WO2016013291A1 - Received power measurement device, radio communication device, radio communication system and received power measurement method - Google Patents
Received power measurement device, radio communication device, radio communication system and received power measurement method Download PDFInfo
- Publication number
- WO2016013291A1 WO2016013291A1 PCT/JP2015/065299 JP2015065299W WO2016013291A1 WO 2016013291 A1 WO2016013291 A1 WO 2016013291A1 JP 2015065299 W JP2015065299 W JP 2015065299W WO 2016013291 A1 WO2016013291 A1 WO 2016013291A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- received power
- request data
- wireless communication
- unit
- received
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 127
- 238000004891 communication Methods 0.000 title claims abstract description 107
- 238000000691 measurement method Methods 0.000 title description 9
- 238000012545 processing Methods 0.000 claims abstract description 83
- 230000004044 response Effects 0.000 claims abstract description 78
- 230000005540 biological transmission Effects 0.000 claims description 70
- 238000000034 method Methods 0.000 claims description 26
- 238000001514 detection method Methods 0.000 claims description 19
- 230000015654 memory Effects 0.000 description 22
- 230000006870 function Effects 0.000 description 12
- 238000007405 data analysis Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 101100172132 Mus musculus Eif3a gene Proteins 0.000 description 6
- 230000000875 corresponding effect Effects 0.000 description 5
- 239000002131 composite material Substances 0.000 description 3
- 206010048669 Terminal state Diseases 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/10—Small scale networks; Flat hierarchical networks
- H04W84/12—WLAN [Wireless Local Area Networks]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organising networks, e.g. ad-hoc networks or sensor networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present invention relates to a received power measuring device, a wireless communication device, a wireless communication system, and a received power measuring method.
- Wireless M2M Machine to Machine
- metering systems and remote management systems that are expected to expand in the future will use wireless communication systems such as IEEE (Institute of Electrical and Electronic Engineers) 802.15.4.
- IEEE Institute of Electrical and Electronic Engineers 802.15.4.
- the use of the existing multi-hop wireless mesh network is expected.
- a multi-hop wireless mesh network even if there is a wireless device that cannot communicate directly, communication is possible via the relay device by installing the relay device. Therefore, a means for confirming the place where the repeater is to be installed is important.
- Confirmation of the installation location of the repeater is possible, for example, by verifying the radio wave coverage of a plurality of wireless devices. Since the radio wave reach of the radio varies depending on the physical environment around the radio, the radio is actually installed, the strength of the radio wave transmitted from the radio (radio wave intensity) is measured in the surrounding area, and the radio wave reach An on-site survey to confirm this is an effective means of radio wave coverage. However, a method for efficiently measuring the radio field intensity of a plurality of wireless devices constituting a multi-hop wireless mesh network has not been established.
- the active type includes a method for requesting data transmission for measurement by unicast and a method for requesting data transmission for measurement by broadcast.
- the passive measurement method there is a problem that measurement is not possible unless the measurement target wireless device transmits data frequently.
- the passive measurement method in the case of a system using CSMA / CA (Carrier Sense Multiple Access / Collision Avoidance) as the access control method, if the measurement target radio is in a hidden terminal state, multiple radios are simultaneously connected. There is a problem in that measurement data may be transmitted and measurement data interfere with each other and cannot be measured.
- CSMA / CA Carrier Sense Multiple Access / Collision Avoidance
- Patent Document 1 describes that the transmission timing of a response to broadcast data is changed in order to solve the problem of a measurement method that requests transmission of measurement data to a radio device to be measured by an active type and broadcast. is there. However, Patent Document 1 does not describe a specific transmission timing changing method.
- Japanese Patent Application Laid-Open No. 2004-228561 has a description of changing the transmission timing of a response to broadcast data in a measurement method that requests transmission of measurement data from a wireless device to be measured by active and broadcast.
- the transmission timing is only shifted in one measurement object. For this reason, if the transmission timing is simply shifted by a fixed time, the transmission timing is determined for each measurement target terminal.
- the transmission timing is notified by broadcast, the transmission timing of all measurement target terminals is transmitted to all terminals. Will be sent. For this reason, radio resources for notifying the transmission timing and time for transmission / reception are wasted.
- the present invention has been made in view of the above, and a reception power measurement device capable of efficiently measuring reception power based on measurement data transmitted from a plurality of wireless devices while avoiding interference of measurement data,
- An object of the present invention is to provide a wireless communication device, a wireless communication system, and a received power measurement method.
- the present invention generates request data for requesting a wireless communication device, which is a measurement target of reception power, to transmit a response signal used for measurement of reception power.
- a first processing unit that stores timing information indicating a timing at which the response signal is transmitted in the request data, and a destination identifier indicating that the request data in which the timing information is stored is broadcast communication as a destination
- a second processing unit that assigns the request data, a radio signal processing unit that transmits the request data to which the destination identifier is assigned as a radio signal, and a received power based on the response signal received from the radio communication device
- a third processing unit that assigns the request data, a radio signal processing unit that transmits the request data to which the destination identifier is assigned as a radio signal, and a received power based on the response signal received from the radio communication device.
- the reception power measuring apparatus has an effect that the reception power based on the measurement data transmitted from a plurality of wireless devices can be efficiently measured while avoiding interference of the measurement data.
- FIG. 1 is a diagram illustrating a configuration example of a wireless communication system according to the first embodiment.
- FIG. 2 is a diagram illustrating a configuration example of the received power measuring device and the wireless communication device to be measured according to the first embodiment.
- FIG. 3 is a diagram illustrating a configuration example of the control circuit according to the first embodiment.
- FIG. 4 is a flowchart illustrating an example of a reception power measurement process procedure in the reception power measurement apparatus according to the first embodiment.
- FIG. 5 is a sequence diagram illustrating an example of a received power measurement operation according to the first embodiment.
- FIG. 6 is a diagram illustrating a configuration example of the received power measuring apparatus according to the second embodiment.
- FIG. 7 is a flowchart illustrating an example of a procedure for determining a random number width in the received power measurement request data generation unit according to the second embodiment.
- FIG. 1 is a diagram showing a configuration example of a first embodiment of a wireless communication system according to the present invention.
- the wireless communication system according to the present embodiment includes a received power measuring device 1 and wireless communication devices 2-1 and 2-2 that are reception power measurement targets.
- the reception power measuring device 1 may be set inside a wireless communication device having a wireless communication function, or may be configured by a combination of a wireless device and an external device.
- the received power measuring device 1 obtains the received power of each of the wireless communication devices 2-1 and 2-2 based on the signals received from the wireless communication devices 2-1 and 2-2.
- the number of wireless communication devices whose reception power is to be measured is two for simplification of the drawing, but the number of wireless communication devices whose reception power is to be measured is not limited to two. It may be.
- FIG. 2 is a diagram illustrating a configuration example of the received power measuring device 1 and the measurement target wireless communication device 2 according to the present embodiment.
- the wireless communication apparatuses 2-1 and 2-2 have the same configuration, and in FIG. 2, the wireless communication apparatuses 2-1 and 2-2 are illustrated as the wireless communication apparatus 2 without being distinguished from each other.
- the received power measurement device 1 of this embodiment includes a received power measurement request data generation unit 11, a radio access control unit 12, a radio signal processing unit 13, a received power information collection unit 14, and a radio antenna.
- the wireless access control unit 12 includes a header adding unit 16 and a transmission source identification unit 17.
- the wireless signal processing unit 13 includes a reception power measurement unit 18 and a transmission / reception processing unit 30 which are measurement units.
- the wireless signal processing unit 13 includes the reception power measurement unit 18 has been described, but the reception power measurement unit 18 may be provided separately from the wireless signal processing unit 13.
- the transmission / reception processing unit 30 is an electronic circuit including an analog / digital converter that converts a radio signal received by the radio antenna 15 into a digital signal, a digital / analog converter that converts a digital signal to be transmitted into an analog signal, and the like.
- the transmission / reception processing unit 30 may include an encoder that performs encoding and a decoder that performs decoding.
- the transmission / reception processing unit 30 may include a modem that performs modulation and demodulation processing.
- the reception power measurement unit 18 provided inside the radio signal processing unit 13 or outside the radio signal processing unit is an electronic circuit that measures the power of the radio signal received by the radio antenna 15.
- the reception power measurement request data generation unit 11 generates request data for requesting the wireless communication device 2 that is a measurement target of reception power to transmit a response signal used for reception power measurement, and transmits the response signal. It is the 1st processing part which stores the timing information which shows the timing to perform in request data.
- the header assigning unit 16 is a second processing unit that assigns a destination identifier indicating that the request data in which timing information is stored is broadcast communication as a destination.
- the transmission / reception processing unit 30 is a third processing unit that transmits the request data to which the destination identifier is assigned as a wireless signal via the wireless antenna 15 and receives the wireless signal via the wireless antenna 15.
- the reception power measurement request data generation unit 11, the radio access control unit 12, and the reception power information collection unit 14 are each realized by a processing circuit. That is, the received power measuring apparatus 1 includes a processing circuit that generates received power measurement request data, a processing circuit that performs radio access control, and a processing circuit that collects received power information.
- the processing circuit that generates the reception power measurement request data, the processing circuit that performs radio access control, and the processing circuit that collects reception power information may be realized as one processing circuit, or the reception power measurement request data Two of the generation unit 11, the radio access control unit 12, and the reception power information collection unit 14 may be realized as one processing circuit.
- the header adding unit 16 and the transmission source identification unit 17 of the wireless access control unit 12 may be realized as separate processing circuits.
- a CPU Central Processing Unit, a central processing unit, a processing unit, a processing unit, a microprocessor, a microcomputer, a processor, which executes a memory and a program stored in the memory
- a control circuit provided with a DSP may also be used.
- the memory is, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory, etc.) Volatile semiconductor memories, magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs (Digital Versatile Disks), and the like are applicable.
- the processing circuit When the processing circuit that implements the reception power measurement request data generation unit 11, the wireless access control unit 12, and the reception power information collection unit 14 is dedicated hardware, the processing circuit is, for example, a single circuit, a composite circuit, or a program An integrated processor, a processor programmed in parallel, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof is applicable.
- ASIC Application Specific Integrated Circuit
- FPGA Field Programmable Gate Array
- the control circuit 200 is an input unit 201 that is a receiving unit that receives data input from the outside, a processor 202 that is a CPU, a memory 203, and a transmission unit that transmits data to the outside. And an output unit 204.
- the input unit 201 is an interface circuit that receives data input from the outside of the control circuit 200 and applies the data to the processor 202
- the output unit 204 is an interface that transmits data from the processor 202 or the memory 203 to the outside of the control circuit 200.
- the processor 202 is realized by reading and executing a program stored in the memory 203 and corresponding to each processing of the processing circuit.
- the memory 203 is also used as a temporary memory in each process executed by the processor 202.
- a part of the functions of the processing circuit that implements the reception power measurement request data generation unit 11, the radio access control unit 12, and the reception power information collection unit 14 is realized by dedicated hardware, and part of the processing circuit is software or firmware. It may be realized.
- the reception power measuring device is configured by a combination of a wireless device and an external device
- the wireless access control unit 12 the wireless signal processing unit 13, and the antenna 15 are realized by the wireless device
- the received power measurement request The data generation unit 11 and the reception power information collection unit 14 are realized by an external device.
- the control circuit 200 that implements the received power measurement request data generation unit 11 and the received power information collection unit 14 is an external device such as a personal computer.
- the separation between the wireless device and the external device is not limited to this example.
- the wireless signal processing unit 13 and the antenna 15 are realized by the wireless device, and the received power measurement request data generation unit 11 and the wireless access control unit 12 are provided.
- the received power information collection unit 14 may be realized by an external device.
- the wireless communication device 2 that is a measurement target includes a wireless signal processing unit 21 (measurement target side wireless signal processing unit), a wireless access control unit 22, and a wireless antenna 23.
- the radio access control unit 22 includes a header analysis unit 24, a request data analysis unit 25, a received power measurement response data generation unit 26, and a transmission timing control unit 27.
- the reception power measurement response data generation unit 26 is a generation unit that generates response data corresponding to the received request data when the request data is received from the reception power measurement device.
- the transmission timing control unit 27 is a control unit that determines transmission timing based on timing information stored in the received request data.
- the radio signal processing unit 21 sends a response signal, which is a radio signal storing the response data generated by the response power measurement response data generation unit 26 at the transmission timing instructed by the transmission timing control unit 27, to the reception power measurement device.
- a wireless signal in which response data is stored is called a response signal.
- the radio signal processing unit 21 is an electronic circuit including an analog / digital converter that converts a radio signal received by the radio antenna 23 into a digital signal, a digital / analog converter that converts a digital signal to be transmitted into an analog signal, and the like.
- the header analysis unit 24, request data analysis unit 25, reception power measurement response data generation unit 26, and transmission timing control unit 27 of the wireless access control unit 22 are realized by a processing circuit. That is, the wireless communication device 2 includes a processing circuit that analyzes the header, analyzes the request data, and generates response data for reception power measurement.
- the processing circuit may be dedicated hardware or a control circuit including a memory and a CPU that executes a program stored in the memory.
- the processing circuit that implements the header analysis unit 24, the request data analysis unit 25, the received power measurement response data generation unit 26, and the transmission timing control unit 27 is dedicated hardware, the processing circuit is, for example, a single circuit, A composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof is applicable.
- the control circuit that implements the header analysis unit 24, the request data analysis unit 25, the reception power measurement response data generation unit 26, and the transmission timing control unit 27 is a control circuit including a CPU
- the control circuit is, for example, shown in FIG. This is a control circuit 200 having a configuration.
- the processing circuit for realizing the header analysis unit 24, the request data analysis unit 25, the reception power measurement response data generation unit 26, and the transmission timing control unit 27 is realized by the control circuit 200 shown in FIG. This is realized by reading out and executing the program corresponding to each processing of the processing circuit stored in the memory.
- Some of the functions of the processing circuit that implements the header analysis unit 24, the request data analysis unit 25, the received power measurement response data generation unit 26, and the transmission timing control unit 27 are realized by dedicated hardware, and a part thereof It may be realized by software or firmware.
- CSMA / CA communication using CSMA / CA is performed.
- the wireless communication device checks whether there is a wireless communication device performing communication (carrier sense), and determines that no other wireless communication device is performing communication. Data is transmitted after waiting for a waiting time called a back-off time determined based on.
- FIG. 4 is a flowchart showing an example of a received power measurement processing procedure in the received power measuring apparatus 1 of the present embodiment.
- the reception power measurement request data generation unit 11 determines timing information for determining the transmission timing of the response signal in the wireless communication apparatuses 2-1 and 2-2 to be measured (step S1). ).
- the timing information may be determined in advance by the received power measurement request data generation unit 11, or the received power measurement request data generation unit 11 may acquire timing information input from the outside. It may be.
- the measurement target wireless communication apparatuses 2-1 and 2-2 use a random number width and a time interval, which are parameters for calculating a backoff time in CSMA / CA. To do.
- the width of the random number indicates the number of types of values that the random number can take when generating the random number.
- the width of the random number indicates the range that the random number can take.
- the back-off time is a time obtained by multiplying the random number generated based on the width of the random number and the time interval.
- the random number width is set to a value at which the probability that interference cannot be avoided is equal to or less than the desired probability, depending on the number of wireless communication devices 2 to be measured. Specifically, when interference cannot be avoided, that is, the probability of selecting the same random number is calculated from the number of wireless communication devices to be measured.
- the random number width is determined such that the larger the number of devices, the larger the random number width, and the lower the desired probability, the wider the random number width. For example, when generating a random number as an integer, assuming that n is the number of wireless communication devices to be measured and the width of the random number is W r , the probability that two wireless communication devices generate the same random number is n C 2 ⁇ (1 / W r ) ⁇ 100%.
- W r is determined so that n C 2 ⁇ (1 / W r ) ⁇ 100 ⁇ P r , that is, W r ⁇ n C 2 ⁇ 100 / P r .
- the method of determining the random number width is not limited to this method, and any method may be used as long as the number of wireless communication devices increases, the random number width increases, and the lower the desired probability, the wider the random number width.
- the time interval is set to a time exceeding the transmission time of the response signal (the time required from the start of transmission to the completion of transmission when the wireless communication apparatus transmits the response signal).
- the transmission time of the response signal is obtained in advance by measurement or the like, for example.
- the width of the random number and the time interval are calculated in advance and set in the received power measurement request data generation unit 11. In addition, you may comprise so that the width
- the above-described desired probability and the number of measurement target wireless communication devices can be input from the outside, and the received power measurement request data generation unit 11 can input the input desired probability and the measurement target wireless communication.
- the random number width may be determined based on the number of devices.
- the reception power measurement request data generation unit 11 generates reception power measurement request data (hereinafter, referred to as request data as appropriate) in order to request the measurement target wireless communication apparatus to transmit a response signal used for reception power measurement. Then, the data is transmitted through the wireless access control unit 12, the transmission / reception processing unit 30, and the wireless antenna 15 (step S2).
- the generated request data stores information for requesting measurement and a random number width and a time interval that are parameters for calculating the back-off time, that is, timing information.
- the reception power measurement request data generation unit 11 generates reception power measurement request data to request transmission of a response signal, and outputs it to the header assignment unit 16 of the radio access control unit 12.
- the header adding unit 16 includes, in the generated request data, an identifier indicating request data, an identifier indicating broadcast (broadcast communication) as a destination, a transmission source identifier, that is, the received power measuring device 1.
- a transmission source identifier that is, the received power measuring device 1.
- the header adding unit 16 includes, in the generated request data, an identifier indicating request data, an identifier indicating broadcast (broadcast communication) as a destination, a transmission source identifier, that is, the received power measuring device 1.
- a transmission source identifier that is, the received power measuring device 1.
- the transmission / reception processing unit 30 transmits the request data (response request signal) to which the header is added as a radio signal from the radio antenna 15.
- the received wireless signal is transferred to the wireless access control unit 22 through the wireless antenna 23 and the wireless signal processing unit 21.
- the header analysis unit 24 of the radio access control unit 22 analyzes the header of the received radio signal and confirms that it is request data, it passes the request data to the request data analysis unit 25.
- the request data analysis unit 25 notifies the reception power measurement response data generation unit 26 so as to generate reception power measurement response data (hereinafter referred to as response data as appropriate) corresponding to the received request data.
- the transmission timing control unit 27 is notified of the stored timing information.
- the received power measurement response data generation unit 26 generates response data, adds a header of a destination identifier or a transmission source identifier to the response data, and passes the response data to the transmission timing control unit 27.
- the transmission control timing control unit 27 calculates the backoff time based on the notified timing information, and controls the transmission timing of the radio signal storing the response data, that is, the response signal, based on the calculated backoff time. Specifically, the transmission control timing control unit 27 instructs the wireless signal processing unit 21 on the transmission timing. Based on an instruction from the transmission control timing control unit 27, the wireless signal processing unit 21 transmits the response data with the header added thereto as a wireless signal to the reception power measuring device 1 via the wireless antenna 23.
- the received power measuring unit 18 of the radio signal processing unit 13 receives a radio signal (response signal). Is measured (step S3).
- the received power measurement unit 18 notifies the transmission source identification unit 17 of the measurement result and response data.
- the transmission source identification unit 17 extracts the identifier of the transmission source wireless communication device (measurement target wireless communication device) from the response data, and notifies the reception power information collection unit 14 together with the measurement result (reception power value).
- the received power information collection unit 14 associates and stores the identifier of the wireless communication device to be measured and the received power value (step S4).
- the reception power information collection unit 14 is realized by hardware, the identifier and reception power value of the wireless communication device to be measured are stored in an internal memory, and the reception power information collection unit 14 is realized by software. Stored in the memory 203 of the control circuit 200.
- the received power measuring apparatus 1 performs step S3 and step S4 each time response data is received. Through the above processing, the received power can be measured for each wireless communication device to be measured.
- FIG. 5 is a sequence diagram showing an example of the received power measurement operation of the present embodiment.
- the received power measuring apparatus 1 transmits the request data by broadcasting (step S11).
- the wireless communication device 2-1 calculates the backoff time # 1 based on the timing information stored in the received request data, and determines that no other communication is performed by carrier sense. Back-off time # 1 is waited (step S12), and then response data is transmitted (step S13).
- the wireless communication device 2-2 calculates the backoff time # 2 based on the timing information stored in the received request data, and determines that no other communication is performed by carrier sense. Back-off time # 2 is waited (step S14), and then response data is transmitted (step S15).
- a wireless communication device having both the function as the reception power measuring device 1 and the function as the measurement target wireless communication device 2 is configured, and each wireless communication device measures the reception power and response data for the measurement. It may be possible to carry out both of the transmission of.
- the reception power measurement device 1 designates timing information when the wireless communication device transmits response data, so that reception power is efficiently measured while reducing interference between the plurality of wireless communication devices. The effect that it can be obtained.
- FIG. FIG. 6 is a diagram showing a configuration example of the second embodiment of the received power measuring apparatus 1a according to the present invention.
- the radio communication system of the present embodiment is the same as that of the first embodiment except that the received power measuring apparatus 1a is provided instead of the received power measuring apparatus 1 of the present embodiment.
- the received power measurement apparatus 1a according to the present embodiment is configured to measure the received power according to the first embodiment except that the wireless access control unit 12a is provided instead of the wireless access control unit 12 according to the first embodiment. It is the same as the device 1.
- the radio access control unit 12a has a configuration in which an error detection unit 19 is added to the radio access control unit 12 of the first embodiment.
- the wireless communication device 2 to be measured is the same as that in the first embodiment. Constituent elements having the same functions as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and the description thereof is omitted, and different parts from those in the first embodiment are described.
- the error detection unit 19 may be a dedicated circuit or a control circuit including a memory and a CPU that executes a program stored in the memory. Further, the error detection unit 19 may be realized as one processing circuit together with other components.
- the processing circuit that implements the error detection unit 19 is dedicated hardware, the processing circuit is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. Applicable.
- the control circuit for realizing the error detection unit 19 is a control circuit including a CPU
- the control circuit is realized as a control circuit 200 having the configuration shown in FIG.
- the processor 202 reads and executes the program stored in the memory 203 and corresponding to the processing of the error detection unit 19. Realized.
- the width of the random number that is the timing information is determined according to the number of wireless communication devices to be measured.
- the number of wireless communication devices that can receive the request data may change for each measurement point. For this reason, if the width of the random number is determined with the wireless communication device to be measured fixed, the measurement efficiency may be reduced.
- the error detection unit 19 performs error detection based on the received data, calculates an index indicating the frequency of errors (for example, the number of errors within a certain time), and measures received power.
- the request data generation unit 11 is notified.
- errors in received data increase.
- the received power measurement request data generation unit 11 If the index indicating the frequency of errors is a value indicating that there are few errors, for example, if the error within a certain time is equal to or smaller than the second threshold, the timing method is set so as to reduce the width of the random number. decide. Note that the second threshold ⁇ the first threshold. Then, the timing information calculated in this way is notified to the wireless communication device 2, thereby suppressing the occurrence of interference.
- the operations of the present embodiment other than those described above are the same as those of the first embodiment.
- the error detection unit 19 uses information for error detection such as a checksum, parity, CRC (Cyclic Redundancy Check) stored in the response signal to determine whether or not the packet includes an error for each packet. Is determined, and the number of response signals determined to contain errors in packets received within a predetermined time is obtained.
- the response data stored in the received response signal is error correction encoded, it is possible to determine whether or not there is an error in error correction decoding.
- the number of response signals determined to contain errors in the response signal packets received within a predetermined time may be obtained.
- the error detection unit 19 obtains the response signal packet that could not be normally received based on the sequence number, and determines the error frequency. As an index to indicate, the number of response signal packets that could not be normally received within a certain period of time may be used.
- FIG. 7 is a flowchart illustrating an example of a random number width determination processing procedure in the received power measurement request data generation unit 11 according to the present embodiment.
- the received power measurement request data generation unit 11 determines the random number width by the process described in the first embodiment (step S21). Next, the received power measurement request data generation unit 11 determines, for example, whether or not the index notified from the error detection unit 19 is equal to or greater than a first threshold (step S22). If it is determined that the index is greater than or equal to the first threshold (Yes at Step S22), the range of random numbers is expanded (Step S23), and the process returns to Step S22.
- step S23 specifically, the received power measurement request data generation unit 11 sets, for example, a value obtained by adding a constant value to the random number width as a new random number width, or a constant greater than 1 in the random number width. A value obtained by multiplying the values is set as a new random number width.
- step S24 the received power measurement request data generation unit 11 determines whether the index is less than or equal to the second threshold (step S24), and determines that the index is less than or equal to the second threshold (step S24). (S24 Yes), the width of the random number is reduced, that is, reduced (step S25), and the process returns to step S22.
- step S25 specifically, the received power measurement request data generation unit 11 sets, for example, a value obtained by subtracting a constant value from the random number width as a new random number width, or the random number width is constant larger than 1. The value divided by the value is used as the new random number width.
- step S24 If it is determined in step S24 that the index is greater than the second threshold (No in step S24), the process returns to step S22.
- an upper limit may be provided for the random number width, and the received power measurement request data generation unit 11 may not increase the random number width when the expanded random number width exceeds the upper limit in step S23.
- the lower limit of the random number width is set, and the received power measurement request data generation unit 11 does not reduce the random number width when the reduced random number width is lower than the lower limit in step S25. Also good.
- the index indicating the frequency of errors has been described as having a positive correlation with the number of errors.
- the intensity of errors such as the strength of received power is negative.
- a correlated index may be used.
- it is determined whether or not the index is less than or equal to the first threshold value.
- it is determined whether or not the index is greater than or equal to the second threshold value.
- the second threshold ⁇ the first threshold.
- the error detection unit 19 detects an error in the received data, and the received power measurement request data generation unit 11 determines that the random number is a random number when the number of errors within a certain time is equal to or greater than a certain number.
- the width of is increased, and when there are few errors, the random number is reduced. For this reason, the received power measurement can be performed more efficiently than in the first embodiment.
- Embodiment 3 FIG. Next, a received power measuring apparatus according to the third embodiment of the present invention will be described.
- the radio communication system of the present embodiment is the same as that of the first embodiment.
- a different part from Embodiment 1 is demonstrated.
- the received power measurement request data generation unit 11 transmits, as timing information, a parameter for determining the transmission timing based on the identifier of the wireless communication device 2. For example, when the identifier of the wireless communication device 2 is x, a function f (x) for determining the back-off time in the wireless communication device 2 is determined, and a parameter used for f (x) (for example, a secondary of x In the case of a function, second order and first order coefficients and constants) are transmitted as timing information.
- f (x) a ⁇ x 2 + b ⁇ x + c is determined, and the received power measurement request data generation unit 11 transmits a, b, and c to the wireless communication device 2.
- the transmission timing control unit 27 of the wireless communication device 2 holds the function f (x) in an internal memory.
- the function f (x) is stored in a memory in the processing circuit when the transmission timing control unit 27 is configured as a processing circuit together with other components.
- the transmission timing control unit 27 may include a dedicated electronic circuit that outputs the function f (x) when the coefficients a, b, and c are input.
- the transmission timing control unit 27 of the wireless communication apparatus 2 calculates the back-off time using the function f (x), the received parameter, and its own identifier. Note that the received power measurement device according to the present embodiment calculates a different backoff time for each wireless communication device 2 based on the identifier of the wireless communication device 2, and determines the backoff time for each wireless communication device 2 for each wireless communication device. You may transmit to the apparatus 2 as timing information.
- the wireless communication device 2 may generate a random number as follows.
- the reception power measurement request data generation unit 11 transmits, as timing information, parameters for generating a random number that is a source of generation of the backoff time, as in the first embodiment.
- the wireless communication device 2 generates a random number based on the timing information.
- the wireless communication device 2 generates a random number according to its own identifier. For example, a radio identifier is used as a seed for determining a random number sequence, and a seed is set to generate a random number. Then, the back-off time is determined based on this random number.
- the operations of the present embodiment other than those described above are the same as those of the first embodiment.
- the back-off time is determined based on the identifier of the wireless communication device 2 so that the back-off time is different for each wireless communication device 2 to be measured. Since the wireless identifier is unique to each wireless communication device 2, it is possible to avoid interference. By controlling in this way, the received power can be measured while reliably avoiding interference, and the efficiency can be improved.
- the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
- 1, 1a received power measurement device, 2, 2-1, 2-2 wireless communication device 11 received power measurement request data generation unit, 12, 12a, 22 wireless access control unit, 13, 21 wireless signal processing unit, 14 Received power information collection unit, 15, 23 wireless antenna, 16 header assignment unit, 17 transmission source identification unit, 18 received power measurement unit, 19 error detection unit, 24 header analysis unit, 25 request data analysis unit, 26 for received power measurement Response data generation unit, 27 transmission timing control unit, 30 transmission / reception processing unit.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
This received power measurement device is provided with: a received power measurement request data generation unit (11) which generates request data for requesting a radio communication device (2) to transmit a response signal used for measuring received power, and stores timing information indicating timing at which the response signal is transmitted in the request data; a header addition unit (16) which adds a destination identifier indicating broadcast communication as a destination to the request data in which the timing information is stored; and a radio signal processing unit (13) which transmits, as a radio signal, the request data to which the destination identifier is added, and measures the received power on the basis of the response signal received from the radio communication device (2).
Description
本発明は、受信電力測定装置、無線通信装置、無線通信システムおよび受信電力測定方法に関する。
The present invention relates to a received power measuring device, a wireless communication device, a wireless communication system, and a received power measuring method.
今後、ニーズ拡大が予想されるワイヤレスM2M(Machine to Machine)システム(メータリングシステムや遠隔管理システム)では、IEEE(Institute of Electrical and Electronic Engineers)802.15.4に代表される無線通信方式を用いたマルチホップ無線メッシュネットワークの利用が見込まれている。マルチホップ無線メッシュネットワークでは、直接通信できない無線機が存在しても、中継機を設置することで中継機を介して通信可能となる。そのため、中継機を設置すべき場所を確認する手段が重要となる。
Wireless M2M (Machine to Machine) systems (metering systems and remote management systems) that are expected to expand in the future will use wireless communication systems such as IEEE (Institute of Electrical and Electronic Engineers) 802.15.4. The use of the existing multi-hop wireless mesh network is expected. In a multi-hop wireless mesh network, even if there is a wireless device that cannot communicate directly, communication is possible via the relay device by installing the relay device. Therefore, a means for confirming the place where the repeater is to be installed is important.
中継機の設置場所の確認は、例えば、複数の無線機の電波到達範囲を検証することで可能となる。無線機の電波到達範囲は無線機周辺の物理的な環境によって異なるため、実際に無線機を設置し、無線機から送信された電波の強さ(電波強度)を周辺エリアで測定し電波到達範囲を確認する実地調査が無線機の電波到達範囲の有効な手段となる。しかしながら、マルチホップ無線メッシュネットワークを構成する複数無線機の電波強度を効率的に測定する方法は確立されていない。
Confirmation of the installation location of the repeater is possible, for example, by verifying the radio wave coverage of a plurality of wireless devices. Since the radio wave reach of the radio varies depending on the physical environment around the radio, the radio is actually installed, the strength of the radio wave transmitted from the radio (radio wave intensity) is measured in the surrounding area, and the radio wave reach An on-site survey to confirm this is an effective means of radio wave coverage. However, a method for efficiently measuring the radio field intensity of a plurality of wireless devices constituting a multi-hop wireless mesh network has not been established.
電波強度の測定方法には、測定対象の無線機が送信しているデータを受信し電波強度を測定するパッシブ型と、測定対象の無線機と通信しデータ受信時の電波強度を測定するアクティブ型とがある。また、アクティブ型にはユニキャストで測定用のデータ送信を要求する方法と、ブロードキャストで測定用のデータ送信を要求する方法とがある。
There are two methods for measuring radio field strength: a passive type that receives data transmitted by the target radio and measures the radio field intensity, and an active type that communicates with the target radio and measures the radio field intensity when receiving data. There is. The active type includes a method for requesting data transmission for measurement by unicast and a method for requesting data transmission for measurement by broadcast.
パッシブ型の測定方法では、測定対象の無線機が高い頻度でデータを送信していないと測定ができないという課題がある。また、パッシブ型の測定方法では、アクセス制御方式にCSMA/CA(Carrier Sense Multiple Access/Collision Avoidance)を用いたシステムの場合、測定対象の無線機が隠れ端末状態になると、複数の無線機が同時に測定用データを送信して測定用データが互いに干渉し測定できない可能性があるという課題を有する。
In the passive measurement method, there is a problem that measurement is not possible unless the measurement target wireless device transmits data frequently. In addition, in the passive measurement method, in the case of a system using CSMA / CA (Carrier Sense Multiple Access / Collision Avoidance) as the access control method, if the measurement target radio is in a hidden terminal state, multiple radios are simultaneously connected. There is a problem in that measurement data may be transmitted and measurement data interfere with each other and cannot be measured.
アクティブ型かつユニキャストで測定対象の無線機に測定用データの送信を要求する測定方法では、測定対象の無線機の識別番号を知らなくてはならないという課題がある。また、この測定方法では、測定対象の無線機が多い場合に時間がかかるという課題を有する。
In the active and unicast measurement method that requires transmission of measurement data to the measurement target radio, there is a problem that the identification number of the measurement target radio must be known. In addition, this measurement method has a problem that it takes time when there are many wireless devices to be measured.
アクティブ型かつブロードキャストで測定対象の無線機に測定用データの送信を要求する測定方法では、アクセス制御方式にCSMA/CAを用いたシステムの場合、測定対象の無線機が隠れ端末状態になると複数無線機からの測定用データが互いに干渉し測定できない可能性があるという課題を有する。
In a measurement method that requires transmission of measurement data to a measurement target radio by active and broadcast, in a system that uses CSMA / CA as an access control method, multiple radios are measured when the measurement target radio is in a hidden terminal state. There is a problem that measurement data from the machine may interfere with each other and cannot be measured.
特許文献1には、アクティブ型かつブロードキャストで測定対象の無線機に測定用データの送信を要求する測定方法の課題を解決するために、ブロードキャストのデータに対する応答の送信タイミングを変更する旨の記載がある。しかしながら、特許文献1には、具体的な送信タイミングの変更方法に対する記載がなされていない。
Patent Document 1 describes that the transmission timing of a response to broadcast data is changed in order to solve the problem of a measurement method that requests transmission of measurement data to a radio device to be measured by an active type and broadcast. is there. However, Patent Document 1 does not describe a specific transmission timing changing method.
しかしながら、上記従来の技術によれば、電波到達範囲を確認するための電波強度の測定時に、CSMA/CAを用いたシステムの場合、測定用データが互いに干渉し測定できない可能性があるという問題があった。また、特許文献1には、アクティブ型かつブロードキャストで測定対象の無線機に測定用データの送信を要求する測定方法において、ブロードキャストのデータに対する応答の送信タイミングを変更する旨の記載はあるが単に2つの測定対象で送信タイミングをずらしているだけである。このため、単純に一定時間ずつ送信タイミングをずらしていくと測定対象の端末ごとに送信タイミングを決定することになり、ブロードキャストで送信タイミングを通知する場合、全端末に測定対象の全端末の送信タイミングを送信することになる。このため、送信タイミングを通知するための無線リソースと送受信のため時間を浪費することになる。
However, according to the above-described conventional technique, in the case of a system using CSMA / CA when measuring the radio field intensity for checking the radio wave reachable range, there is a possibility that measurement data may interfere with each other and cannot be measured. there were. Japanese Patent Application Laid-Open No. 2004-228561 has a description of changing the transmission timing of a response to broadcast data in a measurement method that requests transmission of measurement data from a wireless device to be measured by active and broadcast. The transmission timing is only shifted in one measurement object. For this reason, if the transmission timing is simply shifted by a fixed time, the transmission timing is determined for each measurement target terminal. When the transmission timing is notified by broadcast, the transmission timing of all measurement target terminals is transmitted to all terminals. Will be sent. For this reason, radio resources for notifying the transmission timing and time for transmission / reception are wasted.
本発明は、上記に鑑みてなされたものであって、測定データの干渉を回避しつつ複数の無線機からの送信された測定データに基づく受信電力を効率的に測定可能な受信電力測定装置、無線通信装置、無線通信システムおよび受信電力測定方法を提供することを目的とする。
The present invention has been made in view of the above, and a reception power measurement device capable of efficiently measuring reception power based on measurement data transmitted from a plurality of wireless devices while avoiding interference of measurement data, An object of the present invention is to provide a wireless communication device, a wireless communication system, and a received power measurement method.
上述した課題を解決し、目的を達成するために、本発明は、受信電力の測定対象である無線通信装置に対して受信電力の測定に用いる応答信号の送信を要求するための要求データを生成し、前記応答信号を送信するタイミングを示すタイミング情報を前記要求データに格納する第1の処理部と、前記タイミング情報が格納された前記要求データに宛先として同報通信であることを示す宛先識別子を付与する第2の処理部と、前記宛先識別子の付与された前記要求データを無線信号として送信する無線信号処理部と、前記無線通信装置から受信した前記応答信号に基づいて受信電力を測定する第3の処理部と、を備えることを特徴とする。
In order to solve the above-described problems and achieve the object, the present invention generates request data for requesting a wireless communication device, which is a measurement target of reception power, to transmit a response signal used for measurement of reception power. A first processing unit that stores timing information indicating a timing at which the response signal is transmitted in the request data, and a destination identifier indicating that the request data in which the timing information is stored is broadcast communication as a destination A second processing unit that assigns the request data, a radio signal processing unit that transmits the request data to which the destination identifier is assigned as a radio signal, and a received power based on the response signal received from the radio communication device And a third processing unit.
本発明にかかる受信電力測定装置は、測定データの干渉を回避しつつ複数の無線機からの送信された測定データに基づく受信電力を効率的に測定できるという効果を奏する。
The reception power measuring apparatus according to the present invention has an effect that the reception power based on the measurement data transmitted from a plurality of wireless devices can be efficiently measured while avoiding interference of the measurement data.
以下に、本発明にかかる受信電力測定装置、無線通信装置、無線通信システムおよび受信電力測定方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
Hereinafter, embodiments of a received power measuring device, a wireless communication device, a wireless communication system, and a received power measuring method according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
図1は、本発明にかかる無線通信システムの実施の形態1の構成例を示す図である。図1に示すように、本実施の形態の無線通信システムは、受信電力測定装置1と受信電力の測定対象である無線通信装置2-1,2-2とを備える。受信電力測定装置1は、無線通信機能を有する無線通信装置の内部に設定されてもよいし、無線機器と外部機器との組み合わせにより構成されてもよい。受信電力測定装置1は、無線通信装置2-1,2-2から受信した信号に基づいて、無線通信装置2-1,2-2のそれぞれの受信電力を求める。なお、図1では、図の簡略化のため受信電力の測定対象の無線通信装置の数を2つとしているが、受信電力の測定対象の無線通信装置の数は2つに限定されず、いくつであってもよい。 Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration example of a first embodiment of a wireless communication system according to the present invention. As shown in FIG. 1, the wireless communication system according to the present embodiment includes a received power measuring device 1 and wireless communication devices 2-1 and 2-2 that are reception power measurement targets. The reception power measuring device 1 may be set inside a wireless communication device having a wireless communication function, or may be configured by a combination of a wireless device and an external device. The received power measuring device 1 obtains the received power of each of the wireless communication devices 2-1 and 2-2 based on the signals received from the wireless communication devices 2-1 and 2-2. In FIG. 1, the number of wireless communication devices whose reception power is to be measured is two for simplification of the drawing, but the number of wireless communication devices whose reception power is to be measured is not limited to two. It may be.
図1は、本発明にかかる無線通信システムの実施の形態1の構成例を示す図である。図1に示すように、本実施の形態の無線通信システムは、受信電力測定装置1と受信電力の測定対象である無線通信装置2-1,2-2とを備える。受信電力測定装置1は、無線通信機能を有する無線通信装置の内部に設定されてもよいし、無線機器と外部機器との組み合わせにより構成されてもよい。受信電力測定装置1は、無線通信装置2-1,2-2から受信した信号に基づいて、無線通信装置2-1,2-2のそれぞれの受信電力を求める。なお、図1では、図の簡略化のため受信電力の測定対象の無線通信装置の数を2つとしているが、受信電力の測定対象の無線通信装置の数は2つに限定されず、いくつであってもよい。 Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration example of a first embodiment of a wireless communication system according to the present invention. As shown in FIG. 1, the wireless communication system according to the present embodiment includes a received power measuring device 1 and wireless communication devices 2-1 and 2-2 that are reception power measurement targets. The reception power measuring device 1 may be set inside a wireless communication device having a wireless communication function, or may be configured by a combination of a wireless device and an external device. The received power measuring device 1 obtains the received power of each of the wireless communication devices 2-1 and 2-2 based on the signals received from the wireless communication devices 2-1 and 2-2. In FIG. 1, the number of wireless communication devices whose reception power is to be measured is two for simplification of the drawing, but the number of wireless communication devices whose reception power is to be measured is not limited to two. It may be.
図2は、本実施の形態の受信電力測定装置1および測定対象の無線通信装置2の構成例を示す図である。無線通信装置2-1,2-2は同様の構成を有しており、図2では、無線通信装置2-1,2-2を区別せずに無線通信装置2として示している。
FIG. 2 is a diagram illustrating a configuration example of the received power measuring device 1 and the measurement target wireless communication device 2 according to the present embodiment. The wireless communication apparatuses 2-1 and 2-2 have the same configuration, and in FIG. 2, the wireless communication apparatuses 2-1 and 2-2 are illustrated as the wireless communication apparatus 2 without being distinguished from each other.
図2に示すように、本実施の形態の受信電力測定装置1は、受信電力測定用要求データ生成部11、無線アクセス制御部12、無線信号処理部13、受信電力情報収集部14および無線アンテナ15を備える。無線アクセス制御部12は、ヘッダ付与部16および送信元識別部17を備える。無線信号処理部13は、測定部である受信電力測定部18と送受信処理部30とを備える。なお、ここでは、無線信号処理部13が受信電力測定部18を備える例を示したが、受信電力測定部18を無線信号処理部13とは別に備えていてもよい。
As shown in FIG. 2, the received power measurement device 1 of this embodiment includes a received power measurement request data generation unit 11, a radio access control unit 12, a radio signal processing unit 13, a received power information collection unit 14, and a radio antenna. 15. The wireless access control unit 12 includes a header adding unit 16 and a transmission source identification unit 17. The wireless signal processing unit 13 includes a reception power measurement unit 18 and a transmission / reception processing unit 30 which are measurement units. Here, an example in which the wireless signal processing unit 13 includes the reception power measurement unit 18 has been described, but the reception power measurement unit 18 may be provided separately from the wireless signal processing unit 13.
送受信処理部30は、無線アンテナ15で受信した無線信号をデジタル信号に変換するアナログデジタルコンバータ、および送信するデジタル信号をアナログ信号に変換するデジタルアナログコンバータ等を含む電子回路である。送受信処理部30は、符号化を行うエンコーダおよび復号を行うデコーダを備えていてもよい。また、送受信処理部30は、変調および復調の処理を行うモデムを備えていてもよい。無線信号処理部13内または無線信号処理部外に備えられる受信電力測定部18は、無線アンテナ15で受信した無線信号の電力を測定する電子回路である。
The transmission / reception processing unit 30 is an electronic circuit including an analog / digital converter that converts a radio signal received by the radio antenna 15 into a digital signal, a digital / analog converter that converts a digital signal to be transmitted into an analog signal, and the like. The transmission / reception processing unit 30 may include an encoder that performs encoding and a decoder that performs decoding. The transmission / reception processing unit 30 may include a modem that performs modulation and demodulation processing. The reception power measurement unit 18 provided inside the radio signal processing unit 13 or outside the radio signal processing unit is an electronic circuit that measures the power of the radio signal received by the radio antenna 15.
受信電力測定用要求データ生成部11は、受信電力の測定対象である無線通信装置2に対して受信電力の測定に用いる応答信号の送信を要求するための要求データを生成し、応答信号を送信するタイミングを示すタイミング情報を要求データに格納する第1の処理部である。ヘッダ付与部16は、タイミング情報が格納された要求データに宛先として同報通信であることを示す宛先識別子を付与する第2の処理部である。送受信処理部30は、宛先識別子の付与された前記要求データを無線アンテナ15経由で無線信号として送信し、また無線アンテナ15経由で無線信号を受信する第3の処理部である。
The reception power measurement request data generation unit 11 generates request data for requesting the wireless communication device 2 that is a measurement target of reception power to transmit a response signal used for reception power measurement, and transmits the response signal. It is the 1st processing part which stores the timing information which shows the timing to perform in request data. The header assigning unit 16 is a second processing unit that assigns a destination identifier indicating that the request data in which timing information is stored is broadcast communication as a destination. The transmission / reception processing unit 30 is a third processing unit that transmits the request data to which the destination identifier is assigned as a wireless signal via the wireless antenna 15 and receives the wireless signal via the wireless antenna 15.
受信電力測定用要求データ生成部11、無線アクセス制御部12および受信電力情報収集部14は、それぞれが処理回路により実現される。すなわち、受信電力測定装置1は、受信電力測定用要求データを生成する処理回路と、無線アクセス制御を行う処理回路と、受信電力情報を収集する処理回路とを備える。受信電力測定用要求データを生成する処理回路と、無線アクセス制御を行う処理回路と、受信電力情報を収集する処理回路とは1つの処理回路として実現されてもよいし、受信電力測定用要求データ生成部11、無線アクセス制御部12および受信電力情報収集部14のうち2つを1つの処理回路として実現してもよい。また、無線アクセス制御部12のヘッダ付与部16および送信元識別部17が、それぞれ別個の処理回路として実現されてもよい。これらの処理回路は、専用のハードウェアであっても、メモリとメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)とを備える制御回路であってもよい。ここで、メモリとは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disk)等が該当する。
The reception power measurement request data generation unit 11, the radio access control unit 12, and the reception power information collection unit 14 are each realized by a processing circuit. That is, the received power measuring apparatus 1 includes a processing circuit that generates received power measurement request data, a processing circuit that performs radio access control, and a processing circuit that collects received power information. The processing circuit that generates the reception power measurement request data, the processing circuit that performs radio access control, and the processing circuit that collects reception power information may be realized as one processing circuit, or the reception power measurement request data Two of the generation unit 11, the radio access control unit 12, and the reception power information collection unit 14 may be realized as one processing circuit. In addition, the header adding unit 16 and the transmission source identification unit 17 of the wireless access control unit 12 may be realized as separate processing circuits. Even if these processing circuits are dedicated hardware, a CPU (Central Processing Unit, a central processing unit, a processing unit, a processing unit, a microprocessor, a microcomputer, a processor, which executes a memory and a program stored in the memory, A control circuit provided with a DSP (Digital Signal Processor) may also be used. Here, the memory is, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory, etc.) Volatile semiconductor memories, magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs (Digital Versatile Disks), and the like are applicable.
受信電力測定用要求データ生成部11、無線アクセス制御部12および受信電力情報収集部14を実現する処理回路が専用のハードウェアである場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。
When the processing circuit that implements the reception power measurement request data generation unit 11, the wireless access control unit 12, and the reception power information collection unit 14 is dedicated hardware, the processing circuit is, for example, a single circuit, a composite circuit, or a program An integrated processor, a processor programmed in parallel, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof is applicable.
受信電力測定用要求データ生成部11、無線アクセス制御部12および受信電力情報収集部14を実現する処理回路がCPUを含む制御回路である場合、制御回路は、例えば図3に示す構成の制御回路200である。図3に示すように制御回路200は、外部から入力されたデータを受信する受信部である入力部201と、CPUであるプロセッサ202と、メモリ203と、データを外部へ送信する送信部である出力部204とを備える。入力部201は、制御回路200の外部から入力されたデータを受信してプロセッサ202に与えるインターフェース回路であり、出力部204は、プロセッサ202又はメモリ203からのデータを制御回路200の外部に送るインターフェース回路である。処理回路が図3に示す制御回路200により実現される場合、プロセッサ202がメモリ203に記憶された、処理回路の各々の処理に対応するプログラムを読み出して実行することにより実現される。また、メモリ203は、プロセッサ202が実施する各処理における一時メモリとしても使用される。
When the processing circuit that implements the received power measurement request data generation unit 11, the radio access control unit 12, and the received power information collection unit 14 is a control circuit including a CPU, the control circuit is, for example, a control circuit configured as shown in FIG. 200. As shown in FIG. 3, the control circuit 200 is an input unit 201 that is a receiving unit that receives data input from the outside, a processor 202 that is a CPU, a memory 203, and a transmission unit that transmits data to the outside. And an output unit 204. The input unit 201 is an interface circuit that receives data input from the outside of the control circuit 200 and applies the data to the processor 202, and the output unit 204 is an interface that transmits data from the processor 202 or the memory 203 to the outside of the control circuit 200. Circuit. When the processing circuit is realized by the control circuit 200 shown in FIG. 3, the processor 202 is realized by reading and executing a program stored in the memory 203 and corresponding to each processing of the processing circuit. The memory 203 is also used as a temporary memory in each process executed by the processor 202.
受信電力測定用要求データ生成部11、無線アクセス制御部12および受信電力情報収集部14を実現する処理回路の各機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。
A part of the functions of the processing circuit that implements the reception power measurement request data generation unit 11, the radio access control unit 12, and the reception power information collection unit 14 is realized by dedicated hardware, and part of the processing circuit is software or firmware. It may be realized.
また、受信電力測定装置が、無線機器と外部機器との組み合わせにより構成される場合、例えば、無線アクセス制御部12、無線信号処理部13およびアンテナ15は無線機器により実現され、受信電力測定用要求データ生成部11および受信電力情報収集部14は、外部機器により実現される。この場合、受信電力測定用要求データ生成部11および受信電力情報収集部14を実現する制御回路200は、例えばパーソナルコンピュータ等の外部機器である。なお、無線機器と外部機器の切り分けは、この例に限定されず、例えば、無線信号処理部13およびアンテナ15は無線機器により実現され、受信電力測定用要求データ生成部11、無線アクセス制御部12および受信電力情報収集部14が、外部機器により実現されてもよい。
In addition, when the reception power measuring device is configured by a combination of a wireless device and an external device, for example, the wireless access control unit 12, the wireless signal processing unit 13, and the antenna 15 are realized by the wireless device, and the received power measurement request The data generation unit 11 and the reception power information collection unit 14 are realized by an external device. In this case, the control circuit 200 that implements the received power measurement request data generation unit 11 and the received power information collection unit 14 is an external device such as a personal computer. The separation between the wireless device and the external device is not limited to this example. For example, the wireless signal processing unit 13 and the antenna 15 are realized by the wireless device, and the received power measurement request data generation unit 11 and the wireless access control unit 12 are provided. The received power information collection unit 14 may be realized by an external device.
測定対象である無線通信装置2は、無線信号処理部21(測定対象側無線信号処理部)、無線アクセス制御部22および無線アンテナ23を備える。無線アクセス制御部22は、ヘッダ解析部24、要求データ解析部25、受信電力測定用応答データ生成部26および送信タイミング制御部27を備える。
The wireless communication device 2 that is a measurement target includes a wireless signal processing unit 21 (measurement target side wireless signal processing unit), a wireless access control unit 22, and a wireless antenna 23. The radio access control unit 22 includes a header analysis unit 24, a request data analysis unit 25, a received power measurement response data generation unit 26, and a transmission timing control unit 27.
受信電力測定用応答データ生成部26は、要求データを受信電力測定装置から受信した場合に、受信した要求データに対応する応答データを生成する生成部である。送信タイミング制御部27は、受信した要求データに格納されたタイミング情報に基づいて送信タイミングを決定する制御部である。無線信号処理部21は、送信タイミング制御部27により指示された送信タイミングで受信電力測定用応答データ生成部26により生成された応答データが格納された無線信号である応答信号を受信電力測定装置へ送信する処理部である。応答データが格納された無線信号を応答信号と呼ぶ。
The reception power measurement response data generation unit 26 is a generation unit that generates response data corresponding to the received request data when the request data is received from the reception power measurement device. The transmission timing control unit 27 is a control unit that determines transmission timing based on timing information stored in the received request data. The radio signal processing unit 21 sends a response signal, which is a radio signal storing the response data generated by the response power measurement response data generation unit 26 at the transmission timing instructed by the transmission timing control unit 27, to the reception power measurement device. A processing unit for transmission. A wireless signal in which response data is stored is called a response signal.
無線信号処理部21は、無線アンテナ23で受信した無線信号をデジタル信号に変換するアナログデジタルコンバータ、および送信するデジタル信号をアナログ信号に変換するデジタルアナログコンバータ等を含む電子回路である。
The radio signal processing unit 21 is an electronic circuit including an analog / digital converter that converts a radio signal received by the radio antenna 23 into a digital signal, a digital / analog converter that converts a digital signal to be transmitted into an analog signal, and the like.
無線アクセス制御部22のヘッダ解析部24、要求データ解析部25、受信電力測定用応答データ生成部26および送信タイミング制御部27は、処理回路により実現される。すなわち、無線通信装置2は、ヘッダを解析し、要求データを解析し、受信電力測定用応答データを生成する処理回路とを備える。処理回路は、専用のハードウェアであっても、メモリとメモリに格納されるプログラムを実行するCPUとを備える制御回路であってもよい。
The header analysis unit 24, request data analysis unit 25, reception power measurement response data generation unit 26, and transmission timing control unit 27 of the wireless access control unit 22 are realized by a processing circuit. That is, the wireless communication device 2 includes a processing circuit that analyzes the header, analyzes the request data, and generates response data for reception power measurement. The processing circuit may be dedicated hardware or a control circuit including a memory and a CPU that executes a program stored in the memory.
ヘッダ解析部24、要求データ解析部25、受信電力測定用応答データ生成部26および送信タイミング制御部27を実現する処理回路が専用のハードウェアである場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらを組み合わせたものが該当する。
When the processing circuit that implements the header analysis unit 24, the request data analysis unit 25, the received power measurement response data generation unit 26, and the transmission timing control unit 27 is dedicated hardware, the processing circuit is, for example, a single circuit, A composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof is applicable.
ヘッダ解析部24、要求データ解析部25、受信電力測定用応答データ生成部26および送信タイミング制御部27を実現する処理回路がCPUを含む制御回路である場合、制御回路は、例えば図3に示す構成の制御回路200である。ヘッダ解析部24、要求データ解析部25、受信電力測定用応答データ生成部26および送信タイミング制御部27を実現する処理回路が図3に示す制御回路200により実現される場合、プロセッサ202がメモリ203に記憶された、処理回路の各々の処理に対応するプログラムを読み出して実行することにより実現される。
When the processing circuit that implements the header analysis unit 24, the request data analysis unit 25, the reception power measurement response data generation unit 26, and the transmission timing control unit 27 is a control circuit including a CPU, the control circuit is, for example, shown in FIG. This is a control circuit 200 having a configuration. When the processing circuit for realizing the header analysis unit 24, the request data analysis unit 25, the reception power measurement response data generation unit 26, and the transmission timing control unit 27 is realized by the control circuit 200 shown in FIG. This is realized by reading out and executing the program corresponding to each processing of the processing circuit stored in the memory.
ヘッダ解析部24、要求データ解析部25、受信電力測定用応答データ生成部26および送信タイミング制御部27を実現する処理回路の各機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。
Some of the functions of the processing circuit that implements the header analysis unit 24, the request data analysis unit 25, the received power measurement response data generation unit 26, and the transmission timing control unit 27 are realized by dedicated hardware, and a part thereof It may be realized by software or firmware.
本実施の形態の無線通信システムでは、CSMA/CAを用いた通信を行う。CSMA/CAを用いる場合、無線通信装置は、通信を行っている無線通信装置がないかどうかを確認し(キャリアセンス)、他の無線通信装置が通信を行っていないと判断した場合に、乱数に基づいて決定されるバックオフ時間と呼ばれる待機時間の間待機してからデータを送信する。
In the wireless communication system of this embodiment, communication using CSMA / CA is performed. When CSMA / CA is used, the wireless communication device checks whether there is a wireless communication device performing communication (carrier sense), and determines that no other wireless communication device is performing communication. Data is transmitted after waiting for a waiting time called a back-off time determined based on.
次に、本実施の形態の動作について説明する。図4は、本実施の形態の受信電力測定装置1における受信電力測定処理手順の一例を示すフローチャートである。受信電力測定装置1では、受信電力測定用要求データ生成部11が、測定対象の無線通信装置2-1,2-2における応答信号の送信タイミングを決定するためのタイミング情報を決定する(ステップS1)。このタイミング情報はあらかじめ定めたものを、受信電力測定用要求データ生成部11が保持していてもよいし、外部から入力されたタイミング情報を、受信電力測定用要求データ生成部11が取得するようにしてもよい。本実施の形態では、タイミング情報として、測定対象の無線通信装置2-1,2-2がCSMA/CAにおけるバックオフ時間を算出するためのパラメータである乱数の幅と時間間隔とを用いることとする。乱数の幅は、乱数を生成する際の乱数の取り得る値の種類数を示すものであり、整数で乱数を生成する場合、乱数の幅は乱数の取り得る範囲を示す。乱数の幅に基づいて生成された乱数と時間間隔とをかけあわせた時間が、バックオフ時間となる。乱数の幅としては、測定対象の無線通信装置2の数に応じて、干渉を回避できない確率が所望の確率以下となる値に設定する。具体的には干渉を回避できない場合、つまり同じ乱数を選択する確率を、測定対象となる無線通信装置数から算出する。乱数の幅が広いほど、同じ乱数が生成される確率が低く、同じ乱数の幅であれば測定対象となる無線通信装置の数が多いほど同じ乱数が生成される確率が高いことから、無線通信装置の数が多いほど乱数の幅が大きくなりかつ所望の確率が低いほど乱数の幅が広くなるように、乱数の幅を決定する。例えば、乱数を整数で生成する場合に、nを測定対象の無線通信装置の数とし、乱数の幅をWrとすると、2つの無線通信装置が同じ乱数を発生させる確率は、nC2×(1/Wr)×100%である。このため、所望の確率をPr%とするとnC2×(1/Wr)×100≦Pr、すなわちWr≧nC2×100/PrとなるようにWrを決定する。なお、Cはコンビネーションを表す。例えば、Wr=nC2×100/PrとしてWrを決定こととすると、乱数の測定対象の無線通信装置が2台で同じ乱数を選択しない確率を10%以下に設定したい場合は、乱数の幅は10となる。なお、乱数の幅の決定方法はこの方法に限定されず無線通信装置の数が多いほど乱数の幅が大きくなりかつ所望の確率が低いほど乱数の幅が広くなるような決め方であればよい。時間間隔は応答信号の送信時間(無線通信装置が応答信号を送信する際に、送信開始から送信完了までに要する時間)を超える時間を設定する。応答信号の送信時間は、例えば、あらかじめ測定等により求めておく。上述したように乱数の幅、および時間間隔があらかじめ計算されて、受信電力測定用要求データ生成部11に設定される。なお、乱数の幅、および時間間隔を変更可能なように構成してもよい。または、上記の所望の確率と測定対象の無線通信装置の数とを外部から入力できるように構成し、受信電力測定用要求データ生成部11が、入力された所望の確率と測定対象の無線通信装置の数に基づいて乱数の幅を決定してもよい。
Next, the operation of the present embodiment will be described. FIG. 4 is a flowchart showing an example of a received power measurement processing procedure in the received power measuring apparatus 1 of the present embodiment. In the reception power measuring apparatus 1, the reception power measurement request data generation unit 11 determines timing information for determining the transmission timing of the response signal in the wireless communication apparatuses 2-1 and 2-2 to be measured (step S1). ). The timing information may be determined in advance by the received power measurement request data generation unit 11, or the received power measurement request data generation unit 11 may acquire timing information input from the outside. It may be. In the present embodiment, as timing information, the measurement target wireless communication apparatuses 2-1 and 2-2 use a random number width and a time interval, which are parameters for calculating a backoff time in CSMA / CA. To do. The width of the random number indicates the number of types of values that the random number can take when generating the random number. When generating a random number with an integer, the width of the random number indicates the range that the random number can take. The back-off time is a time obtained by multiplying the random number generated based on the width of the random number and the time interval. The random number width is set to a value at which the probability that interference cannot be avoided is equal to or less than the desired probability, depending on the number of wireless communication devices 2 to be measured. Specifically, when interference cannot be avoided, that is, the probability of selecting the same random number is calculated from the number of wireless communication devices to be measured. The wider the range of random numbers, the lower the probability that the same random number will be generated, and the higher the number of wireless communication devices to be measured, the higher the probability that the same random number will be generated. The random number width is determined such that the larger the number of devices, the larger the random number width, and the lower the desired probability, the wider the random number width. For example, when generating a random number as an integer, assuming that n is the number of wireless communication devices to be measured and the width of the random number is W r , the probability that two wireless communication devices generate the same random number is n C 2 × (1 / W r ) × 100%. Therefore, if the desired probability is P r %, W r is determined so that n C 2 × (1 / W r ) × 100 ≦ P r , that is, W r ≧ n C 2 × 100 / P r . C represents a combination. For example, if the W r and that determined as W r = n C 2 × 100 / P r, if you want to set the probability of random numbers to be measured of the wireless communication apparatus does not select the same random number in the two 10% or less, The width of the random number is 10. Note that the method of determining the random number width is not limited to this method, and any method may be used as long as the number of wireless communication devices increases, the random number width increases, and the lower the desired probability, the wider the random number width. The time interval is set to a time exceeding the transmission time of the response signal (the time required from the start of transmission to the completion of transmission when the wireless communication apparatus transmits the response signal). The transmission time of the response signal is obtained in advance by measurement or the like, for example. As described above, the width of the random number and the time interval are calculated in advance and set in the received power measurement request data generation unit 11. In addition, you may comprise so that the width | variety of a random number and a time interval can be changed. Alternatively, the above-described desired probability and the number of measurement target wireless communication devices can be input from the outside, and the received power measurement request data generation unit 11 can input the input desired probability and the measurement target wireless communication. The random number width may be determined based on the number of devices.
受信電力測定用要求データ生成部11は、測定対象の無線通信装置に受信電力の測定に用いる応答信号の送信を要求するため受信電力測定用要求データ(以下、適宜要求データと呼ぶ)を生成して無線アクセス制御部12、送受信処理部30および無線アンテナ15を介して送信する(ステップS2)。生成されたこの要求データには、測定を要求する情報と上記のバックオフ時間を算出するためのパラメータである乱数幅と時間間隔、つまりタイミング情報とが格納される。ステップS2では、具体的には、受信電力測定用要求データ生成部11は、応答信号の送信を要求するため受信電力測定用要求データを生成し、無線アクセス制御部12のヘッダ付与部16へ出力し、ヘッダ付与部16は、生成された要求データに、要求データであることを示す識別子と、宛先としてブロードキャスト(同報通信)であることを示す識別子と、送信元識別子すなわち受信電力測定装置1の識別子とをヘッダとして付与する。また、ヘッダに、これら以外の情報が含まれていてもよい。なお、測定のためには、応答データが無線信号として送信されればよいため、応答データの内容はどのようなものであってもよい。その後、送受信処理部30は、ヘッダが付与された要求データ(応答要求信号)を、無線アンテナ15から無線信号として送信する。
The reception power measurement request data generation unit 11 generates reception power measurement request data (hereinafter, referred to as request data as appropriate) in order to request the measurement target wireless communication apparatus to transmit a response signal used for reception power measurement. Then, the data is transmitted through the wireless access control unit 12, the transmission / reception processing unit 30, and the wireless antenna 15 (step S2). The generated request data stores information for requesting measurement and a random number width and a time interval that are parameters for calculating the back-off time, that is, timing information. In step S2, specifically, the reception power measurement request data generation unit 11 generates reception power measurement request data to request transmission of a response signal, and outputs it to the header assignment unit 16 of the radio access control unit 12. Then, the header adding unit 16 includes, in the generated request data, an identifier indicating request data, an identifier indicating broadcast (broadcast communication) as a destination, a transmission source identifier, that is, the received power measuring device 1. Are assigned as headers. Further, information other than these may be included in the header. In addition, since the response data should just be transmitted as a radio signal for a measurement, the content of response data may be what. Thereafter, the transmission / reception processing unit 30 transmits the request data (response request signal) to which the header is added as a radio signal from the radio antenna 15.
無線通信装置2-1,2-2では、無線アンテナ23および無線信号処理部21を経て無線アクセス制御部22に、受信した無線信号が転送される。無線アクセス制御部22のヘッダ解析部24は、受信した無線信号のヘッダを解析し要求データであることを確認すると、要求データ解析部25に要求データを渡す。要求データ解析部25は、受領した要求データに対応する受信電力測定用応答データ(以下、適宜応答データと呼ぶ)を生成するように受信電力測定用応答データ生成部26に通知し、要求データに格納されたタイミング情報を送信タイミング制御部27に通知する。受信電力測定用応答データ生成部26は、応答データを生成し、応答データに宛先識別子や送信元識別子のヘッダを付加して、送信タイミング制御部27に渡す。送信制御タイミング制御部27は、通知されたタイミング情報に基づいてバックオフ時間を算出し、算出したバックオフ時間に基づいて応答データを格納した無線信号すなわち応答信号の送信タイミングを制御する。具体的には、送信制御タイミング制御部27は、無線信号処理部21へ送信タイミングを指示する。無線信号処理部21は、送信制御タイミング制御部27からの指示に基づいて、ヘッダが付加された応答データを無線アンテナ23経由で受信電力測定装置1に無線信号として送信する。
In the wireless communication devices 2-1 and 2-2, the received wireless signal is transferred to the wireless access control unit 22 through the wireless antenna 23 and the wireless signal processing unit 21. When the header analysis unit 24 of the radio access control unit 22 analyzes the header of the received radio signal and confirms that it is request data, it passes the request data to the request data analysis unit 25. The request data analysis unit 25 notifies the reception power measurement response data generation unit 26 so as to generate reception power measurement response data (hereinafter referred to as response data as appropriate) corresponding to the received request data. The transmission timing control unit 27 is notified of the stored timing information. The received power measurement response data generation unit 26 generates response data, adds a header of a destination identifier or a transmission source identifier to the response data, and passes the response data to the transmission timing control unit 27. The transmission control timing control unit 27 calculates the backoff time based on the notified timing information, and controls the transmission timing of the radio signal storing the response data, that is, the response signal, based on the calculated backoff time. Specifically, the transmission control timing control unit 27 instructs the wireless signal processing unit 21 on the transmission timing. Based on an instruction from the transmission control timing control unit 27, the wireless signal processing unit 21 transmits the response data with the header added thereto as a wireless signal to the reception power measuring device 1 via the wireless antenna 23.
図4の説明に戻り、受信電力測定装置1では、応答データが格納された無線信号、すなわち応答信号を受信すると、無線信号処理部13の受信電力測定部18が受信した無線信号(応答信号)の電力値を測定する(ステップS3)。受信電力測定部18は、測定結果と応答データとを送信元識別部17へ通知する。
Returning to the description of FIG. 4, when the received power measuring apparatus 1 receives a radio signal in which response data is stored, that is, a response signal, the received power measuring unit 18 of the radio signal processing unit 13 receives a radio signal (response signal). Is measured (step S3). The received power measurement unit 18 notifies the transmission source identification unit 17 of the measurement result and response data.
送信元識別部17は、応答データから送信元の無線通信装置(測定対象の無線通信装置)の識別子を抽出し、測定結果(受信電力値)とともに受信電力情報収集部14に通知する。受信電力情報収集部14は、測定対象の無線通信装置の識別子と受信電力値とを関連付けて保存する(ステップS4)。受信電力情報収集部14が、ハードウェアにより実現される場合には内部のメモリに測定対象の無線通信装置の識別子と受信電力値とが格納され、受信電力情報収集部14が、ソフトウェアにより実現される場合には、制御回路200のメモリ203に格納される。
The transmission source identification unit 17 extracts the identifier of the transmission source wireless communication device (measurement target wireless communication device) from the response data, and notifies the reception power information collection unit 14 together with the measurement result (reception power value). The received power information collection unit 14 associates and stores the identifier of the wireless communication device to be measured and the received power value (step S4). When the reception power information collection unit 14 is realized by hardware, the identifier and reception power value of the wireless communication device to be measured are stored in an internal memory, and the reception power information collection unit 14 is realized by software. Stored in the memory 203 of the control circuit 200.
受信電力測定装置1は、ステップS3,ステップS4を、応答データを受信するたびに実施する。以上の処理により、測定対象の無線通信装置ごとに受信電力を測定することができる。
The received power measuring apparatus 1 performs step S3 and step S4 each time response data is received. Through the above processing, the received power can be measured for each wireless communication device to be measured.
図5は、本実施の形態の受信電力測定動作の一例を示すシーケンス図である。受信電力測定装置1が、上記のステップS2で説明したように、要求データをブロードキャストにより送信する(ステップS11)。無線通信装置2-1は、要求データを受信すると、受信した要求データに格納されたタイミング情報に基づいてバックオフ時間#1を算出し、キャリアセンスにより他の通信が行われていないと判断するとバックオフ時間#1待機し(ステップS12)、その後、応答データを送信する(ステップS13)。無線通信装置2-2は、要求データを受信すると、受信した要求データに格納されたタイミング情報に基づいてバックオフ時間#2を算出し、キャリアセンスにより他の通信が行われていないと判断するとバックオフ時間#2待機し(ステップS14)、その後、応答データを送信する(ステップS15)。
FIG. 5 is a sequence diagram showing an example of the received power measurement operation of the present embodiment. As described in step S2 above, the received power measuring apparatus 1 transmits the request data by broadcasting (step S11). When receiving the request data, the wireless communication device 2-1 calculates the backoff time # 1 based on the timing information stored in the received request data, and determines that no other communication is performed by carrier sense. Back-off time # 1 is waited (step S12), and then response data is transmitted (step S13). When receiving the request data, the wireless communication device 2-2 calculates the backoff time # 2 based on the timing information stored in the received request data, and determines that no other communication is performed by carrier sense. Back-off time # 2 is waited (step S14), and then response data is transmitted (step S15).
なお、受信電力測定装置1としての機能と測定対象の無線通信装置2としての機能との両方を備える無線通信装置を構成し、各無線通信装置が、受信電力の測定と測定のための応答データの送信との両方を実施できるようにしてもよい。
Note that a wireless communication device having both the function as the reception power measuring device 1 and the function as the measurement target wireless communication device 2 is configured, and each wireless communication device measures the reception power and response data for the measurement. It may be possible to carry out both of the transmission of.
以上のように、無線通信装置が応答データを送信する際のタイミング情報を受信電力測定装置1が指定することで、複数の無線通信装置の干渉を低減しつつ効率的に受信電力の測定を行うことができるという効果が得られる。
As described above, the reception power measurement device 1 designates timing information when the wireless communication device transmits response data, so that reception power is efficiently measured while reducing interference between the plurality of wireless communication devices. The effect that it can be obtained.
実施の形態2.
図6は、本発明にかかる受信電力測定装置1aの実施の形態2の構成例を示す図である。本実施の形態の無線通信システムは、本実施の形態の受信電力測定装置1の替わりに受信電力測定装置1aを備える以外は実施の形態1と同様である。図6に示すように、本実施の形態の受信電力測定装置1aは、実施の形態1の無線アクセス制御部12の替わりに無線アクセス制御部12aを備える以外は、実施の形態1の受信電力測定装置1と同様である。無線アクセス制御部12aは、実施の形態1の無線アクセス制御部12に誤り検出部19を追加した構成を有する。測定対象の無線通信装置2は、実施の形態1と同様である。実施の形態1と同様の機能を有する構成要素は、実施の形態1と同一の符号を付して重複する説明を省略し、実施の形態1と異なる部分を説明する。Embodiment 2. FIG.
FIG. 6 is a diagram showing a configuration example of the second embodiment of the receivedpower measuring apparatus 1a according to the present invention. The radio communication system of the present embodiment is the same as that of the first embodiment except that the received power measuring apparatus 1a is provided instead of the received power measuring apparatus 1 of the present embodiment. As shown in FIG. 6, the received power measurement apparatus 1a according to the present embodiment is configured to measure the received power according to the first embodiment except that the wireless access control unit 12a is provided instead of the wireless access control unit 12 according to the first embodiment. It is the same as the device 1. The radio access control unit 12a has a configuration in which an error detection unit 19 is added to the radio access control unit 12 of the first embodiment. The wireless communication device 2 to be measured is the same as that in the first embodiment. Constituent elements having the same functions as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and the description thereof is omitted, and different parts from those in the first embodiment are described.
図6は、本発明にかかる受信電力測定装置1aの実施の形態2の構成例を示す図である。本実施の形態の無線通信システムは、本実施の形態の受信電力測定装置1の替わりに受信電力測定装置1aを備える以外は実施の形態1と同様である。図6に示すように、本実施の形態の受信電力測定装置1aは、実施の形態1の無線アクセス制御部12の替わりに無線アクセス制御部12aを備える以外は、実施の形態1の受信電力測定装置1と同様である。無線アクセス制御部12aは、実施の形態1の無線アクセス制御部12に誤り検出部19を追加した構成を有する。測定対象の無線通信装置2は、実施の形態1と同様である。実施の形態1と同様の機能を有する構成要素は、実施の形態1と同一の符号を付して重複する説明を省略し、実施の形態1と異なる部分を説明する。
FIG. 6 is a diagram showing a configuration example of the second embodiment of the received
誤り検出部19は、処理回路は、専用のハードウェアであっても、メモリとメモリに格納されるプログラムを実行するCPUとを備える制御回路であってもよい。また、誤り検出部19は、他の構成要素とともに1つの処理回路として実現されてもよい。
The error detection unit 19 may be a dedicated circuit or a control circuit including a memory and a CPU that executes a program stored in the memory. Further, the error detection unit 19 may be realized as one processing circuit together with other components.
誤り検出部19を実現する処理回路が専用のハードウェアである場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらを組み合わせたものが該当する。
When the processing circuit that implements the error detection unit 19 is dedicated hardware, the processing circuit is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof. Applicable.
誤り検出部19を実現する処理回路がCPUを含む制御回路である場合、制御回路は、例えば図3に示す構成の制御回路200として実現される。誤り検出部19を実現する処理回路が図3に示す制御回路200により実現される場合、プロセッサ202がメモリ203に記憶された、誤り検出部19の処理に対応するプログラムを読み出して実行することにより実現される。
When the processing circuit for realizing the error detection unit 19 is a control circuit including a CPU, the control circuit is realized as a control circuit 200 having the configuration shown in FIG. When the processing circuit for realizing the error detection unit 19 is realized by the control circuit 200 shown in FIG. 3, the processor 202 reads and executes the program stored in the memory 203 and corresponding to the processing of the error detection unit 19. Realized.
実施の形態1では、タイミング情報である乱数の幅を測定対象の無線通信装置の数に応じて決定したが、測定地点ごとに要求データを受信可能な無線通信装置数が変わる可能性がある。このため、測定対象の無線通信装置を固定として乱数の幅を決定すると、測定の効率が落ちる可能性がある。
In Embodiment 1, the width of the random number that is the timing information is determined according to the number of wireless communication devices to be measured. However, the number of wireless communication devices that can receive the request data may change for each measurement point. For this reason, if the width of the random number is determined with the wireless communication device to be measured fixed, the measurement efficiency may be reduced.
そこで、本実施の形態では、誤り検出部19が、受信したデータに基づいて誤り検出を行い、誤りの頻度を示す指標(例えば、一定時間内の誤りの個数)を算出し、受信電力測定用要求データ生成部11に通知する。一般に、複数の無線通信装置2により干渉が生じている場合には、受信したデータの誤りが多くなる。したがって、受信電力測定用要求データ生成部11は、誤り検出部19から通知された指標が第1の閾値以上であった場合(一定時間内誤りが第1の閾値以上の場合)には、乱数の幅を拡大し、誤りの頻度を示す指標が誤りが少ないことを示す値である場合、例えば、一定時間内誤りが第2の閾値以下の場合、乱数の幅を縮小するようにタイミング方法を決定する。なお、第2の閾値≦第1の閾値である。そして、このようにして算出されたタイミング情報が無線通信装置2に通知されることにより、干渉の発生が抑制される。以上述べた以外の本実施の形態の動作は、実施の形態1と同様である。
Therefore, in the present embodiment, the error detection unit 19 performs error detection based on the received data, calculates an index indicating the frequency of errors (for example, the number of errors within a certain time), and measures received power. The request data generation unit 11 is notified. In general, when interference is caused by a plurality of wireless communication devices 2, errors in received data increase. Therefore, when the index notified from the error detection unit 19 is greater than or equal to the first threshold (when the error within a certain time is greater than or equal to the first threshold), the received power measurement request data generation unit 11 If the index indicating the frequency of errors is a value indicating that there are few errors, for example, if the error within a certain time is equal to or smaller than the second threshold, the timing method is set so as to reduce the width of the random number. decide. Note that the second threshold ≦ the first threshold. Then, the timing information calculated in this way is notified to the wireless communication device 2, thereby suppressing the occurrence of interference. The operations of the present embodiment other than those described above are the same as those of the first embodiment.
誤り検出部19が算出する誤りの頻度を示す指標として、例えば、一定時間内に受信した応答信号のパケットのうちの誤りが含まれていると判定されたパケットの数を用いることができる。この場合、誤り検出部19は、応答信号に格納されたチェックサム、パリティ、CRC(Cyclic Redundancy Check)等の誤り検出のための情報を用いてパケットごとに該パケットに誤りが含まれているか否かを判定して、一定時間内に受信したパケットのうちの誤りが含まれていると判定された応答信号の数を求める。または受信した応答信号に格納された応答データが誤り訂正符号化されている場合には、誤り訂正復号の際に誤りがあるか否かを判定できるので、誤り検出部19は、この判定結果を用いて同様に一定時間内に受信した応答信号のパケットのうちの誤りが含まれていると判定された応答信号の数を求めてもよい。または、受信した応答信号のパケットにシーケンス番号が含まれている場合には、誤り検出部19は、シーケンス番号に基づいてパケットが正常に受信できなかった応答信号のパケットを求め、誤りの頻度を示す指標として一定時間内の正常に受信できなかった応答信号のパケットの数を用いてもよい。
As an index indicating the frequency of errors calculated by the error detection unit 19, for example, the number of packets determined to contain errors among the response signal packets received within a certain time can be used. In this case, the error detection unit 19 uses information for error detection such as a checksum, parity, CRC (Cyclic Redundancy Check) stored in the response signal to determine whether or not the packet includes an error for each packet. Is determined, and the number of response signals determined to contain errors in packets received within a predetermined time is obtained. Alternatively, when the response data stored in the received response signal is error correction encoded, it is possible to determine whether or not there is an error in error correction decoding. Similarly, the number of response signals determined to contain errors in the response signal packets received within a predetermined time may be obtained. Alternatively, when the sequence number is included in the received response signal packet, the error detection unit 19 obtains the response signal packet that could not be normally received based on the sequence number, and determines the error frequency. As an index to indicate, the number of response signal packets that could not be normally received within a certain period of time may be used.
図7は、本実施の形態の受信電力測定用要求データ生成部11における乱数の幅の決定処理手順の一例を示すフローチャートである。受信電力測定用要求データ生成部11は、実施の形態1で述べた処理により、乱数の幅を決定する(ステップS21)。次に、受信電力測定用要求データ生成部11は、例えば、誤り検出部19から通知された指標が第1の閾値以上であるか否かを判断する(ステップS22)。指標が第1の閾値以上であると判断した場合(ステップS22 Yes)、乱数の幅を拡大し(ステップS23)、ステップS22へ戻る。ステップS23では、具体的には、受信電力測定用要求データ生成部11は、例えば、乱数の幅に一定値を加算した値を新たな乱数の幅とする、または乱数の幅に1より大きい一定値を乗算した値を新たな乱数の幅とする。
FIG. 7 is a flowchart illustrating an example of a random number width determination processing procedure in the received power measurement request data generation unit 11 according to the present embodiment. The received power measurement request data generation unit 11 determines the random number width by the process described in the first embodiment (step S21). Next, the received power measurement request data generation unit 11 determines, for example, whether or not the index notified from the error detection unit 19 is equal to or greater than a first threshold (step S22). If it is determined that the index is greater than or equal to the first threshold (Yes at Step S22), the range of random numbers is expanded (Step S23), and the process returns to Step S22. In step S23, specifically, the received power measurement request data generation unit 11 sets, for example, a value obtained by adding a constant value to the random number width as a new random number width, or a constant greater than 1 in the random number width. A value obtained by multiplying the values is set as a new random number width.
ステップS22で、指標が第1の閾値未満であると判断した場合(ステップS22 No)、ステップS24へ進む。ステップS24では、受信電力測定用要求データ生成部11は、指標が第2の閾値以下であるか否かを判断し(ステップS24)、指標が第2の閾値以下であると判断した場合(ステップS24 Yes)、乱数の幅を減少させすなわち縮小させ(ステップS25)、ステップS22へ戻る。ステップS25では、具体的には、受信電力測定用要求データ生成部11は、例えば、乱数の幅から一定値を減算する値を新たな乱数の幅とする、または乱数の幅を1より大きい一定値で除算した値を新たな乱数の幅とする。ステップS24で、指標が第2の閾値より大きいと判断した場合(ステップS24 No)、ステップS22へ戻る。なお、乱数の幅に上限を設けて、受信電力測定用要求データ生成部11は、ステップS23において、拡大後の乱数の幅が上限を超える場合に乱数の幅を拡大しないようにしてもよい。同様に、乱数の幅に下限を設けて、受信電力測定用要求データ生成部11は、ステップS25において、縮小後の乱数の幅が下限を下回る場合には、乱数の幅を縮小しないようにしてもよい。
If it is determined in step S22 that the index is less than the first threshold (No in step S22), the process proceeds to step S24. In step S24, the received power measurement request data generation unit 11 determines whether the index is less than or equal to the second threshold (step S24), and determines that the index is less than or equal to the second threshold (step S24). (S24 Yes), the width of the random number is reduced, that is, reduced (step S25), and the process returns to step S22. In step S25, specifically, the received power measurement request data generation unit 11 sets, for example, a value obtained by subtracting a constant value from the random number width as a new random number width, or the random number width is constant larger than 1. The value divided by the value is used as the new random number width. If it is determined in step S24 that the index is greater than the second threshold (No in step S24), the process returns to step S22. In addition, an upper limit may be provided for the random number width, and the received power measurement request data generation unit 11 may not increase the random number width when the expanded random number width exceeds the upper limit in step S23. Similarly, the lower limit of the random number width is set, and the received power measurement request data generation unit 11 does not reduce the random number width when the reduced random number width is lower than the lower limit in step S25. Also good.
なお、上記の例では、誤りの頻度を示す指標は、誤りの多さと正の相関があるとして説明したが、誤りの頻度を示す指標として、例えば受信電力の強度等、誤りの多さと負の相関のある指標を用いてもよい。この場合、上記のステップS22の判断では、指標が第1の閾値以下であるか否かを判断し、ステップS24の判断では、指標が第2の閾値以上であるか否かを判断する。この場合、第2の閾値≧第1の閾値である。
In the above example, the index indicating the frequency of errors has been described as having a positive correlation with the number of errors. However, as an index indicating the frequency of errors, for example, the intensity of errors such as the strength of received power is negative. A correlated index may be used. In this case, in the determination in step S22 described above, it is determined whether or not the index is less than or equal to the first threshold value. In the determination in step S24, it is determined whether or not the index is greater than or equal to the second threshold value. In this case, the second threshold ≧ the first threshold.
以上のように、本実施の形態では、誤り検出部19が受信データの誤りを検出し、受信電力測定用要求データ生成部11は、一定時間内の誤りが一定数以上の場合には、乱数の幅を拡大し、誤りが少ない場合は乱数の幅を縮小するように制御するようにした。このため、実施の形態1よりさらに受信電力測定を効率よく行うことができる。
As described above, in the present embodiment, the error detection unit 19 detects an error in the received data, and the received power measurement request data generation unit 11 determines that the random number is a random number when the number of errors within a certain time is equal to or greater than a certain number. The width of is increased, and when there are few errors, the random number is reduced. For this reason, the received power measurement can be performed more efficiently than in the first embodiment.
実施の形態3.
次に、本発明にかかる実施の形態3の受信電力測定装置について説明する。本実施の形態の無線通信システムは、実施の形態1と同様である。以下、実施の形態1と異なる部分を説明する。 Embodiment 3 FIG.
Next, a received power measuring apparatus according to the third embodiment of the present invention will be described. The radio communication system of the present embodiment is the same as that of the first embodiment. Hereinafter, a different part from Embodiment 1 is demonstrated.
次に、本発明にかかる実施の形態3の受信電力測定装置について説明する。本実施の形態の無線通信システムは、実施の形態1と同様である。以下、実施の形態1と異なる部分を説明する。 Embodiment 3 FIG.
Next, a received power measuring apparatus according to the third embodiment of the present invention will be described. The radio communication system of the present embodiment is the same as that of the first embodiment. Hereinafter, a different part from Embodiment 1 is demonstrated.
実施の形態1、2では、乱数の幅を変えることで確率的に干渉低減を実現しているため、確実な干渉回避は実現できない。本実施の形態では、受信電力測定用要求データ生成部11は、無線通信装置2の識別子に基づいて送信タイミングを決定するためのパラメータをタイミング情報として送信する。例えば、無線通信装置2の識別子をxとするとき、無線通信装置2におけるバックオフ時間を決定する関数f(x)を定めておき、f(x)で使用するパラメータ(例えば、xの2次関数の場合、2次および1次の係数と定数)をタイミング情報として送信する。具体的には、例えば、f(x)=a×x2+b×x+cと定めておき、受信電力測定用要求データ生成部11は、a,bおよびcを無線通信装置2へ送信する。無線通信装置2の送信タイミング制御部27は、関数f(x)を内部のメモリに保持している。関数f(x)は、送信タイミング制御部27が他の構成要素をともに処理回路として構成される場合にはこの処理回路内のメモリに関数を保持する。または、送信タイミング制御部27は、係数a,b,cが入力されることにより関数f(x)を出力する専用の電子回路を備えていてもよい。無線通信装置2の送信タイミング制御部27は、関数f(x)と受信したパラメータと自身の識別子とを用いてバックオフ時間を算出する。なお、本実施の形態の受信電力測定装置が、無線通信装置2の識別子に基づいて無線通信装置2ごとに異なるバックオフ時間を算出し、無線通信装置2ごとのバックオフ時間を、各無線通信装置2へタイミング情報として送信してもよい。
In Embodiments 1 and 2, since interference reduction is realized stochastically by changing the width of the random number, reliable interference avoidance cannot be realized. In the present embodiment, the received power measurement request data generation unit 11 transmits, as timing information, a parameter for determining the transmission timing based on the identifier of the wireless communication device 2. For example, when the identifier of the wireless communication device 2 is x, a function f (x) for determining the back-off time in the wireless communication device 2 is determined, and a parameter used for f (x) (for example, a secondary of x In the case of a function, second order and first order coefficients and constants) are transmitted as timing information. Specifically, for example, f (x) = a × x 2 + b × x + c is determined, and the received power measurement request data generation unit 11 transmits a, b, and c to the wireless communication device 2. The transmission timing control unit 27 of the wireless communication device 2 holds the function f (x) in an internal memory. The function f (x) is stored in a memory in the processing circuit when the transmission timing control unit 27 is configured as a processing circuit together with other components. Alternatively, the transmission timing control unit 27 may include a dedicated electronic circuit that outputs the function f (x) when the coefficients a, b, and c are input. The transmission timing control unit 27 of the wireless communication apparatus 2 calculates the back-off time using the function f (x), the received parameter, and its own identifier. Note that the received power measurement device according to the present embodiment calculates a different backoff time for each wireless communication device 2 based on the identifier of the wireless communication device 2, and determines the backoff time for each wireless communication device 2 for each wireless communication device. You may transmit to the apparatus 2 as timing information.
または、無線通信装置2は、次のように乱数を生成してもよい。受信電力測定用要求データ生成部11は、バックオフ時間の生成の元となる乱数を生成するためのパラメータをタイミング情報として実施の形態1と同様に送信する。無線通信装置2は、タイミング情報に基づいて乱数を発生させるが、この際に、自身の識別子に応じて乱数を発生させる。例えば、乱数列を決定するためのシードとして無線識別子を用い、シードを設定して乱数を発生させる。そして、この乱数に基づいてバックオフ時間を決定する。以上述べた以外の本実施の形態の動作は、実施の形態1と同様である。
Alternatively, the wireless communication device 2 may generate a random number as follows. The reception power measurement request data generation unit 11 transmits, as timing information, parameters for generating a random number that is a source of generation of the backoff time, as in the first embodiment. The wireless communication device 2 generates a random number based on the timing information. At this time, the wireless communication device 2 generates a random number according to its own identifier. For example, a radio identifier is used as a seed for determining a random number sequence, and a seed is set to generate a random number. Then, the back-off time is determined based on this random number. The operations of the present embodiment other than those described above are the same as those of the first embodiment.
以上のように、本実施の形態では、測定対象の無線通信装置2ごとにバックオフ時間が異なる値となるように、無線通信装置2の識別子に基づいてバックオフ時間を決定するようにした。無線識別子は、無線通信装置2ごとに固有であるため、干渉を回避することが可能となる。このように制御することで、確実に干渉を回避しながら受信電力測定ができ、効率化されるという効果を得られる。
As described above, in this embodiment, the back-off time is determined based on the identifier of the wireless communication device 2 so that the back-off time is different for each wireless communication device 2 to be measured. Since the wireless identifier is unique to each wireless communication device 2, it is possible to avoid interference. By controlling in this way, the received power can be measured while reliably avoiding interference, and the efficiency can be improved.
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
1,1a 受信電力測定装置、2,2-1,2-2 無線通信装置、11 受信電力測定用要求データ生成部、12,12a,22 無線アクセス制御部、13,21 無線信号処理部、14 受信電力情報収集部、15,23 無線アンテナ、16 ヘッダ付与部、17 送信元識別部、18 受信電力測定部、19 誤り検出部、24 ヘッダ解析部、25 要求データ解析部、26 受信電力測定用応答データ生成部、27 送信タイミング制御部、30 送受信処理部。
1, 1a received power measurement device, 2, 2-1, 2-2 wireless communication device, 11 received power measurement request data generation unit, 12, 12a, 22 wireless access control unit, 13, 21 wireless signal processing unit, 14 Received power information collection unit, 15, 23 wireless antenna, 16 header assignment unit, 17 transmission source identification unit, 18 received power measurement unit, 19 error detection unit, 24 header analysis unit, 25 request data analysis unit, 26 for received power measurement Response data generation unit, 27 transmission timing control unit, 30 transmission / reception processing unit.
Claims (9)
- 受信電力の測定対象である無線通信装置に対して受信電力の測定に用いる応答信号の送信を要求するための要求データを生成し、前記応答信号を送信するタイミングを示すタイミング情報を前記要求データに格納する第1の処理部と、
前記タイミング情報が格納された前記要求データに宛先として同報通信であることを示す宛先識別子を付与する第2の処理部と、
前記宛先識別子の付与された前記要求データを無線信号として送信する第3の処理部と、
前記無線通信装置から受信した前記応答信号に基づいて受信電力を測定する測定部と、
を備えることを特徴とする受信電力測定装置。 Request data for requesting transmission of a response signal used for reception power measurement to a wireless communication apparatus that is a reception power measurement target is generated, and timing information indicating the timing of transmitting the response signal is included in the request data. A first processing unit for storing;
A second processing unit that assigns a destination identifier indicating that the request data in which the timing information is stored is broadcast communication as a destination;
A third processing unit that transmits the request data to which the destination identifier is assigned as a radio signal;
A measurement unit that measures received power based on the response signal received from the wireless communication device;
A received power measuring apparatus comprising: - 前記タイミング情報は、前記無線通信装置が前記応答信号を送信するまでの待機時間を決定するためのパラメータであることを特徴とする請求項1に記載の受信電力測定装置。 The received power measuring apparatus according to claim 1, wherein the timing information is a parameter for determining a waiting time until the wireless communication apparatus transmits the response signal.
- 前記待機時間は、乱数と時間間隔とを乗算した値であり、
前記パラメータは、前記乱数を生成する際に用いる乱数の幅と、前記時間間隔とであることを特徴とする請求項2に記載の受信電力測定装置。 The waiting time is a value obtained by multiplying a random number and a time interval,
The received power measuring apparatus according to claim 2, wherein the parameters are a random number width used when generating the random number and the time interval. - 前記応答信号の誤りを検出する誤り検出部、
をさらに備え、
前記誤り検出部による誤りの検出結果に基づいて前記タイミング情報を変更することを特徴とする請求項1、2または3に記載の受信電力測定装置。 An error detector for detecting an error in the response signal;
Further comprising
The received power measuring apparatus according to claim 1, 2, or 3, wherein the timing information is changed based on an error detection result by the error detection unit. - 前記タイミング情報は、前記無線通信装置の識別子に基づいて生成されることを特徴とする請求項1から4のいずれか1つに記載の受信電力測定装置。 The received power measuring device according to any one of claims 1 to 4, wherein the timing information is generated based on an identifier of the wireless communication device.
- 請求項1に記載の受信電力測定装置、
を備えることを特徴とする無線通信装置。 The received power measuring device according to claim 1,
A wireless communication apparatus comprising: - 受信電力の測定に用いる応答信号を送信するタイミングを示すタイミング情報が格納され前記応答信号の送信を要求する要求データを受信電力測定装置から受信した場合に、受信した前記要求データに対応する応答データを生成する生成部と、
受信した前記要求データに格納された前記タイミング情報に基づいて送信タイミングを決定する制御部と、
前記送信タイミング制御部により指示された送信タイミングで前記生成部により生成された前記応答データが格納された無線信号である前記応答信号を前記受信電力測定装置へ送信する処理部と、
を備えることを特徴とする無線通信装置。 Response data corresponding to the received request data is received when request data for requesting transmission of the response signal is received from the received power measurement device and timing information indicating the timing of transmitting a response signal used for measurement of received power is stored. A generating unit for generating
A control unit that determines transmission timing based on the timing information stored in the received request data;
A processing unit that transmits the response signal, which is a radio signal storing the response data generated by the generation unit at the transmission timing instructed by the transmission timing control unit, to the reception power measuring device;
A wireless communication apparatus comprising: - 請求項1から5のいずれか1つに記載の受信電力測定装置と、
請求項7に記載の無線通信装置と、を備えることを特徴とする無線通信システム。 The received power measuring device according to any one of claims 1 to 5,
A wireless communication system comprising: the wireless communication device according to claim 7. - 受信電力の測定対象である無線通信装置に対して受信電力の測定に用いる応答信号の送信を要求するための要求データを生成する第1のステップと、
前記応答信号を送信するタイミングを示すタイミング情報を前記要求データに格納する第2のステップと、
前記タイミング情報が格納された前記要求データに宛先として同報通信であることを示す宛先識別子を付与する第3のステップと、
前記宛先識別子の付与された前記要求データを無線信号として送信する第4のステップと、
前記無線通信装置から受信した前記応答信号に基づいて受信電力を測定する第5のステップと、
を含むことを特徴とする受信電力測定方法。 A first step of generating request data for requesting transmission of a response signal used for reception power measurement to a wireless communication device that is a measurement target of reception power;
A second step of storing timing information indicating the timing of transmitting the response signal in the request data;
A third step of assigning a destination identifier indicating that the request data in which the timing information is stored is broadcast as a destination;
A fourth step of transmitting the request data provided with the destination identifier as a radio signal;
A fifth step of measuring received power based on the response signal received from the wireless communication device;
A received power measuring method.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-151107 | 2014-07-24 | ||
JP2014151107A JP2017163174A (en) | 2014-07-24 | 2014-07-24 | Reception power measurement device, radio communication device, radio communication system, and reception power measurement method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016013291A1 true WO2016013291A1 (en) | 2016-01-28 |
Family
ID=55162827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/065299 WO2016013291A1 (en) | 2014-07-24 | 2015-05-27 | Received power measurement device, radio communication device, radio communication system and received power measurement method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2017163174A (en) |
WO (1) | WO2016013291A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020153147A1 (en) * | 2019-01-24 | 2020-07-30 | ソニー株式会社 | Wireless communication device and method |
JP7564694B2 (en) | 2020-11-27 | 2024-10-09 | シャープ株式会社 | Radio wave measuring equipment |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022154074A (en) * | 2021-03-30 | 2022-10-13 | パナソニックIpマネジメント株式会社 | Lighting control system and control method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008502173A (en) * | 2004-06-04 | 2008-01-24 | ミツビシ・エレクトリック・リサーチ・ラボラトリーズ・インコーポレイテッド | Wireless communication network and method for transmitting a packet over a channel of a wireless communication network |
JP2012517136A (en) * | 2009-02-03 | 2012-07-26 | 株式会社 Itec Tokyo | A distributed peer discovery method for multimedia data transfer in wireless peer-to-peer networks |
JP2013098906A (en) * | 2011-11-04 | 2013-05-20 | Patoraito:Kk | Radio communication device and radio communication network using the same |
JP2013207383A (en) * | 2012-03-27 | 2013-10-07 | Nippon Telegr & Teleph Corp <Ntt> | Radio communication system, radio communication device, and radio communication method |
JP2014512759A (en) * | 2011-03-28 | 2014-05-22 | クゥアルコム・インコーポレイテッド | Method and apparatus for triggering coordinated positioning or learning in a wireless network |
-
2014
- 2014-07-24 JP JP2014151107A patent/JP2017163174A/en active Pending
-
2015
- 2015-05-27 WO PCT/JP2015/065299 patent/WO2016013291A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008502173A (en) * | 2004-06-04 | 2008-01-24 | ミツビシ・エレクトリック・リサーチ・ラボラトリーズ・インコーポレイテッド | Wireless communication network and method for transmitting a packet over a channel of a wireless communication network |
JP2012517136A (en) * | 2009-02-03 | 2012-07-26 | 株式会社 Itec Tokyo | A distributed peer discovery method for multimedia data transfer in wireless peer-to-peer networks |
JP2014512759A (en) * | 2011-03-28 | 2014-05-22 | クゥアルコム・インコーポレイテッド | Method and apparatus for triggering coordinated positioning or learning in a wireless network |
JP2013098906A (en) * | 2011-11-04 | 2013-05-20 | Patoraito:Kk | Radio communication device and radio communication network using the same |
JP2013207383A (en) * | 2012-03-27 | 2013-10-07 | Nippon Telegr & Teleph Corp <Ntt> | Radio communication system, radio communication device, and radio communication method |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020153147A1 (en) * | 2019-01-24 | 2020-07-30 | ソニー株式会社 | Wireless communication device and method |
CN113574957A (en) * | 2019-01-24 | 2021-10-29 | 索尼集团公司 | Wireless communication apparatus and method |
US11722588B2 (en) | 2019-01-24 | 2023-08-08 | Sony Group Corporation | Wireless communication device and method |
TWI811516B (en) * | 2019-01-24 | 2023-08-11 | 日商索尼股份有限公司 | Wireless communication device and method |
US12063288B2 (en) | 2019-01-24 | 2024-08-13 | Sony Group Corporation | Wireless communication device and method |
JP7564694B2 (en) | 2020-11-27 | 2024-10-09 | シャープ株式会社 | Radio wave measuring equipment |
Also Published As
Publication number | Publication date |
---|---|
JP2017163174A (en) | 2017-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5531338B2 (en) | Interference detection device, interference avoidance device, wireless communication device, wireless network system, interference detection method, interference avoidance method, and program | |
US8811420B2 (en) | System and method for contention-based channel access for peer-to-peer connection in wireless networks | |
US9736850B2 (en) | Adaptive RTS/CTS in high-efficiency wireless communications | |
JP5424086B2 (en) | Wireless communication system, transmission terminal, reception terminal, and data retransmission method | |
WO2016024356A1 (en) | Wireless communication system, wireless communication system communication method, access point and wireless device | |
JP2009118320A (en) | Radio communication system | |
WO2016013291A1 (en) | Received power measurement device, radio communication device, radio communication system and received power measurement method | |
JP5708102B2 (en) | Wireless communication terminal apparatus and wireless communication terminal apparatus control method | |
KR20190073056A (en) | Wireless power communication method and system in wireless power communication network | |
US11223931B2 (en) | Wireless sensor system, wireless terminal device, relay device, communication control method, and communication control program | |
CN103826277B (en) | Multi-hop communication terminal, multi-hop communication system and multi-hop communication method | |
JP5725552B2 (en) | Wireless communication apparatus, communication system, communication processing method, and program | |
US20160112161A1 (en) | Methods and apparatus for interference management in wireless networking | |
JP6911120B2 (en) | Methods and devices for random access | |
US9137673B2 (en) | Interference control system for simultaneously supporting low power communication and high spectral efficient communication | |
US9716928B2 (en) | Communications apparatus, system, and communications method | |
US10548081B2 (en) | Wireless communication device and wireless communication method using a carrier sensing technique | |
EP4315789A1 (en) | Routing data in wireless network that coexists with interfering wireless networks | |
WO2016098808A1 (en) | Transmitting device, receiving device and communication method applicable to radio communications system | |
KR102537332B1 (en) | Method for relaying message in low power wide area network and apparatus for the same | |
JP2015211432A (en) | Packet communication method, radio communication system and radio communication device | |
US20230066537A1 (en) | Transmitting Data in Unlicensed Spectrum | |
Choi et al. | Delay analysis of carrier sense multiple access with collision resolution | |
JP2005236548A (en) | Method, device, and system for radio transmission | |
JP5706303B2 (en) | COMMUNICATION METHOD, RADIO ACCESS SYSTEM, AND PROGRAM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15824155 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15824155 Country of ref document: EP Kind code of ref document: A1 |