WO2016015467A1 - 多结太阳能电池及其制备方法 - Google Patents

多结太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2016015467A1
WO2016015467A1 PCT/CN2015/073461 CN2015073461W WO2016015467A1 WO 2016015467 A1 WO2016015467 A1 WO 2016015467A1 CN 2015073461 W CN2015073461 W CN 2015073461W WO 2016015467 A1 WO2016015467 A1 WO 2016015467A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
sub
battery
junction solar
solar cell
Prior art date
Application number
PCT/CN2015/073461
Other languages
English (en)
French (fr)
Inventor
宋明辉
林桂江
陈文浚
毕京锋
Original Assignee
厦门市三安光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市三安光电科技有限公司 filed Critical 厦门市三安光电科技有限公司
Publication of WO2016015467A1 publication Critical patent/WO2016015467A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the field of compound semiconductor solar cells, and in particular relates to a multi-junction solar cell structure and a preparation method thereof.
  • a solar cell is a semiconductor device that converts solar energy into electrical energy by utilizing a photovoltaic effect, which is a combination of a p-type and an n-type semiconductor.
  • a photovoltaic effect which is a combination of a p-type and an n-type semiconductor.
  • Figure 1 shows the solar radiation spectrum.
  • the wavelengths are mainly distributed from 0.3 micron ultraviolet light to several micrometers of infrared light, which is converted into photon energy, which is about 0.4 eV to 4 eV.
  • a multi-junction solar cell which stacks semiconductor elements having different energy gaps together, so that a plurality of different energy gap semiconductor material layers can respectively absorb different energy sunlight.
  • Improve photoelectric conversion efficiency Although the bandwidth of energy absorption can be increased in this way, since the semiconductor materials of different energy gaps are stacked together, the current density difference between the top solar cell and the bottom solar cell is too large, and this current mismatch will result in the whole The photoelectric conversion efficiency of components is reduced, so how to reduce current mismatch is an important issue.
  • the object of the present invention is to provide a multi-junction solar cell structure and a preparation method thereof, which can reduce current mismatch and thereby improve photoelectric conversion efficiency, and reduce the current of the top sub-battery by reducing the light-receiving area of the top sub-battery, and the remaining The light is left to be absorbed by the sub-cells below, the current of the sub-cells is increased, and finally the current matching of the multi-junction cells is achieved, thereby optimizing the efficiency of the multi-junction cell.
  • a multi-junction solar cell includes at least a bottom battery and a a top sub-cell above the bottom cell, the top sub-battery being formed only on a part of the surface of the bottom cell to reduce the light-receiving area of the top cell, and when the light is incident on the multi-junction solar cell, part of the light is directly from the top
  • the remaining sub-batteries under the sub-battery absorb, reducing the current of the top sub-battery.
  • the top subcell has a surface area that is between 70% and 99% of the base cell.
  • the top subcell has a trench pattern that exposes the surface of the subcell below it, which is directly absorbed by the subcells below the trench when light is incident on the trench pattern.
  • the area of the groove pattern accounts for 1% to 30% of the total area.
  • the depth of the groove pattern is not greater than the thickness of the top battery.
  • the multi-junction solar cell includes a three-junction cell, which is a Ge first sub-cell, a GaAs second sub-cell, and a GaInP third sub-cell, respectively, from bottom to top, wherein the third sub-cell Formed only on a portion of the surface of the second subcell, the second subcell exposes a portion of the surface that is directly absorbed by the second subcell when light is incident on the exposed portion surface.
  • the area of the top sub-battery accounts for 95% to 99% of the neutron battery.
  • the multi-junction solar cell comprises a four-junction cell, which is a Ge first sub-cell, an InGaAs second sub-cell, an InGaAsP or AlInGaAs third sub-cell, and an AlInGaP fourth sub-cell, respectively from bottom to top.
  • the fourth sub-cell is formed only on a portion of the surface of the third sub-cell, the third sub-cell exposing a portion of the surface that is directly absorbed by the third sub-cell when light is incident on the exposed portion surface.
  • a method of fabricating a multijunction solar cell comprising sequentially depositing an epitaxial stack comprising a bottom cell and a top subcell located above the bottom cell, characterized in that: Forming a top sub-cell on a part of the surface of the bottom battery to reduce the light receiving area of the top sub-battery.
  • part of the light is directly absorbed by the remaining sub-batteries under the top sub-battery. The current of the top battery.
  • the method of fabricating a multi-junction solar cell includes the steps of: providing a substrate on which each of the junction cells is sequentially formed, the method comprising at least a bottom cell and a top sub-cell located above the bottom cell Forming a groove pattern on the top sub-battery to expose the surface of the sub-cell below it, and when the light is incident on the groove pattern, it is directly absorbed by the sub-battery under the trench.
  • the area of the formed groove pattern accounts for 1% to 30% of the total area.
  • Figure 1 is a spectrum of solar radiation.
  • FIG. 2 is a side cross-sectional view showing a three-junction solar cell according to a first embodiment of the present invention.
  • FIG. 3 is a schematic diagram of light absorption of the three-junction solar cell shown in FIG. 2.
  • FIG. 3 is a schematic diagram of light absorption of the three-junction solar cell shown in FIG. 2.
  • FIG. 4 is a groove pattern of the three-junction solar cell shown in FIG. 2.
  • Figure 5 is a graph showing the spectral response of a GaInP subcell.
  • Fig. 6 is a graph showing the spectral response of a GaAs subcell.
  • Figure 7 is a side cross-sectional view showing a four junction solar cell of a second embodiment of the present invention.
  • FIGS. 8 to 11 are cross-sectional views showing the structure of a four-junction solar cell according to a second embodiment of the present invention.
  • the multi-junction solar cell of the invention reduces the current of the top sub-battery by reducing the light-receiving area of the top sub-battery, and the remaining light is left to be absorbed by the sub-cells below, thereby increasing the current of the sub-cells below, and finally reaching the multi-junction cell.
  • GaInP/GaAs double junction cell GaInP/GaAs/Ge lattice matched triple junction cell
  • GaInP/InGaAs/InGaAs triple junction cell AlGaInP/InGaAsP/InGaAs/Ge quad junction
  • a battery a GaInP/InGaAs/InGaAs/InGaAs four-junction cell
  • GaInP/InGaAs/InGaNAsSb/Ge four-junction cell an AlGaInP/AlGaAs/GaAs/InGaNAs/Ge five-junction cell, and the like.
  • the current limit of the sub-battery of the multi-junction solar cell is 5% to 20%, so the light-receiving area of the top cell can be limited to 70% to 97% of the total area.
  • FIG. 2 is a side cross-sectional view showing a GaInP/GaAs/Ge triple junction solar cell 100 of a first embodiment of the present invention.
  • the triple junction solar cell 100 includes a p-type Ge substrate 110, a Ge first sub-cell 120, a GaAs second sub-cell 130, and a GaInP third sub-cell 140.
  • the first and second sub-cells and the second and third sub-cells are respectively connected by a tunnel junction (not shown).
  • the GaInP third sub-cell 140 has a trench pattern 150 that exposes a portion of the surface 130a of the GaAs second sub-cell 130 below it.
  • the light ray L A is incident on the surface of the third sub-cell 140, and is absorbed by the third sub-battery.
  • the groove is directly formed by the ditch.
  • the GaAs second sub-cell 130 under the trench is absorbed.
  • the groove pattern 150 may be composed of a series of grooves parallel to each other, or a series of grooves intersecting each other, or a column of regularly arranged circular or square grooves.
  • the trench pattern 150 is filled with a light transmissive dielectric material, such as silicon nitride, silicon oxide, etc., to protect the second subcell while ensuring the integrity of the physical structure of the third subcell.
  • Figure 5 shows the spectral response curve of the GaInP subcell
  • Figure 6 shows The spectral response curve of the GaAs subcell can be seen from the figure.
  • the spectral response of the GaInP subcell to the light in the 300nm to 680nm band is higher than that of the GaAs second subcell, and the second in the general GaInP/GaAs/Ge triple junction solar cell.
  • the battery current limit is 5%, so the area of the groove pattern is less than 5% of the total area of the battery, and the area ratio is generally 95% to 99%, preferably 97%.
  • Fig. 7 is a side cross-sectional view showing a second embodiment of the AlGaInP/InGaAsP/InGaAs/Ge four junction solar cell 200 of the present invention.
  • a four-junction solar cell 200 includes a p-type Ge substrate 210, a Ge first sub-cell 220, a p-type InGaAs stress-grading layer 230, an InGaAs second sub-cell 240, an InGaAsP third sub-cell 250, and an AlInGaP.
  • the AlGaInP fourth sub-cell 260 has a trench pattern 270 that exposes a portion of the surface 250a of the lower InGaAsP third sub-cell 250.
  • an epitaxial stack of each of the junction cells is deposited in the MOCVD reaction chamber, including growing the first sub-cell 220, the second sub-cell 240, the third sub-cell 250, and the fourth sub-cell 260. details as follows:
  • a groove pattern 270 is formed on the AlInGaP fourth sub-cell 260 to expose a portion of the surface 250a of the lower InGaAsP third sub-cell 250.
  • a lithography pattern 280 is formed on the surface of the AlInGaP fourth sub-cell 260 by using a photolithography process; then, the AlGaInP fourth sub-cell 260 without photoresist protection is removed by chemical etching to form the trench 270. As shown in FIG.
  • two samples were separately prepared, and the external quantum efficiency of the two samples was tested. Both samples were AlGaInP/InGaAsP/InGaAs/Ge four-junction solar cells, in which the fourth sub-cell 260 of the sample 1 was completely covered.
  • the third sub-battery 250 that is, has no groove pattern
  • the fourth sub-cell 260 of the sample 2 covers only a part of the surface of the third sub-battery 250, that is, a groove pattern (about 20%) is provided, and a part of the third sub-cell is exposed. Part of the surface of 250.
  • the test results are as follows:
  • the InGaAsP third junction battery of Sample 1 has a severe current limit, which is mainly caused by the lower band gap of the AlGaInP fourth sub-cell, and the sample 2 (ie, the four-junction solar cell of the present embodiment) is The current matching between the sub-cells is realized under the condition that the other performance parameters of the battery are unchanged, and the conversion efficiency under the 1000 times concentrating test condition reaches 44.1%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种多结太阳能电池,至少包括一底子电池和一位于子底电池之上的顶子电池,顶子电池仅形成于底子电池的部分表面上以减少顶子电池的受光面积,当光线入射至该多结太阳能电池时,部分光线直接由顶子电池下面的其余子电池吸收,降低顶子电池的电流。

Description

多结太阳能电池及其制备方法
本申请要求于2014年7月29日提交中国专利局、申请号为201410368077.4、发明名称为“多结太阳能电池及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于化合物半导体太阳能电池领域,具体涉及一种多结太阳能电池结构及其制备方法。
背景技术
太阳能电池是一种利用光生伏特效应,将太阳能转化成电能的半导体器件,由一p型及n型半导体组合而成。当太阳光照射到器件时,能量大于半导体能隙的太阳光会被吸收,而使得半导体器件产生电子空穴对,接通后即形成电流。
图1为太阳辐射光谱图,波长主要分布范围从0.3微米的紫外光到数微米的红外光,换算成光子能量,大约从0.4eV到4eV。为了能够更多吸收太阳光能量,多结太阳能电池被提出来,其将具有不同能隙的半导体元件堆叠在一起,如此可利用多种不同能隙的半导体材料层分别吸收不同能量的太阳光以增进光电转换效率。虽然以此种方式可增加能量吸收的带宽,但由于不同能隙的半导体材料层叠合在一起,顶层太阳能电池与底层太阳能电池各自产生的电流密度差异过大,此电流不匹配性,将导致整个元件光电转换效率减低,因此如何降低电流不匹配性是一个重要的议题。
发明内容
本发明的目的是提供一种可降低电流不匹配性进而提高光电转换效率的多结太阳能电池结构及其制备方法,其通过减少顶子电池的受光面积,降低顶子电池的电流,并将剩余的光留给下面的子电池来吸收,提高下面子电池的电流,最终达到多结子电池的电流匹配,从而实现多结电池效率的最优化。
根据本发明的第一个方面,一种多结太阳能电池,至少包括一底子电池和一位于所述 底电池之上的顶子电池,所述顶子电池仅形成于所述底子电池的部分表面上以减少顶子电池的受光面积,当光线入射至该多结太阳能电池时,部分光线直接由顶子电池下面的其余子电池吸收,降低所述顶子电池的电流。
在一些实施例中,所述顶子电池的表面积占底子电池的70%~99%。
在一些实施例中,所述顶子电池具有沟槽图形,露出其下方子电池的表面,当光线入射至该沟槽图形时,由沟槽下方的子电池直接吸收。较佳的,所述沟槽图形的面积占总面积的1%~30%。较佳的,所述沟槽图形的深度不大于所述顶子电池的厚度。
在一些实施例中,所述的多结太阳能电池包括三结子电池,其从下到上分别为Ge第一子电池、GaAs第二子电池,GaInP第三子电池,其中所述第三子电池仅形成于第二子电池的部分表面上,所述第二子电池露出部分表面,当光线入射至该露出部分表面时直接由第二子电池吸收。较佳的,所述顶子电池的面积占中子电池的95%~99%。
在一些实施例中,所述的多结太阳能电池包括四结子电池,其从下到上分别为Ge第一子电池、InGaAs第二子电池、InGaAsP或AlInGaAs第三子电池、AlInGaP第四子电池,其中所述第四子电池仅形成于第三子电池的部分表面上,所述第三子电池露出部分表面,当光线入射至该露出部分表面时直接由第三子电池吸收。
根据本发明的第二个方面,一种多结太阳能电池的制备方法,包括依次沉积外延叠层,其包括一底子电池和一位于所述底电池之上的顶子电池,其特征在于:仅在所述底子电池的部分表面上形成顶子电池,以减少顶子电池的受光面积,当光线入射至该多结太阳能电池时,部分光线直接由顶子电池下面的其余子电池吸收,降低所述顶子电池的电流。
在一些实施例中,所述多结太阳能电池的制备方法,包括步骤:提供一衬底,在其上依次形成各结子电池,其至少包括底子电池和位于所述底子电池之上的顶子电池;在所述顶子电池形成沟槽图形,露出其下方子电池的表面,当光线入射至该沟槽图形时,由沟槽下方的子电池直接吸收。较佳的,所述形成的沟槽图形的面积占总面积的1%~30%。
附图说明
图1为太阳辐射光谱图。
图2为本发明第一实施例三结太阳能电池的侧面剖视图。
图3为图2所示三结太阳能电池的光吸收示意图。
图4为图2所示三结太阳能电池的沟槽图形。
图5为GaInP子电池的光谱响应曲线图。
图6为GaAs子电池的光谱响应曲线图。
图7为本发明第二实施例四结太阳能电池的侧面剖视图。
图8~11显示了本发明第二实施例四结太阳能电池制作过程中的结构剖视图。
具体实施方式
本发明之多结太阳能电池通过减少顶子电池的受光面积,降低顶子电池的电流,并将剩余的光留给下面的子电池来吸收,提高下面子电池的电流,最终达到多结子电池的电流匹配,其可适用了任意多结电池,如GaInP/GaAs双结电池、GaInP/GaAs/Ge晶格匹配三结电池、GaInP/InGaAs/InGaAs三结电池、AlGaInP/InGaAsP/InGaAs/Ge四结电池、GaInP/InGaAs/InGaAs/InGaAs四结电池、GaInP/InGaAs/InGaNAsSb/Ge四结电池、AlGaInP/AlGaAs/GaAs/InGaNAs/Ge五结电池等。一般情况下,多结太阳能电池下面子电池的限流值为5%~20%,故顶电池的的受光面积可以限定为总面积的70%~97%。下面结合具体实施例对本发明的实施方式做详细说明。
图2显示了本发明第一实施例GaInP/GaAs/Ge三结太阳能电池100的侧面剖视图。
请参看图2,三结太阳能电池100,包括p型Ge衬底110,Ge第一子电池120,GaAs第二子电池130,GaInP第三子电池140。一般的,第一、第二子电池之间、第二、第三子电池之间分别通过隧道结连接(图中未示出)。其中GaInP第三子电池140具有沟槽图形150,其露出其下方GaAs第二子电池130的部分表面130a。请参看附图3,当太阳能电池置于太阳光环境中,光线LA入射至第三子电池140的表面,由第三子电池吸收,光线LB入射至该沟槽图形时,直接由沟槽下方的GaAs第二子电池130吸收。
请参看附图4,沟槽图形150可以由一系列彼此平行的沟槽组成,也可以由一系列彼此交叉的沟槽组成,还可以为一列系规则排列的圆形或方形的沟槽组成。较佳的,还可在沟槽图形150内填充透光性介电材料,如氮化硅、氧化硅等,保护第二子电池的同时保证第三子电池物理结构的完整性。
请参看附图5和6,其中图5显示了GaInP子电池的光谱响应曲线,图6显示了 GaAs子电池的光谱响应曲线,从图中可看出,GaInP子电池对300nm~680nm波段光的光谱响应高于GaAs第二子电池,而一般GaInP/GaAs/Ge三结太阳能电池中第二子电池限流5%,因此沟槽图案的面积小于电池总面积的5%即可,一般为面积占比取95%~99%,较佳的取97%。
图7显示了本发明第二实施例AlGaInP/InGaAsP/InGaAs/Ge四结太阳能电池200的侧面剖视图。
请参看附图7,四结太阳能电池200,包括p型Ge衬底210,Ge第一子电池220,p型InGaAs应力渐变层230,InGaAs第二子电池240,InGaAsP第三子电池250和AlInGaP第四子电池260,其中各结子电池之间通过一n++-GaAs/p++-GaAs隧道结连接(图中未示出)。其中AlGaInP第四子电池260具有沟槽图形270,其露出其下方InGaAsP第三子电池250的部分表面250a。下面结合制备方法对本实施例作详细说明。
首先,在MOCVD反应室沉积各结子电池的外延叠层,其包括生长第一子电池220、第二子电池240、第三子电池250及第四子电池260。具体如下:
1)在p型Ge衬底210外延生长n型Ga0.5In0.5P窗口层,掺杂浓度5E18/cm3,形成Ge第一子电池220;
2)在Ge第一子电池220上外延生长p型InGaAs应力渐变层230,保持TMGa流量不变,使In组分从0渐变到0.17,变化方式为阶梯型渐变,In组分每0.02左右为一阶梯,共9层,每一阶梯生长250nm;
3)在p型InGaAs应力渐变层230上外延生长带隙为1.2eV的InGaAs第二子电池240,首先生长20nm的p型AlInGaAs背场层,再生长3μm厚,掺杂浓度为1×1017cm-3的p型In0.17Ga0.83As基区,再生长200nm厚,掺杂浓度为2×1018cm-3的n型In0.17Ga0.83As发射层,最后生长50nm厚1×1018cm-3的n型InGaP窗口层;
4)在InGaAs第二子电池240上外延生长带隙为1.55eV的InGaAsP第三子电池250,首先生长20nm的p型AlInGaAs背场层,再生长3μm厚,掺杂浓度为1×1017cm-3的p型In0.27Ga0.73As0.49P0.51基区,再生长300nm厚,掺杂浓度为2×1018cm-3的n型In0.27Ga0.73As0.49P0.51发射层,最后生长50nm厚1×1018cm-3的n型AlInP窗口层;
5)在InGaAsP第三子电池250上外延生长带隙为1.85eV的AlInGaP第四子电池260,首先生长100nm的p型InAlGaAs背场层,再生长600nm厚,掺杂浓度为6×1016 cm-3的p型AlInGaP基区,再生长150nm厚,掺杂浓度为5×1018cm-3的n型AlInGaP发射层,最后生长50nm厚5×1018cm-3的n型AlInP窗口层,从而在Ge衬底上完成AlGaInP/InGaAsP/InGaAs/Ge晶格失配四结太阳能电池,其侧面剖视图如图8所示。
其次,在AlInGaP第四子电池260上形成沟图形270,露出其下方InGaAsP第三子电池250的部分表面250a。具体如下:请参看附图9,使用光刻工艺,在AlInGaP第四子电池260表面制作光刻图形280;然后采用化学蚀刻去除没有光刻胶保护的AlGaInP第四子电池260,形成沟槽270,如图10所示;去除四结电池上的光刻胶280,最终获得沟槽式AlGaInP/InGaAsP/InGaAs/Ge晶格失配四结电池,如图11所示。
在本实施例中,分别制作了两种样品,对两样品的外量子效率进行测试,两样品均为AlGaInP/InGaAsP/InGaAs/Ge四结太阳能电池,其中样品1的第四子电池260完全覆盖第三子电池250,即没有沟槽图案,样品2的第四子电池260仅覆盖第三子电池250的部分表面,即设有沟槽图案(面积约20%),露出部分第三子电池250的部分表面。测试结果如下表:
Figure PCTCN2015073461-appb-000001
从上表可看出,样品1的InGaAsP第三结子电池限流严重,其主要原因为AlGaInP第四子电池带隙较低导致的,而样品2(即本实施例之四结太阳能电池)在保证电池其它性能参数不变的情况下实现了子电池间电流匹配,其在1000倍聚光测试条件下的转换效率达到44.1%。
惟以上所述者,仅为本发明之较佳实施例而已,当不能以此限定本发明实施之范围,即大凡依本发明申请专利范围及专利说明书内容所作之简单的等效变化与修饰,皆仍属本发明专利涵盖之范围内。

Claims (11)

  1. 多结太阳能电池,至少包括一底子电池和一位于所述底电池之上的顶子电池,所述顶子电池仅形成于所述底子电池的部分表面上以减少顶子电池的受光面积,当光线入射至该多结太阳能电池时,部分光线直接由顶子电池下面的其余子电池吸收,降低所述顶子电池的电流。
  2. 根据权利要求1所述的多结太阳能电池,其特征在于:所述顶子电池的表面积占底子电池的70%~99%。
  3. 根据权利要求1所述的多结太阳能电池,其特征在于:所述顶子电池具有沟槽图形,露出其下方子电池的表面,当光线入射至该沟槽图形时,由沟槽下方的子电池直接吸收。
  4. 根据权利要求3所述的多结太阳能电池,其特征在于:所述沟槽图形的面积占总面积的1%~30%。
  5. 根据权利要求3所述的多结太阳能电池,其特征在于:所述沟槽图形的深度不大于所述顶子电池的厚度。
  6. 根据权利要求1所述的多结太阳能电池,其特征在于:包括三结子电池,其从下到上分别为Ge第一子电池、GaAs第二子电池,GaInP第三子电池,其中所述第三子电池仅形成于第二子电池的部分表面上,所述第二子电池露出部分表面,当光线入射至该露出部分表面时直接由第二子电池吸收。
  7. 根据权利要求6所述的多结太阳能电池,其特征在于:所述顶子电池的面积占中子电池的95%~99%。
  8. 根据权利要求1所述的多结太阳能电池,其特征在于:包括四结子电池,其从下到上分别为Ge第一子电池、InGaAs第二子电池、InGaAsP或AlInGaAs第三子电池、AlInGaP第四子电池,其中所述第四子电池仅形成于第三子电池的部分表面上,所述第三子电池露出部分表面,当光线入射至该露出部分表面时直接由第三子电池吸收。
  9. 多结太阳能电池的制备方法,包括依次沉积外延叠层,其包括一底子电池和一位于所述底电池之上的顶子电池,其特征在于:仅在所述底子电池的部分表面上形成顶子电池,以减少顶子电池的受光面积,当光线入射至该多结太阳能电池时,部分光线直接由顶子电池下面的其余子电池吸收,降低所述顶子电池的电流。
  10. 根据权利要求9所述多结太阳能电池的制备方法,包括步骤:
    提供一衬底,在其上依次形成各结子电池,其至少包括底子电池和位于所述底子电池之上的顶子电池;
    在所述顶子电池形成沟槽图形,露出其下方子电池的表面,当光线入射至该沟槽图形时,由沟槽下方的子电池直接吸收。
  11. 根据权利要求10所述多结太阳能电池的制备方法,其特征在于:所述形成的沟槽图形的面积占总面积的1%~30%。
PCT/CN2015/073461 2014-07-29 2015-03-02 多结太阳能电池及其制备方法 WO2016015467A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410368077.4 2014-07-29
CN201410368077.4A CN104091849B (zh) 2014-07-29 2014-07-29 多结太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
WO2016015467A1 true WO2016015467A1 (zh) 2016-02-04

Family

ID=51639547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073461 WO2016015467A1 (zh) 2014-07-29 2015-03-02 多结太阳能电池及其制备方法

Country Status (2)

Country Link
CN (1) CN104091849B (zh)
WO (1) WO2016015467A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3799136A1 (de) * 2019-09-27 2021-03-31 AZUR SPACE Solar Power GmbH Monolithische mehrfachsolarzelle mit genau vier teilzellen
US11563133B1 (en) 2015-08-17 2023-01-24 SolAero Techologies Corp. Method of fabricating multijunction solar cells for space applications
US11635280B2 (en) 2018-05-18 2023-04-25 Graphene Composites Limited Protective shield, shield wall and shield wall assembly
US11652182B2 (en) 2016-10-14 2023-05-16 Solaero Technologies Corp. Five junction multijunction metamorphic solar cell

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104091849B (zh) * 2014-07-29 2017-01-18 天津三安光电有限公司 多结太阳能电池及其制备方法
CN104659140B (zh) * 2015-03-06 2017-03-01 天津三安光电有限公司 一种多结太阳能电池
CN106601856B (zh) * 2015-10-13 2018-05-29 中国科学院苏州纳米技术与纳米仿生研究所 三结太阳能电池及其制备方法
CN106784108B (zh) * 2015-11-20 2019-05-31 北京创昱科技有限公司 一种双结薄膜太阳能电池组件及其制作方法
TWI669473B (zh) * 2016-11-07 2019-08-21 張忠誠 Method and structure for increasing solar cell power generation per unit erection area
KR102224624B1 (ko) * 2019-02-27 2021-03-08 한국과학기술연구원 다중접합 태양전지 및 이의 제조방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1431721A (zh) * 2003-01-14 2003-07-23 河北科技大学 一种太阳能转换多结极联光电池
US20100084924A1 (en) * 2008-10-07 2010-04-08 Sunlight Photonics Inc. Apparatus and method for producing ac power
US20110146769A1 (en) * 2009-12-22 2011-06-23 Los Alamos National Security, Llc Photovoltaic device comprising compositionally graded intrinsic photoactive layer
KR101357059B1 (ko) * 2011-11-24 2014-02-05 (재)한국나노기술원 전류 매칭 구조의 다중접합 태양전지
US20140158189A1 (en) * 2011-05-02 2014-06-12 Mcmaster University Areal current matching of tandem solar cells
CN104091849A (zh) * 2014-07-29 2014-10-08 天津三安光电有限公司 多结太阳能电池及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104080A (ja) * 1985-10-30 1987-05-14 Sharp Corp 太陽電池素子
CN101499493A (zh) * 2009-02-23 2009-08-05 东南大学 一种三结太阳能电池
WO2012057604A1 (en) * 2010-10-29 2012-05-03 Mimos Berhad Nanostructure-based photovoltaic cell
CN103426965B (zh) * 2013-08-16 2016-12-28 中国科学院苏州纳米技术与纳米仿生研究所 太阳能电池及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1431721A (zh) * 2003-01-14 2003-07-23 河北科技大学 一种太阳能转换多结极联光电池
US20100084924A1 (en) * 2008-10-07 2010-04-08 Sunlight Photonics Inc. Apparatus and method for producing ac power
US20110146769A1 (en) * 2009-12-22 2011-06-23 Los Alamos National Security, Llc Photovoltaic device comprising compositionally graded intrinsic photoactive layer
US20140158189A1 (en) * 2011-05-02 2014-06-12 Mcmaster University Areal current matching of tandem solar cells
KR101357059B1 (ko) * 2011-11-24 2014-02-05 (재)한국나노기술원 전류 매칭 구조의 다중접합 태양전지
CN104091849A (zh) * 2014-07-29 2014-10-08 天津三安光电有限公司 多结太阳能电池及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11563133B1 (en) 2015-08-17 2023-01-24 SolAero Techologies Corp. Method of fabricating multijunction solar cells for space applications
US11652182B2 (en) 2016-10-14 2023-05-16 Solaero Technologies Corp. Five junction multijunction metamorphic solar cell
US11721777B1 (en) 2016-10-14 2023-08-08 Solaero Technologies Corp. Multijunction metamorphic solar cell
US11635280B2 (en) 2018-05-18 2023-04-25 Graphene Composites Limited Protective shield, shield wall and shield wall assembly
EP3799136A1 (de) * 2019-09-27 2021-03-31 AZUR SPACE Solar Power GmbH Monolithische mehrfachsolarzelle mit genau vier teilzellen
US11127873B2 (en) 2019-09-27 2021-09-21 Azur Space Solar Power Gmbh Monolithic multijunction solar cell having exactly four subcells

Also Published As

Publication number Publication date
CN104091849A (zh) 2014-10-08
CN104091849B (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
WO2016015467A1 (zh) 多结太阳能电池及其制备方法
US11411129B2 (en) Solar cells having a transparent composition-graded buffer layer
TWI600173B (zh) 在中間電池中具有低能隙吸收層之多接面太陽能電池及其製造方法
EP3133650B1 (en) Four junction solar cell for space applications
JP5425480B2 (ja) 倒置型メタモルフィック多接合ソーラーセルにおけるヘテロ接合サブセル
US7807921B2 (en) Multijunction solar cell having a lattice mismatched GrIII-GrV-X layer and a composition-graded buffer layer
US20090272430A1 (en) Refractive Index Matching in Inverted Metamorphic Multijunction Solar Cells
US20110287578A1 (en) Method of fabricating bifacial tandem solar cells
US20200251604A1 (en) Distributed bragg reflector structures in multijunction solar cells
JP2010118667A (ja) 2つの変性層を備えた4接合型反転変性多接合太陽電池
US20130228216A1 (en) Solar cell with gradation in doping in the window layer
US10749053B2 (en) Distributed Bragg reflector structures in multijunction solar cells
US9035367B2 (en) Method for manufacturing inverted metamorphic multijunction solar cells
US20140090700A1 (en) High-concentration multi-junction solar cell and method for fabricating same
US10910506B1 (en) Solar cell with gradation in the top window layer
US20150034152A1 (en) Solar cell with passivation on the window layer
JP5283588B2 (ja) 太陽電池
US10263134B1 (en) Multijunction solar cells having an indirect high band gap semiconductor emitter layer in the upper solar subcell
US11282979B2 (en) Distributed bragg reflector structures in multijunction solar cells
US20150059837A1 (en) Solar cell with passivation on the contact layer
Cruz-Campa et al. Power maximization in III–V sub-millimeter, radial front contacted cells for thin micro-concentrators
Aho et al. Performance Study of Lattice-Matched Multijunction Solar Cells Incorporating GaInNAsSb Junctions with 0.7-1.4 eV Bandgap
US20150040972A1 (en) Inverted metamorphic multijunction solar cell with surface passivation of the contact layer
RU2670362C2 (ru) Фотопреобразователь с квантовыми точками
US20150034151A1 (en) Inverted metamorphic multijunction solar cell with passivation in the window layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15826913

Country of ref document: EP

Kind code of ref document: A1