WO2016015425A1 - 显示基板及其制造方法、显示装置 - Google Patents

显示基板及其制造方法、显示装置 Download PDF

Info

Publication number
WO2016015425A1
WO2016015425A1 PCT/CN2014/093061 CN2014093061W WO2016015425A1 WO 2016015425 A1 WO2016015425 A1 WO 2016015425A1 CN 2014093061 W CN2014093061 W CN 2014093061W WO 2016015425 A1 WO2016015425 A1 WO 2016015425A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
electrode
electrodes
phase liquid
blue phase
Prior art date
Application number
PCT/CN2014/093061
Other languages
English (en)
French (fr)
Inventor
李明超
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/774,389 priority Critical patent/US9977295B2/en
Publication of WO2016015425A1 publication Critical patent/WO2016015425A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13793Blue phases

Definitions

  • Embodiments of the present invention relate to a display substrate, a method of manufacturing the same, and a display device.
  • Advanced-Super Dimensional Switching forms a multi-dimensional electric field by a parallel electric field generated by the pixel electrode or the common electrode edge in the same plane and a longitudinal electric field generated between the pixel electrode and the common electrode, so that the pixel in the liquid crystal cell All of the aligned liquid crystal molecules directly between the electrode or the common electrode, the pixel electrode or the common electrode can generate a rotation conversion, thereby improving the planar orientation liquid crystal working efficiency and increasing the light transmission efficiency.
  • Advanced super-dimensional field switching technology can improve TFT-LCD picture quality, with high transmittance, wide viewing angle, high aperture ratio, low chromatic aberration, low response time, and no push mura.
  • Embodiments of the present invention provide a display substrate, a method of manufacturing the same, and a display device, which can improve dark state light leakage and improve display quality of the device.
  • At least one embodiment of the present invention provides a display substrate including: a blue phase liquid crystal layer and one or more sets of driving electrodes for driving the blue phase liquid crystal layer in a dark state, wherein each group
  • the driving electrode includes two opposite electrodes, and the components of the electric field generated by the two opposite electrodes in the blue phase liquid crystal layer in the first direction are not zero, and the first direction is perpendicular to the polarization direction of the incident light.
  • an alignment layer may be disposed on the display substrate; the blue phase liquid crystal layer is disposed under the alignment layer.
  • the drive electrode can be disposed below the blue phase liquid crystal layer.
  • the driving electrode may be a slit electrode, and the adjacent two slit electrodes are respectively two of the driving electrodes.
  • one of the set of the drive electrodes is a plate electrode, and the other of the electrodes is a slit electrode.
  • the embodiment of the invention further provides a display device comprising the display substrate of any of the above.
  • the display device may further include: an opposite substrate disposed opposite to the display substrate; and a liquid crystal disposed between the display substrate and the opposite substrate; wherein the opposite substrate is disposed in common Electrode and pixel electrode.
  • an embodiment of the present invention further provides a method of manufacturing a display substrate, including: a process of forming a blue phase liquid crystal layer; a process of forming one or more sets of driving electrodes, wherein the driving electrode is used for darkening Driving the blue phase liquid crystal layer, each set of the driving electrodes includes two opposite electrodes, and the components of the two opposite electrodes generated in the blue phase liquid crystal layer in the first direction are not zero.
  • the first direction is perpendicular to the polarization direction of the incident light.
  • the manufacturing method further includes a step of forming an alignment layer; the method performs a step of forming a blue phase liquid crystal layer before the step of forming the alignment layer.
  • this manufacturing method first performs a step of forming a driving electrode, then a step of forming a blue phase liquid crystal layer, and finally, a step of forming an alignment layer.
  • the step of forming the driving electrode may include forming a slit-shaped electrode, and the two adjacent slit-shaped electrodes are respectively two of the set of the driving electrodes.
  • the forming of the driving electrode may include forming a plate electrode, which is an anisotropic electrode of the group of the driving electrodes; forming an insulating layer on the plate electrode; forming on the insulating layer a slit electrode that serves as another of the set of the drive electrodes.
  • 1 is an ADS display device driven by an upper and lower double substrate
  • FIG. 2 is a schematic diagram of an electric field generated by a driving electrode and a polarization direction of incident light in a display substrate according to Embodiment 1 of the present invention
  • FIG. 3 is a structural diagram of an ADS display device driven by an upper and lower dual substrate according to Embodiment 1 of the present invention; Intent one (when in bright state);
  • FIG. 4 is a schematic structural view 2 of an ADS display device for driving an upper and lower dual substrate according to Embodiment 1 of the present invention (when in a dark state);
  • FIG. 5 is a first schematic diagram of a manufacturing method of a display substrate according to Embodiment 2 of the present invention.
  • FIG. 6 is a second flowchart of a method for manufacturing a display substrate according to Embodiment 2 of the present invention.
  • an ADS display device is driven by upper and lower double substrates, including a liquid crystal cell.
  • the cartridge is formed by sandwiching the liquid crystal 30 with the upper substrate 10 and the lower substrate 20; the upper polarizing plate 13 is disposed above the liquid crystal cell; the lower polarizing plate 23 is disposed under the liquid crystal cell; and the upper substrate 10 is provided with the common electrode 11 and the pixel electrode 12
  • the common substrate 11 and the pixel electrode 12 are also disposed on the lower substrate 20, and the liquid crystal 30 is deflected by the combined action of the electric fields formed by the electrodes.
  • the inventors have found that in the manufacturing process of the ADS display device driven by the upper and lower double substrates, it is inevitable that the local orientation of the alignment layer is inconsistent or the alignment deviation is unfavorable due to the process level, which may cause dark state light leakage, thereby affecting the device. Display quality.
  • Embodiments of the present invention provide a display substrate including: a blue phase liquid crystal layer and one or more sets of driving electrodes for driving the blue phase liquid crystal layer in a dark state.
  • Each set of the driving electrodes includes two opposite electrodes, and the components of the two opposite electrodes that generate an electric field in the first direction in the blue phase liquid crystal layer are not zero, and the first direction and the polarization of the incident light The direction is vertical.
  • the fact that the first direction is perpendicular to the polarization direction of the incident light means that the first direction is perpendicular to the polarization direction of the incident light in a plane parallel to the substrate.
  • the display substrate provided by the embodiment of the invention is suitable for a flat field display device.
  • the planar field display device described herein refers to a parallel electric field parallel to the substrate in which the electric field for driving the liquid crystal deflection is displayed.
  • the current planar electric field display technologies mainly include: In-Plane Switching (IPS) and Advanced-Super Dimensional Switching (ADS).
  • IPS In-Plane Switching
  • ADS Advanced-Super Dimensional Switching
  • the rotation of the liquid crystal molecules belongs to the rotation in the plane (XY axis), and the liquid crystal molecules are always parallel to the screen regardless of the state, but the direction of rotation of the molecules is different in the power-on/normal state. .
  • the long axis alignment direction of the liquid crystal molecules in the liquid crystal cell is oriented along the orientation layer, that is, the polarization direction of the incident light (consistent with the starting direction of the lower polarizing plate) and the long axis alignment direction of the liquid crystal molecules in the liquid crystal cell in the dark state. Consistently, dark state light leakage is easy for various reasons.
  • the display substrate provided by the embodiment of the invention additionally has a blue phase liquid crystal thin layer and a driving electrode for driving the blue phase liquid crystal, which can solve the problem.
  • the working principle of the blue phase liquid crystal is based on the Kerr effect, as described below. Under the action of an applied electric field (for example, an electric field perpendicular to the polarization direction of the incident light), the blue phase liquid crystal becomes an optically uniaxial crystal whose optical axis direction is parallel to the electric field direction.
  • the driving electrode in the bright state, the driving electrode does not generate an electric field, the blue phase liquid crystal behaves like an isotropic medium, and the blue phase liquid crystal layer is transparent to the incident polarized light (backlight).
  • the driving electrode In the dark state, the driving electrode generates an electric field.
  • the electric field is perpendicular to the polarization direction of the incident light, and the blue phase liquid crystal layer becomes an optical uniaxial crystal, which is anisotropic, because the direction of the electric field is perpendicular to the polarization direction of the incident light.
  • the polarization direction of the polarized light after passing through the blue phase liquid crystal layer changes, and the result is at an angle with the arrangement direction of the long axis of the liquid crystal molecules in the liquid crystal cell in the dark state, because the polarization direction of the incident light is perpendicular to the liquid crystal alignment direction of the liquid crystal layer. Therefore, the incident light cannot pass through the liquid crystal cell, thereby improving the dark state light leakage and improving the display quality of the device.
  • the above description only considers the case where the electric field is perpendicular to the polarization direction of the incident light.
  • the two opposite electrodes described in this embodiment are required.
  • An electric field generated at a blue phase liquid crystal layer (hereinafter referred to as a driving electrode)
  • the above effect can be achieved by the fact that the electric field is not zero in the direction perpendicular to the polarization direction of the incident light (i.e., the first direction).
  • the light emitted by the backlight module is incident perpendicular to the substrate after passing through the light guide plate, but after passing through the polarizer, the vertical light is converted into polarized light of a specific direction (consistent with the polarization direction of the polarizer), so that the driving electrode is
  • the angle between the electric field generated at the blue phase liquid crystal layer and the polarization direction of the incident light is A, A ⁇ 0 ° and A ⁇ 180 °, and the two opposite electrodes constituting the driving electrode are preferably disposed in the same plane. For example, as shown in FIG.
  • the driving electrodes are arranged as slit electrodes, and the two adjacent slit electrodes on the lower substrate 20 are respectively two of the driving electrodes, that is, the opposite electrodes in the figure. 21 and the opposite polarity electrode 22, the electrical properties of the two are opposite when in operation.
  • the direction of arrow B in Fig. 2 represents the polarization direction of the incident light. If the electric field is to be enhanced, each set of drive electrodes can be made very close.
  • the two opposite electrodes constituting the driving electrodes in FIG. 2 are disposed in the same layer, and may of course be located in different layers.
  • one of the opposite electrodes is a slit electrode, and the other opposite electrode is a plate electrode.
  • An insulating layer is provided as in the case of the pixel electrode and the common electrode in the ADS mode.
  • the array substrate in the planar electric field display device includes a pixel electrode and a common electrode, and the two opposite electrodes constituting the driving electrode may be respectively acted by, for example, a pixel electrode and a common electrode.
  • the design of the specific pattern of the pixel electrode and the common electrode should satisfy the requirements of the pixel electrode and the common electrode as well as the requirements of the driving electrode, that is, the pixel electrode and the common electrode are generated at the blue phase liquid crystal layer in the dark state.
  • the component of the electric field in the first direction is not zero, and in addition to this, the specific fabrication method can adopt the usual technique.
  • the resulting display device employs time-division driving: in the dark state, the pixel electrode and the common electrode respectively serve as two opposite electrodes of the driving electrode; in the bright state, the pixel electrode and the common electrode load display signals for display.
  • the display substrate provided by the embodiment of the invention can improve the dark state light leakage and improve the display quality of the device.
  • the specific position and implementation manner of the blue phase liquid crystal layer and the driving electrode do not affect the embodiment.
  • the implementation of the present invention is not limited thereto, and may be any implementation well known to those skilled in the art.
  • Embodiments of the present invention can improve dark state light leakage of a dual substrate display device or a single substrate display device, and a dual substrate display device will be described in detail below as an example.
  • an embodiment of the present invention provides an ADS display device for driving an upper and lower dual substrate, the display device comprising: an upper substrate 10 and a lower substrate 20 of a cell-assembly.
  • the upper substrate 10 is provided with a common electrode 11, an insulating layer 14 and a pixel electrode 12.
  • the lower substrate 20 is provided with an opposite electrode 21, an insulating layer 24 and an opposite electrode 22.
  • the opposite electrode 22 is a slit electrode, and the opposite electrode 22 is a plate.
  • An orientation electrode 27 is provided on the opposite electrode 22.
  • the display device of this embodiment further includes a blue phase liquid crystal layer 25 disposed under the alignment layer 27.
  • the common electrode 11 and the pixel electrode 12 provided on the upper substrate 10 drive the liquid crystal 30 for display; the opposite polarity electrode 21 and the opposite polarity electrode 22 provided on the lower substrate 20 drive the blue phase liquid crystal layer 25 in a dark state to improve dark state light leakage.
  • the blue phase liquid crystal is applied to form the blue phase liquid crystal layer 25, and then the alignment layer 27 is formed, before the alignment layer 27 is prepared.
  • the steps of forming other layers such as an insulating layer, an anisotropic electrode layer, and the like on the lower substrate 20 are often required to be in a harsh environment, or at a high temperature, or require etching or gas impact. Therefore, the advantage of disposing the blue phase liquid crystal layer 25 under the alignment layer 27 is that after the blue phase liquid crystal layer 25 is formed, it only needs to undergo the process of forming the alignment layer 27, and no longer undergoes a harsh environment, so that the blue phase liquid crystal layer 25 Can avoid damage.
  • the driving electrodes are also disposed under the blue phase liquid crystal layer 25.
  • the layer in which the opposite electrode 21 is located in FIG. 3 can also be omitted.
  • the opposite electrode 21 and the opposite electrode 22 are disposed in the same layer, as shown in FIG. 2, thereby achieving the purpose of saving the process and reducing the thickness of the lower substrate.
  • the ADS display device in Figure 3 is in a bright state, the drive electrode does not generate an electric field, the blue phase liquid crystal behaves like an isotropic medium, and the blue phase liquid crystal layer is transparent to incident polarized light (backlight); the ADS display in Figure 4
  • the driving electrode When the device is in a dark state, the driving electrode generates an electric field, the electric field is perpendicular to the polarization direction of the incident light, and the blue phase liquid crystal layer becomes an optical uniaxial crystal, and the anisotropy changes the polarization direction of the incident light.
  • Embodiments of the present invention provide a display substrate suitable for a flat field display device, which is coated with a layer of blue phase liquid crystal before being coated with PI (Polyimide, polyimide, commonly used material for orientation layer), and does not need to be additionally added. In the process, the dark light leakage can be improved to improve the display quality of the device.
  • PI Polyimide, polyimide, commonly used material for orientation layer
  • the embodiment of the invention further provides a display device comprising any one of the above display substrates.
  • the display device can achieve higher display quality by improving dark state light leakage.
  • the display device may be any product or component having a display function such as a liquid crystal panel, an electronic paper, a mobile phone, a watch, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the display device provided by the present invention further includes an opposite substrate (ie, the upper substrate 10) disposed opposite to the display substrate, and a liquid crystal disposed between the display substrate and the opposite substrate; A common electrode and a pixel electrode are disposed on the opposite substrate.
  • the display substrate may be an array substrate or a color filter substrate.
  • the opposite substrate is a color film substrate or an array substrate.
  • the embodiment of the invention further provides a method for manufacturing a display substrate. As shown in FIG. 5, the substrate manufacturing method includes the following steps.
  • each set of the driving electrodes includes two opposite electrodes, and the two opposite electrodes are in the blue phase
  • the component of the electric field generated by the liquid crystal layer in the first direction is not zero, and the first direction is perpendicular to the polarization direction of the incident light.
  • the embodiment of the invention further provides a method for manufacturing a display substrate, for example, adding steps 101 and 102 for forming a blue phase liquid crystal layer and a driving electrode on the basis of the original process for fabricating the array substrate, thereby achieving improved dark state light leakage and obtaining Higher display quality.
  • the specific formation position and manner of the blue phase liquid crystal layer and the driving electrode are not limited in this embodiment. It should be noted that the numbers 101 and 102 herein do not indicate the order, but only the distinguishing process.
  • the method may further include a step of forming an alignment layer; and a step of forming a blue phase liquid crystal layer is performed before the step of forming the alignment layer, thereby preventing the formed blue phase liquid crystal layer from being damaged by being subjected to a harsh environment.
  • another step of forming a display substrate (a conventional film layer other than the alignment layer) may be performed first, and then a step 102 of forming a driving electrode may be performed to perform a step 101 of forming a blue phase liquid crystal layer, and finally, A step 103 of forming an alignment layer.
  • the step 102 of forming the driving electrode may include forming a plate electrode as one of a group of driving electrodes, forming an insulating layer on the plate electrode, and forming a slit electrode on the insulating layer.
  • a formation method similar to the pixel electrode and the common electrode in the conventional planar field display device can be employed. Method of law.
  • the step 102 of forming the drive electrode may include forming a slit-shaped electrode, and the two adjacent slit-shaped electrodes are respectively two of the set of the drive electrodes, as shown in FIG.
  • a method similar to the conventional slit-shaped electrode formation method can be employed, but the patterns are different.
  • the method for manufacturing the display substrate provided by the embodiment of the invention applies a blue phase liquid crystal before coating the PI, and in addition, substantially no additional addition or change process is required, thereby improving the dark state light leakage and improving the display quality of the device. the goal of.
  • the polarization direction of the incident light (such as the backlight) is the same as the long axis alignment direction of the liquid crystal molecules in the liquid crystal cell in the dark state, and the dark state light leakage is likely to occur.
  • Embodiments of the present invention provide a display substrate, a method of fabricating the same, and a display device, the display substrate including a blue phase liquid crystal layer and a driving electrode for driving the blue phase liquid crystal layer in a dark state, which is presented when the blue phase liquid crystal is applied with an electric field Anisotropy, the polarization direction of the incident light passes through the blue phase liquid crystal layer, and the polarization direction changes, and forms a certain angle with the long axis alignment direction of the liquid crystal molecules in the liquid crystal cell, thereby improving dark state light leakage and improving the display quality of the device. .

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

一种显示基板(20),包括:蓝相液晶层(25)以及用于在暗态时驱动所述蓝相液晶层(25)的一组或多组驱动电极,每组驱动电极包括两个异性电极(21、22),且两个异性电极(21、22)在蓝相液晶层(25)产生的电场于第一方向上的分量不为零,第一方向与入射光的偏振方向垂直。显示基板(20)能够改善暗态漏光,提高器件的显示品质。还涉及一种显示基板(20)的制造方法及显示装置。

Description

显示基板及其制造方法、显示装置 技术领域
本发明的实施例涉及一种显示基板及其制造方法、显示装置。
背景技术
高级超维场开关技术(Advanced-Super Dimensional Switching,ADS)通过同一平面内像素电极或公共电极边缘所产生的平行电场以及像素电极与公共电极间产生的纵向电场形成多维电场,使液晶盒内像素电极或公共电极之间、像素电极或公共电极正上方所有取向液晶分子都能够产生旋转转换,从而提高了平面取向系液晶工作效率并增大了透光效率。高级超维场开关技术可以提高TFT-LCD画面品质,具有高透过率、宽视角、高开口率、低色差、低响应时间、无挤压水波纹(push Mura)等优点。
发明内容
本发明的实施例提供一种显示基板及其制造方法、显示装置,能够改善暗态漏光,提高器件的显示品质。
本发明的至少一个实施例提供一种显示基板,所述显示基板包括:蓝相液晶层以及用于在暗态时驱动所述蓝相液晶层的一组或多组驱动电极,其中,每组所述驱动电极包括两个异性电极,且所述两个异性电极在所述蓝相液晶层产生的电场于第一方向上的分量不为零,所述第一方向与入射光的偏振方向垂直。
例如,所述两个异性电极在所述蓝相液晶层产生的电场与入射光的偏振方向所成夹角为A,A=45°或A=135°。
例如,所述显示基板上还可设置有取向层;所述蓝相液晶层设置在所述取向层之下。
例如,所述驱动电极可设置在所述蓝相液晶层之下。
例如,所述驱动电极可为狭缝状电极,相邻的两个狭缝状电极分别为一组所述驱动电极中的两个异性电极。
例如,一组所述驱动电极中的一个异性电极为板状电极,另一个异性电极为狭缝状电极。
本发明实施例还提供一种显示装置,其包括上述任一所述的显示基板。
例如,所述显示装置还可包括:与所述显示基板相对设置的对向基板以及设置于所述显示基板和所述对向基板之间的液晶;其中,所述对向基板上设置有公共电极和像素电极。
另一方面,本发明实施例还提供一种显示基板的制造方法,该制造方法包括:形成蓝相液晶层的工序;形成一组或多组驱动电极的工序,所述驱动电极用于在暗态时驱动所述蓝相液晶层,每组所述驱动电极包括两个异性电极,且所述两个异性电极在所述蓝相液晶层产生的电场于第一方向上的分量不为零,所述第一方向与入射光的偏振方向垂直。
例如,该制造方法还包括形成取向层的工序;该方法在形成取向层的工序之前,进行形成蓝相液晶层的工序。
例如,该制造方法先进行形成驱动电极的工序,然后进行形成蓝相液晶层的工序,最后进行形成取向层的工序。
例如,所述形成驱动电极的工序可包括形成狭缝状电极,相邻的两个狭缝状电极分别为一组所述驱动电极中的两个异性电极。
例如,所述形成驱动电极的工序可包括形成板状电极,所述板状电极为一组所述驱动电极中的一个异性电极;在所述板状电极上形成绝缘层;在绝缘层上形成狭缝状电极,所述狭缝状电极作为一组所述驱动电极中的另一个异性电极。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为一种上下双基板驱动的ADS显示装置;
图2为本发明实施例一提供的显示基板中驱动电极产生的电场与入射光的偏振方向的示意图;
图3为本发明实施例一提供的上下双基板驱动的ADS显示装置结构示 意图一(处于亮态时);
图4为本发明实施例一提供的上下双基板驱动的ADS显示装置的结构示意图二(处于暗态时);
图5为本发明实施例二提供的显示基板的制造方法示意图一;
图6为本发明实施例二提供的显示基板的制造方法流程图二。
附图标记:
10-上基板,11-公共电极,12-像素电极,13-上偏振片,14-绝缘层,
20-下基板,21-异性电极,22-异性电极,23-下偏振片,
24-绝缘层,25-蓝相液晶层,27-取向层,30-液晶。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
为进一步提高响应时间,目前基于ADS显示技术,人们提出了一种上下基板均设置有驱动电极的方案,如图1所示,一种ADS显示装置采用上下双基板驱动,包括液晶盒,该液晶盒由上基板10与下基板20夹设液晶30形成;上偏振片13设置在液晶盒的上方;下偏振片23设置在液晶盒的下方;上基板10上设置有公共电极11和像素电极12,下基板20上也设置有公共电极11和像素电极12,液晶30在这些电极形成电场的共同作用下偏转。发明人发现,在这种上下双基板驱动的ADS显示装置制造过程中,限于工艺水平不可避免地会出现取向层局部取向不一致或对位偏差等不良,这些均可能导致暗态漏光,从而影响器件的显示品质。
本发明实施例提供一种显示基板,所述显示基板包括:蓝相液晶层以及用于在暗态时驱动所述蓝相液晶层的一组或多组驱动电极。每组所述驱动电极包括两个异性电极,且所述两个异性电极在所述蓝相液晶层产生的电场于第一方向上的分量不为零,所述第一方向与入射光的偏振方向垂直。
需要说明的是,所述第一方向与入射光的偏振方向垂直是指第一方向在平行于基板的平面内与入射光的偏振方向垂直。
本发明实施例提供的显示基板,适用于平面场显示装置。此处所述的平面场显示装置指其驱动液晶偏转进行显示的电场为平行于基板的平行电场。目前的平面电场显示技术主要包括:平面转换技术(In-Plane Switching,IPS),高级超维场开关技术(Advanced-Super Dimensional Switching,ADS)等。对于平面场显示装置,液晶分子的旋转则属于平面内的旋转(X-Y轴),不管在何种状态下液晶分子始终都与屏幕平行,只是在加电/常规状态下分子的旋转方向有所不同。暗态时液晶盒内的液晶分子长轴排列方向沿取向层的取向,即入射光的偏振方向(与下偏振片的起振方向一致)与暗态时液晶盒内的液晶分子长轴排列方向一致,由于各种原因容易存在暗态漏光。
本发明实施例提供的显示基板上,额外形成有蓝相液晶薄层以及驱动蓝相液晶的驱动电极,可解决这一问题。蓝相液晶的工作原理是基于Kerr效应,具体如下所述。在外加电场(以垂直于入射光的偏振方向的电场为例)作用下,蓝相液晶就变成光学上单轴晶体,其光轴方向与电场方向平行。当线偏振光以垂直于电场的方向通过蓝相液晶时将分解为两束线偏振光,一束的光矢量沿着电场方向,另一束的光矢量与电场垂直,它们的折射率分别称为正常折射率n0与反常折射率ne。蓝相液晶是正或负双折射物质,取决于ne-no的值为正或负,ne-no=λKE2,其中,λ是入射光的波长,K是Kerr常数,E是外加电场。ne-no随外加电场的平方而增加,透过的光强度也随之增加,利用蓝相液晶的Kerr效应,可达到用外电场调光的目的。
就本实施例所述蓝相液晶层而言,在亮态时,驱动电极不产生电场,蓝相液晶的表现如同一个各向同性介质,蓝相液晶层对入射的偏振光(背光)呈现透明;在暗态时,驱动电极产生电场,例如,电场垂直于入射光的偏振方向,蓝相液晶层就变成光学上单轴晶体,呈各向异性,因电场方向垂直于入射光的偏振方向,偏振光经过蓝相液晶层后的偏振方向会发生改变,结果与暗态时液晶盒内液晶分子长轴的排列方向成一定夹角,因入射光的偏振方向与液晶层液晶取向方向垂直,所以入射光不能透过液晶盒,因而可改善暗态漏光,提高器件的显示品质。
为便于理解,上述叙述仅考虑了电场垂直于入射光的偏振方向的情况,实际上,此处,因蓝相液晶层的工作原理是基于Kerr效应,因此要求本实施例所述两个异性电极在蓝相液晶层处产生的电场(以下简称驱动电极产生的 电场)在垂直于入射光的偏振方向(即第一方向)上的分量不为零,就能达到上述效果。
一个具体实施例中,两个异性电极在蓝相液晶处产生的电场与入射光的偏振方向所成夹角为A,夹角A可为45度或135度(A=45°或A=135°),因为A为45°或A=135°时,各向异性的蓝相液晶分子长轴与短轴传递光线能力最强,入射光经过蓝相液晶层后光的偏振方向改变最大,再经过取向层、液晶盒内的液晶后,入射光透过率最低,因此A=45°或A=135°时,对暗态漏光的改善效果也最好。对于平面场显示装置,入射光的偏振方向与取向层一致、也与暗态时液晶盒内的液晶分子长轴排列方向一致。
在液晶显示器中,背光模块发出的光经导光板后垂直于基板入射,但经过偏光片之后,垂直的光线转换成特定方向(与偏光片偏振方向一致)偏振的偏振光线,要使驱动电极在蓝相液晶层处产生的电场与入射光的偏振方向所成夹角为A,A≠0°且A≠180°,组成驱动电极的两个异性电极最好设置在同一平面内。例如,如图2所示,将驱动电极设置为狭缝状电极,下基板20上相邻的两个狭缝状电极分别为一组驱动电极中的两个异性电极,即图中的异性电极21和异性电极22,工作时二者的电性相反。图2箭头B的方向代表入射光的偏振方向。如果要增强电场,每组驱动电极可以做得很靠近。
上述图2中组成驱动电极的两个异性电极设置在同一层,当然也可以位于不同层,例如,其中之一的异性电极为狭缝状电极,另一异性电极为板状电极,二者之间设置绝缘层,如同ADS模式中的像素电极和公共电极一样。
进一步地,通常平面电场显示装置中的阵列基板包括像素电极和公共电极,组成所述驱动电极的两个异性电极例如可由像素电极和公共电极分别充当。这时像素电极和公共电极具体图形的设计除应满足其作为像素电极和公共电极要求外,还应满足其作为驱动电极的要求,即像素电极和公共电极暗态时在蓝相液晶层处产生的电场于第一方向上的分量不为零,除此之外其具体制作方式可以采用通常技术。例如,所得到的显示装置采用分时驱动:在暗态时,像素电极和公共电极分别充当所述驱动电极的两个异性电极;在亮态时,像素电极和公共电极加载显示信号进行显示。
本发明实施例提供的显示基板,其能够改善暗态漏光,提高器件的显示品质。因蓝相液晶层及驱动电极的具体位置及实现方式并不影响本实施例技 术方案的实施效果,本发明实施例对此不做限定,可以是本领域技术人员所熟知的任意实现方式。
本发明的实施例能够改善双基板显示器件或单基板显示器件的暗态漏光,下面以双基板显示器件为例进行详细说明。
如图3和图4所示,本发明一个实施例的提供了一种上下双基板驱动的ADS显示装置,该显示装置包括:相互对盒(cell-assembly)的上基板10和下基板20。上基板10上设置有公共电极11、绝缘层14和像素电极12,下基板20上设置有异性电极21、绝缘层24和异性电极22,异性电极22为狭缝状电极,异性电极22为板状电极,异性电极22上设置有取向层27。本实施例的显示装置还包括蓝相液晶层25,其设置在取向层27之下。上基板10上设置的公共电极11和像素电极12驱动液晶30进行显示;下基板20上设置的异性电极21和异性电极22在暗态时驱动蓝相液晶层25,以改善暗态漏光。
制造时,完成下基板20的其他工序后,制备取向层27之前,涂覆蓝相液晶形成蓝相液晶层25,然后形成取向层27。下基板20上形成其他层如绝缘层、异性电极层等的工序,往往需要在恶劣环境中,或者高温,或者需要进行刻蚀,或者气体冲击。因此将蓝相液晶层25设置在取向层27之下的好处是,蓝相液晶层25在形成后,只需经历形成取向层27的工序,不会再经历恶劣环境,从而蓝相液晶层25可避免受损。
基于同样的理由,驱动电极也设置在蓝相液晶层25之下。例如,图3中异性电极21所在层还可被省去,例如将异性电极21与异性电极22同层设置,如图2所示,从而达到节省工序、降低下基板厚度的目的。
图3中的ADS显示装置处于亮态,驱动电极不产生电场,蓝相液晶的表现如同一个各向同性介质,蓝相液晶层对入射的偏振光(背光)呈现透明;图4中的ADS显示装置暗态时,驱动电极产生电场,电场垂直于入射光的偏振方向,蓝相液晶层就变成光学上单轴晶体,各向异性,会改变入射光的偏振方向。
本发明实施例提供一种显示基板,其适用于平面场显示装置,制造涂覆PI(Polyimide,聚酰亚胺,取向层常用材料)前先涂覆一层蓝相液晶,基本不需要额外增加工序,即可达到改善暗态漏光提高器件的显示品质的目的。
本发明实施例还提供一种显示装置,其包括上述任意一种显示基板。所述显示装置因改善了暗态漏光,从而可获得更高的显示品质。所述显示装置可以为:液晶面板、电子纸、手机、手表、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
进一步地,对于本发明提供的显示装置,还包括与所述显示基板相对设置的对向基板(即上基板10),以及设置于所述显示基板和所述对向基板之间的液晶;所述对向基板上设置有公共电极和像素电极。所述显示基板可以为阵列基板或彩膜基板,相应地,所述对向基板为彩膜基板或阵列基板。
本发明实施例还提供一种显示基板的制造方法,如图5所示,该基板制造方法包括如下工序。
101、形成蓝相液晶层的工序;
102、形成驱动电极的工序,所述驱动电极用于在暗态时驱动所述蓝相液晶层,每组所述驱动电极包括两个异性电极,且所述两个异性电极在所述蓝相液晶层产生的电场于第一方向上的分量不为零,所述第一方向与入射光的偏振方向垂直。
本发明实施例还提供一种显示基板的制造方法,例如在制造阵列基板的原有工序的基础上,增加形成蓝相液晶层和驱动电极的工序101和102,达到改善了暗态漏光,获得更高的显示品质的目的。蓝相液晶层和驱动电极的具体形成位置、方式本实施例不做限定,需要注意的是,此处的编号101和102并不表明先后顺序,仅在于区分工序。
例如,该方法还可包括形成取向层的工序;在形成取向层的工序之前,进行形成蓝相液晶层的工序,避免形成的蓝相液晶层因再经历恶劣环境而损坏。
例如,可如图6所示,先进行形成显示基板的其他工序(除取向层之外的常规膜层),然后进行形成驱动电极的工序102,进行形成蓝相液晶层的工序101,最后进行形成取向层的工序103。
需要说明的是,形成驱动电极的工序102可包括形成板状电极,作为一组驱动电极中的一个异性电极;在所述板状电极上形成绝缘层;在绝缘层上形成狭缝状电极,作为一组驱动电极中的另一个异性电极,如图3所示。此处,可以采用类似于现有平面场显示装置中的像素电极和公共电极的形成方 法的方法。
或者,形成驱动电极的工序102可包括形成狭缝状电极,相邻的两个狭缝状电极分别为一组所述驱动电极中的两个异性电极,如图2所示。此处,可采用类似于现有狭缝状电极形成方法大致相同,但图形不同。
本发明实施例提供的显示基板制造方法,涂覆PI前先涂覆一层蓝相液晶,除此之外,基本不需要额外增加或改变工序,即可达到改善暗态漏光提高器件的显示品质的目的。
需要说明的是,本发明实施例中的各项技术特征在不冲突的前提下,可任意组合使用。本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处,相关之处参见方法实施例的部分说明即可。
对于平面场显示装置,入射光(如背光)的偏振方向与暗态时液晶盒内的液晶分子长轴排列方向一致,容易存在暗态漏光。本发明实施例提供一种显示基板及其制造方法、显示装置,所述显示基板包括蓝相液晶层以及用于在暗态时驱动蓝相液晶层的驱动电极,因蓝相液晶加电场时呈现各向异性,入射光的偏振方向经过蓝相液晶层后的偏振方向会发生改变,与液晶盒内的液晶分子长轴排列方向成一定夹角,因而能够改善暗态漏光,提高器件的显示品质。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本专利申请要求于2014年8月1日递交的中国专利申请第201410377321.3号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (12)

  1. 一种显示基板,包括:
    蓝相液晶层,以及
    一组或多组驱动电极,其用于在暗态时驱动所述蓝相液晶层;其中,
    每组所述驱动电极包括两个异性电极,且所述两个异性电极在所述蓝相液晶层处产生的电场于第一方向上的分量不为零,所述第一方向与入射光的偏振方向垂直。
  2. 根据权利要求1所述的显示基板,其中,所述两个异性电极在所述蓝相液晶层产生的电场与入射光的偏振方向所成夹角为A,A=45°或A=135°。
  3. 根据权利要求1所述的显示基板,还包括取向层,其中,所述蓝相液晶层设置在所述取向层之下。
  4. 根据权利要求1至3任一项所述的显示基板,其中,所述驱动电极设置在所述蓝相液晶层之下。
  5. 根据权利要求1至4任一项所述的显示基板,其中,所述驱动电极为狭缝状电极,相邻的两个狭缝状电极分别为一组所述驱动电极中的两个异性电极。
  6. 根据权利要求1至4任一项所述的显示基板,其中,一组所述驱动电极中的一个异性电极为板状电极,另一个异性电极为狭缝状电极。
  7. 一种显示装置,其包括权利要求1至6任一项所述的显示基板。
  8. 根据权利要求7所述的显示装置,还包括与所述显示基板相对设置的对向基板,以及设置于所述显示基板和所述对向基板之间的液晶;
    其中,所述对向基板上设置有公共电极和像素电极。
  9. 一种显示基板的制造方法,其包括:
    形成蓝相液晶层的工序;
    形成一组或多组驱动电极的工序,所述驱动电极用于在暗态时驱动所述蓝相液晶层,每组所述驱动电极包括两个异性电极,且所述两个异性电极在所述蓝相液晶层产生的电场于第一方向上的分量不为零,所述第一方向与入射光的偏振方向垂直。
  10. 根据权利要求9所述的制造方法,还包括形成取向层的工序,其中,
    在形成取向层的工序之前,进行形成蓝相液晶层的工序。
  11. 根据权利要求10所述的制造方法,其中,先进行形成驱动电极的工序,然后进行形成蓝相液晶层的工序,最后进行形成取向层的工序。
  12. 根据权利要求9至11任一项所述的制造方法,其中,所述形成驱动电极的工序包括形成狭缝状电极,相邻的两个狭缝状电极分别为一组所述驱动电极中的两个异性电极,或者,
    所述形成驱动电极的工序包括形成板状电极,所述板状电极为一组所述驱动电极中的一个异性电极;在所述板状电极上形成绝缘层;在绝缘层上形成狭缝状电极,所述狭缝状电极作为一组所述驱动电极中的另一个异性电极。
PCT/CN2014/093061 2014-08-01 2014-12-04 显示基板及其制造方法、显示装置 WO2016015425A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/774,389 US9977295B2 (en) 2014-08-01 2014-12-04 Display substrate and manufacturing method thereof, display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410377321.3A CN104181736B (zh) 2014-08-01 2014-08-01 显示基板及其制造方法、显示装置
CN201410377321.3 2014-08-01

Publications (1)

Publication Number Publication Date
WO2016015425A1 true WO2016015425A1 (zh) 2016-02-04

Family

ID=51962897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093061 WO2016015425A1 (zh) 2014-08-01 2014-12-04 显示基板及其制造方法、显示装置

Country Status (3)

Country Link
US (1) US9977295B2 (zh)
CN (1) CN104181736B (zh)
WO (1) WO2016015425A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181736B (zh) * 2014-08-01 2017-08-01 京东方科技集团股份有限公司 显示基板及其制造方法、显示装置
CN105204245B (zh) * 2015-10-28 2017-12-05 深圳市华星光电技术有限公司 一种视角可调控的液晶显示面板及其视角调控方法
CN109254453A (zh) * 2018-11-12 2019-01-22 成都中电熊猫显示科技有限公司 液晶显示面板、显示装置及彩膜基板的制造方法
CN109856871B (zh) * 2019-03-29 2022-08-19 京东方科技集团股份有限公司 显示基板、显示面板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102368126A (zh) * 2011-04-29 2012-03-07 友达光电股份有限公司 蓝相液晶显示面板
CN102681195A (zh) * 2011-11-11 2012-09-19 京东方科技集团股份有限公司 偏振光转换结构及显示装置
KR20130067339A (ko) * 2011-12-13 2013-06-24 엘지디스플레이 주식회사 시야각 조절 액정표시장치
CN103792742A (zh) * 2014-01-23 2014-05-14 京东方科技集团股份有限公司 液晶显示器件
US20140160414A1 (en) * 2009-05-29 2014-06-12 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same
CN104181736A (zh) * 2014-08-01 2014-12-03 京东方科技集团股份有限公司 显示基板及其制造方法、显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086205A (ja) * 2005-09-20 2007-04-05 Sharp Corp 表示パネルおよび表示装置
JP2011065090A (ja) * 2009-09-18 2011-03-31 Hitachi Displays Ltd 液晶表示装置
CN102636920A (zh) * 2011-07-19 2012-08-15 京东方科技集团股份有限公司 一种硬屏液晶显示的装置和实现方法及其应用
US9664945B2 (en) * 2013-03-29 2017-05-30 Au Optronics Corporation Display apparatus
CN103383505A (zh) * 2013-07-12 2013-11-06 京东方科技集团股份有限公司 液晶显示面板和液晶显示装置
CN103499900B (zh) 2013-09-02 2015-11-11 京东方科技集团股份有限公司 液晶面板及其制作方法、显示器
CN203444208U (zh) * 2013-09-10 2014-02-19 北京京东方光电科技有限公司 一种液晶显示装置和显示终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140160414A1 (en) * 2009-05-29 2014-06-12 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same
CN102368126A (zh) * 2011-04-29 2012-03-07 友达光电股份有限公司 蓝相液晶显示面板
CN102681195A (zh) * 2011-11-11 2012-09-19 京东方科技集团股份有限公司 偏振光转换结构及显示装置
KR20130067339A (ko) * 2011-12-13 2013-06-24 엘지디스플레이 주식회사 시야각 조절 액정표시장치
CN103792742A (zh) * 2014-01-23 2014-05-14 京东方科技集团股份有限公司 液晶显示器件
CN104181736A (zh) * 2014-08-01 2014-12-03 京东方科技集团股份有限公司 显示基板及其制造方法、显示装置

Also Published As

Publication number Publication date
CN104181736A (zh) 2014-12-03
CN104181736B (zh) 2017-08-01
US20160202562A1 (en) 2016-07-14
US9977295B2 (en) 2018-05-22

Similar Documents

Publication Publication Date Title
JP5106754B2 (ja) 半透過型表示装置及びその形成方法。
US9983433B2 (en) Transflective liquid crystal display panel comprising a phase retardation film between an over coater and a common electrode
WO2019157815A1 (zh) 水平电场型的显示面板、其制作方法及显示装置
JPWO2018221413A1 (ja) 表示装置
ITUD980090A1 (it) Metodo di produzione di due domini all'interno di uno strato di cristallo liquido, un dispositivo di visualizzazione a
WO2016066133A1 (zh) 光学补偿膜及其制作方法、偏光片、液晶显示面板、显示装置
US8599350B2 (en) Display panel and method of manufacturing the same
US20130120679A1 (en) Liquid crystal panel and manufacturing method thereof, and liquid crystal display device
CN111033370B (zh) 液晶显示装置及其制造方法
JP2017211566A (ja) 液晶表示装置および液晶表示装置の製造方法
WO2016206130A1 (zh) 蓝相液晶显示装置及其驱动方法
JP2014215348A (ja) 液晶パネル
WO2016015425A1 (zh) 显示基板及其制造方法、显示装置
US7961275B2 (en) In-plane switching liquid crystal display device and method of fabricating the same
US9645440B2 (en) Transflective liquid crystal display panel and a liquid crystal display device
US8488089B2 (en) Liquid crystal panel and liquid crystal display device
WO2016049959A1 (zh) 液晶显示装置
US20150293406A1 (en) Single-Layered Biaxial Compensation Structure For Liquid Crystal Panels And The Liquid Crystal Displays
US7626656B2 (en) LCD device for switching display mode between wide viewing angle and narrow viewing angle and method employing control cell for controlling tilt angle of molecules of dichroic liquid crystal layer therein
TWI684046B (zh) 附觸控面板的液晶顯示裝置
WO2013010491A1 (zh) 半透射半反射液晶显示器及其制作方法
US9007548B2 (en) Wide view angle liquid crystal display device operating in normally white mode
US20180239208A1 (en) Pixel structures, array substrates and liquid crystal display panels
TW200528895A (en) Liquid crystal display device
US20140218669A1 (en) Display panel and display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14774389

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.07.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14898989

Country of ref document: EP

Kind code of ref document: A1