有益效果是:横向反射槽、斜向反射槽、反射曲面结构在传热表面附近e的范围内,提高了气体温度,加速了燃烧室未燃成分的燃烧,提高了燃料的燃烧效率,降低了CH、CO的排放,降低了辐射传热损失。横向反射槽、斜向反射槽、反射曲面结构减少了高速高温气流接触面积,减少了高速对流传热损失。横向反射槽、斜向反射槽、反射曲面结构增加了传热表面高速高温气流的湍流在传热表面区域扰动,增强了未燃成分的获氧、获热、链锁反应条件,使燃烧更充分更洁净。横向反射槽与斜 向反射槽的α角结构为燃烧室的表面燃烧组织、优化等提供了可能。燃烧室传热表面结构材料巧妙的利用了燃烧室高温热能,减少了CH、CO、NO排放效能,提高了热效率。
以下结合附图和实施例对本发明作进一步阐述。
附图说明
图1是本发明一个实施例的结构布置示意图;
图2是图1的A—A剖视图;
图3是图1的B—B剖视图;
图4是图1的C—C剖视图;
图5是燃烧室各部分构成图;
图6是燃烧室气体温度与曲轴转角关系图;
图7是燃烧室气体瞬间温度与曲轴转角展开关系图;
图8是气缸套温度沿轴线分布图。
具体实施方式
图1~4示意性示出了一种应用在高温高速气体流动的燃烧室传热表面结构,该传热表面可以是内燃机、内燃机燃烧室、热工设备、工具等燃烧室传热表面。传热表面可能存在在某个区域有承载机械载荷与摩擦要求的综合表面。
图1为一个燃烧室传热表面实施例的结构布置图。图中1为燃烧室传热表面基体。在基体1上开有多条横向布置的横向反射槽5和多条斜向布置的斜向反 射槽6。图2为横向反射槽5或斜向反射槽6剖面图。A-A剖面结构为反射曲面按沟槽形式分布在传热机件表面上的结构。其反射沟槽的长度方向与主要气流运动方向垂直或成一定角度。若主要气流运动为湍流时,则反射沟槽的长度方向与机件的主要装配面或主要加工基准面平行,或以机件结构曲面中心为中心形成的曲面环槽或反射沟槽弧段。
图1燃烧室传热面结构中标号2为燃烧室传热表面结构中承载结构交汇处独立反射曲面结构。其开口直径d1可按d1=0.7C,深度h1=1.1326C计算,位置中心在两载荷面中心线交点处设置,当计算值d1≤1mm时,不设置独立反射曲面。
反射曲面聚焦中心点以及反射曲面的确定:在图4中,反射曲面聚焦中心点与承载结构表面距离e的确定:e=r-h=(-0.3~1.3)h;h=(0~1.618126)b;反射曲面为抛物曲面。反射曲面宽度b=(0.24975~0.4745)A;A=2~26mm;深度h=(0~1.618126)b。
3为承载结构横向载荷面;4为承载结构斜向载荷面。承载结构横向载荷面3中心线(或中心面)平行于热能反射曲面中心线(或中心面)。承载结构斜向载荷面4中心线(或中心面)与热能反射曲面中心线(或中心面)成α角度,α∈(0°,90°)。
承载结构载荷面宽度尺寸c以及其他结构尺寸的确定。选定机件承载表面最大承载应力特征宽度A、长度L、特征载荷P。例如:内燃机燃烧室气缸套承载表面第一活塞环高度即为最大承载应力宽度A、活塞环接触弧长的单位长度为L、单位面积上的载荷为P。设计时令:单位承载面积A=3c+2b;结构承载率为V=3c/(3c+2b);V=0.05~1;则c=(0.017~0.333)A;
基体的受热面为环形曲面,所述横向反射槽为环形槽,所述斜向反射槽 为螺旋槽,如气缸内壁表面。
螺旋槽的螺旋角α由关系式:tgα=Φ×p/πd,其中:d=h+2R,R为基体曲面曲率半径,线数Φ=1~∞,螺旋角α∈(0°,90°);螺距为p=c+b。
作为另一种具体的结构形式,所述基体的受热面为平面。平面上相邻两条横向反射槽相互平行布置,相邻两条斜向反射槽相互平行布置,横、斜反射槽中一条与气流垂直,α角由燃烧室燃烧组织导向角确定,这种平面表面传热结构应用代表如:汽缸盖。
作为另一种具体的结构形式,所述基体的受热面为连续变化曲面或多段曲率半径曲面,一条反射沟槽的长度方向与气流方向垂直,另一条以机件结构曲面中心为中心形成曲面环槽或反射沟槽弧段。
机件燃烧室传热表面结构成型。图1表面结构可采用粉末冶金、精密铸造、压力成型与机械加工等方式制成具有本燃烧室传热表面结构的机件,表面粗糙度Ra=0.63~0.006μm;各尖角处成圆角。
本实施例所述基体1及受热面由具有催化碳氢燃料、催化H2O蒸汽、高热阻(传热系数:λ(3.3~8.8)W/(m·K))、低热吸收率(20~40%)和高结构强度(800HV~1000HV)的功能材料制成,该功能材料的厚度为5mm,其组成成分及质量百分比满足如下关系:
35.9%Ni;
18%Ce0.75O2Zr0.25O2
4.5%W;
4.5%Mo;
2%Ca;
2%K;
0.1%w(Pt、Rh)=m1(Pt)/m2(Rh)=5/1;
1%γ-A12O3
32%TiO2
本实施例可提高传热表面及附近的温度2~88℃,减少传热热损失5~30%,降低燃料消耗率1.6~9.6%、降低CH、CO排放1~15%。
有关数据:
1)燃烧室各部分构成图(图5)
2)燃烧室各组成部件温度(表1)
表1:燃烧室各组成部件温度列表(K)
Figure PCTCN2015085609-appb-000003
3)燃烧室各组成部分传热量(表2)
表2:燃烧室各组成部分传热量(W)
Figure PCTCN2015085609-appb-000004
Figure PCTCN2015085609-appb-000005
4)燃烧室气体温度与曲轴转角关系图;(图6);
5)燃烧室气体瞬间温度与曲轴转角展开关系图;(图7);
6)气缸套温度沿轴线分布图;(图8)。
本发明作为燃烧室气缸、气缸套的燃烧室传热表面结构时,气缸第一活塞环上部与气缸顶面之间有多条横向反射槽、斜向反射槽、横向载荷面、斜向载荷面,由于第一活塞环上部与气缸顶面之间是燃烧室表面,不承载机械载荷,c尺寸可按较小系数计算;在第一活塞环及下部表面是承载传热表面,c尺寸可按较大系数计算。
一种发动机气缸体,包括气缸和气缸套,所述气缸和/或气缸套的内壁具有上述的燃烧室传热表面结构。更优选地,所述气缸或气缸套的内壁嵌设有筒状部件,该筒状部件的内壁和/或外壁具有上述的燃烧室传热表面结构。
上述实施例阐明的内容应当理解为这些实施例仅用于更清楚地说明本发明,而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种替换形式的修改均落于本申请所附权利要求所限定的范围。

Claims (13)

  1. 一种燃烧室传热表面结构,其特征是,包括
    ——基体(1),其具有受热面;
    ——多条设置在受热面上横向布置的横向反射槽(5),相邻两条横向反射槽(5)之间是作为承载结构的横向载荷面(3);
    ——多条设置在受热面上斜向布置的斜向反射槽(6),相邻两条斜向反射槽(6)之间是作为承载结构的斜向载荷面(4);
    所述斜向反射槽(6)与横向反射槽(5)呈一定夹角;所述横向反射槽(5)与斜向反射槽(6)均具有反射曲面,所述横向反射槽(5)或斜向反射槽(6)的长度方向与高速高温气流运动方向垂直;
    所述横向载荷面(3)与斜向载荷面(4)的交汇处设有独立凹形反射曲面(2);
    所述基体(1)或其受热面由具有催化碳氢燃料、催化H2O蒸汽、高热阻、低热吸收率和高结构强度的功能材料制成。
  2. 根据权利要求1所述的燃烧室传热表面结构,其特征在于,所述横向载荷面(3)或斜向载荷面(4)的宽度c=(0.017~0.333)A,其中承载结构最大应力承载宽度A=2mm~26mm。
  3. 根据权利要求1所述的燃烧室传热表面结构,其特征在于,所述反射曲面的焦点与所述横向载荷面(3)或斜向载荷面(4)之间的距离e=r-h=(-0.3~1.3)h,其中反射曲面的深度h=(0~1.618126)b,b为斜向反射槽(6)与横向反射槽(5)的槽宽,r为反射曲面曲率半径,b=(0.24975~0.4745) A;其中承载结构最大应力承载宽度A=2mm~26mm。
  4. 根据权利要求1所述的燃烧室传热表面结构,其特征在于,所述反射曲面为抛物面。
  5. 根据权利要求1所述的燃烧室传热表面结构,其特征在于,所述基体(1)的受热面为环形曲面,所述横向反射槽(5)为环形槽,所述斜向反射槽(6)为螺旋槽;该螺旋槽的螺旋角α由关系式:tgα=Φ×p/πd确定,其中:d=h+2R,R为基体曲面曲率半径,线数Φ=1~∞,由高温气流方向确定;α∈(0°,90°);该螺旋槽的螺距为p=c+b,其中所述横向载荷面(3)或斜向载荷面(4)的宽度c=(0.017~0.333)A,所述斜向反射槽(6)与横向反射槽(5)的槽宽b=(0.24975~0.4745)A;承载结构最大应力承载宽度A=2mm~26mm。
  6. 根据权利要求1所述的燃烧室传热表面结构,其特征在于,所述基体(1)的受热面为平面,平面上相邻两条横向反射槽(5)相互平行布置,相邻两条斜向反射槽(6)相互平行布置,横、斜向反射槽中一条与气流方向垂直,与另一条反射槽成α角,α∈(0°,90°)。
  7. 根据权利要求1所述的燃烧室传热表面结构,其特征在于,所述基体(1)的受热面为连续变化曲面或多段曲率半径曲面,横、斜向反射槽中的一条反射槽的长度方向与气流方向垂直,另一条反射槽以基体结构曲面中心为中心形成曲面环槽或反射沟槽弧段。
  8. 根据权利要求1所述的燃烧室传热表面结构,其特征在于,所述斜向反射槽(6)或横向反射槽(5)与所述横向载荷面(3)或斜向载荷面(4)的相交处呈圆角。
  9. 根据权利要求1所述的燃烧室传热表面结构,其特征在于,所述功能材料的厚度为0.01mm~20mm,其组成成分及质量百分比满足如下关系:
    Figure PCTCN2015085609-appb-100001
    以上各组分含量之和为100%;所述w(Pt、Rh)=m1(Pt)/m2(Rh)=5/1。
  10. 根据权利要求9所述的燃烧室传热表面结构,其特征在于,所述功能材料的组成成分及质量百分比满足如下关系:
    Figure PCTCN2015085609-appb-100002
    Figure PCTCN2015085609-appb-100003
  11. 一种发动机气缸体,包括气缸,其特征在于,所述气缸的内壁具有如权利要求1-10之一所述的燃烧室传热表面结构。
  12. 根据权利要求11所述的发动机气缸体,其特征在于,还包括气缸套,所述气缸套的内壁具有如权利要求1-10之一所述的燃烧室传热表面结构。
  13. 根据权利要求11或12所述的发动机气缸,其特征在于,所述气缸或气缸套的内壁嵌设有筒状部件,该筒状部件的内壁和/或外壁具有如权利要求1-10之一所述的燃烧室传热表面结构。
PCT/CN2015/085609 2014-08-01 2015-07-30 一种燃烧室传热表面结构及发动机气缸体 WO2016015669A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410375561.XA CN104131879B (zh) 2014-08-01 2014-08-01 一种燃烧室传热表面结构
CN201410375561.X 2014-08-01

Publications (1)

Publication Number Publication Date
WO2016015669A1 true WO2016015669A1 (zh) 2016-02-04

Family

ID=51804704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085609 WO2016015669A1 (zh) 2014-08-01 2015-07-30 一种燃烧室传热表面结构及发动机气缸体

Country Status (2)

Country Link
CN (1) CN104131879B (zh)
WO (1) WO2016015669A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104131879B (zh) * 2014-08-01 2016-05-04 周华祥 一种燃烧室传热表面结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1312885A (zh) * 1998-08-11 2001-09-12 法国马涅蒂·马雷利公司 具有主动引导头部的活塞及相应的燃烧室
CN1985084A (zh) * 2004-07-12 2007-06-20 通用汽车公司 自动点火汽油机燃烧室和方法
CN201045313Y (zh) * 2007-01-29 2008-04-09 北京理工大学 电控高压喷射燃烧室
CN101576002A (zh) * 2008-05-09 2009-11-11 广西玉柴机器股份有限公司 防止燃油撞壁的柴油机燃烧室
CN104131879A (zh) * 2014-08-01 2014-11-05 周华祥 一种燃烧室传热表面结构
CN204024799U (zh) * 2014-08-01 2014-12-17 周华祥 一种传热表面结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049379A (ja) * 1999-08-12 2001-02-20 Nkk Corp 熱交換用伝熱管
JP5629463B2 (ja) * 2007-08-09 2014-11-19 株式会社豊田中央研究所 内燃機関

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1312885A (zh) * 1998-08-11 2001-09-12 法国马涅蒂·马雷利公司 具有主动引导头部的活塞及相应的燃烧室
CN1985084A (zh) * 2004-07-12 2007-06-20 通用汽车公司 自动点火汽油机燃烧室和方法
CN201045313Y (zh) * 2007-01-29 2008-04-09 北京理工大学 电控高压喷射燃烧室
CN101576002A (zh) * 2008-05-09 2009-11-11 广西玉柴机器股份有限公司 防止燃油撞壁的柴油机燃烧室
CN104131879A (zh) * 2014-08-01 2014-11-05 周华祥 一种燃烧室传热表面结构
CN204024799U (zh) * 2014-08-01 2014-12-17 周华祥 一种传热表面结构

Also Published As

Publication number Publication date
CN104131879B (zh) 2016-05-04
CN104131879A (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5614994B2 (ja) その中で燃焼が行われるガスタービン構成要素内で使用するための流れ調整装置
EP2754874A1 (en) Direct-injection engine combustion chamber structure
WO2013088575A1 (ja) 内燃機関の燃焼室構造
JP5533446B2 (ja) 内燃機関
JP6587411B2 (ja) ラジアントチューブ式加熱装置
TW494180B (en) Heat transfer head for a Stirling engine
US20200326141A1 (en) Heat transfer enhancement pipe as well as cracking furnace and atmospheric and vacuum heating furnace including the same
CN103363550A (zh) 用于燃烧室的旋流器
CN105276618B (zh) 导热装置及具备该导热装置的燃气轮机燃烧器
JP5998696B2 (ja) エンジン燃焼室の断熱構造
WO2016015669A1 (zh) 一种燃烧室传热表面结构及发动机气缸体
JP5971321B2 (ja) 直噴エンジンの燃焼室構造
JPWO2018185847A1 (ja) ピストン
CN106121760A (zh) 产生进气涡流的带螺旋通道的进气门及内燃机
CN204024799U (zh) 一种传热表面结构
RU2010142554A (ru) Пилотная горелка газотурбинного двигателя, камера сгорания и газотурбинный двигатель
EP3779141A1 (en) Combustion chamber structure of internal combustion engine
JP2019504959A (ja) 内燃機関用のピストンボウル
US20170343301A1 (en) Furnace coil modified fins
CN106761948B (zh) 一种用于涡轮叶片内冷通道的凹陷肋结构
JP6344455B2 (ja) エンジンの燃焼室構造
JP2016070117A (ja) エンジン
JP2019023452A (ja) 吸気バルブ
CN201025371Y (zh) 一种带有束腰结构的火焰筒
JP4674519B2 (ja) 内燃機関用吸気弁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826374

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/06/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15826374

Country of ref document: EP

Kind code of ref document: A1