WO2016015297A1 - 一种传输同步信道sch的方法以及相关设备 - Google Patents

一种传输同步信道sch的方法以及相关设备 Download PDF

Info

Publication number
WO2016015297A1
WO2016015297A1 PCT/CN2014/083448 CN2014083448W WO2016015297A1 WO 2016015297 A1 WO2016015297 A1 WO 2016015297A1 CN 2014083448 W CN2014083448 W CN 2014083448W WO 2016015297 A1 WO2016015297 A1 WO 2016015297A1
Authority
WO
WIPO (PCT)
Prior art keywords
sch
information
control channel
transmission period
synchronous transmission
Prior art date
Application number
PCT/CN2014/083448
Other languages
English (en)
French (fr)
Inventor
龚政委
肖洁华
丁仁天
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/083448 priority Critical patent/WO2016015297A1/zh
Priority to EP14898538.5A priority patent/EP3166230B1/en
Priority to CN201480035927.7A priority patent/CN105519001B/zh
Publication of WO2016015297A1 publication Critical patent/WO2016015297A1/zh
Priority to US15/420,765 priority patent/US10327240B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/7163Spread spectrum techniques using impulse radio
    • H04B1/7183Synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method for transmitting a synchronization channel SCH and related devices. Background technique
  • Coverage is an important feature of measuring a communication system. Coverage refers to the maximum range of users who can be served (according to a certain proportion of data received and sent correctly). In communication transmission, the signal sent by the transmitter will experience various fading, loss and interference and noise before reaching the receiving end. The longer the transmission distance, the greater the signal attenuation and the lower the coverage performance. Good coverage performance can reduce the cost of building base stations, reduce maintenance costs, and increase the number of access users. Therefore, coverage enhancement has always been a research hotspot.
  • Downlink synchronization is the first step in establishing a communication connection between a base station and a terminal.
  • the existing GSM (Global System For Mobile Communication) system requires two channels for downlink synchronization, namely FCCH (Frequency Correction Channel) and SCH (Synchronization Channel).
  • FCCH Frequency Correction Channel
  • SCH Synchronization Channel
  • the main function of FCCH is Frequency synchronization is performed, and the second step is to implement time domain synchronization through the SCH channel, thereby completing the entire synchronization process.
  • the FCCH and SCH in the existing GSM system can only be sent in the first time slot, and the FCCH and SCH are sent once every interval, so that the synchronization channel of the existing GSM system is difficult to meet the 20 dB coverage enhancement. Demand. Summary of the invention
  • Embodiments of the present invention provide a method for transmitting a synchronization channel SCH and related devices, which can repeatedly transmit SCH information multiple times to meet high coverage enhancement requirements.
  • a first aspect of the present invention provides a base station, including:
  • a first processing unit configured to configure at least two synchronization channel SCH resources in the first common control channel and the extended control channel of the synchronization transmission period, where the synchronization transmission period includes 10 - or 11 time division multiple access TDMA frames, each TDMA frame contains a total of 8 time slots from 0 to 7, the first common control channel is slot 0, and the extended control channel does not include number 0. a time slot, each SCH resource being one time slot of one TDMA frame;
  • a first sending unit configured to transmit at least two pieces of SCH information on the at least two configured SCH resources; where, each SCH resource transmits one SCH information, where the at least two SCH information have the same frame number information.
  • the extended control channel is a common control channel, and the extended control channel is one or more time slots in slots 2, 4, and 6;
  • the at least two SCH resources of the configuration in the first processing unit are the 0th slot of the second TDMA frame of the synchronous transmission period, and the 2nd of the second TDMA frame of the synchronous transmission period One or more time slots in time slots 4, 6.
  • the extended control channel is a common control channel, and the extended control channel is one or more time slots in slots 2, 4, and 6;
  • the at least two SCH resources of the configuration in the first processing unit are time slot 0 of the second TDMA frame of the synchronous transmission period, and the first and second TDMAs of the synchronous transmission period One or more time slots in slots 2, 4, and 6 of the frame.
  • the at least two SCH resources of the configuration in the first processing unit further include: time slots No. 1, No. 3, No. 5 or No. 7 of at least one TDMA frame of the synchronous transmission period.
  • the extended control channel is a non-common control channel, and the extended control channel is one or more time slots in slots 1 to 7;
  • the at least two SCH resources of the configuration in the first processing unit include: a time slot 0 of a second TDMA frame of the synchronous transmission period, and at least one of the synchronous transmission periods - -
  • the method further includes:
  • a second processing unit configured to configure at least two frequency correction channel FCCH resources in the first common control channel and the extended control channel of the synchronous transmission period, where the FCCH resource is a time slot of a TDMA frame;
  • a second sending unit configured to transmit at least two pieces of FCCH information on the configured at least two FCCH resources
  • the first sending unit includes:
  • the coding subunit is configured to encode the SCH information according to the slot number of the SCH resource
  • the sending subunit is configured to transmit the encoded SCH information, where the encoded SCH information includes the slot number information of the SCH resource.
  • the coding subunit is specifically configured to determine a mask of a slot number, and mask the slot number Performing an exclusive OR operation with the cyclic redundancy check code of the SCH information;
  • the masks of different slot numbers are different from each other.
  • the first processing unit is specifically configured to determine the at least two SCH resources according to a default configuration.
  • a second aspect of the present invention provides a user equipment, including:
  • a first receiving unit configured to receive at least two pieces of SCH information in a synchronous transmission period of the base station after performing frequency correction by using the received FCCH information
  • a demodulation unit configured to demodulate the received at least two pieces of SCH information
  • the synchronous transmission period includes 10 or 11 TDMA frames, and each TDMA frame includes a total of 8 time slots from 0 to 7; - - wherein the received at least two pieces of SCH information are sent by the base station in a first common control channel and an extended control channel of the synchronous transmission period, where the first common control channel is In slot 0, the extended control channel does not include slot 0.
  • the method further includes:
  • a second receiving unit configured to receive at least two pieces of FCCH information in a synchronous transmission period of the base station, and perform frequency correction by using the at least two pieces of FCCH information
  • the first receiving unit includes:
  • a receiving subunit configured to receive at least two encoded SCH information in a synchronous transmission period of the base station after performing frequency correction by using the received FCCH information
  • a decoding subunit configured to decode the received at least two encoded SCH information, where the at least two encoded SCH information is used by the base station according to a slot number of the configured SCH resource, to the SCH Information obtained by coding;
  • the demodulation unit is specifically configured to demodulate the decoded at least two encoded SCH information.
  • a third aspect of the present invention provides a method for transmitting a synchronization channel SCH, including:
  • the synchronous transmission period includes 10 or 11 time division multiple access TDMA frames, and each TDMA frame includes No. 0 Up to 8 time slots to 7th, the first common control channel is time slot 0, the extended control channel does not include time slot 0, and each SCH resource is one time slot of one TDMA frame;
  • the extended control channel is a common control channel, and the extended control channel is No. 2, No. 4 and
  • the configured at least two SCH resources are the second TDMA frame of the synchronous transmission period - -
  • the extended control channel is a common control channel, and the extended control channel is one or more time slots in slots 2, 4, and 6;
  • the configured at least two SCH resources are the 0th time slot of the second TDMA frame of the synchronous transmission period, and the 2nd and 4th numbers of the first and second TDMA frames of the synchronous transmission period One or more time slots in slot 6.
  • the at least two SCH resources of the configuration further include: time slots No. 1, No. 3, No. 5 or No. 7 of at least one TDMA frame of the synchronous transmission period.
  • the extended control channel is a non-common control channel, and the extended control channel is one or more time slots in slots 1 to 7;
  • the configured at least two SCH resources include: a slot 0 of the second TDMA frame of the synchronous transmission period, and any one of slots 1 to 7 of at least one TDMA frame of the synchronous transmission period One time slot.
  • the method further includes:
  • FCCH resources configuring, in the first common control channel and the extended control channel of the synchronous transmission period, at least two frequency correction channel FCCH resources, where the FCCH resource is one time slot of one TDMA frame; and at least two of the configurations Transmitting at least two FCCH information on the FCCH resources;
  • the SCH information is encoded according to the slot number of the SCH resource, and the encoded SCH information is transmitted, and the encoded SCH information includes slot number information of the SCH resource.
  • - - Encoding the SCH information according to the slot number of the SCH resource including:
  • the mask of the slot number is XORed with the cyclic redundancy check code of the SCH information.
  • the at least two SCH resources are determined.
  • a fourth aspect of the present invention provides a method for receiving a synchronization channel SCH, including:
  • At least two SCH information are received in a synchronous transmission period of the base station;
  • the synchronous transmission period includes 10 or 11 TDMA frames, and each TDMA frame includes a total of 8 time slots from 0 to 7;
  • the received at least two pieces of SCH information are sent by the base station in a first common control channel and an extended control channel of the synchronous transmission period, where the first common control channel is number 0.
  • the time slot, the extended control channel does not include the time slot 0.
  • the method further includes:
  • the at least two pieces of SCH information are received in the synchronous transmission period of the base station, including:
  • At least two encoded SCH information are received in the synchronous transmission period of the base station;
  • the at least two encoded SCH information is a time slot number of the SCH resource according to the configured base station, and the SCH information is Obtained by coding;
  • the demodulating the received at least two pieces of SCH information specifically includes: demodulating the decoded at least two encoded SCH information.
  • a fifth aspect of the present invention provides a computer storage medium
  • the computer storage medium may store a program that, when executed, includes some or all of the steps of a method of transmitting a synchronization channel SCH provided by the third aspect.
  • a sixth aspect of the invention provides a computer storage medium
  • the computer storage medium may store a program that, when executed, includes some or all of the steps of a method of receiving a synchronization channel SCH provided by the fourth aspect.
  • a seventh aspect of the present invention provides a base station, including: a processor, a communication interface, and a memory, wherein
  • the communication interface is configured to communicate with a user equipment
  • the memory is used to store a program
  • the processor is configured to execute the program to implement
  • the synchronous transmission period includes 10 or 11 time division multiple access TDMA frames, and each TDMA frame includes a total of 8 time slots from 0 to 7 when the first common control channel is 0. a slot, the extended control channel does not include a slot 0, and each SCH resource is a slot of a TDMA frame;
  • the extended control channel is a common control channel, and the extended control channel is one or more time slots in slots 2, 4, and 6;
  • the configured at least two SCH resources are the 0th slot of the second TDMA frame of the synchronous transmission period, and the 2nd, 4th, and 6th slots of the second TDMA frame of the synchronous transmission period One or more time slots in . - - in combination with the seventh aspect, in a second possible implementation,
  • the extended control channel is a common control channel, and the extended control channel is one or more time slots in slots 2, 4, and 6;
  • the configured at least two SCH resources are the 0th time slot of the second TDMA frame of the synchronous transmission period, and the 2nd and 4th numbers of the first and second TDMA frames of the synchronous transmission period One or more time slots in slot 6.
  • the at least two SCH resources of the configuration further include: time slots No. 1, No. 3, No. 5 or No. 7 of at least one TDMA frame of the synchronous transmission period.
  • the extended control channel is a non-common control channel, and the extended control channel is one or more time slots in slots 1 to 7;
  • the configured at least two SCH resources include: a slot 0 of the second TDMA frame of the synchronous transmission period, and any one of slots 1 to 7 of at least one TDMA frame of the synchronous transmission period One time slot.
  • the processor is further configured to: configure at least two frequency correction channels, FCCH, in the first common control channel and the extended control channel of the synchronous transmission period a resource, the FCCH resource is a time slot of a TDMA frame; and transmitting at least two FCCH information on the configured at least two FCCH resources;
  • the SCH information is encoded according to the slot number of the SCH resource, and the encoded SCH information is transmitted, and the encoded SCH information includes slot number information of the SCH resource.
  • the processor is specifically configured to:
  • the at least two SCH resources are determined.
  • An eighth aspect of the present invention provides a user equipment, including: a processor, a communication interface, and a memory, where
  • the communication interface is configured to communicate with a base station
  • the memory is used to store a program
  • the processor is configured to execute the program to implement
  • At least two SCH information are received in a synchronous transmission period of the base station;
  • the synchronous transmission period includes 10 or 11 TDMA frames, and each TDMA frame includes a total of 8 time slots from 0 to 7;
  • the received at least two pieces of SCH information are sent by the base station in a first common control channel and an extended control channel of the synchronous transmission period, where the first common control channel is number 0.
  • the time slot, the extended control channel does not include the time slot 0.
  • the processor is further configured to:
  • the at least two pieces of SCH information are received in the synchronous transmission period of the base station, including:
  • At least two encoded SCH information are received in the synchronous transmission period of the base station;
  • the at least two encoded SCH information is a time slot number of the SCH resource according to the configured base station, and the SCH information is - - obtained by coding;
  • the demodulating the received at least two pieces of SCH information specifically includes: demodulating the decoded at least two encoded SCH information.
  • the SCH resource is configured in the first common control channel and the extended control channel, so that the SCH information is repeatedly sent in a synchronous transmission period, so that the effect of the synchronization channel coverage enhancement can be achieved.
  • FIG. 1 is a structural diagram of a 51 multiframe in the prior art
  • FIG. 2 is a schematic flowchart of a method for transmitting a synchronization channel SCH according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of another method for transmitting a synchronization channel SCH according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart of a method for encoding SCH information according to an embodiment of the present invention
  • FIG. 5 is a schematic flowchart of a method for receiving a synchronization channel SCH according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another user equipment according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of still another base station according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of still another user equipment according to an embodiment of the present invention. - - detailed description
  • the GSM system in the embodiment of the present invention needs to use two channels, which are FCCH and SCH, respectively, in the downlink synchronization process, that is, the user equipment obtains the frequency and time synchronization with the base station by using the FCCH information and the SCH information sent by the base station, where the user
  • the device may include a communication terminal such as a M2M (machine to machine communication) terminal, a mobile phone, or the like.
  • the base station sends the FCCH information and the SCH information based on the 51 multiframe structure.
  • a 51 multiframe takes about 235.4ms and contains 51 TDMA (Time Division Multiple Access) frames.
  • the 51 multiframe structure can be used to carry a broadcast control channel (BCCH), a common control channel (CCCH), and a stand-alone dedicated control channel (SDCCH).
  • BCCH broadcast control channel
  • CCCH common control channel
  • SDCCH stand-alone dedicated control channel
  • the BCCH is used to broadcast a channel based on general information of each cell;
  • CCCH is a "point-to-multipoint" two-way control channel, and its use is in the call connection phase, control signaling required for transmission link connection and Information;
  • SDCCI.I is used to transmit system signaling during call setup before allocating traffic channels.
  • a TDMA frame occupies about 4.62 ms, including 8 slots from 0 to 7.
  • a time slot in a continuous TDMA frame in the GSM system is defined as a basic physical channel.
  • a certain physical channel is slot 0
  • the physical channel is the slot 0 of the continuous TDMA frame, and It does not refer only to slot 0 of a TDMA frame.
  • One cell is configured with several CCCH channels (here, refers to the basic physical channel including CCCH), and whether the CCCH channel is combined with the SDCCH channel is determined by the CCCH-CONF parameter of the Control Channel Description IE in System Message 3, as shown in the following table. 1
  • BS_CC_CHANS is used to specify the number of CCCH channels
  • BS_CCCH_SDCCH_COMB is used to indicate whether to combine CCCH channel and SDCCH.
  • FIG. 1 is a complete 51 multiframe structure in the prior art.
  • Each column in FIG. 1 is a TDMA frame, and there are 51 TDMA frames in total.
  • Each TDMA frame includes 8 TN0 to TN7.
  • Gap, and the CCCH_CONF corresponding to Figure 1 is binary "110", that is, Figure 1 contains four CCCH channels, each CCCH channel is transmitted in a 51 multiframe structure, and four CCCH channels are TN0, TN2, TN4 And TN6.
  • the different CCCH-CONF parameters are configured differently, but the positions of FCCH and SCH in the TN0 multiframe structure are the same, that is, the positions of FCCH and SCH shown in Figure 1.
  • the transmission interval of FCCH or SCH is defined as a synchronous transmission period, which can be understood as the transmission period of FCCH or SCH. Since there are Idle frames (empty frames) in the multiframe, that is, the position of "-" in the 51 multiframe structure in Fig. 1, the synchronous transmission period can be 10 TDMA frames or 11 TDMA frames.
  • the existing 51 multiframe structure is one synchronous transmission period, and the base station sends the FCCH information and the primary SCH information once, that is, the base station sends the FCCH information and the SCH information in the first two TDMA frames in the TN0 of each synchronization transmission period.
  • all of the synchronous transmission periods mentioned are the synchronous transmission periods defined in the corresponding embodiment of Fig. 1.
  • a carrier for carrying synchronization information and a BCCH channel (a 200 kHz band in the GSM system is called a carrier) is called a BCCH carrier.
  • the FCCH information and SCH information in the existing GSM system are only sent on the BCCH carrier.
  • the sending process of the base station in the prior art may specifically be: The base station presses on the BCCH carrier. - -
  • the information including synchronization and broadcast is sequentially transmitted in time according to the multiframe structure, and the FCCH information and the SCH information are transmitted only once in one synchronization transmission period.
  • the receiving process of the user equipment in the prior art may be specifically: the user equipment searches for the BCCH carrier by searching the FCCH information in the supported frequency range, and after performing the BCCH carrier, performs frequency correction by using the FCCH information, and completes the frequency correction. After receiving and demodulating the SCH information, time synchronization is performed by the SCH information, and then all communication processes can be performed with the base station according to the synchronized frequency and time.
  • the user equipment receives only one FCCH information and SCH information in one synchronous transmission period of the base station.
  • FIG. 2 is a schematic flowchart of a method for transmitting a synchronization channel SCH according to an embodiment of the present invention
  • the method may be performed by a base station.
  • the method can include:
  • the synchronous transmission period is an interval of FCCH or SCH transmission in the 51 multiframe structure, where the synchronization transmission period may be the synchronization transmission period defined in the 51 multiframe structure diagram provided in FIG. 1 above, that is, the The synchronous transmission period includes 10 or 11 TDMA frames, and each TDMA frame includes a total of 8 time slots from 0 to 7.
  • the first common control channel is a time slot 0, the extended control channel does not include a time slot 0, and the extended control channel is used to configure a SCH resource that needs to be repeatedly transmitted, and each SCH resource is a TDMA.
  • the base station may configure at least two SCH resources in the first common control channel and the extended control channel of the synchronous transmission period.
  • the configuration of the SCH resources may be various. The manner of configuring the SCH resources is described in detail below.
  • the first configuration mode if the extended control channel is further defined as a common control channel, that is, a CCCH channel, and the extended control channel is one or more time slots in slots 2, 4, and 6,
  • the configured at least two SCH resources are the 0th slot of the second TDMA frame of the synchronous transmission period, and the 2nd, 4th, and 6th slots of the second TDMA frame of the synchronous transmission period One or more time slots in ;
  • the resources for synchronous coverage enhancement described in the present invention are all configured on the BCCH carrier. - - On (there is no special explanation below).
  • the first configuration mode is applicable to a case where the SCH information needs to be repeatedly transmitted 2 to 4 times, and the total number of the first common control channel plus the extended control channel in the base station needs to be greater than or equal to the number of transmissions required for the SCH information, where The number of transmissions required to describe the SCH information is determined by the coverage level requirement. The following is explained in Table 2 below:
  • Table 2 is a synchronous transmission period of the 0th TDMA frame to the 9th TDMA frame in the 51 multiframe structure, including 10 TDMA frames, where F is FCCH, S SCH, and TN0 to TN7 are respectively 0 to 7 A total of 8 time slots, each column represents one TDMA frame, and one TDMA frame contains 8 time slots.
  • Table 2 shows the case where four CCCH channels are configured in the cell.
  • TN0 is referred to as a first common control channel
  • TN2, TN4, and TN6 are referred to as extended control channels, and other time slots can be configured as traffic channels.
  • four SCH resources are configured in the first common control channel and the extended control channel.
  • the base station can transmit four SCH information on the configured four SCH resources.
  • the multi-frame structure of the TN0 time slot maintains the existing protocol definition, and only at least one SCH resource is configured in the TN1 to TN7, and the SCH information is sent on the configured SCH resource to improve the synchronization signal. Coverage performance.
  • the CCCH channel is configured in one or more time slots of TN2, TN4, and TN6, no information is transmitted in the first two TDMA frames of the corresponding CCCH channel, so the embodiment of the present invention may preferentially be in TN2.
  • the one or more CCCH channels in which TN4 and TN6 are located are configured with the SCH information to be repeatedly transmitted.
  • - You can make full use of the time-frequency resources of the configured channel, improve resource utilization, and implement repeated transmission of SCH information in one TDMA frame, and shorten the synchronization time of user equipment.
  • the frame number information carried in each SCH information repeatedly transmitted in the TN1 to the TN7 is the same as the frame number information carried in the SCH information in the TN0, so that the user equipment can merge the received multiple SCHs. decoding.
  • the second configuration mode if the extended control channel is further defined as a common control channel, and the extended control channel is one or more time slots in slots 2, 4, and 6, the configured At least two SCH resources are slot 0 of the second TDMA frame of the synchronous transmission period, and slots 2, 4, and 6 of the first and second TDMA frames of the synchronous transmission period One or more time slots in ;
  • the second configuration mode is applicable to a case where the SCH information needs to be repeatedly transmitted 2 to 7 times, and the total number of the first common control channel plus the extended control channel in the base station needs to be greater than the number of transmissions required for the SCH information.
  • Table 3 The following is explained in Table 3 below:
  • Table 3 is a synchronous transmission period of the 0th TDMA frame to the 9th TDMA frame in the 51 multiframe structure, including 10 TDMA frames, where F is FCCH, S SCH, and TNO to TN7 are respectively 0 to 7 A total of 8 time slots, each column represents one TDMA frame, and one TDMA frame contains 8 time slots.
  • Table 3 shows the case where four CCCH channels are configured in the cell.
  • TN0 is called - - A common control channel
  • TN2, TN4, TN6 are called extended control channels, and other time slots can be configured as traffic channels.
  • seven SCH resources are configured in the first common control channel and the extended control channel.
  • the base station can transmit seven SCH information on the configured seven SCH resources.
  • the multi-frame structure of the TN0 time slot maintains the existing protocol definition, and only at least one SCH resource is configured in the TN1 to TN7, and the SCH information is sent on the configured SCH resource to improve the synchronization signal. Coverage performance.
  • the CCCH channel is configured in one or more time slots of TN2, TN4, and TN6, no information is transmitted in the first two TDMA frames of the corresponding CCCH channel, so the embodiment of the present invention may preferentially be in TN2.
  • the one or more CCCH channels in which TN4 and TN6 are located are configured to repeatedly transmit the SCH information, which can fully utilize the time-frequency resources of the configured channel, improve resource utilization, and implement repeated transmission of SCH information in one TDMA frame. , can also shorten the synchronization time of user equipment.
  • the frame number information carried in each SCH information repeatedly transmitted in the TN1 to the TN7 is the same as the frame number information carried in the SCH information in the TN0, so that the user equipment can merge the received multiple SCHs. decoding.
  • the configured at least two SCH resources further include: when the number of the at least one TDMA frame of the synchronous transmission period is 1, 3, 5, or 7 Gap.
  • the number of SCH information to be transmitted in Table 3 exceeds 7 times, it is possible to continue to configure multiple SCH information in as few slots as TNI, TN3, TN5 or TN7 in Table 3 to satisfy SCH.
  • the number of times the information needs to be sent is described below in Table 4:
  • Table 4 is a synchronous transmission period of the 0th TDMA frame to the 9th TDMA frame in the 51 multiframe structure, including 10 TDMA frames, where F is FCCH, S SCH, and TN0 to TN7 are respectively 0 to 7 A total of 8 time slots, each column represents one TDMA frame, and one TDMA frame contains 8 time slots.
  • Table 4 shows the case where four CCCH channels are configured in the cell.
  • TN0 is called the first common control channel
  • TN2, TN4, and TN6 are called extended control channels, and other time slots can be configured as traffic channels.
  • 13 SCH resources are configured in the first common control channel, the extended control channel, and the TN1.
  • the base station can transmit 13 resources on the configured 13 SCH resources.
  • SCH information In order to reserve more traffic channels for transmitting service data, all the remaining parts of the more than seven SCH resources may be configured in one channel, that is, six SCH resources are configured in TN1.
  • the number of remaining resources in the channel is determined to be a multiple of four TDMA frames, so that service data information or other control information may be in the remaining resources.
  • Block (four consecutive time slots in a channel is a block) is transmitted for granularity to avoid waste of resources.
  • the multi-frame structure of the TN0 time slot maintains the existing protocol definition, and only at least one SCH resource is configured in the TN1 to TN7, and the SCH information is sent on the configured SCH resource to improve the synchronization signal. Coverage performance.
  • the frame number information carried in each SCH information repeatedly transmitted in TN1 to TN7 is the same as the frame number information carried in the SCH information in the TN0, so that the user equipment can merge the received multiple SCHs. decoding.
  • a third configuration mode if the extended control channel is further defined as a non-common control channel, and the extended control channel is one or more time slots in slots 1 to 7, then at least two of the configurations
  • the SCH resources include: a slot 0 of the second TDMA frame of the synchronous transmission period, and any one of slots 1 to 7 of at least one TDMA frame of the synchronous transmission period;
  • the third configuration mode is applicable to the case where none of the time slots 1 to 7 are configured as CCCH channels. The following is explained in Table 5 below: - -
  • Table 5 is a synchronous transmission period of the 0th TDMA frame to the 9th TDMA frame in the 51 multiframe structure, including 10 TDMA frames, where F is FCCH, S SCH, and TNO to TN7 are respectively 0 to 7 A total of 8 time slots, each column represents one TDMA frame, and one TDMA frame contains 8 time slots.
  • Table 5 shows a case where the cell is configured with one CCCH channel, where TN0 is referred to as a first common control channel, TN1 to TN7 are referred to as an alternate extended control channel, and the extended control channel is a non-common control.
  • the channel, that is, TN1 to TN7 can be configured as a traffic channel before being selected as the extended control channel.
  • TN1 is the selected extended control channel, and seven SCH resources are configured in the first common control channel and the extended control channel. After seven SCH resources are configured, the base station can be configured in seven. On the SCH resource, seven SCH messages are transmitted. In order to reserve more traffic channels for transmitting service data, all six SCH resources may be configured in one extended control channel, that is, six SCH resources are configured in TN1, so that TN2 to TN7 slots can be used for sending. Business data. When multiple SCH resources are configured in one channel in the synchronous transmission period, the number of remaining resources in the channel is determined to be a multiple of four TDMA frames, so that service data information or other control information may be in the remaining resources. Block is sent for granularity to avoid wasting resources.
  • the multi-frame structure of the TN0 time slot maintains the existing protocol definition, and only at least one SCH resource is configured in the TN1 to TN7, and the SCH information is sent on the configured SCH resource to improve the synchronization signal. Coverage performance.
  • each SCH is repeatedly transmitted in TN1 to TN7 -
  • the frame number information carried by the information is the same as the frame number information carried by the SCH information in the TN0, so that the user equipment can perform combined decoding on the received multiple SCHs.
  • more SCH resources need to be configured in Table 5, multiple SCH resources can be configured in other traffic channels.
  • each SCH resource transmits one SCH information, where the at least two pieces of SCH information have the same frame number information, that is, The frame number information carried in each SCH information repeatedly transmitted in the time slot 1 to 7 is the same as the frame number information carried in the SCH information in the time slot 0, so that the user equipment can receive more
  • the SCHs are combined and decoded.
  • the base station may transmit at least two pieces of SCH information on the configured at least two SCH resources.
  • the base station allocates a total of seven SCH resources in the first two TDMA frames of the first common control channel and the extended control channel, and therefore, the base station can according to the table.
  • the time sequence of 3 first transmits the SCH information from the 0th TDMA frame, and then transmits the SCH information in the 1st TDMA frame.
  • the configuring the at least two SCH resources in the first common control channel and the extended control channel of the synchronous transmission period provided by the embodiment of the present invention may include: determining, according to a default configuration, the at least two SCH resources.
  • the SCH resource is configured in the first common control channel and the extended control channel, so that the SCH information is repeatedly sent in a synchronous transmission period, so that the synchronization channel coverage enhancement effect can be achieved, and in a synchronization.
  • Sending the SCH information multiple times in the transmission period can also shorten the synchronization time of the user equipment.
  • the CCCH channel is configured in the time slots 1 to 7, the SCH information to be repeatedly transmitted can be preferentially configured in the CCCH channel. This makes it possible to make full use of the time-frequency resources of the configured channels to improve resource utilization.
  • FIG. 3 is another schematic flowchart of a method for transmitting a synchronization channel SCH according to an embodiment of the present invention
  • the method may be performed by a base station.
  • the method can include:
  • step S201 and step S202 there is no fixed sequence between step S201 and step S202, and step S201 and step S202 can be performed simultaneously, that is, the base station configures at least two at the same time in the first common control channel and the extended control channel of the synchronous transmission period.
  • the synchronization transmission period is an interval of FCCH or SCH transmission in the 51 multiframe structure, where the synchronization transmission period may be the definition of the synchronization transmission period in the 51 multiframe structure diagram provided in FIG. 1 above, that is, the synchronization.
  • the transmission period includes 10 or 11 TDMA frames, and each TDMA frame includes a total of 8 slots from 0 to 7.
  • the first common control channel is a time slot 0, the extended control channel does not include a time slot 0, and the extended control channel is used to configure a FCCH resource and a SCH resource that are required to be repeatedly transmitted, and each SCH resource For one time slot of a TDMA frame, each FCCH resource is one time slot of one TDMA frame.
  • the base station may configure at least two FCCH resources and at least two S C H resources in multiple manners. Various configuration manners are described in detail below.
  • the first configuration mode if the extended control channel is further defined as a common control channel, that is, a CCCH channel, and the extended control channel is one or more time slots in slots 2, 4, and 6,
  • the configured at least two SCH resources are the 0th slot of the second TDMA frame of the synchronous transmission period, and the 2nd, 4th, and 6th slots of the second TDMA frame of the synchronous transmission period One or more time slots in the medium;
  • the configured at least two FCCH resources are the 0th time slot of the first TDMA frame of the synchronous transmission period, and the 2nd TDMA frame of the synchronous transmission period One or more time slots in time slots 4, 4 and 6;
  • the first configuration mode is applicable to a case where it is required to repeatedly transmit 2 to 4 times of SCH information and needs to repeatedly transmit 2 to 4 times of FCCH information, and the total number of the first common control channel plus the extended control channel in the base station needs to be greater than Or the number of transmissions required for the SCH information, and the total number of the first common control channel plus the extended control channel in the base station needs to be greater than or equal to the number of transmissions required for the FCCH information.
  • the number of transmissions required for the SCH information is determined by the coverage level requirement. The more the number of repeated transmissions of the FCCH information, the shorter the frequency synchronization duration of the user equipment. The following is explained in Table 6 below: - -
  • Table 6 is a synchronous transmission period of the 0th TDMA frame to the 9th TDMA frame in the 51 multiframe structure, including 10 TDMA frames, where F is FCCH, S is SCH, and TNO to TN7 are 0 to 7 respectively.
  • the number is 8 time slots, each column represents one TDMA frame, and one TDMA frame contains 8 time slots.
  • Table 6 shows the case where four CCCH channels are configured in the cell.
  • TN0 is referred to as a first common control channel
  • TN2, TN4, and TN6 are referred to as extended control channels, and other time slots can be configured as traffic channels.
  • four FCCH resources and four SCH resources are respectively configured in the first common control channel and the extended control channel.
  • the base station can be configured.
  • Four FCCH information are transmitted on four FCCH resources, and four encoded SCH information are transmitted on the configured four SCH resources.
  • the CCCH channel is configured in one or more time slots of TN2, TN4, and TN6, no information is transmitted in the first two TDMA frames of the corresponding CCCH channel, so the embodiment of the present invention may preferentially be in TN2.
  • the FCCH information and the SCH information that are repeatedly transmitted in the one or more CCCH channels in which the TN4 and the TN6 are located can fully utilize the time-frequency resources of the configured channel to improve resource utilization; and implement the SCH information in one TDMA frame.
  • Repeated transmission can also shorten the time synchronization time of the user equipment; and realize repeated transmission of FCCH information in one TDMA frame, and can also shorten the frequency synchronization duration of the user equipment.
  • the frame number information carried by the SCH information is the same as the frame number information carried by the encoded SCH information in TN0, so that the user equipment can perform combined decoding on the received multiple encoded SCH information.
  • the number of transmissions required for the FCCH information exceeds 4 times, more FCCH resources can be configured in the traffic channel in the 0th TDMA frame; if the number of transmissions required for the SCH information exceeds 4 times, More SCH resources can be configured to be configured in the traffic channel in the No. 1 TDMA frame.
  • More SCH resources can be configured in the remaining resources in the No. 0 TDMA frame that are not used to configure the FCCH resource.
  • more SCH resources may be configured in the remaining resources in the No. 0 TDMA frame and the No. 1 TDMA frame to satisfy the SCH. The number of times information needs to be sent.
  • the configured at least two SCH resources further include: a time slot of the first, third, fifth, or seventh time of the at least one TDMA frame of the synchronous transmission period;
  • the at least two FCCH resources further include: time slots No. 1, No. 3, No. 5 or No. 7 of the at least one TDMA frame of the synchronous transmission period.
  • the number of FCCH information in Table 6 needs to be transmitted more than 4 times, and the number of times the SCH information needs to be transmitted exceeds 4 times, it can continue to be as small as possible in TNI, TN3, TN5 or TN7 as shown in Table 6.
  • a plurality of FCCH information and a plurality of SCH information are arranged in a time slot to satisfy the number of times the FCCH information and the SCH information are required to be transmitted.
  • Table 7 describes:
  • Table 7 is a synchronous transmission week of the 0th TDMA frame to the 9th TDMA frame in the 51 multiframe structure.
  • - - period including 10 TDMA frames, where F is FCCH, S SCH, and TN0 to TN7 refer to 8 time slots 0 to 7 respectively, each column represents one TDMA frame, and one TDMA frame contains 8 time slots.
  • Table 7 shows the case where four CCCH channels are configured in the cell.
  • TN0 is referred to as a first common control channel
  • TN2, TN4, and TN6 are referred to as extended control channels, and other time slots can be configured as traffic channels.
  • five FCCH resources and nine SCH resources are configured in the first common control channel, the extended control channel, and the TN1.
  • the base station can be configured. On the five FCCH resources and nine SCH resources, five FCCH information and nine SCH information are transmitted.
  • the remaining part of the more than four FCCH resources and the remaining part of the more than four SCH resources may be all configured in one channel, that is, one FCCH resource is configured in the TN1, in order to reserve more traffic channels for transmitting service data. And 5 SCH resources.
  • the number of remaining resources in the channel is determined to be a multiple of four TDMA frames, so that service data information or other control information can be Send at the granularity of the remaining resources to avoid waste of resources.
  • the frame number information carried in each SCH information repeatedly transmitted in the TN1 to the TN7 is the same as the frame number information carried in the SCH information in the TN0, so that the user equipment can merge the received multiple SCHs. decoding.
  • the FCCH resources and the multiple SCH resources may be configured to be configured in other traffic channels.
  • the SCH resources include: a slot 0 of the second TDMA frame of the synchronous transmission period, and any one of slots 1 to 7 of at least one TDMA frame of the synchronous transmission period;
  • the configured at least two FCCH resources include: a slot 0 of the first TDMA frame of the synchronous transmission period, and any one of slots 1 to 7 of at least one TDMA frame of the synchronous transmission period Gap
  • the second configuration mode is applicable to the case where none of the time slots 1 to 7 are configured as CCCH channels, and the following is described in Table 8 below: - -
  • Table 8 is a synchronous transmission period of the 0th TDMA frame to the 9th TDMA frame in the 51 multiframe structure, including 10 TDMA frames, where F is FCCH, S SCH, TNO to TN7 respectively refer to No. 0 to No. 7 A total of 8 time slots, each column represents one TDMA frame, and one TDMA frame contains 8 time slots.
  • Table 8 shows a case where the cell is configured with one CCCH channel, where TN0 is referred to as a first common control channel, TN1 to TN7 are referred to as an alternate extended control channel, and the extended control channel is a non-common control.
  • the channel, that is, TN1 to TN7 can be configured as a traffic channel before being selected as the extended control channel.
  • TN1 is the selected extended control channel, and three FCCH resources and five SCH resources are configured in the first common control channel and the extended control channel. After three FCCH resources and five SCH resources are configured, The base station may transmit three FCCH information and five SCH information on the configured three FCCH resources and five SCH resources. In order to reserve more traffic channels for transmitting service data, all of the two FCCH resources and the four SCH resources may be configured in one extended control channel, that is, two FCCH resources and four SCH resources are configured in TN1.
  • the TN2 to TN7 time slots can be used to transmit service data.
  • the number of remaining resources in the channel is determined to be a multiple of four TDMA frames, so that service data information or other control information can be In the remaining - -
  • the resource is sent at the granularity of the block to avoid wasting resources.
  • the frame number information carried in each SCH information repeatedly transmitted in the TN1 to TN7 is the same as the frame number information carried in the SCH information in the TN0, so that the user equipment can merge the received multiple SCHs. decoding.
  • more FCCH resources and SCH resources need to be configured in Table 8, multiple FCCH resources and multiple SCH resources can be configured in other traffic channels.
  • S203 Transmit at least two FCCH information on the configured at least two FCCH resources.
  • S204 Encode the SCH information according to the slot number of the SCH resource, and transmit the encoded SCH information.
  • the base station When transmitting the at least two FCCH information and the encoded SCH information, the base station only needs to according to the slot position and the location of the FCCH resource and the SCH resource.
  • the TDMA frame position where it is located can be transmitted.
  • the base station may first send the FCCH information from the No. 0 TDMA frame according to the time sequence of Table 6, and then send the code in the No. 1 TDMA frame. SCH information.
  • the base station needs to encode the SCH information according to the slot number of the SCH resource before transmitting the encoded SCH information. Since the FCCH resource introduces other time slots in addition to TN0, the user equipment cannot distinguish which time slot is the TN0 time slot from the received signal, so it is necessary to add a time slot interference in the original transmission signal flow of the SCH.
  • the process of the code that is, encoding the SCH information, to obtain the encoded SCH information, so that the user equipment can know at which time slot the reception and demodulation of the encoded SCH information is started.
  • the configuring the at least two SCH resources in the first common control channel and the extended control channel of the synchronous transmission period provided by the embodiment of the present invention may include: determining, according to a default configuration, the at least two SCH resources.
  • the frequency synchronization time required by the edge user can be shortened; and the first common control channel and the extended control channel are also configured in the first common control channel and the extended control channel.
  • the SCH resources can effectively enhance the synchronization channel coverage. Meanwhile, if the CCCH channel is configured in the time slots 1 to 7, the channel can be preferentially located in the CCCH channel. - - Configure the FCCH information and SCH information that need to be sent repeatedly, so that the time-frequency resources of the configured channel can be fully utilized to improve resource utilization.
  • FIG. 4 is a schematic flowchart of a method for encoding SCH information according to an embodiment of the present invention.
  • the embodiment of the present invention may correspond to S204 in the foregoing embodiment of FIG. 3, where the method may include:
  • S302 Perform an exclusive OR operation on the mask of the slot number and the cyclic redundancy check code of the SCH information.
  • the base station may first determine a mask of the slot number, that is, each slot number corresponds to a mask.
  • the masks of different slot numbers are different from each other. Therefore, there may be 8 sets of masks different from each other.
  • the SCH information is encoded, that is, the SCH information is scrambled, and the specific scrambling process may be: the SCH input is 25-bit information, and the 25-bit information generates a cyclic redundancy check code of the 10-bit SCH information, such as After the modulo 2 addition operation, the scrambled cyclic redundancy check code can be generated.
  • the X-coded SCH information of the slot number is obtained by performing an exclusive-OR operation on the cyclic redundancy check code of the SCH information to be sent in different time slots by using a mask of eight sets of different slot numbers. For example, 8 different sets of masks as shown in Table 9 below:
  • the mask with slot number 0 and the cyclic redundancy check code of SCH information in slot 0 are entered.
  • - - XOR operation the encoded SCH information in slot 0 is obtained; similarly, the mask with slot number 1 is XORed with the cyclic redundancy check code of SCH information in slot 1.
  • the encoded SCH information in slot 1 can be obtained, and so on, the encoded SCH information in each slot can be obtained.
  • the embodiment of the present invention can obtain the encoded SCH information by performing an exclusive-OR operation on the cyclic redundancy check code of the SCH information and the mask of the corresponding slot number.
  • the user equipment By transmitting the encoded SCH information, the user equipment can be known at which time.
  • the slot begins to receive and demodulate the encoded SCH information.
  • FIG. 5 is a schematic flowchart of a method for receiving a synchronization channel SCH according to an embodiment of the present invention.
  • the method may be performed by a user equipment, and the method may include:
  • the synchronous transmission period includes 10 or 11 TDMA frames, and each TDMA frame includes a total of 8 time slots from 0 to 7.
  • the specific definition of the synchronous transmission period can be referred to the corresponding 51 in FIG. Synchronous transmission period in the frame structure diagram.
  • the user equipment first performs frequency synchronization by receiving the FCCH information. At this time, the user equipment receives the FCCH information once every synchronization transmission period. After the frequency correction is completed by the received FCCH information, at least two pieces of SCH information may be received in a synchronization transmission period of the base station and the received at least two pieces of SCH information may be demodulated, since the user equipment may be in an synchronous transmission period. The multiple SCH information is demodulated internally, so that the effect of enhancing the synchronization channel coverage of the user equipment can be achieved. The received at least two pieces of SCH information are sent by the base station in a first common control channel and an extended control channel of the synchronous transmission period, where the first common control channel is number 0.
  • the time slot, the extended control channel does not include the time slot 0.
  • the base station needs to configure at least two SCH resources in the corresponding time slot and the corresponding TDMA frame before transmitting the at least two pieces of the SCH information.
  • the manner in which the base station can configure the SCH resources may be multiple. For the specific configuration process, refer to the corresponding embodiment in FIG. 2 above. The description of S101 is not repeated here.
  • the embodiment of the present invention can implement synchronization channel coverage for user equipment by receiving at least two pieces of SCH information and demodulating the received at least two pieces of SCH information in a synchronization transmission period of the base station. - - Enhanced effect.
  • FIG. 6 is a schematic flowchart of another method for receiving a synchronization channel SCH according to an embodiment of the present invention.
  • the method may be performed by a user equipment, where the method may include:
  • S501 Receive at least two pieces of FCCH information in a synchronous transmission period of the base station, and perform frequency correction by using the at least two pieces of FCCH information.
  • the user equipment may receive at least two pieces of FCCH information in a synchronous transmission period of the base station, and perform frequency correction by using the at least two pieces of FCCH information. Since the user equipment can receive multiple FCCH information in a synchronous transmission period, the duration of frequency synchronization of the edge user equipment can be effectively shortened.
  • the synchronous transmission period includes 10 or 11 TDMA frames, and each TDMA frame includes a total of 8 time slots from 0 to 7.
  • the specific definition of the synchronous transmission period can be referred to the 51 multiframe corresponding to FIG. 1 above. Synchronous transmission cycle in the structure diagram.
  • the user equipment may receive at least two encoded SCH information and decode the received at least two encoded SCH information in a synchronization transmission period of the base station.
  • the at least two coded SCH information is obtained by the base station encoding the SCH information according to the slot number of the configured SCH resource. Since the user equipment receives multiple FCCH information in a synchronous transmission period, the user equipment cannot distinguish which time slot is the TN0 time slot from the received signal. At this time, the received at least The two encoded SCH information can enable the user equipment to know when to start demodulating the decoded at least two encoded SCH information.
  • the received received at least two FCCH information and the at least two encoded SCH information are sent by the base station in a first common control channel and an extended control channel of the synchronous transmission period, where the first The common control channel is slot 0, and the extended control channel does not include slot 0.
  • the base station needs to configure at least two FCCH resources and at least two SCH resources in the corresponding time slot and the corresponding TDMA frame before transmitting the at least two FCCH information and the at least two coded SCH information, and the base station configures the FCCH resource and the SCH resource.
  • the base station encodes the SCH information, that is, the base station scrambles the SCH information by using the mask corresponding to the slot number.
  • the user equipment decodes the received at least two encoded SCH information, that is, the user equipment descrambles the received at least two encoded SCH information to obtain SCH information.
  • the user equipment performs descrambling on the scrambled SCH information to obtain at least two encoded SCH informations.
  • the decoded at least two encoded SCH informations are demodulated. Achieve synchronization channel coverage enhancement for user equipment.
  • the embodiment of the present invention can effectively shorten the duration of the frequency synchronization of the edge user equipment by receiving at least two FCCH information in the synchronous transmission period of the base station. Meanwhile, when the frequency correction is completed by the received FCCH information, the base station can be Receiving at least two encoded SCH information in a synchronous transmission period and decoding the received at least two encoded SCH information to demodulate the decoded at least two encoded SCH information, which can implement the user equipment Synchronous channel coverage enhancement.
  • the embodiment of the present invention further provides a method for decoding the SCH information, where the method may correspond to S503 in the foregoing embodiment of FIG. 6, the method may include:
  • the FCCH information used to complete the frequency correction is a specific time slot
  • the CRC Cyclic
  • the cyclic redundancy check code is 0, if it is 0, the SCH original information is extracted by decoding; if it is not 0, the FCCH is assumed to be the next specific time slot, and the above process is repeated, only to the judgment.
  • the CRC is 0, and the original SCH information is extracted.
  • Table 6 is taken as an example. Description of the receiving side: Since the FCCH of the transmitting end occupies multiple time slots, the receiving side cannot determine the time slot position by the location of the received FCCH information. Since the receiving side needs to use multiple FCCH information to complete the frequency correction, the number of FCCHs used and the size of the initial frequency deviation between the receiving side and the base station side are not fixed. Therefore, which FCCH in Table 6 is used is not determined when the frequency correction is completed. The FCCH that actually completes the frequency correction in Table 6 is TN4. - -
  • the FCCH is taken as an example.
  • the processing on the receiving side In order to obtain the slot information, the receiving side may first assume that the slot in which the FCCH is frequency-corrected is slot 0, then it is separated by 8 slots, 10 slots, and 12 slots. The position of the slot and 14 slots is 4 SCH information, and the corresponding slots are TN0, TN2, TN4, TN6. The receiving end decodes the four SCH information by using the masks corresponding to slots 0, 2, 4, and 6 in Table 6, because the slot where the FCCH is not located is the slot 0 and the actual completion frequency is corrected.
  • the slot in which the FCCH is located does not match the slot 4, so the CRC will not be 0 when the SCH information is decoded, and the receiving side considers the hypothesis error; the next step assumes that the slot in which the frequency correction is completed is the slot 2, then The positions separated by 6 slots, 8 slots, 10 slots, and 12 slots are 4 pieces of SCH information, and the corresponding slots are TN0, TN2, TN4, TN6, respectively.
  • the receiving end decodes the four SCH information by using the masks corresponding to slots 0, 2, 4, and 6 in Table 6, because the assumed slot of the FCCH is the slot 2 and the actual completion frequency is corrected.
  • the time slot in which the FCCH is located does not match the time slot 4, so the CRC will not be 0 when the SCH information is decoded, and the receiving side considers the hypothesis error; further assume that the time slot in which the FCCH is completed is the time slot No. 4, at this time, through Table 6.
  • the mask corresponding to time slots 0, 2, 4, and 6 decodes 4 pieces of SCH information separated by 4, 6, 8, and 10 time slots, since the time slot of the FCCH where H is not is 4
  • the time slot is matched with the time slot of the FCCH where the actual frequency correction is performed.
  • the time slot of the FCCH is the number 4 time slot. Therefore, when the CRC is 0 when the SCH information is decoded, the receiving end explicitly knows the time slot information corresponding to the SCH information, and can decode the correct SCH original. information.
  • FIG. 7 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station may include: a first processing unit 11 and a first sending unit 12;
  • the first processing unit 11 is configured to configure at least two synchronization channel SCH resources in the first common control channel and the extended control channel of the synchronization transmission period;
  • the synchronous transmission period is an interval for transmitting the FCCH or the SCH in the 51 multiframe structure, for example, the synchronous transmission period in the 51 multiframe structure diagram provided in FIG. 1 above, that is, the synchronous transmission period includes 10 or 11 TDMA frames, each TDMA frame contains a total of 8 time slots from 0 to 7.
  • the first common control channel is a time slot 0, the extended control channel does not include a time slot 0, and each SCH resource is a time slot of one TDMA frame.
  • the first processing unit 11 may configure at least two SCH resources in the first common control channel and the extended control channel of the synchronization transmission period, where the SCH resources may be configured in multiple manners, and the following will be performed on the SCH. The configuration of the resources is described in detail.
  • the first configuration mode if the extended control channel is further defined as a common control channel, that is, a CCCH channel, and the extended control channel is one or more time slots in slots 2, 4, and 6,
  • the at least two SCH resources of the configuration in the first processing unit 11 are the 0th slot of the second TDMA frame of the synchronous transmission period, and the 2nd TDMA frame of the synchronous transmission period.
  • the first configuration mode is applicable to a case where the SCH information needs to be repeatedly transmitted 2 to 4 times, and the total number of the first common control channel plus the extended control channel in the base station needs to be greater than or equal to the number of transmissions required for the SCH information.
  • the number of transmissions required for the SCH information is determined by the coverage level requirement.
  • the second configuration mode if the extended control channel is further defined as a common control channel, and the extended control channel is one or more time slots in slots 2, 4, and 6, the first
  • the at least two SCH resources of the configuration in the processing unit 11 are the 0th slot of the second TDMA frame of the synchronous transmission period, and the 2nd of the synchronous transmission period and the 2nd of the second TDMA frame One or more time slots in time slots 4, 4 and 6;
  • the second configuration mode is applicable to a case where the SCH information needs to be repeatedly transmitted 2 to 7 times, and the total number of the first common control channel plus the extended control channel in the base station needs to be greater than the number of transmissions required for the SCH information.
  • the specific implementation process of the second configuration mode refer to the description of Table 3 in S101 in the corresponding embodiment of FIG. 2, and no further description is made here.
  • the at least two SCH resources of the configuration in the first processing unit 11 further include: Time slot 3, 5 or 7.
  • the purpose of this configuration is that after the SCH resources are configured in the CCCH channel, the multiple SCH resources can be allocated in one traffic channel as much as possible to reserve more traffic channels for transmitting service data.
  • a third configuration mode if the extended control channel is further defined as a non-common control channel, and the extended control channel is one or more time slots in slots 1 to 7, the first processing unit
  • the at least two SCH resources of the configuration in the method include: a slot 0 of the second TDMA frame of the synchronous transmission period, and slots 1 to 7 of at least one TDMA frame of the synchronous transmission period Any one of the slots;
  • the third configuration mode is applicable to the case that none of the time slots 1 to 7 is configured as a CCCH channel.
  • the specific implementation process of the third configuration mode refer to the foregoing S101 in the corresponding embodiment of FIG. 2 .
  • the description of Table 5 is not mentioned here.
  • the multiframe structure of the TN0 slot always maintains the existing protocol definition.
  • the CCCH channel is configured in one or more time slots of TN2, TN4, and TN6, no information is transmitted in the first two TDMA frames of the corresponding CCCH channel, so the embodiment of the present invention may preferentially be in TN2.
  • the one or more CCCH channels in which TN4 and TN6 are located are configured to repeatedly transmit the SCH information, which can fully utilize the time-frequency resources of the configured channel, improve resource utilization, and implement repeated transmission of SCH information in one TDMA frame. , can also shorten the synchronization time of user equipment.
  • the frame number information carried in each SCH information repeatedly transmitted in the TN1 to the TN7 is the same as the frame number information carried in the SCH information in the TN0, so that the user equipment can merge the received multiple SCHs. decoding.
  • the first sending unit 12 is configured to transmit at least two pieces of SCH information on the configured at least two SCH resources, where each SCH resource transmits one SCH information, and the at least two pieces of SCH information have the same Frame number information;
  • the first processing unit 11 may be configured by the first sending unit 12 in the configured at least two SCHs after the SCH information is configured. - - On the resource, transmit at least two SCH information. For example, taking Table 3 in step S101 in the corresponding embodiment of FIG. 2 as an example, according to Table 3, the first processing unit 11 is in the first two TDMA frames of the first common control channel and the extended control channel. The seven SCH resources are configured. Therefore, the first transmitting unit 12 may first transmit the SCH information from the No. 0 TDMA frame according to the time sequence of Table 3, and then transmit the SCH information in the No. 1 TDMA frame.
  • the first processing unit 11 provided by the embodiment of the present invention may be specifically configured to determine the at least two SCH resources according to a default configuration.
  • the SCH resource is configured in the first common control channel and the extended control channel, so that the SCH information is repeatedly sent in a synchronous transmission period, so that the synchronization channel coverage enhancement effect can be achieved, and in a synchronization.
  • Sending the SCH information multiple times in the transmission period can also shorten the synchronization time of the user equipment.
  • the CCCH channel is configured in the time slots 1 to 7, the SCH information to be repeatedly transmitted can be preferentially configured in the CCCH channel. This makes it possible to make full use of the time-frequency resources of the configured channels to improve resource utilization.
  • FIG. 8 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • the base station may include: a first processing unit 11, a second processing unit 13, a second sending unit 14, and a first sending unit 12.
  • the first sending unit 12 may include: an encoding subunit 121 and a sending subunit 122.
  • the first processing unit 11 is configured to configure at least two synchronization channel SCH resources in the first common control channel and the extended control channel of the synchronization transmission period;
  • the second processing unit 13 is configured to configure at least two frequency correction channel FCCH resources in the first common control channel and the extended control channel of the synchronous transmission period;
  • the first processing unit 11 and the second processing unit 13 can simultaneously perform relative operations, that is, the first processing unit 11 configures at least the first common control channel and the extended control channel of the synchronous transmission period.
  • the second processing unit 13 also configures at least two FCCH resources in the first common control channel and the extended control channel of the synchronous transmission period.
  • the synchronization transmission period is an interval of FCCH or SCH transmission in the 51 multiframe structure, where the synchronization transmission period may be the synchronization transmission period in the 51 multiframe structure diagram provided in FIG. 1 above.
  • the definition of - is that the synchronous transmission period includes 10 or 11 TDMA frames, and each TDMA frame includes a total of 8 slots from 0 to 7.
  • the first common control channel is a time slot 0, the extended control channel does not include a time slot 0, and the extended control channel is used to configure a FCCH resource and a SCH resource that are required to be repeatedly transmitted, and each SCH resource For one time slot of a TDMA frame, each FCCH resource is one time slot of one TDMA frame.
  • the first processing unit 11 and the second processing unit 13 may configure at least two FCCH resources and at least two SCH resources in multiple manners. Various configuration manners are described in detail below.
  • the first configuration mode if the extended control channel is further defined as a common control channel, that is, a CCCH channel, and the extended control channel is one or more time slots in slots 2, 4, and 6,
  • the at least two SCH resources of the configuration in the first processing unit 11 are the 0th slot of the second TDMA frame of the synchronous transmission period, and the 2nd TDMA frame of the synchronous transmission period.
  • One or more time slots in time slots 4, 4 and 6; the configured at least two FCCH resources in the second processing unit 13 are 0 of the first TDMA frame of the synchronous transmission cycle a time slot, and one or more time slots in slots 2, 4, and 6 of the first TDMA frame of the synchronous transmission period;
  • the first configuration mode is applicable to a case where it is required to repeatedly transmit 2 to 4 times of SCH information and needs to repeatedly transmit 2 to 4 times of FCCH information, and the total number of the first common control channel plus the extended control channel in the base station needs to be greater than Or the number of transmissions required for the SCH information, and the total number of the first common control channel plus the extended control channel in the base station needs to be greater than or equal to the number of transmissions required for the FCCH information.
  • the number of transmissions required by the SCH information is determined by the coverage level requirement. The more the number of repeated transmissions of the FCCH information, the shorter the frequency synchronization duration of the user equipment.
  • the configured at least two SCH resources further include: a time slot of the first, third, fifth, or seventh time of the at least one TDMA frame of the synchronous transmission period;
  • the at least two FCCH resources further include: time slots No. 1, No. 3, No. 5 or No. 7 of the at least one TDMA frame of the synchronous transmission period.
  • Figure 3 corresponds to the FCCH letter in Table 6 in the embodiment. - If the number of times the information needs to be sent exceeds 4 times, and the number of times the SCH information needs to be sent exceeds 4 times, it can continue to be configured in as few slots as possible in TNI, TN3, TN5 or TN7 as shown in Table 6.
  • FCCH information and multiple SCH information to satisfy the number of times the FCCH information and SCH information need to be sent.
  • Table 7 in S201 and S202 in the corresponding embodiment of FIG. 3 and no further description is made here.
  • the extended control channel is further defined as a non-common control channel, and the extended control channel is one or more time slots in slots 1 to 7, the first processing unit
  • the at least two SCH resources of the configuration in the method include: a slot 0 of the second TDMA frame of the synchronous transmission period, and slots 1 to 7 of at least one TDMA frame of the synchronous transmission period
  • the at least two FCCH resources of the configuration in the second processing unit 13 include: a time slot 0 of the first TDMA frame of the synchronous transmission period, and the synchronous transmission period Any one of slots 1 to 7 of at least one TDMA frame; specifically, the second configuration mode is applicable to the case where none of the slots 1 to 7 are configured as CCCH channels, and second For the specific implementation of the configuration, refer to the description of Table 8 in S201 and S202 in the corresponding embodiment of FIG. 3, and no further description is made here.
  • the multiframe structure of the TN0 slot always maintains the existing protocol definition.
  • the CCCH channel is configured in one or more time slots of TN2, TN4, and TN6, no information is transmitted in the first two TDMA frames of the corresponding CCCH channel, so the embodiment of the present invention may preferentially be in TN2.
  • the FCCH information and the SCH information that are repeatedly transmitted in the one or more CCCH channels in which the TN4 and the TN6 are located can fully utilize the time-frequency resources of the configured channel, thereby improving resource utilization.
  • the frame number information carried in each SCH information repeatedly transmitted in the TN1 to TN7 is the same as the frame number information carried in the SCH information in the TN0, so that the user equipment can merge the received multiple SCHs. decoding.
  • the second sending unit 14 is configured to transmit at least two pieces of FCCH information on the configured at least two FCCH resources;
  • the first sending unit 12 includes:
  • the encoding subunit 121 is configured to edit the SCH information according to the slot number of the SCH resource. - - code;
  • the sending subunit 122 is configured to transmit encoded SCH information, where the encoded SCH information includes slot number information of a SCH resource;
  • the second sending unit 14 and the sending subunit 122 are transmitting at least two FCCH information and encodings.
  • the SCH information it is only necessary to transmit according to the configured slot location of the FCCH resource and the SCH resource and the location of the TDMA frame in which it is located.
  • the sending sub-unit 122 Before transmitting the encoded SCH information, the sending sub-unit 122 needs to first encode the SCH information according to the slot number of the SCH resource. Since the FCCH resource introduces other time slots in addition to TN0, the user equipment cannot distinguish which time slot is the TN0 time slot from the received signal. Therefore, it is necessary to add a time slot interference in the original transmission signal flow of the SCH.
  • the process of the code that is, encoding the SCH information, to obtain the encoded SCH information, so that the user equipment can know at which time slot the reception and demodulation of the encoded SCH information is started.
  • the encoding sub-unit 121 is specifically configured to determine a mask of a slot number, and perform an exclusive-OR operation on the mask of the slot number and the cyclic redundancy check code of the SCH information;
  • the coding sub-unit 121 may first determine the mask of the slot number, that is, each slot number corresponds to a mask, and the masks of different slot numbers are different from each other. Therefore, 8 groups may be different from each other. Mask.
  • the coding sub-unit 121 encodes the SCH information, that is, scrambles the SCH information, and the specific scrambling process may be: the SCH input is 25-bit information, and the 25-bit information is used to generate 10-bit SCH information.
  • the check code is further processed by the coding sub-unit 121 to generate the scrambled cyclic redundancy check code. At this time, the tail bit is added and 1/2 convolutional coding is performed.
  • the encoded 78-bit information is output, that is, the encoded SCH information is obtained.
  • the coding sub-unit 121 performs an exclusive-OR operation on the cyclic redundancy check code of the SCH information to be sent in different time slots by using a mask of 8 sets of different slot numbers, and the slot number is 3 ⁇ 4. Coded SCH information.
  • the first processing unit 11 provided by the embodiment of the present invention may be specifically configured to determine the at least two SCH resources according to a default configuration.
  • Embodiments of the present invention configure multiple by using the first common control channel and the extended control channel
  • the FCCH resource can shorten the time of frequency synchronization required by the edge user.
  • multiple SCH resources are also configured in the first common control channel and the extended control channel, which can effectively enhance the synchronization channel coverage. Meanwhile, if the number is from 1 to 7. If the CCCH channel is configured in the slot, the FCCH information and the SCH information to be repeatedly transmitted may be preferentially configured in the CCCH channel, so that the time-frequency resources of the configured channel can be fully utilized to improve resource utilization.
  • FIG. 9 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure, where the user equipment may include: a first receiving unit 21, a demodulating unit 22;
  • the first receiving unit 21 is configured to: when the frequency correction is performed by using the received FCCH information, receive at least two pieces of SCH information in a synchronous transmission period of the base station;
  • the demodulation unit 22 is configured to demodulate the received at least two pieces of SCH information.
  • the synchronous transmission period includes 10 or 11 TDMA frames, and each TDMA frame includes 0 to 7
  • the specific definition of the synchronous transmission period can be referred to the synchronous transmission period in the 51 multiframe structure diagram corresponding to Table 1 above.
  • the user equipment first performs frequency synchronization by receiving FCCH information, where the user equipment receives the FCCH information every other synchronous transmission period.
  • the first receiving unit 21 may receive at least two SCH information in a synchronization transmission period of the base station and demodulate the received at least the demodulation unit 22 by the demodulation unit 22 Two SCH information, since the user equipment can demodulate multiple SCH information in one synchronous transmission period, the effect of enhancing the synchronization channel coverage of the user equipment can be achieved.
  • the received at least two pieces of SCH information are sent by the base station in a first common control channel and an extended control channel of the synchronous transmission period, where the first common control channel is number 0.
  • the time slot, the extended control channel does not include the time slot 0.
  • the base station needs to configure at least two SCH resources in the corresponding time slot and the corresponding TDMA frame before transmitting the at least two pieces of the SCH information.
  • the manner in which the base station can configure the SCH resources may be multiple. For the specific configuration process, refer to the corresponding embodiment in FIG. 2 above. The description of S101 is not repeated here.
  • the embodiment of the present invention can implement synchronization channel coverage for user equipment by receiving at least two pieces of SCH information and demodulating the received at least two pieces of SCH information in a synchronization transmission period of the base station. - - Enhanced effect.
  • FIG. 10 is a schematic structural diagram of another user equipment according to an embodiment of the present invention.
  • the user equipment may include: a first receiving unit 21, a second receiving unit 23, and a demodulating unit 22, where
  • the first receiving unit 21 includes: a receiving subunit 211, a decoding subunit 212;
  • the second receiving unit 23 is configured to receive at least two during a synchronous transmission period of the base station.
  • FCCH information and performing frequency correction by using the at least two FCCH information
  • the second receiving unit 23 may receive at least two pieces of FCCH information in a synchronous transmission period of the base station, and perform frequency correction by using the at least two pieces of FCCH information. Since the user equipment can receive multiple FCCH information in one synchronization transmission period, the length of frequency synchronization of the edge user equipment can be effectively shortened.
  • the synchronous transmission period includes 10 or 11 TDMA frames, and each TDMA frame includes a total of 8 time slots from 0 to 7.
  • the specific definition of the synchronous transmission period can be referred to the 51 multiframe corresponding to FIG. 1 above. Synchronous transmission cycle in the structure diagram.
  • the first receiving unit 21 includes:
  • the receiving subunit 211 is configured to: when the frequency correction is performed by using the received FCCH information, receive at least two encoded SCH information in a synchronous transmission period of the base station;
  • the decoding subunit 212 is configured to decode the received at least two encoded SCH information
  • the receiving subunit 211 may receive at least two encoded SCH information in a synchronization transmission period of the base station and decode the received by the decoding subunit 212.
  • the at least two encoded SCH information are sent by the base station in a first common control channel and an extended control channel of the synchronous transmission period, where the first The common control channel is slot 0, and the extended control channel does not include slot 0.
  • the base station Before the base station sends the at least two pieces of FCCH information and the at least two pieces of coded SCH information, it is required to configure at least two FCCH resources and at least two SCH resources in the corresponding time slot and the corresponding TDMA frame, and the manner in which the base station configures the FCCH resource and the SCH resource
  • the at least two - The encoded SCH information is obtained by the base station encoding the SCH information according to the slot number of the configured SCH resource.
  • the decoding subunit 212 decodes the The received at least two encoded SCH information may enable the user equipment to know when to start demodulating the decoded at least two encoded SCH information.
  • the base station encodes the SCH information, that is, the base station scrambles the SCH information by using the mask corresponding to the slot number. For the specific process of the base station scrambling the SCH information, refer to the description in the corresponding embodiment in FIG. 4 above. Say it again.
  • the decoding sub-unit 212 decodes the received at least two encoded SCH information, that is, the decoding sub-unit 212 descrambles the received at least two encoded SCH information to obtain SCH information.
  • the demodulation unit 22 is specifically configured to demodulate the decoded at least two encoded SCH information
  • the decoding sub-unit 212 descrambles the scrambled SCH information, and obtains at least two encoded SCH informations.
  • the demodulation unit 22 performs at least two decodings.
  • the coded SCH information is demodulated to achieve synchronization channel coverage enhancement for the user equipment.
  • the embodiment of the present invention can effectively shorten the duration of the frequency synchronization of the edge user equipment by receiving at least two FCCH information in the synchronous transmission period of the base station. Meanwhile, when the frequency correction is completed by the received FCCH information, the base station can be Receiving at least two encoded SCH information in a synchronous transmission period and decoding the received at least two encoded SCH information to demodulate the decoded at least two encoded SCH information, which can implement the user equipment Synchronous channel coverage enhancement.
  • the embodiment of the present invention further provides a computer storage medium, wherein the computer storage medium may store a program, where the program is executed, including the method for transmitting a synchronization channel SCH described in the method embodiments of FIG. 2 to FIG. Some or all of the steps.
  • the embodiment of the present invention further provides another computer storage medium, wherein the computer storage medium may store a program, where the program includes the method for transmitting the synchronization channel SCH described in the method embodiments of FIG. 5 and FIG. 6 described above. Part or all of the steps.
  • FIG. 11 is a schematic structural diagram of still another base station according to an embodiment of the present invention, where
  • the base station may include a processor 1001, a communication interface 1002, and a memory 1003 (the number of processors 1001 in the base station may be one or more, and one processor 1001 in FIG. 11 is taken as an example).
  • the processor 1001, the communication interface 1002, and the memory 1003 may be connected by a communication bus or other means, wherein FIG. 11 is exemplified by a communication bus connection.
  • the communication interface 1002 is configured to communicate with a user equipment.
  • the memory 1003 is configured to store a program
  • the processor 1001 is configured to execute the program to implement
  • the synchronous transmission period includes 10 or 11 time division multiple access TDMA frames, and each TDMA frame includes No. 0 Up to 8 time slots to 7th, the first common control channel is time slot 0, the extended control channel does not include time slot 0, and each SCH resource is one time slot of one TDMA frame;
  • the extended control channel is a common control channel, and the extended control channel is one or more time slots in slots 2, 4, and 6;
  • the configured at least two SCH resources are the 0th slot of the second TDMA frame of the synchronous transmission period, and the 2nd, 4th, and 6th slots of the second TDMA frame of the synchronous transmission period One or more time slots in .
  • the extended control channel is a common control channel, and the extended control channel is one or more time slots in slots 2, 4, and 6;
  • the configured at least two SCH resources are the 0th time slot of the second TDMA frame of the synchronous transmission period, and the 2nd and 4th numbers of the first and second TDMA frames of the synchronous transmission period One or more time slots in slot 6.
  • the at least two SCH resources of the configuration further include: time slots No. 1, No. 3, No. 5 or No. 7 of the at least one TDMA frame of the synchronous transmission period. - - or,
  • the extended control channel is a non-common control channel, and the extended control channel is one or more time slots in slots 1 to 7;
  • the configured at least two SCH resources include: a slot 0 of the second TDMA frame of the synchronous transmission period, and any one of slots 1 to 7 of at least one TDMA frame of the synchronous transmission period One time slot.
  • the processor 1001 is further configured to:
  • FCCH resources configuring, in the first common control channel and the extended control channel of the synchronous transmission period, at least two frequency correction channel FCCH resources, where the FCCH resource is one time slot of one TDMA frame; and at least two of the configurations Transmitting at least two FCCH information on the FCCH resources;
  • the SCH information is encoded according to the slot number of the SCH resource, and the encoded SCH information is transmitted, and the encoded SCH information includes slot number information of the SCH resource.
  • the processor 1001 is specifically configured to:
  • the mask of the slot number is XORed with the cyclic redundancy check code of the SCH information.
  • the processor 1001 is specifically configured to:
  • the at least two SCH resources are determined.
  • the SCH resource can effectively enhance the synchronization channel coverage. If multiple FCCH resources are also configured in the first common control channel and the extended control channel, the frequency synchronization time required by the edge user can also be shortened. If the CCCH channel is configured in the slot 7, the SCH information that needs to be repeatedly transmitted can be preferentially configured in the CCCH channel, so that the time-frequency resources of the configured channel can be fully utilized to improve resource utilization.
  • FIG. 12 is a schematic structural diagram of still another user equipment according to an embodiment of the present invention.
  • the user equipment may include a processor 2001, a communication interface 2002, and a memory 2003.
  • the number of processors 2001 in the user equipment may be One or more, one processor 2001 is taken as an example in FIG. 12;
  • the processor 2001, the communication interface 2002, and the memory 2003 may be connected by a communication bus or other means, wherein FIG. 12 is exemplified by a communication bus connection.
  • the communication interface 2002 is configured to communicate with a base station
  • the memory 2003 is used to store a program
  • the processor 2001 is configured to execute the program to implement
  • At least two SCH information are received in a synchronous transmission period of the base station;
  • the synchronous transmission period includes 10 or 11 TDMA frames, and each TDMA frame includes a total of 8 time slots from 0 to 7;
  • the received at least two pieces of SCH information are sent by the base station in a first common control channel and an extended control channel of the synchronous transmission period, where the first common control channel is number 0.
  • the time slot, the extended control channel does not include the time slot 0.
  • the processor 2001 is further configured to:
  • the at least two pieces of SCH information are received in the synchronous transmission period of the base station, including:
  • At least two encoded SCH information are received in the synchronous transmission period of the base station;
  • the demodulating the received at least two pieces of SCH information specifically includes: demodulating the decoded at least two encoded SCH information.
  • the embodiment of the present invention can effectively shorten the duration of the frequency synchronization of the edge user equipment by receiving at least two FCCH information in the synchronous transmission period of the base station. Meanwhile, when the frequency correction is completed by the received FCCH information, the base station can be Receive at least two encoded SCHs during the synchronous transmission period And - decoding and decoding the received at least two encoded SCH information to demodulate the decoded at least two encoded SCH information, so that synchronization channel coverage enhancement for the user equipment can be implemented.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开一种传输同步信道SCH的方法以及相关设备,其中,所述方法可以包括:在同步发送周期的第一个公共控制信道和扩展控制信道中,配置至少两个SCH资源;其中,所述同步发送周期包括10个或11个时分多址TDMA帧,每个TDMA帧包含0号至7号共8个时隙,所述第一个公共控制信道为0号时隙,所述扩展控制信道不包括0号时隙,每个SCH资源为一个TDMA帧的一个时隙;在所述配置的至少两个SCH资源上,传输至少两个SCH信息;其中,每个SCH资源上传输一个SCH信息,所述至少两个SCH信息具有相同的帧号信息。采用本发明,可以通过重复发送多次SCH信息,以满足高的覆盖增强需求。

Description

一 一 一种传输同步信道 SCH的方法以及相关设备 技术领域
本发明涉及通信技术领域, 尤其涉及一种传输同步信道 SCH的方法以及 相关设备。 背景技术
覆盖是衡量一个通信系统的重要特性。 覆盖是指能被服务 (按照一定的比 例正确接收和发送数据)的用户的最大范围。 在通信传输中, 发送端发出的信 号会经历各种衰落、 损耗并夹杂着干扰和噪声,才到达接收端。 传输距离越长, 信号衰减越大,覆盖性能就会降低。 好的覆盖性能可以降低建设基站成本, 减 少维护费用, 同时又增加了更多接入用户, 所以覆盖增强一直是研究的热点。
下行同步是基站与终端建立通信连接的第一步。现有 GSM( Global System For Mobile Communication, 全球移动通信 ) 系统进行下行同步需要两个信道, 分别是 FCCH ( Frequency Correction Channel , 频率校正信道) 和 SCH ( Synchronization Channel, 同步信道), FCCH的主要作用是进行频率同步, 第二步则通过 SCH信道实现时域同步,从而完成整个同步过程。但是现有 GSM 系统中的的 FCCH和 SCH只能在第一个时隙中发送, 且每间隔一定的时间间 隔才发送一次 FCCH和 SCH, 使得现有 GSM系统的同步信道很难满足 20dB 覆盖增强的需求。 发明内容
本发明实施例提供一种传输同步信道 SCH的方法以及相关设备, 可以通 过重复发送多次 SCH信息, 以满足高的覆盖增强需求。
本发明第一方面提供了一种基站, 包括:
第一处理单元,用于在同步发送周期的第一个公共控制信道和扩展控制信 道中, 配置至少两个同步信道 SCH资源; 其中, 所述同步发送周期包括 10个 - - 或 11个时分多址 TDMA帧, 每个 TDMA帧包含 0号至 7号共 8个时隙, 所 述第一个公共控制信道为 0号时隙, 所述扩展控制信道不包括 0号时隙,每个 SCH资源为一个 TDMA帧的一个时隙;
第一发送单元, 用于在所述配置的至少两个 SCH资源上, 传输至少两个 SCH 信息; 其中, 每个 SCH资源上传输一个 SCH信息, 所述至少两个 SCH信息 具有相同的帧号信息。
在第一种可能的实现方式中,
所述扩展控制信道为公共控制信道, 且所述扩展控制信道为 2号、 4号和 6号时隙中的一个或多个时隙;
所述第一处理单元中的所述配置的至少两个 SCH资源为所述同步发送周 期的第二个 TDMA帧的 0号时隙,以及所述同步发送周期的第二个 TDMA帧 的 2号、 4号和 6号时隙中的一个或多个时隙。
结合第一方面, 在第二种可能的实现方式中,
所述扩展控制信道为公共控制信道, 且所述扩展控制信道为 2号、 4号和 6号时隙中的一个或多个时隙;
所述第一处理单元中的所述配置的至少两个 SCH资源为所述同步发送周 期的第二个 TDMA帧的 0号时隙, 以及所述同步发送周期的第一个和第二个 TDMA帧的 2号、 4号和 6号时隙中的一个或多个时隙。
结合第一方面的第一种可能的实现方式,或第一方面的第二种可能的实现 方式, 在第三种可能的实现方式中,
所述第一处理单元中的所述配置的至少两个 SCH资源还包括: 所述同步 发送周期的至少一个 TDMA帧的 1号、 3号、 5号或 7号时隙。
结合第一方面, 在第四种可能的实现方式中,
所述扩展控制信道为非公共控制信道, 且所述扩展控制信道为 1 号至 7 号时隙中的一个或多个时隙;
所述第一处理单元中的所述配置的至少两个 SCH资源包括: 所述同步发 送周期的第二个 TDMA 帧的 0 号时隙, 以及所述同步发送周期的至少一个 - -
TDMA帧的 1号至 7号时隙中的任一个时隙。
结合第一方面, 在第五种可能的实现方式中, 还包括:
第二处理单元,用于在所述同步发送周期的第一个公共控制信道和扩展控 制信道中, 配置至少两个频率校正信道 FCCH资源, 所述 FCCH资源为一个 TDMA帧的一个时隙;
第二发送单元,用于在所述配置的至少两个 FCCH资源上,传输至少两个 FCCH信息;
其中, 所述第一发送单元包括:
编码子单元, 用于根据 SCH资源的时隙号, 对 SCH信息进行编码; 发送子单元,用于传输编码的 SCH信息,所述编码的 SCH信息包含 SCH 资源的时隙号信息。
结合第一方面的第五种可能的实现方式, 在第六种可能的实现方式中, 所述编码子单元, 具体用于确定时隙号的掩码, 并将所述时隙号的掩码与 SCH信息的循环冗余校验码进行异或操作;
其中, 不同时隙号的掩码互不相同。
结合第一方面, 或第一方面的第一种可能的实现方式,或第一方面的第二 种可能的实现方式, 或第一方面的第三种可能的实现方式, 或第一方面的第四 种可能的实现方式, 或第一方面的第五种可能的实现方式, 或第一方面的第六 种可能的实现方式, 在第七种可能的实现方式中,
所述第一处理单元, 具体用于根据默认配置, 确定所述至少两个 SCH资 源。
本发明第二方面提供了一种用户设备, 包括:
第一接收单元,用于当通过接收到的 FCCH信息完成频率校正后,在基站 的同步发送周期内接收至少两个 SCH信息;
解调单元, 用于解调所接收到的所述至少两个 SCH信息;
其中, 所述同步发送周期包括 10个或 11个 TDMA帧, 每个 TDMA帧包 含 0号至 7号共 8个时隙; - - 其中, 所述所接收到的至少两个 SCH信息是由所述基站在所述同步发送 周期的第一个公共控制信道和扩展控制信道中发送的,所述第一个公共控制信 道为 0号时隙, 所述扩展控制信道不包括 0号时隙。
在第一种可能的实现方式中, 还包括:
第二接收单元, 用于在所述基站的同步发送周期内接收至少两个 FCCH 信息, 并通过所述至少两个 FCCH信息进行频率校正;
其中, 所述第一接收单元包括:
接收子单元,用于当通过接收到的 FCCH信息完成频率校正后,在基站的 同步发送周期内接收至少两个编码的 SCH信息;
解码子单元, 用于解码所接收到的所述至少两个编码的 SCH信息; 其中, 所述至少两个编码的 SCH信息是由所述基站根据所配置的 SCH资源的时隙 号, 对 SCH信息进行编码所得到的;
其中, 所述解调单元, 具体用于对解码后的至少两个编码的 SCH信息进 行解调。
本发明第三方面提供了一种传输同步信道 SCH的方法, 包括:
在同步发送周期的第一个公共控制信道和扩展控制信道中,配置至少两个 SCH资源; 其中, 所述同步发送周期包括 10个或 11个时分多址 TDMA帧, 每个 TDMA帧包含 0号至 7号共 8个时隙, 所述第一个公共控制信道为 0号 时隙, 所述扩展控制信道不包括 0号时隙, 每个 SCH资源为一个 TDMA帧的 一个时隙;
在所述配置的至少两个 SCH资源上, 传输至少两个 SCH信息; 其中, 每 个 SCH资源上传输一个 SCH信息, 所述至少两个 SCH信息具有相同的帧号 信息。
在第一种可能的实现方式中,
所述扩展控制信道为公共控制信道, 且所述扩展控制信道为 2号、 4号和
6号时隙中的一个或多个时隙;
所述配置的至少两个 SCH资源为所述同步发送周期的第二个 TDMA帧的 - -
0号时隙, 以及所述同步发送周期的第二个 TDMA帧的 2号、 4号和 6号时隙 中的一个或多个时隙。
结合第三方面, 在第二种可能的实现方式中,
所述扩展控制信道为公共控制信道, 且所述扩展控制信道为 2号、 4号和 6号时隙中的一个或多个时隙;
所述配置的至少两个 SCH资源为所述同步发送周期的第二个 TDMA帧的 0号时隙, 以及所述同步发送周期的第一个和第二个 TDMA帧的 2号、 4号和 6号时隙中的一个或多个时隙。
结合第三方面的第一种可能的实现方式,或第三方面的第二种可能的实现 方式, 在第三种可能的实现方式中,
所述配置的至少两个 SCH 资源还包括: 所述同步发送周期的至少一个 TDMA帧的 1号、 3号、 5号或 7号时隙。
结合第三方面, 在第四种可能的实现方式中,
所述扩展控制信道为非公共控制信道, 且所述扩展控制信道为 1 号至 7 号时隙中的一个或多个时隙;
所述配置的至少两个 SCH资源包括: 所述同步发送周期的第二个 TDMA 帧的 0号时隙, 以及所述同步发送周期的至少一个 TDMA帧的 1号至 7号时 隙中的任一个时隙。
结合第三方面, 在第五种可能的实现方式中, 还包括:
在所述同步发送周期的第一个公共控制信道和扩展控制信道中,配置至少 两个频率校正信道 FCCH资源,所述 FCCH资源为一个 TDMA帧的一个时隙; 并在所述配置的至少两个 FCCH资源上, 传输至少两个 FCCH信息;
则所述在所述配置的至少两个 SCH资源上, 传输至少两个 SCH信息, 包 括:
根据 SCH资源的时隙号, 对 SCH信息进行编码, 并传输编码的 SCH信 息, 所述编码的 SCH信息包含 SCH资源的时隙号信息。
结合第三方面的第五种可能的实现方式,在第六种可能的实现方式中, 所 - - 述根据 SCH资源的时隙号, 对 SCH信息进行编码, 包括:
确定时隙号的掩码, 其中, 不同时隙号的掩码互不相同;
将所述时隙号的掩码与 SCH信息的循环冗余校验码进行异或操作。
结合第三方面, 或第三方面的第一种可能的实现方式,或第三方面的第二 种可能的实现方式, 或第三方面的第三种可能的实现方式, 或第三方面的第四 种可能的实现方式, 或第三方面的第五种可能的实现方式, 或第三方面的第六 种可能的实现方式,在第七种可能的实现方式中, 所述在同步发送周期的第一 个公共控制信道和扩展控制信道中, 配置至少两个 SCH资源, 包括:
根据默认配置, 确定所述至少两个 SCH资源。
本发明第四方面提供了一种接收同步信道 SCH的方法, 包括:
当通过接收到的 FCCH信息完成频率校正后,在基站的同步发送周期内接 收至少两个 SCH信息;
解调所接收到的所述至少两个 SCH信息;
其中, 所述同步发送周期包括 10个或 11个 TDMA帧, 每个 TDMA帧包 含 0号至 7号共 8个时隙;
其中, 所述所接收到的至少两个 SCH信息是由所述基站在所述同步发送 周期的第一个公共控制信道和扩展控制信道中发送的,所述第一个公共控制信 道为 0号时隙, 所述扩展控制信道不包括 0号时隙。
在第一种可能的实现方式中, 还包括:
在所述基站的同步发送周期内接收至少两个 FCCH信息,并通过所述至少 两个 FCCH信息进行频率校正;
则所述当通过接收到的 FCCH信息完成频率校正后,在基站的同步发送周 期内接收至少两个 SCH信息, 包括:
当通过接收到的 FCCH信息完成频率校正后,在基站的同步发送周期内接 收至少两个编码的 SCH信息;
解码所接收到的所述至少两个编码的 SCH信息; 其中, 所述至少两个编 码的 SCH信息是由所述基站根据所配置的 SCH资源的时隙号, 对 SCH信息 进行编码所得到的;
则所述解调所接收到的所述至少两个 SCH信息, 具体包括: 对解码后的 至少两个编码的 SCH信息进行解调。
本发明第五方面提供了一种计算机存储介质,
所述计算机存储介质可存储有程序,该程序执行时包括第三方面提供的一 种传输同步信道 SCH的方法的部分或全部步骤。
本发明第六方面提供了一种计算机存储介质,
所述计算机存储介质可存储有程序,该程序执行时包括第四方面提供的一 种接收同步信道 SCH的方法的部分或全部步骤。
本发明第七方面提供了一种基站, 包括: 处理器、 通信接口和存储器, 其 中,
所述通信接口, 用于与用户设备进行通信;
所述存储器用于存储程序;
所述处理器用于执行所述程序, 以实现
在同步发送周期的第一个公共控制信道和扩展控制信道中,配置至少两个
SCH资源; 其中, 所述同步发送周期包括 10个或 11个时分多址 TDMA帧, 每个 TDMA帧包含 0号至 7号共 8个时隙, 所述第一个公共控制信道为 0号 时隙, 所述扩展控制信道不包括 0号时隙, 每个 SCH资源为一个 TDMA帧的 一个时隙;
在所述配置的至少两个 SCH资源上, 传输至少两个 SCH信息; 其中, 每 个 SCH资源上传输一个 SCH信息, 所述至少两个 SCH信息具有相同的帧号 信息。
在第一种可能的实现方式中,
所述扩展控制信道为公共控制信道, 且所述扩展控制信道为 2号、 4号和 6号时隙中的一个或多个时隙;
所述配置的至少两个 SCH资源为所述同步发送周期的第二个 TDMA帧的 0号时隙, 以及所述同步发送周期的第二个 TDMA帧的 2号、 4号和 6号时隙 中的一个或多个时隙。 - - 结合第七方面, 在第二种可能的实现方式中,
所述扩展控制信道为公共控制信道, 且所述扩展控制信道为 2号、 4号和 6号时隙中的一个或多个时隙;
所述配置的至少两个 SCH资源为所述同步发送周期的第二个 TDMA帧的 0号时隙, 以及所述同步发送周期的第一个和第二个 TDMA帧的 2号、 4号和 6号时隙中的一个或多个时隙。
结合第七方面的第一种可能的实现方式,或第七方面的第二种可能的实现 方式, 在第三种可能的实现方式中,
所述配置的至少两个 SCH 资源还包括: 所述同步发送周期的至少一个 TDMA帧的 1号、 3号、 5号或 7号时隙。
结合第七方面, 在第四种可能的实现方式中,
所述扩展控制信道为非公共控制信道, 且所述扩展控制信道为 1 号至 7 号时隙中的一个或多个时隙;
所述配置的至少两个 SCH资源包括: 所述同步发送周期的第二个 TDMA 帧的 0号时隙, 以及所述同步发送周期的至少一个 TDMA帧的 1号至 7号时 隙中的任一个时隙。
结合第七方面, 在第五种可能的实现方式中, 所述处理器还用于: 在所述同步发送周期的第一个公共控制信道和扩展控制信道中,配置至少 两个频率校正信道 FCCH资源,所述 FCCH资源为一个 TDMA帧的一个时隙; 并在所述配置的至少两个 FCCH资源上, 传输至少两个 FCCH信息;
则所述在所述配置的至少两个 SCH资源上, 传输至少两个 SCH信息, 包 括:
根据 SCH资源的时隙号, 对 SCH信息进行编码, 并传输编码的 SCH信 息, 所述编码的 SCH信息包含 SCH资源的时隙号信息。
结合第七方面的第五种可能的实现方式,在第六种可能的实现方式中, 所 述处理器具体用于:
确定时隙号的掩码, 其中, 不同时隙号的掩码互不相同; - - 将所述时隙号的掩码与 SCH信息的循环冗余校验码进行异或操作。
结合第七方面, 或第七方面的第一种可能的实现方式, 或第七方面的第二 种可能的实现方式, 或第七方面的第三种可能的实现方式, 或第七方面的第四 种可能的实现方式, 或第七方面的第五种可能的实现方式, 或第七方面的第六 种可能的实现方式, 在第七种可能的实现方式中, 所述处理器具体用于:
根据默认配置, 确定所述至少两个 SCH资源。
本发明第八方面提供了一种用户设备, 包括:处理器、通信接口和存储器, 其中,
所述通信接口, 用于与基站进行通信;
所述存储器用于存储程序;
所述处理器用于执行所述程序, 以实现
当通过接收到的 FCCH信息完成频率校正后,在基站的同步发送周期内接 收至少两个 SCH信息;
解调所接收到的所述至少两个 SCH信息;
其中, 所述同步发送周期包括 10个或 11个 TDMA帧, 每个 TDMA帧包 含 0号至 7号共 8个时隙;
其中, 所述所接收到的至少两个 SCH信息是由所述基站在所述同步发送 周期的第一个公共控制信道和扩展控制信道中发送的,所述第一个公共控制信 道为 0号时隙, 所述扩展控制信道不包括 0号时隙。
在第一种可能的实现方式中, 所述处理器还用于:
在所述基站的同步发送周期内接收至少两个 FCCH信息,并通过所述至少 两个 FCCH信息进行频率校正;
则所述当通过接收到的 FCCH信息完成频率校正后,在基站的同步发送周 期内接收至少两个 SCH信息, 包括:
当通过接收到的 FCCH信息完成频率校正后,在基站的同步发送周期内接 收至少两个编码的 SCH信息;
解码所接收到的所述至少两个编码的 SCH信息; 其中, 所述至少两个编 码的 SCH信息是由所述基站根据所配置的 SCH资源的时隙号, 对 SCH信息 - - 进行编码所得到的;
则所述解调所接收到的所述至少两个 SCH信息, 具体包括: 对解码后的 至少两个编码的 SCH信息进行解调。
本发明实施例通过在第一个公共控制信道和扩展控制信道中配置 SCH资 源, 以实现在一个同步发送周期内重复发送多次 SCH信息, 从而可以实现同 步信道覆盖增强的效果。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例中所需要使用的附图作简单地介绍,显而易见地, 下面描述中的附图仅仅是 本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1是现有技术中的一种 51复帧的结构图;
图 2是本发明实施例提供的一种传输同步信道 SCH的方法的流程示意图; 图 3是本发明实施例提供的另一种传输同步信道 SCH的方法的流程示意 图;
图 4是本发明实施例提供的其中一种编码 SCH信息的方法的流程示意图; 图 5是本发明实施例提供的一种接收同步信道 SCH的方法的流程示意图; 图 6是本发明实施例提供的另一种接收同步信道 SCH的方法的流程示意 图;
图 7是本发明实施例提供的一种基站的结构示意图;
图 8是本发明实施例提供的另一种基站的结构示意图;
图 9是本发明实施例提供的一种用户设备的结构示意图;
图 10是本发明实施例提供的另一种用户设备的结构示意图;
图 11是本发明实施例提供的又一种基站的结构示意图;
图 12是本发明实施例提供的又一种用户设备的结构示意图。 - - 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例中的 GSM系统在下行同步过程中需要用到两个信道, 分别 是 FCCH和 SCH, 即用户设备通过基站发送的 FCCH信息和 SCH信息取得和 基站的频率和时间同步, 所述用户设备可以包括 M2M ( machine to machine communication, 机器通信)终端、 手机等通信终端。
其中, 基站是基于 51复帧结构发送 FCCH信息和 SCH信息的。 一个 51 复帧占用约 235.4ms 的时间, 包含了 51 个 TDMA ( Time Division Multiple Access,时分多址)帧。这种 51复帧结构可以用来携带广播控制信道( broadcast control channel , BCCH ) 、 公共控制信道 ( common control channel , CCCH ) 和专用控制信道( stand-alone dedicated control channel, SDCCH )。其中, BCCH 用于广播基于每个小区的通用信息的信道; CCCH是一种 "一点对多点" 的双 向控制信道、 其用途是在呼叫接续阶段、传输链路连接所需要的控制信令与信 息; SDCCI.I用在分配业务信道之前呼叫建立过程中传送系统信令。其中,一个 TDMA帧占用约 4.62ms时间, 包含 0号至 7号共 8个时隙。
GSM系统里连续的 TDMA帧中一个时隙定义为一个基本的物理信道。在 本发明中, 为表述简洁, 在描述基本物理信道的时隙位置时, "某个物理信道 为 0号时隙" , 应当理解为该物理信道为连续的 TDMA帧的 0号时隙, 而不 是仅指一个 TDMA帧的 0号时隙。 一个小区配置几个 CCCH信道(这里指的 是包含 CCCH的基本物理信道) , 且 CCCH信道是否与 SDCCH信道组合在 一起, 是由系统消息 3中 Control Channel Description IE的 CCCH-CONF参数 确定, 如下表 1 中 BS_CC_CHANS 用来指定 CCCH 信道的个数, BS_CCCH_SDCCH_COMB用来指示是否将 CCCH信道和 SDCCH组合。 - -
Figure imgf000014_0001
表 1
根据上述小区的不同配置, 51 复帧有不同的结构, 且上下行不同。 本文 不加特别声明均指的是下行的复帧结构。 下面请参见图 1, 图 1为现有技术中 一个完整的 51复帧结构,图 1中每一列为一个 TDMA帧,一共有 51个 TDMA 帧,每个 TDMA帧包含 TN0至 TN7共 8个时隙,且图 1对应的 CCCH_CONF 为二进制" 110", 即图 1中包含 4个 CCCH信道, 每个 CCCH信道都是以 51 复帧的结构进行发送, 4个 CCCH信道分别为 TN0、 TN2、 TN4以及 TN6。 不 同的 CCCH-CONF参数配置下 51复帧结构有差异,但 TN0复帧结构中 FCCH 和 SCH的位置相同, 即均为图 1所示的 FCCH和 SCH的位置。 考虑到 FCCH 和 SCH的发送有规律,这里将 FCCH或 SCH的发送间隔定义为一个同步发送 周期, 该同步发送周期可以理解为 FCCH或 SCH的发送周期。 由于复帧中有 Idle帧 (空帧) , 即图 1中的 51复帧结构中画 "-"的位置, 因此同步发送周期 可以为 10个 TDMA帧或 11个 TDMA帧。 现有的 51复帧结构为每间隔一个 同步发送周期, 基站发送一次 FCCH信息和一次 SCH信息, 即基站在每个同 步发送周期的 TN0中的前两个 TDMA帧内发送 FCCH信息和 SCH信息。 在 本发明中,所提到的所有的同步发送周期均为图 1对应实施例中所定义的同步 发送周期。
其中,用于携带同步信息和 BCCH信道的载波( GSM系统中一个 200kHz 的频带被称为一个载波 )被称为 BCCH载波。现有 GSM系统中的 FCCH信息 和 SCH信息只会在 BCCH载波上发送。
其中, 现有技术中基站的发送过程具体可以为: 基站在 BCCH载波上按 - - 照复帧结构在时间上依次发送包含同步和广播的信息,且在一个同步发送周期 内只发送一次 FCCH信息和 SCH信息。
其中,现有技术中用户设备的接收过程具体可以为: 用户设备在所支持的 频段范围内通过搜索 FCCH信息以寻找 BCCH载波, 在确定 BCCH载波后, 通过 FCCH信息进行频率校正, 在完成频率校正后再进行 SCH信息的接收和 解调, 通过 SCH信息进行时间同步, 之后可以按照同步后的频率和时间与基 站进行所有通信过程。其中, 用户设备在基站的一个同步发送周期内只接收到 一次 FCCH信息和 SCH信息。
请参见图 2, 是本发明实施例提供的一种传输同步信道 SCH的方法的流 程示意图, 所述方法可以由基站执行。 所述方法可以包括:
S101 ,在同步发送周期的第一个公共控制信道和扩展控制信道中, 配置至 少两个 SCH资源;
具体的, 所述同步发送周期为 51复帧结构中 FCCH或 SCH发送的间隔, 这里的同步发送周期可以为上述图 1所提供的 51复帧结构图中所定义的同步 发送周期, 即所述同步发送周期包括 10个或 11个 TDMA帧, 每个 TDMA帧 包含 0号至 7号共 8个时隙。 所述第一个公共控制信道为 0号时隙, 所述扩展 控制信道不包括 0号时隙,且所述扩展控制信道用于配置所需重复发送的 SCH 资源, 每个 SCH资源为一个 TDMA帧的一个时隙。
基站可以在同步发送周期的第一个公共控制信道和扩展控制信道中,配置 至少两个 SCH资源, 其中, SCH资源的配置方式可以有多种, 下面将对 SCH 资源的配置方式进行详细说明。
第一种配置方式: 若所述扩展控制信道进一步定义为公共控制信道, 即 CCCH信道, 且所述扩展控制信道为 2号、 4号和 6号时隙中的一个或多个时 隙,则所述配置的至少两个 SCH资源为所述同步发送周期的第二个 TDMA帧 的 0号时隙, 以及所述同步发送周期的第二个 TDMA帧的 2号、 4号和 6号 时隙中的一个或多个时隙;
具体的, 本发明中所描述用于同步覆盖增强的资源均配置在 BCCH载波 - - 上(以下不再做特别说明)。第一种配置方式适用于需要重复传输 2至 4次 SCH 信息的情况,且基站中第一个公共控制信道加上扩展控制信道的总数需要大于 或等于 SCH信息所需的传输次数, 其中, 所述 SCH信息所需的传输次数是由 覆盖等级需求所确定的。 下面以如下表 2进行说明:
Figure imgf000016_0001
表 2
表 2是 51复帧结构中第 0号 TDMA帧至第 9号 TDMA帧的一段同步发送周 期, 包括 10个 TDMA帧, 其中, F是 FCCH, S SCH, TN0至 TN7分别指 0号至 7号共 8个时隙, 每列代表一个 TDMA帧, 一个 TDMA帧包含 8个时 隙。 表 2表示的是该小区配置了 4个 CCCH信道的情况, 这里将 TN0称为第 一个公共控制信道, 将 TN2、 TN4、 TN6称为扩展控制信道, 其他时隙可配置 为业务信道。表 2中在第一个公共控制信道和扩展控制信道中配置了 4个 SCH 资源,在配置好 4个 SCH资源后,所述基站可以在所配置的 4个 SCH资源上, 传输 4个 SCH信息。 其中, 在本发明实施例中, TN0时隙的复帧结构维持现 有协议定义,只在 TN1至 TN7内配置至少一个 SCH资源,并在所配置的 SCH 资源上发送 SCH信息, 以提高同步信号的覆盖性能。 由于现有技术中如果在 TN2、 TN4、 TN6中的一个或多个时隙配置了 CCCH信道, 则对应 CCCH信 道的前两个 TDMA帧内不发送任何信息,所以本发明实施例可以优先在 TN2、 TN4、 TN6所在的一个或多个 CCCH信道中配置所需重复发送的 SCH信息, - - 可以充分利用已配置信道的时频资源, 提高资源利用率, 而且在一个 TDMA 帧内实现 SCH信息的重复发送, 还可以缩短用户设备的同步时间。 其中, 在 TN1至 TN7中重复发送的每个 SCH信息所携带的帧号信息均与 TN0中的 SCH 信息所携带的帧号信息相同, 以便于用户设备可以对所接收到的多个 SCH进 行合并解码。
第二种配置方式: 若所述扩展控制信道进一步定义为公共控制信道,且所 述扩展控制信道为 2号、 4号和 6号时隙中的一个或多个时隙, 则所述配置的 至少两个 SCH资源为所述同步发送周期的第二个 TDMA帧的 0号时隙,以及 所述同步发送周期的第一个和第二个 TDMA帧的 2号、 4号和 6号时隙中的 一个或多个时隙;
具体的,第二种配置方式适用于需要重复传输 2至 7次 SCH信息的情况, 且基站中第一个公共控制信道加上扩展控制信道的总数的两倍需要大于 SCH 信息所需的传输次数。 下面以如下表 3进行说明:
Figure imgf000017_0001
表 3
表 3是 51复帧结构中第 0号 TDMA帧至第 9号 TDMA帧的一段同步发送周 期, 包括 10个 TDMA帧, 其中, F是 FCCH, S SCH, TNO至 TN7分别指 0号至 7号共 8个时隙, 每列代表一个 TDMA帧, 一个 TDMA帧包含 8个时 隙。 表 3表示的是该小区配置了 4个 CCCH信道的情况, 这里将 TN0称为第 - - 一个公共控制信道, 将 TN2、 TN4、 TN6称为扩展控制信道, 其他时隙可配置 为业务信道。表 3中在第一个公共控制信道和扩展控制信道中配置了 7个 SCH 资源,在配置好 7个 SCH资源后,所述基站可以在所配置的 7个 SCH资源上, 传输 7个 SCH信息。 其中, 在本发明实施例中, TN0时隙的复帧结构维持现 有协议定义,只在 TN1至 TN7中配置至少一个 SCH资源,并在所配置的 SCH 资源上发送 SCH信息, 以提高同步信号的覆盖性能。 由于现有技术中如果在 TN2、 TN4、 TN6中的一个或多个时隙配置了 CCCH信道, 则对应 CCCH信 道的前两个 TDMA帧内不发送任何信息,所以本发明实施例可以优先在 TN2、 TN4、 TN6所在的一个或多个 CCCH信道中配置所需重复发送的 SCH信息, 可以充分利用已配置信道的时频资源, 提高资源利用率, 而且在一个 TDMA 帧内实现 SCH信息的重复发送, 还可以缩短用户设备的同步时间。 其中, 在 TN1至 TN7中重复发送的每个 SCH信息所携带的帧号信息均与 TN0中的 SCH 信息所携带的帧号信息相同, 以便于用户设备可以对所接收到的多个 SCH进 行合并解码。
当然,对于第一种配置方式和第二种配置方式,所述配置的至少两个 SCH 资源还包括: 所述同步发送周期的至少一个 TDMA帧的 1号、 3号、 5号或 7 号时隙。 例如, 表 3中的 SCH信息所需发送的次数超过 7次时, 则可以继续 在如表 3中的 TNI、 TN3、 TN5或 TN7中尽量少的时隙内配置多个 SCH信息, 以满足 SCH信息所需发送的次数, 下面以如下表 4进行说明:
TDMA帧号 0 1 2 3 4 5 6 7 8 9
DOWNLINK TNO F S BCCH norm BCCH Ext, PAGCH
DOWNLINK TNI S S S S S S
DOWNLINK TN2 S S BCCH norm BCCH Ext, PAGCH
DOWNLINK TN3
DOWNLINK TN4 S S BCCH norm BCCH Ext, PAGCH
DOWNLINK TN5
DOWNLINK TN6 S S BCCH norm BCCH Ext, PAGCH - -
Figure imgf000019_0001
表 4
表 4是 51复帧结构中第 0号 TDMA帧至第 9号 TDMA帧的一段同步发送周 期, 包括 10个 TDMA帧, 其中, F是 FCCH, S SCH, TN0至 TN7分别指 0号至 7号共 8个时隙, 每列代表一个 TDMA帧, 一个 TDMA帧包含 8个时 隙。 表 4表示的是该小区配置了 4个 CCCH信道的情况, 这里将 TN0称为第 一个公共控制信道, 将 TN2、 TN4、 TN6称为扩展控制信道, 其他时隙可配置 为业务信道。 表 4中在第一个公共控制信道、 扩展控制信道以及 TN1中配置 了 13个 SCH资源, 在配置好 13个 SCH资源后, 所述基站可以在所配置的 13个 SCH资源上, 传输 13个 SCH信息。 其中, 为了保留更多的业务信道用 来发送业务数据, 可以将超过 7个 SCH资源的剩余部分全部配置在一个信道 中, 即在 TN1中配置 6个 SCH资源。 其中, 在同步发送周期中的一个信道中 配置多个 SCH资源时,尽量使该信道中的剩余资源个数为 4个 TDMA帧的倍 数, 使得业务数据信息或其他控制信息可以在剩余资源内以 block (—个信道 中的 4个连续时隙为一个 block ) 为粒度进行发送, 以避免资源浪费。 其中, 在本发明实施例中, TN0时隙的复帧结构维持现有协议定义,只在 TN1至 TN7 中配置至少一个 SCH资源, 并在所配置的 SCH资源上发送 SCH信息, 以提 高同步信号的覆盖性能。其中,在 TN1至 TN7中重复发送的每个 SCH信息所 携带的帧号信息均与 TN0中的 SCH信息所携带的帧号信息相同, 以便于用户 设备可以对所接收到的多个 SCH进行合并解码。当然,若表 4中所配置的 SCH 资源超过 13个, 则可以继续在其他业务信道中配置多个 SCH资源。
第三种配置方式: 若所述扩展控制信道进一步定义为非公共控制信道, 且 所述扩展控制信道为 1号至 7号时隙中的一个或多个时隙,则所述配置的至少 两个 SCH资源包括: 所述同步发送周期的第二个 TDMA帧的 0号时隙, 以及 所述同步发送周期的至少一个 TDMA帧的 1号至 7号时隙中的任一个时隙; 具体的,第三种配置方式适用于 1号至 7号时隙中都没有被配置为 CCCH 信道的情况, 下面以如下表 5进行说明: - -
Figure imgf000020_0001
表 5
表 5是 51复帧结构中第 0号 TDMA帧至第 9号 TDMA帧的一段同步发送周 期, 包括 10个 TDMA帧, 其中, F是 FCCH, S SCH, TNO至 TN7分别指 0号至 7号共 8个时隙, 每列代表一个 TDMA帧, 一个 TDMA帧包含 8个时 隙。 表 5表示的是该小区配置了 1个 CCCH信道的情况, 这里将 TN0称为第 一个公共控制信道, 将 TN1至 TN7称为备选的扩展控制信道, 所述扩展控制 信道为非公共控制信道, 即在选为扩展控制信道前可以将 TN1至 TN7配置为 业务信道。 表 5中 TN1为选定的扩展控制信道, 在第一个公共控制信道、 扩 展控制信道中配置了 7个 SCH资源, 在配置好 7个 SCH资源后, 所述基站可 以在所配置的 7个 SCH资源上, 传输 7个 SCH信息。 其中, 为了保留更多的 业务信道用来发送业务数据, 可以将 6个 SCH资源全部配置在一个扩展控制 信道中, 即在 TN1中配置 6个 SCH资源, 使得 TN2至 TN7时隙可以用来发 送业务数据。 其中, 在同步发送周期中的一个信道中配置多个 SCH资源时, 尽量使该信道中的剩余资源个数为 4个 TDMA帧的倍数, 使得业务数据信息 或其他控制信息可以在剩余资源内以 block为粒度进行发送,以避免资源浪费。 其中,在本发明实施例中, TN0时隙的复帧结构维持现有协议定义, 只在 TN1 至 TN7中配置至少一个 SCH资源,并在所配置的 SCH资源上发送 SCH信息, 以提高同步信号的覆盖性能。 其中, 在 TN1 至 TN7 中重复发送的每个 SCH - - 信息所携带的帧号信息均与 TN0中的 SCH信息所携带的帧号信息相同, 以便 于用户设备可以对所接收到的多个 SCH进行合并解码。 当然, 若表 5中还需 配置更多的 SCH资源, 则可以继续在其他业务信道中配置多个 SCH资源。
S102, 在所述配置的至少两个 SCH资源上, 传输至少两个 SCH信息; 具体的, 每个 SCH资源上传输一个 SCH信息, 所述至少两个 SCH信息 具有相同的帧号信息, 即在 1号至 7号时隙中重复发送的每个 SCH信息所携 带的帧号信息均与 0号时隙中的 SCH信息所携带的帧号信息相同, 以便于用 户设备可以对所接收到的多个 SCH进行合并解码。基站在配置好 SCH信息后, 可以在所述配置的至少两个 SCH资源上, 传输至少两个 SCH信息。 例如, 以 S101步骤中的表 3为例, 在表 3中, 基站在第一个公共控制信道和扩展控制 信道的前两个 TDMA帧内共配置了 7个 SCH资源, 因此, 基站可以根据表 3 的时间顺序先从第 0号 TDMA帧开始发送 SCH信息, 再发送第 1号 TDMA 帧中的 SCH信息。
本发明实施例所提供的所述在同步发送周期的第一个公共控制信道和扩 展控制信道中, 配置至少两个 SCH资源, 具体可以包括: 根据默认配置, 确 定所述至少两个 SCH资源。
本发明实施例通过在第一个公共控制信道和扩展控制信道中配置 SCH资 源, 以实现在一个同步发送周期内重复发送多次 SCH信息, 从而可以实现同 步信道覆盖增强的效果, 而且在一个同步发送周期内发送多次 SCH信息, 也 可以缩短用户设备的同步时间; 同时, 若 1号至 7号时隙中配置有 CCCH信 道, 则可以优先在 CCCH信道中配置所需重复发送的 SCH信息, 使得可以充 分利用已配置信道的时频资源, 以提高资源利用率。
再请参见图 3, 是本发明实施例提供的另一种传输同步信道 SCH的方法 的流程示意图, 所述方法可以由基站执行。 所述方法可以包括:
S201 ,在所述同步发送周期的第一个公共控制信道和扩展控制信道中, 配 置至少两个频率校正信道 FCCH资源;
S202,在同步发送周期的第一个公共控制信道和扩展控制信道中, 配置至 - - 少两个 SCH资源;
具体的, 步骤 S201和步骤 S202之间并没有固定的先后顺序, 步骤 S201 和步骤 S202可以同时执行, 即基站在同步发送周期的第一个公共控制信道和 扩展控制信道中, 同时配置至少两个 FCCH资源和至少两个 SCH资源。其中, 所述同步发送周期为 51复帧结构中 FCCH或 SCH发送的间隔,这里的同步发 送周期可以为上述图 1所提供的 51复帧结构图中对同步发送周期的定义, 即 所述同步发送周期包括 10个或 11个 TDMA帧, 每个 TDMA帧包含 0号至 7 号共 8个时隙。 所述第一个公共控制信道为 0号时隙, 所述扩展控制信道不包 括 0号时隙,且所述扩展控制信道用于配置所需重复发送的 FCCH资源和 SCH 资源, 每个 SCH资源为一个 TDMA帧的一个时隙, 每个 FCCH资源为一个 TDMA帧的一个时隙。 所述基站可以有多种方式配置至少两个 FCCH资源和 至少两个 S C H资源, 下面将对多种配置方式进行详细说明。
第一种配置方式: 若所述扩展控制信道进一步定义为公共控制信道, 即 CCCH信道, 且所述扩展控制信道为 2号、 4号和 6号时隙中的一个或多个时 隙,则所述配置的至少两个 SCH资源为所述同步发送周期的第二个 TDMA帧 的 0号时隙, 以及所述同步发送周期的第二个 TDMA帧的 2号、 4号和 6号 时隙中的一个或多个时隙;所述配置的至少两个 FCCH资源为所述同步发送周 期的第一个 TDMA帧的 0号时隙,以及所述同步发送周期的第一个 TDMA帧 的 2号、 4号和 6号时隙中的一个或多个时隙;
具体的, 第一种配置方式适用于需要重复传输 2至 4次 SCH信息并需要 重复传输 2至 4次 FCCH信息的情况,且基站中第一个公共控制信道加上扩展 控制信道的总数需要大于或等于 SCH信息所需的传输次数, 且基站中第一个 公共控制信道加上扩展控制信道的总数需要大于或等于 FCCH信息所需的传 输次数。 其中, 所述 SCH信息所需的传输次数是由覆盖等级需求所确定的, 所述 FCCH信息的重复发送次数越多,用户设备的频率同步时长就越短。下面 以如下表 6进行说明: - -
Figure imgf000023_0001
表 6
表 6是 51复帧结构中第 0号 TDMA帧至第 9号 TDMA帧的一段同步发送周 期, 包括 10个 TDMA帧, 其中, F是 FCCH, S是 SCH, TNO至 TN7分别指 0号至 7号共 8个时隙, 每列代表一个 TDMA帧, 一个 TDMA帧包含 8个时 隙。 表 6表示的是该小区配置了 4个 CCCH信道的情况, 这里将 TN0称为第 一个公共控制信道, 将 TN2、 TN4、 TN6称为扩展控制信道, 其他时隙可配置 为业务信道。 表 6 中在第一个公共控制信道和扩展控制信道中分别配置了 4 个 FCCH资源以及 4个 SCH资源, 在配置好 4个 FCCH资源以及 4个 SCH 资源后, 所述基站可以在所配置的 4个 FCCH资源上, 传输 4个 FCCH信息, 并在所配置的 4个 SCH资源上, 传输 4个编码的 SCH信息。 由于现有技术中 如果在 TN2、 TN4、 TN6中的一个或多个时隙配置了 CCCH信道,则对应 CCCH 信道的前两个 TDMA 帧内不发送任何信息, 所以本发明实施例可以优先在 TN2、 TN4、 TN6所在的一个或多个 CCCH信道中配置所需重复发送的 FCCH 信息和 SCH信息, 可以充分利用已配置信道的时频资源, 提高资源利用率; 而且在一个 TDMA帧内实现 SCH信息的重复发送,还可以缩短用户设备的时 间同步时长; 并且在一个 TDMA帧内实现 FCCH信息的重复发送, 还可以缩 短用户设备的频率同步时长。 其中, 在 TN1至 TN7中重复发送的每个编码的 - -
SCH信息所携带的帧号信息均与 TN0中的编码的 SCH信息所携带的帧号信息 相同,以便于用户设备可以对所接收到的多个编码的 SCH信息进行合并解码。 当然,若 FCCH信息所需的发送次数超过 4次时,还可以继续在第 0号 TDMA 帧中的业务信道内配置更多的 FCCH资源; 若 SCH信息所需的发送次数超过 4次时,也可以继续在第 1号 TDMA帧中的业务信道内配置更多的 SCH资源。 当然, 若第 0号 TDMA帧中还有剩余资源未用来配置 FCCH资源, 则可以继 续在第 0号 TDMA帧和第 1号 TDMA帧内的剩余资源中配置更多的 SCH资 源, 以满足 SCH信息所需发送的次数。
另外, 对于第一种配置方式, 所述配置的至少两个 SCH资源还包括: 所 述同步发送周期的至少一个 TDMA帧的 1号、 3号、 5号或 7号时隙; 所述配 置的至少两个 FCCH资源还包括: 所述同步发送周期的至少一个 TDMA帧的 1号、 3号、 5号或 7号时隙。 例如, 表 6中的 FCCH信息所需发送的次数超 过 4次, 且 SCH信息所需发送的次数超过 4次时, 则可以继续在如表 6中的 TNI、 TN3、 TN5或 TN7中尽量少的时隙内配置多个 FCCH信息和多个 SCH 信息, 以满足 FCCH信息和 SCH信息所需发送的次数, 下面以如下表 7进行 说明:
Figure imgf000024_0001
表 7
表 7是 51复帧结构中第 0号 TDMA帧至第 9号 TDMA帧的一段同步发送周 - - 期, 包括 10个 TDMA帧, 其中, F是 FCCH, S SCH, TN0至 TN7分别指 0号至 7号共 8个时隙, 每列代表一个 TDMA帧, 一个 TDMA帧包含 8个时 隙。 表 7表示的是该小区配置了 4个 CCCH信道的情况, 这里将 TN0称为第 一个公共控制信道, 将 TN2、 TN4、 TN6称为扩展控制信道, 其他时隙可配置 为业务信道。 表 7中在第一个公共控制信道、 扩展控制信道以及 TN1中配置 了 5个 FCCH资源以及 9个 SCH资源,在配置好 5个 FCCH资源以及 9个 SCH 资源后, 所述基站可以在所配置的 5个 FCCH资源以及 9个 SCH资源上, 传 输 5个 FCCH信息以及 9个 SCH信息。 其中, 为了保留更多的业务信道用来 发送业务数据, 可以将超过 4个 FCCH资源的剩余部分以及超过 4个 SCH资 源的剩余部分全部配置在一个信道中, 即在 TN1中配置 1个 FCCH资源和 5 个 SCH资源。 其中, 在同步发送周期中的一个信道中配置多个 FCCH资源和 多个 SCH资源时, 尽量使该信道中的剩余资源个数为 4个 TDMA帧的倍数, 使得业务数据信息或其他控制信息可以在剩余资源内以 block 为粒度进行发 送, 以避免资源浪费。 其中, 在 TN1至 TN7中重复发送的每个 SCH信息所携 带的帧号信息均与 TN0中的 SCH信息所携带的帧号信息相同, 以便于用户设 备可以对所接收到的多个 SCH进行合并解码。当然,若表 7中所配置的 FCCH 资源超过 5个, 且 SCH资源超过 9个, 则可以继续在其他业务信道中配置多 个 FCCH资源和多个 SCH资源。
第二种配置方式, 若所述扩展控制信道进一步定义为非公共控制信道, 且 所述扩展控制信道为 1号至 7号时隙中的一个或多个时隙,则所述配置的至少 两个 SCH资源包括: 所述同步发送周期的第二个 TDMA帧的 0号时隙, 以及 所述同步发送周期的至少一个 TDMA帧的 1号至 7号时隙中的任一个时隙; 所述配置的至少两个 FCCH资源包括: 所述同步发送周期的第一个 TDMA帧 的 0号时隙, 以及所述同步发送周期的至少一个 TDMA帧的 1号至 7号时隙 中的任一个时隙;
具体的,第二种配置方式适用于 1号至 7号时隙中都没有被配置为 CCCH 信道的情况, 下面以如下表 8进行说明: - -
Figure imgf000026_0001
表 8
表 8是 51复帧结构中第 0号 TDMA帧至第 9号 TDMA帧的一段同步发送周 期, 包括 10个 TDMA帧, 其中, F是 FCCH, S SCH, TNO至 TN7分别指 0号至 7号共 8个时隙, 每列代表一个 TDMA帧, 一个 TDMA帧包含 8个时 隙。 表 8表示的是该小区配置了 1个 CCCH信道的情况, 这里将 TN0称为第 一个公共控制信道, 将 TN1至 TN7称为备选的扩展控制信道, 所述扩展控制 信道为非公共控制信道, 即在选为扩展控制信道前可以将 TN1至 TN7配置为 业务信道。 表 8中 TN1为选定的扩展控制信道, 在第一个公共控制信道、 扩 展控制信道中配置了 3个 FCCH资源和 5个 SCH资源, 在配置好 3个 FCCH 资源和 5个 SCH资源后,所述基站可以在所配置的 3个 FCCH资源和 5个 SCH 资源上, 传输 3个 FCCH信息和 5个 SCH信息。 其中, 为了保留更多的业务 信道用来发送业务数据, 可以将 2个 FCCH资源和 4个 SCH资源全部配置在 一个扩展控制信道中, 即在 TN1中配置 2个 FCCH资源和 4个 SCH资源, 使 得 TN2至 TN7时隙可以用来发送业务数据。 其中, 在同步发送周期中的一个 信道中配置多个 FCCH资源和多个 SCH资源时, 尽量使该信道中的剩余资源 个数为 4个 TDMA帧的倍数, 使得业务数据信息或其他控制信息可以在剩余 - - 资源内以 block为粒度进行发送, 以避免资源浪费。 其中, 在 TN1至 TN7中 重复发送的每个 SCH信息所携带的帧号信息均与 TN0中的 SCH信息所携带 的帧号信息相同,以便于用户设备可以对所接收到的多个 SCH进行合并解码。 当然, 若表 8中还需配置更多的 FCCH资源和 SCH资源, 则可以继续在其他 业务信道中配置多个 FCCH资源和多个 SCH资源。
5203, 在所述配置的至少两个 FCCH资源上, 传输至少两个 FCCH信息;
5204, 根据 SCH资源的时隙号, 对 SCH信息进行编码, 并传输编码的 SCH信息;
具体的,步骤 S203和步骤 S204之间并没有固定的先后顺序,基站在传输 至少两个 FCCH信息和编码的 SCH信息时, 只需要根据预先所配置的 FCCH 资源和 SCH资源所在的时隙位置和所在的 TDMA帧位置进行传输即可。例如, 以上述表 6为例, 基站在配置好 FCCH资源和 SCH资源后, 基站可以根据表 6的时间顺序先从第 0号 TDMA帧开始发送 FCCH信息,再发送第 1号 TDMA 帧中的编码的 SCH信息。
其中,基站在发送编码的 SCH信息之前,需要先根据 SCH资源的时隙号, 对 SCH信息进行编码。 由于 FCCH资源除了 TN0外又引入了其他时隙, 因此 用户设备从接收到的信号上无法分辨哪一个时隙才是 TN0时隙, 因此在 SCH 原有的发送信号流程上需要增加一个时隙扰码的过程, 即对 SCH信息进行编 码, 以得到编码的 SCH信息, 以便于用户设备可以知道在哪个时隙开始接收 并解调编码的 SCH信息。
本发明实施例所提供的所述在同步发送周期的第一个公共控制信道和扩 展控制信道中, 配置至少两个 SCH资源, 具体可以包括: 根据默认配置, 确 定所述至少两个 SCH资源。
本发明实施例通过在第一个公共控制信道和扩展控制信道中配置多个 FCCH资源, 可以缩短边缘用户所需要频率同步的时间; 同时还在第一个公共 控制信道和扩展控制信道中配置多个 SCH资源,可以有效增强同步信道覆盖; 同时, 若 1号至 7号时隙中配置有 CCCH信道, 则可以优先在 CCCH信道中 - - 配置所需重复发送的 FCCH信息和 SCH信息, 使得可以充分利用已配置信道 的时频资源, 以提高资源利用率。
再请参见图 4, 是本发明实施例提供的其中一种编码 SCH信息的方法的 流程示意图, 本发明实施例可以对应于上述图 3对应实施例中的 S204, 所述 方法可以包括:
5301 , 确定时隙号的掩码, 其中, 不同时隙号的掩码互不相同;
5302,将所述时隙号的掩码与 SCH信息的循环冗余校验码进行异或操作; 具体的, 基站可以先确定时隙号的掩码, 即每个时隙号对应一个掩码, 不 同时隙号的掩码互不相同, 因此, 可以有 8组互不相同的掩码。 对 SCH信息 进行编码, 即对 SCH信息进行加扰, 其具体的加扰过程可以为: SCH输入为 25比特信息, 由这 25比特信息产生 10比特的 SCH信息的循环冗余校验码, 如进行模 2加操作, 可以生成加扰后的循环冗余校验码, 此时, 再添加尾比特 并进行 1/2卷积编码, 即可输出编码后的 78比特信息, 即得到编码的 SCH信 息。 其中, 通过 8组不同时隙号的掩码, 与准备在不同时隙发送的 SCH信息 的循环冗余校验码进行异或操作, 即可得到时隙号为? I的编码的 SCH信息。例 如, 如下表 9所示的 8组不同的掩码:
Figure imgf000028_0001
表 9
根据表 9, 将时隙号为 0的掩码与时隙 0中的 SCH信息的循环冗余校验码进 - - 行异或操作, 即可得到时隙 0中的编码的 SCH信息; 同样将时隙号为 1的掩 码与时隙 1 中的 SCH信息的循环冗余校验码进行异或操作, 即可得到时隙 1 中的编码的 SCH信息, 以此类推, 即可得到各个时隙中的编码的 SCH信息。
本发明实施例通过将 SCH信息的循环冗余校验码与对应时隙号的掩码进 行异或操作, 可以得到编码的 SCH信息, 通过发送编码的 SCH信息, 可以使 用户设备知道在哪个时隙开始接收并解调编码的 SCH信息。
再请参见图 5, 是本发明实施例提供的一种接收同步信道 SCH的方法的 流程示意图, 所述方法可以由用户设备执行, 所述方法可以包括:
5401 , 当通过接收到的 FCCH信息完成频率校正后, 在基站的同步发送 周期内接收至少两个 SCH信息;
5402, 解调所接收到的所述至少两个 SCH信息;
具体的, 所述同步发送周期包括 10个或 11个 TDMA帧, 每个 TDMA帧 包含 0号至 7号共 8个时隙, 所述同步发送周期的具体定义可以参见上述图 1 对应的 51复帧结构图中的同步发送周期。
所述用户设备先通过接收 FCCH信息以进行频率同步,此时,用户设备每 隔一个同步发送周期接收一次 FCCH信息。 当通过接收到的 FCCH信息完成 频率校正后, 可以在基站的同步发送周期内接收至少两个 SCH信息并解调所 接收到的所述至少两个 SCH信息, 由于用户设备可以在一个同步发送周期内 解调多个 SCH信息, 所以可以实现对用户设备的同步信道覆盖增强的效果。 其中, 所述所接收到的至少两个 SCH信息是由所述基站在所述同步发送周期 的第一个公共控制信道和扩展控制信道中发送的,所述第一个公共控制信道为 0号时隙, 所述扩展控制信道不包括 0号时隙。 基站在发送至少两个 SCH信 息之前, 需要在对应时隙和对应 TDMA帧内配置至少两个 SCH资源, 基站配 置 SCH资源的方式可以有多种, 具体的配置过程可以参见上述图 2对应实施 例中 S101的描述, 这里不再进行赘述。
本发明实施例通过在基站的同步发送周期内接收至少两个 SCH信息并解 调所接收到的所述至少两个 SCH信息, 可以实现对用户设备的同步信道覆盖 - - 增强的效果。
再请参见图 6, 是本发明实施例提供的另一种接收同步信道 SCH的方法 的流程示意图, 所述方法可以由用户设备执行, 所述方法可以包括:
5501 , 在所述基站的同步发送周期内接收至少两个 FCCH信息, 并通过 所述至少两个 FCCH信息进行频率校正;
具体的,用户设备可以在所述基站的同步发送周期内接收至少两个 FCCH 信息,并通过所述至少两个 FCCH信息进行频率校正。 由于用户设备在一个同 步发送周期内即可接收到多个 FCCH信息,所以可以有效缩短边缘用户设备频 率同步的时长。 其中, 所述同步发送周期包括 10个或 11个 TDMA帧, 每个 TDMA帧包含 0号至 7号共 8个时隙, 所述同步发送周期的具体定义可以参 见上述图 1对应的 51复帧结构图中的同步发送周期。
5502, 当通过接收到的 FCCH信息完成频率校正后, 在基站的同步发送 周期内接收至少两个编码的 SCH信息;
5503, 解码所接收到的所述至少两个编码的 SCH信息;
具体的, 当通过接收到的 FCCH信息完成频率校正后,用户设备可以在基 站的同步发送周期内接收至少两个编码的 SCH信息并解码所接收到的所述至 少两个编码的 SCH信息。 其中, 所述至少两个编码的 SCH信息是由所述基站 根据所配置的 SCH资源的时隙号, 对 SCH信息进行编码所得到的。 由于用户 设备在一个同步发送周期内接收多个 FCCH信息,所以会导致用户设备从接收 到的信号上无法分辨哪一个时隙才是 TN0时隙, 此时, 通过解码所接收到的 所述至少两个编码的 SCH信息, 可以使用户设备知道从何时开始对解码后的 至少两个编码的 SCH信息进行解调。 其中, 所接收到的接收至少两个 FCCH 信息以及至少两个编码的 SCH信息是由所述基站在所述同步发送周期的第一 个公共控制信道和扩展控制信道中发送的,所述第一个公共控制信道为 0号时 隙,所述扩展控制信道不包括 0号时隙。基站在发送至少两个 FCCH信息以及 至少两个编码的 SCH信息之前,需要在对应时隙和对应 TDMA帧内配置至少 两个 FCCH资源以及至少两个 SCH资源, 基站配置 FCCH资源和 SCH资源 - - 的方式可以有多种, 具体的配置过程可以参见上述图 3对应实施例中 S201和 S202的描述, 这里不再进行赞述。 其中, 基站对 SCH信息进行编码, 即基站 通过对应时隙号的掩码对 SCH信息进行加扰,基站对 SCH信息进行加扰的具 体过程可以参见上述图 4对应实施例中的描述, 这里不再进行赘述。 其中, 用 户设备解码所接收到的所述至少两个编码的 SCH信息, 即用户设备对所接收 到的所述至少两个编码的 SCH信息进行解扰, 以得到 SCH信息。
S504, 对解码后的至少两个编码的 SCH信息进行解调;
具体的, 用户设备对加扰后的 SCH信息进行解扰, 可以得到解码后的至 少两个编码的 SCH信息, 此时, 再对解码后的至少两个编码的 SCH信息进行 解调, 即可实现对用户设备的同步信道覆盖增强。
本发明实施例通过在所述基站的同步发送周期内接收至少两个 FCCH信 息,可以有效缩短边缘用户设备频率同步的时长;同时,当通过接收到的 FCCH 信息完成频率校正后,可以在基站的同步发送周期内接收至少两个编码的 SCH 信息并解码所接收到的所述至少两个编码的 SCH信息, 以对解码后的至少两 个编码的 SCH信息进行解调, 可实现对用户设备的同步信道覆盖增强。
本发明实施例还提供了一种解码 SCH信息的方法, 所述方法可以对应于 上述图 6对应实施例中的 S503, 所述方法可以包括:
假设用于完成频率校正的 FCCH信息为一特定时隙, 按照该特定时隙与 SCH信息的相对位置判断各个 SCH所在的时隙, 然后按照对应的时隙掩码进 行解扰, 判断 CRC ( Cyclic Redundancy Check, 循环冗余校验码)是否为 0, 若为 0, 则通过译码提取 SCH原始信息; 若不为 0, 则假定 FCCH为下一特定 时隙, 重复上述过程, 只到判断的 CRC为 0, 提取 SCH原始信息为止。
以表 6为例,接收侧的描述: 由于发送端 FCCH占用了多个时隙,接收侧 无法通过接收到的 FCCH信息所在位置判断出时隙位置。由于接收侧需要使用 多个 FCCH信息才能完成频率校正, 具体所使用的 FCCH个数和接收侧与基 站侧初始频率偏差的大小有关, 并不固定。 因此完成频率校正时用到的是表 6 中哪个 FCCH并不确定。 下面以表 6中实际完成频率校正的 FCCH为 TN4的 - -
FCCH为例, 接收侧的处理过程: 为了获取时隙信息, 接收侧可以先假设完成 频率校正的 FCCH所在时隙为时隙 0, 那么与其相隔 8个时隙、 10个时隙、 12 个时隙和 14个时隙的位置是 4个 SCH信息, 对应的时隙分别为 TN0, TN2, TN4, TN6。 接收端通过表 6中对应 0号、 2号、 4号和 6号时隙的掩码对这 4 个 SCH信息进行解码, 由于 H没的 FCCH所在时隙为 0号时隙与实际完成频 率校正的 FCCH所在时隙为 4号时隙不相符,因此解码 SCH信息时 CRC不会 为 0, 接收侧就认为假设错误; 下一步假设完成频率校正的 FCCH所在时隙为 2号时隙, 那么与其相隔 6个时隙、 8个时隙、 10个时隙和 12个时隙的位置 是 4个 SCH信息, 对应的时隙分别为 TN0, TN2, TN4, TN6。 接收端通过表 6中对应 0号、 2号、 4号和 6号时隙的掩码对这 4个 SCH信息进行解码, 由 于假设的 FCCH所在时隙为 2号时隙与实际完成频率校正的 FCCH所在时隙 为 4号时隙不相符, 因此解码 SCH信息时 CRC不会为 0, 接收侧就认为假设 错误; 进一步假设完成频率校正 FCCH所在时隙为 4号时隙, 此时通过表 6 中对应 0号、 2号、 4号和 6号时隙的掩码对相隔这 4、 6、 8、 10个时隙的 4 个 SCH信息进行解码, 由于 H没的 FCCH所在时隙为 4号时隙与实际完成频 率校正的 FCCH所在时隙为 4号时隙相符, 因此解码 SCH信息时 CRC为 0, 则接收端明确知道了 SCH信息对应的时隙信息,并可以解码出正确的 SCH原 始信息。
请参见图 7, 是本发明实施例提供的一种基站的结构示意图, 所述基站可 以包括: 第一处理单元 11、 第一发送单元 12;
所述第一处理单元 11, 用于在同步发送周期的第一个公共控制信道和扩 展控制信道中, 配置至少两个同步信道 SCH资源;
具体的, 所述同步发送周期为 51复帧结构中 FCCH或 SCH发送的间隔, 例如上述图 1所提供的 51复帧结构图中的同步发送周期, 即所述同步发送周 期包括 10个或 11个 TDMA帧, 每个 TDMA帧包含 0号至 7号共 8个时隙。 所述第一个公共控制信道为 0号时隙, 所述扩展控制信道不包括 0号时隙,每 个 SCH资源为一个 TDMA帧的一个时隙。 - - 所述第一处理单元 11可以在同步发送周期的第一个公共控制信道和扩展 控制信道中, 配置至少两个 SCH资源, 其中, SCH资源的配置方式可以有多 种, 下面将对 SCH资源的配置方式进行详细说明。
第一种配置方式: 若所述扩展控制信道进一步定义为公共控制信道, 即 CCCH信道, 且所述扩展控制信道为 2号、 4号和 6号时隙中的一个或多个时 隙,则所述第一处理单元 11中的所述配置的至少两个 SCH资源为所述同步发 送周期的第二个 TDMA帧的 0号时隙,以及所述同步发送周期的第二个 TDMA 帧的 2号、 4号和 6号时隙中的一个或多个时隙;
具体的,第一种配置方式适用于需要重复传输 2至 4次 SCH信息的情况, 且基站中第一个公共控制信道加上扩展控制信道的总数需要大于或等于 SCH 信息所需的传输次数, 其中, 所述 SCH信息所需的传输次数是由覆盖等级需 求所确定的。所述第一种配置方式的具体实现过程可以参见上述图 2对应实施 例中的 S101中对表 2的描述, 这里不再进行赞述。
第二种配置方式: 若所述扩展控制信道进一步定义为公共控制信道,且所 述扩展控制信道为 2号、 4号和 6号时隙中的一个或多个时隙, 则所述第一处 理单元 11 中的所述配置的至少两个 SCH资源为所述同步发送周期的第二个 TDMA帧的 0号时隙, 以及所述同步发送周期的第一个和第二个 TDMA帧的 2号、 4号和 6号时隙中的一个或多个时隙;
具体的,第二种配置方式适用于需要重复传输 2至 7次 SCH信息的情况, 且基站中第一个公共控制信道加上扩展控制信道的总数的两倍需要大于 SCH 信息所需的传输次数。 所述第二种配置方式的具体实现过程可以参见上述图 2 对应实施例中的 S101中对表 3的描述, 这里不再进行赞述。
其中, 对于第一种配置方式和第二种配置方式, 所述第一处理单元 11 中 的所述配置的至少两个 SCH 资源还包括: 所述同步发送周期的至少一个 TDMA帧的 1号、 3号、 5号或 7号时隙。这种配置方式的目的在于当在 CCCH 信道中配置好 SCH资源后,可以将多出的 SCH资源尽量集中分配在一个业务 信道中, 以保留更多的业务信道用来发送业务数据,这种配置方式的具体实现 - - 过程可以参见上述图 2对应实施例中的 S101中对表 4的描述, 这里不再进行 赘述。
第三种配置方式: 若所述扩展控制信道进一步定义为非公共控制信道, 且 所述扩展控制信道为 1号至 7号时隙中的一个或多个时隙,则所述第一处理单 元 11 中的所述配置的至少两个 SCH资源包括: 所述同步发送周期的第二个 TDMA帧的 0号时隙, 以及所述同步发送周期的至少一个 TDMA帧的 1号至 7号时隙中的任一个时隙;
具体的,第三种配置方式适用于 1号至 7号时隙中都没有被配置为 CCCH 信道的情况,所述第三种配置方式的具体实现过程可以参见上述图 2对应实施 例中的 S101中对表 5的描述, 这里不再进行赞述。
当然, 无论在上述的哪一种配置方式中, 在本发明实施例中, TN0时隙的 复帧结构始终维持现有协议定义。 由于现有技术中如果在 TN2、 TN4、 TN6 中的一个或多个时隙配置了 CCCH信道, 则对应 CCCH信道的前两个 TDMA 帧内不发送任何信息, 所以本发明实施例可以优先在 TN2、 TN4、 TN6所在的 一个或多个 CCCH信道中配置所需重复发送的 SCH信息, 可以充分利用已配 置信道的时频资源, 提高资源利用率, 而且在一个 TDMA帧内实现 SCH信息 的重复发送, 还可以缩短用户设备的同步时间。 其中, 在 TN1至 TN7中重复 发送的每个 SCH信息所携带的帧号信息均与 TN0中的 SCH信息所携带的帧 号信息相同, 以便于用户设备可以对所接收到的多个 SCH进行合并解码。
所述第一发送单元 12, 用于在所述配置的至少两个 SCH资源上, 传输至 少两个 SCH信息; 其中, 每个 SCH资源上传输一个 SCH信息, 所述至少两 个 SCH信息具有相同的帧号信息;
具体的, 每个 SCH资源上传输一个 SCH信息, 所述至少两个 SCH信息 具有相同的帧号信息, 即在 1号至 7号时隙中重复发送的每个 SCH信息所携 带的帧号信息均与 0号时隙中的 SCH信息所携带的帧号信息相同, 以便于用 户设备可以对所接收到的多个 SCH进行合并解码。所述第一处理单元 11在配 置好 SCH信息后, 可以由所述第一发送单元 12在所述配置的至少两个 SCH - - 资源上, 传输至少两个 SCH信息。 例如, 以上述图 2对应实施例中的 S101 步骤中的表 3为例, 根据表 3, 所述第一处理单元 11在第一个公共控制信道 和扩展控制信道的前两个 TDMA帧内共配置了 7个 SCH资源, 因此, 所述第 一发送单元 12可以根据表 3的时间顺序先从第 0号 TDMA帧开始发送 SCH 信息, 再发送第 1号 TDMA帧中的 SCH信息。
本发明实施例所提供的所述第一处理单元 11 具体可以用于根据默认配 置, 确定所述至少两个 SCH资源。
本发明实施例通过在第一个公共控制信道和扩展控制信道中配置 SCH资 源, 以实现在一个同步发送周期内重复发送多次 SCH信息, 从而可以实现同 步信道覆盖增强的效果, 而且在一个同步发送周期内发送多次 SCH信息, 也 可以缩短用户设备的同步时间; 同时, 若 1号至 7号时隙中配置有 CCCH信 道, 则可以优先在 CCCH信道中配置所需重复发送的 SCH信息, 使得可以充 分利用已配置信道的时频资源, 以提高资源利用率。
再请参见图 8, 是本发明实施例提供的另一种基站的结构示意图, 所述基 站可以包括: 第一处理单元 11、 第二处理单元 13、 第二发送单元 14、 第一发 送单元 12, 其中, 所述第一发送单元 12可以包括: 编码子单元 121、 发送子 单元 122。
所述第一处理单元 11, 用于在同步发送周期的第一个公共控制信道和扩 展控制信道中, 配置至少两个同步信道 SCH资源;
所述第二处理单元 13, 用于在所述同步发送周期的第一个公共控制信道 和扩展控制信道中, 配置至少两个频率校正信道 FCCH资源;
具体的,所述第一处理单元 11和所述第二处理单元 13可以同时执行相对 操作, 即所述第一处理单元 11在同步发送周期的第一个公共控制信道和扩展 控制信道中配置至少两个 SCH资源的同时,所述第二处理单元 13也在所述同 步发送周期的第一个公共控制信道和扩展控制信道中配置至少两个 FCCH 资 源。 其中, 所述同步发送周期为 51复帧结构中 FCCH或 SCH发送的间隔, 这 里的同步发送周期可以为上述图 1所提供的 51复帧结构图中对同步发送周期 - - 的定义, 即所述同步发送周期包括 10个或 11个 TDMA帧, 每个 TDMA帧包 含 0号至 7号共 8个时隙。 所述第一个公共控制信道为 0号时隙, 所述扩展控 制信道不包括 0号时隙,且所述扩展控制信道用于配置所需重复发送的 FCCH 资源和 SCH资源, 每个 SCH资源为一个 TDMA帧的一个时隙, 每个 FCCH 资源为一个 TDMA帧的一个时隙。所述第一处理单元 11和所述第二处理单元 13可以有多种方式配置至少两个 FCCH资源和至少两个 SCH资源, 下面将对 多种配置方式进行详细说明。
第一种配置方式: 若所述扩展控制信道进一步定义为公共控制信道, 即 CCCH信道, 且所述扩展控制信道为 2号、 4号和 6号时隙中的一个或多个时 隙,则所述第一处理单元 11中的所述配置的至少两个 SCH资源为所述同步发 送周期的第二个 TDMA帧的 0号时隙,以及所述同步发送周期的第二个 TDMA 帧的 2号、 4号和 6号时隙中的一个或多个时隙; 所述第二处理单元 13中的 所述配置的至少两个 FCCH资源为所述同步发送周期的第一个 TDMA帧的 0 号时隙, 以及所述同步发送周期的第一个 TDMA帧的 2号、 4号和 6号时隙 中的一个或多个时隙;
具体的, 第一种配置方式适用于需要重复传输 2至 4次 SCH信息并需要 重复传输 2至 4次 FCCH信息的情况,且基站中第一个公共控制信道加上扩展 控制信道的总数需要大于或等于 SCH信息所需的传输次数, 且基站中第一个 公共控制信道加上扩展控制信道的总数需要大于或等于 FCCH信息所需的传 输次数。 其中, 所述 SCH信息所需的传输次数是由覆盖等级需求所确定的, FCCH信息的重复发送次数越多, 用户设备的频率同步时长就越短。 所述第一 种配置方式的具体实现过程可以参见上述图 3对应实施例中的 S201和 S202 中对表 6的描述, 这里不再进行赞述。
其中, 对于第一种配置方式, 所述配置的至少两个 SCH资源还包括: 所 述同步发送周期的至少一个 TDMA帧的 1号、 3号、 5号或 7号时隙; 所述配 置的至少两个 FCCH资源还包括: 所述同步发送周期的至少一个 TDMA帧的 1号、 3号、 5号或 7号时隙。 例如, 图 3对应实施例中的表 6中的 FCCH信 - - 息所需发送的次数超过 4次, 且 SCH信息所需发送的次数超过 4次时, 则可 以继续在如表 6中的 TNI、 TN3、 TN5或 TN7中尽量少的时隙内配置多个 FCCH 信息和多个 SCH信息, 以满足 FCCH信息和 SCH信息所需发送的次数。这种 配置方式的具体实现过程可以参见上述图 3对应实施例中的 S201和 S202中对 表 7的描述, 这里不再进行赞述。
第二种配置方式, 若所述扩展控制信道进一步定义为非公共控制信道, 且 所述扩展控制信道为 1号至 7号时隙中的一个或多个时隙,则所述第一处理单 元 11 中的所述配置的至少两个 SCH资源包括: 所述同步发送周期的第二个 TDMA帧的 0号时隙, 以及所述同步发送周期的至少一个 TDMA帧的 1号至 7 号时隙中的任一个时隙; 所述第二处理单元 13 中的所述配置的至少两个 FCCH资源包括: 所述同步发送周期的第一个 TDMA帧的 0号时隙, 以及所 述同步发送周期的至少一个 TDMA帧的 1号至 7号时隙中的任一个时隙; 具体的,第二种配置方式适用于 1号至 7号时隙中都没有被配置为 CCCH 信道的情况,第二种配置方式的具体实现过程可以参见上述图 3对应实施例中 的 S201和 S202中对表 8的描述, 这里不再进行赞述。
当然, 无论在上述的哪一种配置方式中, 在本发明实施例中, TN0时隙的 复帧结构始终维持现有协议定义。 由于现有技术中如果在 TN2、 TN4、 TN6 中的一个或多个时隙配置了 CCCH信道, 则对应 CCCH信道的前两个 TDMA 帧内不发送任何信息, 所以本发明实施例可以优先在 TN2、 TN4、 TN6所在的 一个或多个 CCCH信道中配置所需重复发送的 FCCH信息和 SCH信息, 可以 充分利用已配置信道的时频资源, 提高资源利用率。 其中, 在 TN1至 TN7中 重复发送的每个 SCH信息所携带的帧号信息均与 TN0中的 SCH信息所携带 的帧号信息相同,以便于用户设备可以对所接收到的多个 SCH进行合并解码。
所述第二发送单元 14, 用于在所述配置的至少两个 FCCH资源上, 传输 至少两个 FCCH信息;
其中, 所述第一发送单元 12包括:
所述编码子单元 121, 用于根据 SCH资源的时隙号, 对 SCH信息进行编 - - 码;
所述发送子单元 122, 用于传输编码的 SCH信息, 所述编码的 SCH信息 包含 SCH资源的时隙号信息;
具体的, 所述第二发送单元 14和所述发送子单元 122之间并没有固定的 先后执行顺序, 所述第二发送单元 14和所述发送子单元 122在传输至少两个 FCCH信息和编码的 SCH信息时,只需要根据所配置的 FCCH资源和 SCH资 源所在的时隙位置和所在的 TDMA帧位置进行传输即可。
其中, 所述发送子单元 122在发送编码的 SCH信息之前, 需要由所述编 码子单元 121先根据 SCH资源的时隙号, 对 SCH信息进行编码。 由于 FCCH 资源除了 TN0外又引入了其他时隙, 因此用户设备从接收到的信号上无法分 辨哪一个时隙才是 TN0时隙, 因此在 SCH原有的发送信号流程上需要增加一 个时隙扰码的过程, 即对 SCH信息进行编码, 以得到编码的 SCH信息, 以便 于用户设备可以知道在哪个时隙开始接收并解调编码的 SCH信息。
所述编码子单元 121, 具体用于确定时隙号的掩码, 并将所述时隙号的掩 码与 SCH信息的循环冗余校验码进行异或操作;
具体的, 所述编码子单元 121可以先确定时隙号的掩码, 即每个时隙号对 应一个掩码,不同时隙号的掩码互不相同, 因此,可以有 8组互不相同的掩码。 所述编码子单元 121对 SCH信息进行编码, 即对 SCH信息进行加扰, 其具体 的加扰过程可以为: SCH输入为 25比特信息, 由这 25比特信息产生 10比特 的 SCH信息的循环冗余校验码,再由所述编码子单元 121将该 SCH信息的循 以生成加扰后的循环冗余校验码, 此时, 再添加尾比特并进行 1/2卷积编码, 即可输出编码后的 78比特信息, 即得到编码的 SCH信息。 其中, 所述编码子 单元 121通过 8组不同时隙号的掩码, 与准备在不同时隙发送的 SCH信息的 循环冗余校验码进行异或操作, 即可得到时隙号为 ¾的编码的 SCH信息。
本发明实施例所提供的所述第一处理单元 11 具体可以用于根据默认配 置, 确定所述至少两个 SCH资源。 - - 本发明实施例通过在第一个公共控制信道和扩展控制信道中配置多个
FCCH资源, 可以缩短边缘用户所需要频率同步的时间; 同时还在第一个公共 控制信道和扩展控制信道中配置多个 SCH资源,可以有效增强同步信道覆盖; 同时, 若 1号至 7号时隙中配置有 CCCH信道, 则可以优先在 CCCH信道中 配置所需重复发送的 FCCH信息和 SCH信息, 使得可以充分利用已配置信道 的时频资源, 以提高资源利用率。
请参见图 9, 是本发明实施例提供的一种用户设备的结构示意图, 所述用 户设备可以包括: 第一接收单元 21、 解调单元 22;
所述第一接收单元 21,用于当通过接收到的 FCCH信息完成频率校正后, 在基站的同步发送周期内接收至少两个 SCH信息;
所述解调单元 22, 用于解调所接收到的所述至少两个 SCH信息; 具体的, 所述同步发送周期包括 10个或 11个 TDMA帧, 每个 TDMA帧 包含 0号至 7号共 8个时隙, 所述同步发送周期的具体定义可以参见上述表 1 对应的 51复帧结构图中的同步发送周期。
所述用户设备先通过接收 FCCH信息以进行频率同步,在此处,用户设备 每隔一个同步发送周期接收一次 FCCH信息。 当通过接收到的 FCCH信息完 成频率校正后, 所述第一接收单元 21可以在基站的同步发送周期内接收至少 两个 SCH信息并由所述解调单元 22解调所接收到的所述至少两个 SCH信息, 由于用户设备可以在一个同步发送周期内解调多个 SCH信息, 所以可以实现 对用户设备的同步信道覆盖增强的效果。其中,所述所接收到的至少两个 SCH 信息是由所述基站在所述同步发送周期的第一个公共控制信道和扩展控制信 道中发送的, 所述第一个公共控制信道为 0号时隙, 所述扩展控制信道不包括 0号时隙。基站在发送至少两个 SCH信息之前,需要在对应时隙和对应 TDMA 帧内配置至少两个 SCH资源, 基站配置 SCH资源的方式可以有多种, 具体的 配置过程可以参见上述图 2对应实施例中 S101的描述, 这里不再进行赘述。
本发明实施例通过在基站的同步发送周期内接收至少两个 SCH信息并解 调所接收到的所述至少两个 SCH信息, 可以实现对用户设备的同步信道覆盖 - - 增强的效果。
再请参见图 10, 是本发明实施例提供的另一种用户设备的结构示意图, 所述用户设备可以包括: 第一接收单元 21、 第二接收单元 23、 解调单元 22, 其中, 所述第一接收单元 21包括: 接收子单元 211、 解码子单元 212;
所述第二接收单元 23, 用于在所述基站的同步发送周期内接收至少两个
FCCH信息, 并通过所述至少两个 FCCH信息进行频率校正;
具体的, 所述第二接收单元 23可以在所述基站的同步发送周期内接收至 少两个 FCCH信息, 并通过所述至少两个 FCCH信息进行频率校正。 由于用 户设备在一个同步发送周期内即可接收到多个 FCCH信息,所以可以有效缩短 边缘用户设备频率同步的时长。 其中, 所述同步发送周期包括 10个或 11个 TDMA帧, 每个 TDMA帧包含 0号至 7号共 8个时隙, 所述同步发送周期的 具体定义可以参见上述图 1对应的 51复帧结构图中的同步发送周期。
其中, 所述第一接收单元 21包括:
所述接收子单元 211, 用于当通过接收到的 FCCH信息完成频率校正后, 在基站的同步发送周期内接收至少两个编码的 SCH信息;
所述解码子单元 212, 用于解码所接收到的所述至少两个编码的 SCH信 息;
具体的, 当通过接收到的 FCCH信息完成频率校正后, 所述接收子单元 211可以在基站的同步发送周期内接收至少两个编码的 SCH信息并由所述解 码子单元 212解码所接收到的所述至少两个编码的 SCH信息。 其中, 所接收 到的接收至少两个 FCCH信息以及至少两个编码的 SCH信息是由所述基站在 所述同步发送周期的第一个公共控制信道和扩展控制信道中发送的,所述第一 个公共控制信道为 0号时隙, 所述扩展控制信道不包括 0号时隙。基站在发送 至少两个 FCCH信息以及至少两个编码的 SCH信息之前, 需要在对应时隙和 对应 TDMA帧内配置至少两个 FCCH资源以及至少两个 SCH资源,基站配置 FCCH资源和 SCH资源的方式可以有多种,具体的配置过程可以参见上述图 3 对应实施例中 S201和 S202的描述, 这里不再进行赘述。 其中, 所述至少两个 - - 编码的 SCH信息是由所述基站根据所配置的 SCH资源的时隙号, 对 SCH信 息进行编码所得到的。 由于用户设备在一个同步发送周期内接收多个 FCCH 信息, 所以会导致用户设备从接收到的信号上无法分辨哪一个时隙才是 TN0 时隙, 此时, 通过所述解码子单元 212解码所接收到的所述至少两个编码的 SCH信息, 可以使用户设备知道从何时开始对解码后的至少两个编码的 SCH 信息进行解调。 其中, 基站对 SCH信息进行编码, 即基站通过对应时隙号的 掩码对 SCH信息进行加扰,基站对 SCH信息进行加扰的具体过程可以参见上 述图 4对应实施例中的描述, 这里不再进行赞述。 其中, 所述解码子单元 212 解码所接收到的所述至少两个编码的 SCH信息, 即所述解码子单元 212对所 接收到的所述至少两个编码的 SCH信息进行解扰, 以得到 SCH信息。
所述解调单元 22, 具体用于对解码后的至少两个编码的 SCH信息进行解 调;
具体的, 所述解码子单元 212对加扰后的 SCH信息进行解扰, 可以得到 解码后的至少两个编码的 SCH信息, 此时, 再由所述解调单元 22对解码后的 至少两个编码的 SCH信息进行解调, 即可实现对用户设备的同步信道覆盖增 强。
本发明实施例通过在所述基站的同步发送周期内接收至少两个 FCCH信 息,可以有效缩短边缘用户设备频率同步的时长;同时,当通过接收到的 FCCH 信息完成频率校正后,可以在基站的同步发送周期内接收至少两个编码的 SCH 信息并解码所接收到的所述至少两个编码的 SCH信息, 以对解码后的至少两 个编码的 SCH信息进行解调, 可实现对用户设备的同步信道覆盖增强。
本发明实施例还提供了一种计算机存储介质, 其中, 所述计算机存储介质 可存储有程序,该程序执行时包括上述图 2至图 4的方法实施例中记载的传输 同步信道 SCH的方法的部分或全部步骤。
本发明实施例还提供了另一种计算机存储介质, 其中, 所述计算机存储介 质可存储有程序,该程序执行时包括上述图 5和图 6的方法实施例中记载的传 输同步信道 SCH的方法的部分或全部步骤。
再请参见图 11, 为本发明实施例提供的又一种基站的结构示意图, 所述 - - 基站可以包括处理器 1001、 通信接口 1002和存储器 1003 (基站中的处理器 1001的数量可以为一个或多个, 图 11中以一个处理器 1001为例)。 本发明的 一些实施例中, 处理器 1001、 通信接口 1002和存储器 1003可通过通信总线 或其他方式连接, 其中, 图 11以通过通信总线连接为例。
其中, 所述通信接口 1002, 用于与用户设备进行通信;
所述存储器 1003用于存储程序;
所述处理器 1001用于执行所述程序, 以实现
在同步发送周期的第一个公共控制信道和扩展控制信道中,配置至少两个 SCH资源; 其中, 所述同步发送周期包括 10个或 11个时分多址 TDMA帧, 每个 TDMA帧包含 0号至 7号共 8个时隙, 所述第一个公共控制信道为 0号 时隙, 所述扩展控制信道不包括 0号时隙, 每个 SCH资源为一个 TDMA帧的 一个时隙;
在所述配置的至少两个 SCH资源上, 传输至少两个 SCH信息; 其中, 每 个 SCH资源上传输一个 SCH信息, 所述至少两个 SCH信息具有相同的帧号 信息。
其中, 所述扩展控制信道为公共控制信道, 且所述扩展控制信道为 2号、 4号和 6号时隙中的一个或多个时隙;
所述配置的至少两个 SCH资源为所述同步发送周期的第二个 TDMA帧的 0号时隙, 以及所述同步发送周期的第二个 TDMA帧的 2号、 4号和 6号时隙 中的一个或多个时隙。
或者,
所述扩展控制信道为公共控制信道, 且所述扩展控制信道为 2号、 4号和 6号时隙中的一个或多个时隙;
所述配置的至少两个 SCH资源为所述同步发送周期的第二个 TDMA帧的 0号时隙, 以及所述同步发送周期的第一个和第二个 TDMA帧的 2号、 4号和 6号时隙中的一个或多个时隙。
其中, 所述配置的至少两个 SCH资源还包括: 所述同步发送周期的至少 一个 TDMA帧的 1号、 3号、 5号或 7号时隙。 - - 或者,
所述扩展控制信道为非公共控制信道, 且所述扩展控制信道为 1 号至 7 号时隙中的一个或多个时隙;
所述配置的至少两个 SCH资源包括: 所述同步发送周期的第二个 TDMA 帧的 0号时隙, 以及所述同步发送周期的至少一个 TDMA帧的 1号至 7号时 隙中的任一个时隙。
其中, 所述处理器 1001还用于:
在所述同步发送周期的第一个公共控制信道和扩展控制信道中,配置至少 两个频率校正信道 FCCH资源,所述 FCCH资源为一个 TDMA帧的一个时隙; 并在所述配置的至少两个 FCCH资源上, 传输至少两个 FCCH信息;
则所述在所述配置的至少两个 SCH资源上, 传输至少两个 SCH信息, 包 括:
根据 SCH资源的时隙号, 对 SCH信息进行编码, 并传输编码的 SCH信 息, 所述编码的 SCH信息包含 SCH资源的时隙号信息。
其中, 所述处理器 1001具体用于:
确定时隙号的掩码, 其中, 不同时隙号的掩码互不相同;
将所述时隙号的掩码与 SCH信息的循环冗余校验码进行异或操作。
其中, 所述处理器 1001具体用于:
根据默认配置, 确定所述至少两个 SCH资源。
本发明实施例通过在第一个公共控制信道和扩展控制信道中配置多个
SCH 资源, 可以有效增强同步信道覆盖; 若同时还在第一个公共控制信道和 扩展控制信道中配置多个 FCCH资源,则还可以缩短边缘用户所需要频率同步 的时间; 同时, 若 1号至 7号时隙中配置有 CCCH信道, 则可以优先在 CCCH 信道中配置所需重复发送的 SCH信息, 使得可以充分利用已配置信道的时频 资源, 以提高资源利用率。
再请参见图 12, 为本发明实施例提供的又一种用户设备的结构示意图, 所述用户设备可以包括处理器 2001、通信接口 2002和存储器 2003 (用户设备 中的处理器 2001的数量可以为一个或多个,图 12中以一个处理器 2001为例;)。 - - 本发明的一些实施例中, 处理器 2001、 通信接口 2002和存储器 2003可通过 通信总线或其他方式连接, 其中, 图 12以通过通信总线连接为例。
其中, 所述通信接口 2002, 用于与基站进行通信;
所述存储器 2003用于存储程序;
所述处理器 2001用于执行所述程序, 以实现
当通过接收到的 FCCH信息完成频率校正后,在基站的同步发送周期内接 收至少两个 SCH信息;
解调所接收到的所述至少两个 SCH信息;
其中, 所述同步发送周期包括 10个或 11个 TDMA帧, 每个 TDMA帧包 含 0号至 7号共 8个时隙;
其中, 所述所接收到的至少两个 SCH信息是由所述基站在所述同步发送 周期的第一个公共控制信道和扩展控制信道中发送的,所述第一个公共控制信 道为 0号时隙, 所述扩展控制信道不包括 0号时隙。
其中, 所述处理器 2001还用于:
在所述基站的同步发送周期内接收至少两个 FCCH信息,并通过所述至少 两个 FCCH信息进行频率校正;
则所述当通过接收到的 FCCH信息完成频率校正后,在基站的同步发送周 期内接收至少两个 SCH信息, 包括:
当通过接收到的 FCCH信息完成频率校正后,在基站的同步发送周期内接 收至少两个编码的 SCH信息;
解码所接收到的所述至少两个编码的 SCH信息; 其中, 所述至少两个编 码的 SCH信息是由所述基站根据所配置的 SCH资源的时隙号, 对 SCH信息 进行编码所得到的;
则所述解调所接收到的所述至少两个 SCH信息, 具体包括: 对解码后的 至少两个编码的 SCH信息进行解调。
本发明实施例通过在所述基站的同步发送周期内接收至少两个 FCCH信 息,可以有效缩短边缘用户设备频率同步的时长;同时,当通过接收到的 FCCH 信息完成频率校正后,可以在基站的同步发送周期内接收至少两个编码的 SCH - - 信息并解码所接收到的所述至少两个编码的 SCH信息, 以对解码后的至少两 个编码的 SCH信息进行解调, 可实现对用户设备的同步信道覆盖增强。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算 机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。 其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory, ROM )或随机存储记忆体(Random Access Memory, RAM )等。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之 权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims

权 利 要 求
1、 一种基站, 其特征在于, 包括:
第一处理单元,用于在同步发送周期的第一个公共控制信道和扩展控制信 道中, 配置至少两个同步信道 SCH资源; 其中, 所述同步发送周期包括 10个 或 11个时分多址 TDMA帧, 每个 TDMA帧包含 0号至 7号共 8个时隙, 所 述第一个公共控制信道为 0号时隙, 所述扩展控制信道不包括 0号时隙,每个 SCH资源为一个 TDMA帧的一个时隙;
第一发送单元, 用于在所述配置的至少两个 SCH资源上, 传输至少两个 SCH信息; 其中, 每个 SCH资源上传输一个 SCH信息, 所述至少两个 SCH 信息具有相同的帧号信息。
2、 如权利要求 1所述的基站, 其特征在于,
所述扩展控制信道为公共控制信道, 且所述扩展控制信道为 2号、 4号和 6号时隙中的一个或多个时隙;
所述第一处理单元中的所述配置的至少两个 SCH资源为所述同步发送周 期的第二个 TDMA帧的 0号时隙,以及所述同步发送周期的第二个 TDMA帧 的 2号、 4号和 6号时隙中的一个或多个时隙。
3、 如权利要求 1所述的基站, 其特征在于,
所述扩展控制信道为公共控制信道, 且所述扩展控制信道为 2号、 4号和 6号时隙中的一个或多个时隙;
所述第一处理单元中的所述配置的至少两个 SCH资源为所述同步发送周 期的第二个 TDMA帧的 0号时隙, 以及所述同步发送周期的第一个和第二个 TDMA帧的 2号、 4号和 6号时隙中的一个或多个时隙。
4、 如权利要求 2或 3所述的基站, 其特征在于, 所述第一处理单元中的所述配置的至少两个 SCH资源还包括: 所述同步 发送周期的至少一个 TDMA帧的 1号、 3号、 5号或 7号时隙。
5、 如权利要求 1所述的基站, 其特征在于,
所述扩展控制信道为非公共控制信道, 且所述扩展控制信道为 1 号至 7 号时隙中的一个或多个时隙;
所述第一处理单元中的所述配置的至少两个 SCH资源包括: 所述同步发 送周期的第二个 TDMA 帧的 0 号时隙, 以及所述同步发送周期的至少一个 TDMA帧的 1号至 7号时隙中的任一个时隙。
6、 如权利要求 1所述的基站, 其特征在于, 还包括:
第二处理单元,用于在所述同步发送周期的第一个公共控制信道和扩展控 制信道中, 配置至少两个频率校正信道 FCCH资源, 所述 FCCH资源为一个 TDMA帧的一个时隙;
第二发送单元,用于在所述配置的至少两个 FCCH资源上,传输至少两个
FCCH信息;
其中, 所述第一发送单元包括:
编码子单元, 用于根据 SCH资源的时隙号, 对 SCH信息进行编码; 发送子单元,用于传输编码的 SCH信息,所述编码的 SCH信息包含 SCH 资源的时隙号信息。
7、 如权利要求 6所述的基站, 其特征在于,
所述编码子单元, 具体用于确定时隙号的掩码, 并将所述时隙号的掩码与 SCH信息的循环冗余校验码进行异或操作;
其中, 不同时隙号的掩码互不相同。
8、 如权利要求 1至 7项中的任意一项所述的基站, 其特征在于, 所述第一处理单元, 具体用于根据默认配置, 确定所述至少两个 SCH资 源。
9、 一种用户设备, 其特征在于, 包括:
第一接收单元,用于当通过接收到的 FCCH信息完成频率校正后,在基站 的同步发送周期内接收至少两个 SCH信息;
解调单元, 用于解调所接收到的所述至少两个 SCH信息;
其中, 所述同步发送周期包括 10个或 11个 TDMA帧, 每个 TDMA帧包 含 0号至 7号共 8个时隙;
其中, 所述所接收到的至少两个 SCH信息是由所述基站在所述同步发送 周期的第一个公共控制信道和扩展控制信道中发送的,所述第一个公共控制信 道为 0号时隙, 所述扩展控制信道不包括 0号时隙。
10、 如权利要求 9所述的用户设备, 其特征在于, 还包括:
第二接收单元, 用于在所述基站的同步发送周期内接收至少两个 FCCH 信息, 并通过所述至少两个 FCCH信息进行频率校正;
其中, 所述第一接收单元包括:
接收子单元,用于当通过接收到的 FCCH信息完成频率校正后,在基站的 同步发送周期内接收至少两个编码的 SCH信息;
解码子单元, 用于解码所接收到的所述至少两个编码的 SCH信息; 其中, 所述至少两个编码的 SCH信息是由所述基站根据所配置的 SCH资源的时隙 号, 对 SCH信息进行编码所得到的;
其中, 所述解调单元, 具体用于对解码后的至少两个编码的 SCH信息进 行解调。
11、 一种传输同步信道 SCH的方法, 其特征在于, 包括:
在同步发送周期的第一个公共控制信道和扩展控制信道中,配置至少两个 SCH资源; 其中, 所述同步发送周期包括 10个或 11个时分多址 TDMA帧, 每个 TDMA帧包含 0号至 7号共 8个时隙, 所述第一个公共控制信道为 0号 时隙, 所述扩展控制信道不包括 0号时隙, 每个 SCH资源为一个 TDMA帧的 一个时隙;
在所述配置的至少两个 SCH资源上, 传输至少两个 SCH信息; 其中, 每 个 SCH资源上传输一个 SCH信息, 所述至少两个 SCH信息具有相同的帧号 信息。
12、 如权利要求 11所述的方法, 其特征在于,
所述扩展控制信道为公共控制信道, 且所述扩展控制信道为 2号、 4号和
6号时隙中的一个或多个时隙;
所述配置的至少两个 SCH资源为所述同步发送周期的第二个 TDMA帧的 0号时隙, 以及所述同步发送周期的第二个 TDMA帧的 2号、 4号和 6号时隙 中的一个或多个时隙。
13、 如权利要求 11所述的方法, 其特征在于,
所述扩展控制信道为公共控制信道, 且所述扩展控制信道为 2号、 4号和 6号时隙中的一个或多个时隙;
所述配置的至少两个 SCH资源为所述同步发送周期的第二个 TDMA帧的 0号时隙, 以及所述同步发送周期的第一个和第二个 TDMA帧的 2号、 4号和 6号时隙中的一个或多个时隙。
14、 如权利要求 12或 13所述的方法, 其特征在于,
所述配置的至少两个 SCH 资源还包括: 所述同步发送周期的至少一个 TDMA帧的 1号、 3号、 5号或 7号时隙。
15、 如权利要求 11所述的方法, 其特征在于, 所述扩展控制信道为非公共控制信道, 且所述扩展控制信道为 1 号至 7 号时隙中的一个或多个时隙;
所述配置的至少两个 SCH资源包括: 所述同步发送周期的第二个 TDMA 帧的 0号时隙, 以及所述同步发送周期的至少一个 TDMA帧的 1号至 7号时 隙中的任一个时隙。
16、 如权利要求 11所述的方法, 其特征在于, 还包括:
在所述同步发送周期的第一个公共控制信道和扩展控制信道中,配置至少 两个频率校正信道 FCCH资源,所述 FCCH资源为一个 TDMA帧的一个时隙; 并在所述配置的至少两个 FCCH资源上, 传输至少两个 FCCH信息;
则所述在所述配置的至少两个 SCH资源上, 传输至少两个 SCH信息, 包 括:
根据 SCH资源的时隙号, 对 SCH信息进行编码, 并传输编码的 SCH信 息, 所述编码的 SCH信息包含 SCH资源的时隙号信息。
17、 如权利要求 16所述的方法, 其特征在于, 所述根据 SCH资源的时隙 号, 对 SCH信息进行编码, 包括:
确定时隙号的掩码, 其中, 不同时隙号的掩码互不相同;
将所述时隙号的掩码与 SCH信息的循环冗余校验码进行异或操作。
18、 如权利要求 11至 17项中的任意一项所述的方法, 其特征在于, 所述 在同步发送周期的第一个公共控制信道和扩展控制信道中,配置至少两个 SCH 资源, 包括:
根据默认配置, 确定所述至少两个 SCH资源。
19、 一种接收同步信道 SCH的方法, 其特征在于, 包括:
当通过接收到的 FCCH信息完成频率校正后,在基站的同步发送周期内接 收至少两个 SCH信息;
解调所接收到的所述至少两个 SCH信息;
其中, 所述同步发送周期包括 10个或 11个 TDMA帧, 每个 TDMA帧包 含 0号至 7号共 8个时隙;
其中, 所述所接收到的至少两个 SCH信息是由所述基站在所述同步发送 周期的第一个公共控制信道和扩展控制信道中发送的,所述第一个公共控制信 道为 0号时隙, 所述扩展控制信道不包括 0号时隙。
20、 如权利要求 19所述的方法, 其特征在于, 还包括:
在所述基站的同步发送周期内接收至少两个 FCCH信息,并通过所述至少 两个 FCCH信息进行频率校正;
则所述当通过接收到的 FCCH信息完成频率校正后,在基站的同步发送周 期内接收至少两个 SCH信息, 包括:
当通过接收到的 FCCH信息完成频率校正后,在基站的同步发送周期内接 收至少两个编码的 SCH信息;
解码所接收到的所述至少两个编码的 SCH信息; 其中, 所述至少两个编 码的 SCH信息是由所述基站根据所配置的 SCH资源的时隙号, 对 SCH信息 进行编码所得到的;
则所述解调所接收到的所述至少两个 SCH信息, 具体包括: 对解码后的 至少两个编码的 SCH信息进行解调。
PCT/CN2014/083448 2014-07-31 2014-07-31 一种传输同步信道sch的方法以及相关设备 WO2016015297A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2014/083448 WO2016015297A1 (zh) 2014-07-31 2014-07-31 一种传输同步信道sch的方法以及相关设备
EP14898538.5A EP3166230B1 (en) 2014-07-31 2014-07-31 Synchronization channel sch transmitting method and relevant device
CN201480035927.7A CN105519001B (zh) 2014-07-31 2014-07-31 一种传输同步信道sch的方法以及相关设备
US15/420,765 US10327240B2 (en) 2014-07-31 2017-01-31 Method for transmitting synchronization channel SCH and related device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/083448 WO2016015297A1 (zh) 2014-07-31 2014-07-31 一种传输同步信道sch的方法以及相关设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/420,765 Continuation US10327240B2 (en) 2014-07-31 2017-01-31 Method for transmitting synchronization channel SCH and related device

Publications (1)

Publication Number Publication Date
WO2016015297A1 true WO2016015297A1 (zh) 2016-02-04

Family

ID=55216653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083448 WO2016015297A1 (zh) 2014-07-31 2014-07-31 一种传输同步信道sch的方法以及相关设备

Country Status (4)

Country Link
US (1) US10327240B2 (zh)
EP (1) EP3166230B1 (zh)
CN (1) CN105519001B (zh)
WO (1) WO2016015297A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109905216A (zh) * 2017-12-11 2019-06-18 中国移动通信有限公司研究院 一种多同步信道发送及接收方法、装置和介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10142876B2 (en) * 2014-08-21 2018-11-27 Telefonaktiebolaget Lm Ericsson (Publ) System overload control when in extended coverage
WO2016126183A1 (en) * 2015-02-04 2016-08-11 Telefonaktiebolaget Lm Ericsson (Publ) A wireless device, a radio network node, a network node, and methods therein for load balancing in a wireless communications network
CN114286422B (zh) * 2020-09-27 2023-12-19 四川海格恒通专网科技有限公司 一种tdma无线自组网异组发现合并方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1207218A (zh) * 1996-11-13 1999-02-03 诺基亚电信公司 跳频方法和无线电系统
CN1988414A (zh) * 2005-12-22 2007-06-27 大唐移动通信设备有限公司 捕获gsm邻小区同步信道方法及基站识别码重确认方法
WO2008157026A1 (en) * 2007-06-19 2008-12-24 Motorola, Inc. Method and system to synchronize a gsm device
US20110182329A1 (en) * 2010-01-25 2011-07-28 Infineon Technolongies Ag Device and method for distortion-robust decoding

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3881770B2 (ja) * 1998-03-10 2007-02-14 松下電器産業株式会社 移動局装置および通信方法
US6256486B1 (en) * 1999-09-09 2001-07-03 Nortel Networks Limited Method and apparatus for measuring co-channel interference
CN101043261B (zh) * 2007-03-19 2012-05-30 威盛电子股份有限公司 邻近通信小区的同步方法和装置
US9357564B2 (en) 2007-06-19 2016-05-31 Texas Instruments Incorporated Signaling of random access preamble parameters in wireless networks
US8773968B2 (en) 2007-08-06 2014-07-08 Texas Instruments Incorporated Signaling of random access preamble sequences in wireless networks
CN102014466B (zh) * 2010-12-06 2013-07-10 展讯通信(上海)有限公司 多卡多待移动终端中非业务卡的同步方法及同步装置
US8406789B1 (en) * 2011-12-22 2013-03-26 Anite Finland Oy Apparatus and method for detecting co-channels signals
US8964617B2 (en) * 2012-05-30 2015-02-24 Qualcomm Incorporated Methods and devices for regulating power in wireless receiver circuits
US20130322328A1 (en) * 2012-05-30 2013-12-05 Qualcomm Incorporated Methods and devices for optimizing cell re acquisitions
US9066288B2 (en) * 2012-09-13 2015-06-23 Qualcomm Incorporated Apparatus and method for enabling communication on a supplemental channel in a GSM wireless communication network
US20140119343A1 (en) * 2012-10-31 2014-05-01 Qualcomm Incorporated Dual receive paging monitoring procedure
EP2744283A3 (en) * 2012-12-11 2015-04-01 Telefonaktiebolaget L M Ericsson (Publ) Synchronization of a radio device
US9526105B2 (en) * 2013-05-13 2016-12-20 Qualcomm Incorporated Enhanced GSM cell acquisition
EP3123774A1 (en) * 2014-03-24 2017-02-01 Telefonaktiebolaget LM Ericsson (publ) Method and terminal for gsm cell searches
US9699828B2 (en) * 2014-05-22 2017-07-04 Telefonaktiebolaget Lm Ericsson (Publ) Optimized synchronization procedure for prolonged periods of sleep

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1207218A (zh) * 1996-11-13 1999-02-03 诺基亚电信公司 跳频方法和无线电系统
CN1988414A (zh) * 2005-12-22 2007-06-27 大唐移动通信设备有限公司 捕获gsm邻小区同步信道方法及基站识别码重确认方法
WO2008157026A1 (en) * 2007-06-19 2008-12-24 Motorola, Inc. Method and system to synchronize a gsm device
US20110182329A1 (en) * 2010-01-25 2011-07-28 Infineon Technolongies Ag Device and method for distortion-robust decoding

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3166230A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109905216A (zh) * 2017-12-11 2019-06-18 中国移动通信有限公司研究院 一种多同步信道发送及接收方法、装置和介质

Also Published As

Publication number Publication date
CN105519001A (zh) 2016-04-20
EP3166230A4 (en) 2017-08-02
US20170142718A1 (en) 2017-05-18
EP3166230A1 (en) 2017-05-10
CN105519001B (zh) 2017-10-17
EP3166230B1 (en) 2019-01-02
US10327240B2 (en) 2019-06-18

Similar Documents

Publication Publication Date Title
CN110971347B (zh) 通信方法及其装置
US10938546B2 (en) Communication method, base station, and terminal device
US10397914B2 (en) Methods and apparatus for multiplexing transmission control information
EP3425981B1 (en) Resource allocation method and network device
JP7306399B2 (ja) 電子機器、無線通信方法及びコンピューター読み取り可能な記録媒体
AU2018201792B2 (en) Information transmission method, base station, and user equipment
US20150249979A1 (en) Methods and devices for performing proximity discovery
TW201703564A (zh) 在存在d2d傳輸的情況下的lte-tdd配置的動態訊號傳遞
CN107211238B (zh) 用于发送和接收系统信息的方法和设备
CN107547177B (zh) 一种无线通信中的方法和装置
US11985709B2 (en) Random access method, user equipment, base station, and random access system
JP2016535495A (ja) 発展型マルチメディアブロードキャストマルチキャストサービスを介したアドホックグループ呼通信
WO2016015297A1 (zh) 一种传输同步信道sch的方法以及相关设备
WO2016107600A1 (zh) 支持多媒体广播多播业务传输的方法,设备及系统
WO2014183296A1 (zh) 业务数据加扰方法、业务数据解扰方法、装置及系统
WO2021196232A1 (zh) 物理信道的资源映射方法、终端设备和网络设备
CN114339613A (zh) 组播/广播业务的半持续调度方法、装置及存储介质
WO2016045037A1 (zh) 信号发送方法,信号接收方法及其相关设备
WO2019154186A1 (zh) 资源配置方法、资源选择方法、信息接收方法及设备
EP3249848B1 (en) Data transmission method and device
WO2024093972A1 (zh) 通信方法和装置
WO2023279399A1 (zh) 侧行传输资源的确定方法、发送方法、装置、设备及介质
JP2017531403A (ja) 無線通信システムにおける放送データ支援方法及び装置
CN117353867A (zh) 通信方法及通信装置
CN115915446A (zh) 一种动态指示ecp时隙的方法、基站及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898538

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014898538

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014898538

Country of ref document: EP