WO2016013634A1 - 画像位置合わせ装置、画像位置合わせ方法、および、画像位置合わせプログラム - Google Patents
画像位置合わせ装置、画像位置合わせ方法、および、画像位置合わせプログラム Download PDFInfo
- Publication number
- WO2016013634A1 WO2016013634A1 PCT/JP2015/071027 JP2015071027W WO2016013634A1 WO 2016013634 A1 WO2016013634 A1 WO 2016013634A1 JP 2015071027 W JP2015071027 W JP 2015071027W WO 2016013634 A1 WO2016013634 A1 WO 2016013634A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- point
- mapping
- data
- ray map
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 46
- 238000013507 mapping Methods 0.000 claims abstract description 142
- 238000000605 extraction Methods 0.000 claims abstract description 29
- 239000000284 extract Substances 0.000 claims abstract description 12
- 210000005252 bulbus oculi Anatomy 0.000 claims description 137
- 238000004364 calculation method Methods 0.000 claims description 84
- 238000012546 transfer Methods 0.000 claims description 42
- 210000001508 eye Anatomy 0.000 claims description 30
- 230000003287 optical effect Effects 0.000 claims description 21
- 230000000007 visual effect Effects 0.000 claims description 15
- 230000002093 peripheral effect Effects 0.000 claims description 12
- 230000005043 peripheral vision Effects 0.000 claims description 2
- 238000009795 derivation Methods 0.000 abstract description 4
- 210000004087 cornea Anatomy 0.000 description 34
- 230000006870 function Effects 0.000 description 33
- 239000013598 vector Substances 0.000 description 25
- 239000013256 coordination polymer Substances 0.000 description 17
- 239000011159 matrix material Substances 0.000 description 12
- 238000012545 processing Methods 0.000 description 11
- 238000003384 imaging method Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 238000004422 calculation algorithm Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- 238000005286 illumination Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 210000001747 pupil Anatomy 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 2
- 210000000720 eyelash Anatomy 0.000 description 2
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/30—Determination of transform parameters for the alignment of images, i.e. image registration
- G06T7/33—Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
- G06T7/337—Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods involving reference images or patches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/0016—Operational features thereof
- A61B3/0025—Operational features thereof characterised by electronic signal processing, e.g. eye models
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/113—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining or recording eye movement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/14—Arrangements specially adapted for eye photography
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/60—Analysis of geometric attributes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
- H04N7/181—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30041—Eye; Retina; Ophthalmic
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30196—Human being; Person
- G06T2207/30201—Face
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/18—Eye characteristics, e.g. of the iris
- G06V40/19—Sensors therefor
Definitions
- the present invention relates to an apparatus for image alignment (registration, alignment).
- Patent Document 1 describes an apparatus that estimates a point (gaze point) that a subject is gazing at and a personal parameter of the subject.
- the apparatus acquires an image (eyeball image) including an image of the eyeball of the subject, estimates the posture of the eyeball (that is, the direction of the optical axis of the eyeball) from the eyeball image, and the direction of the subject's line of sight (gaze) Direction).
- the apparatus quantifies the amount of deviation between the direction of the optical axis of the eyeball and the direction of the line of sight as a personal parameter.
- An image (eyeball image) obtained by imaging an eyeball generally includes an image of light that is specularly reflected by the cornea of the eyeball (corneal surface reflection image).
- the cornea surface reflection image corresponds to a scene that the subject actually sees.
- the present invention provides an apparatus capable of robustly performing mutual registration (registration, alignment) between two or more images such as an eyeball image and a scene image.
- One embodiment of the present invention provides: An acquisition unit for acquiring data of the first image and data of the second image; A storage unit for storing data of the first image and data of the second image; A mapping unit that determines a first mapping that is a mapping that transfers the first image to the spherical ray map and a second mapping that is a mapping that transfers the second image to the spherical ray map; A corresponding point pair extraction unit that extracts a corresponding point pair by detecting one point in the first image and one point in the second image corresponding to the one point; The position and local feature amount of one point in the first image constituting the corresponding point pair, and the transfer image that aligns the image of the first image in the spherical ray map and the image of the second image in the spherical ray map, and A transferred image deriving unit for deriving based on the position of one point in the second image constituting the corresponding point pair and the local feature amount; Based on the first mapping, the transfer image, and the second mapping, the
- the image alignment apparatus can robustly perform mutual alignment (registration, alignment) between two or more images.
- FIG. 1 The figure which shows the i-th set of initial corresponding point pairs
- FIG. 1 The figure which shows the example which plotted the secondary corresponding point in the eyeball image at random Plot the secondary corresponding points on the scene image corresponding to the secondary corresponding points randomly plotted on the eyeball image based on the warping function derived according to the corresponding relationship between the i-th pair of initial corresponding points.
- Figure showing an example A diagram showing an example of a registered eyeball image and an example of executing fine registration (fine adjustment)
- the system as shown in FIG. 1 is taken as an example to explain the background to the present invention.
- the system shown in FIG. 1 captures an eye camera 911e that images the subject's eyeball 20 (mainly the cornea 21), and a scene (scene) that the subject is viewing (the direction of imaging is substantially the same as the direction of the subject's line of sight). It has a scene camera 911s (installed to match).
- the system further includes a computer (not shown).
- the computer estimates the direction of the subject's line of sight from an image (eyeball image) captured by the eye camera 911e and an image (scene) captured by the scene camera 911s. Image) to try to restore the scene that the subject is seeing in high definition.
- FIG. 2 is a diagram showing an example of an eyeball image and a scene image captured by the eye camera 911e and the scene camera 911s of the system of FIG.
- FIG. 2A is an example of an eyeball image (eyeball image) Ie9 of the subject imaged by the eye camera 911e.
- FIG. 2B is an example of an image (scene image) Is9 of a sight (scene) seen by the subject imaged by the scene camera 911s.
- the above-described computer estimates the scene (scene) that the subject is viewing from the image of the reflected light on the corneal surface (eg, as seen in the region I930e). Then, the computer obtains an image corresponding to the scene from, for example, the region I930s of the scene image Is9, and based on this result, tries to restore the scene seen by the subject using the high-definition scene image Is9.
- the contrast of the corneal surface reflection image is relatively low, and the corneal surface reflection image is overflowing with noise such as iris texture Iit, eyelash Iel, and eyelash shadow Isel.
- the cornea has a curved surface, the image of the scene reflected on the cornea is subjected to nonlinear distortion. Therefore, with the conventional image alignment method, it is difficult to robustly align the eyeball image Ie9 and the scene image Is9.
- the image alignment apparatus acquires the data of the eyeball image Ie and the scene image Is and stores them in storage means such as a memory. Then, the image alignment apparatus determines a map (first map and second map) that moves the scene image Is and the eyeball image Ie to a spherical ray map (spherical ray environment, Environmental Map (EM)).
- a map first map and second map
- EM Environmental Map
- the “spherical ray map” is a map relating to the light environment surrounding the imaging means, which is generated when the light incident on the center is mapped to a spherical surface having a predetermined radius with the means that has taken the image as the center. is there.
- FIG. 3C is an example of a spherical ray map EMs for the scene image Is, and shows an image of the scene image in the spherical ray map EMs.
- FIG. 3D is an example of a spherical ray map EMe for the eyeball image Ie, and shows an image of the eyeball image in the spherical ray map EMe.
- the mapping (conversion function) for transferring (converting) the scene image Is to the spherical ray map EMs is As (), and the mapping (function for transferring) the corneal surface reflection image of the eyeball image Ie to the spherical ray map EMe. ) Is L ().
- the pixel x 1 of the scene image Is moves to As (x 1 ) on the spherical ray map EMs by the mapping As, and the pixel x 2 of the eyeball image Ie becomes L (on the spherical ray map EMe by the mapping L. moves to the x 2).
- the image alignment apparatus performs a corresponding pair of feature points (hereinafter referred to as “corneal surface reflection image”) between the scene image Is (first image) and the eyeball image Ie (second image). At least one pair (for example, a pair of point p and point q) is obtained.
- the image alignment device can use existing methods (SIFT (Scale-Invariant Feature Transform), SURF (Speeded Up Robust Features), etc.) for detection of corresponding points here.
- SIFT Scale-Invariant Feature Transform
- SURF Speeded Up Robust Features
- direction information ⁇ p , ⁇ q
- the image alignment apparatus uses the orientation information ( ⁇ p and ⁇ q ) and the position information of corresponding points (feature points) (point p, point q) to generate an image of the scene image on the spherical ray map EMs. Is determined so as to be aligned with the corneal surface reflection image on the spherical ray map EMe.
- the spherical ray map EMs and the spherical ray map EMe are substantially equal. Therefore, it is assumed that the above-described positional alignment can be expressed by the transfer image R.
- the image alignment device performs mapping L (), inverse mapping R ⁇ 1 of the transfer image R, inverse mapping As () ⁇ 1 of the mapping As () (warping in the figure) for each pixel of the eyeball image Ie.
- mapping L () inverse mapping R ⁇ 1 of the transfer image R
- inverse mapping As () ⁇ 1 of the mapping As () warping in the figure
- each pixel of the eyeball image Ie is aligned (registration, alignment) with the scene image Is. That is, according to the present embodiment, the problem of image alignment is reduced to the problem of alignment of two images on the spherical ray map. By reducing to a spherical alignment problem, the number of parameters required for registration is reduced.
- the image alignment apparatus can perform alignment by obtaining only one set of initial corresponding point pairs (a pair composed of the feature point p and the feature point q). That is, in the image registration method executed by the image registration apparatus, only a pair of initial corresponding points (the position of each feature point and the local feature amount (orientation)) can be determined correctly. Can be executed. In this sense, the image alignment performed by the image alignment apparatus is robust. In other words, even when it is difficult to extract a plurality of correct initial corresponding point pairs, the image registration apparatus can perform registration correctly as long as only one initial corresponding point pair can be determined. In a sense, this method is robust.
- an image alignment apparatus and method according to an embodiment of the present invention will be described using image registration (registration) between an eyeball image (a corneal surface reflection image thereof) and a scene image as an example.
- image registration registration
- the present invention can perform mutual registration (registration, alignment) for various images, not limited to eyeball images and scene images.
- the image alignment apparatus 10 aligns both images using the scene image and eyeball image data input to the apparatus 10 via the first and second video interfaces 3e and 3s and stored in the storage unit 2.
- a calculation unit 1 control unit
- a storage unit 2 that stores various data such as eyeball image data and scene image data, a program executed by the calculation unit 1, and the like.
- the image alignment device 10 constitutes an image alignment system together with the eye camera 11e and the scene camera 11s.
- the calculation unit 1 operates as a mapping unit, a corresponding point extraction unit, a transfer image derivation unit, and a registration unit of the image registration device by executing a predetermined program (image registration program).
- calculation unit 1 also operates as a control unit that controls the overall operation of the device 10. As one of the control operations, the calculation unit 1 may control the operations (such as imaging) of the scene camera 11s and the eye camera 11e.
- the calculation unit 1 is a so-called central processing unit (CPU). However, the configuration of the calculation unit 1 is not limited to the CPU and its peripheral auxiliary circuits.
- the calculation unit 1 may be a GPU (Graphics Processing Unit) specialized for predetermined calculation processing.
- the calculation unit 1 can be implemented as a processor such as a programmable logic device such as ASIC (Application Specific Specific Integrated Circuit) or FPGA (Field-Programmable Gate Array), or a microcontroller.
- the calculation unit 1 may be configured by combining a plurality of the above-described elements such as a CPU, and the elements configuring the calculation unit 1 are not limited to the above example.
- the computing unit 1 can execute the image registration method according to the embodiment of the present invention by executing the image registration program stored in the storage unit 2.
- the image alignment program may be recorded on a flexible disk, an optical disk, a flash memory, or the like, or may be transmitted via a network such as the Internet.
- the storage unit 2 stores various data, an image alignment program executed by the calculation unit 1, and the like.
- the storage unit 2 is, for example, a ROM (Read-Only memory) and a RAM (Random Memory).
- the storage unit 2 holds a camera internal matrix (camera ⁇ ⁇ ⁇ internal matrix) of the scene camera 11s and the eye camera 11e.
- the camera internal matrix is data in a matrix format that includes camera internal parameters in its elements.
- the camera internal matrix data is loaded from the outside into the storage unit 2 and stored in the storage unit 2 before image alignment.
- camera internal matrix data may be included in the image registration program.
- the image alignment device 10 performs camera calibration on each of the scene camera 11s and the eye camera 11e under the control of the calculation unit 1 (CPU) before the image alignment, thereby obtaining each camera internal matrix. You may operate
- CPU calculation unit 1
- the output unit 4 outputs the result of the image alignment performed by the calculation unit 1.
- the output unit 4 is, for example, a monitor display or a printer.
- the output unit 4 may include an interface mechanism for realizing connection with an external storage device such as a hard disk or a flash memory, or another computer connected via a network.
- FIG. 5 is a flowchart showing a flow of image alignment processing executed by the image alignment apparatus 10 (FIG. 4).
- step S2 the calculation unit 1 (FIG. 4) continues to operate as an acquisition unit and inverts the acquired eyeball image Ie in the left-right direction. This is to make the direction of the scene included in the cornea surface reflection image of the eyeball image Ie coincide with the direction of the scene image in the scene image Is.
- FIG. 6C shows an example of the eyeball image Is inverted as described above.
- the inverted eyeball image Is is stored in the storage unit 2 (FIG. 4). Thereafter, the calculation unit 1 performs processing using the inverted eyeball image Is. Note that the image inversion processing may be performed on the scene image Is instead of the eyeball image Ie.
- step S3 the calculation unit 1 (FIG. 4) operates as a mapping unit to map the scene image Is to the spherical ray map EMs (FIG. 3) and the eyeball image Ie (the cornea surface reflection image). To the spherical ray map EMe is determined as a mapping L () (FIG. 3).
- the mapping As () (FIG. 3) for transferring the scene image Is to the spherical ray map EMs is determined as follows.
- the calculation unit 1 (FIG. 4) reads the 3 ⁇ 3 camera internal matrix Ks of the scene camera 11s stored in the storage unit 2 (FIG. 4). Then, the calculation unit 1 converts the mapping As () to the following formula: Determine according to (Here, the vector q is a vector indicating a point (pixel) in the scene image Is. The point q in the scene image Is is on the spherical ray map EMs pointed to by the vector As (q) by the mapping As (). The calculation unit 1 stores the mapping As () (conversion function) thus determined in the storage unit 2.
- the calculation unit 1 determines a mapping L () (FIG. 3) for transferring the eyeball image Ie to the spherical ray map EMe as follows.
- FIG. 7A shows a non-rigid catadioptric imaging system (non-) comprising a cornea 21 regarded as a part of a spherical surface (the surface of the corneal sphere 21 SPH ) and an eye camera 11e (origin O).
- This is a weak perspective projection model of rigid catadioptric imaging system.
- FIG. 7B is an example of the projection plane IP when viewed from the origin O side.
- FIG. 7C illustrates the relationship between the optical axis direction vector g of the eyeball and the angles ⁇ and ⁇ .
- cornea 21, the cornea ball 21 SPH can be regarded as a partially spherical taken in the limbus 21 L.
- a fixed value (average value of human) is adopted as a representative dimension of the cornea 21 (radius r L , distance d LC between the cornea edge center I and the center C of the spherical surface 21 SPH ).
- the posture of the eyeball can be determined by the position of the corneal margin center I and the eyeball optical axis direction g. Assuming that the thickness of the cornea 21 is sufficiently thin with respect to the Z cam axis direction, the corneal edge 21 L which is substantially a perfect circle becomes an ellipse 21 LP (including a true circle) on the projection plane IP.
- the ellipse 21 LP can be defined by four parameters: a center i I , a major axis length r max , a minor axis length r min , and a rotation angle ⁇ .
- the reverse path of the light path formed as the eyeball image Ie (light emitted from the pixel p of the eyeball image Ie is reflected by the point P on the cornea 21 and is reflected in the scene). The path to the light source).
- the 3 ⁇ 3 camera internal matrix of the eye camera 11e (FIG. 4) is Ke
- the normalized backprojection vector Ae (p) of the eye camera 11e is Where the vector p is the position vector of the pixel p in the eyeball image.
- the spherical ray map EMe (FIG. 3) for the corneal surface reflection image can be constructed from the above equation.
- L () in Expression (5) is a mapping (conversion function) that shifts the corneal surface reflection image of the eyeball image Ie (FIG. 6) to a spherical ray map for the non-rigid catadioptric imaging system. .
- the calculation unit 1 (FIG. 4) operates as a mapping unit to perform a calculation corresponding to the above formulas (2) to (5), thereby transferring the corneal surface reflection image of the eyeball image Ie to the spherical ray map EMe.
- L () (FIG. 3) is determined.
- the calculation algorithm used for the calculation is stored in the image alignment program.
- the vector p is a vector indicating a point (pixel) in the corneal surface reflection image of the eyeball image Is.
- the point p in the corneal surface reflection image of the eyeball image Is is expressed by the map L () by the vector L
- the operation unit 1 stores the mapping L () determined in this way in the storage unit 2.
- step S4 the calculation unit 1 operates as a corresponding point extraction unit, and as shown in FIGS. 8 and 9, the scene image Is (FIG. 6A) and the eyeball image Ie (FIG. 6).
- rotation / scale invariant feature points LP s 1 and LP e 1 etc.
- the detection of feature points and the calculation of local feature amounts may be performed according to, for example, SIFT.
- Algorithms necessary for feature point detection and local feature amount calculation are stored in an image registration program stored in the storage unit 2. For example, when the SIFT feature value is used, the local feature value calculated by the calculation unit 1 is 1.
- Position information vector x
- the calculation unit 1 stores the detected feature point position and local feature amount in the storage unit 2.
- the calculation unit 1 continues to operate as a corresponding point extraction unit, and based on the feature points detected according to SIFT or the like and the calculated local feature amount, the feature points (LP s 1 etc.) in the scene image Is and the eyeball image Corresponding point matching (CP1 etc.) with feature points (LP s 1 etc.) in Ie is performed.
- FIG. 8 illustrates the first initial corresponding point pair CP1.
- the calculation unit 1 performs corresponding point matching a plurality of times to obtain a plurality of sets (M sets) of initial corresponding point pairs (CP 1 to CP M ).
- the calculation unit 1 stores information on the positions of the corresponding points (LP s 1 to LP s M and LP e 1 to LP e M) and the correspondence relationship of the initial corresponding point pairs (CP 1 to CP M ). Store in part 2.
- step S5 the calculation unit 1 sets each initial corresponding point pair (CP 1 , CP 2 ,... CP M ⁇ 1 ) for each of the initial corresponding point pairs (CP 1 to CP M ) obtained in step S4. Or the position of the image of the scene image Is on the spherical ray map EMs and the image of the eyeball image Ie (the corneal surface reflection image thereof) on the spherical ray map EMe based on the correspondence relationship of CP M ).
- (3 ⁇ 3 matrix) transfer image R be And a conversion function (warping function W) for registering the pixel of the eyeball image Ie with the pixel of the scene image Is is derived using the transfer image R.
- the vector p and the vector q in the equation (6) are the points (LP) of the scene image Is and the eyeball image Ie that constitute the initial corresponding point pair (CP 1 , CP 2 ,... CP M ⁇ 1 , or CP M ).
- s 1, LP s 2, ..., LP s M-1, or LP s M, and LP e 1, LP e 2, ..., LP e M-1, or LP e M) is there.
- the optical system constituting the scene camera 11s and the imaging system constituted by the eye camera 11e and the cornea 21 are both substantially in the same light environment. (With this assumption, registration of the eyeball image Ie and the scene image Is (derivation of the warping function W) results in the derivation of the transfer image R.)
- the calculation unit 1 derives the transfer image R according to a calculation algorithm expressed as follows.
- the warping function Wi is a mapping that registers the pixels of the eyeball image Ie with respect to the pixels of the scene image Is according to the correspondence relationship of the i-th initial corresponding point pair (CP i ).
- the computing unit 1 stores the warping function W i (i: 1 to M) in the storage unit 2 in association with the initial corresponding point pairs (CP 1 to CP M ).
- the calculating portion 1 further obtains the initial pair of corresponding points (CP i) secondary corresponding point pairs in the eyeball image Ie and the scene image Is with warping function W i obtained according to the step S5, they by calculating the image correlation regarding secondary corresponding point pairs, by evaluating the correctness of the warping function W i, to determine the optimal warping function W from among the warping function W i of a plurality of (M-number) .
- FIG. 10 is a flowchart showing details of a process (RANRESAC process) for determining an optimal initial corresponding point pair.
- the calculation unit 1 operates as a corresponding point pair extraction unit and executes the processing shown in FIG.
- step S61 the calculation unit 1 operates as a corresponding point pair extraction unit, and uses the warping function Wi obtained based on the i-th corresponding point pair CP i (FIG. 11) to generate a secondary corresponding point pair. Generate. Specifically, the calculation unit 1 detects a cornea region of the eyeball image Ie, and randomly sets K points SLP ei (FIG. 12) within the cornea region. The arithmetic unit 1 extracts the SLP si (Fig. 13) point in the scene in the image Is corresponding to each of K points SLP ei in the region of the cornea using a warping function Wi, K sets of sub The corresponding pair of points. These secondary corresponding point pairs are
- the vector p j * is a position vector indicating a randomly selected point in the cornea region of the eyeball image Ie.
- the degree of similarity is evaluated using the local texture correlation and the direction similarity as a scale with respect to the group of secondary corresponding points obtained in accordance with .about.M)).
- the calculation unit 1 evaluates the similarity using the following evaluation function.
- the first term on the right side of the above expression represents the texture similarity
- the second term on the right side represents the direction similarity.
- ⁇ t , ⁇ o , and ⁇ are positive constants that define the weight of the texture correlation and the direction similarity.
- (•, •) is an inner product of vectors.
- q j * represents W (p j * ).
- the calculation unit 1 evaluates a group of secondary corresponding point pairs of each of the M pairs of initial corresponding points by using Expression (10) (step S63).
- step S64 the calculation unit 1 operates as a corresponding point pair extraction unit, and is a group of secondary corresponding point pairs that are evaluated to have the highest similarity, that is, The i'th initial corresponding point pair (CP i ' ) determined by (1) and its warping function W i' are specified.
- the scale parameter may be adjusted to occupy the same size (spatial volume) in the spherical ray map.
- the ratio of the scale parameter at the point (p, q) in each image is obtained.
- s i p is a scale parameter in the corneal surface reflection image set by the user
- s i q is a scale parameter at a point q in the corresponding scene image.
- step S ⁇ b> 7 the calculation unit 1 operates as a registration unit, and uses the warping function Wi ′ determined in step S ⁇ b> 6 to convert the eyeball image Ie (the corneal surface reflection image) into the scene image Is. Is registered (registration, alignment), and the data of the aligned eyeball image is generated.
- FIG. 14A shows the aligned eyeball image (the cornea surface reflection image) IeR thus obtained.
- step S8 in FIG. 5 the calculation unit 1 operates as a registration unit, and performs fine adjustment (fine registration) of the warping function Wi ′ determined in step S6.
- the finely adjusted eyeball image data is stored in the storage unit 2 (FIG. 4).
- the calculation unit 1 performs the evaluation according to the equation (10) by slightly changing the position of the corneal sphere center C (FIG. 7), that is, the length of the distance d LC and the rotation angle ⁇ of the ellipse on the projection plane IP. Repeatedly converges the evaluation value. For convergence, the interior point method is used.
- FIG. 14C is an image obtained by superimposing the image IeR before fine registration with the scene image Is.
- FIG. 14D is an image obtained by superimposing the image IeR after fine registration with the scene image Is. As can be seen from FIGS. 14C and 14D, the fine registration process further improves the accuracy of registration.
- the image registration device 10 can convert the mapping (warping function W i ′ ()) based on only one pair of corresponding points (the optimum initial corresponding points determined in step S6). Can be determined. By doing so, registration (registration) of the eyeball image Ie with respect to the scene image Is can be performed robustly. Further, the image registration device 10 (FIG. 4) can appropriately determine the above-mentioned corresponding pair of points by performing the RANRESAC process. That is, the image alignment apparatus can appropriately determine a set of initial corresponding point pairs by RANRESAC processing and perform registration correctly. In this sense, the image alignment performed by the image alignment apparatus is robust. In other words, even when it is difficult to extract a plurality of correct initial corresponding point pairs, the image registration apparatus can perform registration correctly as long as only one initial corresponding point pair can be determined. In a sense, this method is robust.
- the image alignment apparatus 10 acquires image data to be aligned from the imaging devices (eye camera 11e and scene camera 11s (FIG. 4)) connected to the device. .
- the image alignment apparatus 10 can acquire data of one or more images from an apparatus (such as an image database) other than such an imaging apparatus, and can perform alignment on the image.
- the image registration device 10 acquires image data from an open database such as Google Street View via the network, and between the image and the eyeball image Ie (FIG. 6) captured by the eye camera 11e. You may align with.
- the image registration device 10 acquires data of a plurality of images from one or a plurality of external devices (for example, an image database), a recording medium such as an optical disk or a flash memory, and positions between the plurality of images. You may combine.
- a mapping for transferring each acquired image to the spherical ray map may be prepared in advance by the image registration apparatus 10 as appropriate prior to the image registration process. This preparation method is obvious to those skilled in the art.
- the gain and exposure parameters of the eye camera 11e were adjusted.
- the eye camera 11e and the scene camera 11s acquired an image at 10 fps while being connected to the image alignment device 10 (personal computer, PC).
- 2-point RANRESAC the warping function was estimated in the same way as 2-point RANSAC. Thereafter, evaluation was performed according to the RANRESAC method. This was repeated 500 times in the same manner as 2-pointCRANSAC, and the best solution was selected.
- Tables 1 to 7 show the alignment accuracy (success rate).
- the time required for alignment is 37.0 seconds per frame (image alignment method according to the embodiment (1-point RANRESAC)), 14.47 seconds (2-point RANSAC), 180.47 seconds (2- point RANRESAC).
- the success rate is 85.5% (Table 1 to Table 3) in the outdoor scene and 86.3% in the indoor scene (Table 4 to Table 6), and 2-point RANSAC and It is significantly higher than 2-point RANRESAC.
- 2-point RANRESAC has a lower success rate than 1-point RANRESAC (this embodiment), but exceeds the success rate in comparison with 2-point RANSAC that performs the same rotation matrix estimation. This confirms that the RANRESAC method is robust with respect to noise conditions.
- Gaze point estimation using the image registration device will be described.
- an image of a landscape that the user is looking at can be extracted, and an object or place that the user is looking at can be specified by referring to an image such as Google Street View.
- This technique can be applied to, for example, an AR (Augmented Reality) system.
- the gaze point estimation using the image alignment apparatus unlike the conventional example, calibration of the relative positional relationship between the eye camera and the scene camera is unnecessary. Further, it is not necessary to fix the relative positional relationship.
- the calculation unit 1 operates as a viewpoint extraction unit, and detects the gaze reflection point GRP (FIG. 15) of the subject by detecting the posture of the eyeball from the eyeball image by a known method.
- the gaze reflection point GRP here is a point at which the light coming from the direction of the line of sight substantially coincident with the optical axis of the eyeball of the subject is reflected on the cornea surface.
- the calculation unit 1 derives a warping function W for registering the eyeball image Ie to the scene image Is.
- the calculation unit 1 obtains a point GRP ′ (FIG. 15) corresponding to the gaze reflection point GRP of the eyeball image Ie in the scene image Is.
- a point GRP ′ in the scene image Is corresponds to a scene (gaze point) that the subject is gazing at.
- the image alignment device can extract a scene (gaze point) that the subject is gazing from from the scene image Is. That is, as described above, the image alignment apparatus according to the present embodiment also operates as a gazing point extraction system.
- a display device using an image alignment device that operates as the above-described gazing point extraction system will be described.
- This technique can be applied to, for example, an AR (Augmented Reality) system.
- AR system Augmented Reality
- This display apparatus has the configuration shown in FIG. 4 as in the image alignment apparatus according to the present embodiment.
- the output unit 4 is a monitor display that displays an image.
- the computing unit 1 displays the scene image Is on the output unit 4 and displays a predetermined image in an overlapped position at an arbitrary point in the scene image in the scene image Is extracted as described above. Thereby, the superimposed display by the AR system can be performed.
- peripheral visual field of the subject can be restored to the scene image Is by the image alignment device and the image alignment method according to the present embodiment.
- the calculation unit 1 operates as a visual field estimation unit, specifies the posture (optical axis) of the eyeball using the eyeball image Ie, and determines a predetermined angle (for example, 10 degrees, 20 degrees, etc.) with respect to the optical axis of the eyeball. (..90 degrees), the point at which the light arriving from the direction of the angle is reflected on the corneal surface is identified (FIG. 16). These points are distributed so as to draw a curve in the eyeball image Ie.
- the calculation unit 1 detects points corresponding to these points from the scene image Is using the warping function W determined by the present embodiment.
- the detected point group forms a region of the subject's peripheral visual field (region spreading at a predetermined angle with the gazing point at the center).
- the peripheral region of the subject can be extracted from the scene image Is by the image alignment apparatus according to the present embodiment.
- the image alignment apparatus can estimate the peripheral visual field region of the subject in the scene image Is, that is, operates as a peripheral visual field estimation system.
- iris recognition In the existing iris recognition method, an eyeball image is acquired using infrared illumination in order to suppress specular reflection on the cornea surface. On the other hand, if the image alignment apparatus according to the present embodiment is used, specular reflection (corneal surface reflection image) included in the eyeball image can be removed using the scene image.
- the calculation unit 1 of the image alignment apparatus derives a warping function W between the eyeball image Ie (FIG. 17) and the scene image Is (FIG. 17).
- the calculation unit 1 uses the warping function W to align the scene image Is with the eyeball image Ie.
- the calculation unit 1 operates as an iris image generation unit to remove the cornea surface reflection image of the eyeball image Is by subtracting the aligned scene image Is from the portion corresponding to the scene image Is in the eyeball image Ie. To generate an iris image.
- the image Iit in FIG. 17 is an eyeball image from which the specular reflection of the cornea has been effectively removed as described above, that is, an iris image.
- the specular reflection of the cornea that is included in the eyeball image Is can be effectively removed, it is possible to obtain a noiseless iris image I it.
- the calculation unit 1 operates as a recognition unit, and performs iris recognition processing on the iris image using a known method.
- the image alignment apparatus effectively removes specular reflection of the cornea even when an eyeball image is acquired using not only infrared illumination but also illumination in the visible light region. And an accurate iris image can be obtained. By using the iris image obtained in this way, it is possible to improve the accuracy of iris recognition. That is, the image alignment apparatus according to the present embodiment also operates as an iris recognition system.
- the present embodiment also discloses the following system and method.
- An acquisition unit that acquires a first image that is an image obtained by photographing the eyeball of the subject and a second image that is an image obtained by photographing the subject in the visual line direction of the subject;
- a mapping unit for determining a first mapping that is a mapping for moving the first image to a spherical ray map and a second mapping that is a mapping for transferring the second image to a spherical ray map;
- a corresponding point pair extraction unit that extracts a corresponding point pair by detecting one point in the first image and one point in the second image corresponding to the one point; The position of one point in the first image that constitutes the corresponding point pair, and a transfer image that aligns the image of the first image in the spherical ray map and the image of the second image in the spherical ray map, and
- a transferred image deriving unit for deriving based on the local feature amount and the position and local feature amount of one point in the second image constituting the corresponding point pair;
- a display system (AR system) provided with the gazing point extraction system of (1).
- An acquisition unit that acquires a first image that is an image obtained by photographing the eyeball of the subject and a second image that is an image obtained by photographing the subject in the visual line direction of the subject;
- a mapping unit for determining a first mapping that is a mapping for moving the first image to a spherical ray map and a second mapping that is a mapping for transferring the second image to a spherical ray map;
- a corresponding point pair extraction unit that extracts a corresponding point pair by detecting one point in the first image and one point in the second image corresponding to the one point; The position of one point in the first image that constitutes the corresponding point pair, and a transfer image that aligns the image of the first image in the spherical ray map and the image of the second image in the spherical ray map, and Based on the local feature amount, and the position and local feature amount of one point in the second image that constitutes the corresponding point pair, The optical axis of the eyeball is specified from the
- an acquisition unit that acquires a first image that is an image of a subject in the direction of the line of sight of the subject and a second image that is an image of the eyeball of the subject;
- a storage unit for storing data of the first image and data of the second image;
- a mapping unit for determining a first mapping that is a mapping for moving the first image to a spherical ray map and a second mapping that is a mapping for transferring the second image to a spherical ray map;
- a corresponding point pair extraction unit that extracts a corresponding point pair by detecting one point in the first image and one point in the second image corresponding to the one point; The position of one point in the first image that constitutes the corresponding point pair, and a transfer image that aligns the image of the first image in the spherical ray map and the image of the second image in the spherical ray map, and Based on the local feature amount, and the position and local feature amount of one point in the second image that constitutes the
- a calculation unit that determines a first mapping that is a mapping for transferring the first image to a spherical ray map and a second mapping that is a mapping for transferring the second image to a spherical ray map;
- a calculation unit is configured to perform a transfer image that aligns the image of the first image in the spherical ray map and the image of the second image in the spherical ray map in the first image constituting the corresponding point pair.
- a calculation unit detecting a gaze reflection point on the first image by detecting a posture of an eyeball from the first image; The calculation unit obtains a point corresponding to the gaze reflection point in the second image as a point at which the subject is gazing, based on the first mapping, the transfer image, and the second mapping. Steps, A method of extracting a gazing point.
- (6) a step of obtaining a first image that is an image obtained by photographing the eyeball of the subject and a second image that is an image obtained by photographing the subject in the eye gaze direction of the subject;
- a calculation unit that determines a first mapping that is a mapping for transferring the first image to a spherical ray map and a second mapping that is a mapping for transferring the second image to a spherical ray map;
- a calculation unit is configured to perform a transfer image that aligns the image of the first image in the spherical ray map and the image of the second image in the spherical ray map in the first image constituting the corresponding point pair.
- a calculation unit that determines a first mapping that is a mapping for transferring the first image to a spherical ray map and a second mapping that is a mapping for transferring the second image to a spherical ray map;
- a calculation unit is configured to perform a transfer image that aligns the image of the first image in the spherical ray map and the image of the second image in the spherical ray map in the first image constituting the corresponding point pair.
- the calculation unit Based on the first mapping, the re-transfer image, and the second mapping, the calculation unit stores the first image data stored in the storage unit and the second image stored in the storage unit. Generating the first image data aligned with the second image by aligning with the image data; A calculation unit subtracting the aligned first image from the second image to generate an iris image; A calculation unit performing iris recognition using the iris image; An iris recognition method comprising:
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Ophthalmology & Optometry (AREA)
- General Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Signal Processing (AREA)
- Human Computer Interaction (AREA)
- Geometry (AREA)
- Multimedia (AREA)
- Eye Examination Apparatus (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
Description
第1画像のデータおよび第2画像のデータを取得する取得部と、
第1画像のデータおよび第2画像のデータを格納する記憶部と、
第1画像を球面光線マップへ移す写像である第1写像と、第2画像を球面光線マップへ移す写像である第2写像と、を決定するマッピング部と、
第1画像中の一点と、当該一点と対応する第2画像中の一点を検出することにより対応点対を抽出する対応点対抽出部と、
球面光線マップにおける第1画像の像と、球面光線マップにおける第2画像の像とを位置整合させる回転写像を、対応点対を構成する第1画像中の一点の位置および局所特徴量、ならびに、対応点対を構成する第2画像中の一点の位置および局所特徴量に基づいて、導出する回転写像導出部と、
第1写像と、回転写像と、第2写像と、に基づいて、記憶部に格納された第1画像のデータを、記憶部に格納された第2画像のデータに対して位置合わせして第2画像に対して位置合わせされた第1画像のデータを生成するレジストレーション部と、を有する画像位置合わせ装置である。
図1に示すようなシステムを例に挙げ、本発明に至った経緯を説明する。同図のシステムは、被験者の眼球20(のうち、主として角膜21)を撮像するアイ・カメラ911eと、被験者が見ている光景(シーン)を撮像する(撮像の方向が被験者の視線方向と略一致するように設置されている)シーン・カメラ911sを有する。同システムには、図示しないコンピュータがさらに含まれ、そのコンピュータが、アイ・カメラ911eが撮像した画像(眼球画像)から被験者の視線の方向を推定するとともに、シーン・カメラ911sが撮像した画像(シーン画像)を用いて被験者が目にしている光景を高精細に復元することを試みる。
そこで、本願発明者は、以下に説明する新規な画像位置合わせのための装置および方法を提案する。まずここでは図3を参照し、本発明の実施形態による画像位置合わせ装置が実行する画像位置合わせ方法の概要を説明する。
図4は、本発明の実施形態による画像位置合わせ装置10の構成を示す概略図である。画像位置合わせ装置10は、被験者の眼球20(のうち主として角膜21)を撮像するアイ・カメラ11eから画像データ(「眼球画像」のデータ)を取得するための第1映像インタフェース3eと、被験者が見ている光景(シーン)を撮像する(撮像の方向および画角が被験者の視線方向(眼球の光軸の方向)と略一致するように(あるいは視線方向を含むように)設置されている)シーン・カメラ11sから画像データ(「シーン画像」のデータ)を取得するための第2映像インタフェース3sを備えている。さらに、画像位置合わせ装置10は、第1および第2映像インタフェース3e,3sを介して装置10へ入力され記憶部2に格納されたシーン画像および眼球画像のデータを用いて両画像の位置合わせを行う演算部1(制御部)と、眼球画像のデータやシーン画像のデータといった各種データおよび演算部1が実行するプログラム等を格納する記憶部2を備える。なお、画像位置合わせ装置10は、アイ・カメラ11eとシーン・カメラ11sとともに画像位置合わせシステムを構成する。
次に、図5~図14を参照し、画像位置合わせ装置10の演算部1(図4)が、画像位置合わせプログラムを実行したときに行う処理について説明する。
本実施形態による画像位置合わせ装置10(図4)を用いた画像位置合わせ実験の結果を示す。本実験においては、角膜表面反射像(眼球画像Ie)およびシーン画像Isを安定して同時撮影するため、アイ・カメラ11e(図4)およびシーン・カメラ11s(図4)として、2台の小型ボードカメラ(IDS UI-1241LE-C-HQ, 1/1.8'' CMOS, 1280 x 1024 pixel)および、ヘッドマウントシステムからなるシステムを構成した。該システムでは、アイ・カメラ11e(f=12 mm, (H, V)=(33.3, 24.8)deg)は、眼球20から70~110ミリメートル程度離れた距離に位置し、瞳直径を約400~450画素程度の大きさで撮影した。低照度環境での撮影に際しては、アイ・カメラ11eのゲインおよび露出パラメータを調整した。アイ・カメラ11eおよびシーン・カメラ11sは、画像位置合わせ装置10(パーソナル・コンピュータ、PC)に接続された状態で、10fpsで画像を取得した。
本実施形態による画像位置合わせ装置および画像位置合わせ方法は、眼球画像Ieの角膜表面反射像と、シーン画像Isとのマッチングを可能にする。以下、本実施形態を用いて実現される応用用途の例を紹介する。
本実施形態による画像位置合わせ装置を用いた注視点推定を説明する。この注視点の推定により、例えば、ユーザが目で見ている風景の画像を抽出し、Googleストリートビュー等の画像を参照することで、ユーザが見ている物や場所を特定することができる。この技術は例えばAR(Augmented Reality)システムへの応用が可能である。本実施形態による画像位置合わせ装置を用いた注視点推定においては、従来の例と異なり、アイ・カメラとシーン・カメラとの相対的位置関係のキャリブレーションが不要である。また、同相対的位置関係を固定化する必要もない。
上記の注視点抽出システムとして動作する画像位置合わせ装置を用いたディスプレイ装置を説明する。この技術は例えばAR(Augmented Reality)システムへの応用が可能である。このディスプレイ装置(ARシステム)においては、従来の例と異なり、アイ・カメラとシーン・カメラとの相対的位置関係のキャリブレーションが不要である。また、同相対的位置関係を固定化する必要もない。このディスプレイ装置は、本実施形態による画像位置合わせ装置と同様に図4に示す構成を有する。出力部4は画像を表示するモニタディスプレイである。演算部1は、出力部4にシーン画像Isを表示させるととともに、上述のように抽出したシーン画像Isにおけるシーン画像中の任意の点の位置に所定の画像を重ねて表示させる。これによってARシステムによる重畳表示を行う事ができる。
さらに、本実施形態による画像位置合わせ装置および画像位置合わせ方法により、被験者の周辺視野をシーン画像Isに復元することもできるようになる。
既存の虹彩認識の手法では、角膜表面での鏡面反射を抑制するため赤外線照明を用いて眼球の画像を取得している。これに対し、本実施形態による画像位置合わせ装置を用いれば、シーン画像を用いて、眼球画像に含まれる鏡面反射(角膜表面反射像)を除去することができるようになる。
前記第1画像を球面光線マップへ移す写像である第1写像と、前記第2画像を球面光線マップへ移す写像である第2写像と、を決定するマッピング部と、
前記第1画像中の一点と、当該一点と対応する前記第2画像中の一点を検出することにより対応点対を抽出する対応点対抽出部と、
前記球面光線マップにおける前記第1画像の像と、前記球面光線マップにおける前記第2画像の像とを位置整合させる回転写像を、前記対応点対を構成する前記第1画像中の一点の位置および局所特徴量、ならびに、前記対応点対を構成する前記第2画像中の一点の位置および局所特徴量に基づいて導出する回転写像導出部と、
前記第1画像から眼球の姿勢を検出することにより前記第1画像上で注視反射点を検出し、
前記第1写像と、前記回転写像と、前記第2写像とに基づいて、前記第2画像中の前記注視反射点に対応する点を、被験者が注視している点として求める視点抽出部と、
を有する、注視点抽出システム。
前記第1画像を球面光線マップへ移す写像である第1写像と、前記第2画像を球面光線マップへ移す写像である第2写像と、を決定するマッピング部と、
前記第1画像中の一点と、当該一点と対応する前記第2画像中の一点を検出することにより対応点対を抽出する対応点対抽出部と、
前記球面光線マップにおける前記第1画像の像と、前記球面光線マップにおける前記第2画像の像とを位置整合させる回転写像を、前記対応点対を構成する前記第1画像中の一点の位置および局所特徴量、ならびに、前記対応点対を構成する前記第2画像中の一点の位置および局所特徴量に基づいて、導出する回転写像導出部と、
前記第1画像から眼球の光軸を特定し、前記光軸に対し所定の角度を成す方向から到来した光が角膜表面において反射した点を特定し、前記第1写像と前記回転写像と前記第2写像とに基づいて、前記第2画像から前記特定した反射点群を、被験者の周辺視野の領域を形成する点群として検出する視野推定部と、
を有する、周辺視野推定システム。
前記第1画像のデータおよび前記第2画像のデータを格納する記憶部と、
前記第1画像を球面光線マップへ移す写像である第1写像と、前記第2画像を球面光線マップへ移す写像である第2写像と、を決定するマッピング部と、
前記第1画像中の一点と、当該一点と対応する前記第2画像中の一点を検出することにより対応点対を抽出する対応点対抽出部と、
前記球面光線マップにおける前記第1画像の像と、前記球面光線マップにおける前記第2画像の像とを位置整合させる回転写像を、前記対応点対を構成する前記第1画像中の一点の位置および局所特徴量、ならびに、前記対応点対を構成する前記第2画像中の一点の位置および局所特徴量に基づいて、導出する回転写像導出部と、
前記第1写像と、前記回転写像と、前記第2写像と、に基づいて、前記記憶部に格納された前記第1画像のデータを、前記記憶部に格納された前記第2画像のデータに対して位置合わせして前記第2画像に対して位置合わせされた前記第1画像のデータを生成するレジストレーション部と、
位置合わせされた前記第1画像を前記第2画像から減算して虹彩画像を生成する虹彩画像生成部と、
前記虹彩画像を用いて虹彩認識を行う認識部と、
を有する、虹彩認識システム。
演算部が、前記第1画像を球面光線マップへ移す写像である第1写像と、前記第2画像を球面光線マップへ移す写像である第2写像と、を決定するステップと、
演算部が、前記第1画像中の一点と、当該一点と対応する前記第2画像中の一点を検出することにより対応点対を抽出するステップと、
演算部が、前記球面光線マップにおける前記第1画像の像と、前記球面光線マップにおける前記第2画像の像とを位置整合させる回転写像を、前記対応点対を構成する前記第1画像中の一点の位置および局所特徴量、ならびに、前記対応点対を構成する前記第2画像中の一点の位置および局所特徴量に基づいて導出するステップと、
演算部が、前記第1画像から眼球の姿勢を検出することにより前記第1画像上で注視反射点を検出するステップと、
演算部が、前記第1写像と、前記回転写像と、前記第2写像とに基づいて、前記第2画像中の、前記注視反射点に対応する点を、被験者が注視している点として求めるステップと、
を有する、注視点抽出方法。
演算部が、前記第1画像を球面光線マップへ移す写像である第1写像と、前記第2画像を球面光線マップへ移す写像である第2写像と、を決定するステップと、
演算部が、前記第1画像中の一点と、当該一点と対応する前記第2画像中の一点を検出することにより対応点対を抽出するステップと、
演算部が、前記球面光線マップにおける前記第1画像の像と、前記球面光線マップにおける前記第2画像の像とを位置整合させる回転写像を、前記対応点対を構成する前記第1画像中の一点の位置および局所特徴量、ならびに、前記対応点対を構成する前記第2画像中の一点の位置および局所特徴量に基づいて導出するステップと、
演算部が、前記第1画像から眼球の光軸を特定し、前記光軸に対し所定の角度を成す方向から到来した光が角膜表面において反射した点を特定し、前記第1写像と前記回転写像と前記第2写像とに基づいて、前記第2画像から前記特定した反射点群を、被験者の周辺視野の領域を形成する点群として検出するステップと、
を有する、周辺視野推定方法。
前記第1画像のデータおよび前記第2画像のデータを格納するステップと、
演算部が、前記第1画像を球面光線マップへ移す写像である第1写像と、前記第2画像を球面光線マップへ移す写像である第2写像と、を決定するステップと、
演算部が、前記第1画像中の一点と、当該一点と対応する前記第2画像中の一点を検出することにより対応点対を抽出するステップと、
演算部が、前記球面光線マップにおける前記第1画像の像と、前記球面光線マップにおける前記第2画像の像とを位置整合させる回転写像を、前記対応点対を構成する前記第1画像中の一点の位置および局所特徴量、ならびに、前記対応点対を構成する前記第2画像中の一点の位置および局所特徴量に基づいて導出するステップと、
演算部が、前記第1写像と、前記回転写像と、前記第2写像と、に基づいて、前記記憶部に格納された前記第1画像のデータを、前記記憶部に格納された前記第2画像のデータに対して位置合わせして前記第2画像に対して位置合わせされた前記第1画像のデータを生成するステップと、
演算部が、位置合わせされた前記第1画像を前記第2画像から減算して虹彩画像を生成するステップと、
演算部が、前記虹彩画像を用いて虹彩認識を行うステップと、
を有する、虹彩認識方法。
Claims (15)
- 第1画像のデータおよび第2画像のデータを取得する取得部と、
前記第1画像のデータおよび前記第2画像のデータを格納する記憶部と、
前記第1画像を球面光線マップへ移す写像である第1写像と、前記第2画像を球面光線マップへ移す写像である第2写像と、を決定するマッピング部と、
前記第1画像中の一点と、当該一点と対応する前記第2画像中の一点を検出することにより対応点対を抽出する対応点対抽出部と、
前記球面光線マップにおける前記第1画像の像と、前記球面光線マップにおける前記第2画像の像とを位置整合させる回転写像を、前記対応点対を構成する前記第1画像中の一点の位置および局所特徴量、ならびに、前記対応点対を構成する前記第2画像中の一点の位置および局所特徴量に基づいて、導出する回転写像導出部と、
前記第1写像と、前記回転写像と、前記第2写像と、に基づいて、前記記憶部に格納された前記第1画像のデータを、前記記憶部に格納された前記第2画像のデータに対して位置合わせして前記第2画像に対して位置合わせされた前記第1画像のデータを生成するレジストレーション部と、
を有する画像位置合わせ装置。 - 前記局所特徴量は、オリエンテーションの情報を含む、ことを特徴とする請求項1に記載の画像位置合わせ装置。
- 前記対応点対抽出部は、前記対応点対の候補として、前記第1画像の点と前記第2画像の点とで構成される対応点対候補を複数組み検出し、前記複数組みの対応点対候補それぞれの点対の対応関係を評価し、最も高く評価された点対で構成される対応点対候補を前記対応点対として抽出する、ことを特徴とする請求項1または2に記載の画像位置合わせ装置。
- 前記対応点対抽出部は、前記対応点対候補を構成する前記第1画像の点と前記第2画像の点との対応関係に従って前記第1画像および前記第2画像から抽出された点対で構成される複数の副次的対応点対の対応関係を評価することにより、前記対応点対候補の対応関係を評価する、ことを特徴とする請求項3に記載の画像位置合わせ装置。
- 前記第1画像は被験者の眼球を撮影した画像であり、前記第2画像は被験者の視線方向の被写体を撮影した画像である、ことを特徴とする請求項1に記載の画像位置合わせ装置。
- 第1画像を撮影する第1のカメラと、
第2の画像を撮影する第2のカメラと、
前記第1画像と前記第2画像の位置合わせを行う、請求項1ないし5のいずれかに記載の画像位置合わせ装置と
を備えた、ことを特徴とする画像位置合わせシステム。 - 第1画像のデータおよび第2画像のデータを取得する取得ステップと、
前記第1画像のデータおよび前記第2画像のデータを記憶部に格納する記憶ステップと、
演算部が、前記第1画像を球面光線マップへ移す写像である第1写像と、前記第2画像を球面光線マップへ移す写像である第2写像と、を決定するマッピング・ステップと、
演算部が、前記第1画像中の一点と、当該一点と対応する前記第2画像中の一点を検出することにより対応点対を抽出する対応点対抽出ステップと、
演算部が、前記球面光線マップにおける前記第1画像の像と、前記球面光線マップにおける前記第2画像の像とを位置整合させる回転写像を、前記対応点対を構成する前記第1画像中の一点の位置および局所特徴量、ならびに、前記対応点対を構成する前記第2画像中の一点の位置および局所特徴量に基づいて、導出する回転写像導出ステップと、
演算部が、前記第1写像と、前記回転写像と、前記第2写像と、に基づいて、前記記憶部に格納された前記第1画像のデータを、前記記憶部に格納された前記第2画像のデータに対して位置合わせして前記第2画像に対して位置合わせされた前記第1画像のデータを生成するレジストレーション・ステップと、を有する画像位置合わせ方法。 - コンピュータが実行可能な画像位置合わせプログラムであって、
前記画像位置合わせプログラムは、前記コンピュータに、
第1画像のデータおよび第2画像のデータを取得する取得ステップと、
前記第1画像のデータおよび前記第2画像のデータを記憶部に格納する記憶ステップと、
前記第1画像を球面光線マップへ移す写像である第1写像と、前記第2画像を球面光線マップへ移す写像である第2写像と、を決定するマッピング・ステップと、
前記第1画像中の一点と、当該一点と対応する前記第2画像中の一点を検出することにより対応点対を抽出する対応点対抽出ステップと、
前記球面光線マップにおける前記第1画像の像と、前記球面光線マップにおける前記第2画像の像とを位置整合させる回転写像を、前記対応点対を構成する前記第1画像中の一点の位置および局所特徴量、ならびに、前記対応点対を構成する前記第2画像中の一点の位置および局所特徴量に基づいて、導出する回転写像導出ステップと、
前記第1写像と、前記回転写像と、前記第2写像と、に基づいて、前記記憶部に格納された前記第1画像のデータを、前記記憶部に格納された前記第2画像のデータに対して位置合わせして前記第2画像に対して位置合わせされた前記第1画像のデータを生成するレジストレーション・ステップと、を実行させることを特徴とする画像位置合わせプログラム。 - 被験者の眼球を撮影した画像である第1画像及び被験者の視線方向の被写体を撮影した画像である第2画像を取得する取得部と、
前記第1画像を球面光線マップへ移す写像である第1写像と、前記第2画像を球面光線マップへ移す写像である第2写像と、を決定するマッピング部と、
前記第1画像中の一点と、当該一点と対応する前記第2画像中の一点を検出することにより対応点対を抽出する対応点対抽出部と、
前記球面光線マップにおける前記第1画像の像と、前記球面光線マップにおける前記第2画像の像とを位置整合させる回転写像を、前記対応点対を構成する前記第1画像中の一点の位置および局所特徴量、ならびに、前記対応点対を構成する前記第2画像中の一点の位置および局所特徴量に基づいて導出する回転写像導出部と、
前記第1画像から眼球の姿勢を検出することにより前記第1画像上で注視反射点を検出し、前記第1写像と、前記回転写像と、前記第2写像とに基づいて、前記第2画像中の、前記注視反射点に対応する点を、被験者が注視している点として求める視点抽出部と、
を有する、注視点抽出システム。 - 請求項9記載の注視点抽出システムを備えた表示システム。
- 被験者の眼球を撮影した画像である第1画像及び被験者の視線方向の被写体を撮影した画像である第2画像を取得する取得部と、
前記第1画像を球面光線マップへ移す写像である第1写像と、前記第2画像を球面光線マップへ移す写像である第2写像と、を決定するマッピング部と、
前記第1画像中の一点と、当該一点と対応する前記第2画像中の一点を検出することにより対応点対を抽出する対応点対抽出部と、
前記球面光線マップにおける前記第1画像の像と、前記球面光線マップにおける前記第2画像の像とを位置整合させる回転写像を、前記対応点対を構成する前記第1画像中の一点の位置および局所特徴量、ならびに、前記対応点対を構成する前記第2画像中の一点の位置および局所特徴量に基づいて、導出する回転写像導出部と、
前記第1画像から眼球の光軸を特定し、前記光軸に対し所定の角度を成す方向から到来した光が角膜表面において反射した点を特定し、前記第1写像と前記回転写像と前記第2写像とに基づいて、前記第2画像から前記特定した反射点群を、被験者の周辺視野の領域を形成する点群として検出する視野推定部と、
を有する、周辺視野推定システム。 - 被験者の視線方向の被写体を撮影した画像である第1画像および被験者の眼球を撮影した画像である第2画像を取得する取得部と、
前記第1画像のデータおよび前記第2画像のデータを格納する記憶部と、
前記第1画像を球面光線マップへ移す写像である第1写像と、前記第2画像を球面光線マップへ移す写像である第2写像と、を決定するマッピング部と、
前記第1画像中の一点と、当該一点と対応する前記第2画像中の一点を検出することにより対応点対を抽出する対応点対抽出部と、
前記球面光線マップにおける前記第1画像の像と、前記球面光線マップにおける前記第2画像の像とを位置整合させる回転写像を、前記対応点対を構成する前記第1画像中の一点の位置および局所特徴量、ならびに、前記対応点対を構成する前記第2画像中の一点の位置および局所特徴量に基づいて、導出する回転写像導出部と、
前記第1写像と、前記回転写像と、前記第2写像と、に基づいて、前記記憶部に格納された前記第1画像のデータを、前記記憶部に格納された前記第2画像のデータに対して位置合わせして前記第2画像に対して位置合わせされた前記第1画像のデータを生成するレジストレーション部と、
位置合わせされた前記第1画像を前記第2画像から減算して虹彩画像を生成する虹彩画像生成部と、
前記虹彩画像を用いて虹彩認識を行う認識部と、
を有する、虹彩認識システム。 - 被験者の眼球を撮影した画像である第1画像及び被験者の視線方向の被写体を撮影した画像である第2画像を取得するステップと、
演算部が、前記第1画像を球面光線マップへ移す写像である第1写像と、前記第2画像を球面光線マップへ移す写像である第2写像と、を決定するステップと、
演算部が、前記第1画像中の一点と、当該一点と対応する前記第2画像中の一点を検出することにより対応点対を抽出するステップと、
演算部が、前記球面光線マップにおける前記第1画像の像と、前記球面光線マップにおける前記第2画像の像とを位置整合させる回転写像を、前記対応点対を構成する前記第1画像中の一点の位置および局所特徴量、ならびに、前記対応点対を構成する前記第2画像中の一点の位置および局所特徴量に基づいて導出するステップと、
演算部が、前記第1画像から眼球の姿勢を検出することにより前記第1画像上で注視反射点を検出するステップと、
演算部が、前記第1写像と、前記回転写像と、前記第2写像とに基づいて、前記第2画像中の、前記注視反射点に対応する点を、被験者が注視している点として求めるステップと、
を有する、注視点抽出方法。 - 演算部が、被験者の眼球を撮影した画像である第1画像及び被験者の視線方向の被写体を撮影した画像である第2画像を取得するステップと、
演算部が、前記第1画像を球面光線マップへ移す写像である第1写像と、前記第2画像を球面光線マップへ移す写像である第2写像と、を決定するステップと、
演算部が、前記第1画像中の一点と、当該一点と対応する前記第2画像中の一点を検出することにより対応点対を抽出するステップと、
演算部が、前記球面光線マップにおける前記第1画像の像と、前記球面光線マップにおける前記第2画像の像とを位置整合させる回転写像を、前記対応点対を構成する前記第1画像中の一点の位置および局所特徴量、ならびに、前記対応点対を構成する前記第2画像中の一点の位置および局所特徴量に基づいて導出するステップと、
演算部が、前記第1画像から眼球の光軸を特定し、前記光軸に対し所定の角度を成す方向から到来した光が角膜表面において反射した点を特定し、前記第1写像と前記回転写像と前記第2写像とに基づいて、前記第2画像から前記特定した反射点群を、被験者の周辺視野の領域を形成する点群として検出するステップと、
を有する、
周辺視野推定方法。 - 被験者の視線方向の被写体を撮影した画像である第1画像および被験者の眼球を撮影した画像である第2画像を取得するステップと、
前記第1画像のデータおよび前記第2画像のデータを格納するステップと、
演算部が、前記第1画像を球面光線マップへ移す写像である第1写像と、前記第2画像を球面光線マップへ移す写像である第2写像と、を決定するステップと、
演算部が、前記第1画像中の一点と、当該一点と対応する前記第2画像中の一点を検出することにより対応点対を抽出するステップと、
演算部が、前記球面光線マップにおける前記第1画像の像と、前記球面光線マップにおける前記第2画像の像とを位置整合させる回転写像を、前記対応点対を構成する前記第1画像中の一点の位置および局所特徴量、ならびに、前記対応点対を構成する前記第2画像中の一点の位置および局所特徴量に基づいて導出するステップと、
演算部が、前記第1写像と、前記回転写像と、前記第2写像と、に基づいて、前記記憶部に格納された前記第1画像のデータを、前記記憶部に格納された前記第2画像のデータに対して位置合わせして前記第2画像に対して位置合わせされた前記第1画像のデータを生成するステップと、
演算部が、位置合わせされた前記第1画像を前記第2画像から減算して虹彩画像を生成するステップと、
演算部が、前記虹彩画像を用いて虹彩認識を行うステップと、を有する、
虹彩認識方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580039748.5A CN106575439B (zh) | 2014-07-24 | 2015-07-23 | 图像位置对准装置、图像位置对准方法以及记录介质 |
JP2016535977A JP6371849B2 (ja) | 2014-07-24 | 2015-07-23 | 画像位置合わせ装置、画像位置合わせ方法、および、画像位置合わせプログラム |
KR1020177000056A KR101909006B1 (ko) | 2014-07-24 | 2015-07-23 | 화상 위치 맞춤 장치, 화상 위치 맞춤 방법, 및 화상 위치 맞춤 프로그램 |
EP15825115.7A EP3188129A4 (en) | 2014-07-24 | 2015-07-23 | Image registration device, image registration method, and image registration program |
US15/413,629 US10628948B2 (en) | 2014-07-24 | 2017-01-24 | Image registration device, image registration method, and image registration program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-150848 | 2014-07-24 | ||
JP2014150848 | 2014-07-24 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/413,629 Continuation US10628948B2 (en) | 2014-07-24 | 2017-01-24 | Image registration device, image registration method, and image registration program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016013634A1 true WO2016013634A1 (ja) | 2016-01-28 |
Family
ID=55163158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/071027 WO2016013634A1 (ja) | 2014-07-24 | 2015-07-23 | 画像位置合わせ装置、画像位置合わせ方法、および、画像位置合わせプログラム |
Country Status (6)
Country | Link |
---|---|
US (1) | US10628948B2 (ja) |
EP (1) | EP3188129A4 (ja) |
JP (1) | JP6371849B2 (ja) |
KR (1) | KR101909006B1 (ja) |
CN (1) | CN106575439B (ja) |
WO (1) | WO2016013634A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017219837A (ja) * | 2016-06-07 | 2017-12-14 | 三星ディスプレイ株式會社Samsung Display Co.,Ltd. | 透明表示装置及びその駆動方法 |
WO2018008232A1 (ja) * | 2016-07-04 | 2018-01-11 | ソニー株式会社 | 情報処理装置、情報処理方法、及びプログラム |
JP2019537042A (ja) * | 2016-10-27 | 2019-12-19 | サムスン エレクトロニクス カンパニー リミテッド | 映像表示装置及び映像表示方法 |
CN111815688A (zh) * | 2020-06-24 | 2020-10-23 | 杭州宏华数码科技股份有限公司 | 一种长线条图像的精准配准方法 |
WO2021024095A1 (en) * | 2019-08-06 | 2021-02-11 | Alcon Inc. | Scene camera systems and methods for vitreoretinal surgery |
JP2021508109A (ja) * | 2017-12-19 | 2021-02-25 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | 頭部装着型ディスプレイデバイスおよびその方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3616600B1 (en) * | 2017-04-28 | 2022-06-22 | Nikon Corporation | Ophthalmological device |
CN107230066B (zh) * | 2017-06-01 | 2020-11-03 | 珠海市魅族科技有限公司 | 一种支付方法以及装置、计算机装置、可读存储介质 |
US11412928B2 (en) * | 2017-08-11 | 2022-08-16 | Carl Zeiss Meditec, Inc. | Systems and methods for improved ophthalmic imaging |
US11335079B2 (en) * | 2018-03-05 | 2022-05-17 | Intel Corporation | Method and system of reflection suppression for image processing |
JP6840697B2 (ja) * | 2018-03-23 | 2021-03-10 | 株式会社豊田中央研究所 | 視線方向推定装置、視線方向推定方法、及び視線方向推定プログラム |
JP7173836B2 (ja) * | 2018-11-05 | 2022-11-16 | 京セラ株式会社 | コントローラ、位置判定装置、位置判定システム、表示システム、プログラム、および記録媒体 |
CN110220675B (zh) * | 2019-06-11 | 2021-09-28 | 深圳创维-Rgb电子有限公司 | 一种显示器性能测试系统、方法、终端及存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09322040A (ja) * | 1996-05-28 | 1997-12-12 | Canon Inc | 画像生成装置 |
JP2005100407A (ja) * | 2003-09-24 | 2005-04-14 | Seiko Epson Corp | 複数のソース画像からパノラマ画像を作成するシステム及び方法 |
US8077914B1 (en) * | 2006-08-07 | 2011-12-13 | Arkady Kaplan | Optical tracking apparatus using six degrees of freedom |
WO2014021169A1 (ja) * | 2012-07-31 | 2014-02-06 | 独立行政法人科学技術振興機構 | 注視点検出装置、注視点検出方法、個人パラメータ算出装置、個人パラメータ算出方法、プログラム、及びコンピュータ読み取り可能な記録媒体 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6389179B1 (en) * | 1996-05-28 | 2002-05-14 | Canon Kabushiki Kaisha | Image combining apparatus using a combining algorithm selected based on an image sensing condition corresponding to each stored image |
JP2001108933A (ja) | 1999-08-03 | 2001-04-20 | Sony Corp | ヘッドマウントディスプレイ装置 |
JP4595750B2 (ja) * | 2005-08-29 | 2010-12-08 | ソニー株式会社 | 画像処理装置および方法、並びにプログラム |
JP5217585B2 (ja) | 2008-04-09 | 2013-06-19 | セイコーエプソン株式会社 | 頭部装着型画像表示装置 |
JP2010056661A (ja) | 2008-08-26 | 2010-03-11 | Olympus Corp | 頭部装着型映像取得表示装置 |
JP5329882B2 (ja) | 2008-09-17 | 2013-10-30 | パイオニア株式会社 | ディスプレイ装置 |
JP5295714B2 (ja) | 2008-10-27 | 2013-09-18 | 株式会社ソニー・コンピュータエンタテインメント | 表示装置、画像処理方法、及びコンピュータプログラム |
JP5612371B2 (ja) * | 2010-06-11 | 2014-10-22 | 富士フイルム株式会社 | 画像位置合わせ装置および方法並びにプログラム |
FR2970576B1 (fr) * | 2011-01-19 | 2013-02-08 | Matchic Labs | Procede de determination de la direction du regard et dispositif pour sa mise en oeuvre |
JP5733565B2 (ja) * | 2011-03-18 | 2015-06-10 | ソニー株式会社 | 画像処理装置および方法、並びにプログラム |
CN102324043B (zh) * | 2011-09-07 | 2013-12-18 | 北京邮电大学 | 基于dct的特征描述算子及优化空间量化的图像匹配方法 |
CN103024350B (zh) * | 2012-11-13 | 2015-07-29 | 清华大学 | 一种双目ptz视觉系统的主从跟踪方法及应用该方法的系统 |
JP5533988B2 (ja) * | 2012-11-30 | 2014-06-25 | 株式会社デンソーアイティーラボラトリ | 画像処理システム |
US10007336B2 (en) * | 2013-09-10 | 2018-06-26 | The Board Of Regents Of The University Of Texas System | Apparatus, system, and method for mobile, low-cost headset for 3D point of gaze estimation |
-
2015
- 2015-07-23 WO PCT/JP2015/071027 patent/WO2016013634A1/ja active Application Filing
- 2015-07-23 CN CN201580039748.5A patent/CN106575439B/zh not_active Expired - Fee Related
- 2015-07-23 EP EP15825115.7A patent/EP3188129A4/en not_active Withdrawn
- 2015-07-23 JP JP2016535977A patent/JP6371849B2/ja active Active
- 2015-07-23 KR KR1020177000056A patent/KR101909006B1/ko active IP Right Grant
-
2017
- 2017-01-24 US US15/413,629 patent/US10628948B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09322040A (ja) * | 1996-05-28 | 1997-12-12 | Canon Inc | 画像生成装置 |
JP2005100407A (ja) * | 2003-09-24 | 2005-04-14 | Seiko Epson Corp | 複数のソース画像からパノラマ画像を作成するシステム及び方法 |
US8077914B1 (en) * | 2006-08-07 | 2011-12-13 | Arkady Kaplan | Optical tracking apparatus using six degrees of freedom |
WO2014021169A1 (ja) * | 2012-07-31 | 2014-02-06 | 独立行政法人科学技術振興機構 | 注視点検出装置、注視点検出方法、個人パラメータ算出装置、個人パラメータ算出方法、プログラム、及びコンピュータ読み取り可能な記録媒体 |
Non-Patent Citations (2)
Title |
---|
CHRISTIAN NITSCHKE ET AL.: "Super resolution scene reconstruction using corneal reflections", IEICE TECHNICAL REPORT, vol. 112, no. 225, 27 August 2012 (2012-08-27), pages 65 - 70, XP008185282 * |
See also references of EP3188129A4 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017219837A (ja) * | 2016-06-07 | 2017-12-14 | 三星ディスプレイ株式會社Samsung Display Co.,Ltd. | 透明表示装置及びその駆動方法 |
WO2018008232A1 (ja) * | 2016-07-04 | 2018-01-11 | ソニー株式会社 | 情報処理装置、情報処理方法、及びプログラム |
US11030975B2 (en) | 2016-07-04 | 2021-06-08 | Sony Corporation | Information processing apparatus and information processing method |
JP2019537042A (ja) * | 2016-10-27 | 2019-12-19 | サムスン エレクトロニクス カンパニー リミテッド | 映像表示装置及び映像表示方法 |
US10742880B2 (en) | 2016-10-27 | 2020-08-11 | Samsung Electronics Co., Ltd. | Image display apparatus and method of displaying image |
JP2021508109A (ja) * | 2017-12-19 | 2021-02-25 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | 頭部装着型ディスプレイデバイスおよびその方法 |
JP7012163B2 (ja) | 2017-12-19 | 2022-01-27 | テレフオンアクチーボラゲット エルエム エリクソン(パブル) | 頭部装着型ディスプレイデバイスおよびその方法 |
US11380018B2 (en) | 2017-12-19 | 2022-07-05 | Telefonaktiebolaget Lm Ericsson (Publ) | Head-mounted display device and method thereof |
US11935267B2 (en) | 2017-12-19 | 2024-03-19 | Telefonaktiebolaget Lm Ericsson (Publ) | Head-mounted display device and method thereof |
WO2021024095A1 (en) * | 2019-08-06 | 2021-02-11 | Alcon Inc. | Scene camera systems and methods for vitreoretinal surgery |
US11826101B2 (en) | 2019-08-06 | 2023-11-28 | Alcon Inc. | Scene camera systems and methods for vitreoretinal surgery |
CN111815688A (zh) * | 2020-06-24 | 2020-10-23 | 杭州宏华数码科技股份有限公司 | 一种长线条图像的精准配准方法 |
CN111815688B (zh) * | 2020-06-24 | 2022-10-21 | 杭州宏华数码科技股份有限公司 | 一种长线条图像的精准配准方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20170020839A (ko) | 2017-02-24 |
JPWO2016013634A1 (ja) | 2017-06-01 |
US20170169578A1 (en) | 2017-06-15 |
CN106575439A (zh) | 2017-04-19 |
US10628948B2 (en) | 2020-04-21 |
KR101909006B1 (ko) | 2018-10-17 |
EP3188129A1 (en) | 2017-07-05 |
CN106575439B (zh) | 2019-05-31 |
JP6371849B2 (ja) | 2018-08-08 |
EP3188129A4 (en) | 2018-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6371849B2 (ja) | 画像位置合わせ装置、画像位置合わせ方法、および、画像位置合わせプログラム | |
US11644898B2 (en) | Eye tracking method and system | |
Schuckers et al. | On techniques for angle compensation in nonideal iris recognition | |
Lu et al. | Learning gaze biases with head motion for head pose-free gaze estimation | |
CN104978548B (zh) | 一种基于三维主动形状模型的视线估计方法与装置 | |
US9235928B2 (en) | 3D body modeling, from a single or multiple 3D cameras, in the presence of motion | |
Nishino et al. | Corneal imaging system: Environment from eyes | |
JP5728009B2 (ja) | 指示入力装置、指示入力方法、プログラム、記録媒体および集積回路 | |
US11294455B2 (en) | Method and device for determining gaze placement, computer readable storage medium | |
JP6191943B2 (ja) | 視線方向推定装置、視線方向推定装置および視線方向推定プログラム | |
US20160232683A1 (en) | Apparatus and method for analyzing motion | |
US20150029322A1 (en) | Method and computations for calculating an optical axis vector of an imaged eye | |
US20210097644A1 (en) | Gaze adjustment and enhancement for eye images | |
CN106529409A (zh) | 一种基于头部姿态的眼睛注视视角测定方法 | |
JP2016173313A (ja) | 視線方向推定システム、視線方向推定方法及び視線方向推定プログラム | |
JP7030317B2 (ja) | 瞳孔検出装置及び瞳孔検出方法 | |
US20140009570A1 (en) | Systems and methods for capture and display of flex-focus panoramas | |
WO2021197466A1 (zh) | 眼球检测方法、装置、设备及存储介质 | |
JP6276713B2 (ja) | 画像データ処理方法、画像データ処理装置および画像データ処理プログラム | |
JP6377566B2 (ja) | 視線計測装置、視線計測方法、およびプログラム | |
WO2024113275A1 (zh) | 凝视点获取方法和装置、电子设备和存储介质 | |
JP6302427B2 (ja) | 画像データ処理方法、画像データ処理装置および画像データ処理プログラム | |
Ogawa et al. | Point of gaze estimation using corneal surface reflection and omnidirectional camera image | |
JP2012212325A (ja) | 視線計測システム、方法およびプログラム | |
De Jesús et al. | Methodology for iris scanning through Smartphones |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15825115 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20177000056 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2016535977 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015825115 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015825115 Country of ref document: EP |