WO2016013570A1 - Method for producing putrescine by mixed bacterial culture - Google Patents

Method for producing putrescine by mixed bacterial culture Download PDF

Info

Publication number
WO2016013570A1
WO2016013570A1 PCT/JP2015/070812 JP2015070812W WO2016013570A1 WO 2016013570 A1 WO2016013570 A1 WO 2016013570A1 JP 2015070812 W JP2015070812 W JP 2015070812W WO 2016013570 A1 WO2016013570 A1 WO 2016013570A1
Authority
WO
WIPO (PCT)
Prior art keywords
microorganism
arginine
culture
putrescine
pathway
Prior art date
Application number
PCT/JP2015/070812
Other languages
French (fr)
Japanese (ja)
Inventor
雄祐 北田
松本 光晴
Original Assignee
協同乳業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協同乳業株式会社 filed Critical 協同乳業株式会社
Publication of WO2016013570A1 publication Critical patent/WO2016013570A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Definitions

  • the present invention relates to a method for producing putrescine using a microorganism having an arginine-dependent acid resistance mechanism and a microorganism having an AgDI pathway (agmatin deiminase metabolic pathway).
  • the present invention also relates to a method for producing putrescine using an ornithine-producing microorganism and a microorganism having an ornithine decarboxylase (iODC) that works inductively with an ornithine putrescine antiporter.
  • iODC ornithine decarboxylase
  • Polyamine is a general term for aliphatic hydrocarbons having two or more primary amino groups
  • putrescine (1,4-diaminobutane) is one of the simplest polyamines.
  • Polyamines produced by intestinal bacteria are strongly related to the health of the host, such as having an intestinal barrier function enhancing action, antimutagenicity, and antioxidant action. Elucidation of the route is an important theme.
  • research on the polyamine biosynthesis system of intestinal bacteria has been conducted on individual bacterial species, but the polyamine biosynthesis pathway has been specified only for some pathogenic bacteria.
  • the mechanism of polyamine release to the outside of the fungus body (inside the intestinal lumen) and its physiological significance (why it is released outside the fungus body) have not been elucidated in those fungus species.
  • the polyamine-rich food material present in the current market is an extract from plants (Patent Document 1, Patent Document 2) and yeast (Patent Document 3).
  • Patent Document 1 Patent Document 2
  • Patent Document 3 yeast
  • methods for producing putrescine using microorganisms include an example using one kind of microorganism (Patent Document 4) and an example using a mutant microorganism subjected to genetic recombination (Patent Document 5).
  • Patent Document 4 an example using one kind of microorganism
  • Patent Document 5 an example using a mutant microorganism subjected to genetic recombination
  • the present invention provides a new method for producing putrescine satisfying such conditions.
  • the inventor of the present case noted that the in vivo study confirmed that the most abundant putrescine present in the human intestinal tract was induced in a concentration-dependent manner by oral administration of the precursor arginine. Started the research. As a result of intensive studies, we found that mixed culture produced more putrescine than single strains, and hypothesized that putrescine was biosynthesized and released in the intestinal tract by the joint action of multiple bacteria rather than a single bacterium. Stood up. They found a combination of bacteria that produced putrescine from arginine. Based on this finding, the present invention has been completed.
  • the present invention may be as follows. [1] A method for producing putrescine, wherein a microorganism having an arginine-dependent acid resistance mechanism and a microorganism having an AgDI pathway (agmatin deiminase metabolic pathway) are mixed and cultured in the presence of arginine under acidic conditions. Said method.
  • the step of mixed culture includes (A) culturing a microorganism having an arginine-dependent acid-resistant mechanism under acidic conditions in the presence of arginine; and (B) A microorganism having an AgDI pathway (agmatin deiminase metabolic pathway) is added to the culture of (A) and mixed and cultured; The method according to [1], wherein [3] The method according to [1] or [2], wherein the microorganism having an arginine-dependent acid resistance mechanism is a microorganism belonging to the family Enterobacteriaceae.
  • the microorganism having the AgDI pathway is a microorganism belonging to the family Enterococcuaceae, Streptococcaceae, Lactobacillaceae, Pseudomonadaceae, any one of [1] to [4] The method according to item.
  • a method for producing putrescine comprising the following steps: (1) culturing a microorganism having an arginine-dependent acid resistance mechanism under acidic conditions in the presence of arginine; (2) obtaining a culture supernatant from the culture of step (1); (3) A microorganism having an AgDI pathway (agmatin deiminase metabolic pathway) is added to the culture supernatant of step (2) and cultured; and (4) putrescine is separated from the culture solution of step (3); Said method.
  • a method for producing putrescine comprising the step of mixing and culturing a microorganism producing ornithine and a microorganism having iODC which is ornithine decarboxylase.
  • the ornithine-producing microorganism is a microorganism having an ADI pathway (arginine deiminase metabolic pathway), and the mixed culture is performed in the presence of arginine.
  • the microorganism having iODC is Escherichia coli having iODC.
  • the conditions of the mixed culture are the following (a) to (c): (A) pH 4.5 to pH 7.5; (B) arginine is present in the range of 0.1 mM to 500 mM; and (c) aerobic conditions;
  • putrescine By using the joint action of two or more types of microorganisms, putrescine can be produced more efficiently than when one type of microorganism is used. Further, since the method of the present invention does not use a gene recombinant, it is highly safe from the viewpoint of production of food materials.
  • FIG. 1 is a schematic view of a method for producing putrescine by two types of microorganisms, a microorganism having an arginine-dependent acid resistance mechanism and a microorganism having an AgDI pathway.
  • E. coli was exemplified as a microorganism having an arginine-dependent acid resistance mechanism
  • En. Faecalis was exemplified as a microorganism having an AgDI pathway.
  • FIG. 2 is a schematic view of a method for producing putrescine by a microorganism having an ADI pathway and a microorganism having iODC.
  • En. Faecalis was exemplified as a microorganism having an ADI pathway, and E.
  • FIG. 3 is a graph showing the difference between strains in the ability to produce putrescine from ornithine of E. coli.
  • FIG. 4 is a graph showing the results of evaluating the amount of putrescine produced from arginine when combining E. coli and En. Faecalis strains.
  • A The result when combining En. Faecalis JCM5803 and any of four strains of E. coli (JCM5491, JCM1649, JCM1246 or MG1655) is shown.
  • FIG. 5 is a graph showing the effect of ammonia concentration on putrescine production from ornithine of E. coli.
  • FIG. 6 is a graph showing the effect of magnesium hydrogen phosphate on the production of putrescine from arginine during E. coli and En. Faecalis mixed culture.
  • FIG. 7 is a graph showing changes in the concentrations of arginine, ornithine and putrescine during E. coli and En. Faecalis mixed culture in a 1.2 M magnesium hydrogen phosphate-added medium.
  • the present invention relates to a method for producing putrescine using the joint action of two or more kinds of microorganisms.
  • the present application provides a method for producing putrescine using the cooperative action of different microorganisms, wherein one of the different microorganisms has one of the metabolic pathways and the other has the other metabolic pathway.
  • the present invention relates to a method for producing putrescine using a microorganism having an arginine-dependent acid tolerance mechanism and a microorganism having an AgDI pathway (agmatin deiminase metabolic pathway).
  • the arginine-dependent acid resistance mechanism is a mechanism possessed by some microorganisms, which absorbs arginine and releases agmatine under acidic conditions.
  • the AgDI pathway is an agmatine metabolic pathway possessed by some microorganisms, and is a pathway that, after absorbing agmatine, decomposes agmatine using agmatine deiminase and produces putrescine via carbamoylputrescine.
  • the inventors of the present invention have found that a microorganism having an AgDI pathway biosynthesizes and releases putrescine using a metabolite produced by a microorganism having an arginine-dependent acid-resistant mechanism. That is, as illustrated in FIG. 1, it has been found that a microorganism having an arginine-dependent acid-resistant mechanism produces agmatine from arginine, and a microorganism having an AgDI pathway produces putrescine using the produced agmatine. It was.
  • the present application provides a method for producing putrescine, comprising a step of mixing and culturing a microorganism having an arginine-dependent acid resistance mechanism and a microorganism having an AgDI pathway under acidic conditions in the presence of arginine.
  • Microorganisms having an arginine-dependent acid resistance mechanism include, but are not limited to, microorganisms belonging to the family Enterobacteriaceae.
  • the microorganism having an arginine-dependent acid resistance mechanism is a microorganism belonging to the genus Escherichia or Salmonella.
  • Escherichia coli and Salmonella enterica are particularly preferable, and any one of these may be appropriately selected.
  • Salmonella enterica is closely related to E. coli and is known to have a metabolic pathway similar to that of E. coli (Brenneman, K. E., et al., (2013) J. Bacteriol., 195 (13) : 3062-3072).
  • Microorganisms having the AgDI pathway include, but are not limited to, microorganisms belonging to the family Enterococcuaceae, Streptococcaceae, Lactobacillaceae, Pseudomonadaceae Not. These microorganisms are known to have metabolic pathways similar to Enterococcus faecalis (Ladero, V., et al., (2011) Appl. Envion. Microbiol., 77 (18): 6409-6418; Nakada, Y., et al., (2001) J. Bacteriol., 183 (22): 6517-6524).
  • the microorganism having the AgDI pathway may be selected from Enterococcus faecalis, Lactococcus lactis, Lactobacillus brevis, and Pseudomonas aeruginosa.
  • the microorganism having the AgDI pathway is a microorganism belonging to the family Enterococcus.
  • the microorganism having the AgDI pathway is Enterococcus faecalis.
  • the microorganism is cultured in the presence of arginine.
  • the arginine concentration in the culture solution is not particularly limited, but may be 0.1 mM or more, 0.5 ⁇ mM or more, or 1.0 mM or more.
  • the upper limit of the arginine concentration is not particularly limited, but is 1.0 M or less, 800 mM or less, 600 mM or less, 400 mM or less, 200 mM or less, 150 mM or less, 100 mM or less, 75 mM or less, or 50 mM or less Good.
  • the upper and lower limits of the arginine concentration can be appropriately selected from the above ranges.
  • the concentration of arginine in the culture solution is 0.1 ⁇ m to 200 ⁇ m, 0.1 ⁇ m to 500 ⁇ m, 1.0 ⁇ m to 50 ⁇ m.
  • the microorganism is cultured under acidic conditions.
  • the acidic condition is not particularly limited as long as it is in the range of pH 4.0 or more and less than pH 7.0.
  • the lower limit of the acidic condition is pH 4.0 or more, pH 4.5 or more, pH 5.0 or more, or pH 5.5 or more, and the upper limit is less than pH 7.0, pH 6.5 or less, or pH 6.0. It is as follows.
  • the lower limit and the upper limit of the acidic condition can be appropriately selected from the above ranges.
  • the acidic conditions are pH 4.0 or higher and pH 6.0 or lower.
  • the microorganism is preferably cultured under anaerobic conditions, but is not limited thereto.
  • mixed culture may be performed using any medium available to those skilled in the art.
  • the method of the present invention it has been observed that the amount of putrescine production increases as the number of bacteria in the culture increases. From this point of view, a medium in which a medium component sufficiently contains components necessary for the growth of microorganisms is preferable.
  • the mixed culture may be performed by batch culture (that is, a method in which medium components are not added during culture) or fed-batch culture (that is, a method in which medium components are continuously added during culture). Good. Batch culture has the advantage that it can be industrialized relatively easily.
  • fed-batch culture since the culture medium components are continuously added during the culture, the number of bacteria in the culture solution generally increases. For this reason, increase in putrescine production can be expected by using fed-batch culture.
  • a person skilled in the art can appropriately select the type of medium, the amount of medium components, the culture method, and the like in consideration of various situations.
  • the time for performing the mixed culture is not particularly limited, and those skilled in the art can appropriately set by sampling the mixed culture and measuring the amount of putrescine in the culture.
  • the culture time of the mixed culture may be, for example, 6 hours, 12 hours, 24 hours, 36 hours, 48 hours, 60 hours, 72 hours.
  • the mixed culture may be performed in any order as long as the microorganism having an arginine-dependent acid-resistant mechanism and the microorganism having the AgDI pathway are both present during the culture. Absent.
  • a microorganism having an arginine-dependent acid resistance mechanism is first cultured, and a microorganism having an AgDI pathway is added later and mixed and cultured.
  • the mixed culture process is performed as follows: (A) culturing a microorganism having an arginine-dependent acid-resistant mechanism under acidic conditions in the presence of arginine; and (B) A microorganism having an AgDI pathway (agmatin deiminase metabolic pathway) is added to the culture of (A) and mixed and cultured; May be performed.
  • a microorganism having an AgDI pathway agmatin deiminase metabolic pathway
  • the time for culturing in the above step (A) is not particularly limited, and may be, for example, 6 hours, 12 hours, 24 hours, or 48 hours.
  • the time which performs the mixed culture of the said process (B) is not specifically limited, For example, 6 hours, 12 hours, 24 hours, 36 hours, 48 hours, 60 hours, 72 hours may be sufficient.
  • the method for producing putrescine of the present invention may further include a step of separating putrescine from the culture solution of the mixed culture.
  • step of separating putrescine putrescine is separated and / or purified from the culture solution obtained in the mixed culture step.
  • Putrescine is contained in the culture solution, and the cells may be separated from the culture solution as a pretreatment for purification, and the separated cells may be reused.
  • Separation of the bacterial cells from the culture solution may be performed by any method including known methods. For example, the separation may be performed by centrifugation, a filtration filter, a bacterial cell immobilization technique, or the like. Separation of putrescine from the culture solution may be performed by any method including known methods.
  • UPLC ultra high performance liquid chromatography
  • HPLC high performance liquid chromatography
  • GC gas chromatography
  • capillary electrophoresis capillary electrophoresis
  • ion chromatography gel filtration, centrifugation, etc.
  • purified putrescine may be obtained as a result of the step of separating putrescine, or a culture solution from which the cells have been removed may be obtained as a crude putrescine purified product.
  • the application provides the following steps: (1) culturing a microorganism having an arginine-dependent acid resistance mechanism under acidic conditions in the presence of arginine; (2) obtaining a culture supernatant from the culture of step (1); (3) A microorganism having an AgDI pathway is added to the culture supernatant of step (2) and cultured; and (4) putrescine is separated from the culture solution of step (3); A method for producing putrescine is provided.
  • the microorganisms having an arginine acid resistance mechanism the microorganisms having an AgDI pathway, the culture conditions such as the amount of arginine and acidic conditions, and the range intended as a method for separating putrescine, As described in the embodiment.
  • the culture time is not particularly limited, and may be, for example, 6 hours, 12 hours, 24 hours, 48 hours.
  • the time for culturing in the step (3) of the second aspect is not particularly limited.
  • a person skilled in the art can appropriately set by sampling the mixed culture solution and measuring the amount of putrescine in the culture solution. For example, it may be 6 hours, 24 hours, 36 hours, 48 hours, 60 hours, 72 hours.
  • the method for obtaining the culture supernatant may be performed by any method including a known method.
  • it can be performed by centrifugation, filter sterilization, a technique using a cell immobilization technique, or the like.
  • the present invention relates to a method for producing putrescine using a microorganism producing ornithine and a microorganism having iODC which is ornithine decarboxylase. Specifically, the method includes a step of culturing a microorganism that produces ornithine and a microorganism having iODC.
  • the ornithine-producing microorganism is not particularly limited as long as it has the characteristic that ornithine is produced, but it may be a wild-type microorganism that produces ornithine, or a microorganism that has been modified to improve the production of ornithine (for example, And microorganisms described in JP-A-2013-544532).
  • Wild-type microorganisms that produce ornithine include microorganisms having the ADI pathway described later, microorganisms belonging to the genus Corynebacterium, Saccharomyces, Candida, or Pichia. included.
  • the present invention relates to a method for producing putrescine using a microorganism having an ADI pathway (arginine deiminase metabolic pathway) and a microorganism having iODC which is an ornithine decarboxylase. That is, as exemplified in FIG. 2, ornithine is produced from arginine by a microorganism having an ADI pathway, and a microorganism having iODC produces putrescine using the produced ornithine.
  • ADI pathway arginine deiminase metabolic pathway
  • iODC which is an ornithine decarboxylase
  • the ADI pathway is a pathway possessed by some microorganisms, and is a metabolic pathway in which arginine is absorbed, then arginine is decomposed using arginine deiminase, and ornithine is produced via citrulline (Simon, J. P. Et al., Journal of Bacteriology, (1982), 150 (3): 1085-1090).
  • IODC is one of the ornithine decarboxylases and is encoded by the SpeF gene.
  • iODC works inductively with ornithine and putrescine antiporter when ornithine is present outside the cells, and biosynthesizes putrescine from the incorporated ornithine. The biosynthesized putrescine is released outside the cells (Kashiwagi, K., et al., The Journal of Biological Chemistry, (1991), 266 (31): 20922-20927).
  • the present application provides a method for producing putrescine, comprising a step of culturing a microorganism having an ADI pathway and a microorganism having iODC in the presence of arginine.
  • Microorganisms having the ADI pathway include microorganisms belonging to the family Enterococcus, Streptococcus, Lactobacillus, Pseudomonas, Vibrionaceae, Streptomycetaceae, or Mycobacteriaceae, It is not limited to this.
  • the microorganism having the ADI pathway is a microorganism belonging to the family Enterococcus, more preferably Enterococcus faecalis.
  • the microorganism having iODC is not particularly limited as long as it is a microorganism expressing iODC.
  • the microorganism having iODC is E. coli having iODC, more preferably E. ⁇ ⁇ ⁇ ⁇ coli JCM5491 (ATCC25922) or E. coli JCM1649 (ATCC11775).
  • the microorganism is cultured in the presence of arginine.
  • concentration of arginine in the culture solution is not particularly limited, but may be 0.1 ⁇ mM or higher, 0.5 ⁇ mM or higher, 1.0 ⁇ mM or higher, 50 ⁇ mM or higher, 100 ⁇ mM or higher, 200 ⁇ mM or higher.
  • the upper limit of the arginine concentration is not particularly limited, but may be 1.0 M or less, 800 mM or less, 600 mM or less, or 400 mM or less.
  • the upper and lower limits of the arginine concentration can be appropriately selected from the above ranges.
  • the concentration of arginine in the culture solution is 0.1 to 500 ⁇ m, 200 to 400 ⁇ m.
  • Culture in the presence of arginine may be performed by culturing in a medium to which arginine has been added, and / or by adding a microorganism that produces arginine and performing mixed culture.
  • arginine may be added to the medium in advance and / or arginine may be appropriately added during the culture.
  • the mixed culture by adding microorganisms that produce arginine means that mixed culture of at least three kinds of microorganisms, that is, microorganisms having an ADI pathway, microorganisms having iODC, and microorganisms that produce arginine is performed.
  • the microorganisms that produce arginine are not particularly limited as long as they produce arginine.
  • the microorganisms include genus Corynebacterium, Brevibacterium, Bacillus, Serratia, Escherichia or Saccharomyces. The microorganism to which it belongs is mentioned.
  • the microorganism is cultured under acidic conditions or under weakly acidic to neutral conditions.
  • the acidic condition is not particularly limited as long as it is in a range of pH 4.0 or more and less than pH 7.0.
  • the mildly acidic to neutral conditions are not particularly limited as long as they are in the range of pH 5.0 or more and pH 7.5 or less.
  • the microorganism is cultured under mildly acidic to neutral conditions, more preferably at a pH in the range of 6.0 to 7.5.
  • the microorganism may be cultured under either aerobic conditions or anaerobic conditions.
  • the mixed culture is performed under aerobic conditions.
  • the type of medium, the amount of medium components, the culture method, etc. in the mixed culture process are described in I. And can be appropriately selected by those skilled in the art in consideration of various situations.
  • the culture time for mixed culture is the same as that described in I. above. As described above.
  • primary magnesium phosphate Mg (H 2 PO 4 ) 2
  • secondary magnesium phosphate magnesium hydrogen phosphate (MgHPO 4 )
  • tertiary magnesium phosphate Mg 3 (PO 4) 2
  • mixed culture may be performed using a medium to which an ammonia removing agent selected from the group consisting of magnesium pyrophosphate (Mg 2 P 2 O 7 ) is added.
  • an ammonia removing agent selected from the group consisting of magnesium pyrophosphate (Mg 2 P 2 O 7 ) is added.
  • An example of a preferred ammonia scavenger is magnesium hydrogen phosphate.
  • the ammonia removing agent is used to remove ammonia generated when ornithine is produced from arginine by a microorganism having an ADI pathway.
  • the concentration of the ammonia removing agent added to the medium is 400 mM or more, preferably 600 mM or more, 700 mM or more, or 800 mM or more.
  • the upper limit of the ammonia removing agent concentration is not particularly limited, but is, for example, 2.0 M or less and 1.5 M or less.
  • the lower limit and the upper limit of the concentration of the ammonia removing agent can be appropriately selected from the above ranges.
  • the concentration of the ammonia removal agent added to the medium is 400 mM to 1.5 M, 600 mM to 1.5 M, or 800 mM to 1.5 M.
  • the above-described method for producing putrescine may further include a step of separating putrescine from the culture solution of the mixed culture.
  • a step of separating putrescine the above-mentioned I.I. As described in.
  • Example 1 Search for combinations of microorganisms that produce putrescine from arginine> A search was made for a combination of two bacterial species having the largest amount of putrescine production among the 14 intestinal bacterial species shown in Table 1.
  • Example 2 Influence of pH of culture solution> Of the eight combinations of bacterial species found in Example 1, the combination of E. coli and Enterococcus faecalis that produced the largest amount of putrescine was used as a model case in the culture solution. Changes in the amount of putrescine production due to the difference in pH were examined.
  • E. coli and En. Faecalis were treated in the same manner as in Example 1 in a culture solution supplemented with arginine at different pH (pH 5.0, pH 5.5, pH 6.0, pH 6.5, pH 7.0, pH 7.5).
  • the mixed culture was performed, and the putrescine concentration in the culture medium was measured.
  • the amount of putrescine produced by the mixed culture increased in the weakly acidic range (pH 6.0, pH 5.5, pH 5.0) rather than the neutral range (pH 7.0 and 7.5).
  • Example 3 Two-stage culture> The following experiment was conducted for the purpose of confirming whether metabolites were transported between E. coli and Enterococcus faecalis.
  • Example 4 Putrescine production by mixed culture of two bacterial species> The following experiment was conducted using Escherichia coli MG1655 strain (ATCC700926) and Enterococcus faecalis V583 strain (ATCC700802) (both purchased from ATCC (purchased from American Type Culture Collection)).
  • (1) Medium The following medium was used. The culture conditions are anaerobic culture at 37 ° C. unless otherwise specified.
  • putrescine can be produced in a high yield by using a combination of E. coli and E.cofaecalis regardless of the strain type.
  • Example 5 Increase in yield by examining culture conditions>
  • Example 4 is the same as Example 4 except that GAM bouillon medium (manufactured by Nissui Pharmaceutical Co., Ltd.) adjusted to pH (pH 4.0 to pH 7.0) by adding 50 mM arginine instead of A medium and B medium was used. A similar experiment was conducted. The composition of GAM bouillon is as shown in Table 6.
  • Example 6 Identification of E. coli retaining iODC activity> The E. coli strains (purchased from ATCC or RIKEN) shown in Table 8 were examined to retain iODC activity.
  • Example 7 Putrescine production from arginine by mixed culture of E. coli and En. Faecalis> Using the E. coli and En. Faecalis strains shown in Table 10, production of putrescine from arginine by mixed culture of E. coli and En. Faecalis was examined.
  • the basal medium was prepared as described in Example 6. Further, as a medium for main culture, a liquid medium in which 400 mM arginine was added to a basal medium was prepared. Each strain was precultured in basal medium for 24 hours. In the main culture, En. Faecalis is added to the main culture solution in a 1% amount of the pre-culture solution, E. coli is added to the main culture solution in an amount of 0.001%, and the aerobic condition is 37 ° C. It was performed by culturing under 30 hours. And the putrescine density
  • Example 8 Inhibition of iODC activity of E. coli by ammonia>
  • the production of putrescine from arginine by the route of FIG. 2 has been problematic in that the production of putrescine from ornithine in E. coli is suppressed with the progress of ornithine production from arginine by En. Faecalis.
  • En. Faecalis produces 2 moles of ammonia simultaneously when producing 1 mole of ornithine from arginine. It was thought that this ammonia inhibited putrescine production from ornithine. Therefore, the inhibition of iODC activity of E. coli by ammonia was examined using E. coli JCM5491.
  • the basal medium was prepared as described in Example 6.
  • a medium for main culture a liquid medium was prepared by adding 400 mM ornithine hydrochloride and 0 to 200 mM ammonium chloride to the basal medium.
  • the strain is precultured in a basal medium for 24 hours.
  • 1% of the preculture is added to the main culture, and cultured at 37 ° C. under aerobic conditions.
  • Ornithine concentration and putrescine concentration were measured.
  • Results It was found that when the ammonia concentration in the culture solution increased, the amount of decrease in ornithine concentration in the culture solution decreased and the putrescine concentration did not increase (FIG. 5). From this, it was confirmed that the ammonia concentration in the culture solution inhibited the iODC activity of E. coli.
  • Example 9 Effect of addition of magnesium hydrogen phosphate on putrescine production from arginine by mixed culture of E. coli and En. Faecalis>
  • the struvite is a crystal of magnesium ammonium hydrogen phosphate, and has the property that it is extremely difficult to dissolve in neutral to alkaline water. So far, it has been reported that ammonia is recovered as struvite in wastewater treatment (Japanese Patent Laid-Open No. 2006-289168).
  • we tried to improve the inhibition of E. coli iODC activity by adding magnesium hydrogen phosphate to the medium and reacting with the ammonia produced by En. Faecalis to precipitate it as struvite.
  • E. coli JCM1649 and En. Faecalis JCM8726, and E. coli JCM5491 and En. Faecalis JCM5803 are mixed and cultured in the presence of magnesium hydrogen phosphate to reduce the amount of putrescine production.
  • a basal medium was prepared in the same manner as in Example 6.
  • a medium for main culture a medium in which 400 mM arginine and 0, 200, 400, 600, or 800 mM magnesium hydrogen phosphate were added to a basal medium was prepared.
  • Faecalis as a by-product of ornithine for putrescine production from arginine by mixed culture of E. coli and En. Faecalis. As one of them, a method for precipitating and removing ammonia as struvite has been demonstrated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A method for producing putrescine utilizing a cooperative action of two or more kinds of microorganisms. More specifically, a method for producing putrescine utilizing a microorganism that has an arginine-dependent acid resistance mechanism and a microorganism that has an agmatine deiminase (AgDI) metabolic pathway, and a method for producing putrescine utilizing a microorganism that produces ornithine and a microorganism that has inducible ornithine decarboxylase (iODC) capable of inducibly acting with an ornithine-putrescine antiporter.

Description

バクテリア混合培養によるプトレッシン製造方法Method for producing putrescine by bacterial mixed culture
 本発明は、アルギニン依存的耐酸性機構を有する微生物およびAgDI経路(アグマチンデイミナーゼ代謝経路)を有する微生物を利用したプトレッシンの製造方法に関する。 The present invention relates to a method for producing putrescine using a microorganism having an arginine-dependent acid resistance mechanism and a microorganism having an AgDI pathway (agmatin deiminase metabolic pathway).
 本発明はまた、オルニチンを産生する微生物およびオルニチン・プトレッシンアンチポーターとともに誘導的に働くオルニチン脱炭酸酵素(iODC: inducible ornithine decarboxylase)を有する微生物を利用したプトレッシンの製造方法に関する。 The present invention also relates to a method for producing putrescine using an ornithine-producing microorganism and a microorganism having an ornithine decarboxylase (iODC) that works inductively with an ornithine putrescine antiporter.
 ポリアミンは、第1級アミノ基を2つ以上有する脂肪族炭化水素の総称であり、プトレッシン(1,4-ジアミノブタン)は最も単純なポリアミンの一つである。腸内細菌が産生するポリアミンは、腸管バリア機能の増強作用、抗変異原性、および抗酸化作用を有するなど、宿主の健康に強く関係していることから、ポリアミン産生に関与する菌種や産生経路の解明は重要なテーマである。現在、腸内細菌のポリアミン生合成系の研究は個々の菌種を対象に行われているが、ポリアミン生合成経路が特定されているのは一部の病原菌等に限られている。また、菌体外(腸管腔内)へのポリアミン放出メカニズム、およびその生理学的意義(なぜ菌体外へ放出するのか)はそれらの菌種においても解明されていない。 Polyamine is a general term for aliphatic hydrocarbons having two or more primary amino groups, and putrescine (1,4-diaminobutane) is one of the simplest polyamines. Polyamines produced by intestinal bacteria are strongly related to the health of the host, such as having an intestinal barrier function enhancing action, antimutagenicity, and antioxidant action. Elucidation of the route is an important theme. Currently, research on the polyamine biosynthesis system of intestinal bacteria has been conducted on individual bacterial species, but the polyamine biosynthesis pathway has been specified only for some pathogenic bacteria. In addition, the mechanism of polyamine release to the outside of the fungus body (inside the intestinal lumen) and its physiological significance (why it is released outside the fungus body) have not been elucidated in those fungus species.
 現在の市場に存在するポリアミン高含有食品素材は植物(特許文献1、特許文献2)や酵母(特許文献3)などからの抽出物である。植物や酵母からの抽出によりポリアミンを得るにあたっては、その抽出工程や濃縮工程を含む複雑さを伴う。このような事情を考慮すると微生物による発酵生産の方が簡便であり、コストダウンに繋がる可能性が高い。微生物を利用したプトレッシンの製造方法としては、1種類の微生物を用いた例(特許文献4)や、遺伝子組換えなどを行った変異体微生物を用いた例(特許文献5)などが存在する。しかし、1種類の微生物を用いた例では十分に高いプトレッシンの生産量が得られておらず、また遺伝子組換え微生物を用いる方法は食品材料の生産には適してないなど、課題も存在する。 The polyamine-rich food material present in the current market is an extract from plants (Patent Document 1, Patent Document 2) and yeast (Patent Document 3). In obtaining a polyamine by extraction from a plant or yeast, there is a complexity including an extraction step and a concentration step. Considering such circumstances, fermentation production by microorganisms is simpler and is likely to lead to cost reduction. Examples of methods for producing putrescine using microorganisms include an example using one kind of microorganism (Patent Document 4) and an example using a mutant microorganism subjected to genetic recombination (Patent Document 5). However, in the example using one kind of microorganism, there is a problem that a sufficiently high production amount of putrescine has not been obtained, and a method using a genetically modified microorganism is not suitable for production of food materials.
特開2010-26381JP 2010-26381 特開2012-236803JP2012-236803 特開2001-8663JP 2001-8663 A 特開2006-191808JP 2006-191808 A 特表2010-535028Special table 2010-535028
 上記の背景から、安全性が高く、簡便で十分な収量が得られる新しいプトレッシンの製造方法が依然として求められている。本発明は、そのような条件を満たす新しいプトレッシンの製造方法を提供する。 In view of the above background, there is still a need for a new method for producing putrescine that is highly safe, simple and sufficient in yield. The present invention provides a new method for producing putrescine satisfying such conditions.
 以上に鑑み、本件の発明者はヒト腸管内で最も多く存在しているプトレッシンが、前駆体であるアルギニンの経口投与により濃度依存的に誘導されることをin vivo試験で確認されたこと注目し、研究を開始した。鋭意検討の結果、単独菌株より混合培養の方がプトレッシンを多く産生することを見いだし、腸管内では単独の細菌ではなく、複数の細菌の共同作用によりプトレッシンを生合成し、放出していると仮説を立てた。そして、アルギニンからプトレッシンを菌体外へ産生する細菌の組合せを見いだした。当該知見に基づいて、本発明は完成された。 In view of the above, the inventor of the present case noted that the in vivo study confirmed that the most abundant putrescine present in the human intestinal tract was induced in a concentration-dependent manner by oral administration of the precursor arginine. Started the research. As a result of intensive studies, we found that mixed culture produced more putrescine than single strains, and hypothesized that putrescine was biosynthesized and released in the intestinal tract by the joint action of multiple bacteria rather than a single bacterium. Stood up. They found a combination of bacteria that produced putrescine from arginine. Based on this finding, the present invention has been completed.
 すなわち、一態様において、本発明は以下のとおりであってよい。
 [1]プトレッシンを製造する方法であって、アルギニン依存的耐酸性機構を有する微生物およびAgDI経路(アグマチンデイミナーゼ代謝経路)を有する微生物を、アルギニンの存在下、酸性条件下で混合培養する工程を含む、前記方法。
 [2]混合培養する工程が、
(A)アルギニン依存的耐酸性機構を有する微生物を、アルギニンの存在下、酸性条件下で培養し;そして、
(B)AgDI経路(アグマチンデイミナーゼ代謝経路)を有する微生物を(A)の培養物に添加して混合培養する;
ことにより行われる、[1]に記載の方法。
 [3]アルギニン依存的耐酸性機構を有する微生物が、腸内細菌科(Enterobacteriaceae)に属する微生物である、[1]または[2]に記載の方法。
 [4]アルギニン依存的耐酸性機構を有する微生物が、大腸菌(Escherichia coli)またはサルモネラ・エンテリカ(Salmonella enterica)である、[3]に記載の方法。
 [5]AgDI経路を有する微生物が、エンテロコッカス科(Enterococcuaceae)、ストレプトコッカス科(Streptococcaceae)、ラクトバシラス科(Lactobacillaceae)、シュードモナス科(Pseudomonadaceae)に属する微生物である、[1]ないし[4]のいずれか1項に記載の方法。
 [6]AgDI経路を有する微生物が、エンテロコッカス・フェカリス(Enterococcus faecalis)である、[5]に記載の方法。
 [7]アルギニン依存的耐酸性機構を有する微生物が大腸菌(Escherichia coli)であり、AgDI経路を有する微生物がエンテロコッカス・フェカリス(Enterococcus faecalis)である、[1]または[2]に記載の方法。
 [8]酸性条件がpH4.0以上、pH7.0未満である、[1]ないし[7]のいずれか1項に記載の方法。
 [9]混合培養する工程におけるアルギニンの添加量が、0.1 mM~500 mMの範囲である、[1]ないし[8]のいずれか1項に記載の方法。
 [10]さらに、混合培養物の培養液からプトレッシンを分離する工程、を含む、[1]ないし[9]のいずれか1項に記載の方法。
 [11]プトレッシンを製造する方法であって、以下の工程:
(1)アルギニン依存的耐酸性機構を有する微生物を、アルギニンの存在下、酸性条件下で培養する;
(2)工程(1)の培養物から培養上清を得る;
(3)AgDI経路(アグマチンデイミナーゼ代謝経路)を有する微生物を、工程(2)の培養上清に添加して培養する;及び
(4)工程(3)の培養液からプトレッシンを分離する;
を含む、前記方法。
 [12]プトレッシンを製造する方法であって、オルニチンを産生する微生物およびオルニチン脱炭酸酵素であるiODCを有する微生物を混合培養する工程を含む、前記方法。
 [13]オルニチンを産生する微生物がADI経路(アルギニンデイミナーゼ代謝経路)を有する微生物であり、そして混合培養がアルギニンの存在下で行われる、[12]に記載の方法。
 [14]iODCを有する微生物が、iODCを有する大腸菌(Escherichia coli)である、[12]または[13]に記載の方法。
 [15]iODCを有する大腸菌が、Escherichia coli JCM5491株(ATCC25922)またはEscherichia coli JCM1649株(ATCC11775)である、[14]に記載の方法。
 [16]ADI経路を有する微生物が、エンテロコッカス・フェカリス(Enterococcus faecalis)である、[13]~[15]のいずれか1項に記載の方法。
 [17]混合培養の条件が、以下(a)-(c):
(a)pH4.5~pH7.5である;
(b)アルギニンが0.1 mM~500 mMの範囲で存在する;および
(c)好気条件である;
の少なくとも1つの条件を有する、[13]~[16]のいずれか1項に記載の方法。
 [18]アルギニンの存在下で混合培養することが、
アルギニンを添加した培地中で培養する;および/または
アルギニンを産生する微生物を添加して混合培養する;
ことにより行われる、[13]~[17]のいずれか1項に記載の方法。
 [19]混合培養する工程において、第一リン酸マグネシウム(Mg(HPO)、第二リン酸マグネシウム(リン酸水素マグネシウム(MgHPO))、第三リン酸マグネシウム(Mg(PO)、およびピロリン酸マグネシウム(Mg)からなる群より選択されるアンモニア除去剤を含む培地を用いることを特徴とする、[13]~[18]のいずれか1項に記載の方法。
That is, in one aspect, the present invention may be as follows.
[1] A method for producing putrescine, wherein a microorganism having an arginine-dependent acid resistance mechanism and a microorganism having an AgDI pathway (agmatin deiminase metabolic pathway) are mixed and cultured in the presence of arginine under acidic conditions. Said method.
[2] The step of mixed culture includes
(A) culturing a microorganism having an arginine-dependent acid-resistant mechanism under acidic conditions in the presence of arginine; and
(B) A microorganism having an AgDI pathway (agmatin deiminase metabolic pathway) is added to the culture of (A) and mixed and cultured;
The method according to [1], wherein
[3] The method according to [1] or [2], wherein the microorganism having an arginine-dependent acid resistance mechanism is a microorganism belonging to the family Enterobacteriaceae.
[4] The method according to [3], wherein the microorganism having an arginine-dependent acid resistance mechanism is Escherichia coli or Salmonella enterica.
[5] The microorganism having the AgDI pathway is a microorganism belonging to the family Enterococcuaceae, Streptococcaceae, Lactobacillaceae, Pseudomonadaceae, any one of [1] to [4] The method according to item.
[6] The method according to [5], wherein the microorganism having the AgDI pathway is Enterococcus faecalis.
[7] The method according to [1] or [2], wherein the microorganism having an arginine-dependent acid resistance mechanism is Escherichia coli, and the microorganism having an AgDI pathway is Enterococcus faecalis.
[8] The method according to any one of [1] to [7], wherein the acidic condition is pH 4.0 or higher and lower than pH 7.0.
[9] The method according to any one of [1] to [8], wherein the amount of arginine added in the mixed culture step is in the range of 0.1 mM to 500 mM.
[10] The method according to any one of [1] to [9], further comprising a step of separating putrescine from the culture solution of the mixed culture.
[11] A method for producing putrescine, comprising the following steps:
(1) culturing a microorganism having an arginine-dependent acid resistance mechanism under acidic conditions in the presence of arginine;
(2) obtaining a culture supernatant from the culture of step (1);
(3) A microorganism having an AgDI pathway (agmatin deiminase metabolic pathway) is added to the culture supernatant of step (2) and cultured; and (4) putrescine is separated from the culture solution of step (3);
Said method.
[12] A method for producing putrescine, comprising the step of mixing and culturing a microorganism producing ornithine and a microorganism having iODC which is ornithine decarboxylase.
[13] The method according to [12], wherein the ornithine-producing microorganism is a microorganism having an ADI pathway (arginine deiminase metabolic pathway), and the mixed culture is performed in the presence of arginine.
[14] The method according to [12] or [13], wherein the microorganism having iODC is Escherichia coli having iODC.
[15] The method according to [14], wherein the Escherichia coli having iODC is Escherichia coli JCM5491 strain (ATCC25922) or Escherichia coli JCM1649 strain (ATCC11775).
[16] The method according to any one of [13] to [15], wherein the microorganism having an ADI pathway is Enterococcus faecalis.
[17] The conditions of the mixed culture are the following (a) to (c):
(A) pH 4.5 to pH 7.5;
(B) arginine is present in the range of 0.1 mM to 500 mM; and (c) aerobic conditions;
The method according to any one of [13] to [16], wherein the method has at least one of the following conditions.
[18] mixed culture in the presence of arginine,
Incubate in a medium supplemented with arginine; and / or add a microorganism that produces arginine and cultivate mixedly;
The method according to any one of [13] to [17], wherein
[19] In the mixed culture step, primary magnesium phosphate (Mg (H 2 PO 4 ) 2 ), secondary magnesium phosphate (magnesium hydrogen phosphate (MgHPO 4 )), and tertiary magnesium phosphate (Mg 3 ( Any one of [13] to [18], wherein a medium containing an ammonia removing agent selected from the group consisting of PO 4 ) 2 ) and magnesium pyrophosphate (Mg 2 P 2 O 7 ) is used. The method according to item.
 2種類以上の微生物の共同作用を利用することにより、1種類の微生物を用いる場合よりも、プトレッシンを効率よく産生させることができる。また、本発明の方法は遺伝子組換え体を使うものではないので、食品材料の生産という観点から安全性の高いものである。 By using the joint action of two or more types of microorganisms, putrescine can be produced more efficiently than when one type of microorganism is used. Further, since the method of the present invention does not use a gene recombinant, it is highly safe from the viewpoint of production of food materials.
図1は、アルギニン依存的耐酸性機構を有する微生物と、AgDI経路を有する微生物の2種類の微生物によるプトレッシン製造方法の概略図である。アルギニン依存的耐酸性機構を有する微生物としてE. coli、AgDI経路を有する微生物としてEn. faecalisを例示した。FIG. 1 is a schematic view of a method for producing putrescine by two types of microorganisms, a microorganism having an arginine-dependent acid resistance mechanism and a microorganism having an AgDI pathway. E. coli was exemplified as a microorganism having an arginine-dependent acid resistance mechanism, and En. Faecalis was exemplified as a microorganism having an AgDI pathway. 図2は、ADI経路を有する微生物と、iODCを有する微生物によるプトレッシン製造方法の概略図である。ADI経路を有する微生物としてEn. faecalis、iODCを有する微生物としてE. coliを例示した。FIG. 2 is a schematic view of a method for producing putrescine by a microorganism having an ADI pathway and a microorganism having iODC. En. Faecalis was exemplified as a microorganism having an ADI pathway, and E. coli was exemplified as a microorganism having iODC. 図3は、E. coliのオルニチンからのプトレッシン産生能力について、菌株による違いを示すグラフである。FIG. 3 is a graph showing the difference between strains in the ability to produce putrescine from ornithine of E. coli. 図4は、E. coliとEn. faecalisの各菌株を組み合わせた時のアルギニンからのプトレッシン産生量を評価した結果を示すグラフである。(A)En. faecalis JCM5803と4菌株のE. coliいずれか(JCM5491、JCM1649、JCM1246またはMG1655)を組み合わせた場合の結果を示す。(B)En. faecalis JCM8726と4菌株のE. coliいずれかを組み合わせた場合の結果を示す。(C)En. faecalis JCM7783と4菌株のE. coliいずれかを組み合わせた場合の結果を示す。(D)En. faecalis V583と4菌株のE. coliいずれかを組み合わせた場合の結果を示す。FIG. 4 is a graph showing the results of evaluating the amount of putrescine produced from arginine when combining E. coli and En. Faecalis strains. (A) The result when combining En. Faecalis JCM5803 and any of four strains of E. coli (JCM5491, JCM1649, JCM1246 or MG1655) is shown. (B) The results when En. Faecalis JCM8726 and any of the four strains of E. coli are combined are shown. (C) The results when combining En. Faecalis JCM7783 and any of the four strains of E. coli are shown. (D) The results when En.Enfaecalis V583 and any of the four strains of E. coli are combined are shown. 図5は、アンモニア濃度がE. coliのオルニチンからのプトレッシン産生に与える影響を示すグラフである。FIG. 5 is a graph showing the effect of ammonia concentration on putrescine production from ornithine of E. coli. 図6は、リン酸水素マグネシウムがE. coliとEn. faecalis混合培養時のアルギニンからのプトレッシン産生に与える影響を示すグラフである。FIG. 6 is a graph showing the effect of magnesium hydrogen phosphate on the production of putrescine from arginine during E. coli and En. Faecalis mixed culture. 図7は、1.2 Mリン酸水素マグネシウム添加培地でE. coliとEn. faecalis混合培養時のアルギニン、オルニチンおよびプトレッシンの濃度変化を示すグラフである。FIG. 7 is a graph showing changes in the concentrations of arginine, ornithine and putrescine during E. coli and En. Faecalis mixed culture in a 1.2 M magnesium hydrogen phosphate-added medium.
 以下に本発明を具体的に説明するが、本発明はこれらに限定されるものではない。本明細書で特段に定義されない限り、本発明に関連して用いられる科学用語及び技術用語は、当業者によって一般に理解される意味を有するものとする。 The present invention will be specifically described below, but the present invention is not limited to these. Unless defined otherwise herein, scientific and technical terms used in connection with the present invention shall have the meanings that are commonly understood by those of ordinary skill in the art.
 <プトレッシンの製造方法>
 本発明は、2種類以上の微生物の共同作用を利用したプトレッシン製造方法に関する。本出願は、異なる微生物の一方が上記の代謝経路の一方を有し、他方が上記の代謝経路のもう一方を有することにより、当該異なる微生物の共同作用を利用したプトレッシンの製造方法を提供する。
<Method for producing putrescine>
The present invention relates to a method for producing putrescine using the joint action of two or more kinds of microorganisms. The present application provides a method for producing putrescine using the cooperative action of different microorganisms, wherein one of the different microorganisms has one of the metabolic pathways and the other has the other metabolic pathway.
 <I.アルギニン依存的耐酸性機構を有する微生物とAgDI経路を有する微生物を利用したプトレッシン製造方法>
 一態様において本発明は、アルギニン依存的耐酸性機構を有する微生物とAgDI経路(アグマチンデイミナーゼ代謝経路)を有する微生物を利用したプトレッシン製造方法に関する。
<I. Method for producing putrescine using a microorganism having an arginine-dependent acid resistance mechanism and a microorganism having an AgDI pathway>
In one aspect, the present invention relates to a method for producing putrescine using a microorganism having an arginine-dependent acid tolerance mechanism and a microorganism having an AgDI pathway (agmatin deiminase metabolic pathway).
 アルギニン依存的耐酸性機構とは、一部の微生物が持つ機構であり、当該微生物は酸性条件下でアルギニンを吸収し、アグマチンを放出する。AgDI経路とは、一部の微生物が持つアグマチン代謝経路であり、アグマチンを吸収後、アグマチンデイミナーゼを用いてアグマチンを分解し、カルバモイルプトレッシンを介してプトレッシンを産生する経路である。 The arginine-dependent acid resistance mechanism is a mechanism possessed by some microorganisms, which absorbs arginine and releases agmatine under acidic conditions. The AgDI pathway is an agmatine metabolic pathway possessed by some microorganisms, and is a pathway that, after absorbing agmatine, decomposes agmatine using agmatine deiminase and produces putrescine via carbamoylputrescine.
 本件の発明者は、アルギニン依存的耐酸性機構を有する微生物が産生する代謝産物を利用してAgDI経路を有する微生物がプトレッシンを生合成し、放出することを見いだした。すなわち、図1において例示されるように、アルギニン依存的耐酸性機構を有する微生物によりアルギニンからアグマチンが産生され、AgDI経路を有する微生物がその産生されたアグマチンを利用してプトレッシンを産生することを見出した。 The inventors of the present invention have found that a microorganism having an AgDI pathway biosynthesizes and releases putrescine using a metabolite produced by a microorganism having an arginine-dependent acid-resistant mechanism. That is, as illustrated in FIG. 1, it has been found that a microorganism having an arginine-dependent acid-resistant mechanism produces agmatine from arginine, and a microorganism having an AgDI pathway produces putrescine using the produced agmatine. It was.
 第一の態様において本出願は、アルギニン依存的耐酸性機構を有する微生物およびAgDI経路を有する微生物を、アルギニンの存在下、酸性条件下で混合培養する工程を含む、プトレッシンの製造方法を提供する。 In a first aspect, the present application provides a method for producing putrescine, comprising a step of mixing and culturing a microorganism having an arginine-dependent acid resistance mechanism and a microorganism having an AgDI pathway under acidic conditions in the presence of arginine.
 アルギニン依存的耐酸性機構を有する微生物には、腸内細菌科(Enterobacteriaceae)に属する微生物が含まれるが、これに限定されない。好ましい態様において、アルギニン依存的耐酸性機構を有する微生物は、エシェリヒア(Escherichia)属またはサルモネラ(Salmonella)属に属する微生物である。各属の中では、特に大腸菌(Escherichia coli)、サルモネラ・エンテリカ(Salmonella enterica)が好ましく、これらのいずれかを適宜選択してもよい。サルモネラ・エンテリカは、大腸菌の近縁であり、大腸菌と同様の代謝経路を持つことが知られている(Brenneman, K. E., et al., (2013) J. Bacteriol., 195(13): 3062-3072)。 Microorganisms having an arginine-dependent acid resistance mechanism include, but are not limited to, microorganisms belonging to the family Enterobacteriaceae. In a preferred embodiment, the microorganism having an arginine-dependent acid resistance mechanism is a microorganism belonging to the genus Escherichia or Salmonella. Among each genus, Escherichia coli and Salmonella enterica are particularly preferable, and any one of these may be appropriately selected. Salmonella enterica is closely related to E. coli and is known to have a metabolic pathway similar to that of E. coli (Brenneman, K. E., et al., (2013) J. Bacteriol., 195 (13) : 3062-3072).
 AgDI経路(アグマチンデイミナーゼ代謝経路)を有する微生物には、エンテロコッカス科(Enterococcuaceae)、ストレプトコッカス科(Streptococcaceae)、ラクトバシラス科(Lactobacillaceae)、シュードモナス科(Pseudomonadaceae)に属する微生物が含まれるが、これに限定されない。これらの微生物は、エンテロコッカス・フェカリス(Enterococcus faecalis)と同様の代謝経路を持つことが知られている(Ladero, V., et al., (2011) Appl. Envion. Microbiol., 77(18): 6409-6418; Nakada, Y., et al., (2001) J. Bacteriol., 183(22): 6517-6524)。好ましい態様において、AgDI経路を有する微生物は、エンテロコッカス・フェカリス、ラクトコッカス・ラクティス(Lactococcus lactis)、ラクトバシラス・ブレビス(Lactobacillus brevis)、および、シュードモナス・エルギノーサ(Pseudomonas aeruginosa)から選択してもよい。別の好ましい態様において、AgDI経路を有する微生物は、エンテロコッカス科に属する微生物である。さらに好ましい態様において、AgDI経路を有する微生物は、エンテロコッカス・フェカリスである。 Microorganisms having the AgDI pathway (Agmatine deiminase metabolic pathway) include, but are not limited to, microorganisms belonging to the family Enterococcuaceae, Streptococcaceae, Lactobacillaceae, Pseudomonadaceae Not. These microorganisms are known to have metabolic pathways similar to Enterococcus faecalis (Ladero, V., et al., (2011) Appl. Envion. Microbiol., 77 (18): 6409-6418; Nakada, Y., et al., (2001) J. Bacteriol., 183 (22): 6517-6524). In a preferred embodiment, the microorganism having the AgDI pathway may be selected from Enterococcus faecalis, Lactococcus lactis, Lactobacillus brevis, and Pseudomonas aeruginosa. In another preferred embodiment, the microorganism having the AgDI pathway is a microorganism belonging to the family Enterococcus. In a further preferred embodiment, the microorganism having the AgDI pathway is Enterococcus faecalis.
 上記混合培養の工程において、微生物はアルギニンの存在下で培養される。培養液中のアルギニン濃度は、特に限定されないが0.1 mM以上、0.5 mM以上、または1.0 mM以上であってよい。アルギニン濃度の上限は、特に限定されないが、1.0 M以下、800 mM以下、600 mM以下、400 mM以下、200 mM以下、150 mM以下、100 mM以下、75 mM以下、または50 mM以下であってよい。アルギニン濃度の上限および下限は、上記の範囲からそれぞれ適宜選択することができる。好ましい態様において、培養液中のアルギニン濃度は、0.1 mM~200 mM、0.1 mM~500 mM、1.0 mM~50 mMである。 In the mixed culture process, the microorganism is cultured in the presence of arginine. The arginine concentration in the culture solution is not particularly limited, but may be 0.1 mM or more, 0.5 以上 mM or more, or 1.0 mM or more. The upper limit of the arginine concentration is not particularly limited, but is 1.0 M or less, 800 mM or less, 600 mM or less, 400 mM or less, 200 mM or less, 150 mM or less, 100 mM or less, 75 mM or less, or 50 mM or less Good. The upper and lower limits of the arginine concentration can be appropriately selected from the above ranges. In a preferred embodiment, the concentration of arginine in the culture solution is 0.1 μm to 200 μm, 0.1 μm to 500 μm, 1.0 μm to 50 μm.
 上記混合培養の工程において、微生物は酸性条件下で培養される。酸性条件は、pH4.0以上、pH7.0未満の範囲であれば、特に限定されない。好ましい態様において、酸性条件の下限は、pH4.0以上、pH4.5以上、pH5.0以上、またはpH5.5以上であり、上限は、pH7.0未満、pH6.5以下、またはpH6.0以下である。酸性条件の下限および上限は、上記の範囲からそれぞれ適宜選択することができる。特に好ましい態様において、酸性条件はpH4.0以上、pH6.0以下である。 In the mixed culture process, the microorganism is cultured under acidic conditions. The acidic condition is not particularly limited as long as it is in the range of pH 4.0 or more and less than pH 7.0. In a preferred embodiment, the lower limit of the acidic condition is pH 4.0 or more, pH 4.5 or more, pH 5.0 or more, or pH 5.5 or more, and the upper limit is less than pH 7.0, pH 6.5 or less, or pH 6.0. It is as follows. The lower limit and the upper limit of the acidic condition can be appropriately selected from the above ranges. In a particularly preferred embodiment, the acidic conditions are pH 4.0 or higher and pH 6.0 or lower.
 上記混合培養の工程において、微生物は嫌気条件で培養されることが好ましいが、限定されない。 In the mixed culture process, the microorganism is preferably cultured under anaerobic conditions, but is not limited thereto.
 上記混合培養の工程において、混合培養は当業者が利用可能ないずれかの培地を用いて行ってもよい。本発明の方法においては、培養液中の菌数が増えるほどプトレッシン産生量が増加する傾向が観察されている。この観点から培地成分が微生物の増殖に必要な成分が十分に含まれている培地が好ましい。また、混合培養は、回分培養(すなわち、培養中に培地成分を添加しない方式)で行ってもよく、または、流加培養(すなわち、培養中に培地成分を添加し続ける方式)で行ってもよい。回分培養は、比較的簡便に工業化できるというメリットがある。一方、流加培養を用いた場合は、培養中に培地成分が添加され続けるので、培養液中の菌数は一般的に増加する。このため、流加培養を用いることによりプトレッシン生産量の増加が期待できる。培地の種類、培地成分の量、および培養方式などは、様々な状況を考慮して当業者が適宜選択することができる。 In the mixed culture step, mixed culture may be performed using any medium available to those skilled in the art. In the method of the present invention, it has been observed that the amount of putrescine production increases as the number of bacteria in the culture increases. From this point of view, a medium in which a medium component sufficiently contains components necessary for the growth of microorganisms is preferable. In addition, the mixed culture may be performed by batch culture (that is, a method in which medium components are not added during culture) or fed-batch culture (that is, a method in which medium components are continuously added during culture). Good. Batch culture has the advantage that it can be industrialized relatively easily. On the other hand, when fed-batch culture is used, since the culture medium components are continuously added during the culture, the number of bacteria in the culture solution generally increases. For this reason, increase in putrescine production can be expected by using fed-batch culture. A person skilled in the art can appropriately select the type of medium, the amount of medium components, the culture method, and the like in consideration of various situations.
 上記混合培養の工程において、混合培養を行う時間は特に限定されず、当業者は混合培養液をサンプリングして培養液中のプトレッシン量を測定することにより、適宜設定することができる。混合培養の培養時間は、例えば、6時間、12時間、24時間、36時間、48時間、60時間、72時間、であってもよい。 In the mixed culture step, the time for performing the mixed culture is not particularly limited, and those skilled in the art can appropriately set by sampling the mixed culture and measuring the amount of putrescine in the culture. The culture time of the mixed culture may be, for example, 6 hours, 12 hours, 24 hours, 36 hours, 48 hours, 60 hours, 72 hours.
 上記混合培養の工程において、混合培養は、アルギニン依存的耐酸性機構を有する微生物及びAgDI経路を有する微生物が培養の際にともに存在している状態を実現するものであれば、培養する順番は問わない。好ましい態様においては、アルギニン依存的耐酸性機構を有する微生物を先に培養し、AgDI経路を有する微生物を後から添加して混合培養する。すなわち、混合培養の工程は以下の手順:
(A)アルギニン依存的耐酸性機構を有する微生物を、アルギニンの存在下、酸性条件下で培養し;そして、
(B)AgDI経路(アグマチンデイミナーゼ代謝経路)を有する微生物を(A)の培養物に添加して混合培養する;
ことにより行われてもよい。
In the above mixed culture process, the mixed culture may be performed in any order as long as the microorganism having an arginine-dependent acid-resistant mechanism and the microorganism having the AgDI pathway are both present during the culture. Absent. In a preferred embodiment, a microorganism having an arginine-dependent acid resistance mechanism is first cultured, and a microorganism having an AgDI pathway is added later and mixed and cultured. That is, the mixed culture process is performed as follows:
(A) culturing a microorganism having an arginine-dependent acid-resistant mechanism under acidic conditions in the presence of arginine; and
(B) A microorganism having an AgDI pathway (agmatin deiminase metabolic pathway) is added to the culture of (A) and mixed and cultured;
May be performed.
 上記工程(A)の培養を行う時間は、特に限定されないが、例えば、6時間、12時間、24時間、48時間、であってよい。上記工程(B)の混合培養を行う時間は、特に限定されないが、例えば、6時間、12時間、24時間、36時間、48時間、60時間、72時間、であってもよい。 The time for culturing in the above step (A) is not particularly limited, and may be, for example, 6 hours, 12 hours, 24 hours, or 48 hours. Although the time which performs the mixed culture of the said process (B) is not specifically limited, For example, 6 hours, 12 hours, 24 hours, 36 hours, 48 hours, 60 hours, 72 hours may be sufficient.
 本発明のプトレッシンの製造方法は、さらに、前記混合培養物の培養液からプトレッシンを分離する工程を含んでもよい。プトレッシンを分離する工程においては、上記の混合培養の工程で得た培養液からプトレッシンを分離および/または精製する。プトレッシンは培養液中に含まれ、精製の前処理として菌体と培養液を分離してもよく、また分離した菌体は再利用してもよい。培養液からの菌体の分離は公知の方法を含むいかなる方法で行ってもよい。例えば、遠心分離、濾過フィルター、菌体の固定化技術などにより行ってもよい。培養液からのプトレッシンの分離は、公知の方法を含むいかなる方法で行ってもよい。例えば、超高速液体クロマトグラフィー(UPLC)、高速液体クロマトグラフィー(HPLC)、ガスクロマトグラフィー(GC)、キャピラリー電気泳動、イオンクロマトグラフィー、ゲル濾過、遠心分離、などにより行ってもよい。プトレッシンの分離・精製は、少なくともプトレッシンを含む培養液が菌体と分離されていればよい。したがって、プトレッシンを分離する工程の結果、精製したプトレッシンを得てもよく、あるいは菌体を取り除いた培養液をプトレッシン粗精製物として得てもよい。 The method for producing putrescine of the present invention may further include a step of separating putrescine from the culture solution of the mixed culture. In the step of separating putrescine, putrescine is separated and / or purified from the culture solution obtained in the mixed culture step. Putrescine is contained in the culture solution, and the cells may be separated from the culture solution as a pretreatment for purification, and the separated cells may be reused. Separation of the bacterial cells from the culture solution may be performed by any method including known methods. For example, the separation may be performed by centrifugation, a filtration filter, a bacterial cell immobilization technique, or the like. Separation of putrescine from the culture solution may be performed by any method including known methods. For example, ultra high performance liquid chromatography (UPLC), high performance liquid chromatography (HPLC), gas chromatography (GC), capillary electrophoresis, ion chromatography, gel filtration, centrifugation, etc. may be used. For the separation and purification of putrescine, it is sufficient that the culture solution containing at least putrescine is separated from the cells. Therefore, purified putrescine may be obtained as a result of the step of separating putrescine, or a culture solution from which the cells have been removed may be obtained as a crude putrescine purified product.
 第二の態様において本出願は、以下の工程:
(1)アルギニン依存的耐酸性機構を有する微生物を、アルギニンの存在下、酸性条件下で培養する;
(2)工程(1)の培養物から培養上清を得る;
(3)AgDI経路を有する微生物を、工程(2)の培養上清に添加して培養する;及び
(4)工程(3)の培養液からプトレッシンを分離する;
を含む、プトレッシンを製造する方法を提供する。
In a second aspect, the application provides the following steps:
(1) culturing a microorganism having an arginine-dependent acid resistance mechanism under acidic conditions in the presence of arginine;
(2) obtaining a culture supernatant from the culture of step (1);
(3) A microorganism having an AgDI pathway is added to the culture supernatant of step (2) and cultured; and (4) putrescine is separated from the culture solution of step (3);
A method for producing putrescine is provided.
 上記第二の態様において、アルギニン耐酸性機構を有する微生物、AgDI経路を有する微生物、アルギニンの量および酸性条件等の培養条件、ならびにプトレッシンの分離の手法として意図される範囲については、上記第一の態様おいて記載したとおりである。 In the second aspect, the microorganisms having an arginine acid resistance mechanism, the microorganisms having an AgDI pathway, the culture conditions such as the amount of arginine and acidic conditions, and the range intended as a method for separating putrescine, As described in the embodiment.
 上記第二の態様の工程(1)において、培養を行う時間は特に限定されないが、例えば、6時間、12時間、24時間、48時間、であってよい。 In the step (1) of the second aspect, the culture time is not particularly limited, and may be, for example, 6 hours, 12 hours, 24 hours, 48 hours.
 上記第二の態様の工程(3)において培養を行う時間は特に限定されない。当業者は混合培養液をサンプリングして培養液中のプトレッシン量を測定することにより、適宜設定することができる。例えば、6時間、24時間、36時間、48時間、60時間、72時間であってもよい。 The time for culturing in the step (3) of the second aspect is not particularly limited. A person skilled in the art can appropriately set by sampling the mixed culture solution and measuring the amount of putrescine in the culture solution. For example, it may be 6 hours, 24 hours, 36 hours, 48 hours, 60 hours, 72 hours.
 上記第二の態様の工程(2)において、培養上清を得る方法は、公知の方法を含むいかなる方法で行ってもよい。例えば、遠心分離、フィルター滅菌、菌体の固定化技術を用いた手法、などにより行うことができる。 In the step (2) of the second aspect, the method for obtaining the culture supernatant may be performed by any method including a known method. For example, it can be performed by centrifugation, filter sterilization, a technique using a cell immobilization technique, or the like.
 <II.オルニチンを産生する微生物とiODCを有する微生物を利用したプトレッシン製造方法>
 別の態様において本発明はオルニチンを産生する微生物とオルニチン脱炭酸酵素であるiODCを有する微生物を利用したプトレッシン製造方法に関する。具体的には、当該方法は、オルニチンを産生する微生物およびiODCを有する微生物を混合培養する工程を含むことを特徴とする。
<II. Method for producing putrescine using ornithine-producing microorganism and iODC-containing microorganism>
In another embodiment, the present invention relates to a method for producing putrescine using a microorganism producing ornithine and a microorganism having iODC which is ornithine decarboxylase. Specifically, the method includes a step of culturing a microorganism that produces ornithine and a microorganism having iODC.
 オルニチンを産生する微生物は、オルニチンが産生するという特徴を有する限り特に限定されないが、オルニチンを産生する野生型の微生物であってもよく、あるいはオルニチンの産生量が向上するよう改変された微生物(例えば、特開2013-544532に記載された微生物など)であってもよい。オルニチンを産生する野生型の微生物には、後述するADI経路を有する微生物や、コリネバクテリウム属(Corynebacterium)、サッカロミセス属(Saccharomyces)、カンジダ属(Candida)、またはピキア属(Pichia)に属する微生物が含まれる。 The ornithine-producing microorganism is not particularly limited as long as it has the characteristic that ornithine is produced, but it may be a wild-type microorganism that produces ornithine, or a microorganism that has been modified to improve the production of ornithine (for example, And microorganisms described in JP-A-2013-544532). Wild-type microorganisms that produce ornithine include microorganisms having the ADI pathway described later, microorganisms belonging to the genus Corynebacterium, Saccharomyces, Candida, or Pichia. included.
 別の態様において本発明は、ADI経路(アルギニンデイミナーゼ代謝経路)を有する微生物およびオルニチン脱炭酸酵素であるiODCを有する微生物を利用したプトレッシン製造方法に関する。すなわち、図2において例示されるように、ADI経路を有する微生物によりアルギニンからオルニチンが産生され、iODCを有する微生物がその産生されたオルニチンを利用してプトレッシンを産生することを利用した方法である。 In another aspect, the present invention relates to a method for producing putrescine using a microorganism having an ADI pathway (arginine deiminase metabolic pathway) and a microorganism having iODC which is an ornithine decarboxylase. That is, as exemplified in FIG. 2, ornithine is produced from arginine by a microorganism having an ADI pathway, and a microorganism having iODC produces putrescine using the produced ornithine.
 ADI経路とは、一部の微生物が持つ経路であり、アルギニンを吸収後、アルギニンデイミナーゼを用いてアルギニンを分解し、シトルリンを介してオルニチンを産生する代謝経路である(Simon, J. P., et al., Journal of Bacteriology, (1982), 150(3):1085-1090)。 The ADI pathway is a pathway possessed by some microorganisms, and is a metabolic pathway in which arginine is absorbed, then arginine is decomposed using arginine deiminase, and ornithine is produced via citrulline (Simon, J. P. Et al., Journal of Bacteriology, (1982), 150 (3): 1085-1090).
 iODCは、オルニチン脱炭酸酵素の一つであり、SpeF遺伝子にコードされる。iODCは、菌体外にオルニチンが存在する際にオルニチン・プトレッシンアンチポーターと共に誘導的に働き、取り込まれたオルニチンからプトレッシンを生合成する。生合成されたプトレッシンは菌体外に放出される(Kashiwagi, K., et al., The Journal of Biological Chemistry, (1991), 266(31):20922-20927)。 IODC is one of the ornithine decarboxylases and is encoded by the SpeF gene. iODC works inductively with ornithine and putrescine antiporter when ornithine is present outside the cells, and biosynthesizes putrescine from the incorporated ornithine. The biosynthesized putrescine is released outside the cells (Kashiwagi, K., et al., The Journal of Biological Chemistry, (1991), 266 (31): 20922-20927).
 本願は、ADI経路を有する微生物およびiODCを有する微生物をアルギニンの存在下で培養する工程を含む、プトレッシンの製造方法を提供する。 The present application provides a method for producing putrescine, comprising a step of culturing a microorganism having an ADI pathway and a microorganism having iODC in the presence of arginine.
 ADI経路を有する微生物には、エンテロコッカス科、ストレプトコッカス科、ラクトバシラス科、シュードモナス科、ビブリオ科(Vibrionaceae)、ストレプトマイセス科(Streptomycetaceae)、またはマイコバクテリウム科(Mycobacteriaceae)に属する微生物が含まれるが、これに限定されない。好ましい態様において、ADI経路を有する微生物は、エンテロコッカス科に属する微生物、さらに好ましくはエンテロコッカス・フェカリスである。 Microorganisms having the ADI pathway include microorganisms belonging to the family Enterococcus, Streptococcus, Lactobacillus, Pseudomonas, Vibrionaceae, Streptomycetaceae, or Mycobacteriaceae, It is not limited to this. In a preferred embodiment, the microorganism having the ADI pathway is a microorganism belonging to the family Enterococcus, more preferably Enterococcus faecalis.
 iODCを有する微生物は、iODCを発現している微生物であれば特に限定されない。好ましい態様において、iODCを有する微生物はiODCを有する大腸菌であり、さらに好ましくはE. coli JCM5491(ATCC25922)またはE. coli JCM1649(ATCC11775)である。 The microorganism having iODC is not particularly limited as long as it is a microorganism expressing iODC. In a preferred embodiment, the microorganism having iODC is E. coli having iODC, more preferably E. 好 ま し く coli JCM5491 (ATCC25922) or E. coli JCM1649 (ATCC11775).
 上記混合培養の工程において、微生物はアルギニンの存在下で培養される。培養液中のアルギニン濃度は、特に限定されないが、0.1 mM以上、0.5 mM以上、または1.0 mM以上、50 mM以上、100 mM以上、200 mM以上であってよい。アルギニン濃度の上限は、特に限定されないが、1.0 M以下、800 mM以下、600 mM以下、400 mM以下であってよい。アルギニン濃度の上限および下限は、上記の範囲からそれぞれ適宜選択することができる。好ましい態様において、培養液中のアルギニン濃度は、0.1 mM~500 mM、200 mM~400 mMである。 In the mixed culture process, the microorganism is cultured in the presence of arginine. The concentration of arginine in the culture solution is not particularly limited, but may be 0.1 μmM or higher, 0.5 μmM or higher, 1.0 μmM or higher, 50 μmM or higher, 100 μmM or higher, 200 μmM or higher. The upper limit of the arginine concentration is not particularly limited, but may be 1.0 M or less, 800 mM or less, 600 mM or less, or 400 mM or less. The upper and lower limits of the arginine concentration can be appropriately selected from the above ranges. In a preferred embodiment, the concentration of arginine in the culture solution is 0.1 to 500 μm, 200 to 400 μm.
 アルギニンの存在下での培養は、アルギニンを添加した培地中で培養することにより行ってもよく、および/またはアルギニンを産生する微生物を添加して混合培養することにより行ってもよい。アルギニンを添加した培地中で培養する場合、アルギニンは培地に予め添加してもよく、および/または培養中にアルギニンを適宜添加してもよい。アルギニンを産生する微生物を添加して混合培養するとは、ADI経路を有する微生物、iODCを有する微生物、およびアルギニンを産生する微生物の少なくとも3種の微生物の混合培養を行うことを意味する。アルギニンを産生する微生物は、アルギニンを産生する限り特に限定されないが、例えば、コリネバクテリウム属、ブレビバクテリウム属(Brevibacterium)、バチルス属(Bacillus)、セラチア属(Serratia)、エシェリヒア属またはサッカロミセス属に属する微生物が挙げられる。 Culture in the presence of arginine may be performed by culturing in a medium to which arginine has been added, and / or by adding a microorganism that produces arginine and performing mixed culture. When culturing in a medium to which arginine is added, arginine may be added to the medium in advance and / or arginine may be appropriately added during the culture. The mixed culture by adding microorganisms that produce arginine means that mixed culture of at least three kinds of microorganisms, that is, microorganisms having an ADI pathway, microorganisms having iODC, and microorganisms that produce arginine is performed. The microorganisms that produce arginine are not particularly limited as long as they produce arginine. For example, the microorganisms include genus Corynebacterium, Brevibacterium, Bacillus, Serratia, Escherichia or Saccharomyces. The microorganism to which it belongs is mentioned.
 上記混合培養の工程において、微生物は酸性条件下または弱酸性から中性条件下で培養される。酸性条件は、pH4.0以上、pH7.0未満の範囲であれば特に限定されない。弱酸性から中性条件は、pH5.0以上、pH7.5以下の範囲であれば特に限定されない。好ましい態様において、微生物は弱酸性から中性条件下で培養され、さらに好ましくはpH6.0~7.5の範囲で培養される。 In the mixed culture process, the microorganism is cultured under acidic conditions or under weakly acidic to neutral conditions. The acidic condition is not particularly limited as long as it is in a range of pH 4.0 or more and less than pH 7.0. The mildly acidic to neutral conditions are not particularly limited as long as they are in the range of pH 5.0 or more and pH 7.5 or less. In a preferred embodiment, the microorganism is cultured under mildly acidic to neutral conditions, more preferably at a pH in the range of 6.0 to 7.5.
 上記混合培養の工程において、微生物は好気条件または嫌気条件のいずれで培養してもよい。好ましくは、混合培養は好気条件で行われる。 In the mixed culture step, the microorganism may be cultured under either aerobic conditions or anaerobic conditions. Preferably, the mixed culture is performed under aerobic conditions.
 上記混合培養の工程における培地の種類、培地成分の量、および培養方式などは、上記I.において記載したとおりであり、様々な状況を考慮して当業者が適宜選択することができる。 The type of medium, the amount of medium components, the culture method, etc. in the mixed culture process are described in I. And can be appropriately selected by those skilled in the art in consideration of various situations.
 混合培養の培養時間は、上記I.において記載した通りである。 The culture time for mixed culture is the same as that described in I. above. As described above.
 上記混合培養の工程において、第一リン酸マグネシウム(Mg(HPO)、第二リン酸マグネシウム(リン酸水素マグネシウム(MgHPO))、第三リン酸マグネシウム(Mg(PO)、およびピロリン酸マグネシウム(Mg)からなる群より選択されるアンモニア除去剤が添加された培地を用いて混合培養を行ってもよい。好ましいアンモニア除去剤の例は、リン酸水素マグネシウムである。アンモニア除去剤は、ADI経路を有する微生物によりアルギニンからオルニチンが産生される際に生じるアンモニアを除去するために用いられる。アンモニアによるiODC活性の阻害を抑制することで、iODCを有する微生物によるオルニチンからのプトレッシン産生が向上する。培地に添加するアンモニア除去剤の濃度は、400 mM以上、好ましくは600 mM以上、700 mM以上、800 mM以上である。アンモニア除去剤濃度の上限は、特に限定されないが、例えば2.0 M以下、1.5 M以下である。アンモニア除去剤の濃度の下限および上限は、上記の範囲からそれぞれ適宜選択することができる。特に好ましい態様において、培地に添加するアンモニア除去剤の濃度は、400 mM~1.5 M、600 mM~1.5 M、または800 mM~1.5 Mである。 In the mixed culture step, primary magnesium phosphate (Mg (H 2 PO 4 ) 2 ), secondary magnesium phosphate (magnesium hydrogen phosphate (MgHPO 4 )), and tertiary magnesium phosphate (Mg 3 (PO 4) 2 ), and mixed culture may be performed using a medium to which an ammonia removing agent selected from the group consisting of magnesium pyrophosphate (Mg 2 P 2 O 7 ) is added. An example of a preferred ammonia scavenger is magnesium hydrogen phosphate. The ammonia removing agent is used to remove ammonia generated when ornithine is produced from arginine by a microorganism having an ADI pathway. By suppressing the inhibition of iODC activity by ammonia, putrescine production from ornithine by microorganisms having iODC is improved. The concentration of the ammonia removing agent added to the medium is 400 mM or more, preferably 600 mM or more, 700 mM or more, or 800 mM or more. The upper limit of the ammonia removing agent concentration is not particularly limited, but is, for example, 2.0 M or less and 1.5 M or less. The lower limit and the upper limit of the concentration of the ammonia removing agent can be appropriately selected from the above ranges. In particularly preferred embodiments, the concentration of the ammonia removal agent added to the medium is 400 mM to 1.5 M, 600 mM to 1.5 M, or 800 mM to 1.5 M.
 上記のプトレッシンの製造方法は、さらに、前記混合培養物の培養液からプトレッシンを分離する工程を含んでもよい。プトレッシンを分離する工程については、上記I.において記載したとおりである。 The above-described method for producing putrescine may further include a step of separating putrescine from the culture solution of the mixed culture. Regarding the step of separating putrescine, the above-mentioned I.I. As described in.
 以下に本発明の具体例を示す。これらの具体例は、本発明を理解するための説明を提供することを目的とするものであって、本発明の範囲を限定することを意図するものではない。 Specific examples of the present invention are shown below. These examples are intended to provide an illustration for understanding the invention and are not intended to limit the scope of the invention.
 <実施例1:アルギニンからプトレッシンを産生する微生物の組合せの探索>
 表1に示す腸内常在菌14菌種の中から最もプトレッシン産生量が多い2菌種の組合せを探索した。
<Example 1: Search for combinations of microorganisms that produce putrescine from arginine>
A search was made for a combination of two bacterial species having the largest amount of putrescine production among the 14 intestinal bacterial species shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記14菌種の中から2菌種の組合せ、すなわち計91通りの組合せについて、アルギニン(終濃度1 mM)を添加した培養液(GAMブイヨン)中で24時間混合培養した。培養開始から7時間および24時間後の培養液中のプトレッシン濃度を超高速液体クロマトグラフィー(UPLC)にて測定した。 Among the above 14 bacterial species, combinations of 2 bacterial species, that is, 91 combinations in total, were mixed and cultured in a culture solution (GAM bouillon) to which arginine (final concentration: 1 mM) was added for 24 hours. The putrescine concentration in the culture broth 7 and 24 hours after the start of the culture was measured by ultra high performance liquid chromatography (UPLC).
 この結果、エンテロコッカス・フェカリス(Enterococcus faecalis)を含む8通りの組合せ(表2)において、培養液中のプトレッシン濃度が5 mM以上であることを確認した。また、1菌種のみを培養した場合と比較して、下記の菌種の組合せを培養した場合には、培養液中のプトレッシンの濃度が、平均で約11.1倍増加した。このことは、プトレッシンは複数菌種の共同作用により合成されていることを示している。 As a result, in 8 combinations (Table 2) including Enterococcus faecalis, it was confirmed that the putrescine concentration in the culture solution was 5 mM or more. In addition, when the following combination of bacterial species was cultured, the concentration of putrescine in the culture increased by an average of about 11.1 times compared to the case where only one bacterial species was cultured. This indicates that putrescine is synthesized by the cooperative action of multiple bacterial species.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <実施例2:培養液のpHの影響>
 実施例1で見いだした8通りの菌種の組合せの中から、プトレッシン産生量が最も多かった大腸菌(E. coli)およびエンテロコッカス・フェカリス(En. faecalis)の組合せをモデルケースとして、培養液中のpHの違いによるプトレッシン産生量の変化について検討した。
<Example 2: Influence of pH of culture solution>
Of the eight combinations of bacterial species found in Example 1, the combination of E. coli and Enterococcus faecalis that produced the largest amount of putrescine was used as a model case in the culture solution. Changes in the amount of putrescine production due to the difference in pH were examined.
 E. coliおよびEn. faecalisを、異なるpH(pH5.0、pH5.5、pH6.0、pH6.5、pH7.0、pH7.5)のアルギニン添加培養液中で、実施例1と同様に混合培養し、そして培養液中プトレッシン濃度を測定した。その結果、混合培養によるプトレッシン産生量は、pHが中性域(pH7.0及び7.5)よりも弱酸性域(pH6.0、pH5.5、pH5.0)で増加した。 E. coli and En. Faecalis were treated in the same manner as in Example 1 in a culture solution supplemented with arginine at different pH (pH 5.0, pH 5.5, pH 6.0, pH 6.5, pH 7.0, pH 7.5). The mixed culture was performed, and the putrescine concentration in the culture medium was measured. As a result, the amount of putrescine produced by the mixed culture increased in the weakly acidic range (pH 6.0, pH 5.5, pH 5.0) rather than the neutral range (pH 7.0 and 7.5).
 <実施例3:2段階培養>
 大腸菌(E. coli)およびエンテロコッカス・フェカリス(En. faecalis)の間で代謝産物の輸送が行われているかを確認する目的で以下の実験を行った。
<Example 3: Two-stage culture>
The following experiment was conducted for the purpose of confirming whether metabolites were transported between E. coli and Enterococcus faecalis.
 2種類の菌種のうち一方について、アルギニン添加培養液(pH6.0)で単菌培養を行った。その培養上清をフィルター滅菌した後、もう一方の菌種を植菌して培養した。その後、培養液中のプトレッシン濃度を実施例1と同様に測定した。 About one of the two types of bacterial species, single bacterial culture was performed in an arginine-added culture solution (pH 6.0). The culture supernatant was sterilized by filter, and the other bacterial species was inoculated and cultured. Thereafter, the putrescine concentration in the culture solution was measured in the same manner as in Example 1.
 その結果、E. coliの培養上清を用いてEn. faecalisを培養した際にのみプトレッシン産生量の増加が認められた。このことは、E. coliが産生する代謝産物を利用して、En. faecalisがプトレッシンを生合成し、放出していることを示している。 As a result, an increase in the amount of putrescine production was observed only when En. Faecalis was cultured using the culture supernatant of E. coli. This indicates that En. Faecalis biosynthesizes and releases putrescine using the metabolite produced by E. coli.
 <実施例4:2菌種の混合培養によるプトレッシン産生>
 Escherichia coli MG1655株(ATCC700926)とEnterococcus faecalis V583株(ATCC700802)(いずれもATCC (American Type Culture Collectionより購入)を用いて以下の実験を行った。
 (1)培地
 以下の培地を使用した。培養条件は、特記しなければ37℃、嫌気培養である。
<Example 4: Putrescine production by mixed culture of two bacterial species>
The following experiment was conducted using Escherichia coli MG1655 strain (ATCC700926) and Enterococcus faecalis V583 strain (ATCC700802) (both purchased from ATCC (purchased from American Type Culture Collection)).
(1) Medium The following medium was used. The culture conditions are anaerobic culture at 37 ° C. unless otherwise specified.
Figure JPOXMLDOC01-appb-T000003
 (2)実験
 E. coli MG1655株をA培地において前培養を一晩行った。その後、アルギニンを加えたB培地を用いて、初期OD600=0.01相当量のE. coli MG1655株の菌体を加え、本培養を開始した。そして、En. faecalis V583株の前培養をA培地にて行った。本培養開始後24時間にてサンプリングを行い、同時にEn. faecalis V583株の菌体を初期OD600=0.01相当量で加え、培養を継続した。本培養開始後48時間にてサンプリングを行い、培養液中のプトレッシン濃度を確認した。
 (3)結果
 その結果、培養液中にプトレッシンが蓄積していることを確認した(表4)。
Figure JPOXMLDOC01-appb-T000003
(2) Experiment E. coli MG1655 strain was precultured overnight in A medium. Thereafter, using B medium containing arginine, the initial OD 600 = 0.01 equivalent amount of E. coli MG1655 strain was added, and main culture was started. Then, pre-culture of En. Faecalis V583 strain was performed in A medium. Sampling was carried out 24 hours after the start of the main culture, and at the same time, cells of En. Faecalis V583 strain were added in an amount equivalent to the initial OD 600 = 0.01, and the culture was continued. Sampling was performed 48 hours after the start of the main culture, and the concentration of putrescine in the culture medium was confirmed.
(3) Results As a result, it was confirmed that putrescine was accumulated in the culture solution (Table 4).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 同様に、Escherichia coli JCM5491株(ATCC25922)とEnterococcus faecalis JCM5803株(ATCC19433)(いずれも理化学研究所より購入)を用いて、プトレッシン産生実験を行った。結果を表5に示す。 Similarly, putrescine production experiments were carried out using Escherichia coli JCM5491 strain (ATCC25922) and Enterococcus faecalis JCM5803 strain (ATCC19433) (both purchased from RIKEN). The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以上から、菌株の種類によらず、大腸菌(E. coli)およびエンテロコッカス・フェカリス(En. faecalis)の組合せを用いることにより、高い収率でプトレッシンが産生できることが明らかとなった。 From the above, it has been clarified that putrescine can be produced in a high yield by using a combination of E. coli and E.cofaecalis regardless of the strain type.
 <実施例5:培養条件の検討による高収率化>
 A培地およびB培地の代わりに、50 mMアルギニンを添加し、pHを調整(pH4.0~pH7.0)したGAMブイヨン培地(日水製薬株式会社製)を用いた他は、実施例4と同様の実験を行った。GAMブイヨンの組成は表6に示すとおりである。
<Example 5: Increase in yield by examining culture conditions>
Example 4 is the same as Example 4 except that GAM bouillon medium (manufactured by Nissui Pharmaceutical Co., Ltd.) adjusted to pH (pH 4.0 to pH 7.0) by adding 50 mM arginine instead of A medium and B medium was used. A similar experiment was conducted. The composition of GAM bouillon is as shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
 培養条件の変更により、実験例4と比較して2つの組み合わせ共にプトレッシン産生量が向上した。この結果は、pH以外にも培養条件のさらなる変更により、プトレッシン産生量の向上が期待できることを示すものである。 By changing the culture conditions, the amount of putrescine produced was improved in both combinations compared to Experimental Example 4. This result shows that an improvement in the amount of putrescine production can be expected by further changing the culture conditions in addition to pH.
 <実施例6:iODC活性を保持するE. coliの同定>
 表8に示すE. coliの株(ATCCまたは理化学研究所より購入)について、iODC活性を保持するかどうかについて検討した。
<Example 6: Identification of E. coli retaining iODC activity>
The E. coli strains (purchased from ATCC or RIKEN) shown in Table 8 were examined to retain iODC activity.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 (1)培地組成
 表9に示す基礎培地、および、オルニチン添加基礎培地として、当該基礎培地に400 mMのオルニチン塩酸塩を加えた培地をそれぞれ作製した。
(1) Medium composition As the basal medium shown in Table 9 and the ornithine-added basal medium, media each containing 400 mM ornithine hydrochloride were prepared.
Figure JPOXMLDOC01-appb-T000009
 (2)培養
 菌株は基礎培地において24時間前培養を行い、本培養はオルニチン添加基礎培地を用いて、前培養液を1%量添加し、37℃、好気条件で24時間培養を行った。培養後、培養液中のオルニチンとプトレッシン濃度を測定した。
 (3)結果
 E. coli JCM5491およびE. coli JCM1649の培養液では培養液中のオルニチン濃度が減少し、プトレッシン濃度が上昇することから、E. coli JCM5491およびE. coli JCM1649はiODC活性を保持することが確認された(図3)。しかし、E. coli JCM1246およびE. coli MG1655の培養液では培養液中のオルニチン濃度は減少せず、プトレッシン濃度が上昇していないため、E. coli JCM1246およびE. coli MG1655はiODC活性を保持しないことが確認された。
Figure JPOXMLDOC01-appb-T000009
(2) Culture The strain was pre-cultured in a basal medium for 24 hours, and the main culture was ornithine-added basal medium, 1% of the pre-culture solution was added, and cultured at 37 ° C. under aerobic conditions for 24 hours. . After the culture, the ornithine and putrescine concentrations in the culture were measured.
(3) Results E. coli JCM5491 and E. coli JCM1649 retain iODC activity because the ornithine concentration in the culture solution decreases and the putrescine concentration increases in the E. coli JCM5491 and E. coli JCM1649 culture solutions. This was confirmed (FIG. 3). However, in E. coli JCM1246 and E. coli MG1655 culture media, the ornithine concentration in the culture solution does not decrease and the putrescine concentration does not increase, so E. coli JCM1246 and E. coli MG1655 do not retain iODC activity. It was confirmed.
 <実施例7:E. coliとEn. faecalisの混合培養によるアルギニンからのプトレッシン産生>
 表10に示すE. coliおよびEn. faecalisの菌株を用いて、E. coliとEn. faecalisの混合培養によるアルギニンからのプトレッシン産生について検討した。
<Example 7: Putrescine production from arginine by mixed culture of E. coli and En. Faecalis>
Using the E. coli and En. Faecalis strains shown in Table 10, production of putrescine from arginine by mixed culture of E. coli and En. Faecalis was examined.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 (1)培養
 基礎培地は、実施例6に記載したように作製した。また、本培養のための培地として、基礎培地に400 mMのアルギニンを加えた液体培地を作製した。
 各菌株は基礎培地において24時間前培養を行った。本培養は、En. faecalisを本培養液に対して前培養液を1%量添加し、E. coliを本培養液に対して前培養液を0.001%量添加し、37℃、好気条件下で30時間培養することで行った。そして、培養液中のプトレッシン濃度を測定した。培養中はEn. faecalisの産生するアンモニアによりpHが上昇するため、リン酸を添加することによりpH6.0~pH7.5の間を維持した。
 (2)結果
 iODC活性を保持するE. coli JCM5491とE. coli JCM1649を用いた場合は、すべてのEn. faecalisとの混合培養において培養液中に40 mM以上のプトレッシンを産生した(図4)。しかし、iODC活性を保持しないE. coli JCM1246およびE. coli MG1655を用いた場合は、すべてのEn. faecalisとの混合培養においてプトレッシンは検出されなかった。以上の結果は、E. coliとEn. faecalisの混合培養(弱酸性から中性条件および好気条件)によるアルギニンからのプトレッシン産生には一部のE. coliが保持するiODC活性が重要であることを示している。最もプトレッシン産生量が多い組合せはE. coli JCM1649とEn. faecalis JCM8726の組合せで約70 mMであった。
(1) Culture The basal medium was prepared as described in Example 6. Further, as a medium for main culture, a liquid medium in which 400 mM arginine was added to a basal medium was prepared.
Each strain was precultured in basal medium for 24 hours. In the main culture, En. Faecalis is added to the main culture solution in a 1% amount of the pre-culture solution, E. coli is added to the main culture solution in an amount of 0.001%, and the aerobic condition is 37 ° C. It was performed by culturing under 30 hours. And the putrescine density | concentration in a culture solution was measured. During the culture, the pH was raised by ammonia produced by En. Faecalis, so that the pH was maintained between 6.0 and 7.5 by adding phosphoric acid.
(2) Results When E. coli JCM5491 and E. coli JCM1649 retaining iODC activity were used, 40 mM or more putrescine was produced in the culture solution in the mixed culture with all En. Faecalis (FIG. 4). . However, when using E. coli JCM1246 and E. coli MG1655 that do not retain iODC activity, putrescine was not detected in all mixed cultures with En. Faecalis. The above results indicate that iODC activity retained by some E. coli is important for the production of putrescine from arginine by mixed culture of E. coli and En. Faecalis (weakly acidic to neutral and aerobic conditions). It is shown that. The combination with the highest amount of putrescine production was about 70 mM for the combination of E. coli JCM1649 and En. Faecalis JCM8726.
 <実施例8:アンモニアによるE. coliのiODC活性の阻害>
 図2の経路によるアルギニンからプトレッシン産生は、En. faecalisによるアルギニンからのオルニチン産生の進行に伴い、E. coliのオルニチンからのプトレッシン産生が抑制されてしまうことが問題となっていた。En. faecalisはアルギニンからオルニチンを1モル産生する際に、同時にアンモニアを2モル産生する。このアンモニアがオルニチンからのプトレッシン産生を阻害することが考えられた。そこで、アンモニアによるE. coliのiODC活性の阻害について、E. coli JCM5491を用いて検討した。
<Example 8: Inhibition of iODC activity of E. coli by ammonia>
The production of putrescine from arginine by the route of FIG. 2 has been problematic in that the production of putrescine from ornithine in E. coli is suppressed with the progress of ornithine production from arginine by En. Faecalis. En. Faecalis produces 2 moles of ammonia simultaneously when producing 1 mole of ornithine from arginine. It was thought that this ammonia inhibited putrescine production from ornithine. Therefore, the inhibition of iODC activity of E. coli by ammonia was examined using E. coli JCM5491.
 (1)培養
 基礎培地は、実施例6に記載したように作製した。また、本培養のための培地として、基礎培地に400 mMのオルニチン塩酸塩と0~200 mMの塩化アンモニウムを加えた液体培地を作製した。
 菌株は基礎培地で24時間前培養を行い、本培養は前培養液を本培養液に対して1%量添加し、37℃、好気条件で培養を行い、24時間後の培養液中のオルニチン濃度とプトレッシン濃度を測定した。
 (2)結果
 培養液中のアンモニア濃度が高くなると、培養液中のオルニチン濃度の減少量は低下し、プトレッシン濃度も増加していないことがわかった(図5)。このことから培養液中のアンモニア濃度がE. coliのiODC活性を阻害していることが確認された。
(1) Culture The basal medium was prepared as described in Example 6. As a medium for main culture, a liquid medium was prepared by adding 400 mM ornithine hydrochloride and 0 to 200 mM ammonium chloride to the basal medium.
The strain is precultured in a basal medium for 24 hours. In the main culture, 1% of the preculture is added to the main culture, and cultured at 37 ° C. under aerobic conditions. Ornithine concentration and putrescine concentration were measured.
(2) Results It was found that when the ammonia concentration in the culture solution increased, the amount of decrease in ornithine concentration in the culture solution decreased and the putrescine concentration did not increase (FIG. 5). From this, it was confirmed that the ammonia concentration in the culture solution inhibited the iODC activity of E. coli.
 <実施例9:リン酸水素マグネシウムの添加がE. coliとEn. faecalisの混合培養によるアルギニンからのプトレッシン産生に与える影響>
 実施例8で示されたアンモニアによるiODC活性阻害を改善するために、ストルバイトを利用する方法を模索した。ストルバイトとはリン酸水素マグネシウムアンモニウムの結晶であり、中性からアルカリ性の水に対して極めて溶解しにくい性質を持つ。これまでに排水処理においてアンモニアをストルバイトとして回収することが報告されている(特開2006-289168)。本研究では培地中にリン酸水素マグネシウムを添加し、それとEn. faecalisが産生するアンモニアが反応し、ストルバイトとして沈殿させることで、アンモニアによるE. coliのiODC活性阻害の改善を試みた。
<Example 9: Effect of addition of magnesium hydrogen phosphate on putrescine production from arginine by mixed culture of E. coli and En. Faecalis>
In order to improve the inhibition of iODC activity by ammonia shown in Example 8, a method using struvite was sought. The struvite is a crystal of magnesium ammonium hydrogen phosphate, and has the property that it is extremely difficult to dissolve in neutral to alkaline water. So far, it has been reported that ammonia is recovered as struvite in wastewater treatment (Japanese Patent Laid-Open No. 2006-289168). In this study, we tried to improve the inhibition of E. coli iODC activity by adding magnesium hydrogen phosphate to the medium and reacting with the ammonia produced by En. Faecalis to precipitate it as struvite.
 具体的には、E. coli JCM1649とEn. faecalis JCM8726の組合せ、およびE. coli JCM5491とEn. faecalis JCM5803の組合せについて、リン酸水素マグネシウムの共存下で混合培養を行うことにより、プトレッシン産生量の向上について検討した。 Specifically, the combination of E. coli JCM1649 and En. Faecalis JCM8726, and E. coli JCM5491 and En. Faecalis JCM5803 are mixed and cultured in the presence of magnesium hydrogen phosphate to reduce the amount of putrescine production. We examined improvement.
 (1)培養
 実施例6と同様に基礎培地を作製した。また、本培養のための培地として、基礎培地に400 mMのアルギニンと0、200、400、600または800 mMのリン酸水素マグネシウムを添加した培地をそれぞれ作製した。
(1) Culture A basal medium was prepared in the same manner as in Example 6. In addition, as a medium for main culture, a medium in which 400 mM arginine and 0, 200, 400, 600, or 800 mM magnesium hydrogen phosphate were added to a basal medium was prepared.
 E. coli JCM1649とEn. faecalis JCM8726の組合せ、およびE. coli JCM5491とEn. faecalis JCM5803の組み合わせを用いて実験を行った。菌株は基礎培地において24時間培養を行い、En. faecalis JCM8726とEn. faecalis JCM5803は本培養液に対して前培養液を1%量添加し、E. coli JCM1649とE. coli JCM5491は本培養液に対して前培養液を0.001%量添加し、37℃、好気条件で24時間培養を行った。培養中はEn. faecalisの産生するアンモニアによりpHが上昇するため、リン酸を用いてpHを6.0~7.5の間で維持した。培養後、培養液中のオルニチンとプトレッシン濃度を測定した。 Experiments were performed using a combination of E. coli JCM1649 and En. Faecalis JCM8726, and a combination of E. coli JCM5491 and En. Faecalis JCM5803. The strains are cultured in a basal medium for 24 hours. En. Faecalis JCM8726 and En. Faecalis JCM5803 add 1% of the preculture to the main culture, and E. coli JCM1649 and E. coli JCM5491 A preculture solution was added in an amount of 0.001%, and cultured at 37 ° C. under aerobic conditions for 24 hours. During the culture, the pH was raised by ammonia produced by En. Faecalis, so the pH was maintained between 6.0 and 7.5 using phosphoric acid. After the culture, the ornithine and putrescine concentrations in the culture were measured.
 また、E. coli JCM5491とEn. faecalis JCM5803の組み合わせにおいては基礎培地にリン酸水素マグネシウムを1.2 M添加し、上記条件で培養し、継時的に、アルギニン、オルニチン、プトレッシン濃度を測定した。 Also, in the combination of E. coli JCM5491 and En. Faecalis JCM5803, 1.2 M of magnesium hydrogenphosphate was added to the basal medium and cultured under the above conditions, and arginine, ornithine and putrescine concentrations were measured over time.
 (2)結果
 リン酸水素マグネシウムの濃度依存的に培養液中のオルニチンが減少し、プトレッシンが増加した(図6)。特に400 mM以上のリン酸水素マグネシウムを添加した場合にE. coliとEn. faecalisによるプトレッシン産生量が大きく増加した。理論的には、En. faecalisは培養液に添加した400 mMのアルギニンから800 mMのアンモニアを産生しており、E. coliのiODCが働くためには少なくとも培養液中のアンモニア濃度が400 mM以下であることが望ましいことが示唆される。以上からE. coliとEn. faecalisの混合培養によるアルギニンからのプトレッシン産生には、En. faecalisがオルニチンの副産物として産生するアンモニアを除去することが重要であることが示され、アンモニアを除去する方法の1つとしてアンモニアをストルバイトとして沈殿除去する方法が実証された。
(2) Results Ornithine in the culture solution decreased and putrescine increased depending on the concentration of magnesium hydrogen phosphate (FIG. 6). In particular, when 400 mM or more of magnesium hydrogen phosphate was added, the amount of putrescine produced by E. coli and En. Faecalis increased greatly. Theoretically, En. Faecalis produces 800 mM ammonia from 400 mM arginine added to the culture solution, and at least the ammonia concentration in the culture solution is 400 mM or less in order for E. coli iODC to work. It is suggested that it is desirable. From the above, it was shown that it is important to remove ammonia produced by En. Faecalis as a by-product of ornithine for putrescine production from arginine by mixed culture of E. coli and En. Faecalis. As one of them, a method for precipitating and removing ammonia as struvite has been demonstrated.
 最大のプトレッシン収量を得られた1.2 Mのリン酸水素マグネシウムを添加した培養液では、一連の実験結果の通り、アルギニンの減少に伴いオルニチンが産生され、その後オルニチンの減少に伴いプトレッシンが産生されることが認められた。本培養24時間後のプトレッシン収量は3.43%であり、培養40時間後のプトレッシン収量は4.17%(図7)。 As shown in a series of experimental results, ornithine is produced with a decrease in arginine, and then putrescine is produced with a decrease in ornithine in the culture solution supplemented with 1.2 M magnesium hydrogen phosphate, which gave the maximum putrescine yield. It was recognized that The putrescine yield after 24 hours of main culture was 3.43%, and the yield of putrescine after 40 hours of culture was 4.17% (FIG. 7).

Claims (10)

  1.  プトレッシンを製造する方法であって、オルニチンを産生する微生物およびオルニチン脱炭酸酵素であるiODCを有する微生物を混合培養する工程を含む、前記方法。 A method for producing putrescine, comprising the step of mixing and culturing a microorganism producing ornithine and a microorganism having iODC which is ornithine decarboxylase.
  2.  オルニチンを産生する微生物がADI経路(アルギニンデイミナーゼ代謝経路)を有する微生物であり、そして混合培養がアルギニンの存在下で行われる、請求項1に記載の方法。 The method according to claim 1, wherein the microorganism producing ornithine is a microorganism having an ADI pathway (arginine deiminase metabolic pathway), and the mixed culture is performed in the presence of arginine.
  3.  iODCを有する微生物が、iODCを有する大腸菌(Escherichia coli)である、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the microorganism having iODC is Escherichia coli having iODC.
  4.  iODCを有する大腸菌が、Escherichia coli JCM5491株(ATCC25922)またはEscherichia coli JCM1649株(ATCC11775)である、請求項1~3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the Escherichia coli having iODC is Escherichia coli JCM5491 strain (ATCC25922) or Escherichia coli JCM1649 strain (ATCC11775).
  5.  ADI経路を有する微生物が、エンテロコッカス・フェカリス(Enterococcus faecalis)である、請求項2~4のいずれか1項に記載の方法。 The method according to any one of claims 2 to 4, wherein the microorganism having the ADI pathway is Enterococcus faecalis.
  6.  混合培養の条件が、以下(a)-(c):
    (a)pH4.5~pH7.5である;
    (b)アルギニンが0.1 mM~500 mMの範囲で存在する;および
    (c)好気条件である;
    の少なくとも1つの条件を有する、請求項2~5のいずれか1項に記載の方法。
    The conditions for the mixed culture are the following (a)-(c):
    (A) pH 4.5 to pH 7.5;
    (B) arginine is present in the range of 0.1 mM to 500 mM; and (c) aerobic conditions;
    The method according to any one of claims 2 to 5, which has at least one of the following conditions.
  7.  アルギニンの存在下で混合培養することが、
    アルギニンを添加した培地中で培養する;および/または
    アルギニンを産生する微生物を添加して混合培養する;
    ことにより行われる、請求項2~6のいずれか1項に記載の方法。
    Mixed culture in the presence of arginine
    Incubate in a medium supplemented with arginine; and / or add a microorganism that produces arginine and cultivate mixedly;
    The method according to any one of claims 2 to 6, which is carried out by
  8.  混合培養する工程において、第一リン酸マグネシウム(Mg(HPO)、第二リン酸マグネシウム(リン酸水素マグネシウム(MgHPO))、第三リン酸マグネシウム(Mg(PO)、およびピロリン酸マグネシウム(Mg)からなる群より選択されるアンモニア除去剤を含む培地を用いることを特徴とする、請求項2~7のいずれか1項に記載の方法。 In the mixed culture step, primary magnesium phosphate (Mg (H 2 PO 4 ) 2 ), secondary magnesium phosphate (magnesium hydrogen phosphate (MgHPO 4 )), and tertiary magnesium phosphate (Mg 3 (PO 4 )) The method according to any one of claims 2 to 7, wherein a medium containing an ammonia removing agent selected from the group consisting of 2 ) and magnesium pyrophosphate (Mg 2 P 2 O 7 ) is used. .
  9.  プトレッシンを製造する方法であって、アルギニン依存的耐酸性機構を有する微生物およびAgDI経路(アグマチンデイミナーゼ代謝経路)を有する微生物を、アルギニンの存在下、酸性条件下で混合培養する工程を含む、前記方法。 A method for producing putrescine, comprising a step of mixing and culturing a microorganism having an arginine-dependent acid resistance mechanism and a microorganism having an AgDI pathway (agmatin deiminase metabolic pathway) in the presence of arginine under acidic conditions. Said method.
  10.  プトレッシンを製造する方法であって、以下の工程:
    (1)アルギニン依存的耐酸性機構を有する微生物を、アルギニンの存在下、酸性条件下で培養する;
    (2)工程(1)の培養物から培養上清を得る;
    (3)AgDI経路(アグマチンデイミナーゼ代謝経路)を有する微生物を、工程(2)の培養上清に添加して培養する;及び
    (4)工程(3)の培養液からプトレッシンを分離する;
    を含む、前記方法。
    A method for producing putrescine comprising the following steps:
    (1) culturing a microorganism having an arginine-dependent acid resistance mechanism under acidic conditions in the presence of arginine;
    (2) obtaining a culture supernatant from the culture of step (1);
    (3) A microorganism having an AgDI pathway (agmatin deiminase metabolic pathway) is added to the culture supernatant of step (2) and cultured; and (4) putrescine is separated from the culture solution of step (3);
    Said method.
PCT/JP2015/070812 2014-07-22 2015-07-22 Method for producing putrescine by mixed bacterial culture WO2016013570A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014148824A JP2017158434A (en) 2014-07-22 2014-07-22 Method for producing putrescine by bacterial mixed culture
JP2014-148824 2014-07-22

Publications (1)

Publication Number Publication Date
WO2016013570A1 true WO2016013570A1 (en) 2016-01-28

Family

ID=55163094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070812 WO2016013570A1 (en) 2014-07-22 2015-07-22 Method for producing putrescine by mixed bacterial culture

Country Status (2)

Country Link
JP (1) JP2017158434A (en)
WO (1) WO2016013570A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115948316A (en) * 2022-12-13 2023-04-11 四川大学 Method for improving acid resistance of lactic acid bacteria
WO2024135449A1 (en) * 2022-12-22 2024-06-27 不二製油グループ本社株式会社 Enteral polyamine production agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002345496A (en) * 2001-05-25 2002-12-03 Ajinomoto Co Inc Method for producing agmatine and method for producing arginine decarboxylase
JP2003117341A (en) * 2001-10-17 2003-04-22 Ebara Corp Method for treating gas containing ammonia and device therefor
JP2005205357A (en) * 2004-01-26 2005-08-04 Ngk Insulators Ltd Absorption apparatus of ammonia and/or ammonium ion
JP2008505652A (en) * 2004-07-15 2008-02-28 ディーエスエム アイピー アセッツ ビー.ブイ. Biochemical synthesis of 1,4-butanediamine
JP2008505651A (en) * 2004-07-15 2008-02-28 ディーエスエム アイピー アセッツ ビー.ブイ. Biochemical synthesis of 1,4-butanediamine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002345496A (en) * 2001-05-25 2002-12-03 Ajinomoto Co Inc Method for producing agmatine and method for producing arginine decarboxylase
JP2003117341A (en) * 2001-10-17 2003-04-22 Ebara Corp Method for treating gas containing ammonia and device therefor
JP2005205357A (en) * 2004-01-26 2005-08-04 Ngk Insulators Ltd Absorption apparatus of ammonia and/or ammonium ion
JP2008505652A (en) * 2004-07-15 2008-02-28 ディーエスエム アイピー アセッツ ビー.ブイ. Biochemical synthesis of 1,4-butanediamine
JP2008505651A (en) * 2004-07-15 2008-02-28 ディーエスエム アイピー アセッツ ビー.ブイ. Biochemical synthesis of 1,4-butanediamine

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DRIESSEN, A J M ET AL.: "Transport of diamines by Enterococcus faecalis is mediated by an agmatine-putrescine antiporter", JOURNAL OF BACTERIOLOGY, vol. 170, no. 10, 1988, pages 4522 - 4527 *
LIAO S. ET AL.: "Occurrence of Agmatine Pathway for Putrescine Synthesis in Selenomonas ruminatium", BIOSCI BIOTECHNOL BIOCHEM, vol. 72, no. 2, 2008, pages 445 - 455 *
LLACER, J. L. ET AL.: "The Gene Cluster for Agmatine Catabolism of Enterococcus faecalis: Study of Recombinant Putrescine Transcarbamylase and Agmatine Deiminase and a Snapshot of Agmatine Deiminase Catalyzing Its Reaction", JOURNAL OF BACTERIOLOGY, vol. 189, no. 4, 2007, pages 1254 - 1265 *
MERCENIER, A. ET AL.: "Catabolism of L-arginine by Pseudomonas aeruginosa", JOURNAL OF GENERAL MICROBIOLOGY, vol. 116, 1980, pages 381 - 389 *
MOUILLE B. ET AL.: "Inhibition of human colon carcinoma cell growth by ammonia: a non- cytotoxic process associated with polyamine synthesis reduction", BIOCHIM BIOPHYS ACTA, vol. 1624, no. 1 / 3, 2003, pages 88 - 97, XP004475876, DOI: doi:10.1016/j.bbagen.2003.09.014 *
PEREIRA C.I. ET AL.: "Weissella halotolerans W22 combines arginine deiminase and ornithine decarboxylation pathways and converts arginine to putrescine", JOURNAL OF APPLIED MICROBIOLOGY, vol. 107, no. 6, 2009, pages 1894 - 1902 *
YUSUKE KITADA ET AL.: "Chonai Saikin no Collaboration ni yoru Atarashii Polyamine Seigosei Keiro", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY 2014 NENDO TAIKAI KOEN YOSHISHU, 5 March 2014 (2014-03-05), pages 2A14 p10 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115948316A (en) * 2022-12-13 2023-04-11 四川大学 Method for improving acid resistance of lactic acid bacteria
CN115948316B (en) * 2022-12-13 2024-03-22 四川大学 Method for improving acid resistance of lactic acid bacteria
WO2024135449A1 (en) * 2022-12-22 2024-06-27 不二製油グループ本社株式会社 Enteral polyamine production agent

Also Published As

Publication number Publication date
JP2017158434A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
Robert et al. Glycine betaine, carnitine, and choline enhance salinity tolerance and prevent the accumulation of sodium to a level inhibiting growth of Tetragenococcus halophila
Sánchez et al. Low-pH adaptation and the acid tolerance response of Bifidobacterium longum biotype longum
TWI678208B (en) Novel strain of lactobacillus rhamnosus and its metabolites for use in inhibiting xanthine oxidase and treating gout
Lee et al. Methanobrevibacter boviskoreani sp. nov., isolated from the rumen of Korean native cattle
CA2893265A1 (en) Use of microorganisms for reducing the level of trimethylamine in a human body cavity in particular for the treatment of trimethylaminuria or of bacterial vaginosis and the prevention of cardiovascular diseases
JP5910978B2 (en) Non-protein amino acid-producing lactic acid bacteria and their uses
RU2012109558A (en) MEASURES AGAINST OBESITY, NUTRITION OR DRINKS AGAINST OBESITY, IMPROVING GLUCOSE TOLERANCE MEDIA AND NUTRITION OR DRINKS FOR IMPROVING GLUCOSE TOLERANCE
WO2015111597A1 (en) Method for preparing citrulline
Yu et al. Isolation and characterization of lactic acid bacteria strains with ornithine producing capacity from natural sea salt
EP2880150B1 (en) Transport medium for isolation and identification of helicobacter pylori
WO2016013570A1 (en) Method for producing putrescine by mixed bacterial culture
Anand et al. Screening of phosphate-accumulating probiotics for potential use in chronic kidney disorder
EP1587913B1 (en) New strains of bifidobacterium having the ability to produce glutamine
WO2015111598A1 (en) Method for culturing lactic acid bacteria at high concentration
JP5119435B2 (en) Method for producing poly-γ-glutamic acid with high optical purity
KR101617596B1 (en) Microorganism capable for reducing methane produced by rumen of ruminant animals
CN107151634B (en) Lactobacillus crustorus, antibacterial peptide and application thereof
JP2015082970A (en) Method for producing panax ginseng effective ingredient
JP7211721B2 (en) Novel microorganism and method for producing urolithins using said microorganism
Abedi et al. Isolation and Identification of Lactobacillus strains from dairy products and evaluation of carbon sources effects on bacterial growth and phytase activity: supplement for fish feed
JP6624985B2 (en) Polyamine-rich yeast
Kim et al. In vitro characterization study of Bacillus mojavensis KJS-3 for a potential probiotic
JP5926818B2 (en) Cell killing method using polyethylene glycol nonionic surfactant
KR101408103B1 (en) Methods for Preparing High-Concentrated GABA
CN118272276B (en) Lactobacillus widely used as sake and application of lactobacillus widely used as sake and product thereof in reducing blood sugar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15825480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15825480

Country of ref document: EP

Kind code of ref document: A1