WO2016015441A1 - 一种业务数据管理的方法、装置及系统 - Google Patents

一种业务数据管理的方法、装置及系统 Download PDF

Info

Publication number
WO2016015441A1
WO2016015441A1 PCT/CN2014/094913 CN2014094913W WO2016015441A1 WO 2016015441 A1 WO2016015441 A1 WO 2016015441A1 CN 2014094913 W CN2014094913 W CN 2014094913W WO 2016015441 A1 WO2016015441 A1 WO 2016015441A1
Authority
WO
WIPO (PCT)
Prior art keywords
noa
data
noc
service data
service
Prior art date
Application number
PCT/CN2014/094913
Other languages
English (en)
French (fr)
Inventor
杨能
李夏光
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14896956.1A priority Critical patent/EP3018930B1/en
Priority to US14/992,564 priority patent/US10136375B2/en
Publication of WO2016015441A1 publication Critical patent/WO2016015441A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/51Discovery or management thereof, e.g. service location protocol [SLP] or web services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/045Interfaces between hierarchically different network devices between access point and backbone network device

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, device, and system for managing service data.
  • backhaul is used by the core network to transmit voice and data traffic to the base station side.
  • backhaul is a link between an evolved base station (eNodeB) and an evolved packet core network (EPC).
  • eNodeB evolved base station
  • EPC evolved packet core network
  • the user equipment (User Equipment, UE) accesses the mobile network through a Radio Access Network (RAN) to obtain services.
  • RAN Radio Access Network
  • the UE When the user browses the webpage through the UE, the UE sends a service request to the eNodeB to request service data, and the service request is sent to the service provider (SP) server of the core network side through the eNodeB.
  • the core network side device completes charging for the UE for the service data requested by the UE.
  • the SP server sends the service data requested by the UE to the eNodeB, and the eNodeB sends the service data to the UE.
  • the SP server needs to send the service data to the eNodeB once, whether the same UE or a different UE requests the same service data, resulting in a very large data flow of the Backhaul and occupying a large amount of Backhaul bandwidth resources.
  • the present invention provides a method for service data management, which is used to reduce the amount of Backhaul data, thereby reducing Backhaul bandwidth usage.
  • the embodiments of the present invention also provide corresponding devices and systems.
  • an embodiment of the present invention provides a method for service data management, where the method is applied to a wireless communication system, where the wireless communication system includes: a base station, a gateway, a network optimization agent NOA, a network optimization controller NOC, and a service.
  • the wireless communication system includes: a base station, a gateway, a network optimization agent NOA, a network optimization controller NOC, and a service.
  • NOA being deployed on the base station side
  • the NOC is deployed on the gateway side
  • the method includes:
  • the NOA determines whether the service data has been stored in the NOA
  • the NOC When it is determined that the service data has been stored in the NOA, sending hit indication information to the NOC, so that the NOC replaces data in the service data with preset replacement information according to the hit indication information. Segmentation, the preset replacement information occupies less bandwidth than the data segment; receiving replacement information sent by the NOC, determining corresponding data segment according to the replacement information, and performing the first The UE transmits the stored data segment.
  • the method further includes:
  • the NOA sends the stored data segment to the second UE.
  • the SP server returns the service data requested by the first UE, including:
  • the SP server carries the data segment included in the service data in one or more response messages, and sends the one or more response messages to the NOC;
  • Determining whether the service data has been stored in the NOA includes:
  • the determining whether the service data is stored in the NOA includes:
  • an embodiment of the present invention provides a method for service data management, where the method is applied to a wireless communication system, where the wireless communication system includes: a base station, a gateway, a network optimization agent NOA, a network optimization controller NOC, and a service.
  • the wireless communication system includes: a base station, a gateway, a network optimization agent NOA, a network optimization controller NOC, and a service.
  • NOA is deployed on the base station side
  • the NOC is deployed on the gateway side
  • the method includes:
  • the replacement information When receiving the hit indication information sent by the NOA, replacing, according to the hit indication information, a data segment in the service data with preset replacement information, where the preset replacement information occupies less than the data.
  • the replacement information is sent to the NOA, so that the NOA searches for a corresponding data segment according to the replacement information, and sends the stored data segment to the first UE.
  • the method further includes:
  • miss indication information when the miss indication information is received, sending, according to the miss indication information, a data segment included in the service data to the NOA, so that the NOA stores the received data segment into the In the NOA, when the second UE requests the service data, the NOA sends the stored data segment to the second UE.
  • an embodiment of the present invention provides a network optimization agent NOA, where the NOA is applied to a wireless communication system, where the wireless communication system further includes: a base station, a gateway, a network optimization controller NOC, and a service provider SP server.
  • the NOA is deployed on the base station side, and the NOC is deployed on the gateway side, and the NOA includes:
  • a receiving unit configured to receive a service request of the first user equipment UE
  • a sending unit configured to forward the service request received by the receiving unit to the SP server by using the NOC, so that the SP server returns the service data requested by the first UE according to the service request ;
  • a determining unit configured to determine whether the service data has been stored in the NOA
  • the sending unit is further configured to: when the determining unit determines that the service data is stored in the NOA, send a hit indication information to the NOC, so that the NOC uses the pre-instruction information according to the The replacement information replaces the data segment in the service data, and the preset replacement information occupies less bandwidth than the data segment;
  • the receiving unit is further configured to receive replacement information sent by the NOC;
  • the determining unit is further configured to determine, according to the replacement information received by the receiving unit, a corresponding data segment
  • the sending unit is further configured to send, to the first UE, the stored data segment determined by the determining unit.
  • the sending unit is further configured to: when the determining unit determines that the service data is not stored in the NOA, send a miss indication information to the NOC, so that the NOC is configured according to the miss indication information, Transmitting, to the NOA, a data segment included in the service data;
  • the receiving unit is further configured to receive the data segment from the NOC;
  • a storage unit configured to store the data segment received by the receiving unit
  • the sending unit is further configured to: when the second UE requests the service data, send the data segment that is stored by the storage unit to the second UE.
  • the SP server carries the data segment included in the service data in one or more response packets, and Sending the one or more response messages to the NOC;
  • the determining unit includes:
  • a receiving subunit configured to receive a first response packet sent by the NOC, where the first response packet carries a first data segment in the service data requested by the first UE, where
  • a first generating subunit configured to generate first index information according to the first data segment received by the receiving subunit
  • a first search subunit configured to find whether the first index information generated by the first generation subunit is already stored in the NOA
  • a first determining subunit configured to: when the first lookup subunit finds that the first index information is stored in the NOA, determine that the service data is already stored in the NOA; When the lookup subunit finds that the first index information is not stored in the NOA, it determines that the service data is not stored in the NOA.
  • the determining unit includes:
  • a parsing subunit configured to parse a service identifier from the service request
  • a second generation subunit configured to generate second index information according to the service identifier parsed by the parsing subunit
  • a second search subunit configured to find whether the second index information generated by the second generation subunit is stored in the NOA
  • a second determining subunit configured to: when the second search subunit finds that the second index information is stored in the NOA, determine that the service data is stored in the NOA, when When the second search subunit finds that the second index information is not stored in the NOA, it determines that the service data is not stored in the NOA.
  • an embodiment of the present invention provides a network optimization controller NOC, where the NOC is applied to a wireless communication system, where the wireless communication system includes: a base station, a gateway, a network optimization agent NOA, and a service provider SP server.
  • the NOA is deployed on the base station side, and the NOC is deployed on the gateway side, and the NOC includes:
  • a receiving unit configured to receive a service request of the first user equipment UE that is forwarded by the NOA
  • a sending unit configured to forward the service request received by the receiving unit to the SP server, so that the SP server returns service data requested by the first UE according to the service request;
  • the receiving unit is further configured to receive hit indication information sent by the NOA;
  • a replacement unit configured to: when the receiving unit receives the hit indication information of the NOA transmission, replace the data segment in the service data with the preset replacement information according to the hit indication information, where the preset The replacement information occupies less bandwidth than the data segment;
  • the sending unit is further configured to send the replacement information replaced by the replacement unit to the NOA, so that the NOA searches for a corresponding data segment according to the replacement information, and sends the used data to the first UE.
  • the data segment stored.
  • the receiving unit is further configured to receive miss indication information
  • the sending unit is further configured to: when the receiving unit receives the miss indication information, send the data segment included in the service data to the NOA according to the miss indication information, so that the NOA The received data segment is stored in the NOA, and when the second UE requests the service data, the stored data segment is sent by the NOA to the second UE.
  • an embodiment of the present invention provides a wireless communication system, including: a base station, a gateway, a network optimization agent NOA, a network optimization controller NOC, and a service provider SP server, where the NOA is deployed on the base station side.
  • the NOC is deployed on the gateway side.
  • the NOA is the NOA described in the technical solution of any of the above NOAs;
  • the NOC is the NOC described in the technical solution of any of the above NOCs.
  • the service data management method configures the network optimization agent NOA on the base station side, and deploys the network optimization controller NOC on the gateway side to manage the service data, so that the service is in the service.
  • the network optimization agent NOA stores the service data.
  • the network optimization controller NOC is not required to resend the service data once, but by the NOA.
  • the service data is sent to the UE, which reduces the amount of Backhaul data, thereby reducing the Backhaul bandwidth usage.
  • FIG. 1 is a schematic diagram of an embodiment of a method for managing service data in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of another embodiment of a method for managing service data in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of another embodiment of a method for managing service data in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another embodiment of a method for managing service data in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another embodiment of a method for managing service data in an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another embodiment of a method for managing service data in an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of another embodiment of a method for managing service data in an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another embodiment of a method for managing service data in an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another embodiment of a method for managing service data in an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of another embodiment of a method for managing service data in an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of another embodiment of a method for managing service data in an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of another embodiment of a method for managing service data in an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of another embodiment of a method for managing service data in an embodiment of the present invention.
  • FIG. 14 is a schematic diagram of another embodiment of a method for managing service data in an embodiment of the present invention.
  • 15 is a schematic diagram of another embodiment of a method for managing service data in an embodiment of the present invention.
  • 16 is a schematic diagram of another embodiment of a method for managing service data in an embodiment of the present invention.
  • FIG. 17 is a schematic diagram of an embodiment of a network optimization agent NOA in an embodiment of the present invention.
  • FIG. 18 is a schematic diagram of another embodiment of a network optimization agent NOA in an embodiment of the present invention.
  • FIG. 19 is a schematic diagram of another embodiment of a network optimization agent NOA in an embodiment of the present invention.
  • FIG. 20 is a schematic diagram of another embodiment of a network optimization agent NOA in an embodiment of the present invention.
  • 21 is a schematic diagram of an embodiment of a network optimization controller NOC according to an embodiment of the present invention.
  • FIG. 22 is a schematic diagram of another embodiment of a network optimization controller NOC according to an embodiment of the present invention.
  • FIG. 23 is a schematic diagram of another embodiment of a network optimization controller NOC according to an embodiment of the present invention.
  • FIG. 24 is a schematic diagram of another embodiment of a network optimization controller NOC according to an embodiment of the present invention.
  • FIG. 25 is a schematic diagram of another embodiment of a network optimization controller NOC according to an embodiment of the present invention.
  • FIG. 26 is a schematic diagram of another embodiment of a network optimization controller NOC according to an embodiment of the present invention.
  • FIG. 27 is a schematic diagram of another embodiment of a network optimization agent NOA in an embodiment of the present invention.
  • FIG. 28 is a schematic diagram of another embodiment of a network optimization controller NOC according to an embodiment of the present invention.
  • 29 is a schematic diagram of an embodiment of a wireless communication system in an embodiment of the present invention.
  • the embodiment of the invention provides a method for managing service data, which is used for reducing the data volume of the Backhaul, thereby reducing the bandwidth usage of the Backhaul.
  • the embodiments of the present invention also provide corresponding devices and systems. The details are described below separately.
  • the wireless communication system includes an evolved base station eNodeB, a packet data network gateway (PGW), and a serving gateway.
  • SGW Network Optimization Agent
  • NOC Network Optimization Controller
  • SP service provider
  • the NOA is deployed on the evolved base station eNodeB side
  • the NOC Before being deployed in the Packet Data Network Gateway (PGW) or the serving gateway (SGW) of the core network, the SP server is used to provide service data, such as video content, web content, etc.
  • the user equipment can be a mobile phone or a notebook.
  • Terminal devices such as computers and personal computers (PCs).
  • the service data in the embodiment of the present invention may be video data, audio data, web page data, and the like.
  • the link between the eNodeB and the PGW (Packet Data Network Gateway)/SGW (Serving Gateway) is a backhaul link, and the user equipment (User Equipment, UE),
  • the eNodeB, NOA, NOC, PGW/SGW, and SP server can communicate with each other through the Transmission Control Protocol (TCP) and the Internet.
  • TCP Transmission Control Protocol
  • IP Internet Protocol
  • the NOA and the NOC can also communicate through a User Datagram Protocol (UDP) or a General Packet Radio Service Tunnel Protocol (GTP).
  • UDP User Datagram Protocol
  • GTP General Packet Radio Service Tunnel Protocol
  • the option part of the TCP header can be up to 40 bytes, so in the embodiment of the present invention, the replacement information and the index information are transmitted by using the Option field defined in the TCP protocol.
  • an embodiment of a method for managing service data includes:
  • the UE1 sends a service request to the SP server by using the NOA and the NOC, where the service request is used to request service data.
  • the business data can be video data, audio data, web page data, and the like.
  • the SP server sends a first response packet to the NOC, where the first response packet carries the first data segment of the service data.
  • the NOC charges the UE1 for the service data.
  • the NOC sends the first response packet to the NOA, where the NOA sends the first response packet to the UE1, where the first response packet carries the first data packet in the service data. Segment segmentation.
  • the NOA calculates first index information of the service data according to the first data segment segment, and determines the service data miss according to the first index information.
  • the calculation of the first index information may be performed by using an information digest algorithm, or may be calculated by other algorithms.
  • the miss refers to the fact that the service data is not stored in the NOA
  • the hit means that the service data is stored in the NOA
  • the first index information is stored corresponding to the service data. Therefore, after the NOA calculates the first index information, it can determine whether the service data is stored in the NOA from the correspondence between the first index information and the service data. If it is determined that it is not stored, then a miss is determined.
  • the UE sends a TCP acknowledgement message to the NOA.
  • the NOA adds the first index information to the confirmation message.
  • the first index information may be added to an Option field of the TCP.
  • the SP server continues to send the data segment in the service data by using a response packet, where the NOC sends the data segment to the NOA, and the NOA sends the data segment to the UE.
  • the NOA stores the data segment of the service data and the first index information.
  • each time only one segment of data can be sent the number of times of transmission can be multiple, but each process is the same as S120 and S125, and no further description is made here.
  • the first index information corresponding to the data segment may be searched through the session identifier.
  • the session ID is unique during a session.
  • the process of segmenting the NOA storage data can be understood as the process of business data injection.
  • the business data is usually injected step by step, and the data with very few bytes can also be injected once.
  • the UE2 sends a request to the SP server to request the same service data as the UE1.
  • the SP server sends a first response packet to the NOC, where the response packet carries the first data segment segment of the service data.
  • the NOC charges the UE2 for the service data.
  • the NOC sends the first response packet to the NOA, where the NOA sends the first response packet to the UE2, where the first response packet carries the first data segment of the service data. Segmentation.
  • the NOA calculates first index information of the service data according to the first data segment, and determines the service data hit according to the first index information.
  • the UE2 sends a TCP acknowledgement message to the NOA.
  • the NOA sends a TCP acknowledgement message to the NOC, and adds a hit indication information to the option field of the TCP acknowledgement message, so that the NOC replaces the data segment in the service data with the preset replacement information according to the hit indication information.
  • the preset replacement information occupies less bandwidth than the data segment.
  • the replacement information can be either an identifier or an index.
  • the NOC sends a TCP acknowledgement message to the SP server.
  • the SP server continues to send the data points in the service data to the NOC through the response message. segment.
  • the NOC replaces the data segment with the preset replacement information in the response message according to the hit indication information.
  • the preset replacement information occupies less bandwidth than the data segment.
  • the replacement information may be only 4 bytes or less, and the occupied backhaul bandwidth is much smaller than the bandwidth occupied by the data segment. Therefore, the amount of data of the Backhaul can be reduced, and the bandwidth occupation rate is reduced.
  • the NOC sends a response packet to the NOA, where the response packet carries the replacement information.
  • the NOA searches for the data segment from the local storage according to the replacement information.
  • the replacement information it can be determined that the data segment is stored in the local storage, and then the data segment of the service data is searched according to the session identifier of the current session.
  • the NOA sends the found data segment to the UE2.
  • the UE2 after the service data requested by the UE1 is injected into the first data segment in the NOA, the UE2 requests the same service data as the service data requested by the UE1, and is actually segmented by the NOA from the stored data.
  • the data segment of the service data is successively sent to the UE2, and the NOC is not required to send the service data, thereby reducing the amount of Backhaul data and saving bandwidth.
  • FIG. 4 another embodiment of a method for managing service data according to an embodiment of the present invention includes:
  • the solution provided by the embodiment of the present invention is that when the NOA1 stores the service data requested by the UE1, the UE1 switches to another eNodeB, and the other eNodeB side deploys NOA2.
  • the SP server continues to send the data segment to the NOC through the response message.
  • the NOC learns that the UE1 is switched to another eNodeB, and the NOE2 is deployed on the other eNodeB side, and the first index information is added to the response packet.
  • the NOC sends the first index information and the data segment that is not stored in the NOA1 in the service data to the NOA2.
  • S250 and NOA2 send data segments to UE1.
  • the UE1 when the UE1 is injected into the service data, the UE1 switches to another eNodeB, and when the NOE2 is deployed on the other eNodeB side, the remaining data segments that are not injected into the NOA1 are injected into the NOA2.
  • FIG. 5 another embodiment of a method for managing service data according to an embodiment of the present invention includes:
  • S200-S225 are the same as those described in S200-S225 shown in FIG. 4, and will not be described in detail herein.
  • the solution provided by the embodiment of the present invention is that when the NOA1 injects the service data requested by the UE1, the UE1 switches to another eNodeB, and another NOA is not deployed on the other eNodeB side.
  • the SP server continues to send the data segment to the NOC through the response message.
  • the NOC learns that the UE1 switches to another eNodeB.
  • the NOC sends a data segment to another eNodeB by using a response message.
  • the other eNodeB forwards the data segment to the UE1.
  • the NOC when the UE1 is switched to another eNodeB in the process of injecting the service data into the NOA1, and the NOA is not deployed on the other eNodeB side, the NOC sends the response packet carrying the data segment directly to the Another eNodeB, the other eNodeB forwards the data segment to UE1.
  • FIG. 6 another embodiment of a method for managing service data provided by an embodiment of the present invention includes:
  • the solution provided by the embodiment of the present invention is that, when the NOA1 is already stored, when the NOA1 has been sent to the UE1, the UE1 switches to another eNodeB, and the other eNodeB side deploys the NOA2.
  • the service data is not stored in NOA2.
  • the SP server continues to send the data segment to the NOC through the response message.
  • the NOC learns that the UE1 is handed over to another eNodeB, and the NOE2 is deployed on the other eNodeB side, and the first index information is added to the response message.
  • the NOC sends the first index information and the data segment of the service data that is not sent by the NOA1 to the UE1 to the NOA2.
  • S375 and NOA2 send data segments to UE1.
  • the NOA1 when the NOA1 sends the stored service data to the UE1, the UE1 switches to another eNodeB, and when the NOE2 is deployed on the other eNodeB side, the NOA1 in the service data is not sent to the data of the UE1.
  • the segment is injected into NOA2.
  • another embodiment of a method for managing service data provided by an embodiment of the present invention includes:
  • the solution provided by the embodiment of the present invention is that when the NOA1 is already stored, when the NOA1 has already stored the data segment, the UE1 switches to another eNodeB, and the other eNodeB side does not deploy the NOA.
  • the SP server continues to send data segments to the NOC through the response message.
  • the NOC learns that the UE1 switches to another eNodeB.
  • the NOC sends a data segment to another eNodeB by using a response message.
  • the other eNodeB forwards the data segment to the UE1.
  • the NOA1 when the NOA1 sends the stored service data to the UE1, the UE1 switches to another eNodeB, and when the other eNodeB side does not deploy the NOA, the NOC sends the response packet carrying the data segment directly. To the other eNodeB, the other eNodeB forwards the data segment to UE1.
  • FIG. 8 another embodiment of a method for managing service data according to an embodiment of the present invention includes:
  • the solution provided by the embodiment of the present invention is that in the process that the NOA1 sends the stored service data to the UE1, if the NOA1 fails, the process of S400-S425 is performed:
  • the SP server continues to send data segments to the NOC through the response message.
  • the NOC sends a response packet to the eNodeB, where the response packet carries the replacement information.
  • the eNodeB sends a response packet to the UE1, where the response packet carries the replacement information.
  • the UE1 learns a data transmission error, and sends a retransmission instruction to the NOC through the eNodeB.
  • the SP server sends the data segment to the UE1 through the NOC and the eNodeB.
  • the embodiments provided in FIG. 3 to FIG. 8 are all in the process of responding by the SP server, and the NOA calculates the first index information according to the first data segment of the requested service data.
  • another embodiment of a method for managing service data according to an embodiment of the present invention includes:
  • the UE1 sends a service request to the NOA, where the service request carries a service identifier.
  • the service identifier in the embodiment of the present invention may be a web address (Uniform Resoure Locator, URL), a video unique identifier, and an audio unique identifier.
  • URL Uniform Resoure Locator
  • the NOA calculates the second index information according to the service identifier, and determines, according to the second index information, that the service data requested by the service request is not stored in the NOA.
  • the second index information may be calculated by using an information digest algorithm, or may be calculated by other algorithms.
  • the miss refers to the fact that the service data is not stored in the NOA
  • the hit means that the service data is stored in the NOA
  • the first index information is stored corresponding to the service data. Therefore, after the NOA calculates the first index information, it can determine whether the service data is stored in the NOA from the correspondence between the first index information and the service data. If it is determined that it is not stored, then a miss is determined.
  • the NOA sends a service request to the SP server through the NOC.
  • the SP server gradually sends the data segment of the service data by using a response message.
  • the NOC charges the UE1 for the service data.
  • the NOC sends the response packet to the NOA, where the NOA sends the response packet to the UE, where the response packet carries the data segment of the service data.
  • the NOA stores the second index information and the data segment correspondingly.
  • the UE1 sends a TCP acknowledgement message to the NOA.
  • the NOA sends a TCP acknowledgement message to the NOC, and adds the second index information to the acknowledgement message.
  • the second index information may be added to an Option field of the TCP.
  • the second index information corresponding to the data segment may be searched through the session identifier.
  • the session ID is unique during a session.
  • the process of segmenting the NOA storage data can be understood as the process of business data injection.
  • the business data is usually injected step by step. When the number of bytes of the business data is small, the injection can be completed once.
  • S525 In the process of injecting the service data by the NOA, the UE2 sends a service request to the NOA to request the same service data as the UE1, where the service request carries the service identifier.
  • the NOA calculates the second index information according to the service identifier, and determines, according to the second index information, that the service data is stored in the NOA, that is, determines a hit.
  • the NOA sends a service request to the SP server by using the NOC, where the service request carries the hit indication information.
  • the hit indication information can be added in the TCP option field of the service request.
  • S540 The SP server sends a response packet to the NOC, where the response packet carries the data segment.
  • the NOC charges the UE2 for the service data.
  • the NOC replaces the data segment with the replacement information in the response message according to the replacement information.
  • the preset replacement information occupies less bandwidth than the data segment.
  • the replacement information may be only 4 bytes or less, and the occupied backhaul bandwidth is much smaller than the bandwidth occupied by the data segment. Therefore, the amount of Backhaul data can be reduced, and bandwidth is saved.
  • the NOC sends a response message to the NOA, where the response message carries the replacement information.
  • the NOA searches for the data segment from the local storage according to the replacement information.
  • the replacement information it can be determined that the data segment is stored in the NOA, and then the data segment of the service data is searched according to the session identifier of the current session.
  • the NOA sends the found data segment to the UE2.
  • the UE2 after the service data requested by the UE1 is injected into the first data segment in the NOA, the UE2 requests the same service data as the service data requested by the UE1, and is actually segmented by the NOA from the stored data.
  • the data segment of the service data is sent to the UE2 one after another, and the NOC is not required to send the service data, thereby reducing the data amount of the Backhaul and reducing the bandwidth occupation rate.
  • another embodiment of a method for managing service data according to an embodiment of the present invention includes:
  • the solution provided by the embodiment of the present invention is that when the NOA1 stores the service data requested by the UE1, the UE1 switches to another eNodeB, and the other eNodeB side deploys NOA2.
  • the SP server continues to send the data segment to the NOC through the response message.
  • the NOC learns that the UE1 is switched to another eNodeB, and the NOE2 is deployed on the other eNodeB side, and the second index information is added to the response packet.
  • the NOC sends the second index information and the data segment that is not stored in the NOA1 in the service data to the NOA2.
  • the NOA2 stores the second index information and the data segment that is not stored in the NOA1 in the service data.
  • the NOA2 sends a data segment to the UE1.
  • the UE1 when the UE1 is injected into the service data, the UE1 switches to another eNodeB, and when the NOE2 is deployed on the other eNodeB side, the remaining data segments that are not injected into the NOA1 are injected into the NOA2.
  • another embodiment of a method for managing service data according to an embodiment of the present invention includes:
  • the solution provided by the embodiment of the present invention is that when the NOA1 stores the service data requested by the UE1, the UE1 switches to another eNodeB, and another NOA is not deployed on the other eNodeB side.
  • the SP server continues to send the data segment to the NOC through the response message.
  • the NOC learns that the UE1 switches to another eNodeB.
  • the NOC sends a data segment to another eNodeB by using a response message.
  • the other eNodeB forwards the data segment to the UE1.
  • the NOC when the UE1 switches to another eNodeB in the process of injecting the service data to the NOA1, and the other eNodeB does not deploy another NOA, the NOC sends the response packet carrying the data segment directly to the The another eNodeB forwards the data segment to UE1.
  • another embodiment of a method for managing service data according to an embodiment of the present invention includes:
  • the solution provided by the embodiment of the present invention is that the service data requested by the UE1 is stored in the NOA1.
  • the NOA1 sends a data segment to the UE1
  • the UE1 switches to another eNodeB, and the other eNodeB side deploys the NOA2, and the service data is not stored in the NOA2.
  • the SP server continues to send data segments to the NOC through the response message.
  • the NOC learns that the UE1 is handed over to another eNodeB, and the NOE2 is deployed on the other eNodeB side, and the second index information is added to the response message.
  • the NOC sends the second index information and the data segment of the service data that is not sent by the NOA1 to the UE1 to the NOA2.
  • S375 and NOA2 send data segments to UE1.
  • the NOA1 when the NOA1 sends the stored service data to the UE1, the UE1 switches to another eNodeB, and when the NOE2 is deployed on the other eNodeB side, the NOA1 in the service data is not sent to the data of the UE1.
  • the segment is injected into NOA2.
  • another embodiment of a method for managing service data according to an embodiment of the present invention includes:
  • the solution provided by the embodiment of the present invention is that, when the NOA1 is already stored, when the NOA1 has already sent the data segment to the UE1, the UE1 switches to another eNodeB, and the other eNodeB side does not deploy the NOA.
  • the SP server continues to send data segments to the NOC through the response message.
  • the NOC learns that the UE1 switches to another eNodeB.
  • the NOC sends a data segment to another eNodeB by using a response message.
  • the other eNodeB forwards the data segment to the UE1.
  • the NOA1 when the NOA1 sends the stored service data to the UE1, the UE1 switches to another eNodeB, and when another NOA is not deployed on the other eNodeB side, the NOC will carry the response packet of the data segment. Directly sent to the other eNodeB, the other eNodeB forwards the data segment to UE1.
  • FIG. 14 another embodiment of a method for managing service data according to an embodiment of the present invention includes:
  • the solution provided by the embodiment of the present invention is that the NOA1 sends the stored service data to the UE1.
  • the process of S400-S425 is performed:
  • the SP server continues to send data segments to the NOC through the response message.
  • the NOC sends a response packet to the eNodeB, where the response packet carries the replacement information.
  • the eNodeB sends a response packet to the UE1, where the response packet carries the replacement information.
  • the UE1 learns a data transmission error, and sends a retransmission instruction to the NOC through the eNodeB.
  • the S820 and the NOC know that the NOA1 is faulty, the data segment is no longer replaced by the replacement information in the subsequent response message.
  • the SP server sends the data segment to the UE1 through the NOC and the eNodeB.
  • the embodiments provided in FIG. 9 to FIG. 14 are all in the process of the UE sending a service request, and the NOA generates the second index information according to the service identifier carried by the service request.
  • the SPs in Figures 3-14 are both SP servers, and the server words are not marked in the figure.
  • another embodiment of a method for managing service data according to an embodiment of the present invention includes:
  • the method is applied to a wireless communication system, and the wireless communication system includes: a base station, a gateway, a network optimization agent NOA, a network optimization controller NOC, and an SP server, where the NOA is deployed on the base station side, and the NOC is deployed in the On the gateway side, the method includes:
  • the NOA receives a service request of the first user equipment UE, and forwards the service request to the SP server by using the NOC, so that the SP server returns the request that is requested by the first UE according to the service request.
  • Business data ;
  • the NOA determines whether the service data is stored in the NOA.
  • the NOC When it is determined that the service data is stored in the NOA, send a hit indication information to the NOC, so that the NOC replaces the service data with preset replacement information according to the hit indication information. Data segmentation, the preset replacement information occupies less bandwidth than the data segment, receives replacement information sent by the NOC, determines corresponding data segment according to the replacement information, and The first UE transmits the stored data segment.
  • the method for managing service data provided by the embodiment of the present invention is applied to a wireless communication system, where the wireless communication system includes: a base station, a gateway, a network optimization agent NOA, a network optimization controller NOC, and an SP server, and the NOA Deployed on the base station side, the NOC is deployed on the gateway side, the method includes: the NOA receives a service request of the first user equipment UE, and the The service request is forwarded to the SP server by the NOC, so that the SP server returns the service data requested by the first UE according to the service request; the NOA determines whether the service data has been stored in the NOA.
  • the NOC When it is determined that the service data is stored in the NOA, sending hit indication information to the NOC, so that the NOC replaces the service data with preset replacement information according to the hit indication information.
  • the preset replacement information occupies less bandwidth than the data segment, receives replacement information sent by the NOC, determines corresponding data segment according to the replacement information, and refers to the A UE transmits the stored data segment.
  • the method for managing service data provided by the embodiment of the present invention, when the service data is requested for the first time, the network optimization agent NOA stores the service data, and the service data is used for the second time and the existing Compared with the technical data management method provided by the embodiment of the present invention, the network optimization agent NOA is deployed on the base station side, and the network optimization controller NOC is deployed on the gateway side to manage the service data, so that the service data is first.
  • the network optimization agent NOA stores the service data.
  • the network optimization controller NOC is not required to resend the service data once, but the NOC is completed at the NOC. After the fee is sent, the service data is sent to the UE by the NOA, which reduces the amount of Backhaul data, thereby reducing the Backhaul bandwidth usage.
  • the method may further include:
  • the NOA sends the stored data segment to the second UE.
  • the SP server returns a request by the first UE.
  • Business data can include:
  • the SP server carries the data segment included in the service data in one or more response messages, and sends the one or more response messages to the NOC;
  • the determining whether the service data is stored in the NOA may include:
  • the determining whether the service data is stored in the In the NOA may include:
  • another embodiment of a method for managing service data according to an embodiment of the present invention includes:
  • the method is applied to a wireless communication system, the wireless communication system includes: a base station, a gateway, a network optimization agent NOA, a network optimization controller NOC, and a service provider SP server, where the NOA is deployed on the base station side, the NOC Deployed on the gateway side, the method includes:
  • the NOC receives a service request of the first user equipment UE that is forwarded by the NOA, and forwards the service request to the SP server, so that the SP server returns the first UE according to the service request.
  • Requested business data
  • the NOA When receiving the hit indication information sent by the NOA, replace, according to the hit indication information, a data segment in the service data by using preset replacement information, where the preset replacement information occupies less bandwidth than Transmitting the bandwidth occupied by the data segment, sending the replacement information to the NOA, so that the NOA searches for a corresponding data segment according to the replacement information, and sends the stored data segment to the first UE. segment.
  • the method for managing service data provided by the embodiment of the present invention is applied to a wireless communication system, where the wireless communication system includes: a base station, a gateway, a network optimization agent NOA, a network optimization controller NOC, and a service provider SP server.
  • the NOA is deployed on the base station side, and the NOC is deployed on the gateway side.
  • the method includes: the NOC receives a service request of the first user equipment UE that is forwarded by the NOA, and forwards the service request.
  • the SP server returns the service data requested by the first UE according to the service request; when receiving the hit indication information sent by the NOA, according to the hit indication information, use the pre- The replacement information replaces the data segment in the service data, the preset replacement information occupies less bandwidth than the data segment, and sends the replacement information to the NOA to enable the NOA Finding a corresponding data segment according to the replacement information, and transmitting the stored data segment to the first UE.
  • the method for managing service data provided by the embodiment of the present invention, when the service data is requested for the first time, the network optimization agent NOA stores the service data, and the service data is used for the second time and the existing Compared with the technical data management method provided by the embodiment of the present invention, the network optimization agent NOA is deployed on the base station side, and the network optimization controller NOC is deployed on the gateway side to manage the service data, so that the service data is first.
  • the network optimization agent NOA stores the service data.
  • the network optimization controller NOC is not required to resend the service data once, but the NOC is completed at the NOC. After the fee is sent, the service data is sent to the UE by the NOA, which reduces the amount of Backhaul data, thereby reducing the Backhaul bandwidth usage.
  • the method may further include:
  • miss indication information when the miss indication information is received, sending, according to the miss indication information, a data segment included in the service data to the NOA, so that the NOA stores the received data segment into the In the NOA, when the second UE requests the service data, from the NOA to the second The UE transmits the stored data segment.
  • the SP server returns the The service data requested by the first UE may include:
  • the SP server carries the data segment included in the service data in one or more response messages, and sends the one or more response messages to the NOC;
  • the method may further include:
  • the method may further include:
  • the first UE When the data segment is sent to the NOA, the first UE is identified as being handed over to another base station, and another NOA is deployed on the other base station side, and the first index is sent to the another NOA.
  • Information or the second index information, and remaining data segments of the service data that are not sent to the NOA, so that the another NOA will use the first index information or the second index information, and The remaining data segments are correspondingly stored.
  • the fifth optional embodiment of the method for managing service data provided by the embodiment of the present invention, based on the foregoing first, second, or third alternative embodiment corresponding to FIG.
  • the method can also include:
  • the first UE When the data segment is sent to the NOA, the first UE is identified as being handed over to another base station, and another NOA is not deployed on the other base station side, and the service data is sent to the another base station. The remaining data that was not sent to the NOA is segmented.
  • the embodiment of the present invention may further include:
  • the replacement information When the replacement information is sent to the NOA, it is recognized that the first UE is handed over to another base station, and another NOA is deployed on the other base station side, and the first index information is sent to the another NOA. Or the second index information, and the remaining data segments that the NOA does not send to the first UE in the service data, so that the another NOA will use the first index information or the second index The information, and the remaining data segments are correspondingly stored.
  • a seventh optional embodiment of the method for managing service data provided by the embodiment of the present invention, based on the foregoing embodiment, the first, the second, or the third optional embodiment. in,
  • the UE When the replacement information is sent to the NOA, the UE is identified as being handed over to another base station, and another NOA is not deployed on the other base station side, and the NOA in the service data is sent to the another base station. The remaining data segments that are not sent to the first UE.
  • the eighth optional method of the service data management method provided by the embodiment of the present invention is provided on the basis of any one of the foregoing embodiments, the first to the seventh optional embodiments.
  • the method may further include:
  • an embodiment of a network optimization agent NOA 30 includes: the NOA is applied to a wireless communication system, and the wireless communication system further includes: a base station, a gateway, a network optimization controller, a NOC, and a service provider. (SP) server, the NOA is deployed on the base station side, and the NOC is deployed on the gateway side, and the NOA includes:
  • SP service provider
  • the receiving unit 301 is configured to receive a service request of the first user equipment UE.
  • the sending unit 302 is configured to forward the service request received by the receiving unit 301 to the SP server by using the NOC, so that the SP server returns the service data requested by the first UE according to the service request. ;
  • a determining unit 303 configured to determine whether the service data has been stored in the NOA
  • the sending unit 302 is further configured to: when the determining unit 302 determines that the service data is stored in the NOA, send a hit indication information to the NOC, so that the NOC is according to the hit indication information, Replacing the data segment in the service data with the preset replacement information, where the preset replacement information occupies less bandwidth than the data segment;
  • the receiving unit 301 is further configured to receive replacement information sent by the NOC;
  • the determining unit 303 is further configured to determine, according to the replacement information received by the receiving unit 301, a corresponding data segment;
  • the sending unit 302 is further configured to send, to the first UE, the stored data segment determined by the determining unit 303.
  • the NOA is applied to a wireless communication system, where the wireless communication system further includes: a base station, a gateway, a network optimization controller NOC, and a service provider (SP) server, where the NOA is deployed on the base station side.
  • the NOC is deployed on the gateway side, and the NOA includes: the receiving unit 301 receives the service request of the first user equipment UE, and the sending unit 302 forwards the service request received by the receiving unit 301 by using the NOC.
  • the determining unit 303 determines whether the service data is already stored in the NOA; the sending unit 302 further When the determining unit 302 determines that the service data has been stored in the NOA, sending hit indication information to the NOC, so that the NOC replaces the replacement information with preset replacement information according to the hit indication information.
  • the preset replacement information occupies less bandwidth than the data segment; the receiving unit 301 further receives replacement information sent by the NOC; The determining unit 303 further determines a corresponding data segment according to the replacement information received by the receiving unit 301; the sending unit 302 further sends the stored data determined by the determining unit 303 to the first UE. Segmentation.
  • the network optimization agent NOA stores the service data, and the service data is compared with the prior art for the second time.
  • the service data management method provided by the embodiment of the present invention configures the network optimization agent NOA on the base station side, and deploys the network optimization controller NOC on the gateway side to manage the service data, so that when the service data is requested for the first time,
  • the network optimization agent NOA stores the service data.
  • the network optimization controller NOC is not required to resend the service data once, but After the NOC completes the charging, the NOA sends the service data to the UE, which reduces the amount of Backhaul data, thereby reducing the Backhaul bandwidth usage.
  • the NOA further includes: a storage unit 304,
  • the sending unit 302 is further configured to: when the determining unit 303 determines that the service data is not stored in the NOA, send a miss indication information to the NOC, so that the NOC according to the miss indication Transmitting, to the NOA, the data segment included in the service data;
  • the receiving unit 301 is further configured to receive the data segment from the NOC;
  • a storage unit 304 configured to store the data segment received by the receiving unit 301;
  • the sending unit 302 is further configured to: when the second UE requests the service data, send the data segment that the storage unit 304 has stored to the second UE.
  • the SP server carries the data segment included in the service data. Transmitting the one or more response messages to the NOC in one or more response messages;
  • the determining unit 303 includes:
  • the receiving subunit 3031 is configured to receive the first response packet sent by the NOC, where the first response packet carries the first data segment in the service data requested by the first UE;
  • a first generation subunit 3032 configured to generate first index information according to the first data segment received by the receiving subunit 3031;
  • a first search sub-unit 3033 configured to find whether the first index information generated by the first generation sub-unit 3032 has been stored in the NOA
  • a first determining subunit 3034 configured to: when the first lookup subunit 3033 finds that the first index information is stored in the NOA, determine that the service data is already stored in the NOA; When the searching subunit finds that the first index information is not stored in the NOA, it determines that the service data is not stored in the NOA.
  • the SP server segments the data included in the service data. Carrying in one or more response messages, and sending the one or more response messages to the NOC;
  • the determining unit 303 includes:
  • a parsing sub-unit 3035 configured to parse a service identifier from the service request
  • a second generation sub-unit 3036 configured to generate second index information according to the service identifier parsed by the parsing sub-unit 3035;
  • a second search subunit 3037 configured to find whether the second index information generated by the second generation subunit 3036 has been stored in the NOA
  • a second determining subunit 3038 configured to, when the second lookup subunit 3037 finds that the second index information is stored in the NOA, determine that the service data is stored in the NOA, when When the second search subunit finds that the second index information is not stored in the NOA, it determines that the service data is not stored in the NOA.
  • an embodiment of a network optimization controller NOC40 includes: the NOC is applied to a wireless communication system, where the wireless communication system includes: a base station, a gateway, a network optimization agent NOA, and a service provider (SP). a server, the NOA is deployed on the base station side, and the NOC is deployed on the gateway side, and the NOC includes:
  • the receiving unit 401 is configured to receive a service request of the first user equipment UE that is forwarded by the NOA;
  • the sending unit 402 is configured to forward the service request received by the receiving unit 401 to the SP server, so that the SP server returns the service data requested by the first UE according to the service request.
  • the receiving unit 401 is further configured to receive hit indication information sent by the NOA;
  • a replacement unit 403 configured to: when the receiving unit 403 receives the hit indication information sent by the NOA, replace the data segment in the service data with the preset replacement information according to the hit indication information,
  • the preset replacement information occupies less bandwidth than the data segment;
  • the sending unit 402 is further configured to send the replacement information replaced by the replacement unit 403 to the NOA, so that the NOA searches for a corresponding data segment according to the replacement information, and sends the used data to the first UE.
  • the data segment stored.
  • the NOC is applied to a wireless communication system, where the wireless communication system includes: a base station, a gateway, a network optimization agent NOA, and a service provider (SP) server, the NOA is deployed on the base station side, the NOC is deployed on the gateway side, and the NOC includes: the receiving unit 401 receives the NOA forwarding The service request of the first user equipment UE; the sending unit 402 forwards the service request received by the receiving unit 401 to the SP server, so that the SP server returns to the first UE according to the service request The service data of the request; the receiving unit 401 further receives the hit indication information sent by the NOA; the replacing unit 403, when the receiving unit 403 receives the hit indication information sent by the NOA, according to the hit indication information, The preset replacement information replaces the data segment in the service data, where the preset replacement information occupies less than the bandwidth occupied by the data segment; the sending unit 402 further sends the replacement to the NOA.
  • the NOC configureds the network optimization agent NOA on the base station side, and deploys the network optimization controller NOC on the gateway side to manage the service data, so that the service data is first time.
  • the network optimization agent NOA stores the service data, and when the service data is requested for the second time, the network optimization controller NOC is not required to resend the service data once, but the charging is completed at the NOC.
  • the NOA sends the service data to the UE, the amount of Backhaul data is reduced, thereby reducing the Backhaul bandwidth usage.
  • the receiving unit 401 is further configured to receive miss indication information
  • the sending unit 404 is further configured to: when the receiving unit 401 receives the miss indication information, send, according to the miss indication information, the data segment included in the service data to the NOA, so that The NOA stores the received data segment into the NOA, and when the second UE requests the service data, the NOA sends the stored data segment to the second UE.
  • the SP server segments the data included in the service data. Carrying in one or more response messages, and sending the one or more response messages to the NOC;
  • the receiving unit 401 is further configured to receive one or more response messages sent by the SP server;
  • the sending unit 402 is further configured to send the one or more response messages to the NOA, where the first response message in the one or more response messages carries the service requested by the first UE
  • the first data segment in the data is such that the NOA generates first index information according to the first data segment.
  • the receiving unit 401 is further configured to receive the first index information and the second index information that are sent by the NOA, where the second index information is that the NOA is based on a service identifier that is parsed from the service request. Generated.
  • the NOC further includes a first identifying unit 404.
  • a first identifying unit 404 configured to: when the sending unit 402 sends the data segment to the NOA, identify that the first UE switches to another base station, and another another base station side deploys another NOA ;
  • the sending unit 402 is configured to send the first index information or the second index information, and the service data, to another NOA that is switched by the first UE that is identified by the first identifying unit 404.
  • the remaining data that is not sent to the NOA is segmented, so that the another NOA stores the first index information or the second index information and the remaining data segments correspondingly.
  • the NOC further includes a second identifying unit 405.
  • the second identifying unit 405 is configured to: when the sending unit 402 sends the data segment to the NOA, identify that the first UE switches to another base station, and the another base station side does not deploy another One NOA;
  • the sending unit 402 is further configured to: identify, by the second identifying unit 405, another base station to which the first UE is handed over, and send the remaining data segments that are not sent to the NOA in the service data.
  • the NOC further includes a third identifying unit 406.
  • the third identifying unit 406 is configured to identify that the first UE is handed over to another base station when the replacement information is sent to the NOA, and another NOA is deployed on the another base station side;
  • the sending unit 402 is configured to identify, by the third identifying unit 406, the first NOA that is sent by the first UE to send the first index information or the second index information, and the service The NOA in the data does not segment the remaining data sent to the first UE, so that the another NOA stores the first index information or the second index information and the remaining data segments correspondingly.
  • the NOC further includes a fourth identifying unit 407.
  • the fourth identifying unit 407 is configured to identify that the UE is handed over to another base station when the replacement information is sent to the NOA, and another NOA is not deployed on the another base station side;
  • the sending unit 402 is further configured to send, to another base station to which the first UE is identified by the fourth identifying unit 407, the remaining information sent by the NOA to the first UE in the service data. Data segmentation.
  • the NOC further includes a confirming unit 408.
  • the receiving unit 401 is further configured to receive a data retransmission instruction sent by the first UE;
  • the confirming unit 408 is configured to confirm that the NOA is faulty according to the data retransmission instruction received by the receiving unit 401;
  • the sending unit 402 is further configured to: when the confirming unit 408 confirms that the NOA is faulty, send, to the base station where the first UE is located, the NOA that is not sent to the first UE in the service data. The remaining data is segmented.
  • FIG. 27 is a schematic structural diagram of a network optimization agent 30 according to an embodiment of the present invention.
  • the method is applied to a wireless communication system, and the wireless communication system includes: a base station, a gateway, a network optimization agent NOA, a network optimization controller NOC, and a service provider (SP) server, where the NOA is deployed on the base station side.
  • the NOC is deployed on the gateway side, and the network optimization agent 30 can include an input device 310, an output device 320, a processor 330, and a memory 340.
  • Memory 340 can include read only memory and random access memory and provides instructions and data to processor 330. A portion of the memory 340 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 340 stores the following elements, executable modules or data structures, or their children. Sets, or their extension sets:
  • Operation instructions include various operation instructions for implementing various operations.
  • Operating system Includes a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 330 performs the following operations by calling an operation instruction stored in the memory 340, which can be stored in the operating system:
  • the hit indication information is sent to the NOC through the output device 320, so that the NOC replaces the service with preset replacement information according to the hit indication information.
  • the preset replacement information occupies less bandwidth than the data segment, receives replacement information sent by the NOC, determines corresponding data segment according to the replacement information, and The first UE transmits the stored data segment.
  • the network optimization agent 30 may store the service data when the service data is requested for the first time, and the network optimization controller NOC does not need to re-re-create the service data when the service data is requested for the second time. Sending once, but after the NOC completes the charging, the NOA sends the service data to the UE, which reduces the amount of Backhaul data, thereby reducing the Backhaul bandwidth occupancy rate.
  • the processor 330 controls the operation of the network optimization agent 30, which may also be referred to as a CPU (Central Processing Unit).
  • Memory 340 can include read only memory and random access memory and provides instructions and data to processor 330. A portion of the memory 340 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the various components of the network optimization agent 30 are coupled together by a bus system 350.
  • the bus system 350 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 350 in the figure.
  • Processor 330 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 330 or an instruction in a form of software.
  • the processor 330 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or discrete hardware. Component.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 340, and processor 330 reads the information in memory 340 and, in conjunction with its hardware, performs the steps of the above method.
  • the output device 320 is further configured to: when determining that the service data is not stored in the NOA, send a miss indication information to the NOC, so that the NOC is configured according to the miss indication information. Transmitting, to the NOA, a data segment included in the service data, receiving the data segment from the NOC, and storing the received data segment into the NOA;
  • the output device 320 is further configured to: when the second UE requests the service data, send the stored data segment to the second UE.
  • the input device 310 is further configured to receive a first response packet sent by the NOC, where the first response packet carries a first data segment in the service data requested by the first UE. Segmentation
  • the processor 330 may: generate first index information according to the first data segment, and find whether the first index information is stored in the NOA; when the first index information is stored in the In the NOA, it is determined that the service data is already stored in the NOA; when the first index information is not stored in the NOA, it is determined that the service data is not stored in the NOA.
  • the processor 330 may: parse the service identifier from the service request; generate second index information according to the service identifier; and search whether the second index information is stored in the NOA Determining the number of services when the second index information has been stored in the NOA According to the already stored in the NOA; when the second index information is not stored in the NOA, it is determined that the service data is not stored in the NOA.
  • FIG. 28 is a schematic structural diagram of a network optimization controller 40 according to an embodiment of the present invention.
  • the method is applied to a wireless communication system, and the wireless communication system includes: a base station, a gateway, a network optimization agent NOA, a network optimization controller NOC, and a service provider (SP) server, where the NOA is deployed on the base station side.
  • the NOC is deployed on the gateway side, and the network optimization controller 40 can include an input device 410, an output device 420, a processor 430, and a memory 440.
  • Memory 440 can include read only memory and random access memory and provides instructions and data to processor 430. A portion of memory 440 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • Memory 440 stores the following elements, executable modules or data structures, or subsets thereof, or their extended sets:
  • Operation instructions include various operation instructions for implementing various operations.
  • Operating system Includes a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 430 performs the following operations by calling an operation instruction stored in the memory 440 (the operation instruction can be stored in the operating system):
  • the replacement information is such that the NOA searches for a corresponding data segment according to the replacement information, and sends the stored data segment to the first UE.
  • the network optimization controller 40 may store the service data on the NOA when the service data is requested for the first time, and do not need the network optimization controller NOC when the service data is requested for the second time.
  • the service data is resent once, but after the NOC completes the billing,
  • the NOA sends the service data to the UE, which reduces the amount of Backhaul data, thereby reducing the Backhaul bandwidth usage.
  • the processor 430 controls the operation of the network optimization controller 40, which may also be referred to as a CPU (Central Processing Unit).
  • Memory 440 can include read only memory and random access memory and provides instructions and data to processor 430. A portion of memory 440 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the various components of the network optimization controller 40 are coupled together by a bus system 450.
  • the bus system 450 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 450 in the figure.
  • Processor 430 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 430 or an instruction in a form of software.
  • the processor 430 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or discrete hardware. Component.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or carried out.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 440, and processor 430 reads the information in memory 440 and, in conjunction with its hardware, performs the steps of the above method.
  • the output device 420 may further: when receiving the miss indication information, send, according to the miss indication information, a data segment included in the service data to the NOA, so that the NOA The received data segment is stored in the NOA, and when the second UE requests the service data, the stored data segment is sent by the NOA to the second UE.
  • the input device 410 is further configured to receive the one or more response messages sent by the SP server;
  • the output device 420 is further configured to send the one or more response messages to the NOA, where the first response message in the one or more response messages carries the service data requested by the first UE. a first data segment in the middle, such that the NOA generates first index information according to the first data segment.
  • the input device 410 is further configured to receive the first index information and the second index information that are sent by the NOA, where the second index information is that the NOA is parsed according to the service request. Business identity generated.
  • the processor 430 is further configured to: when the data segment is sent to the NOA, identify that the first UE is handed over to another base station, and another another base station side is deployed with another NOA;
  • the output device 420 is further configured to send the first index information or the second index information to the another NOA, and the remaining data segments that are not sent to the NOA in the service data, so that the Another NOA stores the first index information or the second index information and the remaining data segments correspondingly.
  • the processor 430 is further configured to: when the data segment is sent to the NOA, identify that the first UE is handed over to another base station, and another another base station side does not deploy another NOA;
  • the output device 420 is further configured to send, to the another base station, the remaining data segments that are not sent to the NOA in the service data.
  • the processor 430 is further configured to: when the sending the replacement information to the NOA, identify that the first UE is handed over to another base station, and another another base station side is deployed with another NOA;
  • the output device 420 is further configured to send the first index information or the second index information to the another NOA, and the remaining data points that the NOA does not send to the first UE in the service data. a segment, such that the another NOA stores the first index information or the second index information, and the remaining data segments correspondingly.
  • the processor 430 is further configured to: when the sending the replacement information to the NOA, identify that the UE switches to another base station, and another another base station side does not deploy another NOA;
  • the output device 420 is further configured to send, to the another base station, the remaining data segments that are not sent by the NOA to the first UE in the service data.
  • the input device 410 is further configured to receive a data retransmission instruction sent by the first UE, to confirm that the NOA is faulty, and send the service data to a base station where the first UE is located. The remaining data segment sent by the NOA to the first UE is not segmented.
  • an embodiment of a wireless communication system includes:
  • a base station 10 a gateway 20, a network optimization agent NOA 30, a network optimization controller NOC 40, and a service provider (SP) server 50.
  • the NOA 30 is deployed on the base station 10 side, and the NOC 40 is deployed on the gateway 20 side.
  • the NOA 30 is configured to: receive a service request of the first user equipment UE, and forward the service request to the SP server 50 by using the NOC, so that the SP server returns to the first UE according to the service request.
  • the NOC 40 replaces the data segment in the service data with the preset replacement information according to the hit indication information, where the preset replacement information occupies less bandwidth than the data segment;
  • the NOA 30 receives the replacement information sent by the NOC, determines a corresponding data segment according to the replacement information, and sends the stored data segment to the first UE.
  • the storage medium may include: a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Databases & Information Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本发明公开了一种业务数据管理的方法,方法应用于无线通信系统,无线通信系统包括:基站、网关、NOA、NOC和SP服务器,NOA部署在基站侧,NOC部署在网关侧,方法包括:NOA接收第一UE的业务请求,并将业务请求通过NOC转发到SP服务器,以便SP服务器返回第一UE所请求的业务数据;NOA确定业务数据已存储在NOA中,则向NOC发送命中指示信息,以使NOC用预置的替换信息替换业务数据中的数据分段,预置的替换信息所占带宽小于数据分段所占带宽;NOA根据接收的替换信息确定对应的数据分段,并向第一UE发送已存储的数据分段。本发明实施例提供的方案可以降低了回程的数据量,从而降低了回程带宽占用率。

Description

一种业务数据管理的方法、装置及系统
本申请要求于2014年7月30日提交中国专利局、申请号为201410372646.2、发明名称为“一种业务数据管理的方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,具体涉及一种业务数据管理的方法、装置及系统。
背景技术
在无线网络中,回程(backhaul)用于核心网向基站侧传送语音和数据流量。具体而言,在长期演进(Long Term Evolution,LTE)网络中,backhaul就是演进基站(eNodeB)与演进型分组核心网(Evolved Packet Core,EPC)之间的链路。用户设备(User Equipment,UE)通过无线接入网络(Radio Access Network,RAN)接入移动网络,获得业务。
用户通过UE浏览网页时,UE向eNodeB发送业务请求以请求业务数据,该业务请求通过eNodeB发送到核心网侧的服务提供商(Service Provider,SP)服务器。核心网侧设备针对所述UE所请求的业务数据完成针对所述UE的计费。然后,SP服务器将UE所请求的业务数据发送给eNodeB,eNodeB将业务数据发送给UE。
这样,无论相同的UE还是不同的UE请求相同的业务数据时,SP服务器都需要向eNodeB发送一次该业务数据,导致Backhaul的数据流量非常大,占用了大量的Backhaul带宽资源。
发明内容
为了解决现有技术中Backhaul的数据流量过大的问题,本发明提出一种业务数据管理的方法,用于降低Backhaul的数据量,从而降低Backhaul带宽占用率。本发明实施例还提供了相应的装置及系统。
第一方面,本发明实施例提供了一种业务数据管理的方法,所述方法应用于无线通信系统,所述无线通信系统包括:基站、网关、网络优化代理NOA、网络优化控制器NOC和服务提供商SP服务器,所述NOA部署在所述基站侧, 所述NOC部署在所述网关侧,所述方法包括:
所述NOA接收第一用户设备UE的业务请求,并将所述业务请求通过所述NOC转发到所述SP服务器,以便所述SP服务器根据所述业务请求,返回所述第一UE所请求的业务数据;
所述NOA确定所述业务数据是否已存储在所述NOA中;
当确定所述业务数据已存储在所述NOA中,则向所述NOC发送命中指示信息,以使所述NOC根据所述命中指示信息,用预置的替换信息替换所述业务数据中的数据分段,所述预置的替换信息所占带宽小于所述数据分段所占带宽;接收所述NOC发送的替换信息,根据所述替换信息确定对应的数据分段,并向所述第一UE发送已存储的所述数据分段。
在第一方面的第一种可能的实现方式中,所述方法还包括:
当确定所述业务数据未存储在所述NOA中时,向所述NOC发送未命中指示信息,以使所述NOC根据所述未命中指示信息,向所述NOA发送所述业务数据所包含的数据分段,从所述NOC接收所述数据分段,并将接收到的所述数据分段存储到所述NOA中;
当第二UE请求所述业务数据时,所述NOA向所述第二UE发送已存储的所述数据分段。
结合第一方面第一种可能的实现方式,在第二种可能的实现方式中,所述SP服务器返回所述第一UE所请求的业务数据,包括:
所述SP服务器将所述业务数据所包含的数据分段携带在一个或多个响应报文中,并将所述一个或多个响应报文发送给所述NOC;
所述确定所述业务数据是否已存储在所述NOA中,包括:
接收所述NOC发送的第一响应报文,所述第一响应报文中携带所述第一UE所请求的业务数据中的第一数据分段分段;
根据所述第一数据分段生成第一索引信息;
查找所述第一索引信息是否已存储在所述NOA中;
当所述第一索引信息已存储在所述NOA中时,则确定所述业务数据已存储在所述NOA中;
当所述第一索引信息未存储在所述NOA中时,则确定所述业务数据未存储到所述NOA中。
结合第一方面第一种可能的实现方式,在第三种可能的实现方式中,所述确定所述业务数据是否已存储在所述NOA中,包括:
从所述业务请求中解析出业务标识;
根据所述业务标识,生成第二索引信息;
查找所述第二索引信息是否已存储在所述NOA中;
当所述第二索引信息已存储在所述NOA中时,则确定所述业务数据已存储在所述NOA中;
当所述第二索引信息未存储在所述NOA中时,则确定所述业务数据未存储到所述NOA中。
第二方面,本发明实施例提供了一种业务数据管理的方法,所述方法应用于无线通信系统,所述无线通信系统包括:基站、网关、网络优化代理NOA、网络优化控制器NOC和服务提供商SP服务器,所述NOA部署在所述基站侧,所述NOC部署在所述网关侧,所述方法包括:
所述NOC接收所述NOA转发的第一用户设备UE的业务请求,并将所述业务请求转发到所述SP服务器,以便所述SP服务器根据所述业务请求,返回所述第一UE所请求的业务数据;
当接收所述NOA发送的命中指示信息时,根据所述命中指示信息,用预置的替换信息替换所述业务数据中的数据分段,所述预置的替换信息所占带宽小于所述数据分段所占带宽,向所述NOA发送所述替换信息,以使所述NOA根据所述替换信息查找对应的数据分段,并向所述第一UE发送已存储的所述数据分段。
在第二方面的第一种可能的实现方式中,所述方法还包括:
当接收到未命中指示信息时,根据所述未命中指示信息,向所述NOA发送所述业务数据所包含的数据分段,以使所述NOA将接收到的所述数据分段存储到所述NOA中,当第二UE请求所述业务数据时,由所述NOA向所述第二UE发送已存储的所述数据分段。
第三方面,本发明实施例提供了一种网络优化代理NOA,所述NOA应用于无线通信系统,所述无线通信系统还包括:基站、网关、网络优化控制器NOC和服务提供商SP服务器,所述NOA部署在所述基站侧,所述NOC部署在所述网关侧,所述NOA包括:
接收单元,用于接收第一用户设备UE的业务请求;
发送单元,用于将所述接收单元接收到的所述业务请求通过所述NOC转发到所述SP服务器,以便所述SP服务器根据所述业务请求,返回所述第一UE所请求的业务数据;
确定单元,用于确定所述业务数据是否已存储在所述NOA中;
所述发送单元,还用于当所述确定单元确定所述业务数据已存储在所述NOA中,则向所述NOC发送命中指示信息,以使所述NOC根据所述命中指示信息,用预置的替换信息替换所述业务数据中的数据分段,所述预置的替换信息所占带宽小于所述数据分段所占带宽;
所述接收单元,还用于接收所述NOC发送的替换信息;
所述确定单元,还用于根据所述接收单元接收的所述替换信息确定对应的数据分段;
所述发送单元,还用于向所述第一UE发送已存储的所述确定单元确定的所述数据分段。
在第三方面的第一种可能的实现方式中,
所述发送单元,还用于当所述确定单元确定所述业务数据未存储在所述NOA中时,向所述NOC发送未命中指示信息,以使所述NOC根据所述未命中指示信息,向所述NOA发送所述业务数据所包含的数据分段;
所述接收单元,还用于从所述NOC接收所述数据分段;
存储单元,用于存储所述接收单元接收到的所述数据分段;
所述发送单元,还用于当第二UE请求所述业务数据时,向所述第二UE发送所述存储单元已存储的所述数据分段。
结合第三方面第一种可能的实现方式,在第二种可能的实现方式中,所述SP服务器将所述业务数据所包含的数据分段携带在一个或多个响应报文中,并 将所述一个或多个响应报文发送给所述NOC;
所述确定单元包括:
接收子单元,用于接收所述NOC发送的第一响应报文,所述第一响应报文中携带所述第一UE所请求的业务数据中的第一数据分段,;
第一生成子单元,用于根据所述接收子单元接收的所述第一数据分段生成第一索引信息;
第一查找子单元,用于查找所述第一生成子单元生成的所述第一索引信息是否已存储在所述NOA中;
第一确定子单元,用于当所述第一查找子单元查找到所述第一索引信息已存储在所述NOA中时,则确定所述业务数据已存储在所述NOA中;当所述查找子单元查找到所述第一索引信息未存储在所述NOA中时,则确定所述业务数据未存储到所述NOA中。
结合第三方面第一种可能的实现方式,在第三种可能的实现方式中,所述确定单元包括:
解析子单元,用于从所述业务请求中解析出业务标识;
第二生成子单元,用于根据所述解析子单元解析出的所述业务标识,生成第二索引信息;
第二查找子单元,用于查找所述第二生成子单元生成的所述第二索引信息是否已存储在所述NOA中;
第二确定子单元,用于当所述第二查找子单元查找到所述第二索引信息已存储在所述NOA中时,则确定所述业务数据已存储在所述NOA中,当所述第二查找子单元查找到所述第二索引信息未存储在所述NOA中时,则确定所述业务数据未存储到所述NOA中。
第四方面,本发明实施例提供了一种网络优化控制器NOC,所述NOC应用于无线通信系统,所述无线通信系统包括:基站、网关、网络优化代理NOA和服务提供商SP服务器,所述NOA部署在所述基站侧,所述NOC部署在所述网关侧,所述NOC包括:
接收单元,用于接收所述NOA转发的第一用户设备UE的业务请求;
发送单元,用于将所述接收单元接收的所述业务请求转发到所述SP服务器,以便所述SP服务器根据所述业务请求,返回所述第一UE所请求的业务数据;
所述接收单元,还用于接收所述NOA发送的命中指示信息;
替换单元,用于当所述接收单元接收到所述NOA发送的命中指示信息时,根据所述命中指示信息,用预置的替换信息替换所述业务数据中的数据分段,所述预置的替换信息所占带宽小于所述数据分段所占带宽;
所述发送单元,还用于向所述NOA发送所述替换单元替换的所述替换信息,以使所述NOA根据所述替换信息查找对应的数据分段,并向所述第一UE发送已存储的所述数据分段。
在第四方面的第一种可能的实现方式中,
所述接收单元,还用于接收未命中指示信息;
所述发送单元,还用于当所述接收单元接收到未命中指示信息时,根据所述未命中指示信息,向所述NOA发送所述业务数据所包含的数据分段,以使所述NOA将接收到的所述数据分段存储到所述NOA中,当第二UE请求所述业务数据时,由所述NOA向所述第二UE发送已存储的所述数据分段。
第五方面,本发明实施例提供了一种无线通信系统,包括:基站、网关、网络优化代理NOA、网络优化控制器NOC和服务提供商SP服务器,所述NOA部署在所述基站侧,所述NOC部署在所述网关侧,
所述NOA为上述任一NOA的技术方案所述的NOA;
所述NOC为上述任一NOC的技术方案所述的NOC。
与现有技术相比,本发明实施例所提供的业务数据管理的方法,通过在基站侧部署网络优化代理NOA,在网关侧部署网络优化控制器NOC来对业务数据进行管理,这样,在业务数据首次被请求时,网络优化代理NOA存储业务数据,在所述业务数据第二次被请求时,不需要网络优化控制器NOC再将所述业务数据重新发送一次,而是由所述NOA将所述业务数据发送给UE,降低了Backhaul的数据量,从而降低了Backhaul带宽占用率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例中业务数据管理的方法的一实施例示意图;
图2是本发明实施例中业务数据管理的方法的另一实施例示意图;
图3是本发明实施例中业务数据管理的方法的另一实施例示意图;
图4是本发明实施例中业务数据管理的方法的另一实施例示意图;
图5是本发明实施例中业务数据管理的方法的另一实施例示意图;
图6是本发明实施例中业务数据管理的方法的另一实施例示意图;
图7是本发明实施例中业务数据管理的方法的另一实施例示意图;
图8是本发明实施例中业务数据管理的方法的另一实施例示意图;
图9是本发明实施例中业务数据管理的方法的另一实施例示意图;
图10是本发明实施例中业务数据管理的方法的另一实施例示意图;
图11是本发明实施例中业务数据管理的方法的另一实施例示意图;
图12是本发明实施例中业务数据管理的方法的另一实施例示意图;
图13是本发明实施例中业务数据管理的方法的另一实施例示意图;
图14是本发明实施例中业务数据管理的方法的另一实施例示意图;
图15是本发明实施例中业务数据管理的方法的另一实施例示意图;
图16是本发明实施例中业务数据管理的方法的另一实施例示意图;
图17是本发明实施例中网络优化代理NOA的一实施例示意图;
图18是本发明实施例中网络优化代理NOA的另一实施例示意图;
图19是本发明实施例中网络优化代理NOA的另一实施例示意图;
图20是本发明实施例中网络优化代理NOA的另一实施例示意图;
图21是本发明实施例中网络优化控制器NOC的一实施例示意图;
图22是本发明实施例中网络优化控制器NOC的另一实施例示意图;
图23是本发明实施例中网络优化控制器NOC的另一实施例示意图;
图24是本发明实施例中网络优化控制器NOC的另一实施例示意图;
图25是本发明实施例中网络优化控制器NOC的另一实施例示意图;
图26是本发明实施例中网络优化控制器NOC的另一实施例示意图;
图27是本发明实施例中网络优化代理NOA的另一实施例示意图;
图28是本发明实施例中网络优化控制器NOC的另一实施例示意图;
图29是本发明实施例中无线通信系统的一实施例示意图。
具体实施方式
本发明实施例提供一种业务数据管理的方法,用于降低Backhaul的数据量,从而降低Backhaul带宽占用率。本发明实施例还提供了相应的装置及系统。以下分别进行详细说明。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明实施例所提供的业务数据管理的方法应用于无线通信系统,如图1所示,无线通信系统包括演进基站eNodeB、分组数据网关(Packet Data Network gateway,PGW)、服务网关(serving gateway,SGW)、网络优化代理(Network Optimization Agent,NOA)和网络优化控制器(Network Optimization Controller,NOC)和服务提供商(service provider,SP)服务器,所述NOA部署在演进基站eNodeB侧,所述NOC部署在核心网的分组数据网关(Packet Data Networkgateway,PGW)或者服务网关(serving gateway,SGW)之前,SP服务器用于提供业务数据,如:视频内容,网页内容等,用户设备可以为手机、笔记本电脑、个人计算机(Personal Computer,PC)等终端设备。
本发明实施例中的业务数据可以为视频数据、音频数据、网页数据等。
如图2所示,eNodeB与PGW(Packet Data Network Gateway,分组数据网关)/SGW(Serving Gateway,服务网关)之间的链路为回程(backhaul)链路,用户设备(User Equipment,UE)、eNodeB、NOA、NOC、PGW/SGW和SP服务器之间可通过传输控制协议(Transmission Control Protocol,TCP)、因特网互 联协议(Internet Protocol,IP)进行通信。NOA与NOC之间还可以通过用户数据报协议(User Datagram Protocol,UDP)或者通用无线分组业务通道协议(General Packet Radio Service Tunnel Protocol,GTP),进行通信。
TCP头部的选项部分最长可以达到40byte,所以本发明实施例中,使用TCP协议中定义的Option字段,传输替换信息和索引信息。
参阅图3,本发明实施例提供的业务数据管理的方法的一实施例包括:
S100、UE1通过NOA和NOC向SP服务器发送业务请求,所述业务请求用于请求业务数据。
业务数据可以为视频数据、音频数据和网页数据等。
S105、SP服务器向NOC发送第一响应报文,所述第一响应报文中携带所述业务数据的第一数据分段。
S106、NOC针对所述业务数据对所述UE1进行计费。
S107、NOC向所述NOA发送所述第一响应报文,所述NOA将所述第一响应报文发送给UE1,所述第一响应报文中携带所述业务数据中的第一数据分段分段。
S110、NOA根据所述第一数据分段分段,计算所述业务数据的第一索引信息,并根据所述第一索引信息确定所述业务数据未命中。
计算第一索引信息可以采用信息摘要算法进行计算,也可以采用其他算法进行计算。
本发明实施例中,未命中是指NOA中未存储所述业务数据,则命中是指NOA中存储了所述业务数据,在存储时,第一索引信息与所述业务数据是对应存储的,所以,NOA计算得到第一索引信息后,就可以从第一索引信息与所述业务数据是对应关系中,确定所述业务数据在NOA中是否有存储。如果确定未存储,则确定未命中。
S115、对应存储第一索引信息和第一数据分段分段。
S116、UE向NOA发送TCP确认消息。
S117、NOA在确认消息中加入第一索引信息。
所述第一索引信息可以添加到TCP的Option字段。
S120、SP服务器通过响应报文继续发送所述业务数据中的数据分段,所述NOC将所述数据分段发送给所述NOA,所述NOA再将所述数据分段发送给UE。
S125、NOA将所述业务数据的数据分段和第一索引信息对应存储。
实际上,每次可以只发送一段数据分段,发送的次数可以有多次,但每次的过程与S120和S125相同,本处不做过多赘述。
NOA对应存储第一索引信息和数据分段时可以通过会话标识,查找该数据分段所对应的第一索引信息。在一次会话过程中,会话标识是唯一的。
可以将NOA存储数据分段的过程理解为是业务数据注入的过程,业务数据通常是逐步注入的,对于字节数非常少的数据也可以是一次完成注入的。
S130,当NOA注入所述业务数据的过程中,UE2向SP服务器发送请求,请求与UE1相同的业务数据。
S135、SP服务器向NOC发送第一响应报文,响应报文中携带所述业务数据的第一数据分段分段。
S136、NOC针对所述业务数据对所述UE2进行计费。
S137、NOC向所述NOA发送所述第一响应报文,所述NOA将所述第一响应报文发送给UE2,所述第一响应报文中携带所述业务数据的第一数据分段分段。
S140、NOA根据所述第一数据分段,计算所述业务数据的第一索引信息,并根据所述第一索引信息确定所述业务数据命中。
S50、UE2向NOA发送TCP确认消息。
S155、NOA向NOC发送TCP确认消息,在TCP确认消息的option字段添加命中指示信息,以使所述NOC根据所述命中指示信息,用预置的替换信息替换所述业务数据中的数据分段,所述预置的替换信息所占带宽小于所述数据分段所占带宽,。
替换信息可以是一个标识,也可以是一个索引。
S160、NOC向SP服务器发送TCP确认消息。
S165、SP服务器向NOC通过响应报文继续发送所述业务数据中的数据分 段。
S170、NOC根据所述命中指示信息,在所述响应报文中用预置的替换信息替换所述数据分段。
所述预置的替换信息所占带宽小于所述数据分段所占带宽。
本发明实施例中,替换信息可以只有4bytes或者更小的字节,所占用的回程带宽远远小于数据分段所占用的带宽,因此,可以减少Backhaul的数据量,降低带宽占用率。
S175、NOC向NOA发送响应报文,所述响应报文携带所述替换信息。
S180、NOA根据所述替换信息,从本地存储中查找所述数据分段。
根据替换信息可以确定所述数据分段在本地存储中有存储,然后根据本次会话的会话标识,查找所述业务数据的数据分段。
S185、NOA向UE2发送查找到的所述数据分段。
本发明实施例中,在UE1所请求的业务数据在NOA中注入第一数据分段后,UE2请求与UE1所请求的业务数据相同的业务数据,则实际上是由NOA从存储的数据分段中将所述业务数据的数据分段陆续发送给UE2,不需要NOC发送业务数据,从而降低了Backhaul的数据量,节省了带宽。
参阅图4,本发明实施例提供的业务数据管理的方法的另一实施例包括:
S200-S225的步骤与S100-S125所描述的内容相同,本处不做过多赘述。
本发明实施例所提供的方案是在NOA1存储所述UE1请求的业务数据时,UE1切换到另一eNodeB,该另一eNodeB侧部署有NOA2。
S230、SP服务器向NOC继续通过响应报文发送数据分段。
S235、NOC获知UE1切换到另一eNodeB,该另一eNodeB侧部署有NOA2,则在响应报文中加入第一索引信息。
S240、NOC向NOA2发送所述第一索引信息和所述业务数据中未存储到NOA1中的数据分段。
S245、对应存储第一索引信息和所述业务数据中未存储到NOA1中的数据分段。
S250、NOA2向UE1发送数据分段。
本发明实施例中,当在NOA1注入业务数据的过程中,UE1切换到另一eNodeB,该另一eNodeB侧部署有NOA2时,将未注入到NOA1的剩余数据分段注入到NOA2中。
参阅图5,本发明实施例提供的业务数据管理的方法的另一实施例包括:
S200-S225的步骤与图4中所示的S200-S225所描述的内容相同,本处不做过多赘述。
本发明实施例所提供的方案是在NOA1注入所述UE1请求的业务数据时,UE1切换到另一eNodeB,该另一eNodeB侧未部署另一NOA。
S260、SP服务器向NOC继续通过响应报文发送数据分段。
S265、NOC获知UE1切换到另一eNodeB。
S270、NOC通过响应报文向另一eNodeB发送数据分段。
S275、另一eNodeB向UE1转发所述数据分段。
本发明实施例中,当在向NOA1注入业务数据的过程中,UE1切换到另一eNodeB,该另一eNodeB侧未部署NOA时,则NOC将携带数据分段的响应报文直接发送给所述另一eNodeB,该另一eNodeB向UE1转发所述数据分段。
参阅图6,本发明实施例提供的业务数据管理的方法的另一实施例包括:
S300-S350的步骤与图3中所示的S130-S185所描述的内容相同,本处不做过多赘述。
本发明实施例所提供的方案是在UE1所请求的业务数据,在NOA1已有存储时,在NOA1向UE1发送数据分段时,UE1切换到另一eNodeB,该另一eNodeB侧部署有NOA2,NOA2中未存储有所述业务数据。
S355、SP服务器向NOC继续通过响应报文发送数据分段。
S360、NOC获知UE1切换到另一eNodeB,该另一eNodeB侧部署有NOA2,则在响应报文中加入第一索引信息。
S365、NOC向NOA2发送所述第一索引信息和所述业务数据中NOA1未发送到UE1的数据分段。
S370、对应存储第一索引信息和NOA1未发送到UE1的数据分段。
S375、NOA2向UE1发送数据分段。
本发明实施例中,当NOA1向UE1发送已存储的业务数据的过程中,UE1切换到另一eNodeB,该另一eNodeB侧部署有NOA2时,将所述业务数据中NOA1未发送到UE1的数据分段注入到NOA2中。
参阅图7,本发明实施例提供的业务数据管理的方法的另一实施例包括:
S300-S350的步骤与图3中所示的S130-S185所描述的内容相同,本处不做过多赘述。
本发明实施例所提供的方案是在UE1所请求的业务数据,在NOA1已有存储时,在NOA1向UE1发送数据分段时,UE1切换到另一eNodeB,该另一eNodeB侧未部署NOA。
S380、SP服务器向NOC继续通过响应报文发送数据分段。
S385、NOC获知UE1切换到另一eNodeB。
S390、NOC通过响应报文向另一eNodeB发送数据分段。
S395、另一eNodeB向UE1转发所述数据分段。
本发明实施例中,当NOA1向UE1发送已存储的业务数据的过程中,UE1切换到另一eNodeB,该另一eNodeB侧未部署NOA时,则NOC将携带数据分段的响应报文直接发送给所述另一eNodeB,该另一eNodeB向UE1转发所述数据分段。
参阅图8,本发明实施例提供的业务数据管理的方法的另一实施例包括:
S300-S350的步骤与图3中所示的S130-S185所描述的内容相同,本处不做过多赘述。
本发明实施例所提供的方案是在NOA1向UE1发送已存储的业务数据的过程中,NOA1发生故障,则执行S400-S425的过程:
S400、SP服务器向NOC继续通过响应报文发送数据分段。
S405、NOC向eNodeB发送响应报文,响应报文中携带替换信息。
S410、eNodeB向UE1发送响应报文,响应报文中携带替换信息。
S415、UE1获知数据传输错误,通过eNodeB向NOC发送重传指令。
S420、NOC获知NOA1发生故障,则在后续的响应报文中,不再用替换信息替换数据分段。
S425、SP服务器通过NOC和eNodeB向UE1发送数据分段。
以上,图3至图8所提供的实施例都是在SP服务器响应的过程中,NOA根据所请求的业务数据的第一数据分段计算第一索引信息的。
参阅图9,本发明实施例提供的业务数据管理的方法的另一实施例包括:
S500、UE1向NOA发送业务请求,所述业务请求中携带业务标识。
本发明实施例中的业务标识可以是网页地址(Uniform Resoure Locator,URL),视频唯一标识、音频唯一标识。
S505、NOA根据业务标识,计算第二索引信息,根据第二索引信息确定所述业务请求所请求的业务数据在NOA中没有存储。
第二索引信息可以采用信息摘要算法进行计算,也可以采用其他算法进行计算。
本发明实施例中,未命中是指NOA中未存储所述业务数据,则命中是指NOA中存储了所述业务数据,在存储时,第一索引信息与所述业务数据是对应存储的,所以,NOA计算得到第一索引信息后,就可以从第一索引信息与所述业务数据是对应关系中,确定所述业务数据在NOA中是否有存储。如果确定未存储,则确定未命中。
S510、NOA通过NOC向SP服务器发送业务请求。
S515、SP服务器通过响应报文逐步发送所述业务数据的数据分段。
S516、NOC针对所述业务数据对所述UE1进行计费。
S517、NOC向所述NOA发送所述响应报文,所述NOA将所述响应报文发送给UE,所述响应报文中携带所述业务数据的数据分段。
S520、NOA对应存储第二索引信息和数据分段。
实际上,每次可以只发送一段数据分段,发送的次数可以有多次,但每次的过程与S517和S520相同,本处不做过多赘述。
S521、UE1向NOA发送TCP确认消息。
S522、NOA向NOC发送TCP确认消息,且在所述确认消息中添加第二索引信息。
所述第二索引信息可以添加到TCP的Option字段。
NOA对应存储第二索引信息和数据分段时可以通过会话标识,查找该数据分段所对应的第二索引信息。在一次会话过程中,会话标识是唯一的。
可以将NOA存储数据分段的过程理解为是业务数据注入的过程,业务数据通常是逐步注入的,当业务数据的字节数很少时,也可以是一次完成注入的。
S525、当NOA注入所述业务数据的过程中,UE2向NOA发送业务请求,请求与UE1相同的业务数据,所述业务请求中携带业务标识。
S530、NOA根据业务标识,计算第二索引信息,并根据所述第二索引信息确定所述业务数据已存储在NOA中,即确定命中。
S535、NOA通过NOC向SP服务器发送业务请求,所述业务请求中携带命中指示信息。
命中指示信息可以添加在业务请求的TCP option字段中。
S540、SP服务器向NOC发送响应报文,所述响应报文中携带数据分段。
S541、NOC针对所述业务数据对所述UE2进行计费。
S545、NOC根据所述替换信息,在响应报文中用替换信息替换所述数据分段。
所述预置的替换信息所占带宽小于所述数据分段所占带宽。
本发明实施例中,替换信息可以只有4bytes或者更小,所占用的回程带宽远远小于数据分段所占用的带宽,因此,可以减少Backhaul的数据量,节省带宽。
S550、NOC向NOA发送响应报文,所述响应报文中携带替换信息。
S555、NOA根据所述替换信息,从本地存储中查找所述数据分段。
根据替换信息可以确定所述数据分段在NOA有存储,然后根据本次会话的会话标识,查找所述业务数据的数据分段。
S560、NOA向UE2发送查找到的所述数据分段。
本发明实施例中,在UE1所请求的业务数据在NOA中注入第一数据分段后,UE2请求与UE1所请求的业务数据相同的业务数据,则实际上是由NOA从存储的数据分段中将所述业务数据的数据分段陆续发送给UE2,不需要NOC发送业务数据,从而降低了Backhaul的数据量,降低了带宽占用率。
参阅图10,本发明实施例提供的业务数据管理的方法的另一实施例包括:
S600-S622的步骤与S500-S522所描述的内容相同,本处不做过多赘述。
本发明实施例所提供的方案是在NOA1存储所述UE1请求的业务数据时,UE1切换到另一eNodeB,该另一eNodeB侧部署有NOA2。
S625、SP服务器向NOC继续通过响应报文发送数据分段。
S630、NOC获知UE1切换到另一eNodeB,该另一eNodeB侧部署有NOA2,则在响应报文中加入第二索引信息。
S635、NOC向NOA2发送所述第二索引信息和所述业务数据中未存储到NOA1中的数据分段。
S640、NOA2对应存储第二索引信息和所述业务数据中未存储到NOA1中的数据分段。
S645、NOA2向UE1发送数据分段。
本发明实施例中,当在NOA1注入业务数据的过程中,UE1切换到另一eNodeB,该另一eNodeB侧部署有NOA2时,将未注入到NOA1的剩余数据分段注入到NOA2中。
参阅图11,本发明实施例提供的业务数据管理的方法的另一实施例包括:
S600-S622的步骤与S500-S522所描述的内容相同,本处不做过多赘述。
本发明实施例所提供的方案是在NOA1存储所述UE1请求的业务数据时,UE1切换到另一eNodeB,该另一eNodeB侧未部署另一NOA。
S660、SP服务器向NOC继续通过响应报文发送数据分段。
S665、NOC获知UE1切换到另一eNodeB。
S670、NOC通过响应报文向另一eNodeB发送数据分段。
S675、另一eNodeB向UE1转发所述数据分段。
本发明实施例中,当在向NOA1注入业务数据的过程中,UE1切换到另一eNodeB,该另一eNodeB侧未部署另一NOA时,则NOC将携带数据分段的响应报文直接发送给所述另一eNodeB,该另一eNodeB向UE1转发所述数据分段。
参阅图12,本发明实施例提供的业务数据管理的方法的另一实施例包括:
S700-S735的步骤与S525-S560所描述的内容相同,本处不做过多赘述。
本发明实施例所提供的方案是在UE1所请求的业务数据,在NOA1已有存 储时,在NOA1向UE1发送数据分段时,UE1切换到另一eNodeB,该另一eNodeB侧部署有NOA2,NOA2中未存储有所述业务数据。
S740、SP服务器向NOC继续通过响应报文发送数据分段。
S745、NOC获知UE1切换到另一eNodeB,该另一eNodeB侧部署有NOA2,则在响应报文中加入第二索引信息。
S365、NOC向NOA2发送所述第二索引信息和所述业务数据中NOA1未发送到UE1的数据分段。
S370、对应存储第二索引信息和NOA1未发送到UE1的数据分段。
S375、NOA2向UE1发送数据分段。
本发明实施例中,当NOA1向UE1发送已存储的业务数据的过程中,UE1切换到另一eNodeB,该另一eNodeB侧部署有NOA2时,将所述业务数据中NOA1未发送到UE1的数据分段注入到NOA2中。
参阅图13,本发明实施例提供的业务数据管理的方法的另一实施例包括:
S700-S735的步骤与S525-S560所描述的内容相同,本处不做过多赘述。
本发明实施例所提供的方案是在UE1所请求的业务内容,在NOA1已有存储时,在NOA1向UE1发送数据分段时,UE1切换到另一eNodeB,该另一eNodeB侧未部署NOA。
S765、SP服务器向NOC继续通过响应报文发送数据分段。
S770、NOC获知UE1切换到另一eNodeB。
S775、NOC通过响应报文向另一eNodeB发送数据分段。
S780、另一eNodeB向UE1转发所述数据分段。
本发明实施例中,当NOA1向UE1发送已存储的业务数据的过程中,UE1切换到另一eNodeB,该另一eNodeB侧未部署另一NOA时,则NOC将携带数据分段的响应报文直接发送给所述另一eNodeB,该另一eNodeB向UE1转发所述数据分段。
参阅图14,本发明实施例提供的业务数据管理的方法的另一实施例包括:
S700-S735的步骤与S525-S560所描述的内容相同,本处不做过多赘述。
本发明实施例所提供的方案是在NOA1向UE1发送已存储的业务数据的过 程中,NOA1发生故障,则执行S400-S425的过程:
S800、SP服务器向NOC继续通过响应报文发送数据分段。
S805、NOC向eNodeB发送响应报文,响应报文中携带替换信息。
S810、eNodeB向UE1发送响应报文,响应报文中携带替换信息。
S815、UE1获知数据传输错误,通过eNodeB向NOC发送重传指令。
S820、NOC获知NOA1发生故障,则在后续的响应报文中,不再用替换信息替换数据分段。
S825、SP服务器通过NOC和eNodeB向UE1发送数据分段。
以上,图9至图14所提供的实施例都是在UE发送业务请求的过程中,NOA根据业务请求所携带的业务标识生成第二索引信息的。
图3-图14中的SP都为SP服务器,图中未标出服务器字样。
参阅图15,本发明实施例提供的业务数据管理的方法的另一实施例包括:
所述方法应用于无线通信系统,所述无线通信系统包括:基站、网关、网络优化代理NOA、网络优化控制器NOC和SP服务器,所述NOA部署在所述基站侧,所述NOC部署在所述网关侧,所述方法包括:
101、所述NOA接收第一用户设备UE的业务请求,并将所述业务请求通过所述NOC转发到SP服务器,以便所述SP服务器根据所述业务请求,返回所述第一UE所请求的业务数据;
102、所述NOA确定所述业务数据是否已存储在所述NOA中;
103、当确定所述业务数据已存储在所述NOA中,则向所述NOC发送命中指示信息,以使所述NOC根据所述命中指示信息,用预置的替换信息替换所述业务数据中的数据分段,所述预置的替换信息所占带宽小于所述数据分段所占带宽,接收所述NOC发送的替换信息,根据所述替换信息确定对应的数据分段,并向所述第一UE发送已存储的所述数据分段。
本发明实施例所提供的业务数据管理的方法,所述方法应用于无线通信系统,所述无线通信系统包括:基站、网关、网络优化代理NOA、网络优化控制器NOC和SP服务器,所述NOA部署在所述基站侧,所述NOC部署在所述网关侧,所述方法包括:所述NOA接收第一用户设备UE的业务请求,并将所述 业务请求通过所述NOC转发到SP服务器,以便所述SP服务器根据所述业务请求,返回所述第一UE所请求的业务数据;所述NOA确定所述业务数据是否已存储在所述NOA中;当确定所述业务数据已存储在所述NOA中,则向所述NOC发送命中指示信息,以使所述NOC根据所述命中指示信息,用预置的替换信息替换所述业务数据中的数据分段,所述预置的替换信息所占带宽小于所述数据分段所占带宽,接收所述NOC发送的替换信息,根据所述替换信息确定对应的数据分段,并向所述第一UE发送已存储的所述数据分段。
与现有技术相比,本发明实施例所提供的业务数据管理的方法,在业务数据第一次被请求时,网络优化代理NOA存储业务数据,在所述业务数据第二次被与现有技术相比,本发明实施例所提供的业务数据管理的方法,通过在基站侧部署网络优化代理NOA,在网关侧部署网络优化控制器NOC来对业务数据进行管理,这样,在业务数据第一次被请求时,网络优化代理NOA存储业务数据,在所述业务数据第二次被请求时,不需要网络优化控制器NOC再将所述业务数据重新发送一次,而是在所述NOC完成计费后,由所述NOA将所述业务数据发送给UE,降低了Backhaul的数据量,从而降低了Backhaul带宽占用率。
可选地,在上述图15所对应的实施例的基础上,本发明实施例提供的业务数据管理的方法的第一个可选实施例中,所述方法还可以包括:
当确定所述业务数据未存储在所述NOA中时,向所述NOC发送未命中指示信息,以使所述NOC根据所述未命中指示信息,向所述NOA发送所述业务数据所包含的数据分段,从所述NOC接收所述数据分段,并将接收到的所述数据分段存储到所述NOA中;
当第二UE请求所述业务数据时,所述NOA向所述第二UE发送已存储的所述数据分段。
可选地,在上述第一个可选实施例的基础上,本发明实施例提供的业务数据管理的方法的第二个可选实施例中,所述SP服务器返回所述第一UE所请求的业务数据,可以包括:
所述SP服务器将所述业务数据所包含的数据分段携带在一个或多个响应报文中,并将所述一个或多个响应报文发送给所述NOC;
所述确定所述业务数据是否已存储在所述NOA中,可以包括:
接收所述NOC发送的第一响应报文,所述第一响应报文中携带所述第一UE所请求的业务数据中的第一数据分段分段;
根据所述第一数据分段生成第一索引信息;
查找所述第一索引信息是否已存储在所述NOA中;
当所述第一索引信息已存储在所述NOA中时,则确定所述业务数据已存储在所述NOA中;
当所述第一索引信息未存储在所述NOA中时,则确定所述业务数据未存储到所述NOA中。
可选地,在上述第一个可选实施例的基础上,本发明实施例提供的业务数据管理的方法的第三个可选实施例中,所述确定所述业务数据是否已存储在所述NOA中,可以包括:
从所述业务请求中解析出业务标识;
根据所述业务标识,生成第二索引信息;
查找所述第二索引信息是否已存储在所述NOA中;
当所述第二索引信息已存储在所述NOA中时,则确定所述业务数据已存储在所述NOA中;
当所述第二索引信息未存储在所述NOA中时,则确定所述业务数据未存储到所述NOA中。
本发明以上多个实施例所提供的业务数据管理的方法可以参阅图1-14中NOA所执行的过程进行理解,本处不做过多赘述。
参阅图16,本发明实施例提供的业务数据管理的方法的另一实施例包括:
所述方法应用于无线通信系统,所述无线通信系统包括:基站、网关、网络优化代理NOA、网络优化控制器NOC和服务提供商SP服务器,所述NOA部署在所述基站侧,所述NOC部署在所述网关侧,所述方法包括:
201、所述NOC接收所述NOA转发的第一用户设备UE的业务请求,并将所述业务请求转发到所述SP服务器,以便所述SP服务器根据所述业务请求,返回所述第一UE所请求的业务数据;
202、当接收所述NOA发送的命中指示信息时,根据所述命中指示信息,用预置的替换信息替换所述业务数据中的数据分段,所述预置的替换信息所占带宽小于所述数据分段所占带宽,向所述NOA发送所述替换信息,以使所述NOA根据所述替换信息查找对应的数据分段,并向所述第一UE发送已存储的所述数据分段。
本发明实施例所提供的业务数据管理的方法,所述方法应用于无线通信系统,所述无线通信系统包括:基站、网关、网络优化代理NOA、网络优化控制器NOC和服务提供商SP服务器,所述NOA部署在所述基站侧,所述NOC部署在所述网关侧,所述方法包括:所述NOC接收所述NOA转发的第一用户设备UE的业务请求,并将所述业务请求转发到所述SP服务器,以便所述SP服务器根据所述业务请求,返回所述第一UE所请求的业务数据;当接收所述NOA发送的命中指示信息时,根据所述命中指示信息,用预置的替换信息替换所述业务数据中的数据分段,所述预置的替换信息所占带宽小于所述数据分段所占带宽,向所述NOA发送所述替换信息,以使所述NOA根据所述替换信息查找对应的数据分段,并向所述第一UE发送已存储的所述数据分段。
与现有技术相比,本发明实施例所提供的业务数据管理的方法,在业务数据第一次被请求时,网络优化代理NOA存储业务数据,在所述业务数据第二次被与现有技术相比,本发明实施例所提供的业务数据管理的方法,通过在基站侧部署网络优化代理NOA,在网关侧部署网络优化控制器NOC来对业务数据进行管理,这样,在业务数据第一次被请求时,网络优化代理NOA存储业务数据,在所述业务数据第二次被请求时,不需要网络优化控制器NOC再将所述业务数据重新发送一次,而是在所述NOC完成计费后,由所述NOA将所述业务数据发送给UE,降低了Backhaul的数据量,从而降低了Backhaul带宽占用率。
可选地,在上述图16所对应的实施例的基础上,本发明实施例提供的业务数据管理的方法的第一个可选实施例中,所述方法还可以包括:
当接收到未命中指示信息时,根据所述未命中指示信息,向所述NOA发送所述业务数据所包含的数据分段,以使所述NOA将接收到的所述数据分段存储到所述NOA中,当第二UE请求所述业务数据时,由所述NOA向所述第二 UE发送已存储的所述数据分段。
可选地,在上述图16所对应的第一个可选实施例的基础上,本发明实施例提供的业务数据管理的方法的第二个可选实施例中,所述SP服务器返回所述第一UE所请求的业务数据,可以包括:
所述SP服务器将所述业务数据所包含的数据分段携带在一个或多个响应报文中,并将所述一个或多个响应报文发送给所述NOC;
接收所述SP服务器发送的所述一个或多个响应报文,并向所述NOA发送所述一个或多个响应报文,所述一个或多个响应报文中的第一响应报文携带所述第一UE所请求的业务数据中的第一数据分段,以使所述NOA根据所述第一数据分段生成第一索引信息。
可选地,在上述图16所对应的第二个可选实施例的基础上,本发明实施例提供的业务数据管理的方法的第三个可选实施例中,所述方法还可以包括:
接收所述NOA发送的所述第一索引信息和第二索引信息,所述第二索引信息为所述NOA根据从所述业务请求中所解析出的业务标识生成的。
可选地,在上述图16所对应的第三个可选实施例的基础上,本发明实施例提供的业务数据管理的方法的第四个可选实施例中,所述方法还可以包括:
向所述NOA发送所述数据分段时识别到所述第一UE切换到另一基站,且所述另一基站侧部署有另一NOA,则向所述另一NOA发送所述第一索引信息或所述第二索引信息,以及所述业务数据中未向所述NOA发送的剩余数据分段,以便所述另一NOA将所述第一索引信息或所述第二索引信息,以及所述剩余数据分段对应存储。
可选地,在上述图16所对应的第一、第二或第三个可选实施例的基础上,本发明实施例提供的业务数据管理的方法的第五个可选实施例中,所述方法还可以包括:
向所述NOA发送所述数据分段时识别到所述第一UE切换到另一基站,且所述另一基站侧未部署另一NOA,则向所述另一基站发送所述业务数据中未向所述NOA发送的剩余数据分段。
可选地,在上述图16所对应的第三个可选实施例的基础上,本发明实施例 提供的业务数据管理的方法的第六个可选实施例中,所述方法还可以包括:
向所述NOA发送所述替换信息时识别到所述第一UE切换到另一基站,且所述另一基站侧部署有另一NOA,则向所述另一NOA发送所述第一索引信息或所述第二索引信息,以及所述业务数据中所述NOA未向所述第一UE发送的剩余数据分段,以便所述另一NOA将所述第一索引信息或所述第二索引信息,以及所述剩余数据分段对应存储。
可选地,在上述图16所对应的实施例、第一、第二或第三个可选实施例的基础上,本发明实施例提供的业务数据管理的方法的第七个可选实施例中,
向所述NOA发送所述替换信息时识别到所述UE切换到另一基站,且所述另一基站侧未部署另一NOA,则向所述另一基站发送所述业务数据中所述NOA未向所述第一UE发送的剩余数据分段。
可选地,在上述图16所对应的实施例、第一至第七个可选实施例中任一实施例的基础上,本发明实施例提供的业务数据管理的方法的第八个可选实施例中,所述方法还可以包括:
接收到所述第一UE发送的数据重传指令,确认所述NOA发生故障,则向所述第一UE所在的基站发送所述业务数据中所述NOA未向所述第一UE发送的剩余数据分段。
本发明以上多个实施例所提供的业务数据管理的方法可以参阅图1-14中NOC所执行的过程进行理解,本处不做过多赘述。
参阅图17,本发明实施例提供的网络优化代理NOA30的一实施例包括:所述NOA应用于无线通信系统,所述无线通信系统还包括:基站、网关、网络优化控制器NOC和服务提供商(SP)服务器,所述NOA部署在所述基站侧,所述NOC部署在所述网关侧,所述NOA包括:
接收单元301,用于接收第一用户设备UE的业务请求;
发送单元302,用于将所述接收单元301接收到的所述业务请求通过所述NOC转发到SP服务器,以便所述SP服务器根据所述业务请求,返回所述第一UE所请求的业务数据;
确定单元303,用于确定所述业务数据是否已存储在所述NOA中;
所述发送单元302,还用于当所述确定单元302确定所述业务数据已存储在所述NOA中,则向所述NOC发送命中指示信息,以使所述NOC根据所述命中指示信息,用预置的替换信息替换所述业务数据中的数据分段,所述预置的替换信息所占带宽小于所述数据分段所占带宽;
所述接收单元301,还用于接收所述NOC发送的替换信息;
所述确定单元303,还用于根据所述接收单元301接收的所述替换信息确定对应的数据分段;
所述发送单元302,还用于向所述第一UE发送已存储的所述确定单元303确定的所述数据分段。
本发明实施例中,所述NOA应用于无线通信系统,所述无线通信系统还包括:基站、网关、网络优化控制器NOC和服务提供商(SP)服务器,所述NOA部署在所述基站侧,所述NOC部署在所述网关侧,所述NOA包括:接收单元301接收第一用户设备UE的业务请求,发送单元302将所述接收单元301接收到的所述业务请求通过所述NOC转发到SP服务器,以便所述SP服务器根据所述业务请求,返回所述第一UE所请求的业务数据;确定单元303确定所述业务数据是否已存储在所述NOA中;所述发送单元302还当所述确定单元302确定所述业务数据已存储在所述NOA中,则向所述NOC发送命中指示信息,以使所述NOC根据所述命中指示信息,用预置的替换信息替换所述业务数据中的数据分段,所述预置的替换信息所占带宽小于所述数据分段所占带宽;所述接收单元301还接收所述NOC发送的替换信息;所述确定单元303还根据所述接收单元301接收的所述替换信息确定对应的数据分段;所述发送单元302还向所述第一UE发送已存储的所述确定单元303确定的所述数据分段。与现有技术相比,本发明实施例所提供的NOA,在业务数据第一次被请求时,网络优化代理NOA存储业务数据,在所述业务数据第二次被与现有技术相比,本发明实施例所提供的业务数据管理的方法,通过在基站侧部署网络优化代理NOA,在网关侧部署网络优化控制器NOC来对业务数据进行管理,这样,在业务数据第一次被请求时,网络优化代理NOA存储业务数据,在所述业务数据第二次被请求时,不需要网络优化控制器NOC再将所述业务数据重新发送一次,而是 在所述NOC完成计费后,由所述NOA将所述业务数据发送给UE,降低了Backhaul的数据量,从而降低了Backhaul带宽占用率。
可选地,在上述图17对应的实施例的基础上,参阅图18,本发明实施例提供的NOA的另一实施例中,所述NOA还包括:存储单元304,
所述发送单元302,还用于当所述确定单元303确定所述业务数据未存储在所述NOA中时,向所述NOC发送未命中指示信息,以使所述NOC根据所述未命中指示信息,向所述NOA发送所述业务数据所包含的数据分段;
所述接收单元301,还用于从所述NOC接收所述数据分段;
存储单元304,用于存储所述接收单元301接收到的所述数据分段;
所述发送单元302,还用于当第二UE请求所述业务数据时,向所述第二UE发送所述存储单元304已存储的所述数据分段。
可选地,在上述图18对应的实施例的基础上,参阅图19,本发明实施例提供的NOA的另一实施例中,所述SP服务器将所述业务数据所包含的数据分段携带在一个或多个响应报文中,并将所述一个或多个响应报文发送给所述NOC;
所述确定单元303包括:
接收子单元3031,用于接收所述NOC发送的第一响应报文,所述第一响应报文中携带所述第一UE所请求的业务数据中的第一数据分段;
第一生成子单元3032,用于根据所述接收子单元3031接收的所述第一数据分段生成第一索引信息;
第一查找子单元3033,用于查找所述第一生成子单元3032生成的所述第一索引信息是否已存储在所述NOA中;
第一确定子单元3034,用于当所述第一查找子单元3033查找到所述第一索引信息已存储在所述NOA中时,则确定所述业务数据已存储在所述NOA中;当所述查找子单元查找到所述第一索引信息未存储在所述NOA中时,则确定所述业务数据未存储到所述NOA中。
可选地,在上述图18对应的实施例的基础上,参阅图20,本发明实施例提供的NOA的另一实施例中,所述SP服务器将所述业务数据所包含的数据分段 携带在一个或多个响应报文中,并将所述一个或多个响应报文发送给所述NOC;
所述确定单元303包括:
解析子单元3035,用于从所述业务请求中解析出业务标识;
第二生成子单元3036,用于根据所述解析子单元3035解析出的所述业务标识,生成第二索引信息;
第二查找子单元3037,用于查找所述第二生成子单元3036生成的所述第二索引信息是否已存储在所述NOA中;
第二确定子单元3038,用于当所述第二查找子单元3037查找到所述第二索引信息已存储在所述NOA中时,则确定所述业务数据已存储在所述NOA中,当所述第二查找子单元查找到所述第二索引信息未存储在所述NOA中时,则确定所述业务数据未存储到所述NOA中。
参阅图21,本发明实施例提供的网络优化控制器NOC40一实施例包括:所述NOC应用于无线通信系统,所述无线通信系统包括:基站、网关、网络优化代理NOA和服务提供商(SP)服务器,所述NOA部署在所述基站侧,所述NOC部署在所述网关侧,所述NOC包括:
接收单元401,用于接收所述NOA转发的第一用户设备UE的业务请求;
发送单元402,用于将所述接收单元401接收的所述业务请求转发到所述SP服务器,以便所述SP服务器根据所述业务请求,返回所述第一UE所请求的业务数据;
所述接收单元401,还用于接收所述NOA发送的命中指示信息;
替换单元403,用于当所述接收单元403接收到所述NOA发送的命中指示信息时,根据所述命中指示信息,用预置的替换信息替换所述业务数据中的数据分段,所述预置的替换信息所占带宽小于所述数据分段所占带宽;
所述发送单元402,还用于向所述NOA发送所述替换单元403替换的替换信息,以使所述NOA根据所述替换信息查找对应的数据分段,并向所述第一UE发送已存储的所述数据分段。
本发明实施例中,所述NOC应用于无线通信系统,所述无线通信系统包括: 基站、网关、网络优化代理NOA和服务提供商(SP)服务器,所述NOA部署在所述基站侧,所述NOC部署在所述网关侧,所述NOC包括:接收单元401接收所述NOA转发的第一用户设备UE的业务请求;发送单元402将所述接收单元401接收的所述业务请求转发到所述SP服务器,以便所述SP服务器根据所述业务请求,返回所述第一UE所请求的业务数据;所述接收单元401还接收所述NOA发送的命中指示信息;替换单元403当所述接收单元403接收到所述NOA发送的命中指示信息时,根据所述命中指示信息,用预置的替换信息替换所述业务数据中的数据分段,所述预置的替换信息所占带宽小于所述数据分段所占带宽;所述发送单元402还向所述NOA发送所述替换单元403替换的替换信息,以使所述NOA根据所述替换信息查找对应的数据分段,并向所述第一UE发送已存储的所述数据分段。
与现有技术相比,本发明实施例所提供的NOC,通过在基站侧部署网络优化代理NOA,在网关侧部署网络优化控制器NOC来对业务数据进行管理,这样,在业务数据第一次被请求时,网络优化代理NOA存储业务数据,在所述业务数据第二次被请求时,不需要网络优化控制器NOC再将所述业务数据重新发送一次,而是在所述NOC完成计费后,由所述NOA将所述业务数据发送给UE,降低了Backhaul的数据量,从而降低了Backhaul带宽占用率。
可选地,在上述图21对应的实施例的基础上,本发明实施例提供的NOC的第一个可选实施例中,
所述接收单元401,还用于接收未命中指示信息;
所述发送单元404,还用于当所述接收单元401接收到未命中指示信息时,根据所述未命中指示信息,向所述NOA发送所述业务数据所包含的数据分段,以使所述NOA将接收到的所述数据分段存储到所述NOA中,当第二UE请求所述业务数据时,由所述NOA向所述第二UE发送已存储的所述数据分段。
可选地,在上述图21对应的可选实施例的基础上,本发明实施例提供的NOC的第二个可选实施例中,所述SP服务器将所述业务数据所包含的数据分段携带在一个或多个响应报文中,并将所述一个或多个响应报文发送给所述NOC;
所述接收单元401,还用于接收所述SP服务器发送的一个或多个响应报文;
所述发送单元402,还用于向所述NOA发送所述一个或多个响应报文,所述一个或多个响应报文中的第一响应报文携带所述第一UE所请求的业务数据中的第一数据分段,以使所述NOA根据所述第一数据分段生成第一索引信息。
可选地,在上述图21对应的可选实施例的基础上,本发明实施例提供的NOC的第三个可选实施例中,
所述接收单元401,还用于接收所述NOA发送的所述第一索引信息和第二索引信息,所述第二索引信息为所述NOA根据从所述业务请求中所解析出的业务标识生成的。
可选地,在上述图21对应的第三个可选实施例的基础上,参阅图22,本发明实施例提供的NOC的另一实施例中,所述NOC还包括第一识别单元404,
第一识别单元404,用于在所述发送单元402向所述NOA发送所述数据分段时识别到所述第一UE切换到另一基站,且所述另一基站侧部署有另一NOA;
所述发送单元402,用于向所述第一识别单元404识别到的所述第一UE切换后的另一NOA发送所述第一索引信息或所述第二索引信息,以及所述业务数据中未向所述NOA发送的剩余数据分段,以便所述另一NOA将所述第一索引信息或所述第二索引信息,以及所述剩余数据分段对应存储。
可选地,在上述图21对应的第三个可选实施例的基础上,参阅图23,本发明实施例提供的NOC的另一实施例中,所述NOC还包括第二识别单元405,
所述第二识别单元405,用于在所述发送单元402向所述NOA发送所述数据分段时识别到所述第一UE切换到另一基站,且所述另一基站侧未部署另一NOA;
所述发送单元402,还用于向所述第二识别单元405识别到所述第一UE切换到的另一基站,发送所述业务数据中未向所述NOA发送的剩余数据分段。
可选地,在上述图21对应的第三个可选实施例的基础上,参阅图24,本发明实施例提供的NOC的另一实施例中,所述NOC还包括第三识别单元406,
所述第三识别单元406,用于向所述NOA发送所述替换信息时识别到所述第一UE切换到另一基站,且所述另一基站侧部署有另一NOA;
所述发送单元402,用于向所述第三识别单元406识别到所述第一UE切换到的所述另一NOA发送所述第一索引信息或所述第二索引信息,以及所述业务数据中所述NOA未向所述第一UE发送的剩余数据分段,以便所述另一NOA将所述第一索引信息或所述第二索引信息,以及所述剩余数据分段对应存储。
可选地,在上述图21对应的第三个可选实施例的基础上,参阅图25,本发明实施例提供的NOC的另一实施例中,所述NOC还包括第四识别单元407,
所述第四识别单元407,用于向所述NOA发送所述替换信息时识别到所述UE切换到另一基站,且所述另一基站侧未部署另一NOA;
所述发送单元402,还用于向所述第四识别单元407识别到的所述第一UE切换到的另一基站发送所述业务数据中所述NOA未向所述第一UE发送的剩余数据分段。
可选地,在上述图21对应的实施例的基础上,参阅图26,本发明实施例提供的NOC的另一实施例中,所述NOC还包括确认单元408,
所述接收单元401,还用于接收所述第一UE发送的数据重传指令;
所述确认单元408,用于根据所述接收单元401接收的所述数据重传指令,确认所述NOA发生故障;
所述发送单元402,还用于在所述确认单元408确认所述NOA发生故障时,向所述第一UE所在的基站发送所述业务数据中所述NOA未向所述第一UE发送的剩余数据分段。
图27是本发明实施例网络优化代理30的结构示意图。所述方法应用于无线通信系统,所述无线通信系统包括:基站、网关、网络优化代理NOA、网络优化控制器NOC和服务提供商(SP)服务器,所述NOA部署在所述基站侧,所述NOC部署在所述网关侧,网络优化代理30可包括输入设备310、输出设备320、处理器330和存储器340。
存储器340可以包括只读存储器和随机存取存储器,并向处理器330提供指令和数据。存储器340的一部分还可以包括非易失性随机存取存储器(NVRAM)。
存储器340存储了如下的元素,可执行模块或者数据结构,或者它们的子 集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
在本发明实施例中,处理器330通过调用存储器340存储的操作指令(该操作指令可存储在操作系统中),执行如下操作:
通过输入设备310接收第一用户设备UE的业务请求,并将所述业务请求通过所述NOC转发到SP服务器,以便所述SP服务器根据所述业务请求,返回所述第一UE所请求的业务数据;
确定所述业务数据是否已存储在所述NOA中;
当确定所述业务数据已存储在所述NOA中,则通过输出设备320向所述NOC发送命中指示信息,以使所述NOC根据所述命中指示信息,用预置的替换信息替换所述业务数据中的数据分段,所述预置的替换信息所占带宽小于所述数据分段所占带宽,接收所述NOC发送的替换信息,根据所述替换信息确定对应的数据分段,并向所述第一UE发送已存储的所述数据分段。
本发明实施例中,网络优化代理30可以在业务数据第一次被请求时,存储业务数据在所述业务数据第二次被请求时,不需要网络优化控制器NOC再将所述业务数据重新发送一次,而是在所述NOC完成计费后,由所述NOA将所述业务数据发送给UE,降低了Backhaul的数据量,从而降低了Backhaul带宽占用率。
处理器330控制网络优化代理30的操作,处理器330还可以称为CPU(Central Processing Unit,中央处理单元)。存储器340可以包括只读存储器和随机存取存储器,并向处理器330提供指令和数据。存储器340的一部分还可以包括非易失性随机存取存储器(NVRAM)。具体的应用中,网络优化代理30的各个组件通过总线系统350耦合在一起,其中总线系统350除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统350。
上述本发明实施例揭示的方法可以应用于处理器330中,或者由处理器330 实现。处理器330可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器330中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器330可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器340,处理器330读取存储器340中的信息,结合其硬件完成上述方法的步骤。
可选地,所述输出设备320,还用于当确定所述业务数据未存储在所述NOA中时,向所述NOC发送未命中指示信息,以使所述NOC根据所述未命中指示信息,向所述NOA发送所述业务数据所包含的数据分段,从所述NOC接收所述数据分段,并将接收到的所述数据分段存储到所述NOA中;
所述输出设备320,还用于当第二UE请求所述业务数据时,向所述第二UE发送已存储的所述数据分段。
可选地,所述输入设备310还用于接收所述NOC发送的第一响应报文,所述第一响应报文中携带所述第一UE所请求的业务数据中的第一数据分段分段;
所述处理器330具体可:根据所述第一数据分段生成第一索引信息,查找所述第一索引信息是否已存储在所述NOA中;当所述第一索引信息已存储在所述NOA中时,则确定所述业务数据已存储在所述NOA中;当所述第一索引信息未存储在所述NOA中时,则确定所述业务数据未存储到所述NOA中。
可选地,所述处理器330具体可:从所述业务请求中解析出业务标识;根据所述业务标识,生成第二索引信息;查找所述第二索引信息是否已存储在所述NOA中;当所述第二索引信息已存储在所述NOA中时,则确定所述业务数 据已存储在所述NOA中;当所述第二索引信息未存储在所述NOA中时,则确定所述业务数据未存储到所述NOA中。
图28是本发明实施例网络优化控制器40的结构示意图。所述方法应用于无线通信系统,所述无线通信系统包括:基站、网关、网络优化代理NOA、网络优化控制器NOC和服务提供商(SP)服务器,所述NOA部署在所述基站侧,所述NOC部署在所述网关侧,网络优化控制器40可包括输入设备410、输出设备420、处理器430和存储器440。
存储器440可以包括只读存储器和随机存取存储器,并向处理器430提供指令和数据。存储器440的一部分还可以包括非易失性随机存取存储器(NVRAM)。
存储器440存储了如下的元素,可执行模块或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
在本发明实施例中,处理器430通过调用存储器440存储的操作指令(该操作指令可存储在操作系统中),执行如下操作:
通过输入设备410接收所述NOA转发的第一用户设备UE的业务请求,并将所述业务请求转发到所述SP服务器,以便所述SP服务器根据所述业务请求,返回所述第一UE所请求的业务数据;
通过所述输入设备接收所述NOA发送的命中指示信息;
根据所述命中指示信息,用预置的替换信息替换所述业务数据中的数据分段,所述预置的替换信息所占带宽小于所述数据分段所占带宽,向所述NOA发送所述替换信息,以使所述NOA根据所述替换信息查找对应的数据分段,并向所述第一UE发送已存储的所述数据分段。
本发明实施例中,网络优化控制器40可以在业务数据第一次被请求时,存储业务数据在NOA上,当所述业务数据第二次被请求时,不需要网络优化控制器NOC再将所述业务数据重新发送一次,而是在所述NOC完成计费后,由 所述NOA将所述业务数据发送给UE,降低了Backhaul的数据量,从而降低了Backhaul带宽占用率。
处理器430控制网络优化控制器40的操作,处理器430还可以称为CPU(Central Processing Unit,中央处理单元)。存储器440可以包括只读存储器和随机存取存储器,并向处理器430提供指令和数据。存储器440的一部分还可以包括非易失性随机存取存储器(NVRAM)。具体的应用中,网络优化控制器40的各个组件通过总线系统450耦合在一起,其中总线系统450除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统450。
上述本发明实施例揭示的方法可以应用于处理器430中,或者由处理器430实现。处理器430可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器430中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器430可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器440,处理器430读取存储器440中的信息,结合其硬件完成上述方法的步骤。
可选地,所述输出设备420还可:当接收到未命中指示信息时,根据所述未命中指示信息,向所述NOA发送所述业务数据所包含的数据分段,以使所述NOA将接收到的所述数据分段存储到所述NOA中,当第二UE请求所述业务数据时,由所述NOA向所述第二UE发送已存储的所述数据分段。
可选地,所述输入设备410还用于接收所述SP服务器发送的所述一个或多个响应报文;
所述输出设备420还用于向所述NOA发送所述一个或多个响应报文,所述一个或多个响应报文中的第一响应报文携带所述第一UE所请求的业务数据中的第一数据分段,以使所述NOA根据所述第一数据分段生成第一索引信息。
可选地,所述输入设备410还用于接收所述NOA发送的所述第一索引信息和第二索引信息,所述第二索引信息为所述NOA根据从所述业务请求中所解析出的业务标识生成的。
可选地,所述处理器430还用于向所述NOA发送所述数据分段时识别到所述第一UE切换到另一基站,且所述另一基站侧部署有另一NOA;
所述输出设备420还用于向所述另一NOA发送所述第一索引信息或所述第二索引信息,以及所述业务数据中未向所述NOA发送的剩余数据分段,以便所述另一NOA将所述第一索引信息或所述第二索引信息,以及所述剩余数据分段对应存储。
可选地,所述处理器430还用于向所述NOA发送所述数据分段时识别到所述第一UE切换到另一基站,且所述另一基站侧未部署另一NOA;
所述输出设备420还用于向所述另一基站发送所述业务数据中未向所述NOA发送的剩余数据分段。
可选地,所述处理器430还用于向所述NOA发送所述替换信息时识别到所述第一UE切换到另一基站,且所述另一基站侧部署有另一NOA;
所述输出设备420还用于向所述另一NOA发送所述第一索引信息或所述第二索引信息,以及所述业务数据中所述NOA未向所述第一UE发送的剩余数据分段,以便所述另一NOA将所述第一索引信息或所述第二索引信息,以及所述剩余数据分段对应存储。
可选地,所述处理器430还用于向所述NOA发送所述替换信息时识别到所述UE切换到另一基站,且所述另一基站侧未部署另一NOA;
所述输出设备420还用于向所述另一基站发送所述业务数据中所述NOA未向所述第一UE发送的剩余数据分段。
可选地,所述输入设备410还用于接收到所述第一UE发送的数据重传指令,确认所述NOA发生故障,则向所述第一UE所在的基站发送所述业务数据 中所述NOA未向所述第一UE发送的剩余数据分段。
参阅图29,本发明实施例提供的无线通信系统的一实施例包括:
基站10、网关20、网络优化代理NOA30、网络优化控制器NOC40和服务提供商(SP)服务器50,所述NOA30部署在所述基站10侧,所述NOC40部署在所述网关20侧,
所述NOA30用于:接收第一用户设备UE的业务请求,并将所述业务请求通过所述NOC转发到SP服务器50,以便所述SP服务器根据所述业务请求,返回所述第一UE所请求的业务数据;确定所述业务数据是否已存储在所述NOA中;当确定所述业务数据已存储在所述NOA中,则向所述NOC发送命中指示信息;
所述NOC40根据所述命中指示信息,用预置的替换信息替换所述业务数据中的数据分段,所述预置的替换信息所占带宽小于所述数据分段所占带宽;
所述NOA30接收所述NOC发送的替换信息,根据所述替换信息确定对应的数据分段,并向所述第一UE发送已存储的所述数据分段。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件(例如处理器)来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:ROM、RAM、磁盘或光盘等。
以上对本发明实施例所提供的业务数据管理的方法、装置以及系统进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (27)

  1. 一种业务数据管理的方法,其特征在于,所述方法应用于无线通信系统,所述无线通信系统包括:基站、网关、网络优化代理NOA、网络优化控制器NOC和服务提供商SP服务器,所述NOA部署在所述基站侧,所述NOC部署在所述网关侧,所述方法包括:
    所述NOA接收第一用户设备UE的业务请求,并将所述业务请求通过所述NOC转发到所述SP服务器,以便所述SP服务器根据所述业务请求,返回所述第一UE所请求的业务数据;
    所述NOA确定所述业务数据是否已存储在所述NOA中;
    当确定所述业务数据已存储在所述NOA中,则向所述NOC发送命中指示信息,以使所述NOC根据所述命中指示信息,用预置的替换信息替换所述业务数据中的数据分段,所述预置的替换信息所占带宽小于所述数据分段所占带宽;接收所述NOC发送的替换信息,根据所述替换信息确定对应的数据分段,并向所述第一UE发送已存储的所述数据分段。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    当确定所述业务数据未存储在所述NOA中时,向所述NOC发送未命中指示信息,以使所述NOC根据所述未命中指示信息,向所述NOA发送所述业务数据所包含的数据分段,从所述NOC接收所述数据分段,并将接收到的所述数据分段存储到所述NOA中;
    当第二UE请求所述业务数据时,所述NOA向所述第二UE发送已存储的所述数据分段。
  3. 根据权利要求2所述的方法,其特征在于,所述SP服务器返回所述第一UE所请求的业务数据,包括:
    所述SP服务器将所述业务数据所包含的数据分段携带在一个或多个响应报文中,并将所述一个或多个响应报文发送给所述NOC;
    所述确定所述业务数据是否已存储在所述NOA中,包括:
    接收所述NOC发送的第一响应报文,所述第一响应报文中携带所述第一UE所请求的业务数据中的第一数据分段分段;
    根据所述第一数据分段生成第一索引信息;
    查找所述第一索引信息是否已存储在所述NOA中;
    当所述第一索引信息已存储在所述NOA中时,则确定所述业务数据已存储在所述NOA中;
    当所述第一索引信息未存储在所述NOA中时,则确定所述业务数据未存储到所述NOA中。
  4. 根据权利要求2所述的方法,其特征在于,所述确定所述业务数据是否已存储在所述NOA中,包括:
    从所述业务请求中解析出业务标识;
    根据所述业务标识,生成第二索引信息;
    查找所述第二索引信息是否已存储在所述NOA中;
    当所述第二索引信息已存储在所述NOA中时,则确定所述业务数据已存储在所述NOA中;
    当所述第二索引信息未存储在所述NOA中时,则确定所述业务数据未存储到所述NOA中。
  5. 一种业务数据管理的方法,其特征在于,所述方法应用于无线通信系统,所述无线通信系统包括:基站、网关、网络优化代理NOA、网络优化控制器NOC和服务提供商SP服务器,所述NOA部署在所述基站侧,所述NOC部署在所述网关侧,所述方法包括:
    所述NOC接收所述NOA转发的第一用户设备UE的业务请求,并将所述业务请求转发到所述SP服务器,以便所述SP服务器根据所述业务请求,返回所述第一UE所请求的业务数据;
    当接收所述NOA发送的命中指示信息时,根据所述命中指示信息,用预置的替换信息替换所述业务数据中的数据分段,所述预置的替换信息所占带宽小于所述数据分段所占带宽,向所述NOA发送所述替换信息,以使所述NOA根据所述替换信息查找对应的数据分段,并向所述第一UE发送已存储的所述数据分段。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    当接收到未命中指示信息时,根据所述未命中指示信息,向所述NOA发送所述业务数据所包含的数据分段,以使所述NOA将接收到的所述数据分段存储到所述NOA中,当第二UE请求所述业务数据时,由所述NOA向所述第二UE发送已存储的所述数据分段。
  7. 根据权利要求6所述的方法,其特征在于,所述SP服务器返回所述第一UE所请求的业务数据,包括:
    所述SP服务器将所述业务数据所包含的数据分段携带在一个或多个响应报文中,并将所述一个或多个响应报文发送给所述NOC;
    接收所述SP服务器发送的所述一个或多个响应报文,并向所述NOA发送所述一个或多个响应报文,所述一个或多个响应报文中的第一响应报文携带所述第一UE所请求的业务数据中的第一数据分段,以使所述NOA根据所述第一数据分段生成第一索引信息。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    接收所述NOA发送的所述第一索引信息和第二索引信息,所述第二索引信息为所述NOA根据从所述业务请求中所解析出的业务标识生成的。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    向所述NOA发送所述数据分段时识别到所述第一UE切换到另一基站,且所述另一基站侧部署有另一NOA,则向所述另一NOA发送所述第一索引信息或所述第二索引信息,以及所述业务数据中未向所述NOA发送的剩余数据分段,以便所述另一NOA将所述第一索引信息或所述第二索引信息,以及所述剩余数据分段对应存储。
  10. 根据权利要求6-8任一所述的方法,其特征在于,所述方法还包括:
    向所述NOA发送所述数据分段时识别到所述第一UE切换到另一基站,且所述另一基站侧未部署另一NOA,则向所述另一基站发送所述业务数据中未向所述NOA发送的剩余数据分段。
  11. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    向所述NOA发送所述替换信息时识别到所述第一UE切换到另一基站,且所述另一基站侧部署有另一NOA,则向所述另一NOA发送所述第一索引信息 或所述第二索引信息,以及所述业务数据中所述NOA未向所述第一UE发送的剩余数据分段,以便所述另一NOA将所述第一索引信息或所述第二索引信息,以及所述剩余数据分段对应存储。
  12. 根据权利要求5-8任一所述的方法,其特征在于,向所述NOA发送所述替换信息时识别到所述UE切换到另一基站,且所述另一基站侧未部署另一NOA,则向所述另一基站发送所述业务数据中所述NOA未向所述第一UE发送的剩余数据分段。
  13. 根据权利要求5-12任一所述的方法,其特征在于,所述方法还包括:
    接收到所述第一UE发送的数据重传指令,确认所述NOA发生故障,则向所述第一UE所在的基站发送所述业务数据中所述NOA未向所述第一UE发送的剩余数据分段。
  14. 一种网络优化代理NOA,其特征在于,所述NOA应用于无线通信系统,所述无线通信系统还包括:基站、网关、网络优化控制器NOC和服务提供商SP服务器,所述NOA部署在所述基站侧,所述NOC部署在所述网关侧,所述NOA包括:
    接收单元,用于接收第一用户设备UE的业务请求;
    发送单元,用于将所述接收单元接收到的所述业务请求通过所述NOC转发到所述SP服务器,以便所述SP服务器根据所述业务请求,返回所述第一UE所请求的业务数据;
    确定单元,用于确定所述业务数据是否已存储在所述NOA中;
    所述发送单元,还用于当所述确定单元确定所述业务数据已存储在所述NOA中,则向所述NOC发送命中指示信息,以使所述NOC根据所述命中指示信息,用预置的替换信息替换所述业务数据中的数据分段,所述预置的替换信息所占带宽小于所述数据分段所占带宽;
    所述接收单元,还用于接收所述NOC发送的替换信息;
    所述确定单元,还用于根据所述接收单元接收的所述替换信息确定对应的数据分段;
    所述发送单元,还用于向所述第一UE发送已存储的所述确定单元确定的 所述数据分段。
  15. 根据权利要求14所述的NOA,其特征在于,
    所述发送单元,还用于当所述确定单元确定所述业务数据未存储在所述NOA中时,向所述NOC发送未命中指示信息,以使所述NOC根据所述未命中指示信息,向所述NOA发送所述业务数据所包含的数据分段;
    所述接收单元,还用于从所述NOC接收所述数据分段;
    存储单元,用于存储所述接收单元接收到的所述数据分段;
    所述发送单元,还用于当第二UE请求所述业务数据时,向所述第二UE发送所述存储单元已存储的所述数据分段。
  16. 根据权利要求15所述的NOA,其特征在于,所述SP服务器将所述业务数据所包含的数据分段携带在一个或多个响应报文中,并将所述一个或多个响应报文发送给所述NOC;
    所述确定单元包括:
    接收子单元,用于接收所述NOC发送的第一响应报文,所述第一响应报文中携带所述第一UE所请求的业务数据中的第一数据分段,;
    第一生成子单元,用于根据所述接收子单元接收的所述第一数据分段生成第一索引信息;
    第一查找子单元,用于查找所述第一生成子单元生成的所述第一索引信息是否已存储在所述NOA中;
    第一确定子单元,用于当所述第一查找子单元查找到所述第一索引信息已存储在所述NOA中时,则确定所述业务数据已存储在所述NOA中;当所述查找子单元查找到所述第一索引信息未存储在所述NOA中时,则确定所述业务数据未存储到所述NOA中。
  17. 根据权利要求15所述的NOA,其特征在于,所述确定单元包括:
    解析子单元,用于从所述业务请求中解析出业务标识;
    第二生成子单元,用于根据所述解析子单元解析出的所述业务标识,生成第二索引信息;
    第二查找子单元,用于查找所述第二生成子单元生成的所述第二索引信息 是否已存储在所述NOA中;
    第二确定子单元,用于当所述第二查找子单元查找到所述第二索引信息已存储在所述NOA中时,则确定所述业务数据已存储在所述NOA中,当所述第二查找子单元查找到所述第二索引信息未存储在所述NOA中时,则确定所述业务数据未存储到所述NOA中。
  18. 一种网络优化控制器NOC,其特征在于,所述NOC应用于无线通信系统,所述无线通信系统包括:基站、网关、网络优化代理NOA和服务提供商SP服务器,所述NOA部署在所述基站侧,所述NOC部署在所述网关侧,所述NOC包括:
    接收单元,用于接收所述NOA转发的第一用户设备UE的业务请求;
    发送单元,用于将所述接收单元接收的所述业务请求转发到所述SP服务器,以便所述SP服务器根据所述业务请求,返回所述第一UE所请求的业务数据;
    所述接收单元,还用于接收所述NOA发送的命中指示信息;
    替换单元,用于当所述接收单元接收到所述NOA发送的命中指示信息时,根据所述命中指示信息,用预置的替换信息替换所述业务数据中的数据分段,所述预置的替换信息所占带宽小于所述数据分段所占带宽;
    所述发送单元,还用于向所述NOA发送所述替换单元替换的所述替换信息,以使所述NOA根据所述替换信息查找对应的数据分段,并向所述第一UE发送已存储的所述数据分段。
  19. 根据权利要求18所述的NOC,其特征在于,
    所述接收单元,还用于接收未命中指示信息;
    所述发送单元,还用于当所述接收单元接收到未命中指示信息时,根据所述未命中指示信息,向所述NOA发送所述业务数据所包含的数据分段,以使所述NOA将接收到的所述数据分段存储到所述NOA中,当第二UE请求所述业务数据时,由所述NOA向所述第二UE发送已存储的所述数据分段。
  20. 根据权利要求19所述的NOC,其特征在于,所述SP服务器将所述业务数据所包含的数据分段携带在一个或多个响应报文中,并将所述一个或多个 响应报文发送给所述NOC;
    所述接收单元,还用于接收所述SP服务器发送的一个或多个响应报文;
    所述发送单元,还用于向所述NOA发送所述一个或多个响应报文,所述一个或多个响应报文中的第一响应报文携带所述第一UE所请求的业务数据中的第一数据分段,以使所述NOA根据所述第一数据分段生成第一索引信息。
  21. 根据权利要求20所述的NOC,其特征在于,
    所述接收单元,还用于接收所述NOA发送的所述第一索引信息和第二索引信息,所述第二索引信息为所述NOA根据从所述业务请求中所解析出的业务标识生成的。
  22. 根据权利要求21所述的NOC,其特征在于,所述NOC还包括第一识别单元,
    第一识别单元,用于在所述发送单元向所述NOA发送所述数据分段时识别到所述第一UE切换到另一基站,且所述另一基站侧部署有另一NOA;
    所述发送单元,用于向所述第一识别单元识别到的所述第一UE切换后的另一NOA发送所述第一索引信息或所述第二索引信息,以及所述业务数据中未向所述NOA发送的剩余数据分段,以便所述另一NOA将所述第一索引信息或所述第二索引信息,以及所述剩余数据分段对应存储。
  23. 根据权利要求21所述的NOC,其特征在于,所述NOC还包括第二识别单元,
    所述第二识别单元,用于在所述发送单元向所述NOA发送所述数据分段时识别到所述第一UE切换到另一基站,且所述另一基站侧未部署另一NOA;
    所述发送单元,还用于向所述第二识别单元识别到所述第一UE切换到的另一基站,发送所述业务数据中未向所述NOA发送的剩余数据分段。
  24. 根据权利要求21所述的NOC,其特征在于,所述NOC还包括第三识别单元,
    所述第三识别单元,用于向所述NOA发送所述替换信息时识别到所述第一UE切换到另一基站,且所述另一基站侧部署有另一NOA;
    所述发送单元,用于向所述第三识别单元识别到所述第一UE切换到的所 述另一NOA发送所述第一索引信息或所述第二索引信息,以及所述业务数据中所述NOA未向所述第一UE发送的剩余数据分段,以便所述另一NOA将所述第一索引信息或所述第二索引信息,以及所述剩余数据分段对应存储。
  25. 根据权利要求18-21任一所述的NOC,其特征在于,所述NOC还包括第四识别单元,
    所述第四识别单元,用于向所述NOA发送所述替换信息时识别到所述UE切换到另一基站,且所述另一基站侧未部署另一NOA;
    所述发送单元,还用于向所述第四识别单元识别到的所述第一UE切换到的另一基站发送所述业务数据中所述NOA未向所述第一UE发送的剩余数据分段。
  26. 根据权利要求18-25任一所述的NOC,其特征在于,所述NOC还包括确认单元,
    所述接收单元,还用于接收所述第一UE发送的数据重传指令;
    所述确认单元,用于根据所述接收单元接收的所述数据重传指令,确认所述NOA发生故障;
    所述发送单元,还用于在所述确认单元确认所述NOA发生故障时,向所述第一UE所在的基站发送所述业务数据中所述NOA未向所述第一UE发送的剩余数据分段。
  27. 一种无线通信系统,其特征在于,包括:基站、网关、网络优化代理NOA、网络优化控制器NOC和服务提供商SP服务器,所述NOA部署在所述基站侧,所述NOC部署在所述网关侧,
    所述NOA为上述权利要求14-17任一所述的NOA;
    所述NOC为上述权利要求18-26任一所述的NOC。
PCT/CN2014/094913 2014-07-30 2014-12-25 一种业务数据管理的方法、装置及系统 WO2016015441A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14896956.1A EP3018930B1 (en) 2014-07-30 2014-12-25 Service data management method, apparatus and system
US14/992,564 US10136375B2 (en) 2014-07-30 2016-01-11 Method for service data management, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410372646.2A CN104159249B (zh) 2014-07-30 2014-07-30 一种业务数据管理的方法、装置及系统
CN201410372646.2 2014-07-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/992,564 Continuation US10136375B2 (en) 2014-07-30 2016-01-11 Method for service data management, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2016015441A1 true WO2016015441A1 (zh) 2016-02-04

Family

ID=51884634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094913 WO2016015441A1 (zh) 2014-07-30 2014-12-25 一种业务数据管理的方法、装置及系统

Country Status (4)

Country Link
US (1) US10136375B2 (zh)
EP (1) EP3018930B1 (zh)
CN (1) CN104159249B (zh)
WO (1) WO2016015441A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104159249B (zh) 2014-07-30 2018-05-18 华为技术有限公司 一种业务数据管理的方法、装置及系统
WO2016045096A1 (zh) 2014-09-26 2016-03-31 华为技术有限公司 一种文件迁移方法、装置和存储设备
CN104519139B (zh) * 2014-12-31 2018-10-30 华为技术有限公司 缓存方法、缓存边缘服务器、缓存核心服务器和缓存系統
EP3576365B1 (en) * 2017-03-01 2022-10-26 Siemens Aktiengesellschaft Data processing device and method
CN112311720B (zh) * 2019-07-23 2022-10-14 腾讯科技(深圳)有限公司 数据的传输方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101369967A (zh) * 2007-08-14 2009-02-18 华为技术有限公司 发送及接收数据的方法、基站、终端
US20140056137A1 (en) * 2008-08-06 2014-02-27 Movik Networks Content Caching In The Radio Access Network (RAN)
CN104159249A (zh) * 2014-07-30 2014-11-19 华为技术有限公司 一种业务数据管理的方法、装置及系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6941338B1 (en) * 1999-09-01 2005-09-06 Nextwave Telecom Inc. Distributed cache for a wireless communication system
US7562393B2 (en) * 2002-10-21 2009-07-14 Alcatel-Lucent Usa Inc. Mobility access gateway
KR20050040272A (ko) * 2003-10-28 2005-05-03 주식회사 팬택앤큐리텔 이동 통신 단말기의 데이터 전송 방법
US7617294B1 (en) * 2004-08-02 2009-11-10 Sun Microsystems, Inc. Method and apparatus for reducing latency involved in retrieving web page components
US8369328B2 (en) 2009-07-14 2013-02-05 Saguna Networks Ltd. System and method for efficient delivery of multi-unicast communication traffic
WO2011139305A1 (en) * 2010-05-04 2011-11-10 Azuki Systems, Inc. Method and apparatus for carrier controlled dynamic rate adaptation and client playout rate reduction
CN101917742B (zh) * 2010-08-13 2013-01-23 华为技术有限公司 数据传输方法、设备及系统
CN102387172A (zh) * 2010-08-30 2012-03-21 国际商业机器公司 用于为移动设备提供或获取网络资源的内容的方法和装置
US8892680B2 (en) * 2011-01-25 2014-11-18 Openwave Mobility, Inc. System and method for caching content elements with dynamic URLs
CN102244900B (zh) * 2011-07-15 2014-01-22 上海华为技术有限公司 缓存数据热度值的同步方法、分布缓存方法、装置及系统
CN102594875B (zh) * 2012-01-13 2014-11-05 华为技术有限公司 内容分发的方法、装置及接入网设备
GB2500373A (en) * 2012-03-13 2013-09-25 Ibm Object caching for mobile data communication with mobility management
KR101964927B1 (ko) * 2012-07-17 2019-04-03 삼성전자 주식회사 캐싱 프록시 방법 및 장치
US9154361B2 (en) * 2012-07-18 2015-10-06 Opera Software Ireland Limited Just-in-time distributed video cache
KR102036579B1 (ko) * 2012-11-09 2019-10-28 삼성전자주식회사 무선 통신 시스템에서 웹 서비스 제공 방법 및 장치
WO2014127515A1 (zh) * 2013-02-21 2014-08-28 华为技术有限公司 业务提供系统、方法、移动边缘应用服务器及支持节点
US9756142B2 (en) * 2013-03-14 2017-09-05 The Regents Of The University Of California System and method for delivering video data from a server in a wireless network by caching the video data
US20150003234A1 (en) * 2013-06-27 2015-01-01 Alcatel-Lucent Usa Inc. Methods and systems for caching content in a network
US9407716B1 (en) * 2013-09-19 2016-08-02 Juniper Networks, Inc. Identifying content files in a cache using a response-based cache index

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101369967A (zh) * 2007-08-14 2009-02-18 华为技术有限公司 发送及接收数据的方法、基站、终端
US20140056137A1 (en) * 2008-08-06 2014-02-27 Movik Networks Content Caching In The Radio Access Network (RAN)
CN104159249A (zh) * 2014-07-30 2014-11-19 华为技术有限公司 一种业务数据管理的方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3018930A4 *

Also Published As

Publication number Publication date
CN104159249A (zh) 2014-11-19
US10136375B2 (en) 2018-11-20
EP3018930A4 (en) 2016-08-03
US20160119848A1 (en) 2016-04-28
EP3018930A1 (en) 2016-05-11
CN104159249B (zh) 2018-05-18
EP3018930B1 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
US9088612B2 (en) Systems and methods for providing link-performance information in socket-based communication devices
US9883000B2 (en) Server-push service in heterogeneous network environment
CN109818917B (zh) 一种通信方法及其装置
WO2016015441A1 (zh) 一种业务数据管理的方法、装置及系统
US9288708B2 (en) System and method for delivering push message
CN112073545B (zh) 使用dns来传送服务器设备的mp-tcp能力
CN103119896A (zh) 心跳消息发送方法和心跳代理服务器
US10630530B2 (en) Cache method, cache edge server, cache core server, and cache system
EP3110081A1 (en) Method and apparatus for controlling service chain of service flow
WO2018090336A1 (zh) 缓存数据获取方法、相关设备以及通信系统
JP2014241135A (ja) コンテンツ中心ネットワークにおけるノードの通信方法及びそのノード
WO2015021591A1 (zh) 互联网内容存储方法和设备
US20150312384A1 (en) Managing sequence values with added headers in computing devices
CN111510390A (zh) 应用程序或无线电信息在网络数据包头中的插入和使用
CN105262836A (zh) 服务器推送信息的方法及客户端接收推送信息的方法
KR101660352B1 (ko) 트래픽 분배 방법, 장치 및 시스템
EP3389240A1 (en) Method and system for processing cache cluster service
WO2014166078A1 (zh) 数据发送处理方法及路由器
EP3186959B1 (en) Enrichment of upper layer protocol content in tcp based session
WO2019096332A1 (zh) 报文头压缩机制确定方法、设备及系统
CN114051013A (zh) 一种通信数据传输方法及装置
KR102076816B1 (ko) 이종 네트워크 환경에서 차세대 네트워크 서비스를 제공하는 방법 및 장치
WO2018049690A1 (zh) 一种报文传输方法、装置及系统
WO2010009666A1 (zh) 多媒体业务的实现方法、系统和装置
CN111385069A (zh) 数据传输方法及计算机设备

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2014896956

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014896956

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE