WO2016015249A1 - 确定测量间隙gap长度的方法和网络设备 - Google Patents

确定测量间隙gap长度的方法和网络设备 Download PDF

Info

Publication number
WO2016015249A1
WO2016015249A1 PCT/CN2014/083311 CN2014083311W WO2016015249A1 WO 2016015249 A1 WO2016015249 A1 WO 2016015249A1 CN 2014083311 W CN2014083311 W CN 2014083311W WO 2016015249 A1 WO2016015249 A1 WO 2016015249A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
network device
length
sfn
secondary base
Prior art date
Application number
PCT/CN2014/083311
Other languages
English (en)
French (fr)
Inventor
曾清海
郭轶
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112017001753-9A priority Critical patent/BR112017001753B1/pt
Priority to PCT/CN2014/083311 priority patent/WO2016015249A1/zh
Priority to JP2017504676A priority patent/JP6410921B2/ja
Priority to CN201480023270.2A priority patent/CN105745956B/zh
Priority to KR1020177004713A priority patent/KR101926664B1/ko
Priority to ES14898762T priority patent/ES2771775T3/es
Priority to EP14898762.1A priority patent/EP3188529B1/en
Publication of WO2016015249A1 publication Critical patent/WO2016015249A1/zh
Priority to US15/416,759 priority patent/US10278147B2/en
Priority to US16/373,371 priority patent/US10638440B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and network device for determining a GAP length of a measurement gap. Background technique
  • the wireless access technology of wireless cellular mobile networks is constantly evolving, with the aim of meeting the needs of users for higher speeds, wider coverage and greater capacity in the future.
  • the current technological evolution is being
  • the 3G system evolves to 3G Long Term Evolution (LTE) and further to the LTE-Advanced system.
  • LTE Long Term Evolution
  • the network sends the measurement configuration information to the connected UE through Radio Resource Control (RRC) signaling, and the UE performs measurement according to the content of the measurement configuration information, and then reports the measurement result to the network.
  • RRC Radio Resource Control
  • the measurement of the UE is called the same frequency measurement, and if it is different, it is called the inter-frequency measurement.
  • the UE performs the inter-frequency measurement it may need to adjust the radio frequency to the location of the frequency point, so the data cannot be sent and received at the service frequency.
  • a measurement gap (GAP) is required, that is, a time period during which the UE leaves the current frequency point to measure at other frequency points.
  • the eNB will configure the inter-frequency measurement gap (GAP), which is determined by two parameters, namely the gap pattern and the gap offset (gapOf f set).
  • GAP inter-frequency measurement gap
  • the measurement gap repetition period (MGRP) is 40ms and 80ms respectively.
  • SFN mod T FLOOR (gapOff set/10);
  • the measurement GAP length is uniformly defined as 6ms, for the reason that in order to synchronize with the measured target cell, at least: the frequency conversion time of the receiver (1ms) + (main and secondary synchronization signal + signal measurement time length) (5ms), these It is 6ms.
  • the UE After receiving the gap pattern and the gap offset information from the eNB, the UE calculates the subframe position starting point for the inter-frequency measurement according to the above formula, and performs the inter-frequency measurement in the consecutive 6 subframes after the starting subframe.
  • the UE does not perform physical downlink control channel (PDCCH) reception at the gap location, and does not send uplink data. Therefore, the network does not schedule UEs during GAP.
  • PDCCH physical downlink control channel
  • DC Dual connectivity is being discussed, that is, a User Equipment (UE) can be connected to the primary base station (MeNB) and the secondary base station (SeNB) at the same time, and the data is transmitted, thereby improving the throughput rate of the UE.
  • UE User Equipment
  • MeNB primary base station
  • SeNB secondary base station
  • the data is transmitted, thereby improving the throughput rate of the UE.
  • the embodiments of the present invention provide a method and a network device for determining the length of a measurement gap GAP.
  • the method can be used to determine an appropriate measurement GAP length in a dual-connection scenario, thereby effectively avoiding improper selection of the GAP length.
  • the scheduling resources are wasted.
  • an embodiment of the present invention provides a method for determining a length of a measurement gap GAP, where the method includes:
  • the first network device determines that the GAP length is a first length
  • the first network device determines that the length of the GAP is a second length; The first length is smaller than the second length.
  • the method further includes:
  • Whether the first network device determines whether the primary base station and the secondary base station are synchronized includes:
  • the method further includes:
  • the first network device acquires SFN deviation information used to indicate a system frame number SFN deviation between the primary base station and the secondary base station;
  • Whether the first network device determines whether the primary base station and the secondary base station are synchronized includes:
  • the SFN deviation is zero;
  • the SFN deviation is less than the first threshold.
  • the first network device acquires, to obtain, an SFN between the primary base station and the secondary base station
  • the SFN deviation information of the deviation includes:
  • the first network device acquires the SFN deviation information from the second network device, where the SFN deviation information is obtained according to an initial time of the SFN of the primary base station and an initial time of the SFN of the secondary base station.
  • the first network device is the primary base station And the secondary base station or the UE.
  • the method further includes:
  • the first network device acquires a calculation error of the SFN deviation
  • the second length is 7 ms; or, when the calculation error of the SFN deviation is greater than the second threshold, the second length is 8 ms .
  • an embodiment of the present invention provides a network device, including: a processing unit and a storage unit;
  • the processing unit is configured to:
  • determining that the GAP length is the first length is the length of the GAP
  • first length is less than the second length
  • the storage unit is configured to store the GAP length.
  • the network device further includes a communication unit, configured to communicate with other network devices;
  • the processing unit is further configured to acquire, by using the communication unit, indication information used to indicate whether the primary base station and the secondary base station are synchronized;
  • the processing unit for determining whether the primary base station and the secondary base station are synchronized is specifically configured to determine, according to the indication information, whether the primary base station and the secondary base station are synchronized.
  • the processing unit is further configured to acquire SFN deviation information used to indicate a system frame number SFN deviation between the primary base station and the secondary base station;
  • the processing unit for determining whether the primary base station and the secondary base station are synchronized are specifically configured to determine, according to the SFN deviation information, whether the SFN deviation satisfies a synchronization condition; wherein, when the SFN deviation satisfies the synchronization condition And the primary base station and the secondary base station are synchronized, and when the SFN deviation does not satisfy the synchronization condition, the primary base station and the secondary base station are not synchronized.
  • the synchronization condition includes:
  • the SFN deviation is zero; or,
  • the SFN deviation is less than the first threshold.
  • the processing unit for acquiring the SFN deviation information is specifically configured to acquire the SFN deviation information according to an initial time of the SFN of the primary base station and an initial time of the SFN of the secondary base station; or
  • the network device further includes a communication unit configured to communicate with other network devices; the processing unit for acquiring the SFN deviation information is specifically configured to acquire, by the communication unit, the other network device from the network device SFN deviation information, the SFN deviation information is obtained according to an initial time of the SFN of the primary base station and an initial time of the SFN of the secondary base station.
  • the network device is the primary base station, The secondary base station or the UE is described.
  • the network device further includes: an error acquiring unit, configured to acquire a calculation error of the SFN deviation;
  • a second length determining unit configured to: when the calculation error of the SFN deviation is not greater than a second threshold, the second length is 7 ms; or, when a calculation error of the SFN deviation is greater than the second threshold
  • the second length is 8 ms.
  • FIG. 1 is a schematic diagram of frame boundary synchronization of a MeNB and an SeNB according to the present invention
  • FIG. 2 is a schematic diagram of frame boundaries of a MeNB and a SeNB that are not synchronized according to the present invention
  • FIG. 3 is a flowchart of a method for determining a measurement gap length according to Embodiment 1 of the present invention
  • FIG. 4 is a flowchart of a method for determining a measurement gap length according to Embodiment 2 of the present invention
  • a method for determining a measurement gap length is provided.
  • FIG. 6 is a signaling diagram of a method for determining a measurement gap length according to Embodiment 4 of the present invention
  • FIG. 7 is a method for determining a measurement gap according to Embodiment 5 of the present invention.
  • FIG. 8 is a flowchart of a method for determining a measurement gap length according to Embodiment 6 of the present invention
  • FIG. 9 is a signaling diagram of a method for determining a measurement gap length according to Embodiment 7 of the present invention
  • 10 is a schematic diagram of a network device according to Embodiment 8 of the present invention.
  • FIG. 11 is a schematic structural diagram of a network device according to Embodiment 9 of the present invention.
  • FIG. 12 is a schematic structural diagram of a UE according to Embodiment 10 of the present invention.
  • FIG. 13 is a schematic structural diagram of a network device according to Embodiment 11 of the present invention
  • FIG. 14 is a schematic structural diagram of a UE according to Embodiment 12 of the present invention.
  • Embodiment 1 is described in detail below with reference to the accompanying drawings. It should be understood that the described embodiments are only a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • Embodiment 1 is described in detail below with reference to the accompanying drawings. It should be understood that the described embodiments are only a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • Embodiment 1 is described in detail below with reference to the accompanying drawings. It should be understood that the described embodiments are only a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • Embodiment 1
  • Embodiment 1 of the present invention provides a method for determining the length of a measurement gap GAP, which can be applied to a scenario of dual connectivity.
  • a user equipment Us e r Equ i pment, UE
  • MeNB primary base station
  • SeNB secondary base station
  • the synchronization scenario means that the system frame numbers of the two base stations (MeNB and SeNB) are aligned, and the subframe numbers are aligned, as shown in FIG. 1 .
  • the original gap mechanism can be reused for the synchronization scenario.
  • the MeNB and the SeNB may not have the system frame numbers aligned, and the subframe numbers may not be aligned.
  • a total of 6 ms of the subframe 2-7 of the MeNB is the GAP interval of the UE, and the UE performs the inter-frequency point measurement in the 6 ms. Since the MeNB and the SeNB are not synchronized, for the SeNB, the UE actually performs the inter-frequency point measurement in the portions of the subframes 1 and 7.
  • the UE Since the UE cannot receive the service frequency information during the GAP, the UE may not receive the information of the subframe 1 and the subframe 7 of the secondary base station, resulting in the subframe even if the UE does not measure at all times of the subframes 1 and 7. It cannot be used for information transfer. Therefore, for a non-synchronized scenario in a dual-connection scenario, if a 6-ms GAP configuration is performed with reference to the timing of the primary base station, the secondary base station is likely to fail to schedule the UE due to the partial measurement of the subframe, and the GAP configuration of 7 ms or 8 ms is unified. Will cause waste of scheduling resources
  • FIG. 3 is a flowchart of a method for determining a length of a measurement gap GAP according to Embodiment 1 of the present invention. As shown in FIG. 3, the method includes: Step 610: The first network device determines whether the primary base station and the secondary base station are synchronized.
  • the first network device may be specifically a base station, a secondary base station, or a UE in a dual connectivity scenario.
  • the specific implementation process of the solution is slightly different.
  • the base station side The UE side and the UE side will be described in detail.
  • step 320 is performed.
  • step 330 is performed.
  • Step 320 When the primary base station and the secondary base station are synchronized, the first network device determines that the length of the GAP is a first length.
  • Step 330 When the primary base station and the secondary base station are not synchronized, the first network device determines that the length of the GAP is a second length.
  • the first length is smaller than the second length.
  • the length of the GAP when the first length is synchronized between the primary base station and the secondary base station is 6 ms.
  • the length of the GAP when the second base is unsynchronized between the primary base station and the secondary base station is set to 7 ms or 8 ms in the embodiment of the present invention.
  • the method further includes:
  • the first network device acquires SFN deviation information used to indicate a system frame number SFN deviation between the primary base station and the secondary base station;
  • the first network device acquires the SFN deviation information according to an initial time of the SFN of the primary base station and an initial time of the SFN of the secondary base station; or
  • the first network device acquires the SFN deviation information from the second network device, where the SFN offset information is obtained according to the SFN of the primary base station and the SFN of the secondary base station.
  • the second network device refers to the peer device of the first network device.
  • the second network device may include a primary base station and/or a secondary base station; when the first network device is the primary base station, the second network device may include the UE and/or the secondary base station;
  • the second network device may include a primary base station and/or a UE.
  • the first network device may further determine, according to the calculation error of acquiring the SFN deviation, whether the second length is 7 ms or 8 ms.
  • the second length is 7 ms; or, when the calculation error of the SFN deviation is greater than the second threshold, the second length is 8 ms. 5ms ⁇
  • the second threshold can be preferably set to 0. 5ms.
  • the method further includes:
  • the first network device acquires indication information for indicating whether the primary base station and the secondary base station are synchronized, where the indication information may include configuration information acquired by the primary base station or the secondary base station, or the UE calculates the SFN deviation. Information on whether the primary and secondary base stations are synchronized.
  • Whether the first network device determines whether the primary base station and the secondary base station are synchronized includes:
  • the determining, by the first network device, whether the primary base station and the secondary base station are synchronized comprises: determining, by the first network device, whether the SFN deviation meets a synchronization condition according to the SFN deviation information; wherein, when the SFN deviation satisfies When the synchronization condition is described, the primary base station and the secondary base station are synchronized, and when the SFN deviation does not satisfy the synchronization condition, the primary base station and the secondary base station are not synchronized.
  • the method further includes:
  • the first network device indicates the GAP length of the second network device.
  • the method By applying the method for determining the measurement gap GAP length provided by the embodiment of the present invention, the method fully considers the synchronization and non-synchronization of the primary base station and the secondary base station in the dual connectivity scenario, and can determine an appropriate measurement based on the synchronized or non-synchronized scenario.
  • the length of the GAP effectively avoids waste of scheduling resources caused by improper selection of the length of the GAP.
  • the method provided by the first embodiment of the present invention is described in detail by using the primary base station/secondary base station and the UE as the main body.
  • Embodiment 2 Embodiment 2
  • the second embodiment of the present invention provides a method for determining the length of the measurement gap GAP
  • FIG. 4 is a flowchart of a method for determining the length of the measurement gap GAP according to an embodiment of the present invention.
  • the The execution entity of the method is a base station, and specifically may be a primary base station (MeNB) or a secondary base station (SeNB).
  • the method provided by the second embodiment of the present invention may be performed by any one of the MeNB or the SeNB, unless otherwise specified.
  • the method specifically includes the following steps:
  • Step 41 0 Determine whether the primary base station and the secondary base station are synchronized.
  • determining whether the frame boundaries of the primary base station and the secondary base station are synchronized may include at least the following three methods.
  • Method one including:
  • S1-1 acquiring configuration information of the primary base station and the secondary base station
  • the configuration of the primary base station and the secondary base station may be performed by using network management or by performing operation and maintenance on the base station. Therefore, whether the primary base station and the secondary base station are synchronized are preset in the configuration information of the base station.
  • 51-2 Determine, according to configuration information of the primary base station and the secondary base station, whether frame boundaries of the primary base station and the secondary base station are synchronized.
  • the primary base station and the secondary base station are considered to be synchronized.
  • Method two including:
  • the SFN can be exchanged between the primary base station and the secondary base station.
  • the primary base station can obtain the initial time of the SFN of the secondary base station, and the secondary base station can also obtain the initial time of the SFN of the primary base station.
  • S2-2 determining an SFN deviation between the primary base station and the secondary base station according to an initial time of the SFN of the primary base station and an initial time of the SFN of the secondary base station;
  • the SFN deviation between the primary base station and the secondary base station can be calculated.
  • the information includes an SFN deviation
  • the UE may read the primary base station physical broadcast channel (PBCH) to implicitly obtain the SFN of the lower 2 bits, and add part of the SFN (high 8 bits) in the system message to obtain the entire SFN of the primary base station, and the UE may read the auxiliary
  • the base station PBCH implicitly obtains the SFN of the lower 2 bits, and adds part of the SFN (high 8 bits) in the system message to obtain the entire SFN of the secondary base station.
  • the calculation of the SFN deviation may be performed.
  • the SFN deviation between the primary base station and the secondary base station should be zero.
  • the SFN deviation can also be a small deviation close to 0, such as 30.26 ⁇ ⁇ , which we call the first threshold.
  • the SFN deviation is less than the first threshold, the frame boundaries of the primary base station and the secondary base station are considered to be synchronized, and S3-3 is subsequently executed. If the SFN deviation exceeds the first threshold, the frame boundary of the primary base station and the secondary base station is considered to be out of synchronization, and S3-4 is performed subsequently.
  • step 420 if the frame boundaries of the primary base station and the secondary base station are synchronized, the following step 420 is performed, and if not, step 430 is performed.
  • the primary base station may send the command information to notify the UE to read the system message of the secondary base station, and obtain the SFN of the secondary base station. If it is a synchronization scenario, the primary base station may send a message to inform the UE not to acquire the SFN of the secondary base station.
  • Step 420 When the primary base station and the secondary base station are synchronized, determine that the GAP length is the first length.
  • the first length is specifically 6 ms.
  • the length of the measured GAP is determined to be 6 ms.
  • Step 430 When the frame boundaries of the primary base station and the secondary base station are not synchronized, determine that the GAP length is the second length.
  • the second length may be specifically 7 ms or 8 ms.
  • the second length may be 7 ms, that is, the length of the measured GAP is determined to be 7 ms; if the calculation error of the SFN deviation is considered, and the calculation error of the SFN deviation is greater than the second threshold, the second length may be 8 ms, that is, the measurement GAP is determined. The length is 8ms.
  • the RF transmission and reception with the primary base station under dual connectivity may also be implemented by setting the GAP length to the longest GAP interval length.
  • Inter-frequency measurement of the secondary base station In order to ensure inter-frequency measurement of the UE, the UE and the base station can only be used according to the longest GAP interval length, such as 7ms or 8ms. However, this is a waste of scheduling resources for a synchronization scenario that does not require an extended GAP length. Taking the GAP configuration of the 40ms period as an example, if the GAS length of 7ms is used in the synchronization scenario, a scheduling opportunity of 2.5% will be wasted.
  • the GAP length of 8ms is used, a 5% scheduling opportunity will be wasted. But if it starts In the case of a non-synchronous scenario, if the GAP configuration is performed with reference to the timing of the primary base station, the secondary base station is likely to fail to schedule due to the UE performing measurement at a partial time of the subframe.
  • Step 440 Send a message to the user equipment UE, and indicate the determined length of the GAP in the message.
  • the primary base station or the secondary base station that determines the length of the GAP sends a Radio Resource Control Protocol (RRC) message or a Media Access Control (Met ia Acces s Cont ro l, MAC) message to the UE.
  • RRC Radio Resource Control Protocol
  • Method ia Acces s Cont ro l, MAC Media Access Control
  • the method for determining the GAP length of the measurement gap may determine, by the base station, whether the primary base station and the secondary base station are in a synchronization scenario, thereby determining that the UE measures the selected GAP length.
  • the method fully considers the synchronization and non-synchronization of the primary base station and the secondary base station in the dual connectivity scenario, and can determine the appropriate measurement GAP length based on the synchronous or non-synchronized scenario, thereby effectively avoiding waste of scheduling resources caused by improper selection of the GAP length.
  • the third embodiment of the present invention provides a method for determining the length of the measurement gap GAP
  • FIG. 5 is a flowchart of a method for determining the length of the measurement gap GAP provided by the embodiment of the present invention.
  • the execution entity of the method is the UE that performs communication between the primary base station and the secondary base station in the foregoing implementation 2.
  • the method specifically includes the following steps:
  • Step 51 0 The UE receives a system message sent by the primary base station, and acquires a system frame number SFN of the primary base station.
  • the SFN may be a partial SFN implicitly obtained by the UE de-PBCH plus a partial SFN obtained from the system message. Specifically, the above S 3-l is not described here.
  • Step 520 The UE receives the system message sent by the secondary base station, and acquires the SFN of the secondary base station.
  • whether the UE acquires the SFN of the secondary base station may be performed according to an instruction of the primary base station.
  • the primary base station knows that the current network configuration is an asynchronous scenario
  • the UE receives the command information sent by the primary base station, and acquires the SFN of the secondary base station according to the command information.
  • the primary base station knows that the current network configuration is a synchronization scenario, the primary base station does not send instruction information for acquiring the secondary base station SFN to the UE.
  • Step 530 Determine, according to the SFN of the primary base station and the SFN of the secondary base station, an SFN deviation between the primary base station and the secondary base station.
  • the UE calculates an SFN deviation between the primary base station and the secondary base station.
  • Step 540 Send information to the primary base station and/or the secondary base station respectively; the information includes an SFN deviation.
  • the UE sends the calculated SFN deviation to the primary base station and/or the secondary base station, respectively, for the primary base station and/or the secondary base station to determine whether the frame boundaries of the primary base station and the secondary base station are synchronized according to the SFN system deviation, and further determine the GAP length. .
  • Step 550 The UE receives a message sent by the primary base station or the secondary base station, where the message includes an indication of the length of the GAP.
  • the method for determining the length of the measurement gap GAP is to obtain the SFN of the primary base station and the secondary base station by using the UE, and calculate the SFN deviation to send to the primary base station or the secondary base station, so that the base station determines whether the primary base station and the secondary base station are in the synchronization scenario. And determining the UE to measure the selected GAP length.
  • the method fully considers the synchronization and non-synchronization of the primary base station and the secondary base station in the dual connectivity scenario, and can determine the appropriate measurement GAP length based on the synchronous or non-synchronized scenario, thereby effectively avoiding waste of scheduling resources caused by improper selection of the GAP length.
  • Embodiment 4 Embodiment 4
  • FIG. 6 is a signaling diagram of a method for determining a measurement gap length according to an embodiment of the present invention. As shown in FIG. 6, the following steps are specifically included:
  • the UE receives a system message sent by the primary base station, and acquires an SFN of the primary base station.
  • S602 The UE receives a system message sent by the secondary base station, and acquires an SFN of the secondary base station.
  • the UE determines, according to the SFN of the primary base station and the SFN of the secondary base station, an SFN deviation between the primary base station and the secondary base station;
  • the UE sends information to the primary base station and/or the secondary base station, respectively, where the information includes an SFN offset.
  • the calculation of the SFN offset may also be performed by the secondary base station and sent to the primary base station.
  • the primary base station determines whether the frame boundary of the primary base station and the secondary base station is synchronized according to whether the SFN deviation is less than a first threshold, and further determines a GAP length.
  • the SFN deviation between the primary base station and the secondary base station should be zero.
  • the SFN deviation can also be a small deviation close to 0, such as the aforementioned first threshold: 30. 26 ⁇ ⁇ .
  • the SFN deviation is less than the first threshold, determining frame boundary synchronization of the primary base station and the secondary base station; when the SFN deviation is not less than the first threshold, determining that the frame boundaries of the primary base station and the secondary base station are not synchronized.
  • the length of the measured GAP is determined to be 6 ms.
  • the second length may be 7 ms, that is, the length of the measured GAP is determined to be 7 ms; if the calculation error of the SFN deviation is considered, and the calculation error of the SFN deviation is greater than the second threshold, the second length may be 8 ms, that is, the measurement GAP is determined. The length is 8ms.
  • the primary base station sends a message to the user equipment UE, where the determined length of the GAP is indicated.
  • the fifth embodiment of the present invention provides a method for determining the length of the measurement gap GAP
  • FIG. 7 is a flowchart of a method for determining the length of the measurement gap GAP provided by the embodiment of the present invention.
  • the execution entity of the method is a base station, and specifically may be a primary base station (MeNB) or a secondary base station (SeNB).
  • the method provided by the embodiment of the present invention may be performed by any one of the MeNB or the SeNB, unless otherwise specified.
  • the method specifically includes the following steps:
  • Step 71 The system frame number of the interaction primary base station, the initial time of the SFN, and the initial time of the secondary base station system frame number SFN;
  • the primary base station and the secondary base station can perform the SFN initial time interaction, and the primary base station can obtain the initial time of the SFN of the secondary base station by using the interaction, and the secondary base station can also obtain the initial time of the SFN of the primary base station.
  • Step 720 Determine an SFN deviation between the primary base station and the secondary base station according to an initial time of the SFN of the primary base station and an initial time of the SFN of the secondary base station.
  • the SFN deviation between the primary base station and the secondary base station can be calculated.
  • Step 730 Send information to the UE, where the information includes the SFN deviation, and the UE determines a GAP length according to the SFN deviation.
  • the calculated SFN deviation is sent to the UE, so that the UE can determine whether the network is configured as a synchronization scenario or an asynchronous scenario according to the SFN deviation, that is, whether the frame boundaries of the primary base station and the secondary base station are synchronized. In turn, the UE can determine the GAP length accordingly.
  • Step 740 The receiving UE sends a message, where the message includes an indication of the length of the GAP.
  • the UE may send an RRC message or a medium access control MAC message to the primary base station or the secondary base station, and indicate the selected GAP length information in the message, thereby notifying the primary base station or the secondary device.
  • the method for determining the length of the measurement gap GAP is to be sent to the UE by using the SFN deviation of the primary base station or the secondary base station, so that the UE determines whether the primary base station and the secondary base station are in a synchronization scenario, and further determines the UE measurement center.
  • the length of the selected GAP The method fully considers the synchronization and non-synchronization of the primary base station and the secondary base station in the dual connectivity scenario, and can determine the appropriate measurement GAP length based on the synchronous or non-synchronized scenario, thereby effectively avoiding waste of scheduling resources caused by improper selection of the GAP length.
  • the sixth embodiment of the present invention provides a method for determining the length of the measurement gap GAP
  • FIG. 8 is a flowchart of a method for determining the length of the measurement gap GAP according to an embodiment of the present invention.
  • the execution entity of the method is the UE that performs communication between the primary base station and the secondary base station in the foregoing fifth embodiment.
  • the method specifically includes the following steps:
  • Step 81 0 Acquire an SFN offset between the system frame number SFN of the primary base station and the SFN of the secondary base station;
  • the UE receives information sent by the primary base station or the secondary base station, and obtains the SFN deviation from the information.
  • Step 820 determining whether the SFN deviation is within a first threshold range
  • the SFN deviation between the primary base station and the secondary base station should be zero.
  • the frame boundaries of the primary base station and the secondary base station are considered to be synchronized, and subsequently step 8 30 is performed, if the SFN deviation exceeds the In the case of a wide value range, the frame boundaries of the primary base station and the secondary base station are considered to be out of synchronization, and step 840 is performed subsequently.
  • the size of the first threshold is currently 30. 26 ⁇ in the industry.
  • Step 830 when the SFN deviation is within a first threshold range, determining that the GAP length is a first length; Specifically, the first length is specifically 6 ms.
  • the length of the measured GAP is determined to be 6 ms.
  • Step 840 when the SFN deviation exceeds the first threshold range, determining that the GAP length is a second length
  • the second length may be specifically 7 ms or 8 ms.
  • the second length may be 7 ms, that is, the length of the measured GAP is determined to be 7 ms; if the calculation error of the SFN deviation is considered, and the calculation error of the SFN deviation is greater than the second threshold, the second length may be 8 ms, that is, the measurement GAP is determined. The length is 8ms.
  • the RF transmission and reception with the primary base station under dual connectivity may also be implemented by setting the GAP length to the longest GAP interval length.
  • Inter-frequency measurement of the secondary base station in order to ensure the inter-frequency measurement of the UE, the UE and the base station can only be used according to the longest GAP interval length, such as 7ms or 8ms. However, this can cause waste of scheduling resources for a synchronization scenario that does not require an extended GAP length. Taking the GAP configuration of the 40ms period as an example, if the GAP length of 7ms is used in the synchronization scenario, 2.5% of the scheduling opportunities will be wasted.
  • the GAP length of 8ms is used, 5% of the scheduling opportunities will be wasted. However, if the GAP of 6ms is always used, for the case of the non-synchronous scenario, if the GAP configuration is performed with reference to the timing of the primary base station, the secondary base station is likely to fail to schedule due to the UE performing the measurement at some moments of the subframe.
  • Step 850 Send a message to the primary base station and the secondary base station respectively, and indicate the determined length of the GAP in the message.
  • the UE that determines the length of the GAP sends an RRC message to the primary base station and/or the secondary base station, or
  • the MAC message or the like indicates the information of the selected GAP length in the message.
  • the method for determining the length of the measurement gap GAP may determine whether the primary base station and the secondary base station are in a synchronization scenario by using the UE, thereby determining that the UE measures the selected GAP length.
  • the method fully considers the synchronization and non-synchronization of the primary base station and the secondary base station in the dual-connection scenario, and can determine the appropriate measurement GAP length based on the synchronous or non-synchronized scenario, thereby effectively avoiding waste of scheduling resources caused by improper selection of the GAP length.
  • FIG. 9 is a signaling diagram of a method for determining the measurement gap length according to an embodiment of the present invention. As shown in Figure 9, the following steps are specifically included:
  • S 902 determining, by the primary base station, an initial time of the SFN of the primary base station and an initial time of the SFN of the secondary base station, determining an SFN deviation between the primary base station and the secondary base station;
  • the primary base station sends information to the UE; the information includes the SFN offset.
  • the secondary base station may also calculate the SFN offset and send the SFN offset to the UE.
  • the UE determines, according to whether the SFN deviation is within a first threshold, whether a frame boundary of the primary base station and the secondary base station is synchronized, and further determines a GAP length.
  • the first threshold is preferably 30. 26 ⁇ .
  • the length of the measured GAP is determined to be 6 ms.
  • the frame boundary of the primary base station and the secondary base station are not synchronized, that is, in a non-synchronous scenario, if the calculation error of the SFN deviation is not considered, or the calculation error of the SFN deviation is not greater than the second threshold, for example, 0.
  • the second length can be 7ms, that is, the length of the measured GAP is determined to be 7ms; if the calculation error of the SFN deviation is considered, and the calculation error of the SFN deviation is greater than the second threshold, the second length can be 8ms, that is, the measurement is determined.
  • the length of the GAP is 8ms.
  • the UE sends a message to the primary base station, where the determined length of the GAP is indicated. and / or
  • the UE sends a message to the secondary base station, where the determined length of the GAP is indicated. Or
  • the primary base station sends a message to the secondary base station, where the determined length of the GAP is indicated.
  • step 905 and the foregoing step 906 may be performed in parallel, or step 906 is performed first and then step 905 is performed.
  • the primary base station performs the SFN offset calculation and sends the SFN offset to the UE, so that the UE determines the selected GAP length as an example, but the fifth embodiment and the embodiment of the present invention.
  • the specific implementation process of the six methods for determining the length of the measurement gap GAP is not limited thereto.
  • the embodiment of the present invention provides a network device, which is used to implement the method for determining the length of the measurement gap GAP provided by the foregoing embodiment.
  • the device includes: a processing unit 1010 and a storage unit 1020.
  • the processing unit 1010 may be implemented by a processor or a processing board, and the storage unit 1020 may be specifically implemented by a memory.
  • the processing unit 1010 is configured to: Determining whether the primary base station and the secondary base station are synchronized;
  • the first length is less than the second length; the first length is 6 ms; and the second length is 7 ms or 8 ms.
  • the storage unit 102 0 is configured to store the GAP length.
  • the network device further includes a communication unit (not shown in the figure, only the second optional solution is shown in FIG. 10), and used with other network devices. Communication is performed; the communication unit can be implemented by a transceiver, a transceiver circuit, or the like.
  • the processing unit 1000 is further configured to acquire, by using the communication unit (not shown), indication information used to indicate whether the primary base station and the secondary base station are synchronized;
  • the processing unit 100 is specifically configured to determine, according to the indication information, whether the primary base station and the secondary base station are synchronized.
  • the processing unit 100 is further configured to acquire SFN deviation information used to indicate a system frame number SFN deviation between the primary base station and the secondary base station;
  • the processing unit 100 is specifically configured to determine, according to the SFN deviation information, whether the SFN deviation satisfies a synchronization condition, where the primary base station and the secondary base station are synchronized when the SFN deviation satisfies the synchronization condition. And when the SFN deviation does not satisfy the synchronization condition, the primary base station and the secondary base station are not synchronized.
  • the first network device may be specifically the primary base station or the secondary base station or the UE, and the synchronization condition includes:
  • the SFN deviation is zero
  • the processing unit 1010 is specifically configured to acquire the SFN deviation information according to an initial time of the SFN of the primary base station and an initial time of the SFN of the secondary base station; or, the network device further includes a communication unit 1040, For communicating with other network devices; wherein the communication unit 1040 can be implemented by a transceiver, a transceiver circuit, or the like.
  • the processing unit 1010 is specifically configured to acquire the SFN deviation information from the other network device by using the communication unit 1040, where the SFN deviation information is obtained according to an SFN of the primary base station and an SFN of the secondary base station. .
  • the network device further includes: an error acquiring unit 1060 and a second length determining unit 1070.
  • the error obtaining unit 1060 is configured to acquire a calculation error of the SFN deviation
  • the second length determining unit 1070 is configured to: when the calculation error of the SFN deviation is not greater than a second threshold, the second length is 7 ms. Or, when the calculation error of the SFN deviation is greater than the second threshold, the second length is 8 ms.
  • the network device further includes: a sending unit 1050.
  • the sending unit 1050 is configured to indicate the GAP length of the UE and/or the secondary base station, when the network device is specifically the primary base station;
  • the sending unit 1050 is configured to indicate the GAP length of the UE and/or the primary base station;
  • the sending unit 1050 is configured to indicate the GAP length of the primary base station and/or the secondary base station.
  • the apparatus for determining the length of the measurement gap GAP provided by the embodiment of the present invention, it may be determined whether the primary base station and the secondary base station are in a synchronization scenario, and the primary base station and the secondary base station are synchronized and unsynchronized under the dual connectivity scenario.
  • the appropriate measurement GAP length is determined based on the synchronous or non-synchronized scenario, and the waste of scheduling resources caused by improper selection of the GAP length is effectively avoided.
  • the embodiment of the present invention provides a network device, which is used to implement the method for determining the measurement gap GAP length provided by the foregoing Embodiment 2.
  • the network device includes: a network interface 1110, and a processor 1120. And memory 1130.
  • System bus 1140 is used to connect network interface 1110, processor 1120, and memory 1130.
  • the network device of this embodiment may exist in the primary base station or the secondary base station.
  • the network interface 1110 is used to communicate with the Internet of Things terminal, the Internet of Things access gateway, the bearer network, the Internet of Things service gateway, and the application server.
  • the processor 1120 can be a processor or a collective name for a plurality of processing elements.
  • the processor 1120 may be a central processing unit (CPU), an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • DSPs digital signal processors
  • FPGAs Field Programmable Gate Arrays
  • the memory 1130 may be a storage device or a collective name of a plurality of storage elements, and is used to store executable program codes or parameters, data, and the like required for operation of the base station. And the memory 1130 may include random access memory (RAM), and may also include non-volatile memory.
  • RAM random access memory
  • non-volatile memory such as disk storage, flash (Flash), etc.
  • System bus 1140 can be an industry standard architecture ( Industry Standard
  • the system bus 1140 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 13, but it does not mean that there is only one bus or one type of bus.
  • these software components are loaded into memory 1130 and then accessed by processor 1120 and execute the following instructions: Determining whether the primary base station and the secondary base station are synchronized;
  • the first length is 6 ms; the second length is 7 ms or 8 ms.
  • a message is sent to the user equipment UE, indicating the determined length of the GAP in the message.
  • the application can be used to cause the processor 1 120 to perform an instruction to determine whether the frame boundaries of the primary base station and the secondary base station are synchronized:
  • the application may be used to cause the processor 112 to perform an instruction to determine whether the primary base station and the secondary base station are synchronized:
  • the initial time of the SFN of the primary base station and the initial time of the SFN of the secondary base station determine an SFN deviation between the primary base station and the secondary base station;
  • the SFN deviation is not 0 or greater than the first threshold, it is determined that the primary base station and the secondary base station are out of synchronization.
  • the application may be used to cause the processor 112 to perform an instruction to determine whether the primary base station and the secondary base station are synchronized:
  • the information includes an SFN deviation
  • the application further includes instructions that can be used to cause the processor 1120 to perform the following process:
  • the second length is 7 ms; when the calculation error of the SFN deviation is greater than the second threshold, the second length is 8 ms.
  • the network device By using the network device provided by the embodiment of the present invention, it can be determined whether the primary base station and the secondary base station are in a synchronization scenario, and the synchronization and non-synchronization are performed when the primary base station and the secondary base station are synchronized and unsynchronized under the dual connectivity scenario.
  • the scenario determines the appropriate measurement GAP length, effectively avoiding waste of scheduling resources caused by improper selection of the GAP length.
  • the embodiment of the present invention provides a UE, which is used to implement the method for determining the measurement gap GAP length provided by the foregoing Embodiment 3.
  • the UE includes: a network interface 1210, a processor 1220, and a memory. 1230.
  • System bus 1240 is used to connect network interface 1210, processor 1220, and memory 1230.
  • the network interface 1210 is for communicating with the Internet of Things terminal, the Internet of Things access gateway, the bearer network, the Internet of Things service gateway, and the application server.
  • the processor 1220 can be a processor or a collective name for a plurality of processing elements.
  • the processor 1220 may be a central processing unit (CPU), or may be an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • DSPs digital signal processors
  • FPGAs Field Programmable Gate Arrays
  • the memory 1230 may be a storage device or a collective name of a plurality of storage elements, and is used to store executable program codes or parameters, data, and the like required for the base station to operate.
  • the memory 1430 may include random access memory (RAM), and may also include non-volatile memory. (non-volatile memory), such as disk storage, flash (Flash), etc.
  • System bus 1240 can be an industry standard architecture ( Industry Standard
  • the system bus 1240 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 12, but it does not mean that there is only one bus or one type of bus.
  • the SFN of the primary base station and the SFN of the secondary base station determine an SFN deviation between the primary base station and the secondary base station;
  • the receiving primary base station or the secondary base station sends a message, where the message includes an indication of the length of the GAP.
  • the UE receives a system message sent by the secondary base station, and acquires the secondary base station.
  • the application also includes instructions that can be used to cause the processor 1220 to perform the following process:
  • the UE provided by the embodiment of the present invention determines whether the primary base station and the secondary base station are in a synchronization scenario by calculating the SFN deviation, and fully considers the synchronization and non-synchronization of the primary base station and the secondary base station in the dual connectivity scenario, based on synchronization or
  • the asynchronous scene determines the appropriate measurement GAP length, effectively avoiding waste of scheduling resources caused by improper selection of the GAP length.
  • the embodiment of the present invention provides a network device, which is used to implement the method for determining the measurement gap GAP length provided in the foregoing Embodiment 5.
  • the network device includes: a network interface 1310, and a processor 1320. And memory 1330.
  • System bus 1340 is used to connect network interface 1310, processor 1320, and memory 1330.
  • the network device of this embodiment may exist in the primary base station or the secondary base station.
  • the network interface 1310 is used to communicate with the Internet of Things terminal, the Internet of Things access gateway, the bearer network, the Internet of Things service gateway, and the application server.
  • the processor 1320 may be a processor or a general term for a plurality of processing elements.
  • the processor 1320 may be a central processing unit (CPU), an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • DSPs digital signal processors
  • FPGAs Field Programmable Gate Arrays
  • the memory 1330 may be a storage device or a collective name of a plurality of storage elements, and is used to store executable program codes or parameters, data, and the like required for operation of the base station. And the memory 1330 may include random access memory (RAM), and may also include non-volatile memory.
  • RAM random access memory
  • non-volatile memory such as disk storage, flash (Flash), etc.
  • System bus 1340 can be an industry standard architecture ( Industry Standard
  • the system bus 1340 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 13, but it does not mean that there is only one bus or one type of bus.
  • the initial time of the SFN of the primary base station and the initial time of the SFN of the secondary base station determine an SFN deviation between the primary base station and the secondary base station;
  • the information includes the SFN deviation, and the UE is used to determine a GAP length according to the SFN deviation;
  • the receiving UE sends a message, where the message includes an indication of the length of the GAP.
  • the network device determines whether the primary base station and the secondary base station are in a synchronization scenario by calculating the SFN deviation, and is based on synchronization when the primary base station and the secondary base station are synchronized and unsynchronized in the dual connectivity scenario. Or the asynchronous scene determines the appropriate measurement GAP length, effectively avoiding waste of scheduling resources caused by improper selection of the GAP length.
  • the embodiment of the present invention provides a UE, which is used to implement the method for determining the measurement gap GAP length provided in Embodiment 6 above.
  • the UE includes: a network interface 1410, a processor 1420, and a memory. 1430.
  • System bus 1440 is used to connect network interface 1410, processor 1420, and memory 1430.
  • the network interface 1410 is for communicating with the Internet of Things terminal, the Internet of Things access gateway, the bearer network, the Internet of Things service gateway, and the application server.
  • the processor 1420 can be a processor or a collective name for a plurality of processing elements.
  • the processor 1420 may be a central processing unit (CPU), an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • DSPs digital signal processors
  • FPGAs Field Programmable Gate Arrays
  • the memory 1430 may be a storage device or a collective name of a plurality of storage elements. And used to store executable program code or parameters, data, etc. required for base station operation. Memory
  • RAM random access memory
  • non-volatile memory such as disk storage, flash (Flash), etc.
  • System Bus 1440 can be an industry standard architecture ( Industry Standard
  • the system bus 1440 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 14, but it does not mean that there is only one bus or one type of bus.
  • the length of the GAP is determined to be a second length; wherein the first length is 6 ms; and the second length is 7 ms or 8 ms.
  • the application further includes instructions operable to cause the processor 1620 to perform the following processes:
  • the second length is 7 ms; when the calculation error of the SFN deviation is greater than the second threshold, the second length is 8 ms.
  • the UE provided by the embodiment of the present invention determines whether the primary base station and the secondary base station are in a synchronization scenario by calculating the SFN deviation, and fully considers the synchronization and non-synchronization of the primary base station and the secondary base station in the dual connectivity scenario, based on synchronization or
  • the asynchronous scene determines the appropriate measurement GAP length, effectively avoiding waste of scheduling resources caused by improper selection of the GAP length.
  • the operation and control part may be implemented by a logic hardware, which may be a logic integrated circuit manufactured by using an integrated circuit process, which is not limited in this embodiment.
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically programmable ROM
  • EEPROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM, or technical field Any other form of storage medium known.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明实施例提供了一种确定测量间隙长度的方法和网络设备。所述方法包括以下步骤:第一网络设备确定主基站和辅基站是否同步(310);当所述主基站和所述辅基站同步时,所述第一网络设备确定所述测量间隙长度为第一长度(320);当所述主基站和所述辅基站不同步时,所述第一网络设备确定所述测量间隙长度为第二长度(330);其中,所述第一长度小于第二长度。

Description

说 明 书 确定测量间隙 GAP长度的方法和网络设备 技术领域
本发明涉及通信技术领域, 尤其涉及一种确定测量间隙 GAP长度的方法 和网络设备。 背景技术
无线蜂窝移动网络的无线接入技术正在不断的发展, 其目的是满足将来 用户对更高速率、 更广阔的覆盖和更大的容量的需求。 目前的技术演进正由
3G 系统向 3G 长期演进 ( Long Term Evolution, LTE), 并进一步向 LTE-Advanced系统演进。在 LTE系统中, 网络通过无线资源控制协议 ( Radio Resource Control, RRC )信令向连接状态的 UE发送测量配置信息, UE根据 测量配置信息的内容进行测量, 然后将测量结果上报给网络。 其中, 如果目 标小区的主频点与 UE的服务小区的主频点相同,则 UE的测量称为同频测量, 如果不同则称为异频测量。 UE在做异频测量的时候有可能需要把射频调整 到该频点所在位置, 因此无法在服务频点上收发数据。
由于 UE通常都只有一个接收机, 同一时刻只能在一个频点上接收信号。 在进行异频异系统切换之前, 首先要进行异频测量。 因此就需要一个测量间 隙 (GAP) , 也就是让 UE离开当前的频点到其它频点测量的时间段。 在异频 测量的时候, eNB将会配置异频测量的间隙(GAP), 具体由两个参数决定 即间隙样式 (gap pattern) 和间隙偏移量(gapOf f set)。 LTE 中共支持 1 种间隙样式, 分为样式 0和样式 1, 其测量间隙重复周期 (MGRP) 分别为 40ms和 80ms。每个 GAP起始位置,即系统帧号( SFN )和子帧号( subframe ) 满足如下关系: SFN mod T = FLOOR (gapOff set/10);
subf rame = gapOf f set mod 10;
其中 T = MGRP/10。
测量 GAP长度统一定义为 6ms,理由是为了和测量的目标小区同步上, 至少需要: 接收机的频点转换时间 (1ms ) + (主辅同步信号 +信号测量时 间长度 ) ( 5ms ) , 这些约为 6ms。 UE接收到来自 eNB的间隙样式和间隙 偏移量信息后, 会根据上述公式计算出进行异频测量的子帧位置起始点, 在起始子帧后连续 6个子帧内进行异频测量。 UE在 gap位置不进行物理下 行控制信道(Physical Downlink Control Channel, PDCCH)的接收, 也不 会发送上行数据, 因此网络不会在 GAP期间调度 UE。
目前, 正在讨论双连接 (DC Dual connectivity ) , 也就是一个用户 设备( User Equipment, UE ) 可以同时和主基站( MeNB )及辅基站( SeNB) 相连, 并传递数据, 从而提高 UE 的吞吐率。 在双连接的场景下, 会出现 调度资源浪费的情况。 发明内容
有鉴于此, 本发明实施例提供了一种确定测量间隙 GAP长度的方法和网 络设备, 所述方法能够用于在双连接的场景下确定适当的测量 GAP长度, 有 效避免因 GAP长度选取不当造成的调度资源浪费。
第一方面, 本发明实施例提供了一种确定测量间隙 GAP长度的方法, 所 述方法包括:
第一网络设备确定主基站和辅基站是否同步;
当所述主基站和所述辅基站同步时, 所述第一网络设备确定所述 GAP长 度为第一长度;
当所述主基站和所述辅基站不同步时, 所述第一网络设备确定所述 GAP 长度为第二长度; 其中, 所述第一长度小于所述第二长度。
在第一种可能的实现方式中, 所述方法还包括:
所述第一网络设备获取用于指示所述主基站和所述辅基站是否同步的指 示信息;
所述第一网络设备确定主基站和辅基站是否同步包括:
所述第一网络设备根据所述指示信息确定所述主基站和所述辅基站是否 同步。
在第二种可能的实现方式中, 所述方法还包括:
所述第一网络设备获取用于指示所述主基站和所述辅基站之间的系统帧 号 SFN偏差的 SFN偏差信息;
所述第一网络设备确定主基站和辅基站是否同步包括:
所述第一网络设备根据所述 SFN偏差信息确定所述 SFN偏差是否满足同 步条件; 其中, 当所述 SFN偏差满足所述同步条件时, 所述主基站和所述辅 基站同步, 当所述 SFN偏差不满足所述同步条件时, 所述主基站和所述辅基 站不同步。
结合第一方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述 SFN偏差为零; 或者,
所述 SFN偏差小于第一阔值。
结合第一方面的第二种或第三种可能的实现方式, 在第四种可能的实现 方式中,所述第一网络设备获取用于指示所述主基站和所述辅基站之间的 SFN 偏差的 SFN偏差信息包括:
所述第一网络设备 居所述主基站的 SFN 的初始时间和所述辅基站的 SFN的初始时间获取所述 SFN偏差信息; 或者,
所述第一网络设备从第二网络设备获取所述 SFN偏差信息, 所述 SFN偏 差信息是根据所述主基站的 SFN的初始时间和所述辅基站的 SFN的初始时间 获取的。 结合第一方面或者第一方面的第一种、 第二种、 第三种、 第四种可能的 实现方式, 在第五种可能的实现方式中, 所述第一网络设备为所述主基站、 所述辅基站或者所述 UE。
结合第一方面的第四种或第五种可能的实现方式, 在第六种可能的实现 方式中, 所述方法还包括:
所述第一网络设备获取所述 SFN偏差的计算误差;
当所述 SFN偏差的计算误差不大于第二阔值时, 所述第二长度为 7ms ; 或者,当所述 SFN偏差的计算误差大于所述第二阔值时,所述第二长度为 8ms。
第二方面, 本发明实施例提供了一种网络设备, 包括: 处理单元和存储 单元;
所述处理单元, 用于:
确定主基站和辅基站是否同步;
当所述主基站和所述辅基站同步时, 确定所述 GAP长度为第一长度为所 述 GAP长度;
当所述主基站和所述辅基站不同步时, 确定所述 GAP长度为第二长度为 所述 GAP长度;
其中, 所述第一长度小于所述第二长度;
所述存储单元, 用于存储所述 GAP长度。
在第一种可能的实现方式中, 所述网络设备还包括通信单元, 用于与其 他的网络设备进行通信;
所述处理单元还用于通过所述通信单元获取用于指示所述主基站和所述 辅基站是否同步的指示信息;
用于确定主基站和辅基站是否同步的所述处理单元具体用于根据所述指 示信息确定所述主基站和所述辅基站是否同步。
在第二种可能的实现方式中, 所述处理单元还用于获取用于指示所述主 基站和所述辅基站之间的系统帧号 SFN偏差的 SFN偏差信息; 用于确定所述主基站和所述辅基站是否同步的所述处理单元具体用于根 据所述 SFN偏差信息确定所述 SFN偏差是否满足同步条件;其中, 当所述 SFN 偏差满足所述同步条件时, 所述主基站和所述辅基站同步, 当所述 SFN偏差 不满足所述同步条件时, 所述主基站和所述辅基站不同步。
结合第二方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述同步条件包括:
所述 SFN偏差为零; 或者,
所述 SFN偏差小于第一阔值。
结合第二方面的第二种或第三种可能的实现方式, 在第四种可能的实现 方式中,
用于获取所述 SFN偏差信息的所述处理单元具体用于根据所述主基站的 SFN的初始时间和所述辅基站的 SFN的初始时间获取所述 SFN偏差信息; 或 者,
所述网络设备还包括通信单元, 用于与其他的网络设备进行通信; 用于获取所述 SFN偏差信息的所述处理单元具体用于通过所述通信单元 从所述其他的网络设备获取所述 SFN偏差信息, 所述 SFN偏差信息是根据所 述主基站的 SFN的初始时间和所述辅基站的 SFN的初始时间获取的。
结合第二方面或第二方面的第一种、 第二种、 第三种、 第四种可能的实 现方式, 在第五种可能的实现方式中, 所述网络设备为所述主基站、 所述辅 基站或者所述 UE。
结合第二方面的第四种或第五种可能的实现方式, 在第六种可能的实现 方式中, 所述网络设备还包括: 误差获取单元, 用于获取所述 SFN偏差的计 算误差;
第二长度确定单元,用于当所述 SFN偏差的计算误差不大于第二阔值时, 所述第二长度为 7ms ; 或者, 当所述 SFN偏差的计算误差大于所述第二阔值 时, 所述第二长度为 8ms。 通过应用本发明实施例提供的确定测量间隙 GAP长度的方法, 所述方法 充分考虑了双连接场景下主基站和辅基站同步和非同步的情况, 能够基于同 步或非同步的场景确定适当的测量 GAP长度, 有效避免因 GAP长度选取不当 造成的调度资源浪费。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例描述中所 需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发 明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前 提下, 还可以根据这些附图获得其他的附图。
图 1为本发明提供的 MeNB和 SeNB的帧边界同步的示意图;
图 2为本发明提供的 MeNB和 SeNB的帧边界不同步的示意图;
图 3为本发明实施例一提供的一种确定测量间隙长度的方法流程图; 图 4为本发明实施例二提供的一种确定测量间隙长度的方法流程图; 图 5为本发明实施例三提供的一种确定测量间隙长度的方法流程图; 图 6为本发明实施例四提供的一种确定测量间隙长度的方法信令图; 图 7为本发明实施例五提供的一种确定测量间隙长度的方法流程图; 图 8为本发明实施例六提供的一种确定测量间隙长度的方法流程图; 图 9为本发明实施例七提供的一种确定测量间隙长度的方法信令图; 图 10为本发明实施例八提供的一种网络设备的示意图;
图 11为本发明实施例九提供的一种网络设备的结构示意图;
图 12为本发明实施例十提供的一种 UE的结构示意图;
图 1 3为本发明实施例十一提供的一种网络设备的结构示意图; 图 14为本发明实施例十二提供的一种 UE的结构示意图。
下面通过附图和实施例, 对本发明实施例的技术方案做进一步的详细描 述。 具体实施方式
下面结合附图对本发明实施例进行详细描述。 应当明确, 所描述的实 施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的 实施例, 本领域普通技术人员在没有做出创造性劳动前提下所获得的所有 其他实施例, 都属于本发明保护的范围。 实施例一
本发明实施例一提供了一种确定测量间隙 GAP长度的方法, 可以应用于 双连接的场景中。 在双连接场景中, 一个用户设备(Us e r Equ i pment , UE ) 可以同时和主基站(MeNB )及辅基站(SeNB)相连, 并传递数据。 在双连接的 讨论中, 关于双连接的部署场景, 存在 MeNB和 SeNB同步和非同步的情况。 其中同步场景意味着两个基站( MeNB和 SeNB )间系统帧号对齐,子帧号对齐, 具体可以如图 1所示。 由于 MeNB和 SeNB的 SFN、 subf rame都是边界同步的, 因此对于同步场景来说, 原有的 gap机制可以重用。 然而对于非同步场景, MeNB和 SeNB可能系统帧号不对齐, 可能子帧号不对齐。 以如图 2所示情况 为例, MeNB的子帧 2-7 共 6ms是 UE的 GAP间隔, UE会在这 6ms进行异频点 测量。 由于 MeNB和 SeNB不同步, 对于 SeNB来说实际上子帧 1和 7的部分, UE会进行异频点测量。 由于 GAP期间 UE是不能接收服务频点信息的, 所以 UE会无法接收辅基站的子帧 1和子帧 7的信息,导致即使 UE并没有在子帧 1 和 7的全部时间进行测量, 该子帧也无法被用来进行信息传送。 因此对于双 连接下非同步的场景, 如果参考主基站的时序进行 6ms的 GAP配置, 那么辅 基站很可能由于子帧的部分时刻 UE在进行测量而调度失败,而统一进行 7ms 或者 8ms的 GAP配置, 会导致调度资源的浪费
图 3为本发明实施例一提供的确定测量间隙 GAP长度的方法流程图。 如 图 3所示, 所述方法包括: 步骤 31 0, 第一网络设备确定主基站和辅基站是否同步;
其中, 第一网络设备可以具体为双连接场景下的基站、 辅基站或者 UE, 对于不同的执行主体, 方案的具体执行过程略有所差别, 在后续各个方法实 施例中, 会分别以基站侧和 UE侧为执行主体进行详细说明。
双连接系统中, 主基站和辅基站会存在同步或不同步的情况。 当主基站 和辅基站同步时,执行步骤 320, 当主基站和辅基站不同步时,执行步骤 330。
步骤 320, 当所述主基站和所述辅基站同步时, 所述第一网络设备确定 所述 GAP长度为第一长度;
步骤 330, 当所述主基站和所述辅基站不同步时, 所述第一网络设备确 定所述 GAP长度为第二长度;
其中, 所述第一长度小于所述第二长度。 第一长度为主基站和辅基站同 步时的 GAP长度, 为 6ms ;第二长度为主基站和辅基站不同步时的 GAP长度, 在本发明实施例中设定为 7ms或 8ms。
可选的, 所述方法还包括:
所述第一网络设备获取用于指示所述主基站和所述辅基站之间的系统帧 号 SFN偏差的 SFN偏差信息;
具体的, 所述第一网络设备根据所述主基站的 SFN的初始时间和所述辅 基站的 SFN的初始时间获取所述 SFN偏差信息; 或者,
所述第一网络设备从第二网络设备获取所述 SFN偏差信息, 所述 SFN偏 差信息是根据所述主基站的 SFN和所述辅基站的 SFN获取的。
其中, 第二网络设备是指第一网络设备的对端设备。 例如, 当第一网络 设备为 UE时, 第二网络设备可以包括主基站和 /或辅基站; 当第一网络设备 为主基站时, 第二网络设备可以包括 UE和 /或辅基站; 当第一网络设备为辅 基站时, 第二网络设备可以包括主基站和 /或 UE。
进一步的, 第一网络设备还可以根据获取 SFN偏差的计算误差来确定第 二长度是选用 7ms还是 8ms。 可选的, 当所述 SFN偏差的计算误差不大于第 二阔值时, 所述第二长度为 7ms ; 或者, 当所述 SFN偏差的计算误差大于所 述第二阔值时, 所述第二长度为 8ms。 其中, 第二阔值可以优选的设定为 0. 5ms。
可选的, 所述方法还包括:
所述第一网络设备获取用于指示所述主基站和所述辅基站是否同步的指 示信息; 其中, 所述指示信息可以包括由主基站或辅基站获取的配置信息, 或者 UE通过计算 SFN偏差获得的主、 辅基站是否同步的信息。
所述第一网络设备确定主基站和辅基站是否同步包括:
所述第一网络设备根据所述指示信息确定所述主基站和所述辅基站是否 同步。
进一步的, 所述第一网络设备确定主基站和辅基站是否同步包括: 所述第一网络设备根据所述 SFN偏差信息确定所述 SFN偏差是否满足同 步条件; 其中, 当所述 SFN偏差满足所述同步条件时, 所述主基站和所述辅 基站同步, 当所述 SFN偏差不满足所述同步条件时, 所述主基站和所述辅基 站不同步。
此外, 在确定 GAP长度之后, 所述方法还包括:
所述第一网络设备指示第二网络设备所述 GAP长度。
通过应用本发明实施例提供的确定测量间隙 GAP长度的方法, 所述方法 充分考虑了双连接场景下主基站和辅基站同步和非同步的情况, 能够基于同 步或非同步的场景确定适当的测量 GAP长度, 有效避免因 GAP长度选取不当 造成的调度资源浪费。 下面, 将在实施例二和实施例三中, 分别以主基站 / 辅基站和 UE为执行主体, 对本发明实施例一提供的方法进行详细说明。 实施例二
本发明实施例二提供了一种确定测量间隙 GAP长度的方法, 图 4为本发 明实施例提供的确定测量间隙 GAP长度的方法流程图。 在本实施例中, 所述 方法的执行主体为基站, 具体可以是主基站 (MeNB )或者辅基站 (SeNB ) 。 除非在下述有特殊说明,本发明实施例二所提供的方法可以由 MeNB或者 SeNB 二者中任——个基站执行。 所述方法具体包括如下步骤:
步骤 41 0, 确定所述主基站和辅基站是否同步;
具体的, 确定所述主基站和辅基站的帧边界是否同步可以至少包括以下 三种方法。
方法一, 包括:
S 1-1 :获取所述主基站和辅基站的配置信息;
具体的, 主基站和辅基站的配置可以是通过网络管理或者通过对基站的 操作维护来进行的, 因此在基站的配置信息中就预先设置好主基站与辅基站 是否是同步的。
51- 2 :根据所述主基站和辅基站的配置信息确定所述主基站和辅基站的 帧边界是否同步。
具体的, 如果主基站和辅基站的系统帧号是对齐的, 也就是说主基站和 辅基站的系统帧号的帧边界是同步的, 则认为主基站和辅基站同步。
方法二, 包括:
52- 1 ,交互所述主基站的系统帧号 (SFN ) 的初始时间和所述辅基站系统 帧号 SFN的初始时间;
具体的, 网络中, 主基站和辅基站之间可以进行 SFN的交互, 通过交互, 主基站可以获取辅基站的 SFN的初始时间, 辅基站也可以获取主基站的 SFN 的初始时间。
S2-2 , 才艮据所述主基站的 SFN的初始时间和所述辅基站的 SFN的初始时 间确定所述主基站和辅基站之间的 SFN偏差;
具体的, 根据获得的主基站和辅基站的 SFN初始时间, 可以计算主基站 和辅基站之间的 SFN偏差。
S2-3,判断所述 SFN偏差是否为 0 ; 具体的, 如果是同步场景, 主基站和辅基站之间的 SFN偏差应当为 0。 当 SFN偏差为 0时, 即可认为主基站和辅基站的帧边界是同步的, 后续执行 S2-4。 如果 SFN偏差不为 0, 则认为主基站和辅基站的帧边界是不同步的, 后续执行 S2-5。 考虑到系统误差造成的影响, SFN偏差也可以是接近于 0的 一个很小的偏差, 比如 30.26μδ
S2-4, 当 SFN偏差为 0时, 确定所述主基站和辅基站的帧边界同步;
52- 5, 当 SFN偏差不为 0时,确定所述主基站和辅基站的帧边界不同步。 方法三, 包括:
53- 1, 接收 UE发送的信息; 所述信息中包括 SFN偏差;
具体的, UE可以读取主基站物理广播信道(PBCH) 隐式得到低 2bit位 的 SFN, 加上系统消息中的部分 SFN (高 8bit位)获得主基站的整个 SFN, 另外 UE可以读取辅基站 PBCH隐式得到低 2bit位的 SFN, 加上系统消息中的 部分 SFN (高 8bit位)获得辅基站的整个 SFN。 在 UE分别获取到主基站的 SFN和辅基站的 SFN之后, 可以进行 SFN偏差的计算。
S3-2, 判断所述 SFN偏差是否小于第一阔值;
具体的, 如果是同步场景, 主基站和辅基站之间的 SFN偏差应当为 0。 考虑到系统误差造成的影响, SFN偏差也可以是接近于 0的一个很小的偏差, 比如 30.26μδ, 我们称为第一阔值。 当 SFN偏差小于第一阔值时, 即可认为 主基站和辅基站的帧边界是同步的, 后续执行 S3-3。 如果 SFN偏差超出第一 阔值范围时, 则认为主基站和辅基站的帧边界是不同步的, 后续执行 S3-4。
S3-3, 当 SFN偏差小于第一阔值时, 确定所述主基站和辅基站的帧边界 同步;
S3-4, 当 SFN偏差不小于第一阔值时, 确定所述主基站和辅基站的帧边 界不同步。
基于上述方法, 如果主基站和所述辅基站的帧边界同步时, 执行下述步 骤 420, 如果不同步则执行步骤 430。 此外, 如果已经通过方法一或者方法二获知当前的网络场景是非同步场 景的情况下, 主基站可以发送指令信息, 通知 UE去读取辅基站的系统消息, 获取辅基站的 SFN。 如果是同步场景, 主基站可以发送信息通知 UE不去获取 辅基站的 SFN。
步骤 420, 当所述主基站和所述辅基站同步时, 确定 GAP长度为第一长 度;
具体的, 所述第一长度具体为 6ms。
当所述主基站和所述辅基站的帧边界同步时, 即在同步场景下, 确定测 量 GAP的长度为 6ms。
在确定 GAP长度后, 继续执行步骤 440。
步骤 430, 当所述主基站和所述辅基站的帧边界不同步时, 确定 GAP长 度为第二长度;
具体的, 所述第二长度具体可以为 7ms或者 8ms。
当所述主基站和所述辅基站的帧边界不同步时, 即在非同步场景下, 如 果不考虑 SFN偏差的计算误差, 或者 SFN偏差的计算误差不大于第二阔值, 例如 0. 5ms时, 第二长度可以为 7ms, 即确定测量 GAP的长度为 7ms ; 如果考 虑 SFN偏差的计算误差, 并且 SFN偏差的计算误差大于第二阔值时, 第二长 度可以为 8ms, 即确定测量 GAP的长度为 8ms。 在确定 GAP长度后, 继续执行 步骤 440。
需要说明的是, 如果对于同步场景和非同步场景不分别考虑测量 GAP的 长度, 也可以通过将 GAP长度设定为最长的 GAP间隔长度来实现双连接下的 与主基站的射频收发和对辅基站的异频测量。 但是为了保证 UE的异频测量, UE和基站只能按照最长的 GAP间隔长度使用, 比如 7ms或者 8ms。 但是这样 对于不需要延长 GAP长度的同步场景来说, 会造成调度资源的浪费。 以 40ms 周期的 GAP配置为例, 在同步场景下如果釆用 7ms的 GAP长度, 会浪费 2. 5% 的调度机会, 如果釆用 8ms的 GAP长度, 则会浪费 5%的调度机会。 但如果始 终使用 6ms的 GAP , 对于非同步场景的情况, 如果参考主基站的时序进行 GAP 配置, 那么辅基站很可能由于子帧的部分时刻 UE在进行测量而调度失败。
步骤 440, 向用户设备 UE发送消息, 在所述消息中指示确定的所述 GAP 长度。
具体的,确定 GAP长度的主基站或者辅基站,通过向 UE发送无线资源控 制协议( Rad i o Re source Cont ro l , RRC )消息或者介质访问控制( Med ia Acces s Cont ro l , MAC ) 消息等, 在所述消息中指示所选用的 GAP长度的信息。
本发明实施例提供的确定测量间隙 GAP长度的方法, 可以通过基站来判 断主基站和辅基站是否处于同步场景, 从而确定 UE测量所选用的 GAP长度。 所述方法充分考虑了双连接场景下主基站和辅基站同步和非同步的情况, 能 够基于同步或非同步的场景确定适当的测量 GAP长度, 有效避免因 GAP长度 选取不当造成的调度资源浪费。 实施例三
本发明实施例三提供了一种确定测量间隙 GAP长度的方法, 图 5为本发 明实施例提供的确定测量间隙 GAP长度的方法流程图。 在本实施例中, 所述 方法的执行主体为上述实施二中的主基站和辅基站进行通信的 UE。 所述方法 具体包括如下步骤:
步骤 51 0, UE接收主基站发送的系统消息, 获取所述主基站的系统帧号 SFN;
具体的, SFN可以是 UE解 PBCH隐式获得的部分 SFN加上从系统消息获 取的部分 SFN。 具体同上述 S 3-l, 此处不再赘述。
步骤 520,所述 UE接收辅基站发送的系统消息,获取所述辅基站的 SFN; 可选的, UE是否获取辅基站的 SFN,可以是根据主基站的指令来执行的。 在一个例子中, 如果主基站已知当前的网络配置为非同步场景, 则 UE 接收主基站发送的指令信息, 根据该指令信息获取辅基站的 SFN。 在另一个例子中, 如果主基站已知当前的网络配置为同步场景, 则主基 站不向 UE发送获取辅基站 SFN的指令信息。
步骤 530, 根据所述主基站的 SFN和所述辅基站的 SFN确定所述主基站 和辅基站之间的 SFN偏差。
具体的, 在 UE获取主基站和辅基站各自的 SFN之后, UE计算主基站和 辅基站之间的 SFN偏差。
步骤 540,向所述主基站和 /或辅基站分别发送信息;所述信息中包括 SFN 偏差。
具体的, UE将计算得到的 SFN偏差分别发送给主基站和 /或辅基站, 用 以主基站和 /或辅基站根据 SFN 系统偏差确定主基站和辅基站的帧边界是否 同步, 进而确定 GAP长度。
步骤 550, UE接收主基站或辅基站发送消息, 所述消息中包括所述 GAP 长度的指示。
本发明实施例提供的确定测量间隙 GAP长度的方法,通过 UE获取主基站 和辅基站的 SFN并计算 SFN偏差发送给主基站或辅基站, 从而使得基站来判 断主基站和辅基站是否处于同步场景, 进而确定 UE测量所选用的 GAP长度。 所述方法充分考虑了双连接场景下主基站和辅基站同步和非同步的情况, 能 够基于同步或非同步的场景确定适当的测量 GAP长度, 有效避免因 GAP长度 选取不当造成的调度资源浪费。 实施例四
前述实施例分别以主基站或辅基站、 UE为主体, 说明了实现确定测量间 隙长度的方法过程。 进一步地, 前述实施例二、 三描述的实现过程可通过图 6所示的信令图完成, 图 6 为本发明实施例提供的确定测量间隙长度的方法 信令图。 如图 6所示, 具体包括以下步骤:
S601 , UE接收主基站发送的系统消息, 获取所述主基站的 SFN; 5602 , UE接收辅基站发送的系统消息, 获取所述辅基站的 SFN;
5603 , UE根据所述主基站的 SFN和所述辅基站的 SFN确定所述主基站和 辅基站之间的 SFN偏差;
5604 , UE向所述主基站和 /或辅基站分别发送信息; 所述信息中包括 SFN 偏差;
在其他可能的实现方案中, SFN 偏差的计算也可以由辅基站进行, 并发 送给主基站。
5605 , 主基站根据所述 SFN偏差是否小于第一阔值, 确定所述主基站和 所述辅基站的帧边界是否同步, 进而确定 GAP长度;
具体的, 如果是同步场景, 主基站和辅基站之间的 SFN偏差应当为 0。 考虑到系统误差造成的影响, SFN偏差也可以是接近于 0的一个很小的偏差, 比如前述的第一阔值: 30. 26μδ。 当 SFN偏差小于第一阔值时, 确定所述主基 站和辅基站的帧边界同步; 当 SFN偏差不小于第一阔值时, 确定所述主基站 和辅基站的帧边界不同步。
当所述主基站和所述辅基站的帧边界同步时, 即在同步场景下, 确定测 量 GAP的长度为 6ms。
当所述主基站和所述辅基站的帧边界不同步时, 即在非同步场景下, 如 果不考虑 SFN偏差的计算误差, 或者 SFN偏差的计算误差不大于第二阔值, 例如 0. 5ms时, 第二长度可以为 7ms, 即确定测量 GAP的长度为 7ms ; 如果考 虑 SFN偏差的计算误差, 并且 SFN偏差的计算误差大于第二阔值时, 第二长 度可以为 8ms, 即确定测量 GAP的长度为 8ms。
5606 , 主基站向用户设备 UE发送消息, 在所述消息中指示确定的所述 GAP长度。
上述各步骤的具体执行过程已经在前述实施例二和实施例三中分别进行 了说明, 此处不再——赘述。
需要说明的是, 在本实施例四中, 仅以 UE进行 SFN偏差计算, 以主基站 确定选取 GAP长度为例进行了具体说明, 但本发明实施例一至实施例三所提 供的确定测量间隙 GAP长度的方法的具体实现过程并不限定于此。 实施例五
本发明实施例五提供了一种确定测量间隙 GAP长度的方法, 图 7为本发 明实施例提供的确定测量间隙 GAP长度的方法流程图。 在本实施例中, 所述 方法的执行主体为基站, 具体可以是主基站 (MeNB )或者辅基站 (SeNB ) 。 除非在下述有特殊说明, 本发明实施例所提供的方法可以由 MeNB或者 SeNB 二者中任意一个基站执行。 所述方法具体包括如下步骤:
步骤 71 0,交互主基站的系统帧号 SFN的初始时间和辅基站系统帧号 SFN 的初始时间;
具体的, 网络中, 主基站和辅基站之间可以进行 SFN初始时间的交互, 通过交互, 主基站可以获取辅基站的 SFN的初始时间, 辅基站也可以获取主 基站的 SFN的初始时间。
步骤 720, 根据所述主基站的 SFN的初始时间和所述辅基站的 SFN的初 始时间确定所述主基站和辅基站之间的 SFN偏差;
具体的, 根据获得的主基站和辅基站的 SFN初始时间, 可以计算主基站 和辅基站之间的 SFN偏差。
步骤 730, 向所述 UE发送信息; 所述信息中包括所述 SFN偏差, 用以所 述 UE根据所述 SFN偏差确定 GAP长度;
具体的, 将计算得到的 SFN偏差发送给 UE, 从而 UE可以根据 SFN偏差 确定网络配置为同步场景或是非同步场景, 即主基站和辅基站的帧边界是否 同步。 进而 UE可以据此确定 GAP长度。
步骤 740, 接收 UE发送消息, 所述消息中包括所述 GAP长度的指示。 具体的, UE可以向主基站或者辅基站发送 RRC消息或者介质访问控制 MAC 消息等, 在所述消息中指示所选用的 GAP长度的信息, 从而告知主基站或辅 基站 UE所选用的 GAP长度。
本发明实施例提供的确定测量间隙 GAP长度的方法, 通过主基站或辅基 站计算二者的 SFN偏差发送给 UE, 从而使得 UE来判断主基站和辅基站是否 处于同步场景, 进而确定 UE测量所选用的 GAP长度。 所述方法充分考虑了双 连接场景下主基站和辅基站同步和非同步的情况, 能够基于同步或非同步的 场景确定适当的测量 GAP长度, 有效避免因 GAP长度选取不当造成的调度资 源浪费。 实施例六
本发明实施例六提供了一种确定测量间隙 GAP长度的方法, 图 8为本 发明实施例提供的确定测量间隙 GAP长度的方法流程图。 在本实施例中, 所述方法的执行主体为上述实施五中的主基站和辅基站进行通信的 UE。所 述方法具体包括如下步骤:
步骤 81 0, 获取主基站的系统帧号 SFN与辅基站的 SFN之间的 SFN偏 差;
具体的, UE接收主基站或者辅基站发送的信息, 由所述信息中获取所 述 SFN偏差。
步骤 820, 确定所述 SFN偏差是否在第一阔值范围内;
具体的, 如果是同步场景, 主基站和辅基站之间的 SFN偏差应当为 0。 考虑到传输时延造成的误差问题, 可以认为当 SFN偏差在第一阔值范围内 时, 即可认为主基站和辅基站的帧边界是同步的, 后续执行步骤 8 30, 如 果 SFN偏差超出第一阔值范围时, 则认为主基站和辅基站的帧边界是不同 步的, 后续执行步骤 840。 其中, 第一阔值的大小在业内目前通用为 30. 26 μπι。
步骤 8 30, 当所述 SFN偏差在第一阔值范围内时, 确定所述 GAP长度 为第一长度; 具体的, 所述第一长度具体为 6ms。
当所述主基站和所述辅基站的帧边界同步时, 即在同步场景下, 确定 测量 GAP的长度为 6ms。
在确定 GAP长度后, 继续执行步骤 850。
步骤 840, 当所述 SFN偏差超出第一阔值范围时, 确定所述 GAP长度 为第二长度;
具体的, 所述第二长度具体可以为 7ms或者 8ms。
当所述主基站和所述辅基站的帧边界不同步时, 即在非同步场景下, 如果不考虑 SFN偏差的计算误差, 或者 SFN偏差的计算误差不大于第二阔 值, 例如 0. 5ms时, 第二长度可以为 7ms, 即确定测量 GAP的长度为 7ms ; 如果考虑 SFN偏差的计算误差,并且 SFN偏差的计算误差大于第二阔值时, 第二长度可以为 8ms, 即确定测量 GAP的长度为 8ms。 在确定 GAP长度后, 继续执行步骤 850。
需要说明的是, 如果对于同步场景和非同步场景不分别考虑测量 GAP 的长度, 也可以通过将 GAP长度设定为最长的 GAP间隔长度来实现双连接 下的与主基站的射频收发和对辅基站的异频测量。 但是为了保证 UE的异 频测量, UE和基站只能按照最长的 GAP间隔长度使用,比如 7ms或者 8ms。 但是这样对于不需要延长 GAP长度的同步场景来说, 会造成调度资源的浪 费。 以 40ms周期的 GAP配置为例, 在同步场景下如果釆用 7ms的 GAP长 度, 会浪费 2. 5%的调度机会, 如果釆用 8ms的 GAP长度, 则会浪费 5%的 调度机会。 但如果始终使用 6ms的 GAP , 对于非同步场景的情况, 如果参 考主基站的时序进行 GAP配置,那么辅基站很可能由于子帧的部分时刻 UE 在进行测量而调度失败。
步骤 850, 向所述主基站和辅基站分别发送消息, 在所述消息中指示 确定的所述 GAP长度。
具体的, 确定 GAP长度的 UE向主基站和, 或辅基站发送 RRC消息或 者 MAC消息等, 在所述消息中指示所选用的 GAP长度的信息。
本发明实施例提供的确定测量间隙 GAP长度的方法, 可以通过 UE来 判断主基站和辅基站是否处于同步场景, 从而确定 UE测量所选用的 GAP 长度。 所述方法充分考虑了双连接场景下主基站和辅基站同步和非同步的 情况, 能够基于同步或非同步的场景确定适当的测量 GAP长度, 有效避免 因 GAP长度选取不当造成的调度资源浪费。 实施例七
前述实施例五和六分别以主基站或辅基站、 UE为主体,说明了实现确 定测量间隙长度的方法过程。 进一步地, 前述实施例五和六描述的实现过 程可通过图 9所示的信令图完成, 图 9为本发明实施例提供的确定测量间 隙长度的方法信令图。 如图 9所示, 具体包括以下步骤:
S 901 , 主基站和辅基站相互交互主基站的系统帧号 SFN的初始时间和 辅基站系统帧号 SFN的初始时间;
S 902 , 主基站 居所述主基站的 SFN的初始时间和所述辅基站的 SFN 的初始时间确定所述主基站和辅基站之间的 SFN偏差;
S 90 3 , 主基站向 UE发送信息; 所述信息中包括所述 SFN偏差; 具体的, 在另一些可能的实现方式中, 也可以由辅基站来计算 SFN偏 差并发送给 UE。
S 904 , UE根据所述 SFN偏差是否在第一阔值范围内, 确定所述主基站 和所述辅基站的帧边界是否同步, 进而确定 GAP长度;
其中, 当 SFN偏差在第一阔值范围内时, 确定所述主基站和辅基站的 帧边界同步; 当 SFN偏差超出第一阔值范围内时, 确定所述主基站和辅基 站的帧边界不同步。 所述第一阔值优选为 30. 26 μπι。
当所述主基站和所述辅基站的帧边界同步时, 即在同步场景下, 确定 测量 GAP的长度为 6ms。 当所述主基站和所述辅基站的帧边界不同步时, 即在非同步场景下, 如果不考虑 SFN偏差的计算误差, 或者 SFN偏差的计算误差不大于于第二 阔值,例如 0. 5ms时,第二长度可以为 7ms,即确定测量 GAP的长度为 7ms ; 如果考虑 SFN偏差的计算误差,并且 SFN偏差的计算误差大于第二阔值时, 第二长度可以为 8ms, 即确定测量 GAP的长度为 8ms。
S 905, UE向主基站发送消息,在所述消息中指示确定的所述 GAP长度。 和 /或
S 906 , UE向辅基站发送消息,在所述消息中指示确定的所述 GAP长度。 或
S907, 主基站向辅基站发送消息, 在所述消息中指示确定的所述 GAP 长度。
其中, 上述步骤 905和上述步骤 906可以并行执行, 或者先执行步骤 906再执行步骤 905。
上述各步骤的具体执行过程已经在前述实施例五和实施例六中分别 进行了说明, 此处不再——赘述。
需要说明的是, 在本实施例六中, 仅以主基站进行 SFN偏差计算并发 送 SFN偏差给 UE, 以使 UE确定选取 GAP长度为例进行了具体说明, 但本 发明实施例五和实施例六所提供的确定测量间隙 G A P长度的方法的具体实 现过程并不限定于此。 实施例八
相应的, 本发明实施例提供了一种网络设备, 用于实现上述实施例一 提供的确定测量间隙 GAP长度的方法, 如图 10所示, 所述装置包括: 处 理单元 1010和存储单元 1020。处理单元 1010可以具体由处理器或者处理 单板实现, 存储单元 1020可以具体由存储器实现。
其中, 所述处理单元 1010, 用于: 确定主基站和辅基站是否同步;
当所述主基站和所述辅基站同步时, 确定所述 GAP长度为第一长度为 所述 GAP长度;
当所述主基站和所述辅基站不同步时, 确定所述 GAP长度为第二长度 为所述 GAP长度;
其中, 所述第一长度小于所述第二长度; 所述第一长度为 6ms ;所述第 二长度为 7ms或 8ms。
所述存储单元 1 02 0, 用于存储所述 GAP长度。
在第一种可选的方案中,所述网络设备还包括通信单元(图中未示出, 在图 1 0中仅示出了第二种可选的方案) , 用于与其他的网络设备进行通 信; 通信单元可以由收发机、 收发电路等实现。
所述处理单元 1 01 0还用于通过所述通信单元 (图中未示出) 获取用 于指示所述主基站和所述辅基站是否同步的指示信息;
所述处理单元 1 01 0具体用于根据所述指示信息确定所述主基站和所 述辅基站是否同步。
在第二种可选的方案中, 所述处理单元 1 01 0还用于获取用于指示所 述主基站和所述辅基站之间的系统帧号 SFN偏差的 SFN偏差信息;
所述处理单元 1 01 0具体用于根据所述 SFN偏差信息确定所述 SFN偏 差是否满足同步条件; 其中, 当所述 SFN偏差满足所述同步条件时, 所述 主基站和所述辅基站同步, 当所述 SFN偏差不满足所述同步条件时, 所述 主基站和所述辅基站不同步。
进一步的, 所述第一网络设备可以具体为所述主基站或者所述辅基站 或者所述 UE,所述同步条件包括:
如果所述网络设备为所述主基站或者所述辅基站,所述 SFN偏差为零; 或者,
如果所述网络设备为所述 UE, 所述 SFN偏差小于第一阔值。 进一步的, 所述处理单元 1010具体用于根据所述主基站的 SFN的初 始时间和所述辅基站的 SFN的初始时间获取所述 SFN偏差信息; 或者, 所述网络设备还包括通信单元 1040, 用于与其他的网络设备进行通 信; 其中通信单元 1040可以由收发机、 收发电路等实现。
所述处理单元 1010具体用于通过所述通信单元 1040从所述其他的网 络设备获取所述 SFN偏差信息,所述 SFN偏差信息是根据所述主基站的 SFN 和所述辅基站的 SFN获取的。
可选的, 所述网络设备还包括: 误差获取单元 1060和第二长度确定 单元 1070。
其中, 误差获取单元 1060, 用于获取所述 SFN偏差的计算误差; 第二长度确定单元 1070,用于当所述 SFN偏差的计算误差不大于第二 阔值时, 所述第二长度为 7ms; 或者, 当所述 SFN偏差的计算误差大于所 述第二阔值时, 所述第二长度为 8ms。
可选的, 所述网络设备还包括: 发送单元 1050。
其中, 当所述网络设备具体为所述主基站时, 发送单元 1050用于指 示所述 UE和 /或所述辅基站所述 GAP长度;
当所述网络设备具体为所述辅基站时, 发送单元 1050用于指示所述 UE和 /或所述主基站所述 GAP长度;
当所述网络设备具体为所述 UE时, 发送单元 1050用于指示所述主基 站和 /或所述辅基站所述 GAP长度。
通过应用本发明实施例提供的确定测量间隙 GAP长度的装置, 可以通 过判断主基站和辅基站是否处于同步场景, 在充分考虑了双连接场景下主 基站和辅基站同步和非同步的情况下, 基于同步或非同步的场景确定适当 的测量 GAP长度, 有效避免因 GAP长度选取不当造成的调度资源浪费。 实施例九
相应的, 本发明实施例提供了一种网络设备, 用于实现上述实施例二 提供的确定测量间隙 GAP长度的方法, 如图 11所示, 所述网络设备包括: 网络接口 1110、 处理器 1120和存储器 1130。 系统总线 1140用于连接网 络接口 1110、 处理器 1120和存储器 1130。 本实施例的网络设备, 可以存 在于主基站或辅基站中。
网络接口 1110用于与物联网终端、 物联网接入网关、承载网、 物联网服 务网关和应用服务器通信。
处理器 1120可以是一个处理器, 也可以是多个处理元件的统称。 例 如, 处理器 1120可以是中央处理器 ( Central Processing Unit, CPU) , 也可以是特定集成电路 (Application Specific Integrated Circuit, ASIC) , 或者是被配置成实施本发明实施例的一个或多个集成电路, 例如: 一个或多个敖处理器 (digital signal processor, DSP ) , 或, 一个或 者多个现场可编程门阵列 (Field Programmable Gate Array, FPGA ) 。
存储器 1130可以是一个存储装置, 也可以是多个存储元件的统称, 且用于存储可执行程序代码或基站运行所需要参数、 数据等。 且存储器 1130可以包括随机存储器 (RAM) , 也可以包括非易失性存储器
( non-volatile memory ) , 例如磁盘存储器, 闪存 (Flash) 等。
系统总线 1140可以是工业标准体系结构 ( Industry Standard
Architecture, ISA)总线、 夕卜部设备互连( Peripheral Component, PCI ) 总线或扩展工业标准体系结构 ( Extended Industry Standard
Architecture, EISA) 总线等。 系统总线 1140可以分为地址总线、 数据 总线、 控制总线等。 为便于表示, 图 13中仅用一条粗线表示, 但并不表 示仅有一根总线或一种类型的总线。
在启动时,这些软件组件被加载到存储器 1130中,然后被处理器 1120 访问并执行以下指令: 确定所述主基站和辅基站是否同步;
当所述主基站和所述辅基站同步时, 确定 GAP长度为第一长度; 当所述主基站和所述辅基站的帧边界不同步时, 确定 GAP长度为第二 长度; 其中, 所述第一长度为 6ms ;所述第二长度为 7ms或 8ms。
向用户设备 UE发送消息, 在所述消息中指示确定的所述 GAP长度。 所述应用程序可用于使所述处理器 1 1 2 0执行确定所述主基站和辅基 站的帧边界是否同步的指令为:
获取所述主基站和辅基站的配置信息;
根据所述主基站和辅基站的配置信息确定所述主基站和辅基站是否 同步。
可选的, 所述应用程序可用于使所述处理器 1 1 20执行确定所述主基 站和辅基站是否同步的指令为:
交互所述主基站的系统帧号 SFN的初始时间和所述辅基站系统帧号 SFN的初始时间;
居所述主基站的 SFN的初始时间和所述辅基站的 SFN的初始时间确 定所述主基站和辅基站之间的 SFN偏差;
当所述 SFN偏差为 0或者小于第一阔值时, 确定所述主基站和辅基站 同步;
当所述 SFN偏差不为 0或者大于第一阔值时, 确定所述主基站和辅基 站不同步。
可选的, 所述应用程序可用于使所述处理器 1 1 20执行确定所述主基 站和辅基站是否同步的指令为:
接收 UE发送的信息; 所述信息中包括 SFN偏差;
当所述 SFN偏差在第一阔值范围内时,确定所述主基站和辅基站同步; 当所述 SFN偏差超出第一阔值范围时, 确定所述主基站和辅基站不同 步。 进一步可选的, 所述应用程序还包括可用于使所述处理器 1120执行 以下过程的指令:
获取所述 SFN偏差的计算误差;
当所述 SFN偏差的计算误差不大于第二阔值时,所述第二长度为 7ms; 当所述 SFN偏差的计算误差大于第二阔值时, 所述第二长度为 8ms。
通过应用本发明实施例提供的网络设备, 可以通过判断主基站和辅基 站是否处于同步场景, 在充分考虑了双连接场景下主基站和辅基站同步和 非同步的情况下, 基于同步或非同步的场景确定适当的测量 GAP长度, 有 效避免因 GAP长度选取不当造成的调度资源浪费。 实施例十
相应的, 本发明实施例提供了一种 UE, 用于实现上述实施例三提供的 确定测量间隙 GAP长度的方法,如图 12所示,所述 UE包括:网络接口 1210、 处理器 1220和存储器 1230。 系统总线 1240用于连接网络接口 1210、 处 理器 1220和存储器 1230。
网络接口 1210用于与物联网终端、 物联网接入网关、 承载网、 物联 网服务网关和应用服务器通信。
处理器 1220可以是一个处理器, 也可以是多个处理元件的统称。 例 如, 处理器 1220可以是中央处理器 ( Central Processing Unit, CPU) , 也可以是特定集成电路 ( Application Specific Integrated Circuit, ASIC) , 或者是被配置成实施本发明实施例的一个或多个集成电路, 例如: 一个或多个敖处理器 (digital signal processor, DSP ) , 或, 一个或 者多个现场可编程门阵列 (Field Programmable Gate Array, FPGA ) 。
存储器 1230可以是一个存储装置, 也可以是多个存储元件的统称, 且用于存储可执行程序代码或基站运行所需要参数、 数据等。 且存储器 1430可以包括随机存储器 (RAM) , 也可以包括非易失性存储器 ( non-volatile memory ) , 例如磁盘存储器, 闪存 (Flash) 等。
系统总线 1240可以是工业标准体系结构 ( Industry Standard
Architecture, ISA)总线、 夕卜部设备互连( Peripheral Component, PCI ) 总线或扩展工业标准体系结构 ( Extended Industry Standard
Architecture, EISA) 总线等。 系统总线 1240可以分为地址总线、 数据 总线、 控制总线等。 为便于表示, 图 12中仅用一条粗线表示, 但并不表 示仅有一根总线或一种类型的总线。
在启动时,这些软件组件被加载到存储器 1230中,然后被处理器 1220 访问并执行以下指令:
接收主基站发送的系统消息, 获取所述主基站的系统帧号 SFN;
接收辅基站发送的系统消息, 获取所述辅基站的 SFN;
居所述主基站的 SFN和所述辅基站的 SFN确定所述主基站和辅基站 之间的 SFN偏差;
向所述主基站和 /或辅基站分别发送信息; 所述信息中包括 SFN偏差, 用以所述主基站和 /或辅基站根据所述 SFN偏差确定 GAP长度;
接收主基站或辅基站发送消息,所述消息中包括所述 GAP长度的指示。 可选的, 在所述 UE接收辅基站发送的系统消息, 获取所述辅基站的
SFN之前,所述应用程序还包括可用于使所述处理器 1220执行以下过程的 指令:
接收所述主基站发送的指令信息;
根据所述指令信息获取辅基站的 SFN。
通过应用本发明实施例提供的 UE,通过计算 SFN偏差从而判断主基站 和辅基站是否处于同步场景, 在充分考虑了双连接场景下主基站和辅基站 同步和非同步的情况下, 基于同步或非同步的场景确定适当的测量 GAP长 度, 有效避免因 GAP长度选取不当造成的调度资源浪费。 实施例十一
相应的, 本发明实施例提供了一种网络设备, 用于实现上述实施例五 提供的确定测量间隙 GAP长度的方法, 如图 13所示, 所述网络设备包括: 网络接口 1310、 处理器 1320和存储器 1330。 系统总线 1340用于连接网 络接口 1310、 处理器 1320和存储器 1330。 本实施例的网络设备, 可以存 在于主基站或辅基站中。
网络接口 1310用于与物联网终端、 物联网接入网关、 承载网、 物联 网服务网关和应用服务器通信。
处理器 1320可以是一个处理器, 也可以是多个处理元件的统称。 例 如, 处理器 1320可以是中央处理器 ( Central Processing Unit, CPU) , 也可以是特定集成电路 (Application Specific Integrated Circuit, ASIC) , 或者是被配置成实施本发明实施例的一个或多个集成电路, 例如: 一个或多个敖处理器 (digital signal processor, DSP ) , 或, 一个或 者多个现场可编程门阵列 (Field Programmable Gate Array, FPGA ) 。
存储器 1330可以是一个存储装置, 也可以是多个存储元件的统称, 且用于存储可执行程序代码或基站运行所需要参数、 数据等。 且存储器 1330可以包括随机存储器 (RAM) , 也可以包括非易失性存储器
( non-volatile memory ) , 例如磁盘存储器, 闪存 (Flash) 等。
系统总线 1340可以是工业标准体系结构 ( Industry Standard
Architecture, ISA)总线、 夕卜部设备互连( Peripheral Component, PCI ) 总线或扩展工业标准体系结构 ( Extended Industry Standard
Architecture, EISA) 总线等。 系统总线 1340可以分为地址总线、 数据 总线、 控制总线等。 为便于表示, 图 13中仅用一条粗线表示, 但并不表 示仅有一根总线或一种类型的总线。
在启动时,这些软件组件被加载到存储器 1330中,然后被处理器 1320 访问并执行以下指令: 交互主基站的系统帧号 SFN的初始时间和辅基站系统帧号 SFN的初始 时间;
居所述主基站的 SFN的初始时间和所述辅基站的 SFN的初始时间确 定所述主基站和辅基站之间的 SFN偏差;
向所述 UE发送信息; 所述信息中包括所述 SFN偏差, 用以所述 UE根 据所述 SFN偏差确定 GAP长度;
接收 UE发送消息, 所述消息中包括所述 GAP长度的指示。
通过应用本发明实施例提供的网络设备, 通过计算 SFN偏差从而判断 主基站和辅基站是否处于同步场景, 在充分考虑了双连接场景下主基站和 辅基站同步和非同步的情况下, 基于同步或非同步的场景确定适当的测量 GAP长度, 有效避免因 GAP长度选取不当造成的调度资源浪费。 实施例十二
相应的, 本发明实施例提供了一种 UE, 用于实现上述实施例六提供的 确定测量间隙 GAP长度的方法,如图 14所示,所述 UE包括:网络接口 1410、 处理器 1420和存储器 1430。 系统总线 1440用于连接网络接口 1410、 处 理器 1420和存储器 1430。
网络接口 1410用于与物联网终端、 物联网接入网关、 承载网、 物联 网服务网关和应用服务器通信。
处理器 1420可以是一个处理器, 也可以是多个处理元件的统称。 例 如, 处理器 1420可以是中央处理器 (Central Processing Unit, CPU) , 也可以是特定集成电路 (Application Specific Integrated Circuit, ASIC) , 或者是被配置成实施本发明实施例的一个或多个集成电路, 例如: 一个或多个敖处理器 (digital signal processor, DSP ) , 或, 一个或 者多个现场可编程门阵歹' J ( Field Programmable Gate Array, FPGA ) 。
存储器 1430可以是一个存储装置, 也可以是多个存储元件的统称, 且用于存储可执行程序代码或基站运行所需要参数、 数据等。 且存储器
1430可以包括随机存储器 (RAM) , 也可以包括非易失性存储器
( non-volatile memory ) , 例如磁盘存储器, 闪存 (Flash) 等。
系统总线 1440可以是工业标准体系结构 ( Industry Standard
Architecture, ISA)总线、 夕卜部设备互连( Peripheral Component, PCI ) 总线或扩展工业标准体系结构 ( Extended Industry Standard
Architecture, EISA) 总线等。 系统总线 1440可以分为地址总线、 数据 总线、 控制总线等。 为便于表示, 图 14中仅用一条粗线表示, 但并不表 示仅有一根总线或一种类型的总线。
在启动时,这些软件组件被加载到存储器 1430中,然后被处理器 1420 访问并执行以下指令:
获取主基站的系统帧号 SFN与辅基站的 SFN之间的 SFN偏差; 当所述 SFN偏差在第一阔值范围内时,确定所述 GAP长度为第一长度; 当所述 SFN偏差超出第一阔值范围时,确定所述 GAP长度为第二长度; 其中所述第一长度为 6ms;所述第二长度为 7ms或 8ms。
向所述主基站和辅基站分别发送消息, 在所述消息中指示确定的所述 GAP长度。
可选的, 所述应用程序还包括可用于使所述处理器 1620执行以下过 程的指令:
获取所述 SFN偏差的计算误差;
当所述 SFN偏差的计算误差不大于第二阔值时,所述第二长度为 7ms; 当所述 SFN偏差的计算误差大于第二阔值时, 所述第二长度为 8ms。
通过应用本发明实施例提供的 UE,通过计算 SFN偏差从而判断主基站 和辅基站是否处于同步场景, 在充分考虑了双连接场景下主基站和辅基站 同步和非同步的情况下, 基于同步或非同步的场景确定适当的测量 GAP长 度, 有效避免因 GAP长度选取不当造成的调度资源浪费。 专业人员应该还可以进一步意识到, 结合本文中所公开的实施例描述的 各示例的单元及算法步骤, 能够以电子硬件来实现, 在上述说明中已经按照 功能一般性地描述了各示例的组成及步骤。 对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明实施例的范围。 具体地, 所述运算和控制部分都可以通络逻辑硬件实现, 其可以是使用集成 电路工艺制造出来的逻辑集成电路, 本实施例对此不作限定。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、 处理 器执行的软件模块, 或者二者的结合来实施。 软件模块可以置于随机存储器 ( RAM ) 、 内存、 只读存储器 (ROM ) 、 电可编程 R0M、 电可擦除可编程 R0M、 寄存器、 硬盘、 可移动磁盘、 CD-R0M、 或技术领域内所公知的任意其它形式 的存储介质中。
以上所述的具体实施方式, 对本发明实施例的目的、 技术方案和有益效 果进行了进一步详细说明, 所应理解的是, 以上所述仅为本发明实施例的具 体实施方式而已, 并不用于限定本发明实施例的保护范围, 凡在本发明实施 例的精神和原则之内, 所做的任何修改、 等同替换、 改进等, 均应包含在本 发明实施例的保护范围之内。

Claims

权 利 要 求 书
1、 一种确定测量间隙 GAP长度的方法, 其特征在于, 包括:
第一网络设备确定主基站和辅基站是否同步;
当所述主基站和所述辅基站同步时, 所述第一网络设备确定所述 GAP长 度为第一长度;
当所述主基站和所述辅基站不同步时, 所述第一网络设备确定所述 GAP 长度为第二长度;
其中, 所述第一长度小于所述第二长度。
2、 根据权利要求 1所述的方法, 其特征在于, 还包括:
所述第一网络设备获取用于指示所述主基站和所述辅基站是否同步的指 示信息;
所述第一网络设备确定主基站和辅基站是否同步包括:
所述第一网络设备根据所述指示信息确定所述主基站和所述辅基站是否 同步。
3、 根据权利要求 1所述的方法, 其特征在于, 还包括:
所述第一网络设备获取用于指示所述主基站和所述辅基站之间的系统帧 号 SFN偏差的 SFN偏差信息;
所述第一网络设备确定主基站和辅基站是否同步包括:
所述第一网络设备根据所述 SFN偏差信息确定所述 SFN偏差是否满足同 步条件; 其中, 当所述 SFN偏差满足所述同步条件时, 所述主基站和所述辅 基站同步, 当所述 SFN偏差不满足所述同步条件时, 所述主基站和所述辅基 站不同步。
4、 根据权利 3所述的方法, 其特征在于, 所述同步条件包括:
所述 SFN偏差为零; 或者,
所述 SFN偏差小于第一阔值。
5、 根据权利要求 3或 4所述的方法, 其特征在于, 所述第一网络设备获 取用于指示所述主基站和所述辅基站之间的 SFN偏差的 SFN偏差信息包括: 所述第一网络设备根据所述主基站的 SFN的初始时间和所述辅基站的 SFN 的初始时间获取所述 SFN偏差信息; 或者,
所述第一网络设备从第二网络设备获取所述 SFN偏差信息, 所述 SFN偏 差信息是根据所述主基站的 SFN的初始时间和所述辅基站的 SFN的初始时间 获取的。
6、 根据权利要求 1-5任一项所述的方法, 其特征在于,
所述第一网络设备为所述主基站、 所述辅基站或者所述 UE。
7、 根据权利要求 6所述的方法, 其特征在于,
当所述第一网络设备为所述主基站时, 所述方法还包括: 所述第一网络 设备指示所述 UE和 /或所述辅基站所述 GAP长度; 或者,
当所述第一网络设备为所述辅基站时, 所述方法还包括: 所述第一网络 设备指示所述 UE和 /或所述主基站所述 GAP长度; 或者,
当所述第一网络设备为所述 UE时, 所述方法还包括: 所述第一网络设备 指示所述主基站和 /或所述辅基站所述 GAP长度。
8、 根据权利要求 1-7任一所述的方法, 其特征在于,
所述同步为帧边界同步。
9、 根据权利要求 1-8任一项所述的方法, 其特征在于, 所述第一长度为 6ms ;所述第二长度为 7ms或 8ms。
1 0、 根据权利要求 3-9任一项所述的方法, 其特征在于, 所述方法还包 括:
所述第一网络设备获取所述 SFN偏差的计算误差;
当所述 SFN偏差的计算误差不大于第二阔值时, 所述第二长度为 7ms ; 或 者, 当所述 SFN偏差的计算误差大于所述第二阔值时, 所述第二长度为 8ms。
1 1、 一种网络设备, 其特征在于, 包括: 处理单元和存储单元; 所述处理单元, 用于: 确定主基站和辅基站是否同步;
当所述主基站和所述辅基站同步时, 确定所述 GAP长度为第一长度为所 述 GAP长度;
当所述主基站和所述辅基站不同步时, 确定所述 GAP长度为第二长度为 所述 GAP长度;
其中, 所述第一长度小于所述第二长度;
所述存储单元, 用于存储所述 GAP长度。
1 2、 根据权利要求 1 1所述的网络设备, 其特征在于,
所述网络设备还包括通信单元, 用于与其他的网络设备进行通信; 所述处理单元还用于通过所述通信单元获取用于指示所述主基站和所述 辅基站是否同步的指示信息;
用于确定主基站和辅基站是否同步的所述处理单元具体用于根据所述指 示信息确定所述主基站和所述辅基站是否同步。
1 3、 根据权利要求 1 1所述的网络设备, 其特征在于,
所述处理单元还用于获取用于指示所述主基站和所述辅基站之间的系统 帧号 SFN偏差的 SFN偏差信息;
用于确定所述主基站和所述辅基站是否同步的所述处理单元具体用于根 据所述 SFN偏差信息确定所述 SFN偏差是否满足同步条件; 其中, 当所述 SFN 偏差满足所述同步条件时, 所述主基站和所述辅基站同步, 当所述 SFN偏差 不满足所述同步条件时, 所述主基站和所述辅基站不同步。
14、根据权利要求 1 3所述的网络设备,其特征在于, 所述同步条件包括: 所述 SFN偏差为零; 或者,
所述 SFN偏差小于第一阔值。
1 5、 根据权利要求 1 3或 14所述的网络设备, 其特征在于,
用于获取所述 SFN偏差信息的所述处理单元具体用于根据所述主基站的
SFN的初始时间和所述辅基站的 SFN的初始时间获取所述 SFN偏差信息;或者, 所述网络设备还包括通信单元, 用于与其他的网络设备进行通信; 用于获取所述 SFN偏差信息的所述处理单元具体用于通过所述通信单元 从所述其他的网络设备获取所述 SFN偏差信息, 所述 SFN偏差信息是根据所 述主基站的 SFN的初始时间和所述辅基站的 SFN的初始时间获取的。
1 6、 根据权利要求 1 1-15任一项所述的网络设备, 其特征在于, 所述网 络设备为所述主基站、 所述辅基站或者所述 UE。
1 7、 根据权利要求 16所述的网络设备, 其特征在于, 所述网络设备还包 括发送单元;
当所述网络设备为所述主基站时, 所述发送单元用于指示所述 UE和 /或 所述辅基站所述 GAP长度; 或者,
当所述网络设备为所述辅基站时, 所述发送单元用于指示所述 UE和 /或 所述主基站所述 GAP长度; 或者,
当所述网络设备为所述 UE 时, 所述发送单元用于指示所述主基站和 /或 所述辅基站所述 GAP长度。
1 8、 根据权利要求 1 1-17任一项所述的网络设备, 其特征在于, 所述同 步为帧边界同步。
1 9、 根据权利要求 1 1-18任一项所述的网络设备, 其特征在于, 所述第 一长度为 6ms ;所述第二长度为 7ms或 8ms。
20、 根据权利要求 1 3-19任一项所述的网络设备, 其特征在于, 所述网 络设备还包括: 误差获取单元, 用于获取所述 SFN偏差的计算误差;
第二长度确定单元, 用于当所述 SFN偏差的计算误差不大于第二阔值时, 所述第二长度为 7ms ;或者,当所述 SFN偏差的计算误差大于所述第二阔值时, 所述第二长度为 8ms。
PCT/CN2014/083311 2014-07-30 2014-07-30 确定测量间隙gap长度的方法和网络设备 WO2016015249A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR112017001753-9A BR112017001753B1 (pt) 2014-07-30 2014-07-30 Método para determinar comprimento de lacuna de medição e dispositivo de rede
PCT/CN2014/083311 WO2016015249A1 (zh) 2014-07-30 2014-07-30 确定测量间隙gap长度的方法和网络设备
JP2017504676A JP6410921B2 (ja) 2014-07-30 2014-07-30 測定gap長を判定する方法およびネットワークデバイス
CN201480023270.2A CN105745956B (zh) 2014-07-30 2014-07-30 确定测量间隙gap长度的方法和网络设备
KR1020177004713A KR101926664B1 (ko) 2014-07-30 2014-07-30 측정 간격 gap의 길이를 결정하는 방법 및 네트워크 장치
ES14898762T ES2771775T3 (es) 2014-07-30 2014-07-30 Procedimiento para determinar una longitud de intervalo de medición y dispositivo de red
EP14898762.1A EP3188529B1 (en) 2014-07-30 2014-07-30 Method for determining a length of a measurement gap and network device
US15/416,759 US10278147B2 (en) 2014-07-30 2017-01-26 Method for determining measurement gap length and network device
US16/373,371 US10638440B2 (en) 2014-07-30 2019-04-02 Method for determining measurement gap length and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/083311 WO2016015249A1 (zh) 2014-07-30 2014-07-30 确定测量间隙gap长度的方法和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/416,759 Continuation US10278147B2 (en) 2014-07-30 2017-01-26 Method for determining measurement gap length and network device

Publications (1)

Publication Number Publication Date
WO2016015249A1 true WO2016015249A1 (zh) 2016-02-04

Family

ID=55216611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083311 WO2016015249A1 (zh) 2014-07-30 2014-07-30 确定测量间隙gap长度的方法和网络设备

Country Status (8)

Country Link
US (2) US10278147B2 (zh)
EP (1) EP3188529B1 (zh)
JP (1) JP6410921B2 (zh)
KR (1) KR101926664B1 (zh)
CN (1) CN105745956B (zh)
BR (1) BR112017001753B1 (zh)
ES (1) ES2771775T3 (zh)
WO (1) WO2016015249A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021088770A1 (zh) * 2019-11-08 2021-05-14 华为技术有限公司 一种测量配置方法及设备
US20210392028A1 (en) * 2016-08-22 2021-12-16 Samsung Electronics Co., Ltd. Method and apparatus for cell initial access and paging in wireless cellular communication system

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10660052B2 (en) * 2014-09-05 2020-05-19 Lg Electronics Inc. Method and apparatus for signal transmission and reception on unlicensed band in wireless communication system
US11296837B2 (en) * 2016-01-28 2022-04-05 Qualcomm Incorporated Physical broadcast channel (PBCH) transmission and reception on a shared communication medium
WO2018175470A1 (en) * 2017-03-23 2018-09-27 Intel Corporation Systems, methods and devices for measurement configuration by a secondary node in en-dc
CN111615144B (zh) * 2017-06-09 2022-07-19 展讯通信(上海)有限公司 测量配置方法、装置、用户终端及计算机可读存储介质
WO2018227494A1 (zh) 2017-06-15 2018-12-20 Oppo广东移动通信有限公司 测量间隔配置方法、装置、设备、终端及系统
CN111108796B (zh) * 2017-09-28 2024-04-05 三星电子株式会社 用于在多个带宽部分上执行数据发射和测量的方法和网络节点
AU2017439045A1 (en) 2017-11-09 2020-06-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for setting measurement interval, network device and terminal device
CN110035443B (zh) * 2018-01-11 2022-08-02 展讯通信(上海)有限公司 双连接时辅助配置测量间隙的方法、装置及基站
US10757700B2 (en) * 2018-10-07 2020-08-25 At&T Intellectual Property I, L.P. Frame structure coordination in wireless communication systems with integrated access and backhaul links in advanced networks
JP7341233B2 (ja) * 2019-06-07 2023-09-08 株式会社Nttドコモ 端末

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043697A (zh) * 2006-03-21 2007-09-26 华为技术有限公司 一种异频、异系统测量中获取测量空隙的方法
CN101321363A (zh) * 2007-06-07 2008-12-10 华为技术有限公司 测量邻小区信号和确定gap的方法、网络装置及设备
CN101335975A (zh) * 2007-06-28 2008-12-31 华为技术有限公司 一种控制测量空隙的方法、装置及系统
CN101778403A (zh) * 2009-01-13 2010-07-14 华为技术有限公司 获取测量间隙的方法和装置
WO2011102769A1 (en) * 2010-02-19 2011-08-25 Telefonaktiebolaget L M Ericsson (Publ) Inter-frequency positioning measurements
CN102595450A (zh) * 2011-01-10 2012-07-18 华为技术有限公司 测量间隙的配置方法和通信装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8873522B2 (en) * 2008-08-11 2014-10-28 Qualcomm Incorporated Processing measurement gaps in a wireless communication system
CN102187611B (zh) * 2008-10-17 2014-04-02 爱立信电话股份有限公司 改进无线通信系统中harq重传和电池寿命的方法
US9119036B2 (en) * 2010-05-10 2015-08-25 Telefonaktiebolaget L M Ericsson (Publ) Enhanced measurement gap configuration support for positioning
US9591499B2 (en) * 2010-11-05 2017-03-07 Interdigital Patent Holdings, Inc. WTRU measurements handling to mitigate in-device interference
CN108599905B (zh) * 2012-01-24 2021-04-02 交互数字专利控股公司 在wtru中实施的方法、wtru及网络节点
US20130258913A1 (en) * 2012-03-30 2013-10-03 Qualcomm Incorporated Tdd pipeline processing
US20150373571A1 (en) * 2013-01-29 2015-12-24 Interdigital Patent Holdings, Inc. Scheduling Fractional Frequency Gaps To Enable Sub Band Sensing
KR102365123B1 (ko) * 2014-04-30 2022-02-21 엘지전자 주식회사 무선 통신 시스템에서 측정 갭을 구성하는 방법 및 장치
US11284280B2 (en) 2014-06-17 2022-03-22 Ntt Docomo, Inc. User apparatus, base station, and time difference information notification method
US10609663B2 (en) 2014-07-11 2020-03-31 Qualcomm Incorporated Techniques for reporting timing differences in multiple connectivity wireless communications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043697A (zh) * 2006-03-21 2007-09-26 华为技术有限公司 一种异频、异系统测量中获取测量空隙的方法
CN101321363A (zh) * 2007-06-07 2008-12-10 华为技术有限公司 测量邻小区信号和确定gap的方法、网络装置及设备
CN101335975A (zh) * 2007-06-28 2008-12-31 华为技术有限公司 一种控制测量空隙的方法、装置及系统
CN101778403A (zh) * 2009-01-13 2010-07-14 华为技术有限公司 获取测量间隙的方法和装置
WO2011102769A1 (en) * 2010-02-19 2011-08-25 Telefonaktiebolaget L M Ericsson (Publ) Inter-frequency positioning measurements
CN102595450A (zh) * 2011-01-10 2012-07-18 华为技术有限公司 测量间隙的配置方法和通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3188529A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210392028A1 (en) * 2016-08-22 2021-12-16 Samsung Electronics Co., Ltd. Method and apparatus for cell initial access and paging in wireless cellular communication system
US11902076B2 (en) * 2016-08-22 2024-02-13 Samsung Electronics Co., Ltd. Method and apparatus for cell initial access and paging in wireless cellular communication system
WO2021088770A1 (zh) * 2019-11-08 2021-05-14 华为技术有限公司 一种测量配置方法及设备

Also Published As

Publication number Publication date
KR101926664B1 (ko) 2018-12-07
ES2771775T3 (es) 2020-07-07
EP3188529A1 (en) 2017-07-05
US20170150462A1 (en) 2017-05-25
CN105745956A (zh) 2016-07-06
EP3188529A4 (en) 2017-07-05
KR20170036726A (ko) 2017-04-03
US20190230609A1 (en) 2019-07-25
BR112017001753B1 (pt) 2022-12-13
BR112017001753A2 (pt) 2017-11-21
US10278147B2 (en) 2019-04-30
CN105745956B (zh) 2020-04-03
JP6410921B2 (ja) 2018-10-24
US10638440B2 (en) 2020-04-28
EP3188529B1 (en) 2019-11-27
JP2017528054A (ja) 2017-09-21

Similar Documents

Publication Publication Date Title
WO2016015249A1 (zh) 确定测量间隙gap长度的方法和网络设备
CN114884638B (zh) 用于多波束随机接入的方法及对应的无线设备
EP3143807B1 (en) Determination of ue band and synchronization capability in dual connectivity
EP3533259A1 (en) Report nsa/sa nr indicator
US20210120584A1 (en) Systems and Methods for Controlling Wireless Device Feedback on Secondary Cell Activation and Deactivation via the Unlicensed Spectrum
BR112019009622A2 (pt) dispositivos sem fio capazes de realizar pelo menos uma medição de rádio de intrafrequência, método em um dispositivo sem fio, nós de rede capazes de operar em uma rede com um dispositivo sem fio e método em um nó de rede
EP3834481B1 (en) Measurement gap configuration in ne-dc and nr-nr dc
KR20180105679A (ko) 네트워크 제어된 핸드오버 및 ue 자율적인 핸드오버를 위한 하이브리드 솔루션
WO2021034254A1 (en) Updating a pci in a du-cu split architecture
JP2017509256A5 (zh)
EP4376532A2 (en) Methods of signaling reserved resources for ultra-reliable low latency communication (urllc) traffic
US11888622B2 (en) HARQ RTT timer adjustment for multi-TB scheduling
WO2014032281A1 (zh) 增加辅小区的方法及基站、终端
WO2018119816A1 (zh) 小区切换方法及装置
WO2021029818A1 (en) Methods providing transmission of ul data to a source access node after establishing connection with a target access node and related wireless devices
EP3925291B1 (en) Aligned configuration for random access channel-less handover/secondary cell group change

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898762

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017504676

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014898762

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014898762

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177004713

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017001753

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017001753

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170127