WO2016015659A1 - 一种基于立体显示的处理方法、装置及终端 - Google Patents

一种基于立体显示的处理方法、装置及终端 Download PDF

Info

Publication number
WO2016015659A1
WO2016015659A1 PCT/CN2015/085534 CN2015085534W WO2016015659A1 WO 2016015659 A1 WO2016015659 A1 WO 2016015659A1 CN 2015085534 W CN2015085534 W CN 2015085534W WO 2016015659 A1 WO2016015659 A1 WO 2016015659A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
display screen
user
eyes
stereoscopic
Prior art date
Application number
PCT/CN2015/085534
Other languages
English (en)
French (fr)
Inventor
吴泽楷
Original Assignee
优视科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 优视科技有限公司 filed Critical 优视科技有限公司
Publication of WO2016015659A1 publication Critical patent/WO2016015659A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof

Definitions

  • the present invention relates to the field of stereoscopic display, and in particular, to a processing method, apparatus and terminal based on stereoscopic display.
  • Stereoscopic display technology is to divide the picture into several layers that are staggered. When the user's eyes view these layers from a certain distance, they are composed of front-rear, up-down, left-right in the human brain due to the visual spatial relationship.
  • the picture of the stereo effect such as far-near, makes people feel that they have seen the stereoscopic picture.
  • the user's eyes can experience a stereoscopic display effect without ghosting only when the stereoscopic display screen is at a certain distance from the stereoscopic display screen. If the distance between the user's eyes and the stereoscopic display screen deviates from the specific distance, a stereoscopic picture with a ghosting effect becomes more and more serious in the human brain as the degree of deviation increases.
  • the user browses the content based on the stereoscopic display technology on the bus, for example, the shaking of the bus causes the shaking of the hand, thereby causing a change in the distance between the user's eyes and the stereoscopic display screen, so that the user sees
  • the stereoscopic picture has a ghost image.
  • the user needs to frequently adjust the distance between the eye and the stereoscopic display screen, thereby reducing the viewing experience.
  • the technical problem to be solved by the present invention is to provide a processing method, device and terminal based on stereoscopic display, which can adjust the distance between the user's eyes and the stereoscopic display screen frequently when the stereoscopic display screen is shaken or the user's eyes are moved. You can enjoy a clear stereoscopic picture.
  • a technical solution adopted by the present invention is to provide a processing method based on stereoscopic display, the method comprising: acquiring a first distance between a user's eyes and a stereoscopic display screen, wherein the first distance is The fluctuation of the distance between the user's eyes and the stereoscopic display screen measured in the predetermined time is in advance The distance between the user's eyes and the stereoscopic display screen; if the current distance between the user's eyes and the stereoscopic display screen deviates from the first distance, the user's eyes are adjusted by controlling the stereoscopic display screen.
  • the distance between the stereoscopic image and the stereoscopic display screen is such that the distance between the stereoscopic image and the user's eyes is maintained at a second distance; wherein the second distance is a pre-configured stereoscopic image of the user's eyes that has no ghosting, the stereoscopic The distance between the picture and the user's eyes.
  • the first distance is obtained in real time before the step of monitoring the current distance between the user's eyes and the stereoscopic display screen; or the first distance is pre-configured.
  • the distance between the stereoscopic image viewed by the user and the stereoscopic display screen is adjusted by controlling the stereoscopic display screen so as to be between the stereoscopic image and the user's eyes.
  • the step of maintaining the second distance includes: if the current distance between the user's eyes and the stereoscopic display screen is greater than the first distance, obtaining a difference between the current distance and the first distance as the first difference distance; by controlling the stereoscopic display screen The stereoscopic picture is adjusted to move the first difference distance in a direction toward the user's eyes such that the distance between the stereoscopic picture and the user's eyes is maintained at a second distance.
  • the distance between the user's eyes and the stereoscopic display screen is adjusted by controlling the stereoscopic display screen, so that the distance between the stereoscopic image and the user's eyes is kept second.
  • the step of distance includes: if the current distance between the user's eyes and the stereoscopic display screen is less than the first distance, obtaining the difference between the first distance and the current distance as the second difference distance; adjusting the stereoscopic display screen to adjust the stereoscopic image along the distance The direction of the user's eyes is moved by a second difference distance to maintain a distance between the stereoscopic picture and the user's eyes for a second distance.
  • the size of the predetermined range is proportional to the size of the stereoscopic display screen.
  • a processing device based on stereoscopic display comprising: a first distance acquiring module, configured to acquire a first between a user's eyes and a stereoscopic display screen a distance, wherein the first distance is a mean value of a distance when a distance fluctuation between a user's eyes and a stereoscopic display screen is within a predetermined range, and a monitoring module is configured to monitor between the user's eyes and the stereoscopic display screen The current distance; the control module is configured to adjust the stereoscopic display screen to adjust the stereoscopic image and the stereoscopic display screen viewed by the user's eyes when the monitoring module detects that the current distance between the user's eyes and the stereoscopic display screen deviates from the first distance The distance between the stereoscopic image and the user's eyes is maintained at a second distance; wherein the second distance is a distance between the stereoscopic image and the eye when
  • the first distance acquired by the first distance acquiring module is that the monitoring module monitors the eyes of the user.
  • the current distance between the stereoscopic display screen and the stereoscopic display screen is acquired in real time by the first distance acquisition module; or the first distance is obtained by the first distance acquisition module from a pre-configured database.
  • the control module is specifically configured to: when the current distance is greater than the first distance, use the difference between the current distance and the first distance as the first difference distance, and adjust the stereoscopic image edge by controlling the stereoscopic display screen.
  • the first difference distance is moved in a direction toward the user's eyes to maintain a distance between the stereoscopic picture and the user's eyes for a second distance.
  • the control module is specifically configured to: when the current distance is less than the first distance, use a difference between the first distance and the current distance as a second difference distance, and adjust a stereoscopic image edge by controlling a stereoscopic display screen.
  • the second difference distance is moved away from the direction of the user's eyes to maintain a distance between the stereoscopic picture and the user's eyes for a second distance.
  • the size of the predetermined range is proportional to the size of the stereoscopic display screen.
  • Another technical solution adopted by the present invention is to provide a processing method based on stereoscopic display, which comprises: taking a user to stably browse a distance range of a stereoscopic picture in a stereoscopic display screen; and monitoring the user's eyes and the stereoscopic display screen. If the current distance is not within the distance range, adjusting a distance between the stereoscopic picture in the stereoscopic display screen and the stereoscopic display screen by controlling the stereoscopic display screen, so that the The distance that the user's eyes stably browse the stereoscopic image does not change.
  • the obtaining, by the user, the distance range of the stereoscopic picture in the stereoscopic display screen during the set time includes: obtaining, by the front camera, a distance range of the stereoscopic picture in the stereoscopic display screen of the user's eyes during the set time; or obtaining the advance
  • the configured user's eyes stably browse the distance range of the stereoscopic picture in the stereoscopic display screen.
  • the distance between the stereoscopic image in the stereoscopic display screen and the stereoscopic display screen is adjusted by controlling the stereoscopic display screen, including: if the current distance is greater than the current distance Determining a distance difference between the current distance and the maximum distance, and determining the distance difference as a first difference distance; and approaching the stereoscopic picture in the stereoscopic display screen to the stereoscopic display Moving the first difference distance in a direction of the screen; or determining a distance difference between the current distance and the minimum distance if the current distance is smaller than a minimum distance in the distance range, and using the distance difference as a second a difference distance; moving the stereoscopic picture in the stereoscopic display screen to the second difference distance in a direction away from the stereoscopic display screen.
  • Another technical solution adopted by the present invention is to provide a processing device based on stereoscopic display, including: An obtaining module, configured to acquire a distance range of a stereoscopic picture in the stereoscopic display screen of the user's eyes; a detecting module, configured to monitor a current distance between the user's eyes and the stereoscopic display screen; and a determining module, configured to determine the Whether the current distance is within the distance range; the adjusting module is configured to adjust the stereoscopic image in the stereoscopic display screen by controlling the stereoscopic display screen when the determining module determines that the current distance is not within the distance range
  • the distance between the stereoscopic display screens is such that the distance that the user's eyes stably browses the stereoscopic image does not change.
  • the acquiring module includes: a first acquiring sub-module, configured to acquire, by using a front camera, a range of distances of a stereoscopic picture in a stereoscopic display screen of the user's eyes during a set time; and/or a second acquiring sub-module, The distance range of the stereoscopic picture in the stereoscopic display screen is stably obtained by acquiring the pre-configured user's eyes.
  • the adjustment module includes: a first determining module and a first adjusting submodule; and/or a second determining module and a second adjusting submodule; wherein
  • the first determining module is configured to determine, when the determining module determines that the current distance is greater than a maximum distance in the distance range, determine a distance difference between the current distance and a maximum distance, and use the distance difference as First difference distance;
  • the first adjustment submodule is configured to move the stereoscopic picture in the stereoscopic display screen to the first difference distance in a direction close to the stereoscopic display screen;
  • the second determining module is configured to determine a distance difference between the current distance and a minimum distance when the current distance is less than a minimum distance of the distance range, and use the distance difference as a second difference distance;
  • the second adjustment submodule is configured to move the stereoscopic picture in the stereoscopic display screen to the second difference distance in a direction away from the stereoscopic display screen.
  • Another technical solution adopted by the present invention is to provide a terminal, including:
  • a transceiver configured to acquire a first distance between the user's eyes and the stereoscopic display screen, wherein the first distance is a range of fluctuations between the user's eyes and the stereoscopic display screen that are counted within a predetermined time a distance average over a predetermined range; and monitoring a current distance between the user's eyes and the stereoscopic display screen;
  • a processor configured to adjust a distance between the stereoscopic image viewed by the user's eyes and the stereoscopic display screen by controlling the stereoscopic display screen when the current distance deviates from the first distance, so as to Maintaining a second distance between the stereoscopic picture and the user's eyes;
  • the second distance is a stereoscopic picture in which the user's eyes are pre-configured to see no ghosting.
  • the first distance acquired by the transceiver is obtained in real time before the step of monitoring the current distance between the user's eyes and the stereoscopic display screen; or the first distance is pre-configured.
  • the processor is configured to acquire, when the current distance is greater than the first distance, a difference between the current distance and the first distance as a first difference distance; by controlling the stereo display Screening to adjust the stereoscopic picture to move the first difference distance in a direction toward the user's eyes to maintain a distance between the stereoscopic picture and the user's eyes by a second distance; or
  • the processor is configured to acquire, when the current distance is less than the first distance, a difference between the first distance and the current distance as a second difference distance; by controlling the stereoscopic display screen Adjusting the stereoscopic picture to move the second difference distance in a direction away from the user's eyes to maintain a distance between the stereoscopic picture and the user's eyes by a second distance.
  • Another technical solution adopted by the present invention is to provide another terminal, including:
  • a transceiver configured to acquire a distance range of the stereoscopic picture in the stereoscopic display screen of the user's eyes; and monitor a current distance between the user's eyes and the stereoscopic display screen;
  • a processor configured to adjust a distance between the stereoscopic image in the stereoscopic display screen and the stereoscopic display screen by controlling the stereoscopic display screen when the current distance is not within the distance range, so that the user is The distance that the eye stably browses the stereoscopic picture does not change.
  • the transceiver is specifically configured to obtain, by using a front camera, a range of distances of a stereoscopic picture in a stereoscopic display screen of the user's eyes during a set time; or obtain a distance of a stereoscopic picture in the stereoscopic display screen of the user's eyes stably obtained by a pre-configured user eye. range.
  • the processor is specifically configured to determine a distance difference between the current distance and a maximum distance when the current distance is greater than a maximum distance in the distance range, and use the distance difference as a first difference distance. And moving the stereoscopic picture in the stereoscopic display screen to the first difference distance in a direction close to the stereoscopic display screen; or, when the current distance is smaller than a minimum distance in the distance range, determining Determining a distance difference between the current distance and the minimum distance, and using the distance difference as a second difference distance; moving the stereoscopic picture in the stereoscopic display screen to the second difference distance in a direction away from the stereoscopic display screen .
  • Another technical solution adopted by the present invention is to provide a computer readable storage medium, including a computer executing instruction, when the processor of the computer executes the computer to execute an instruction, the computer executes the above-described stereoscopic display-based processing method. Each step.
  • the stereoscopic display-based processing method and apparatus of the present invention controls the stereoscopic when the current distance between the user's eyes and the stereoscopic display screen is detected to deviate from the first distance. Displaying a screen to adjust the distance between the stereoscopic image viewed by the user and the stereoscopic display screen, so that the distance between the stereoscopic image and the user's eyes is maintained at a second distance, so that the distance between the user's eyes and the stereoscopic display screen does not need to be frequently adjusted.
  • the stereoscopic display-based processing method and apparatus of the present invention controls the stereoscopic when the current distance between the user's eyes and the stereoscopic display screen is detected to deviate from the first distance. Displaying a screen to adjust the distance between the stereoscopic image viewed by the user and the stereoscopic display screen, so that the distance between the stereoscopic image and the user's eyes is maintained at a second distance, so that the distance between the user's eyes and the ster
  • FIG. 1 is a schematic structural diagram of a stereoscopic display-based processing apparatus according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a stereoscopic display-based processing method according to a first embodiment of the present invention
  • FIG. 3 is a flowchart of a stereoscopic display-based processing method according to a second embodiment of the present invention.
  • FIG. 4 is a flow chart of obtaining a first distance between a user's eyes and a stereoscopic display screen in FIG. 3;
  • FIG. 5 is a schematic structural diagram of an application example of a terminal according to an embodiment of the present invention.
  • the processing device includes a first distance acquisition module 10 , a monitoring module 20 , and a control module 30 .
  • the first distance acquisition module 10 is configured to acquire a first distance between the user's eyes and the stereoscopic display screen.
  • the first distance is a distance average when the amplitude fluctuation range between the user's eyes and the stereoscopic display screen is within a predetermined range, and the size of the predetermined range is proportional to the size of the stereoscopic display screen.
  • the first distance is the distance from the user's eyes to any point on the stereoscopic display screen. Preferably, it may be the vertical distance from the user's eyes to the center point on the stereoscopic display screen.
  • the first distance obtaining module 10 obtains a first distance between the user's eyes and the stereoscopic display screen.
  • the camera may capture the key features of the user to determine the distance between the user's eyes and the stereoscopic display screen.
  • the average person's interpupillary distance is 6.5cm
  • the width of the pupil distance on the photo will be 200 pixels; then through the current imaging
  • the pixels of the pupil distance can calculate the distance between the eye and the screen/camera (ie the first distance) in a proportional relationship.
  • the distance from the user's eyes to the camera on the screen can also be calculated by devices such as infrared ranging.
  • the monitoring module 20 is coupled to the first distance acquisition module 10 for monitoring the current distance between the user's eyes and the stereoscopic display screen.
  • the first distance is obtained by the first distance acquiring module 10 in real time before the monitoring module 20 monitors the current distance between the user's eyes and the stereoscopic display screen, or is obtained by the first distance acquiring module 10 from a pre-configured database.
  • the pre-configured database is a database that records the distance mean when the distance between the user's eyes and the stereoscopic display screen is within a predetermined range, which is counted within a predetermined time.
  • the control module 30 is connected to the monitoring module 20 for adjusting the stereoscopic display screen to adjust the stereoscopic image and the stereoscopic image viewed by the user's eyes when the monitoring module 20 detects that the current distance between the user's eyes and the stereoscopic display screen deviates from the first distance.
  • the distance between the screens is displayed such that the distance between the stereoscopic image and the user's eyes is maintained at a second distance.
  • the second distance is a distance between the stereoscopic image and the user's eyes when the user's eyes are pre-configured to view the stereoscopic picture without ghosting.
  • the second distance may be equal to the first distance, or may be slightly larger or smaller than the first distance, as long as the user's eyes can view the stereoscopic picture without ghosting.
  • the control module 30 acquires the difference between the current distance and the first distance as the first difference distance, and controls the stereoscopic display screen.
  • the stereoscopic picture is adjusted to move the first difference distance in a direction toward the user's eyes such that the distance between the stereoscopic picture and the user's eyes is maintained at a second distance.
  • the adjusting the stereoscopic image moves the first difference distance in a direction toward the eyes of the user. Specifically, each pixel in the stereoscopic image is moved by a first difference distance in a direction toward the eyes of the user.
  • the control module 30 acquires the difference between the first distance and the current distance as the second difference distance, by controlling the stereoscopic display screen.
  • the stereoscopic picture is adjusted to move the second difference distance in a direction away from the user's eyes to maintain the distance between the stereoscopic picture and the user's eyes at a second distance.
  • the adjusting the stereoscopic image moves the second difference distance in a direction away from the user's eyes. Specifically, each pixel in the stereoscopic image is moved by a second difference distance in a direction away from the user's eyes.
  • the control module 30 does nothing.
  • the distance between the stereoscopic image viewed by the user and the stereoscopic display screen is adjusted by controlling the stereoscopic display screen, so that The distance between the stereoscopic image and the user's eyes is kept at a second distance, so that the user can enjoy a clear stereoscopic picture without frequent adjustment of the eyes, and obtain a perfect viewing experience.
  • the distance between the stereoscopic image on the stereoscopic display screen and the stereoscopic display screen by adjusting the distance between the stereoscopic image on the stereoscopic display screen and the stereoscopic display screen, the fluctuation of the distance between the stereoscopic image caused by the shaking of the stereoscopic display screen and the user's eyes is compensated, and the stereoscopic display screen is made.
  • the distance between the upper stereoscopic image and the user's eyes remains stable, thereby improving the user's viewing experience.
  • FIG. 2 is a flow chart of a stereoscopic display based processing method according to a first embodiment of the present invention. As shown in FIG. 2, the method includes the following steps:
  • Step S101 Acquire a first distance between the user's eyes and the stereoscopic display screen.
  • Step S102 It is monitored whether the current distance between the user's eyes and the stereoscopic display screen deviates from the first distance; if it is deviated from the first distance, step S103 is performed; otherwise, step S102 is performed.
  • Step S103 Adjust the distance between the stereoscopic image viewed by the user and the stereoscopic display screen by controlling the stereoscopic display screen, so that the distance between the stereoscopic image and the user's eyes is maintained at the second distance.
  • the first distance is a distance between the user's eyes and the stereoscopic display screen when the user enters the stable viewing state.
  • the stable viewing state can be understood as a state in which the fluctuation range of the distance between the user's eyes and the stereoscopic display screen is within a predetermined range within a predetermined time.
  • the average distance between the user's eyes and the stereoscopic display screen counted within a predetermined time is the first distance. That is to say, the first distance is a distance average value when the fluctuation range of the distance between the user's eyes and the stereoscopic display screen measured within a predetermined time is within a predetermined range.
  • the size of the predetermined range is proportional to the size of the stereoscopic display screen, that is, when the size of the stereoscopic display screen is large, a larger predetermined range may be selected, when the stereoscopic display is displayed.
  • a smaller predetermined range can be selected, which does not affect the practical application of the present invention.
  • the acquisition of the first distance is acquired in real time before the operation of monitoring the current distance between the user's eyes and the stereoscopic display screen in step S102 is performed.
  • the first distance may also be pre-configured, which may be obtained directly from a pre-configured database, wherein the pre-configured database records the user's eyes and stereoscopic display screens that are counted in a predetermined time.
  • a database of distance mean values when the distance fluctuates within a predetermined range.
  • the first distance is a vertical distance between the user's eyes and the center of the stereoscopic display screen.
  • the time of performing step S101 can be customized, for example, step S101 can be performed once every certain time. Since the user has fatigued in one position for a long time to adjust another comfortable posture for viewing, it is necessary to reacquire the first distance. It can be understood that when the time of step S101 is customized, the first distance can be acquired in real time.
  • step S102 the current distance between the user's eyes and the stereoscopic display screen is acquired every predetermined time, and then the current distance is compared with the first distance to determine whether the current distance deviates from the first distance. Specifically, when the 'current distance' is greater than the first distance or the current distance is less than the first distance, it is determined that the current distance deviates from the first distance.
  • the absolute value of the difference between the current distance and the first distance exceeds a predetermined threshold, it is determined that the current distance deviates from the first distance.
  • the size of the predetermined threshold may be determined according to actual conditions. For example, when the screen size of the stereoscopic display screen is large, a larger predetermined threshold may be selected.
  • the current distance is a vertical distance between the user's eyes and the stereoscopic display screen acquired in real time every predetermined time.
  • the second distance is a distance between the stereoscopic image and the user's eyes when the user's eyes are pre-configured to view the stereoscopic picture without ghosting.
  • the step S102 detects that the current distance between the user's eyes and the stereoscopic display screen deviates from the first distance, the distance between the stereoscopic screen viewed by the user and the stereoscopic display screen is adjusted by controlling the stereoscopic display screen, thereby compensating for the stereoscopic display screen.
  • the front-back fluctuation distance between the stereoscopic picture viewed by the user and the user's eyes occurs when the front-back jitter occurs or the user's eyes move forward and backward, so that the distance between the stereoscopic picture and the user's eyes is kept at a second distance, so that the user's eyes are not frequently adjusted.
  • the stereoscopic screen can be viewed with a clear stereoscopic picture.
  • the step of adjusting the distance between the stereoscopic image and the stereoscopic display screen viewed by the user by controlling the stereoscopic display screen may specifically be: controlling the focal length of the grating lens in the stereoscopic display screen or controlling the dynamic slit by controlling the stereoscopic display screen.
  • the electrodes of the grating or the like adjust the distance between the stereoscopic image viewed by the user and the stereoscopic display screen.
  • the stereoscopic display screen is controlled to adjust the distance between the stereoscopic image viewed by the user and the stereoscopic display screen, so that the stereoscopic image is obtained.
  • the distance between the user's eyes and the user's eyes is maintained at a second distance, so that the user's eyes do not need to frequently adjust the distance from the stereoscopic display screen to enjoy a clear stereoscopic picture, and obtain a perfect viewing experience.
  • FIG. 3 is a flow chart showing an image display method of a multi-view stereoscopic display according to a second embodiment of the present invention. It should be noted that if there are substantially the same results, the method of the present invention is not limited to the sequence of processes shown in FIG. As shown in FIG. 3, the method includes the following steps:
  • Step S201 Acquire a first distance between the user's eyes and the stereoscopic display screen.
  • the first distance is a distance average value when the amplitude fluctuation range between the user's eyes and the stereoscopic display screen measured within a predetermined time is within a predetermined range.
  • the first distance is a vertical distance between the user's eyes and the stereoscopic display screen.
  • FIG. 4 is a flow chart of obtaining the first distance between the user's eyes and the stereoscopic display screen in FIG.
  • acquiring the first distance between the user's eyes and the stereoscopic display screen specifically includes the following steps:
  • S2011 acquiring a plurality of third distances between the user's eyes and the stereoscopic display screen at predetermined time intervals within a predetermined time.
  • the third distance is a distance (such as a vertical distance, etc.) between the user's eyes and the stereoscopic display screen acquired at predetermined time intervals within a predetermined time.
  • the third distance between the user's eyes and the stereoscopic display screen can be obtained by capturing a key feature of the user through a camera disposed on the stereoscopic display screen.
  • Other measuring devices different from the camera such as infrared ranging device acquisition, etc., may also be used, and the embodiment is not limited thereto.
  • calculating the distance from the user's eyes to the screen can be judged by the camera taking a key feature of the user.
  • the average person's interpupillary distance is 6.5cm
  • the human eye distance is 30cm from the front camera
  • the width of the pupil distance on the photo will be 200 pixels; then the pixels through the current imaging distance can be used.
  • this distance can also be calculated by devices such as infrared ranging.
  • Step S2012 It is determined whether the plurality of third distances between the user's eyes and the stereoscopic display screen are within a predetermined range. If the predetermined distance is within the predetermined range, step S2013 is performed; otherwise, step S2011 is performed.
  • step S2012 when a plurality of third distances between the user's eyes and the stereoscopic display screen acquired within the predetermined time are within a predetermined range, it is indicated that the position of the user's eyes can enjoy a better stereoscopic effect, and the user performs If the viewing state is stable, the process proceeds to step S2013.
  • the plurality of third distances between the user's eyes and the stereoscopic display screen acquired within the predetermined time are not within the predetermined range, indicating that the user's eyes are still in the process of finding a position capable of enjoying a better stereoscopic effect, Continue to step S2011.
  • Step S2013 Taking the average of the plurality of third distances as the first distance.
  • step S2013 when it is determined in step S2012 that the plurality of third distances between the user's eyes and the stereoscopic display screen are within a predetermined range, that is, the user performs a stable viewing state, calculating that the user's eyes are acquired at predetermined time intervals within a predetermined time period.
  • the average of the plurality of third distances between the stereoscopic display screens is taken as the first distance.
  • Step S202 Monitor whether the current distance between the user's eyes and the stereoscopic display screen is greater than the first distance; if it is greater than the first distance, perform step S203, if not greater than the first distance (ie, less than or equal to the first distance), perform steps S205.
  • step S202 the current distance between the user's eyes and the stereoscopic display screen is acquired every predetermined time, wherein the current distance is a vertical distance between the user's eyes and the stereoscopic display screen acquired in real time every predetermined time.
  • the current distance is greater than the first distance, the stereoscopic display screen is moved away from the user's eyes, and step S203 is performed.
  • the user browses the content based on the stereoscopic display technology on the bus, for example, the shaking of the bus causes the screen of the mobile phone to shake before and after, thereby causing the user's eyes and the screen of the mobile phone to be acquired every predetermined time.
  • the current distance is constantly changing. Wherein, when the current distance between the user's eyes and the screen of the mobile phone is greater than the first distance, the mobile phone screen is shaken in a direction away from the user's eyes, and step S203 is performed.
  • Step S203 Acquire a difference between the current distance and the first distance as the first difference distance.
  • step S203 taking the above example, when the mobile phone display screen is shaken in a direction away from the user's eyes, the difference between the current distance and the first distance is taken as the first difference distance.
  • the first difference distance is x. cm.
  • Step S204 Adjusting the stereoscopic display screen to adjust the stereoscopic image to move the first difference distance in a direction toward the user's eyes, so that the distance between the stereoscopic image and the user's eyes is maintained at the second distance.
  • the second distance is a distance between the stereoscopic picture viewed by the user and the user's eyes when the user's eyes view the stereoscopic display screen at the first distance.
  • the stereoscopic picture is moved by x cm in the direction toward the user's eyes, so that the distance between the stereoscopic picture and the user's eyes is maintained at the second distance.
  • moving the stereoscopic image in the direction toward the eyes of the user by x centimeters is specifically: moving each pixel in the stereoscopic image by x centimeters in a direction toward the eyes of the user.
  • the overall content of the stereoscopic image is not changed and the distance between the stereoscopic image and the user's eyes is maintained at the second distance, the user's eyes and stereo are not frequently adjusted.
  • a clear stereoscopic picture can be enjoyed by the distance of the display screen.
  • Step S205 It is determined whether the current distance between the user's eyes and the stereoscopic display screen is smaller than the first distance; if it is smaller than the first distance, step S206 is performed, and if it is equal to the first distance, the stereoscopic picture does not need to be adjusted, and the process returns to step S202.
  • step S205 when the current distance is smaller than the first distance, the stereoscopic display screen is moved toward the direction of the user's eyes, and step S206 is performed.
  • step S206 when the screen of the mobile phone is shaken in a direction toward the eyes of the user, the current distance between the eyes of the user and the screen of the mobile phone is less than the first distance, and step S206 is performed.
  • Step S206 Acquire a difference between the current distance and the first distance as the second difference distance.
  • step S206 taking the above example, when the mobile phone display screen is shaken in a direction toward the user's eyes, the difference between the first distance and the current distance is taken as the second difference distance.
  • the second difference distance is x cm.
  • Step S207 Adjusting the stereoscopic display screen to adjust the stereoscopic image to move the second difference distance in a direction away from the user's eyes, so that the distance between the stereoscopic image and the user's eyes is maintained at the second distance.
  • step S207 taking the above example, when the mobile phone display screen is shaken by x centimeters in the direction toward the user's eyes, the stereoscopic image is moved by x centimeters away from the user's eyes, so that the distance between the stereoscopic image and the user's eyes is maintained. Two distances.
  • moving the stereoscopic image in a direction away from the user's eyes by x centimeters is specifically: moving each pixel in the stereoscopic image by x cm in a direction away from the user's eyes.
  • the overall content of the stereoscopic image is not changed and the distance between the stereoscopic image and the user's eyes is maintained at the second distance, the user's eyes and stereo are not frequently adjusted.
  • a clear stereoscopic picture can be enjoyed by the distance of the display screen.
  • the second embodiment of the present invention is when the current distance between the user's eyes and the stereoscopic display screen is greater than or When less than the first distance, obtain a difference distance between the current distance and the first distance, move the difference distance in a direction away from the user's eyes when greater than the first distance, and in a direction toward the user's eyes when the distance is smaller than the first distance, so that The distance between the stereoscopic picture and the user's eyes is maintained at a second distance.
  • the second embodiment of the present invention can enhance the viewing experience when the stereoscopic display screen is shaken or the user's eyes move, so that the distance between the user's eyes and the stereoscopic display screen is not frequently adjusted to enjoy a clear stereoscopic image.
  • the embodiment of the present invention further provides a processing method based on stereoscopic display, where the method includes:
  • One is to obtain a distance range of the stereoscopic picture in the stereoscopic display screen of the user's eyes stably through the front camera during the set time.
  • the front camera of the mobile phone can capture a plurality of distances from the user's eyes to the screen of the mobile phone in N seconds, and the distances of the user's eyes and the screen of the mobile phone are all stable in a distance of less than M centimeters in N seconds. . That is to say, the distance range, including the maximum distance and the minimum distance, the maximum distance and the minimum distance respectively are the critical values for the user to clearly see the stereo animation in the screen of the mobile phone.
  • M and N need to be valued according to experience in practical applications. For example, if the screen is large, the allowed M value will be larger.
  • the manner of the configuration is pre-configured, and the configuration may be configured according to the experience value, and may be configured according to the situation that different users view the stereo animation in different screens, which is not limited in this embodiment.
  • the distance difference between the current distance and the maximum distance needs to be determined first, and the distance difference is used as the first difference distance; then, the stereoscopic display is performed.
  • the stereoscopic picture in the screen moves the first difference distance in a direction toward the user's eyes;
  • the current distance is less than the minimum distance of the distance range, determining a distance difference between the current distance and the minimum distance, and using the distance difference as a second difference distance;
  • the stereoscopic picture in the movement moves the second difference distance in a direction away from the user's eyes.
  • the distance between the stereoscopic image on the stereoscopic display screen and the stereoscopic display screen by adjusting the distance between the stereoscopic image on the stereoscopic display screen and the stereoscopic display screen, the fluctuation of the distance between the stereoscopic image caused by the shaking of the stereoscopic display screen and the user's eyes is compensated, and the stereoscopic image on the stereoscopic display screen is made.
  • the distance from the user's eyes remains constant, thereby improving the user's viewing experience.
  • the embodiment of the present invention further provides a processing device based on stereoscopic display, the device comprising: an obtaining module, a detecting module, a determining module and an adjusting module, wherein
  • the acquiring module is configured to acquire a distance range of a stereoscopic picture in the stereoscopic display screen of the user's eyes stably viewed;
  • the detecting module is configured to monitor a current distance between the user's eyes and the stereoscopic display screen
  • the determining module is configured to determine whether the current distance is within the distance range
  • the adjusting module is configured to adjust, between the stereoscopic display screen and the stereoscopic display screen, by controlling the stereoscopic display screen when the determining module determines that the current distance is not within the distance range
  • the distance is such that the distance that the user's eyes stably browse the stereoscopic picture does not change.
  • the acquiring module includes: a first acquiring submodule and/or a second acquiring submodule, where
  • the first obtaining sub-module is configured to acquire, by using a front camera, a distance range of a stereoscopic picture in a stereoscopic display screen of the user's eyes stably in a set time;
  • the second obtaining sub-module is configured to acquire a distance range of the stereoscopic picture in the stereoscopic display screen of the user's eye stably browsing the pre-configured user eye.
  • the adjustment module includes: a first determining module and a first adjusting submodule; and/or a second determining module and a second adjusting submodule;
  • the first determining module is configured to determine, at the determining module, that the current distance is greater than the distance range Determining a distance difference between the current distance and the maximum distance, and using the distance difference as the first difference distance;
  • the first adjustment submodule is configured to move the stereoscopic picture in the stereoscopic display screen to the first difference distance in a direction close to the stereoscopic display screen;
  • the second determining module is configured to determine a distance difference between the current distance and a minimum distance when the current distance is less than a minimum distance of the distance range, and use the distance difference as a second difference distance;
  • the second adjustment submodule is configured to move the stereoscopic picture in the stereoscopic display screen to the second difference distance in a direction away from the stereoscopic display screen.
  • the device may be integrated on the terminal, and may be deployed independently. This embodiment is not limited.
  • the embodiment of the present invention further provides a terminal, where the terminal includes: a transceiver and a processor, where
  • the transceiver is configured to acquire a first distance between a user's eyes and a stereoscopic display screen, wherein the first distance is a distance between the user's eyes and the stereoscopic display screen that is counted within a predetermined time. a distance average when the amplitude of the fluctuation is within a predetermined range; and monitoring a current distance between the user's eyes and the stereoscopic display screen;
  • the processor is configured to adjust a distance between the stereoscopic image viewed by the user's eyes and the stereoscopic display screen by controlling the stereoscopic display screen when the current distance deviates from the first distance, Maintaining a distance between the stereoscopic picture and the user's eyes by a second distance;
  • the second distance is a distance between the stereoscopic picture and the user's eyes when the user's eyes view the stereoscopic picture without ghosting.
  • the first distance acquired by the transceiver is obtained in real time before performing the step of monitoring the current distance between the user's eyes and the stereoscopic display screen; or The first distance is pre-configured.
  • the processor is configured to acquire, when the current distance is greater than the first distance, a difference between the current distance and the first distance as a first difference. a value distance; adjusting the stereoscopic screen to move the first difference distance in a direction toward the user's eyes by controlling the stereoscopic display screen, so that the distance between the stereoscopic image and the user's eyes is maintained Two distances; or
  • the processor is configured to acquire the first distance when the current distance is less than the first distance And a difference from the current distance as a second difference distance; adjusting the stereoscopic screen to move the second difference distance in a direction away from the user's eyes by controlling the stereoscopic display screen, so that the The distance between the stereoscopic picture and the user's eyes is maintained at a second distance.
  • the embodiment of the present invention further provides another terminal, including: a transceiver and a processor, where
  • the transceiver is configured to acquire a distance range of a stereoscopic picture in the stereoscopic display screen of the user's eyes, and monitor a current distance between the user's eyes and the stereoscopic display screen;
  • the processor is configured to adjust a distance between the stereoscopic image in the stereoscopic display screen and the stereoscopic display screen by controlling the stereoscopic display screen when the current distance is not within the distance range, so as to The distance that the user's eyes stably browse the stereoscopic picture does not change.
  • the transceiver is configured to obtain, by using a front camera, a distance range of a stereoscopic picture in a stereoscopic display screen of the user's eyes during a set time; or obtain a pre-configured user's eye stability. Browse the distance range of the stereoscopic image in the stereo display screen.
  • the processor is configured to determine a distance difference between the current distance and a maximum distance when the current distance is greater than a maximum distance in the range of distances, and Determining the distance difference as a first difference distance; moving the stereoscopic picture in the stereoscopic display screen to the first difference distance in a direction close to the stereoscopic display screen; or, if the current distance is smaller than the distance range And determining a distance difference between the current distance and the minimum distance, and using the distance difference as a second difference distance; moving the stereoscopic picture in the stereoscopic display screen away from the stereoscopic display screen The direction moves the second difference distance.
  • FIG. 5 is a schematic structural diagram of an application example of a terminal according to an embodiment of the present invention.
  • the terminal 500 includes: a processor 510, a memory 520, a transceiver 530, and a bus 540.
  • the processor 510, the memory 520, and the transceiver 530 are connected to each other through a bus 540.
  • the bus 540 may be an ISA bus, a PCI bus, or an EISA bus.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 5, but it does not mean that there is only one bus or one type of bus.
  • the memory 520 is configured to store a program.
  • the program can include program code, the program code including computer operating instructions.
  • Memory 520 may include high speed RAM memory and may also include non-volatile Non-volatile memory, such as at least one disk storage.
  • the transceiver 530 is configured to acquire a first distance between a user's eyes and a stereoscopic display screen, wherein the first distance is between the user's eyes and the stereoscopic display screen that are counted within a predetermined time. a distance average when the range of fluctuation is within a predetermined range; and monitoring a current distance between the user's eyes and the stereoscopic display screen;
  • the processor 510 executes the program code stored in the memory 520, for determining whether the current distance deviates from the first distance, and when the current distance deviates from the first distance, by controlling the stereo Displaying a screen to adjust a distance between the stereoscopic picture viewed by the user's eyes and the stereoscopic display screen to maintain a distance between the stereoscopic picture and the user's eyes by a second distance; wherein The second distance is a distance between the stereoscopic picture and the user's eyes when the user's eyes view the stereoscopic picture without ghosting.
  • the first distance acquired by the transceiver 530 is obtained in real time before the step of monitoring the current distance between the user's eyes and the stereoscopic display screen; or the first distance is Configured.
  • the processor 510 when determining that the current distance deviates from the first distance, adjusts a distance between a stereoscopic image viewed by a user's eyes and the stereoscopic display screen by controlling the stereoscopic display screen. And maintaining the distance between the stereoscopic picture and the user's eyes by a second distance, specifically including:
  • the current distance is greater than the first distance, obtain a difference between the current distance and the first distance as a first difference distance; adjust the stereoscopic picture along the stereoscopic display screen to face the Moving the first difference distance in a direction of a user's eyes to maintain a distance between the stereoscopic picture and the user's eyes by a second distance; or
  • the current distance is smaller than the first distance, obtain a difference between the first distance and the current distance as a second difference distance; adjust the stereoscopic picture along the stereoscopic display screen to move away from the The direction of the user's eyes moves the second difference distance to maintain a distance between the stereoscopic picture and the user's eyes for a second distance.
  • the transceiver 530 is configured to acquire a distance range of a stereoscopic picture in the stereoscopic display screen of the user's eyes, and monitor a current distance between the user's eyes and the stereoscopic display screen;
  • the processor 510 is configured to determine whether the current distance is within the distance range, if the distance is in the range. The distance between the stereoscopic image in the stereoscopic display screen and the stereoscopic display screen is adjusted by controlling the stereoscopic display screen, so that the distance of the user's eyes to stably browse the stereoscopic image is unchanged.
  • the transceiver 530 acquires a distance range of the stereoscopic picture in the stereoscopic display screen of the user during the set time, including: obtaining, by the front camera, the distance of the stereoscopic picture in the stereoscopic display screen of the user's eyes stably in the set time Range; or obtain a pre-configured user's eye to stably browse the distance range of the stereoscopic picture in the stereoscopic display screen.
  • the processor 510 determines that the current distance is not within the distance range, and the distance between the stereoscopic screen and the stereoscopic display screen in the stereoscopic display screen is adjusted by controlling the stereoscopic display screen, and specifically includes:
  • the current distance is greater than a maximum distance of the distance range, determining a distance difference between the current distance and the maximum distance, and using the distance difference as a first difference distance; and stereoscopically displaying the stereoscopic display screen Moving the first difference distance in a direction close to the stereoscopic display screen; or
  • the current distance is less than a minimum distance of the distance range, determining a distance difference between the current distance and a minimum distance, and using the distance difference as a second difference distance; and stereoscopically displaying the stereoscopic display screen
  • the screen moves the second difference distance in a direction away from the stereoscopic display screen.
  • the embodiment of the present invention further provides a computer readable storage medium, including a computer executing instruction, when the processor of the computer executes the computer to execute an instruction, the computer performs the foregoing stereoscopic
  • a computer readable storage medium including a computer executing instruction, when the processor of the computer executes the computer to execute an instruction, the computer performs the foregoing stereoscopic

Abstract

本发明公开了一种基于立体显示的处理方法、装置及终端。该方法包括:获取用户眼睛与立体显示屏幕之间的第一距离;监测用户眼睛与立体显示屏幕之间的当前距离;若用户眼睛与立体显示屏幕之间的当前距离偏离第一距离,则通过控制立体显示屏幕来调整用户观看到的立体画面与立体显示屏幕之间的距离,以使立体画面与用户眼睛之间的距离保持第二距离。通过上述方式,本发明能够在立体显示屏幕发生抖动或者用户眼睛发生移动时,动态调整用户观看到的立体画面与立体显示屏幕之间的距离,从而不需要频繁调整用户眼睛与立体显视屏的距离即可欣赏到清楚的立体画面,获得完美的观看体验。

Description

一种基于立体显示的处理方法、装置及终端
本发明要求于2014年7月31日提交中国专利局、申请号为201410374579.8、发明名称为“一种基于立体显示的处理方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本发明中。
技术领域
本发明涉及立体显示领域,特别是涉及一种基于立体显示的处理方法、装置及终端。
背景技术
立体显示技术是通过将画面分开为错开的若干图层,当用户眼睛从一定距离观看这些图层,则由于视觉空间关系,在人的大脑中构成具有前-后、上-下、左-右、远-近等立体效果的画面,使人感觉看到了立体画面。
在现有的立体显示技术中,无论是普通的立体显示技术还是裸眼的立体显示技术,用户眼睛只有在距离立体显示屏幕一个特定距离时才能体验到没有重影的立体显示效果。如果用户眼睛与立体显示屏幕之间的距离偏离该特定距离,则会随着偏离程度的增加,在人的大脑中构成重影愈来愈严重的立体画面。
在实际应用中,以用户在公车上手握手机浏览基于立体显示技术的内容为例来说,由于公车的晃动带动手的抖动,从而导致用户眼睛与立体显示屏幕的距离产生变化,使得用户看到的立体画面是有重影的,为了看到清晰的立体画面,用户需要频繁调整眼睛与立体显视屏的距离,降低了观看体验。
发明内容
本发明主要解决的技术问题是提供一种基于立体显示的处理方法、装置及终端,能够在立体显示屏幕发生抖动或者用户眼睛发生移动的情况下,不需要频繁调整用户眼睛与立体显视屏的距离即可欣赏到清楚的立体画面。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种基于立体显示的处理方法,该方法包括:获取用户眼睛与立体显示屏幕之间的第一距离,其中,第一距离为在预定的时间内统计的用户眼睛与立体显示屏幕之间的距离波动幅度在预 定范围内时的距离均值;监测用户眼睛与立体显示屏幕之间的当前距离;若用户眼睛与立体显示屏幕之间的当前距离偏离第一距离,则通过控制立体显示屏幕来调整用户眼睛观看到的立体画面与立体显示屏幕之间的距离,以使立体画面与用户眼睛之间的距离保持第二距离;其中,第二距离为预先配置的用户眼睛观看到没有重影的立体画面时,立体画面与用户眼睛之间的距离。
其中,第一距离为进行监测用户眼睛与立体显示屏幕之间的当前距离步骤前实时获取的;或者第一距离是预先配置的。
其中,若用户眼睛与立体显示屏幕之间的当前距离偏离第一距离,通过控制立体显示屏幕来调整用户观看到的立体画面与立体显示屏幕之间的距离,以使立体画面与用户眼睛之间的距离保持第二距离的步骤包括:若用户眼睛与立体显示屏幕之间的当前距离大于第一距离,获取当前距离与第一距离的差值作为第一差值距离;通过控制立体显示屏幕来调整立体画面沿朝向用户眼睛的方向移动第一差值距离,以使立体画面与用户眼睛之间的距离保持第二距离。
其中,若用户眼睛与立体显示屏幕之间的距离偏离第一距离,通过控制立体显示屏幕来调整立体画面与立体显示屏幕之间的距离,以使立体画面与用户眼睛之间的距离保持第二距离的步骤包括:若用户眼睛与立体显示屏幕之间的当前距离小于第一距离,获取第一距离与当前距离的差值作为第二差值距离;通过控制立体显示屏幕来调整立体画面沿远离用户眼睛的方向移动第二差值距离,以使立体画面与用户眼睛之间的距离保持第二距离。
其中,预定范围的大小与立体显视屏幕的尺寸成正比关系。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种基于立体显示的处理装置,该装置包括:第一距离获取模块,用于获取用户眼睛与立体显示屏幕之间的第一距离,其中,第一距离为在预定的时间内统计的用户眼睛与立体显示屏幕之间的距离波动幅度在预定范围内时的距离均值;监测模块,用于监测用户眼睛与立体显示屏幕之间的当前距离;控制模块,用于在监测模块监测到用户眼睛与立体显示屏幕之间的当前距离偏离第一距离时,通过控制立体显示屏幕来调整用户眼睛观看到的立体画面与立体显示屏幕之间的距离,以使立体画面与用户眼睛之间的距离保持第二距离;其中,第二距离为预先配置的用户眼睛观看到没有重影的立体画面时,立体画面与眼睛之间的距离。
其中,所述第一距离获取模块获取的所述第一距离为监测模块在监测用户眼睛 与立体显示屏幕之间的当前距离之前由第一距离获取模块实时获取的;或者第一距离是第一距离获取模块从预先配置的数据库中获取的。
其中,所述控制模块,具体用于在所述当前距离大于第一距离时,将所述当前距离与第一距离的差值作为第一差值距离,通过控制立体显示屏幕来调整立体画面沿朝向用户眼睛的方向移动第一差值距离,以使立体画面与用户眼睛之间的距离保持第二距离。
其中,所述控制模块,具体用于在所述当前距离小于第一距离时,将所述第一距离与当前距离的差值作为第二差值距离,通过控制立体显示屏幕来调整立体画面沿远离用户眼睛的方向移动第二差值距离,以使立体画面与用户眼睛之间的距离保持第二距离。
其中,预定范围的大小与立体显视屏幕的尺寸成正比关系。
本发明采用的另一个技术方案是:提供一种基于立体显示的处理方法,该方法包括:取用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围;监测所述用户眼睛与所述立体显示屏幕之间的当前距离;若所述当前距离不在所述距离范围内,则通过控制立体显示屏幕来调整所述立体显示屏幕中的立体画面与所述立体显示屏幕之间的距离,以使所述用户眼睛稳定浏览所述立体画面的距离不变。
其中,所述获取设定时间内用户稳定浏览立体显示屏幕中立体画面的距离范围,包括:通过前置摄像头获取设定时间内用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围;或者获取预先配置的用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围。
其中,所述当前距离不在所述距离范围内,则通过控制立体显示屏幕来调整所述立体显示屏幕中的立体画面与所述立体显示屏幕之间的距离,包括:如果所述当前距离大于所述距离范围中的最大距离,则确定所述当前距离与最大距离的距离差,并将所述距离差作为第一差值距离;将所述立体显示屏幕中的立体画面向靠近所述立体显示屏幕的方向移动所述第一差值距离;或者如果所述当前距离小于所述距离范围中的最小距离,则确定所述当前距离与最小距离的距离差,并将所述距离差作为第二差值距离;将所述立体显示屏幕中的立体画面向远离所述立体显示屏幕的方向移动所述第二差值距离。
本发明采用的另一个技术方案是:提供一种基于立体显示的处理装置,包括: 获取模块,用于获取用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围;检测模块,用于监测所述用户眼睛与所述立体显示屏幕之间的当前距离;判断模块,用于判断所述当前距离是否在所述距离范围内;调整模块,用于在所述判断模块判断所述当前距离不在所述距离范围内时,通过控制立体显示屏幕来调整所述立体显示屏幕中的立体画面与所述立体显示屏幕之间的距离,以使所述用户眼睛稳定浏览所述立体画面的距离不变。
其中,所述获取模块包括:第一获取子模块,用于通过前置摄像头获取设定时间内用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围;和/或,第二获取子模块,用于获取预先配置的用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围。
其中,所述调整模块包括:第一确定模块和第一调整子模块;和/或,第二确定模块和第二调整子模块;其中,
所述第一确定模块,用于在所述判断模块判断所述当前距离大于所述距离范围中的最大距离时,确定所述当前距离与最大距离的距离差,,并将所述距离差作为第一差值距离;
所述第一调整子模块,用于将所述立体显示屏幕中的立体画面向靠近所述立体显示屏幕的方向移动所述第一差值距离;
所述第二确定模块,用于在所述当前距离小于所述距离范围中的最小距离时,确定所述当前距离与最小距离的距离差,并将所述距离差作为第二差值距离;
所述第二调整子模块,用于将所述立体显示屏幕中的立体画面向远离所述立体显示屏幕的方向移动所述第二差值距离。
本发明采用的另一个技术方案是:提供一种终端,包括:
收发器,用于获取用户眼睛与立体显示屏幕之间的第一距离,其中,所述第一距离为在预定的时间内统计的所述用户眼睛与所述立体显示屏幕之间的距离波动幅度在预定范围内时的距离均值;并监测所述用户眼睛与所述立体显示屏幕之间的当前距离;
处理器,用于在所述当前距离偏离所述第一距离时,通过控制所述立体显示屏幕来调整所述用户眼睛观看到的立体画面与所述立体显示屏幕之间的距离,以使所述立体画面与所述用户眼睛之间的距离保持第二距离;
其中,所述第二距离为预先配置的所述用户眼睛观看到没有重影的所述立体画 面时,所述立体画面与所述用户眼睛之间的距离。
其中,所述收发器获取的所述第一距离为进行所述监测所述用户眼睛与所述立体显示屏幕之间的当前距离步骤前实时获取的;或者所述第一距离是预先配置的。
其中,所述处理器,具体用于在所述当前距离大于所述第一距离时,获取所述当前距离与所述第一距离的差值作为第一差值距离;通过控制所述立体显示屏幕来调整所述立体画面沿朝向所述用户眼睛的方向移动所述第一差值距离,以使所述立体画面与所述用户眼睛之间的距离保持第二距离;或者
所述处理器,具体用于在所述当前距离小于所述第一距离时,获取所述第一距离与所述当前距离的差值作为第二差值距离;通过控制所述立体显示屏幕来调整所述立体画面沿远离所述用户眼睛的方向移动所述第二差值距离,以使所述立体画面与所述用户眼睛之间的距离保持第二距离。
本发明采用的另一个技术方案是:提供另一种终端,包括:
收发器,用于获取用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围;并监测所述用户眼睛与所述立体显示屏幕之间的当前距离;
处理器,用于在所述当前距离不在所述距离范围内时,通过控制立体显示屏幕来调整所述立体显示屏幕中的立体画面与所述立体显示屏幕之间的距离,以使所述用户眼睛稳定浏览所述立体画面的距离不变。
其中,所述收发器,具体用于通过前置摄像头获取设定时间内用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围;或者获取预先配置的用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围。
其中,所述处理器,具体用于在所述当前距离大于所述距离范围中的最大距离时,确定所述当前距离与最大距离的距离差,并将所述距离差作为第一差值距离;将所述立体显示屏幕中的立体画面向靠近所述立体显示屏幕的方向移动所述第一差值距离;或者,在所述当前距离小于所述距离范围中的最小距离时,则确定所述当前距离与最小距离的距离差,并将所述距离差作为第二差值距离;将所述立体显示屏幕中的立体画面向远离所述立体显示屏幕的方向移动所述第二差值距离。
本发明采用的另一个技术方案是:提供一种计算机可读存储介质,包括计算机执行指令,以供计算机的处理器执行所述计算机执行指令时,所述计算机执行上述基于立体显示的处理方法的各个步骤。
本发明的有益效果是:区别于现有技术的情况,本发明的基于立体显示的处理方法及装置,当监测到用户眼睛与立体显示屏幕之间的当前距离偏离第一距离时,通过控制立体显示屏幕来调整用户观看到的立体画面与立体显示屏幕之间的距离,以使立体画面与用户眼睛之间的距离保持第二距离,从而不需要频繁调整用户眼睛与立体显视屏的距离即可欣赏到清楚的立体画面,获得完美的观看体验。
附图说明
图1是本发明实施例的基于立体显示的处理装置的结构示意图;
图2是本发明第一实施例的基于立体显示的处理方法的流程图;
图3是本发明第二实施例的基于立体显示的处理方法的流程图;
图4是图3中获取用户眼睛与立体显示屏幕之间的第一距离的流程图;
图5是本发明实施例提供的一种终端的应用实例的结构示意图。
具体实施方式
在说明书及权利要求书当中使用了某些词汇来指称特定的组件。所属领域中的技术人员应可理解,制造商可能会用不同的名词来称呼同样的组件。本说明书及权利要求书并不以名称的差异来作为区分组件的方式,而是以组件在功能上的差异来作为区分的基准。下面结合附图和实施例对本发明进行详细说明。
图1是本发明实施例的基于立体显示的处理装置的结构示意图。如图1所示,该处理装置包括:第一距离获取模块10、监测模块20和控制模块30。
第一距离获取模块10用于获取用户眼睛与立体显示屏幕之间的第一距离。第一距离为在预定的时间内统计的用户眼睛与立体显示屏幕之间的距离波动幅度在预定范围内时的距离均值,其中,预定范围的大小与立体显示屏幕的尺寸成正比关系。其中,第一距离为用户眼睛到所述立体显示屏幕上任意一点的距离,优选的,可以是用户眼睛到所述立体显示屏幕上中心点的垂直距离。
其中,第一距离获取模块10获取用户眼睛与立体显示屏幕之间的第一距离的一种方式,可以是通过摄像头拍摄用户的关键特征来判断用户眼睛与立体显示屏幕之间的距离。比如,一般人的瞳距是6.5cm,人眼距离前摄像头是30cm,摄像头是3000*1000=300w像素时,瞳距在照片上的宽度将是200像素;那么通过当前成像的 瞳距的像素可以用等比关系计算出眼睛和屏幕/摄像头的距离(即第一距离)。再比如,通过获得当前瞳距的宽度是400像素,就可推算当前人眼与屏幕的距离就是(400/200)*30=60cm。
当然,用户眼睛到屏幕上摄像头的距离也可以通过红外测距等设备来计算。
监测模块20与第一距离获取模块10连接,用于监测用户眼睛与立体显示屏幕之间的当前距离。
优选地,第一距离为监测模块20在监测用户眼睛与立体显示屏幕之间的当前距离之前由第一距离获取模块10实时获取的,或者为第一距离获取模块10从预先配置的数据库中获取的。其中,预先配置的数据库为记录有在预定的时间内统计的用户眼睛与立体显示屏幕之间的距离波动幅度在预定范围内时的距离均值的数据库。
控制模块30与监测模块20连接,用于当监测模块20监测到用户眼睛与立体显示屏幕之间的当前距离偏离第一距离时,通过控制立体显示屏幕来调整用户眼睛观看到的立体画面与立体显示屏幕之间的距离,以使立体画面与用户眼睛之间的距离保持第二距离。其中,第二距离为预先配置的用户眼睛观看到没有重影的立体画面时,立体画面与用户眼睛之间的距离。可选的,第二距离可以等于第一距离,也可以稍微大于或小于第一距离,只要用户眼睛观看到没有重影的立体画面均可以。
其中,当监测模块20监测到用户眼睛与立体显示屏幕之间的当前距离大于第一距离时,控制模块30获取当前距离与第一距离的差值作为第一差值距离,通过控制立体显示屏幕来调整立体画面沿朝向用户眼睛的方向移动第一差值距离,以使立体画面与用户眼睛之间的距离保持第二距离。
其中,调整立体画面沿朝向用户眼睛的方向移动第一差值距离,具体为,将立体画面中的每个像素都沿朝向用户眼睛的方向移动第一差值距离。
其中,当监测模块20监测到用户眼睛与立体显示屏幕之间的当前距离小于第一距离时,控制模块30获取第一距离与当前距离的差值作为第二差值距离,通过控制立体显示屏幕来调整立体画面沿远离用户眼睛的方向移动第二差值距离,以使立体画面与用户眼睛之间的距离保持第二距离。
其中,调整立体画面沿远离用户眼睛的方向移动第二差值距离,具体为,将立体画面中的每个像素都沿远离用户眼睛的方向移动第二差值距离。
其中,当监测模块20监测到用户眼睛与立体显示屏幕之间的当前距离等于第一 距离时,控制模块30不做任何操作。
本发明实施例中,当监测到用户眼睛与立体显示屏幕之间的当前距离偏离第一距离时,通过控制立体显示屏幕来调整用户观看到的立体画面与立体显示屏幕之间的距离,以使立体画面与用户眼睛之间的距离保持第二距离,从而不需要用户频繁的调整眼睛即可欣赏到清楚的立体画面,获得完美的观看体验。也就是说,本实施例是通过调节立体显示屏幕上的立体画面到立体显示屏幕之间的距离,来弥补立体显示屏幕抖动引起的立体画面与用户眼睛之间的距离的波动,使立体显示屏幕上的立体画面与用户眼睛之间的距离保持稳定不变,从而提高了用户观看体验。
图2是本发明第一实施例的基于立体显示的处理方法的流程图。如图2所示,该方法包括如下步骤:
步骤S101:获取用户眼睛与立体显示屏幕之间的第一距离。
步骤S102:监测用户眼睛与立体显示屏幕之间的当前距离是否偏离第一距离;若是偏离第一距离,执行步骤S103,否则执行步骤S102。
步骤S103:通过控制立体显示屏幕来调整用户观看到的立体画面与立体显示屏幕之间的距离,以使立体画面与用户眼睛之间的距离保持第二距离。
在步骤S101中,第一距离为用户进入稳定观看状态时用户眼睛与立体显示屏幕之间的距离。其中,稳定观看状态可以理解为在预定时间内用户眼睛与立体显示屏幕之间的距离波动幅度在预定范围内的状态。当用户进行稳定观看状态,在预定的时间内统计的用户眼睛与立体显示屏幕之间的距离均值即为第一距离。也就是说,第一距离为在预定的时间内统计的用户眼睛与立体显示屏幕之间的距离波动幅度在预定范围内时的距离均值。其中,在获取第一距离的过程中,预定范围的大小与立体显示屏幕的尺寸成正比关系,也就是说,当立体显示屏幕的尺寸较大时,可以选择较大的预定范围,当立体显示屏幕的尺寸较小时,可以选择较小的预定范围,其不影响本发明的实际应用。
在本实施例中,第一距离的获取是在执行步骤S102中的监测用户眼睛和立体显示屏幕之间的当前距离的操作之前实时获取的。在其它实施例中,第一距离也可以是预先配置的,其可以直接从预先配置的数据库中获取得到,其中,预先配置的数据库为记录有在预定的时间内统计的用户眼睛与立体显示屏幕之间的距离波动幅度在预定范围内时的距离均值的数据库。
在本实施例中,优选地,第一距离为用户眼睛与立体显示屏幕中心之间的垂直距离。
优选地,可以自定义执行步骤S101的时间,如可以设定隔一定时间执行一次步骤S101。由于用户在一个姿势看久了产生疲劳从而调整另一舒适的姿势进行观看,此时需要重新获取第一距离。可以理解的是,自定义执行步骤S101的时间时,可以实时获取第一距离。
在步骤S102中,每隔预定时间获取用户眼睛与立体显示屏幕之间的当前距离,然后比较当前距离与第一距离以确定当前距离是否偏离第一距离。具体来说,当’当前距离‘大于第一距离或者当前距离小于第一距离时,则判定当前距离偏离第一距离。
优选地,在实际应用中,在当前距离与第一距离的差值的绝对值超过预定阈值时,则判定当前距离偏离第一距离。其中,预定阈值的大小可以根据实际情况来取值,例如,当立体显示屏幕的屏幕尺寸较大时,可以选择较大的预定阈值。
在本实施例中,当前距离为每隔预定时间实时获取的用户眼睛与立体显示屏幕之间的垂直距离。
在步骤S103中,第二距离为预先配置的用户眼睛观看到没有重影的立体画面时,立体画面与用户眼睛之间的距离。当步骤S102监测到用户眼睛与立体显示屏幕之间的当前距离偏离第一距离时,通过控制立体显示屏来调整用户观看到的立体画面与立体显示屏幕之间的距离,从而弥补由于立体显示屏幕发生前后抖动或者用户眼睛发生前后移动而导致用户观看到的立体画面与用户眼睛之间的前后波动距离,使得立体画面与用户眼睛之间的距离保持第二距离,从而不需要频繁调整用户眼睛与立体显视屏的距离就能观看到清楚的立体画面。
其中,通过控制立体显示屏来调整用户观看到的立体画面与立体显示屏幕之间的距离的步骤具体可以为:通过控制立体显示屏中光栅透镜的焦距或者通过控制立体显示屏中驱动动态狭缝光栅的电极等等来调整用户观看到的立体画面与立体显示屏幕之间的距离。
本发明第一实施例通过监测到用户眼睛与立体显示屏幕之间的当前距离偏离第一距离时,控制立体显示屏幕来调整用户观看到的立体画面与立体显示屏幕之间的距离,使得立体画面与用户眼睛之间的距离保持第二距离,从而使得用户眼睛不需要频繁调整与立体显视屏的距离即可欣赏到清楚的立体画面,获得完美的观看体验。
图3是本发明第二实施例的多视点立体显示器的图像显示方法的流程图。需注意的是,若有实质上相同的结果,本发明的方法并不以图3所示的流程顺序为限。如图3所示,该方法包括如下步骤:
步骤S201:获取用户眼睛与立体显示屏幕之间的第一距离。
在步骤S201中,第一距离为在预定的时间内统计的用户眼睛与立体显示屏幕之间的距离波动幅度在预定范围内时的距离均值。其中,第一距离为用户眼睛与立体显示屏幕之间的垂直距离。
请一并参考图4,图4是图3中获取用户眼睛与立体显示屏幕之间的第一距离的流程图。如图4所示,获取用户眼睛与立体显示屏幕之间的第一距离具体包括如下步骤:
S2011:在预定时间内以预定时间间隔获取用户眼睛与立体显示屏幕之间的多个第三距离。
在步骤S2011,第三距离为在预定时间内以预定时间间隔获取的用户眼睛与立体显示屏幕之间的距离(比如垂直距离等)。其中,用户眼睛与立体显示屏幕之间的第三距离可以通过设置于立体显示屏幕上的摄像头拍摄用户的关键特征来获取。也可以使用不同于摄像头的其他测量装置,如红外测距设备获取等,本实施例不限于此。
也就是说,计算用户眼睛到屏幕的距离可通过摄像头拍摄用户关键特征来判断。比如一般人的瞳距是6.5cm,人眼距离前摄像头是30cm,摄像头是3000*1000=300w像素时,瞳距在照片上的宽度将是200像素;那么通过当前成像的瞳距的像素可以用等比关系换算出眼睛和屏幕/摄像头的距离。比如,通过获得当前瞳距的宽度是400像素,就可推算当前人眼与屏幕的距离就是(400/200)*30=60cm。当然,此距离也可以通过红外测距等设备来计算。
步骤S2012:判断用户眼睛与立体显示屏幕之间的多个第三距离是否处于预定范围内,若处于预定范围内,执行步骤S2013,否则执行步骤S2011。
在步骤S2012中,当在预定时间内获取的用户眼睛与立体显示屏幕之间的多个第三距离处于预定范围内时,则说明用户眼睛所在的位置能享受到较好的立体效果,用户进行稳定观看状态,则继续执行步骤S2013。当在预定时间内获取的用户眼睛与立体显示屏幕之间的多个第三距离没有处于预定范围内时,则说明用户眼睛还处于寻找能享受到较好的立体效果的位置的过程中,则继续执行步骤S2011。
步骤S2013:将多个第三距离的均值作为第一距离。
在步骤S2013中,当步骤S2012判定用户眼睛与立体显示屏幕之间的多个第三距离处于预定范围内时,也即用户进行稳定观看状态,计算在预定时间内以预定时间间隔获取用户眼睛与立体显示屏幕之间的多个第三距离的均值作为第一距离。
步骤S202:监测用户眼睛与立体显示屏幕之间的当前距离是否大于第一距离;若是大于第一距离,执行步骤S203,若不是大于第一距离(也即小于或者等于第一距离),执行步骤S205。
在步骤S202中,每隔预定时间获取用户眼睛与立体显示屏幕之间的当前距离,其中,当前距离为每隔预定时间实时获取的用户眼睛与立体显示屏幕之间的垂直距离。在当前距离大于第一距离时,则说明立体显示屏幕向远离用户眼睛的方向移动,执行步骤S203。
在实际应用中,以用户在公车上手握手机浏览基于立体显示技术的内容为例来说,由于公车的晃动带动手机屏幕发生前后抖动,从而导致每隔预定时间获取的用户眼睛与手机屏幕之间的当前距离不断发生变化。其中,当用户眼睛与手机屏幕之间的当前距离大于第一距离时,说明手机屏幕沿远离用户眼睛的方向抖动,执行步骤S203。
步骤S203:获取当前距离与第一距离的差值作为第一差值距离。
在步骤S203中,承接上述举例,当手机显示屏幕沿远离用户眼睛的方向发生抖动时,将当前距离与第一距离的差值作为第一差值距离。
具体来说,假设第一距离为a厘米,由于手机屏幕沿远离用户眼睛的方向发生抖动而获取到用户眼睛与手机屏幕之间的当前距离为a+x厘米,则第一差值距离为x厘米。
步骤S204:通过控制立体显示屏幕来调整立体画面沿朝向用户眼睛的方向移动第一差值距离,以使立体画面与用户眼睛之间的距离保持第二距离。
在步骤S204中,第二距离为用户眼睛以第一距离观看立体显示屏幕时,用户观看到的立体画面与用户眼睛之间的距离。
承接上述举例,当手机显示屏幕沿远离用户眼睛的方向抖动x厘米时,将立体画面沿朝向用户眼睛的方向移动x厘米,从而使得立体画面与用户眼睛之间的距离保持第二距离。
其中,将立体画面沿朝向用户眼睛的方向移动x厘米具体为:将立体画面中每个像素都沿朝向用户眼睛的方向移动x厘米。此时,由于只是立体画面沿朝向用户眼睛的方向移动了x厘米,立体画面的整体内容没有发生改变且立体画面与用户眼睛之间的距离保持第二距离,则不需要频繁调整用户眼睛与立体显视屏的距离即能欣赏到清楚的立体画面。
步骤S205:判断用户眼睛与立体显示屏幕之间的当前距离是否小于第一距离;若是小于第一距离,执行步骤S206,若等于第一距离,则不需调整立体画面,返回执行步骤S202。
在步骤S205中,在当前距离小于第一距离时,则说明立体显示屏幕朝向用户眼睛的方向移动,执行步骤S206。
承接上述举例,当手机屏幕沿朝向用户眼睛的方向抖动时,用户眼睛与手机屏幕之间的当前距离小于第一距离,执行步骤S206。
步骤S206:获取当前距离与第一距离的差值作为第二差值距离。
在步骤S206中,承接上述举例,当手机显示屏幕沿朝向用户眼睛的方向发生抖动时,将第一距离与当前距离的差值作为第二差值距离。
具体来说,假设第一距离为a厘米,由于手机屏幕沿朝向用户眼睛的方向发生抖动而获取到用户眼睛与手机屏幕之间的当前距离为a-x厘米,则第二差值距离为x厘米。
步骤S207:通过控制立体显示屏幕来调整立体画面沿远离用户眼睛的方向移动第二差值距离,以使立体画面与用户眼睛之间的距离保持第二距离。
在步骤S207中,承接上述举例,当手机显示屏幕沿朝向用户眼睛的方向抖动x厘米时,将立体画面沿远离用户眼睛的方向移动x厘米,从而使得立体画面与用户眼睛之间的距离保持第二距离。
其中,将立体画面沿远离用户眼睛的方向移动x厘米具体为:将立体画面中每个像素都沿远离用户眼睛的方向移动x厘米。此时,由于只是立体画面沿远离用户眼睛的方向移动了x厘米,立体画面的整体内容没有发生改变且立体画面与用户眼睛之间的距离保持第二距离,则不需要频繁调整用户眼睛与立体显视屏的距离即能欣赏到清楚的立体画面。
本发明第二实施例通过当监测到用户眼睛与立体显示屏幕之间当前距离大于或 小于第一距离时,获取当前距离与第一距离的差值距离,当大于第一距离时沿远离用户眼睛的方向以及当小于第一距离时沿朝向用户眼睛的方向移动差值距离,以使立体画面与用户眼睛之间的距离保持第二距离。通过上述方式,本发明第二实施例能够在立体显示屏幕发生抖动或者用户眼睛发生移动时,从而不需要频繁调整用户眼睛与立体显视屏的距离即可欣赏到清楚的立体画面,提高观看体验。
基于上述实施例的实现过程,本发明实施例还提供一种基于立体显示的处理方法,所述方法包括:
1)获取用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围;
其中,获取的方式有两种:
一种是通过前置摄像头获取设定时间内用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围。
比如,通过手机的前置摄像头可以捕捉N秒内用户眼睛到手机屏幕的多个距离,该多个距离均为用户眼睛与手机屏幕的距离波动在N秒内都小于M厘米的稳定状态的距离。也就是说,该距离范围,包括最大距离和最小距离,其最大距离和最小距离分别为用户能清楚出观看手机屏幕中立体动画的临界值。
需要说明的是,这种方式中,的M和N,需要在实际应用中根据经验取值,比如,如果屏幕大,则允许的M值会大些等。
另一种是,获取预先配置的用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围。
这种方式是预先配置的,其配置的方式可以根据经验值来配置,可以根据不同用户观看不同屏幕中的立体动画的情况来配置的,本实施例不作限制。
2)监测所述用户眼睛与所述立体显示屏幕之间的当前距离;
该步骤中的检测当前距离的过程与上述实施例中检测当前距离的过程详见,具体详见上述,在此不再赘述。
3)若所述当前距离不在所述距离范围内,则通过控制立体显示屏幕来调整所述立体显示屏幕中的立体画面与所述立体显示屏幕之间的距离,以使所述用户眼睛稳定浏览所述立体画面的距离不变。
其中,该步骤中,当前距离不再距离范围内,有两种情况:
一种情况是:当前距离大于距离范围中的最大距离,则需要先确定所述当前距离与最大距离的距离差,并将所述距离差作为第一差值距离;然后,将所述立体显示屏幕中的立体画面沿朝向用户眼睛的方向移动所述第一差值距离;
另一种情况是,当前距离小于所述距离范围中的最小距离,则确定所述当前距离与最小距离的距离差,并将所述距离差作为第二差值距离;将所述立体显示屏幕中的立体画面沿远离用户眼睛的方向移动所述第二差值距离。
这两种情况的具体实现过程与上述实施例类似,具体详见上述,在此不再赘述。
本实施例是通过调节立体显示屏幕上的立体画面到立体显示屏幕之间的距离,来弥补立体显示屏幕抖动引起的立体画面与用户眼睛之间的距离的波动,使立体显示屏幕上的立体画面与用户眼睛之间的距离保持稳定不变,从而提高了用户观看体验。
相应的,本发明实施例还提供一种基于立体显示的处理装置,所述装置包括:获取模块,检测模块,判断模块和调整模块,其中,
所述获取模块,用于获取用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围;
所述检测模块,用于监测所述用户眼睛与所述立体显示屏幕之间的当前距离;
所述判断模块,用于判断所述当前距离是否在所述距离范围内;
所述调整模块,用于在所述判断模块判断所述当前距离不在所述距离范围内时,通过控制立体显示屏幕来调整所述立体显示屏幕中的立体画面与所述立体显示屏幕之间的距离,以使所述用户眼睛稳定浏览所述立体画面的距离不变。
可选的,在另一实施例中,所述获取模块包括:第一获取子模块和/或第二获取子模块,其中,
所述第一获取子模块,用于通过前置摄像头获取设定时间内用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围;
所述第二获取子模块,用于获取预先配置的用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围。
可选的,在另一实施例中,所述调整模块包括:第一确定模块和第一调整子模块;和/或,第二确定模块和第二调整子模块;其中,
所述第一确定模块,用于在所述判断模块判断所述当前距离大于所述距离范围 中的最大距离时,确定所述当前距离与最大距离的距离差,,并将所述距离差作为第一差值距离;
所述第一调整子模块,用于将所述立体显示屏幕中的立体画面向靠近所述立体显示屏幕的方向移动所述第一差值距离;
所述第二确定模块,用于在所述当前距离小于所述距离范围中的最小距离时,确定所述当前距离与最小距离的距离差,并将所述距离差作为第二差值距离;
所述第二调整子模块,用于将所述立体显示屏幕中的立体画面向远离所述立体显示屏幕的方向移动所述第二差值距离。
可选的,所述装置可以聚成在终端上,可以独立部署,本实施例不作限制。
相应的,本发明实施例还提供一种终端,所述终端包括:收发器和处理器,其中,
所述收发器,用于获取用户眼睛与立体显示屏幕之间的第一距离,其中,所述第一距离为在预定的时间内统计的所述用户眼睛与所述立体显示屏幕之间的距离波动幅度在预定范围内时的距离均值;并监测所述用户眼睛与所述立体显示屏幕之间的当前距离;
所述处理器,用于在所述当前距离偏离所述第一距离时,通过控制所述立体显示屏幕来调整所述用户眼睛观看到的立体画面与所述立体显示屏幕之间的距离,以使所述立体画面与所述用户眼睛之间的距离保持第二距离;
其中,所述第二距离为预先配置的所述用户眼睛观看到没有重影的所述立体画面时,所述立体画面与所述用户眼睛之间的距离。
可选的,在另一实施例中,所述收发器获取的所述第一距离为进行所述监测所述用户眼睛与所述立体显示屏幕之间的当前距离步骤前实时获取的;或者所述第一距离是预先配置的。
可选的,在另一实施例中,所述处理器,具体用于在所述当前距离大于所述第一距离时,获取所述当前距离与所述第一距离的差值作为第一差值距离;通过控制所述立体显示屏幕来调整所述立体画面沿朝向所述用户眼睛的方向移动所述第一差值距离,以使所述立体画面与所述用户眼睛之间的距离保持第二距离;或者
所述处理器,具体用于在所述当前距离小于所述第一距离时,获取所述第一距 离与所述当前距离的差值作为第二差值距离;通过控制所述立体显示屏幕来调整所述立体画面沿远离所述用户眼睛的方向移动所述第二差值距离,以使所述立体画面与所述用户眼睛之间的距离保持第二距离。
本发明实施例还提供另一种终端,包括:收发器和处理器,其中,
所述收发器,用于获取用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围;并监测所述用户眼睛与所述立体显示屏幕之间的当前距离;
所述处理器,用于在所述当前距离不在所述距离范围内时,通过控制立体显示屏幕来调整所述立体显示屏幕中的立体画面与所述立体显示屏幕之间的距离,以使所述用户眼睛稳定浏览所述立体画面的距离不变。
可选的,在另一实施例中,所述收发器,具体用于通过前置摄像头获取设定时间内用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围;或者获取预先配置的用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围。
可选的,在另一实施例中,所述处理器,具体用于在所述当前距离大于所述距离范围中的最大距离时,确定所述当前距离与最大距离的距离差,并将所述距离差作为第一差值距离;将所述立体显示屏幕中的立体画面向靠近所述立体显示屏幕的方向移动所述第一差值距离;或者,在所述当前距离小于所述距离范围中的最小距离时,则确定所述当前距离与最小距离的距离差,并将所述距离差作为第二差值距离;将所述立体显示屏幕中的立体画面向远离所述立体显示屏幕的方向移动所述第二差值距离。
所述终端中的收发器和处理器的具体功能和作用详见上述对应步骤的实现过程,在此不再赘述。
参见图5,为本发明实施例提供的一种终端的应用实例的结构示意图,该终端500包括:处理器510、存储器520、收发器530和总线540;
处理器510、存储器520、收发器530通过总线540相互连接;总线540可以是ISA总线、PCI总线或EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器520,用于存放程序。具体地,程序可以包括程序代码,所述程序代码包括计算机操作指令。存储器520可能包含高速RAM存储器,也可能还包括非易失性 存储器(non-volatile memory),例如至少一个磁盘存储器。
所述收发器530,用于获取用户眼睛与立体显示屏幕之间的第一距离,其中,所述第一距离为在预定的时间内统计的所述用户眼睛与所述立体显示屏幕之间的距离波动幅度在预定范围内时的距离均值;并监测所述用户眼睛与所述立体显示屏幕之间的当前距离;
所述处理器510执行存储器520中存储的所述程序代码,用于判断该当前距是否离偏离所述第一距离,并在所述当前距离偏离所述第一距离时,通过控制所述立体显示屏幕来调整所述用户眼睛观看到的所述立体画面与所述立体显示屏幕之间的距离,以使所述立体画面与所述用户眼睛之间的距离保持第二距离;其中,所述第二距离为预先配置的所述用户眼睛观看到没有重影的所述立体画面时,所述立体画面与所述用户眼睛之间的距离。
可选地,所述收发器530获取的所述第一距离为进行所述监测所述用户眼睛与所述立体显示屏幕之间的当前距离步骤前实时获取的;或者所述第一距离是预先配置的。
可选地,所述处理器510在判断所述当前距离偏离所述第一距离时,通过控制所述立体显示屏幕来则调整用户眼睛观看到的立体画面与所述立体显示屏幕之间的距离,以使所述立体画面与所述用户眼睛之间的距离保持第二距离,具体包括:
若所述当前距离大于所述第一距离,获取所述当前距离与所述第一距离的差值作为第一差值距离;通过控制所述立体显示屏幕来调整所述立体画面沿朝向所述用户眼睛的方向移动所述第一差值距离,以使所述立体画面与所述用户眼睛之间的距离保持第二距离;或者
若所述当前距离小于所述第一距离,获取所述第一距离与所述当前距离的差值作为第二差值距离;通过控制所述立体显示屏幕来调整所述立体画面沿远离所述用户眼睛的方向移动所述第二差值距离,以使所述立体画面与所述用户眼睛之间的距离保持第二距离。
相应的,在另一种实施例中,
所述收发器530,用于获取用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围;并监测所述用户眼睛与所述立体显示屏幕之间的当前距离;
所述处理器510用于判断当前距离是否在所述距离范围内,如果在所述距离范 围被,则通过控制立体显示屏幕来调整所述立体显示屏幕中的立体画面与所述立体显示屏幕之间的距离,以使所述用户眼睛稳定浏览所述立体画面的距离不变。
可选的,所述收发器530获取设定时间内用户稳定浏览立体显示屏幕中立体画面的距离范围,包括:通过前置摄像头获取设定时间内用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围;或者获取预先配置的用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围。
所述处理器510判断所述当前距离不在所述距离范围内,则通过控制立体显示屏幕来调整所述立体显示屏幕中的立体画面与所述立体显示屏幕之间的距离,具体包括:
如果所述当前距离大于所述距离范围中的最大距离,则确定所述当前距离与最大距离的距离差,并将所述距离差作为第一差值距离;将所述立体显示屏幕中的立体画面向靠近所述立体显示屏幕的方向移动所述第一差值距离;或者
如果所述当前距离小于所述距离范围中的最小距离,则确定所述当前距离与最小距离的距离差,并将所述距离差作为第二差值距离;将所述立体显示屏幕中的立体画面向远离所述立体显示屏幕的方向移动所述第二差值距离。
所述终端中的收发器和处理器的各个部件功能和作用的实现过程详见上述实施例中对应部分的实现过程,在此不再赘述。
相应的,本发明实施例还提供一种计算机可读存储介质,该计算机可读存储介质包括计算机执行指令,以供计算机的处理器执行所述计算机执行指令时,所述计算机执行上述的基于立体显示的处理方法的各个步骤,其具体的实现过程详见上述对应的实施例,在此不再赘述。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (22)

  1. 一种基于立体显示的处理方法,其特征在于,所述方法包括:
    获取用户眼睛与立体显示屏幕之间的第一距离,其中,所述第一距离为在预定的时间内统计的所述用户眼睛与所述立体显示屏幕之间的距离波动幅度在预定范围内时的距离均值;
    监测所述用户眼睛与所述立体显示屏幕之间的当前距离;
    若所述当前距离偏离所述第一距离,则通过控制所述立体显示屏幕来调整所述用户眼睛观看到的立体画面与所述立体显示屏幕之间的距离,以使所述立体画面与所述用户眼睛之间的距离保持第二距离;
    其中,所述第二距离为预先配置的所述用户眼睛观看到没有重影的所述立体画面时,所述立体画面与所述用户眼睛之间的距离。
  2. 根据权利要求1所述的方法,其特征在于,所述第一距离为进行所述监测所述用户眼睛与所述立体显示屏幕之间的当前距离步骤前实时获取的;或者
    所述第一距离是预先配置的。
  3. 根据权利要求1所述的方法,其特征在于,若所述当前距离偏离所述第一距离,通过控制所述立体显示屏幕来调整用户观看到的立体画面与所述立体显示屏幕之间的距离,以使所述立体画面与所述用户眼睛之间的距离保持第二距离的步骤包括:
    若所述当前距离大于所述第一距离,获取所述当前距离与所述第一距离的差值作为第一差值距离;
    通过控制所述立体显示屏幕来调整所述立体画面沿朝向所述用户眼睛的方向移动所述第一差值距离,以使所述立体画面与所述用户眼睛之间的距离保持第二距离。
  4. 根据权利要求1所述的方法,其特征在于,若所述当前距离偏离所述第一距离,通过控制所述立体显示屏幕来调整所述立体画面与所述立体显示屏幕之间的距离,以使所述立体画面与所述用户眼睛之间的距离保持第二距离的步骤包括:
    若所述当前距离小于所述第一距离,获取所述第一距离与所述当前距离的差 值作为第二差值距离;
    通过控制所述立体显示屏幕来调整所述立体画面沿远离所述用户眼睛的方向移动所述第二差值距离,以使所述立体画面与所述用户眼睛之间的距离保持第二距离。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述预定范围的大小与所述立体显视屏幕的尺寸成正比关系。
  6. 一种基于立体显示的处理方法,其特征在于,所述方法包括:
    获取用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围;
    监测所述用户眼睛与所述立体显示屏幕之间的当前距离;
    若所述当前距离不在所述距离范围内,则通过控制立体显示屏幕来调整所述立体显示屏幕中的立体画面与所述立体显示屏幕之间的距离,以使所述用户眼睛稳定浏览所述立体画面的距离不变。
  7. 根据权利要求6所述的方法,其特征在于,所述获取设定时间内用户稳定浏览立体显示屏幕中立体画面的距离范围,包括:
    通过前置摄像头获取设定时间内用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围;或者
    获取预先配置的用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围。
  8. 根据权利要求6或7所述的方法,其特征在于,所述当前距离不在所述距离范围内,则通过控制立体显示屏幕来调整所述立体显示屏幕中的立体画面与所述立体显示屏幕之间的距离,包括:
    如果所述当前距离大于所述距离范围中的最大距离,则确定所述当前距离与最大距离的距离差,并将所述距离差作为第一差值距离;将所述立体显示屏幕中的立体画面向靠近所述立体显示屏幕的方向移动所述第一差值距离;或者
    如果所述当前距离小于所述距离范围中的最小距离,则确定所述当前距离与最小距离的距离差,并将所述距离差作为第二差值距离;将所述立体显示屏幕中的立体画面向远离所述立体显示屏幕的方向移动所述第二差值距离。
  9. 一种基于立体显示的处理装置,其特征在于,所述装置包括:
    第一距离获取模块,用于获取用户眼睛与立体显示屏幕之间的第一距离,其中,所述第一距离为在预定的时间内统计的所述用户眼睛与所述立体显示屏幕之间的距离波动幅度在预定范围内时的距离均值;
    监测模块,用于监测所述用户眼睛与所述立体显示屏幕之间的当前距离;
    控制模块,用于在所述当前距离偏离所述第一距离时,通过控制所述立体显示屏幕来调整所述用户眼睛观看到的立体画面与所述立体显示屏幕之间的距离,以使所述立体画面与所述用户眼睛之间的距离保持第二距离;
    其中,所述第二距离为预先配置的所述用户眼睛观看到没有重影的所述立体画面时,所述立体画面与所述眼睛之间的距离。
  10. 根据权利要求9所述的装置,其特征在于,所述第一距离获取模块获取的所述第一距离为所述监测模块在监测所述用户眼睛与所述立体显示屏幕之间的当前距离之前由所述第一距离获取模块实时获取的;或者
    所述第一距离是所述第一距离获取模块从预先配置的数据库中获取的。
  11. 根据权利要求9所述的装置,其特征在于,所述控制模块,具体用于在所述当前距离大于所述第一距离时,将所述当前距离与所述第一距离的差值作为第一差值距离,通过控制所述立体显示屏幕来调整所述立体画面沿朝向所述用户眼睛的方向移动所述第一差值距离,以使所述立体画面与所述用户眼睛之间的距离保持第二距离。
  12. 根据权利要求9所述的装置,其特征在于,所述控制模块,具体用于在所述当前距离小于所述第一距离时,将所述第一距离与所述当前距离的差值作为第二差值距离,通过控制所述立体显示屏幕来调整所述立体画面沿远离所述用户眼睛的方向移动所述第二差值距离,以使所述立体画面与所述用户眼睛之间的距离保持第二距离。
  13. 一种基于立体显示的处理装置,其特征在于,包括:
    获取模块,用于获取用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围;
    检测模块,用于监测所述用户眼睛与所述立体显示屏幕之间的当前距离;
    判断模块,用于判断所述当前距离是否在所述距离范围内;
    调整模块,用于在所述判断模块判断所述当前距离不在所述距离范围内时,通过控制立体显示屏幕来调整所述立体显示屏幕中的立体画面与所述立体显示屏幕之间的距离,以使所述用户眼睛稳定浏览所述立体画面的距离不变。
  14. 根据权利要求13所述的装置,其特征在于,所述获取模块包括:
    第一获取子模块,用于通过前置摄像头获取设定时间内用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围;和/或
    第二获取子模块,用于获取预先配置的用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围。
  15. 根据权利要求13或14所述的装置,其特征在于,所述调整模块包括:第一确定模块和第一调整子模块;和/或,第二确定模块和第二调整子模块;其中,
    所述第一确定模块,用于在所述判断模块判断所述当前距离大于所述距离范围中的最大距离时,确定所述当前距离与最大距离的距离差,,并将所述距离差作为第一差值距离;
    所述第一调整子模块,用于将所述立体显示屏幕中的立体画面向靠近所述立体显示屏幕的方向移动所述第一差值距离;
    所述第二确定模块,用于在所述当前距离小于所述距离范围中的最小距离时,确定所述当前距离与最小距离的距离差,并将所述距离差作为第二差值距离;
    所述第二调整子模块,用于将所述立体显示屏幕中的立体画面向远离所述立体显示屏幕的方向移动所述第二差值距离。
  16. 一种终端,其特征在于,包括:
    收发器,用于获取用户眼睛与立体显示屏幕之间的第一距离,其中,所述第一距离为在预定的时间内统计的所述用户眼睛与所述立体显示屏幕之间的距离波动幅度在预定范围内时的距离均值;并监测所述用户眼睛与所述立体显示屏幕之间的当前距离;
    处理器,用于在所述当前距离偏离所述第一距离时,通过控制所述立体显示屏幕来调整所述用户眼睛观看到的立体画面与所述立体显示屏幕之间的距离,以使所述立体画面与所述用户眼睛之间的距离保持第二距离;
    其中,所述第二距离为预先配置的所述用户眼睛观看到没有重影的所述立体 画面时,所述立体画面与所述用户眼睛之间的距离。
  17. 根据权利要求16所述的终端,其特征在于,所述收发器获取的所述第一距离为进行所述监测所述用户眼睛与所述立体显示屏幕之间的当前距离步骤前实时获取的;或者所述第一距离是预先配置的。
  18. 根据权利要求16所述的终端,其特征在于,
    所述处理器,具体用于在所述当前距离大于所述第一距离时,获取所述当前距离与所述第一距离的差值作为第一差值距离;通过控制所述立体显示屏幕来调整所述立体画面沿朝向所述用户眼睛的方向移动所述第一差值距离,以使所述立体画面与所述用户眼睛之间的距离保持第二距离;或者
    所述处理器,具体用于在所述当前距离小于所述第一距离时,获取所述第一距离与所述当前距离的差值作为第二差值距离;通过控制所述立体显示屏幕来调整所述立体画面沿远离所述用户眼睛的方向移动所述第二差值距离,以使所述立体画面与所述用户眼睛之间的距离保持第二距离。
  19. 一种终端,其特征在于,包括:
    收发器,用于获取用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围;并监测所述用户眼睛与所述立体显示屏幕之间的当前距离;
    处理器,用于在所述当前距离不在所述距离范围内时,通过控制立体显示屏幕来调整所述立体显示屏幕中的立体画面与所述立体显示屏幕之间的距离,以使所述用户眼睛稳定浏览所述立体画面的距离不变。
  20. 根据权利要求19所述的终端,其特征在于,
    所述收发器,具体用于通过前置摄像头获取设定时间内用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围;或者获取预先配置的用户眼睛稳定浏览立体显示屏幕中立体画面的距离范围。
  21. 根据权利要求19或20所述的终端,其特征在于,
    所述处理器,具体用于在所述当前距离大于所述距离范围中的最大距离时,确定所述当前距离与最大距离的距离差,并将所述距离差作为第一差值距离;将所述立体显示屏幕中的立体画面向靠近所述立体显示屏幕的方向移动所述第一 差值距离;或者,在所述当前距离小于所述距离范围中的最小距离时,则确定所述当前距离与最小距离的距离差,并将所述距离差作为第二差值距离;将所述立体显示屏幕中的立体画面向远离所述立体显示屏幕的方向移动所述第二差值距离。
  22. 一种计算机可读存储介质,其特征在于,包括计算机执行指令,以供计算机的处理器执行所述计算机执行指令时,所述计算机执行如权利要求1至5或6至8中任一项所述的基于立体显示的处理方法。
PCT/CN2015/085534 2014-07-31 2015-07-30 一种基于立体显示的处理方法、装置及终端 WO2016015659A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410374579.8A CN105306918B (zh) 2014-07-31 2014-07-31 一种基于立体显示的处理方法及装置
CN201410374579.8 2014-07-31

Publications (1)

Publication Number Publication Date
WO2016015659A1 true WO2016015659A1 (zh) 2016-02-04

Family

ID=55203601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085534 WO2016015659A1 (zh) 2014-07-31 2015-07-30 一种基于立体显示的处理方法、装置及终端

Country Status (2)

Country Link
CN (1) CN105306918B (zh)
WO (1) WO2016015659A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105866950A (zh) * 2016-04-26 2016-08-17 乐视控股(北京)有限公司 数据处理的方法及装置
CN113427875A (zh) * 2021-07-09 2021-09-24 云南名博包装印刷有限公司 一种具有三维效果的复合膜及其制作工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1973555A (zh) * 2004-06-24 2007-05-30 索尼爱立信移动通讯有限公司 接近辅助3d再现
WO2012057774A1 (en) * 2010-10-29 2012-05-03 Hewlett-Packard Development Company, L.P. A three-dimensional image based on a distance of a viewer
CN102547323A (zh) * 2010-08-16 2012-07-04 Lg电子株式会社 从三维显示装置输出图像的方法及三维显示装置
US20120257795A1 (en) * 2011-04-08 2012-10-11 Lg Electronics Inc. Mobile terminal and image depth control method thereof
CN102752621A (zh) * 2012-06-26 2012-10-24 京东方科技集团股份有限公司 景深保持装置、3d显示装置及显示方法
US20140063206A1 (en) * 2012-08-28 2014-03-06 Himax Technologies Limited System and method of viewer centric depth adjustment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101673173B (zh) * 2009-08-17 2012-07-18 宇龙计算机通信科技(深圳)有限公司 一种显示界面的调节装置、方法
CN102237069A (zh) * 2010-05-05 2011-11-09 中国移动通信集团公司 一种防止屏幕图像抖动的方法及设备
JP5625979B2 (ja) * 2011-02-10 2014-11-19 ソニー株式会社 表示装置および表示方法ならびに表示制御装置
CN102142245A (zh) * 2011-03-28 2011-08-03 北京思比科微电子技术股份有限公司 便携式设备的防抖方法及装置
WO2013107467A1 (en) * 2012-01-17 2013-07-25 Sony Ericsson Mobile Communications Ab Portable electronic equipment and method of controlling an autostereoscopic display
US9807362B2 (en) * 2012-03-30 2017-10-31 Intel Corporation Intelligent depth control
KR20140067575A (ko) * 2012-11-27 2014-06-05 삼성디스플레이 주식회사 삼차원 이미지 구동 방법 및 이를 수행하는 입체 영상 표시 장치
CN103019384B (zh) * 2012-12-21 2016-05-11 广东欧珀移动通信有限公司 一种在终端上对显示界面进行调整的方法和装置
CN103581649A (zh) * 2013-10-18 2014-02-12 西安电子科技大学 裸眼三维影像显示装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1973555A (zh) * 2004-06-24 2007-05-30 索尼爱立信移动通讯有限公司 接近辅助3d再现
CN102547323A (zh) * 2010-08-16 2012-07-04 Lg电子株式会社 从三维显示装置输出图像的方法及三维显示装置
WO2012057774A1 (en) * 2010-10-29 2012-05-03 Hewlett-Packard Development Company, L.P. A three-dimensional image based on a distance of a viewer
US20120257795A1 (en) * 2011-04-08 2012-10-11 Lg Electronics Inc. Mobile terminal and image depth control method thereof
CN102752621A (zh) * 2012-06-26 2012-10-24 京东方科技集团股份有限公司 景深保持装置、3d显示装置及显示方法
US20140063206A1 (en) * 2012-08-28 2014-03-06 Himax Technologies Limited System and method of viewer centric depth adjustment

Also Published As

Publication number Publication date
CN105306918B (zh) 2018-02-09
CN105306918A (zh) 2016-02-03

Similar Documents

Publication Publication Date Title
US9509916B2 (en) Image presentation method and apparatus, and terminal
WO2015135477A1 (zh) 一种手持终端及其屏幕防抖方法和装置
WO2015149612A1 (en) Image presentation control methods and image presentation control apparatuses
US10956733B2 (en) Image processing apparatus and image processing method
WO2017032035A1 (zh) 调节方法、调节装置和终端
WO2016197639A1 (zh) 屏幕画面显示方法及装置
WO2015149611A1 (en) Image presentation control methods and image presentation control apparatuses
JP2013197797A (ja) 映像表示装置および映像表示方法
WO2016015659A1 (zh) 一种基于立体显示的处理方法、装置及终端
CN106331679A (zh) 双目相机间距调节方法及装置
KR20140047620A (ko) 입체적 효과 조정을 위한 상호적인 사용자 인터페이스
CN109901709B (zh) 调节显示画面的方法、装置及vr设备
KR101491963B1 (ko) 모바일 단말의 아웃 포커싱 영상 통화 방법 및 장치
US9025011B2 (en) Image capturing apparatus, playback apparatus, control method, image capturing system and recording medium
JP6837031B2 (ja) 立体画像表示装置、立体画像表示方法及びプログラム
US20140375554A1 (en) Method and system for presenting at least one image of at least one application on a display device
CN104427226A (zh) 图像采集方法和电子设备
CN107132920A (zh) 一种屏幕内容视图角度调整方法和装置
KR20160041403A (ko) 픽셀별 거리 정보를 기반으로 3d 영상 컨텐츠를 생성하는 방법, 장치 및 이 방법을 실행하기 위한 컴퓨터 판독 가능한 기록 매체
JP2019205023A5 (zh)
JP6269692B2 (ja) 表示装置、電子機器、およびプログラム
US9024940B2 (en) Three-dimensional image display device and three-dimensional image display method and program
US20170161933A1 (en) Mobile virtual reality (vr) operation method, system and storage media
JP6424947B2 (ja) 表示装置、およびプログラム
Zhang et al. A binocular stereo effect parameter calculator towards visual comfort

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15828074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15828074

Country of ref document: EP

Kind code of ref document: A1