WO2016013051A1 - Nanofibre-forming injection nozzle head, and nanofibre production device equipped with nanofibre-forming injection nozzle head - Google Patents

Nanofibre-forming injection nozzle head, and nanofibre production device equipped with nanofibre-forming injection nozzle head Download PDF

Info

Publication number
WO2016013051A1
WO2016013051A1 PCT/JP2014/069263 JP2014069263W WO2016013051A1 WO 2016013051 A1 WO2016013051 A1 WO 2016013051A1 JP 2014069263 W JP2014069263 W JP 2014069263W WO 2016013051 A1 WO2016013051 A1 WO 2016013051A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
polymer material
injection
nanofiber
thermoplastic resin
Prior art date
Application number
PCT/JP2014/069263
Other languages
French (fr)
Japanese (ja)
Inventor
法明 吉田
Original Assignee
ゼプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ゼプト株式会社 filed Critical ゼプト株式会社
Priority to JP2014555011A priority Critical patent/JP5782594B1/en
Priority to PCT/JP2014/069263 priority patent/WO2016013051A1/en
Publication of WO2016013051A1 publication Critical patent/WO2016013051A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/06Feeding liquid to the spinning head
    • D01D1/09Control of pressure, temperature or feeding rate
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/10Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
    • D04H3/11Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by fluid jet

Definitions

  • the present invention relates to a nanofiber forming spray nozzle head and a nanofiber manufacturing apparatus including the nanofiber forming spray nozzle head.
  • the present invention relates to an injection nozzle head for forming nanofibers that can be reduced in diameter while ensuring a production amount, and a nanofiber manufacturing apparatus including the injection nozzle head for forming nanofibers.
  • nanofibers are broadly classified into unique effects such as a super specific surface area effect, a nanosize effect, and a supramolecular arrangement effect, and exhibit the following unique characteristics from these effects.
  • a super specific surface area effect from the molecular recognition and adsorption characteristics, from the nanosize effect, from the hydrodynamic characteristics and optical characteristics, from the supramolecular arrangement effect, from the electrical characteristics, mechanical characteristics and thermal characteristics, Recognized as unique characteristics not seen in the past, and based on these new characteristics, for example, electrical and electronic fields, filter fields, medical fields, clothing fields, biotechnology fields, automotive fields, building materials fields, energy fields The way to various uses is being sought.
  • Patent Document 1 discloses an electrospinning method (charge-induced spinning method).
  • the electrospinning polymer web manufacturing apparatus includes a barrel that stores at least one polymer material in a liquid state, a pump that pressurizes and supplies liquid polymer material stored in the barrel, and a pump that supplies the polymer material.
  • a spinning unit that injects the liquid polymer material through at least one charged nozzle, and a charge that charges the polymer material discharged through the nozzle of the spinning unit to any one polarity.
  • a voltage generation unit, and a collector that forms a polymer web by transporting while laminating the spinning charged to a polarity different from the charged polarity of the spinning unit and discharged from the nozzle.
  • a polymer solution diluted and stored in a barrel with a solvent is supplied by a pump toward a nozzle to which a high voltage is applied by a first high voltage generator.
  • Charge is charged to the polymer solution that flows out linearly from the nozzle, and the distance between the charged charges decreases as the solvent of the polymer solution evaporates, so that the acting Coulomb force increases and the Coulomb force becomes linear.
  • the surface tension of the polymer solution exceeds the linear tension, a linear polymer solution is stretched explosively, and this phenomenon called electrostatic explosion is repeated as primary, secondary, and in some cases tertiary.
  • electrostatic explosion is repeated as primary, secondary, and in some cases tertiary.
  • a nanofiber made of a polymer having a submicron diameter is manufactured.
  • a raw material liquid in which a solute such as a resin is dispersed or dissolved in a solvent is discharged (injected) into the space with a nozzle or the like, and a charge is applied to the polymer solution to charge the space.
  • nanofibers are obtained by electrically stretching a polymer solution.
  • the polymer solution charged and discharged into the space gradually evaporates the solvent while flying through the space.
  • the volume of the polymer solution in flight gradually decreases, but the charge imparted to the polymer solution remains in the polymer solution.
  • the charge density of the polymer solution flying in space gradually increases. Since the solvent continues to evaporate, the charge density of the polymer solution further increases, and the repulsive Coulomb force generated in the polymer solution is higher than the surface tension of the polymer solution.
  • a phenomenon occurs in which the molecular solution is stretched linearly explosively. Such an electrostatic stretching phenomenon occurs in a geometric series one after another in the space, so that nanofibers made of a polymer having a diameter of submicron order are manufactured.
  • a three-dimensional thin film having a three-dimensional network can be obtained, and by forming it thicker, it has a submicron network.
  • a highly porous web can be produced.
  • the highly porous webs thus produced can be suitably applied to filters, battery separators, polymer electrolyte membranes and electrodes of fuel cells, etc., and by applying this highly porous web made of nanofibers, respectively. It can be expected to dramatically improve the performance.
  • the conventional electrospinning method uses a repulsive force and a suction force due to electrostatic force (Coulomb force) after the polymer material is once dissolved in a solvent to stretch the polymer material. Therefore, first, the mechanism of stretching, second, the quality of the nanofibers, third, the compatibility between ensuring the quality of the nanofibers and increasing the production amount, and fourth, the types of applicable polymer materials Have technical problems. Regarding the first point, in order to use electrostatic explosion, it is necessary to increase the charge density in the polymer material.
  • the raw material liquid is diluted with a solvent
  • the stretching required for nanofiber formation is initiated, it is geometrically promoted. However, the trigger for starting stretching is lacking in flexibility.
  • the initial dilution of the raw material liquid that is, how much the concentration of the raw material liquid is set must be determined by trial and error.
  • the diameter of the nanofiber is likely to vary, and the substrate is caused by electric field interference and ionic wind.
  • the layer thickness of the nanofiber laminated on the surface is likely to vary.
  • the applied voltage and the polymer are increased in order to increase the production amount of nanofibers in addition to the poor yield.
  • the needle-shaped nozzle is electrically neutralized by electrostatic induction, and it becomes difficult to give a charge to the polymer material. More specifically, a charged nanofiber cloud is formed between the needle-shaped nozzle and the substrate when a polymer material charged with the same polarity by the needle-shaped nozzle is ejected. This charged nanofiber Due to the clouds, charges of the same polarity are electrostatically induced in the needle-like nozzle and are neutralized electrically, making it difficult to continuously charge the polymer material.
  • the polymer material is in the form of droplets or beads and degrades the quality.
  • droplets or beads cause clogging and greatly reduce the filter performance.
  • Non-Patent Document 2 discloses a microfiber manufacturing method and manufacturing apparatus using a melt-type blow method.
  • This microfiber manufacturing apparatus has a blowing nozzle, and the blowing nozzle has an inner thermoplastic resin blowing nozzle and an outer air blowing nozzle arranged concentrically in a nested manner, and the blowing nozzle for thermoplastic resin.
  • An air flow passage extending to the outlet is formed, and an air outlet is disposed on the downstream side in the outlet direction of the thermoplastic resin outlet, concentrically with the thermoplastic outlet, and in the vicinity of the thermoplastic outlet.
  • the outer peripheral surface of the thermoplastic resin blowing nozzle is tapered toward the thermoplastic resin blowing nozzle, and correspondingly, in the vicinity of the air blowing port.
  • the outer peripheral surface of the air blowing nozzle is also tapered, so that the air flowing through the air annular channel around the air blowing port is for the thermoplastic resin as opposed to the thermoplastic resin blowing out from the thermoplastic resin blowing port.
  • the air annular flow path portion is formed in a tapered shape so as to collide with the downstream side from the air outlet and the upstream side from the air outlet.
  • This method is a melt spinning method in which a nonwoven fabric is formed from a thermoplastic resin in one step.
  • a thermoplastic resin melted by an extruder is heated at a high temperature and high pressure from a nozzle having several hundred to 1000 or more nozzles per meter in the width direction.
  • a thermoplastic resin that is blown out into a string using air flow and stretched into a fiber is accumulated on a conveyor, and the fibers are entangled and fused between them, thereby making it possible to produce self-adhesive ultrafine fibers that do not require a binder.
  • a web is formed.
  • thermoplastic resin is heated and melted without being dissolved in a solvent
  • electrostatic force is used for stretching the polymer material.
  • the above technical problem caused by electric field interference, ion wind or electrostatic induction can be solved in that the flow of the thermoplastic resin is drawn into the air flow.
  • the diameter reduction of the thermoplastic resin is at the micro level, and it is difficult to produce nanofibers. More specifically, the flow of high-speed air ejected from a single air blowing nozzle is collided with the flow of thermoplastic resin ejected from a single thermoplastic resin blowing port, and the diameter is further reduced. Therefore, if the speed of air is increased, shortening or particle formation is caused during stretching. Furthermore, when the air speed is increased, the molten thermoplastic resin is cooled, and stretching is limited. Second, it is difficult to efficiently produce a large amount of fiber at once.
  • the solvent-type blow type is adopted instead of the melt-type blow type, the polymer material is dissolved in the solvent, thereby reducing the viscosity of the polymer material so that it can be stretched. Since the solvent is contained, the yield of nanofiber is poor. Therefore, if the low yield is compensated by increasing the injection flow rate of the polymer material, the higher the injection speed of the polymer material, the more the evaporation of the solvent is promoted and the viscosity of the polymer material increases. If the jetting speed of is constant, the degree of stretching due to the entrainment of the polymer material in the air flow decreases.
  • Patent Document 3 discloses a nanofiber manufacturing apparatus and manufacturing method in which an air blowing method and an electrospinning method are combined in a melt type. More specifically, by supplying a polymer material in a molten state to a needle-like nozzle to which a high voltage is applied, a charge is charged in the polymer material that flows out linearly from the needle-like nozzle, In addition to receiving a repulsive force, high-temperature and high-speed air is blown in a direction substantially perpendicular to the injection direction from the nozzle, and the flow of the polymer material is entrained in the high-temperature and high-speed air. The polymer material is stretched by being entrained in the air.
  • the air injection speed and voltage to achieve the desired nanofiber diameter due to stretching the polymer material by repulsion due to charge and entrainment in high temperature and high speed air It takes considerable trial and error to adjust the height of the fiber, making it difficult to produce stable nanofibers. More specifically, in particular, since the injection direction of the polymer material due to the repulsive force from the nozzle and the air blowing direction are substantially orthogonal, the higher the voltage, the higher the repulsive force from the nozzle. Is likely to enter a high-speed flow at the center of a high-temperature and high-speed air flow, and a rapid entrainment due to the high-speed flow at the center tends to cause shortening or particle formation of the polymer material. On the other hand, as the air injection speed is increased, the air itself is cooled before the polymer material is entrained, and it becomes difficult to cool the polymer material and maintain the molten state during entrainment.
  • the hybrid method is performed by the melt method instead of the solvent method, for the air blow method, the polymer material is melted in advance, thereby contributing to stretching by setting the viscosity to a predetermined value or less.
  • the solvent is evaporated during the injection, and the charge density is rapidly increased to achieve explosive stretching. Unlikely, it is not predictable how much stretching is possible.
  • JP 2002-201559 Tapils website Melt-Blown manufacturing method JP 2014-111850
  • the object of the present invention is to form a nanofiber that can be reduced in diameter while ensuring a production amount without causing shortening or particle formation while being a simple and compact device.
  • a nanofiber manufacturing apparatus comprising an injection nozzle head for use and an injection nozzle head for forming nanofibers.
  • the object of the present invention is to provide a nanofiber that can be used for general-purpose production of nanofibers having a desired fiber diameter and / or entanglement degree regardless of the type of the polymer material without variation in quality.
  • a manufacturing apparatus is provided.
  • the nanofiber-forming jet nozzle head of the present invention is: A plurality of polymer material injection ports for injecting a molten polymer material having a predetermined viscosity or less, and at least air heated to a temperature higher than the temperature of the polymer material in the molten state, based on at least the injection speed of the polymer material in the molten state A single air injection port that injects in the same direction as the injection direction of the molten polymer material at high speed, The plurality of macromolecules so that the polymer material in a molten state ejected from each of the plurality of polymer material ejection ports is caught in a flow of air ejected from the single air ejection port and extends in the ejection direction.
  • the material injection port is configured to be provided on the downstream side in the injection direction from the single air injection port around the single air injection port.
  • the nanofiber-forming jet nozzle head having the above configuration, at least a molten polymer material is melted from the air jet port while jetting a molten polymer material having a predetermined viscosity or less from the polymer material jet port.
  • the melt injected from the polymer material injection port The plurality of polymer material injection ports are arranged around the single air injection port so that the polymer material in the state is caught in the air flow from the single air injection port and extends in the injection direction.
  • the polymer material Since it is provided downstream from the air injection port in the injection direction, when the flow of the molten polymer material having a predetermined viscosity or less is caught in the air flow, the polymer material is cooled to the melting point or less by the air. Without being stretched in the injection direction by the flow of air and thereby reduced in diameter, depending on the type of polymer material, for example, the flow rate of the molten polymer material is reduced while the air injection speed is increased. It is possible to form nanofibers by adjusting the above.
  • the single air injection port constitutes the most contracted diameter opening portion, and has a divergent nozzle that spreads in the air injection direction from the single air injection port.
  • the nozzle peripheral end portion around the widest diameter opening portion of the divergent nozzle is shaped so that the air flow from the widest diameter opening portion of the divergent nozzle is parallel to the flow of the molten polymer material. It is good to be taken.
  • the divergent nozzle has an axisymmetric structure in which a symmetric axis is arranged along the air injection direction, and the single air injection port is a circular opening, and the symmetric axis passes through the center thereof. It is good to be done.
  • the divergent nozzle may have a truncated cone shape. Furthermore, it is preferable that each of the plurality of polymer material injection ports is provided outside the widest diameter opening of the divergent nozzle. Furthermore, the divergent angle of the divergent nozzle is lower than the high-speed central flow around the high-speed central flow region until the air flow injected from the single air injection port reaches the plurality of polymer material injection ports. It is preferable to set so that a sufficient space is formed to form the air flow region.
  • the plurality of polymer material injection ports are arranged concentrically around the single air injection port, and the polymer material injection ports adjacent in the circumferential direction are spaced apart from each other by a predetermined angle. Is good. Furthermore, it is preferable that the plurality of polymer material injection ports are arranged in a multilayer shape with the single air injection port as a center.
  • the nanofiber-forming jet nozzle head is a monolithic solid body having opposing end surfaces and a peripheral side surface between the opposing end surfaces,
  • the plurality of polymer material injection ports and the widest diameter opening of the divergent nozzle are formed on one end surface of the opposed end surfaces,
  • one end opening forms the polymer material injection opening, and a polymer material through-hole forming a flow path of the polymer material is provided, and one end opening is the single opening.
  • An air through hole is formed, forming an air injection opening and constituting an air flow path
  • the divergent nozzle may be configured as a through passage that communicates with the other end opening of the air through hole and extends toward one end face of the opposing end face.
  • the interval in the injection direction between the plurality of polymer material injection ports and the single air injection port, and the interval on the one end surface of the plurality of polymer material injection ports and the single air injection port Is preferably set so that the nanofiber diameter can be achieved according to the flow rate of air and the flow rate of the polymer material.
  • the other end opening of the through hole for polymer material is provided on the other end surface of the opposed end surface, and the through hole for polymer material extends in the longitudinal direction of the monolithic solid body,
  • the other end opening of the air through hole may be provided on the peripheral side surface, and the polymer material through hole may have a portion extending in a direction crossing the longitudinal direction of the monolithic solid body.
  • a concave polymer material reservoir is formed on the other end surface of the opposing end surfaces, Each of the polymer material through holes may communicate with the polymer material reservoir.
  • the nanofiber production apparatus of the present invention comprises: An injection nozzle head for forming nanofibers according to any one of claims 1 to 13, A polymer material supply unit for supplying a polymer material toward the nanofiber-forming jet nozzle head; An air supply unit that supplies air toward the nanofiber-forming injection nozzle head;
  • the polymer material supply unit includes a polymer material heating unit and a polymer material kneading and conveying unit.
  • the air supply unit includes an air heating unit and an air pressure feeding unit.
  • the polymer material supply unit has a cylindrical body constituting a kneading and conveying space for the polymeric material therein, and the cylindrical body is provided with an inlet for receiving a bead-shaped polymeric material raw material, In the kneading and conveying space, a spiral screw for kneading and conveying the bead-shaped polymer material raw material is disposed, A band heater is wound around the outer peripheral surface of the nanofiber-forming spray nozzle head and the outer peripheral surface of the portion corresponding to the kneading and conveying space of the cylindrical body, The nanofiber-forming injection nozzle head has the other end face abutted against the end face of the cylindrical body so that the axial direction thereof coincides with the axial direction of the helical screw. It is good to be provided.
  • a cleaning liquid supply unit for cleaning the plurality of polymer material through holes is provided, and the cleaning liquid supply unit is provided from the other end opening of each of the plurality of polymer material through holes to one end opening.
  • the cleaning liquid may be supplied to the inside.
  • it has an external air conveyance pipe connected so as to be able to communicate with the other end opening of the air through hole,
  • the air heating means is a band-type air heater wound around the outer peripheral surface of the air pressure feeding means and the external air conveyance pipe,
  • the air pressure feeding means may be an air air compressor connected to an end of the external air conveyance pipe.
  • a polymer material temperature detecting means for detecting the temperature of the polymer material in the kneading and conveying space, and a flow rate of the polymer material kneaded and conveyed from the kneading and conveying space toward the plurality of polymer material through holes.
  • the nanofiber manufacturing apparatus may be a portable type with a caster.
  • a plurality of nanofiber-forming injection nozzle heads that differ in at least one of the intervals in the injection direction from the injection ports and the intervals on the one end face of the plurality of polymer material injection ports and the single air injection port And may be selected from the plurality of nanofiber forming nozzle heads according to the type of polymer material.
  • each of the through holes for the polymer material includes an enlarged diameter portion communicating with the polymer material reservoir, a reduced diameter portion communicating with the polymer material injection port, the enlarged diameter portion, and the reduced diameter portion. It is preferable to have a tapered portion that connects the two.
  • the polymer material may include a thermoplastic resin, a thermoplastic elastomer, polycaprolactone, polylactic acid, polyglycolic acid, collagen, polyhydroxybutyric acid, polyvinyl acetate, and a polypeptide.
  • a nanofiber manufacturing apparatus according to a first embodiment of the present invention will be described below in detail with reference to the drawings.
  • the raw materials of the nanofiber include polypropylene, polyethylene, polystyrene, polyethylene oxide, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, poly-m-phenylene terephthalate, poly-p-phenylene isophthalate, polyvinylidene fluoride, polyfluoride.
  • a plastic resin can be illustrated, 1 type chosen from these may be sufficient, and multiple types may be mixed.
  • the nanofiber manufacturing apparatus 10 includes a nanofiber-forming injection nozzle head 12, a thermoplastic resin supply unit 14 that supplies a thermoplastic resin toward the nanofiber-forming injection nozzle head 12, An air supply unit 16 that supplies air toward the fiber forming jet nozzle head 12.
  • the thermoplastic resin supply unit 14 includes a thermoplastic resin heating unit 18 and a thermoplastic resin kneading and conveying unit 20.
  • the air supply unit 16 includes an air heating unit 22 and an air pressure feeding unit 24.
  • the thermoplastic resin supply unit 14 has a cylindrical barrel constituting a kneading and conveying space 26 for the thermoplastic resin therein, and the barrel is made of a thermoplastic resin material in the form of beads or pellets.
  • the kneading and conveying space 26 is provided with a helical screw 30 for kneading and conveying the thermoplastic resin material, and a band-like shape is provided on the outer peripheral surface of the portion corresponding to the kneading and conveying space 26 of the cylindrical body.
  • the heaters 32A, B, and C are wound in a state of being spaced apart from each other in the axial direction of the barrel, and the nanofiber-forming injection nozzle head 12 has an axial direction that coincides with the axial direction of the spiral screw 30.
  • the other end face 54B is abutted with the end face of the cylindrical body, so that it is provided in front of the spiral screw 30.
  • the nanofiber-forming injection nozzle head 12 is connected and fixed to the barrel side through a plurality of screw holes 57 in a screwed form.
  • the tip of the spiral screw 30 is provided so as to face the thermoplastic resin reservoir 62 of the nanofiber forming injection nozzle head 12 described later.
  • the spiral screw 30 is connected to a screw drive motor 31 at its proximal end, supported by a barrel via a rotary bearing (not shown), and is driven to rotate about the axial direction of the barrel by the screw drive motor 31.
  • a funnel-shaped hopper 28 for supplying the thermoplastic resin to the barrel is attached to the base end side of the barrel, and the thermoplastic resin is supplied into the kneading and conveying space 26 of the barrel through the hopper 28 in the form of pellets or beads. .
  • the barrel is divided into a plurality of temperature control zones, for example, Z1 to Z5 along the axial direction.
  • band heaters 32A, B, C are provided so as to surround the barrel.
  • a band heater 32D is installed on the peripheral side surface 56 of the nanofiber forming jet nozzle head 12 in the same manner as the barrel.
  • a cooling device 35 is provided on the hopper 28 side of the barrel corresponding to the temperature control zone Z1.
  • the outer surface temperature of the barrel is set to be a band heater so that the thermoplastic resin gradually melts as the temperature of the thermoplastic resin approaches each of the thermoplastic resin injection ports 42.
  • the heating temperature of 32A ⁇ the heating temperature of the band heaters 32B and C ⁇ the heating temperature of the band heater 32D, so that the temperature of the thermoplastic resin in the barrel corresponding to each temperature control zone Z2 to Z4 is set. adjust.
  • the nanofiber forming injection nozzle head 12 includes a plurality of thermoplastic resin injection ports 42 for injecting a molten thermoplastic resin having a predetermined viscosity or less, and at least a molten thermoplastic resin. And a single air injection port 44 that injects air heated to a temperature higher than the temperature of at least the same direction as the injection direction of the molten thermoplastic resin at a speed higher than the injection speed of the molten thermoplastic resin.
  • Each of the plurality of thermoplastic resin injection ports 42 has a circular shape with the same diameter, and for example, the diameter is 0.4 mm.
  • the single air injection port 44 has a circular shape, for example, a diameter of 2 mm.
  • the plurality of thermoplastic resins so that the thermoplastic resin in a molten state injected from each of the plurality of thermoplastic resin injection ports 42 is caught in the flow of air injected from the single air injection port 44 and extends in the injection direction.
  • the injection port 42 is provided around the single air injection port 44 and downstream of the single air injection port 44 in the injection direction.
  • An air compressor 16 that forms compressed air having a desired pressure is provided at the distal end of the external air conveyance pipe 61 so as to supply the compressed air via the external air conveyance pipe 61 and the internal air conveyance pipe 60.
  • the external air conveyance pipe 61 is connected to the nanofiber-forming injection nozzle head 12 so as to be able to communicate with the internal air conveyance pipe 60 in a threaded form.
  • a band-type air heater 22 is wound around the outer peripheral surface of the external air conveyance pipe 61, and when the air pressure-fed from the air compressor 16 flows through the external air conveyance pipe 61, the band-type air heater 22 causes at least thermoplasticity of the air. The temperature is higher than the melting temperature of the resin.
  • the single air injection port 44 constitutes a diameter-reduced diameter opening 46 and has a divergent nozzle 48 that spreads from the single air injection port 44 in the air injection direction.
  • the divergent nozzle 48 has a truncated cone shape with an axially symmetrical structure in which a symmetric axis is arranged along the air injection direction, and the single air injection port 44 is a circular opening so that the symmetric axis passes through the center thereof. Be placed.
  • the divergent angle ⁇ of the divergent nozzle 48 is such that the air flow that is ejected from the single air injection port 44 has a lower speed than the high-speed central flow A around the high-speed central flow A until the air flow reaches the plurality of thermoplastic resin injection ports 42.
  • the nozzle peripheral end 52 around the maximum diameter opening 50 of the divergent nozzle 48 is cylindrical.
  • thermoplastic resin injection ports 42 are disposed concentrically around the single air injection port 44 around the single-diameter injection port 44 on the outer side of the largest-diameter opening 50 of the divergent nozzle 48 and are adjacent to each other in the circumferential direction.
  • the thermoplastic resin injection ports 42 are spaced at a predetermined angular interval. Specifically, five thermoplastic resin injection holes 42A to 42E are arranged at equiangular intervals.
  • the angular interval between the thermoplastic resin injection ports 42 adjacent in the circumferential direction is not in contact with each other until the thermoplastic resin injected from each injection port is caught in the air flow, as will be described later. And after extending
  • the nanofiber-forming jet nozzle head 12 is a monolithic solid body having opposed end faces 54A, B and a peripheral side face 56 between the opposed end faces 54A, 54B.
  • the monolithic solid body is cylindrical, and the material is made of SUS.
  • the plurality of thermoplastic resin injection ports 42 and the widest diameter opening 50 of the divergent nozzle 48 are formed on one end surface 54A of the opposing end surfaces 54A, B, and one end opening is thermoplastic in the monolithic solid body.
  • the resin injection port 42 is formed, and a thermoplastic resin through-hole 58 constituting a flow path of the thermoplastic resin is provided, and one end opening forms a single air injection port 44 to form an air flow path.
  • the air through hole 60 is provided, and the divergent nozzle 48 is configured as a through passage that communicates with the other end opening of the air through hole 60 and extends toward one end face 54A of the opposing end faces 54A, B. .
  • Each of the through holes 58 for thermoplastic resin includes a diameter-expanded portion 61 that communicates with the thermoplastic resin reservoir 62, a diameter-reduced portion 59 that communicates with the thermoplastic resin injection ports 42A to 42E, a diameter-expanded portion 61, and a diameter-reduced portion. And a taper portion 55 that connects to 59.
  • the diameter-expanded portion 61 and the thermoplastic resin reservoir portion 62 are used as a buffer space for the thermoplastic resin to ensure smooth injection of the thermoplastic resin from the thermoplastic resin injection port 42.
  • the diameter ratio between the enlarged diameter portion 61 and the reduced diameter portion 59 may be determined from such a viewpoint.
  • the other end opening of the through hole 58 for thermoplastic resin is provided on the other end face 54B of the opposing end surfaces 54A and 54B.
  • the through hole 58 for thermoplastic resin extends in the longitudinal direction of the monolithic solid body and is used for air.
  • the other end opening of the through hole 60 is provided on the peripheral side surface 56, and the air through hole 60 has a portion extending in a direction intersecting the longitudinal direction of the monolithic solid body.
  • the air through hole 60 is substantially L-shaped, and the thermoplastic resin is used to avoid interference because the air through hole 60 is provided below the nanofiber-forming injection nozzle head 12.
  • the injection ports 42A to 42E are provided in the upper part of the nanofiber forming injection nozzle head 12.
  • the interval D1 in the injection direction between the plurality of thermoplastic resin injection ports 42 and the single air injection port 44 and the interval D2 on one end face 54A of the plurality of thermoplastic resin injection ports 42 and the single air injection port 44 are as follows: Depending on the injection flow rate of air and the injection flow rate of the thermoplastic resin, the stretching required for the thermoplastic resin can be achieved.
  • thermoplastic resin reservoir 62 On the other end face 54B of the facing end faces 54A, 54B, a hollow thermoplastic resin reservoir 62 is formed, and the nanofiber forming injection nozzle head 12 is fixed to the end face of the barrel in a threaded manner.
  • the tip of the spiral screw 30 extends to the thermoplastic resin reservoir 62, communicating with the kneading and conveying space 26 inside.
  • Each of the through holes 58 for thermoplastic resin communicates with the thermoplastic resin reservoir 62.
  • the thermoplastic resin reservoir 62 has a tapered shape in the upstream direction of injection, and may be, for example, a truncated cone having an axially symmetric structure.
  • the diameter of the bottom surface of the truncated cone may be determined from the viewpoint that each through hole 58 for thermoplastic resin can be connected to the outer peripheral surface of the truncated cone.
  • the collection part 50 consists of a collection drum, for example, and it is made to collect nanofiber on the surrounding surface of a drum. When the nanofiber member or the nanofiber cotton is manufactured, the collection drum may be reciprocated in the axial direction of the drum during the manufacture of the nanofiber in order to adjust the layer thickness.
  • thermoplastic resin temperature detecting means 80 for detecting the temperature of the thermoplastic resin in the kneading and conveying space 26, and kneading and conveying from the kneading and conveying space 26 toward a plurality of through holes for thermoplastic resin.
  • thermoplastic resin flow rate detection means 82 for detecting the flow rate of the thermoplastic resin to be performed
  • the air temperature detection means 84 for detecting the temperature of the air in the air flow path
  • the air flow rate for detecting the flow rate of the air in the air flow path Detection means 86 is provided, and based on the temperature of the thermoplastic resin detected by the thermoplastic resin temperature detection means 80 and the flow rate of the thermoplastic resin detected by the thermoplastic resin flow rate detection means 82, the band heater 32A , B, C, and D and the number of revolutions of the spiral screw 30 are controlled, the air temperature detected by the air temperature detecting means 84, and the air flow rate detecting means Based on the air flow rate detected by the stage 86, a control unit 88 that controls the heating amount of the band type air heater 22 and the discharge pressure of the air compressor 16 is provided.
  • the control unit 88 may be a computer including a CPU, a memory, and a display, and performs centralized control of the air compressor 16, the drive motor 31, the band heaters 32A, B, C, and D, the cooling device 35, and the band heater 22, The operator is notified of the operating state of the nanofiber manufacturing apparatus 10.
  • the operating state of the nanofiber manufacturing apparatus 10 is displayed on, for example, a display on the operation panel.
  • the control unit 88 based on the temperature of the thermoplastic resin detected by the thermoplastic resin temperature detection means 80 and the flow rate of the thermoplastic resin detected by the thermoplastic resin flow rate detection means 82, the band heater 32A.
  • the heating amount of the band type air heater 22 and the discharge pressure of the air compressor 16 are controlled, the temperature difference between the target temperature of the air and the target temperature of the thermoplastic resin, the target flow rate of the air and the target flow rate of the thermoplastic resin If the target temperature and target flow rate of the thermoplastic resin are set in advance, the target temperature of air and the target flow rate of air are automatically set. You may make it set to.
  • thermoplastic resin material depending on the type of thermoplastic resin material used, along with the melting point data of the thermoplastic resin material, the temperature difference between the target temperature of the air and the target temperature of the thermoplastic resin, and the target flow rate of the air and the target flow rate of the thermoplastic resin It is also possible to create a flow rate difference table.
  • a cleaning liquid supply unit 34 for cleaning the plurality of through holes 58 for thermoplastic resin is provided, and the cleaning liquid supply unit 34 has one end from the other end opening 56B of each of the plurality of through holes 58 for thermoplastic resin.
  • a cleaning liquid is supplied to the inside toward the opening 56A.
  • the nanofiber manufacturing apparatus 10 may be a portable type with a caster, and, for example, when recycled PET is used as a raw material, the compact nanofiber manufacturing apparatus 10 is transported to the collection site of the recycled PET, Nanofibers may be produced on the spot.
  • the nanofiber forming injection nozzle head 12 in the nanofiber forming injection nozzle head 12, each of the plurality of thermoplastic resin injection ports 42 and the diameter of the single air injection port 44, the plurality of thermoplastic resin injection ports 42 and the single air injection port 44.
  • a plurality of nanofiber-forming injection nozzle heads that differ in at least one of the interval D1 in the injection direction and the interval D2 on one end face 54A of the plurality of thermoplastic resin injection ports 42 and the single air injection port 44 12 may be prepared, and selected from a plurality of nanofiber forming nozzle heads 12 according to the type of thermoplastic resin. Thereby, it is possible to more reliably produce nanofibers having a desired diameter regardless of the type of thermoplastic resin.
  • thermoplastic resin injection port 42 At least molten heat is injected from the air injection port 44 while injecting a molten thermoplastic resin having a predetermined viscosity or less from the thermoplastic resin injection port 42.
  • the air heated to a temperature higher than the temperature of the thermoplastic resin is jetted in the same direction as the jet direction of the molten thermoplastic resin at least at a higher speed than the jet speed of the molten thermoplastic resin, the thermoplastic resin injection port 42.
  • the plurality of thermoplastic resin injection ports so that the molten thermoplastic resin injected from the thermoplastic resin injection port 42 is caught in the air flow from the single air injection port 44 and extends in the injection direction.
  • thermoplastic resin 42 is provided around the single air injection port 44 on the downstream side in the injection direction from the single air injection port 44, so that the flow of the molten thermoplastic resin having a predetermined viscosity or less When being entrained in the flow of air, it is not cooled to below the melting point by air, but is stretched in the injection direction by the air flow, thereby reducing its diameter, and depending on the type of thermoplastic resin, for example, melting Nanofibers can be formed by adjusting the flow rate of the thermoplastic resin in the state while adjusting the air injection speed.
  • the operation of the nanofiber manufacturing apparatus 10 having the above configuration, including the nanofiber manufacturing method, will be described in detail below with reference to FIG. 6 in particular.
  • the nanofiber manufacturing method uses a nanofiber manufacturing apparatus 10 to inject a thermoplastic resin that is heated and melted so as to have a predetermined viscosity or less into a thread shape, while entraining the flow of the thermoplastic resin.
  • the air compressor 16 is driven, and air is supplied toward the nanofiber-forming injection nozzle head 12 through the external conveyance pipe 61 so that the injection speed is higher than the injection speed of the thermoplastic resin. At that time, air is heated by the band heater 22 so that the temperature becomes higher than the melting temperature of the thermoplastic resin.
  • high-temperature and high-pressure air is ejected from the single air ejection port 44 in the horizontal direction through the internal conveyance pipe 60. At that time, the center flow A is generated by the high-temperature and high-pressure air, a pressure difference is generated around the center flow A, and the peripheral flow B of the low-speed and low-pressure air is generated from the center flow A.
  • thermoplastic resin is injected from each of the thermoplastic resin injection ports 42A to 42E. More specifically, a bead-shaped or pellet-shaped thermoplastic resin raw material is supplied from the hopper 28 into the barrel, and the thermoplastic resin raw material is heated by the band heaters 32A, B, C provided on the outer peripheral surface of the barrel. At the same time, the helical screw 30 rotated by the drive motor 61 is kneaded and conveyed toward the nanofiber forming injection nozzle head 12. In this case, while the thermoplastic resin raw material is kneaded and conveyed by the band type heaters 32A, 32B, and 32C, it is gradually heated so as to be in a molten state, while the hopper 28 is overheated by the cooling device.
  • control unit 88 controls the cooling device 35 and the band heaters 32A, B, C, and D to reach the respective target temperatures based on the detection result of the thermoplastic resin temperature detection means 80. .
  • the detection result of the thermoplastic resin temperature detecting means 80 provided in the barrel is output to the control section 88, and the control section outputs the output value (barrel temperature) of the thermoplastic resin temperature detecting means 80.
  • the control section outputs the output value (barrel temperature) of the thermoplastic resin temperature detecting means 80.
  • the set target temperature the correction value is calculated, and based on the correction value, the controller 88 controls the driving of the band heater 32A.
  • the target temperature is set to a different value in each temperature control zone.
  • the molten thermoplastic resin raw material temporarily accumulates in the thermoplastic resin reservoir 62 and horizontally extends from the thermoplastic resin injection holes 42A to 42E via the thermoplastic resin through holes 58A to 58E, respectively. Spray. More specifically, the molten thermoplastic resin raw material stored in the thermoplastic resin reservoir 62 is supplied to each of the through holes 58A to 58E for the thermoplastic resin almost evenly.
  • the thermoplastic resin injection ports 42A to 42E are reached through the portion 61, the tapered portion 55, and the reduced diameter portion 59.
  • the expanded diameter portion 61 further functions as a temporary reservoir so that the molten thermoplastic resin material can be smoothly injected without causing a stagnation from the thermoplastic resin injection ports 42A to 42E. ing.
  • the injection direction of the thermoplastic resin material in the molten state injected from each of the thermoplastic resin injection ports 42A to 42E is made substantially parallel to the air flow injected from the single air injection port 44.
  • thermoplastic resin is injected at a higher injection speed than at least the injection speed of the thermoplastic resin so as to entrain the flow of the thermoplastic resin while injecting the thermoplastic resin heated and melted so as to have a predetermined viscosity or less into a thread shape.
  • air heated to at least a temperature higher than the heating temperature is jetted, and thereby the filament-like molten thermoplastic resin is stretched to be nanoscaled to the nano level.
  • thermoplastic resin When injecting air, along the injection direction, a high-speed central flow region A and a surrounding peripheral flow region B around the central flow region A are generated, and by injecting the thermoplastic resin, The thermoplastic resin is drawn by being gradually wound from the outer periphery of the peripheral flow region B toward the central flow region A.
  • the molten thermoplastic resin raw material injected into the thread form from each of the thermoplastic resin injection ports 42 ⁇ / b> A to 42 ⁇ / b> E is caught in the air flow injected from the single air injection port 44.
  • the flow C of the thermoplastic resin is first entangled in the low-speed peripheral flow B toward the central flow A, where the thread-like thermoplastic resin is stretched and further entrapped in the central flow A. More stretched, the thread-shaped thermoplastic resin is reduced in diameter, and D3 forms a stretched region.
  • thermoplastic resin maintained in the molten state is gradually stretched stepwise and proceeds to the collecting unit 50 while being entangled in the air, so that the thermoplastic resin is conventionally obtained. It is possible to effectively prevent short fibers or particles from being formed by rapidly stretching the flow.
  • thermoplastic resin injection ports 42A to 42E are respectively provided.
  • the single air injection port 44 is shared, thereby reducing the amount of air required to manufacture nanofibers compared to a one-to-one correspondence between the thermoplastic resin injection port and the air injection port. It is possible to manufacture the manufactured nanofibers at low cost.
  • the distance D1 in the injection direction between the single air injection port 44 and the thermoplastic resin injection port 42 the air injected from the single air injection port 44 directly hits the thermoplastic resin injection port 42 to generate heat.
  • thermoplastic resin injection port 42 By adjusting the radial distance D2 between the single air injection port 44 and the thermoplastic resin injection port 42, the degree of entrainment of the thermoplastic resin in the air flow is adjusted when the air injection flow rate is constant. Is possible.
  • thermoplastic resin is collected as filamentous long fibers (filament yarns) in the collection unit 50. It has a step of collecting by receiving nanofibers generated in the air.
  • the thermoplastic resin adhering to the insides of the through holes 58A to 58E for the thermoplastic resin may be cleaned with a cleaning liquid. Thereby, clogging of the through holes 58A to 58E for the thermoplastic resin can be effectively prevented.
  • the heating temperature and the injection flow rate of the thermoplastic resin are determined, and based on the determined heating temperature and injection flow rate of the thermoplastic resin, Determine the heating temperature and injection flow rate.
  • the method has a step of adjusting the range covered by the high-speed central flow region and the low-speed peripheral flow region by adjusting the air injection flow rate.
  • thermoplastic resin temperature, jet flow rate, air temperature, jet flow rate as control parameters, depending on the type of thermoplastic resin, especially the melting point
  • a band heater 32 that heats the thermoplastic resin
  • a drive motor 31 that rotationally drives the helical screw 30.
  • the band heater 22 for heating the air and the air air compressor 16 for supplying the air are controlled.
  • the rotational speed of the helical screw 30 is increased by the drive motor 31 and the thermoplastic resin is increased.
  • the heating amount per hour of the band heaters 32A, B, C, and D is increased accordingly.
  • the air injection flow rate is increased by the air-air compressor 16 so as to be commensurate with it, and the viscosity is lowered further by the air injected by the thermoplastic resin to be injected. Therefore, the air is further heated by the band heater 22.
  • the rotational speed of the helical screw 30 is increased by the drive motor 31 and the injection flow rate of the thermoplastic resin is increased.
  • the heating amount per hour of the band heaters 32A, B, C, D is increased accordingly.
  • the air injection flow rate is increased by the air air compressor 16 more than the amount commensurate with the increase in the injection flow rate of the thermoplastic resin. Since the air is further cooled by air to cause a decrease in viscosity, the air is further heated by the band heater 22.
  • the air heating stage the air is allowed to be stretched in a state in which the filamentous thermoplastic resin is maintained in a molten state in anticipation of a decrease in the temperature of the air before the flow of the thermoplastic resin is involved.
  • the heating stage of the air may be heated, and the air is heated so that the thermoplastic resin is re-melted at the time of entrainment in anticipation of the temperature of the thermoplastic resin decreasing before being entrained in the air. It's okay. Therefore, in the air heating stage, depending on the air injection speed, the temperature of the air decreases before the thermoplastic resin flow is involved, and / or the air injection speed depends on the thermoplastic resin injection speed. It is preferable to determine the target temperature of the air in anticipation of a decrease in the temperature of the thermoplastic resin before being caught, and to heat the air so that the air reaches the target temperature.
  • the nanofiber-forming jet nozzle head 12 is provided with a configuration of a divergent nozzle 48 and a temperature sensor. More specifically, regarding the form of the divergent nozzle 48, in the first embodiment, the shape of the peripheral edge of the widest opening of the divergent nozzle 48 is cylindrical, whereas in the present embodiment, this is the case.
  • the overall shape of the divergent nozzle 48 is a complete frustoconical shape.
  • a sensor hole 37 is provided in the upper part of the peripheral side surface 56 of the nanofiber-forming injection nozzle head 12, and the temperature sensor is arranged there, and the thermoplastic resin injection holes 42A to 42E.
  • the temperature of the thermoplastic resin immediately before spraying from each is detected, and the amount of the thermoplastic resin necessary for stretching is adjusted by adjusting the heating amount by the band type heater 32 based on the detected temperature of the thermoplastic resin. It is possible to achieve the minimum viscosity more accurately, thereby suppressing the power consumption of the band heater 32.
  • the depth of the sensor hole 37 may be determined from such a viewpoint.
  • thermoplastic resin injection port 42 in the injection nozzle head 12 for forming nanofibers. More specifically, the thermoplastic resin injection ports 42A to 42E are arranged around the single air injection port 44 in a concentric manner with the single air injection port 44 as the center, in the first and second embodiments. Although it is the same as a form, it has the point which arrange
  • thermoplastic resin injection ports 42F to 42J are similarly concentrically around the single air injection port 44 around the thermoplastic resin injection ports 42A to 42E. It is arranged.
  • the inner one-layer thermoplastic resin injection ports 42A to 42E and the outer one-layer thermoplastic resin injection ports 42F to J are alternately arranged, so that, for example, thermoplastic resin injection
  • the thermoplastic resin injected from the port 42A and the thermoplastic resin injected from the thermoplastic resin injection port 42F are brought into contact with each other and do not coalesce before being caught in the air flow.
  • thermoplastic resin injection ports 42A to 42E when it is possible to secure a sufficient radial distance between the inner one-layer thermoplastic resin injection ports 42A to 42E and the outer one-layer thermoplastic resin injection ports 42F to 42J, they are alternately changed. There is no need to place them.
  • a through hole 58 for thermoplastic resin that communicates with the thermoplastic resin reservoir portion 62 is provided in the same manner as the thermoplastic resin injection ports 42A to 42E.
  • the thermoplastic resin injected from each of the thermoplastic resin injection ports 42F to 42J is involved in the air flow injected from the single air injection port 44.
  • thermoplastic resin injection ports 42A to 42J can be individually used for the thermoplastic resin injection ports 42A to 42J by sharing the single air injection port 44. Compared with the case where an air injection port is provided, it is possible to significantly reduce the amount of air necessary for nanofiber formation.
  • the inner one layer of thermoplastic resin injection ports may be provided in the divergent nozzle 48. That is, the divergent nozzle 48 is the same as the first embodiment in that the single air injection port 44 is the most contracted diameter opening, but is not in the shape of a frustoconical shape but a cylindrical portion 72 having a reduced diameter D6, and an enlarged diameter.
  • the annular shoulder portion 76 is provided at the boundary between the cylindrical portion 72 and the cylindrical portion 74, and one inner layer thermoplastic resin injection port is disposed on the annular shoulder portion 76.
  • the radial distance between the single air injection port 44 and the inner layer of the thermoplastic resin injection port is such that the flow of air injected from the single air injection port 44 is the inner layer of the thermoplastic resin injection. If it is set so that the flow of the thermoplastic resin injected from the thermoplastic resin injection port of the inner one layer does not reach the port 42 and can be entrained with respect to the flow of air injected from the single air injection port 44 Good.
  • thermoplastic resin injection ports 42 in the nanofiber forming injection nozzle head 12. More specifically, the thermoplastic resin injection ports 42A to 42E are arranged around the single air injection port 44 in a concentric manner with the single air injection port 44 as the center, in the first and second embodiments. Although it is the same as the form, the thermoplastic resin injection port is arranged on the inclined circumferential surface of the divergent nozzle 48.
  • the divergent nozzle 48 is similar to the first embodiment in that it has a truncated conical shape with the single air injection port 44 as the most contracted diameter opening, but as in the first embodiment, The plastic resin injection port 42 is disposed on the inclined peripheral surface of the divergent nozzle 48 instead of on the facing end surface 54A.
  • the radial distance between the single air injection port 44 and the thermoplastic resin injection port 42 is such that the flow of air injected from the single air injection port 44 does not reach the thermoplastic resin injection port 42, and What is necessary is just to set so that the flow of the thermoplastic resin injected from the plastic resin injection port 42 can be entangled with the flow of air injected from the single air injection port 44.
  • the feature of this embodiment is the shape of the divergent nozzle 48 in the nanofiber-forming jet nozzle head 12. More specifically, in the first embodiment, the divergent nozzle 48 has a frustoconical shape with the single air injection port 44 as the most reduced diameter opening, but in the present embodiment, the divergent nozzle 48 has a cylindrical shape with a diameter D5. Yes.
  • the diameter D5 is set from the single air injection port 44 so that the flow of the thermoplastic resin injected from the thermoplastic resin injection port 42 can be entangled with the air flow injected from the single air injection port 44. What is necessary is just to set so that the flow of the air to be injected may not reach the cylindrical inner peripheral surface until it jumps out from the largest diameter opening 50.
  • the production amount of the nanofiber was 3 Kg / hr.
  • the measurement results of the nanofiber diameter are shown in FIG. 13 and FIG. As shown in FIG. 13, it can be seen that the collected nanofibers are appropriately entangled and do not have short fibers or particles. As shown in FIG. 14, the nanofiber diameter was 86.2 nm, and it was confirmed that nanofibers of 100 nm or less could be produced. Based on the above results, it has been confirmed from this test result that although it is a simple and compact nanofiber manufacturing apparatus, it is possible to reduce the diameter while securing the production amount without causing shortening or particle formation. .
  • the raw material of the nanofiber has been described as a thermoplastic resin, but is not limited thereto, and the melted and heated raw material is jetted and entrained in a flow of high-speed air, and can be stretched.
  • the raw material of the nanofiber has been described as a thermoplastic resin, but is not limited thereto, and the melted and heated raw material is jetted and entrained in a flow of high-speed air, and can be stretched.
  • it can be applied to polycaprolactone, polylactic acid, polyglycolic acid, collagen, polyhydroxybutyric acid, polyvinyl acetate, polypeptide and the like and copolymers thereof.
  • both the thermoplastic resin injection port and the single air injection port are circular openings, and a plurality of thermoplastic resin injections
  • the diameters of all the nozzles are the same, and the angular intervals of the thermoplastic resin injection holes adjacent to each other in the circumferential direction are all assumed to be the same, but the specification required for nanofibers can be achieved without being limited thereto.
  • it is not a circular opening, it may be a non-circular opening, for example, a rectangular opening or an annular opening, and the diameter and angular interval of the thermoplastic resin injection port may be set appropriately.
  • the air flow path is arranged below the nozzle head.
  • the nozzle head may be disposed over the circumferential direction of 360 degrees.
  • thermoplastic resin raw materials may be used as long as injection is possible.
  • the nanofiber product has been described as a thread-like long fiber (filament yarn), but is not limited thereto, and is a two-dimensional (planarized) product form of film, woven fabric, Non-woven fabrics, knitted fabrics, three-dimensional (three-dimensional) product forms, three-dimensional molded products, three-dimensional woven fabrics, knitted fabrics, braids, etc. It can also be used for spinning as a polymer combined with microorganisms.
  • the air injection nozzle has been described as a normal nozzle.
  • the present invention is not limited thereto, and a subsonic or supersonic air injection speed is used to draw and stretch the nanofiber material.
  • a Laval nozzle may be employed to accomplish this.
  • 1 is an overall configuration diagram of a nanofiber manufacturing apparatus 10 according to a first embodiment of the present invention.
  • 1 is an overall view of a nanofiber manufacturing apparatus 10 according to a first embodiment of the present invention. It is sectional drawing of the injection nozzle head 12 for nanofiber formation of the nanofiber manufacturing apparatus 10 which concerns on 1st Embodiment of this invention.
  • 1 is an end view of a nanofiber forming jet nozzle head 12 of a nanofiber manufacturing apparatus 10 according to a first embodiment of the present invention.
  • 1 is an end view of a nanofiber forming jet nozzle head 12 of a nanofiber manufacturing apparatus 10 according to a first embodiment of the present invention.
  • FIG. 6 is an end view of a nanofiber forming spray nozzle head 12 of a nanofiber manufacturing apparatus 10 according to a third embodiment of the present invention, and is a view similar to FIG. 5.

Abstract

[Problem] To provide a nanofibre-forming injection nozzle head and a nanofibre production device equipped with said nanofibre-forming injection nozzle head, which, despite being compact, are capable of achieving small diameters while ensuring an amount of production, without forming short fibres or grains. [Solution] This nanofibre-forming injection nozzle head is characterized by being provided with: a plurality of polymer-material injection ports through which a molten polymer material having a prescribed viscosity or less is injected; and a single air injection port through which air heated to a temperature higher than at least the temperature of the molten polymer material is injected at a speed higher than at least the injection speed of the molten polymer material, in the same direction as the injection direction of the molten polymer material. The nanofibre-forming injection nozzle head is further characterized in that the plurality of polymer-material injection ports are provided around the single air injection port, and downstream from the single air injection port in the injection direction, such that the molten polymer material injected from each of the plurality of polymer-material injection ports is engulfed in the flow of the air injected from the single air injection port, and is stretched in the injection direction.

Description

ナノファイバー形成用噴射ノズルヘッドおよびナノファイバー形成用噴射ノズルヘッドを具備するナノファイバーの製造装置Nanofiber forming spray nozzle head and nanofiber manufacturing apparatus comprising nanofiber forming spray nozzle head
 本発明は、ナノファイバー形成用噴射ノズルヘッドおよびナノファイバー形成用噴射ノズルヘッドを具備するナノファイバーの製造装置に関し、より詳細には、単純かつコンパクトな装置でありながら、短繊維化あるいは粒子化を引き起こすことなく、製造量を確保しつつ細径化が可能なナノファイバー形成用噴射ノズルヘッドおよびナノファイバー形成用噴射ノズルヘッドを具備するナノファイバーの製造装置に関する。 The present invention relates to a nanofiber forming spray nozzle head and a nanofiber manufacturing apparatus including the nanofiber forming spray nozzle head. The present invention relates to an injection nozzle head for forming nanofibers that can be reduced in diameter while ensuring a production amount, and a nanofiber manufacturing apparatus including the injection nozzle head for forming nanofibers.
 ナノファイバーには、現在まで、大別して、超比表面積効果、ナノサイズ効果および超分子配列効果という固有の効果が知られており、これらの効果より以下のような特異な特性を呈する。
 具体的には、超比表面積効果より、分子認識性および吸着特性、ナノサイズ効果より、流体力学的特性および光学特性、超分子配列効果より、電気的特性、力学的特性および熱的特性が、それぞれ従来には見られない特異な特性として認識され、これらの新規な特性に基づいて、たとえば、電気電子分野、フィルタ分野、医療分野、衣料分野、バイオテクノロジー分野、自動車分野、建材分野、エネルギー分野など多様な用途への途が模索されている。
To date, nanofibers are broadly classified into unique effects such as a super specific surface area effect, a nanosize effect, and a supramolecular arrangement effect, and exhibit the following unique characteristics from these effects.
Specifically, from the super specific surface area effect, from the molecular recognition and adsorption characteristics, from the nanosize effect, from the hydrodynamic characteristics and optical characteristics, from the supramolecular arrangement effect, from the electrical characteristics, mechanical characteristics and thermal characteristics, Recognized as unique characteristics not seen in the past, and based on these new characteristics, for example, electrical and electronic fields, filter fields, medical fields, clothing fields, biotechnology fields, automotive fields, building materials fields, energy fields The way to various uses is being sought.
従来、高分子材料を原料とするナノファイバーの製造方法としては、エレクトロスピニング法(電荷誘導紡糸法)が、たとえば、特許文献1に開示されている。
このエレクトロスピニング法による高分子ウェブ製造装置は、液体状態の少なくとも一種の高分子物質が貯蔵されるバレルと、バレルに貯蔵された液状の高分子物質を加圧し供給するポンプと、ポンプにより供給される液状の高分子物質を少なくとも一種の荷電されたノズルを通して噴射する紡糸部と、紡糸部のノズルを通して吐出される高分子物質をいずれか一つの極性に荷電させるための電荷を供給する第1高電圧発生部と、紡糸部の荷電極性と異なる極性に帯電され前記ノズルにより排出される紡糸を積層させながら移送し高分子ウェブを形成するコレクタとを有する。
Conventionally, as a method of producing nanofibers using a polymer material as a raw material, for example, Patent Document 1 discloses an electrospinning method (charge-induced spinning method).
The electrospinning polymer web manufacturing apparatus includes a barrel that stores at least one polymer material in a liquid state, a pump that pressurizes and supplies liquid polymer material stored in the barrel, and a pump that supplies the polymer material. A spinning unit that injects the liquid polymer material through at least one charged nozzle, and a charge that charges the polymer material discharged through the nozzle of the spinning unit to any one polarity. A voltage generation unit, and a collector that forms a polymer web by transporting while laminating the spinning charged to a polarity different from the charged polarity of the spinning unit and discharged from the nozzle.
このような高分子ウェブ製造装置によれば、第1高電圧発生部により高電圧を印加したノズルに向けて、バレル内で溶媒により希釈されて貯蔵された高分子溶液をポンプにより供給することで、ノズルから線状に流出する高分子溶液に電荷が帯電され、高分子溶液の溶媒蒸発に伴って帯電電荷間の距離が小さくなることにより、作用するクーロン力が大きくなり、クーロン力が線状の高分子溶液の表面張力より勝った時点で線状の高分子溶液が爆発的に延伸される現象が生じ、この静電爆発と称する現象が、一次、二次、場合によっては三次等と繰り返されることで、サブミクロンの直径の高分子から成るナノファイバーが製造されるようにしている。 According to such a polymer web manufacturing apparatus, a polymer solution diluted and stored in a barrel with a solvent is supplied by a pump toward a nozzle to which a high voltage is applied by a first high voltage generator. Charge is charged to the polymer solution that flows out linearly from the nozzle, and the distance between the charged charges decreases as the solvent of the polymer solution evaporates, so that the acting Coulomb force increases and the Coulomb force becomes linear. When the surface tension of the polymer solution exceeds the linear tension, a linear polymer solution is stretched explosively, and this phenomenon called electrostatic explosion is repeated as primary, secondary, and in some cases tertiary. As a result, a nanofiber made of a polymer having a submicron diameter is manufactured.
 この方法は、溶媒中に樹脂などの溶質を分散または溶解させた原料液を空間中にノズルなどにより流出(噴射)させるとともに、高分子溶液に電荷を付与して帯電させ、空間を飛行中の高分子溶液を電気的に延伸させることにより、ナノファイバーを得る方法である。 In this method, a raw material liquid in which a solute such as a resin is dispersed or dissolved in a solvent is discharged (injected) into the space with a nozzle or the like, and a charge is applied to the polymer solution to charge the space. In this method, nanofibers are obtained by electrically stretching a polymer solution.
 より具体的には、帯電され空間中に流出された高分子溶液は、空間を飛行中に徐々に溶媒が蒸発していく。これにより、飛行中の高分子溶液の体積は、徐々に減少していくが、高分子溶液に付与された電荷は、高分子溶液に留まる。この結果として、空間を飛行中の高分子溶液は、電荷密度が徐々に上昇することとなる。そして、溶媒は、継続して蒸発し続けるため、高分子溶液の電荷密度がさらに高まり、高分子溶液の中に発生する反発方向のクーロン力が、高分子溶液の表面張力より勝った時点で高分子溶液が爆発的に線状に延伸される現象が生じる。このような静電延伸現象が、空間において次々と幾何級数的に発生することで、直径がサブミクロンオーダーの高分子から成るナノファイバーが製造される。 More specifically, the polymer solution charged and discharged into the space gradually evaporates the solvent while flying through the space. As a result, the volume of the polymer solution in flight gradually decreases, but the charge imparted to the polymer solution remains in the polymer solution. As a result, the charge density of the polymer solution flying in space gradually increases. Since the solvent continues to evaporate, the charge density of the polymer solution further increases, and the repulsive Coulomb force generated in the polymer solution is higher than the surface tension of the polymer solution. A phenomenon occurs in which the molecular solution is stretched linearly explosively. Such an electrostatic stretching phenomenon occurs in a geometric series one after another in the space, so that nanofibers made of a polymer having a diameter of submicron order are manufactured.
 こうして製造されたナノファイバーを電気的に接地されたコレクタ上に堆積させることで、立体的な網目を持つ3次元構造の薄膜を得ることができ、さらに厚く形成することでサブミクロンの網目を持つ高多孔性ウェブを製造することができる。こうして製造された高多孔性ウェブはフィルタや電池のセパレータや燃料電池の高分子電解質膜や電極等に好適に適用することができるとともに、このナノファイバーから成る高多孔性ウェブを適用することによってそれぞれの性能を飛躍的に向上させることが期待できる。 By depositing the nanofibers thus manufactured on an electrically grounded collector, a three-dimensional thin film having a three-dimensional network can be obtained, and by forming it thicker, it has a submicron network. A highly porous web can be produced. The highly porous webs thus produced can be suitably applied to filters, battery separators, polymer electrolyte membranes and electrodes of fuel cells, etc., and by applying this highly porous web made of nanofibers, respectively. It can be expected to dramatically improve the performance.
 しかしながら、従来のエレクトロスピニング法には、高分子材料を延伸化するのに、いったん高分子材料を溶媒に溶解させたうえで、静電気力(クーロン力)による反発力および吸引力を利用していることから、第1に、延伸化のメカニズム、第2に、ナノファイバーの品質、第3に、ナノファイバーの品質確保と製造量増大との両立、第4に、適用可能な高分子材料の種類に関して、技術的問題点を有する。
 第1の点について、静電爆発を利用するのに、高分子材料中での電荷密度の上昇が必要であり、そのために、いったん、原料液を溶媒により希釈化したうえで、高分子材料の噴射により、溶媒を蒸発させ、電荷密度の上昇による電荷の反発力の増大に伴い、延伸化が始まり、それにより表面積が急速に大きくなり、溶媒の蒸発が加速されるというメカニズムを用いていることから、原料液の当初の希釈化が不十分であると、高分子材料の噴射中に電荷密度の上昇が生じないことから、どんなに高電圧を印加しても、延伸化が引き起こされない。以上のように、ナノファイバー化に必要な延伸化はいったん始まると、幾何級数的に促進されるが、延伸化の開始のトリガーは、融通性に欠けることから、たとえば、所望の径範囲のナノファイバーを製造するのに、原料液の当初の希釈化、すなわち原料液の濃度をどの程度に設定するかは、試行錯誤によらざるを得ない。
第2の点について、高分子材料は、電界干渉の影響下、スピンしながら延伸化されることから、ナノファイバーの径にバラつきを生じやすく、また、電界干渉およびイオン風に起因して、基板上に積層するナノファイバーの層厚にもバラつきを生じやすい。
However, the conventional electrospinning method uses a repulsive force and a suction force due to electrostatic force (Coulomb force) after the polymer material is once dissolved in a solvent to stretch the polymer material. Therefore, first, the mechanism of stretching, second, the quality of the nanofibers, third, the compatibility between ensuring the quality of the nanofibers and increasing the production amount, and fourth, the types of applicable polymer materials Have technical problems.
Regarding the first point, in order to use electrostatic explosion, it is necessary to increase the charge density in the polymer material. For that purpose, once the raw material liquid is diluted with a solvent, Uses a mechanism that evaporates the solvent by jetting and stretches as the charge repulsive force increases due to an increase in charge density, thereby rapidly increasing the surface area and accelerating the evaporation of the solvent. Therefore, if the initial dilution of the raw material liquid is insufficient, the charge density does not increase during the injection of the polymer material, and no stretching is caused no matter how high voltage is applied. As described above, once the stretching required for nanofiber formation is initiated, it is geometrically promoted. However, the trigger for starting stretching is lacking in flexibility. In manufacturing the fiber, the initial dilution of the raw material liquid, that is, how much the concentration of the raw material liquid is set must be determined by trial and error.
Regarding the second point, since the polymer material is stretched while spinning under the influence of electric field interference, the diameter of the nanofiber is likely to vary, and the substrate is caused by electric field interference and ionic wind. The layer thickness of the nanofiber laminated on the surface is likely to vary.
 第3の点について、そもそも、高分子材料を溶媒に溶解させ、溶媒を蒸発させていることから、歩留まりが悪いことに加えて、ナノファイバーの製造量を増大するために、印加電圧および高分子材料の圧力を上げると、静電誘導により針状のノズルが電気的に中和し、高分子材料に電荷を与えることが困難となる。
 より詳細には、針状のノズルにより同極性の電荷を付与された高分子材料が噴射すると、針状のノズルと基板との間に、荷電ナノファイバー雲が生成されるところ、この荷電ナノファイバー雲が原因で、針状のノズルには、同極性の電荷が静電誘導され、電気的に中和され、継続的に高分子材料に電荷を与えることが困難となる。それにより、高分子材料は、液滴状あるいはビーズ状となり、品質を劣化させる。
 たとえば、ナノファイバー製のフィルタの場合には、このような液滴あるいはビーズにより、目詰まりの原因となり、フィルタ性能を大きく低下させる。
 加えて、ナノファイバーの製造量を増大するために、針状のノズルを多数用いて、一度に製造する場合、電界干渉を回避するために、隣接するノズル間の間隔を確保する必要があり、ナノファイバー製造装置自体の複雑化、大型化が必須となる。
Regarding the third point, since the polymer material is dissolved in the solvent and the solvent is evaporated, the applied voltage and the polymer are increased in order to increase the production amount of nanofibers in addition to the poor yield. When the pressure of the material is increased, the needle-shaped nozzle is electrically neutralized by electrostatic induction, and it becomes difficult to give a charge to the polymer material.
More specifically, a charged nanofiber cloud is formed between the needle-shaped nozzle and the substrate when a polymer material charged with the same polarity by the needle-shaped nozzle is ejected. This charged nanofiber Due to the clouds, charges of the same polarity are electrostatically induced in the needle-like nozzle and are neutralized electrically, making it difficult to continuously charge the polymer material. As a result, the polymer material is in the form of droplets or beads and degrades the quality.
For example, in the case of a nanofiber filter, such droplets or beads cause clogging and greatly reduce the filter performance.
In addition, in order to increase the production amount of nanofibers, it is necessary to secure an interval between adjacent nozzles in order to avoid electric field interference when using a large number of needle-shaped nozzles at one time. Complicating and increasing the size of the nanofiber manufacturing device itself are essential.
 第4の点について、数万ボルトに及ぶ高電圧を用いることから、引火性溶媒の場合には、爆発の危険性があり、そのために、溶媒としては、水あるいは引火性のない溶媒とする必要があり、このような溶媒に適した高分子材料しか適用しないとすれば、適用可能な高分子材料の種類が限定される。 As for the fourth point, since a high voltage of several tens of thousands of volts is used, there is a risk of explosion in the case of a flammable solvent. For this reason, it is necessary to use water or a non-flammable solvent as the solvent. If only a polymer material suitable for such a solvent is applied, the types of polymer material that can be applied are limited.
 この点、非特許文献2には、メルト式ブロー法によるマイクロファイバーの製造方法および製造装置が開示されている。
  このマイクロファイバーの製造装置は、吹き出しノズルを有し、吹き出しノズルは、内側の熱可塑性樹脂用吹き出しノズルと、外側のエア吹き出しノズルとが入れ子式に同心状に配置され、熱可塑性樹脂用吹き出しノズルは、先端の熱可塑性樹脂用吹き出し口まで延びる熱可塑性樹脂用直線状流路を有し、エア吹き出しノズルは、内側の熱可塑性樹脂用吹き出しノズルの外周面と協働して、先端のエア吹き出し口まで延びるエア用環状流路を形成し、熱可塑性樹脂用吹き出し口と同心状に、熱可塑性樹脂用吹き出し口の吹き出し方向下流側にエア吹き出し口が配置され、熱可塑性樹脂用吹き出し口近傍の熱可塑性樹脂用吹き出しノズルの外周面は、熱可塑性樹脂用吹き出し口に向かって先細形状とされ、それに対応して、エア吹き出し口近傍のエア吹き出しノズルの外周面も先細形状とされ、それにより、エア吹き出し口まわりのエア用環状流路部を流れるエアが、熱可塑性樹脂用吹き出し口から吹き出す熱可塑性樹脂に対して、熱可塑性樹脂用吹き出し口より下流側、エア吹き出し口より上流側でぶつかるように、エア用環状流路部が先細状に形成されている。
In this regard, Non-Patent Document 2 discloses a microfiber manufacturing method and manufacturing apparatus using a melt-type blow method.
This microfiber manufacturing apparatus has a blowing nozzle, and the blowing nozzle has an inner thermoplastic resin blowing nozzle and an outer air blowing nozzle arranged concentrically in a nested manner, and the blowing nozzle for thermoplastic resin. Has a linear flow path for the thermoplastic resin extending to the thermoplastic resin blowing outlet, and the air blowing nozzle cooperates with the outer peripheral surface of the inner thermoplastic resin blowing nozzle to blow the tip air blowing. An air flow passage extending to the outlet is formed, and an air outlet is disposed on the downstream side in the outlet direction of the thermoplastic resin outlet, concentrically with the thermoplastic outlet, and in the vicinity of the thermoplastic outlet. The outer peripheral surface of the thermoplastic resin blowing nozzle is tapered toward the thermoplastic resin blowing nozzle, and correspondingly, in the vicinity of the air blowing port The outer peripheral surface of the air blowing nozzle is also tapered, so that the air flowing through the air annular channel around the air blowing port is for the thermoplastic resin as opposed to the thermoplastic resin blowing out from the thermoplastic resin blowing port. The air annular flow path portion is formed in a tapered shape so as to collide with the downstream side from the air outlet and the upstream side from the air outlet.
この方式は、熱可塑性樹脂から1段階で不織布を形成する溶融紡糸法であり、押し出し機により溶融した熱可塑性樹脂を幅方向1メートル当たり数百ないし1000個以上の口金を有するノズルから高温高圧の空気流れを利用して糸状に吹き出し、繊維状に延伸された熱可塑性樹脂をコンベアー上で集積し、その間に繊維同士の絡み合いおよび融着が起こり、それにより、バインダー不要な自己接着型極細繊維のウェブが形成されるようにしている。
 このようなメルト式ブロー法によれば、熱可塑性樹脂を溶媒に溶解させずに加熱溶融させる点において、歩留まりの低下を抑制可能であり、一方、高分子材料の延伸化について、静電気力を利用せずに、熱可塑性樹脂の流れをエアの流れに引き込むことにより行っている点において、電界干渉、イオン風あるいは静電誘導に起因する上記技術的問題点は解消可能である。
This method is a melt spinning method in which a nonwoven fabric is formed from a thermoplastic resin in one step. A thermoplastic resin melted by an extruder is heated at a high temperature and high pressure from a nozzle having several hundred to 1000 or more nozzles per meter in the width direction. A thermoplastic resin that is blown out into a string using air flow and stretched into a fiber is accumulated on a conveyor, and the fibers are entangled and fused between them, thereby making it possible to produce self-adhesive ultrafine fibers that do not require a binder. A web is formed.
According to such a melt-type blow method, it is possible to suppress a decrease in yield in that the thermoplastic resin is heated and melted without being dissolved in a solvent, and on the other hand, electrostatic force is used for stretching the polymer material. However, the above technical problem caused by electric field interference, ion wind or electrostatic induction can be solved in that the flow of the thermoplastic resin is drawn into the air flow.
しかしながら、このようなメルトブロー法によるマイクロファイバーの製造方法および製造装置には、以下のような技術的問題点が存する。
第1に、熱可塑性樹脂の細径化は、マイクロレベルであり、ナノファイバーを製造することが困難な点である。
より詳細には、単一の熱可塑性樹脂用吹き出し口から噴射する熱可塑性樹脂の流れに対して、単一のエア吹き出しノズルから噴射する高速エアの流れをぶつけており、より細径化をするためにエアを高速化すると、延伸化の際、短繊維化あるいは粒子化を引き起こす。さらに、エアを高速化すると、溶融状態の熱可塑性樹脂が冷却され、延伸化が制限される。
第2に、一度に大量のファイバーを効率的に製造するのが困難な点である。
より詳細には、単一の熱可塑性樹脂用吹き出し口に対して、そのまわりに、個別に、単一のエア吹き出しノズルを配置しているため、一度に大量のファイバーを製造するとすれば、このようなダイを複数準備する必要があり、特に、製造に伴うエアの消費量が飛躍的に増大してしまう。
第3に、製造されるファイバーが不織布に限定され、様々な態様のファイバーを製造するのが困難な点である。
However, there are the following technical problems in the microfiber manufacturing method and manufacturing apparatus by such a melt-blowing method.
First, the diameter reduction of the thermoplastic resin is at the micro level, and it is difficult to produce nanofibers.
More specifically, the flow of high-speed air ejected from a single air blowing nozzle is collided with the flow of thermoplastic resin ejected from a single thermoplastic resin blowing port, and the diameter is further reduced. Therefore, if the speed of air is increased, shortening or particle formation is caused during stretching. Furthermore, when the air speed is increased, the molten thermoplastic resin is cooled, and stretching is limited.
Second, it is difficult to efficiently produce a large amount of fiber at once.
More specifically, since a single air blowing nozzle is individually arranged around a single thermoplastic resin outlet, if a large number of fibers are manufactured at one time, It is necessary to prepare a plurality of such dies, and in particular, the amount of air consumption associated with the production increases dramatically.
Thirdly, the manufactured fiber is limited to the nonwoven fabric, and it is difficult to manufacture various types of fibers.
この点、メルト式ブロータイプでなく、溶媒式ブロータイプを採用するとすれば、高分子材料を溶媒に溶解させることにより、延伸化が可能なように、高分子材料の粘度を低下させているが、溶媒が含まれる分、ナノファイバーの歩留まりが悪い。そこで、低歩留まりを高分子材料の噴射流量を増大させることにより補填するとすれば、高分子材料の噴射速度を上げるほど、溶媒の蒸発が促進されて、高分子材料の粘度が上昇するので、エアの噴射速度が一定であれば、高分子材料のエアの流れへの巻き込みによる延伸化の程度は低下する。延伸化の低下を補填するために、エアの噴射速度を増大させるとすれば、高分子材料の巻き込みの際、同様に、短繊維化あるいは粒子化が引き起こされ、繊維化したナノファイバーの生成が困難となる。
以上のように、溶媒式ブロータイプによれば、ナノファイバーの製造量を確保しつつ、所望に細径繊維化したナノファイバーの生成は技術的に困難である。
In this regard, if the solvent-type blow type is adopted instead of the melt-type blow type, the polymer material is dissolved in the solvent, thereby reducing the viscosity of the polymer material so that it can be stretched. Since the solvent is contained, the yield of nanofiber is poor. Therefore, if the low yield is compensated by increasing the injection flow rate of the polymer material, the higher the injection speed of the polymer material, the more the evaporation of the solvent is promoted and the viscosity of the polymer material increases. If the jetting speed of is constant, the degree of stretching due to the entrainment of the polymer material in the air flow decreases. If the air injection speed is increased in order to compensate for the decrease in stretching, when the polymer material is entrained, similarly, shortening or particle formation is caused, and generation of fiberized nanofibers is caused. It becomes difficult.
As described above, according to the solvent-type blow type, it is technically difficult to produce nanofibers that have been made into desired small-diameter fibers while ensuring the production amount of nanofibers.
 また、特許文献3には、メルト式において、エアブロー法とエレクトロスピニング法とを組み合わせたナノファイバーの製造装置および製造方法が開示されている。
 より詳細には、高電圧を印加した針状のノズルに溶融状態の高分子材料を供給することで、この針状のノズルから線状に流出する高分子材料に電荷が帯電され、ノズルからの反発力を受けるとともに、ノズルからの噴射方向とほぼ直交する向きに高温高速のエアがブローされ、高分子材料の流れが高温高速のエアに巻き込まれ、それにより、電荷による反発力と、高温高速のエアへの巻き込みとにより、高分子材料を延伸化するようにしている。
 このようないわゆるエアブロー法とエレクトロスピニング法とのハイブリッド方式によれば、高分子材料をナノファイバー化するのに必要な延伸化を達成するのに、それぞれの方法への負担を低減する、すなわち、エアブロー法によるエアの噴射速度、あるいはエレクトロスピニング法による電圧の高さを低減することにより、上述のような、エアブロー法およびエレクトロスピニング法それぞれ単独の場合の技術的問題点を多少は軽減化することが可能であるかも知れないが、メルト式ハイブリッド方式にすることにより、かえって、新たな技術的問題点が引き起こされる。
Patent Document 3 discloses a nanofiber manufacturing apparatus and manufacturing method in which an air blowing method and an electrospinning method are combined in a melt type.
More specifically, by supplying a polymer material in a molten state to a needle-like nozzle to which a high voltage is applied, a charge is charged in the polymer material that flows out linearly from the needle-like nozzle, In addition to receiving a repulsive force, high-temperature and high-speed air is blown in a direction substantially perpendicular to the injection direction from the nozzle, and the flow of the polymer material is entrained in the high-temperature and high-speed air. The polymer material is stretched by being entrained in the air.
According to such a hybrid system of the so-called air blow method and electrospinning method, to achieve the stretching necessary for making the polymer material into nanofibers, the burden on each method is reduced, that is, By reducing the air injection speed by the air blowing method or the voltage level by the electrospinning method, the technical problems in the case of the air blowing method and the electrospinning method alone are alleviated somewhat. Although it may be possible, the use of a melt-type hybrid system causes new technical problems.
第1に、電荷による反発力と、高温高速のエアへの巻き込みとにより、高分子材料を延伸化することに起因して、所望のナノファイバー径を達成するのに、エアの噴射速度および電圧の高さをどのように調整するかに相当な試行錯誤を必要とし、安定的なナノファイバーの製造が困難となる。
 より詳細には、特に、ノズルからの反発力による高分子材料の噴射方向と、エアのブロー方向とは、ほぼ直交することから、電圧を高めるほど、ノズルからの反発力が高まり、高分子材料は、高温高速のエアの流れの中心の高速流れに突入しやすくなり、中心の高速流れによる急な巻き込みにより、高分子材料の短繊維化あるいは粒子化を引き起こしやすくなる。一方、エアの噴射速度を高めるほど、高分子材料を巻き込むまでに、エア自体が冷やされ、巻き込みの際、高分子材料を冷やし溶融状態を維持することが困難となる。
First, the air injection speed and voltage to achieve the desired nanofiber diameter due to stretching the polymer material by repulsion due to charge and entrainment in high temperature and high speed air. It takes considerable trial and error to adjust the height of the fiber, making it difficult to produce stable nanofibers.
More specifically, in particular, since the injection direction of the polymer material due to the repulsive force from the nozzle and the air blowing direction are substantially orthogonal, the higher the voltage, the higher the repulsive force from the nozzle. Is likely to enter a high-speed flow at the center of a high-temperature and high-speed air flow, and a rapid entrainment due to the high-speed flow at the center tends to cause shortening or particle formation of the polymer material. On the other hand, as the air injection speed is increased, the air itself is cooled before the polymer material is entrained, and it becomes difficult to cool the polymer material and maintain the molten state during entrainment.
第2に、溶媒方式でなく、メルト方式により、ハイブリッド方式を行うとすれば、エアブロー法にとっては、高分子材料を予め溶融させることにより、粘度を所定値以下として、延伸化するのに寄与するとしても、エレクトロスピニング法にとっては、溶媒方式において高分子材料をいったん希釈化して、噴射の際、溶媒を蒸発させて電荷密度を急激に増大させて、爆発的な延伸化を達成するのとは異なり、どの程度の延伸化が可能であるのか予測可能性に乏しい。 Second, if the hybrid method is performed by the melt method instead of the solvent method, for the air blow method, the polymer material is melted in advance, thereby contributing to stretching by setting the viscosity to a predetermined value or less. However, for the electrospinning method, once the polymer material is diluted in the solvent method, the solvent is evaporated during the injection, and the charge density is rapidly increased to achieve explosive stretching. Unlikely, it is not predictable how much stretching is possible.
特開2002-201559号JP 2002-201559 特開2014-111850号JP 2014-111850
以上の技術的問題点に鑑み、本発明の目的は、単純かつコンパクトな装置でありながら、短繊維化あるいは粒子化を引き起こすことなく、製造量を確保しつつ細径化が可能なナノファイバー形成用噴射ノズルヘッドおよびナノファイバー形成用噴射ノズルヘッドを具備するナノファイバーの製造装置を提供する。
以上の技術的問題点に鑑み、本発明の目的は、高分子材料の種類に係わらず、所望の繊維径および/または絡み度のナノファイバーを品質のばらつきなく、汎用的に製造可能なナノファイバーの製造装置を提供する。
In view of the above technical problems, the object of the present invention is to form a nanofiber that can be reduced in diameter while ensuring a production amount without causing shortening or particle formation while being a simple and compact device. Provided is a nanofiber manufacturing apparatus comprising an injection nozzle head for use and an injection nozzle head for forming nanofibers.
In view of the above technical problems, the object of the present invention is to provide a nanofiber that can be used for general-purpose production of nanofibers having a desired fiber diameter and / or entanglement degree regardless of the type of the polymer material without variation in quality. A manufacturing apparatus is provided.
 上記課題を達成するために、本発明のナノファイバー形成用噴射ノズルヘッドは、
所定粘度以下の溶融状態の高分子材料を噴射する複数の高分子材料噴射口と
少なくとも溶融状態の高分子材料の温度より高温に加熱されたエアを、少なくとも溶融状態の高分子材料の噴射速度より高速で、溶融状態の高分子材料の噴射方向と同じ向きに噴射する単一エア噴射口とを有し、
前記複数の高分子材料噴射口それぞれから噴射する溶融状態の高分子材料が、前記単一エア噴射口から噴射するエアの流れに巻き込まれて、噴射方向に延伸するように、前記複数の高分子材料噴射口は、前記単一エア噴射口のまわりに、前記単一エア噴射口から噴射方向下流側に設けられる、構成としている。
In order to achieve the above object, the nanofiber-forming jet nozzle head of the present invention is:
A plurality of polymer material injection ports for injecting a molten polymer material having a predetermined viscosity or less, and at least air heated to a temperature higher than the temperature of the polymer material in the molten state, based on at least the injection speed of the polymer material in the molten state A single air injection port that injects in the same direction as the injection direction of the molten polymer material at high speed,
The plurality of macromolecules so that the polymer material in a molten state ejected from each of the plurality of polymer material ejection ports is caught in a flow of air ejected from the single air ejection port and extends in the ejection direction. The material injection port is configured to be provided on the downstream side in the injection direction from the single air injection port around the single air injection port.
以上の構成を有するナノファイバー形成用噴射ノズルヘッドによれば、高分子材料噴射口から所定粘度以下の溶融状態の高分子材料を噴射しつつ、エア噴射口から、少なくとも溶融状態の高分子材料の温度より高温に加熱されたエアを、少なくとも溶融状態の高分子材料の噴射速度より高速で、溶融状態の高分子材料の噴射方向と同じ向きに噴射する際、高分子材料噴射口から噴射する溶融状態の高分子材料が、単一エア噴射口からのエアの流れに巻き込まれて、噴射方向に延伸するように、複数の高分子材料噴射口は、単一エア噴射口のまわりに、単一エア噴射口から噴射方向下流側に設けられることから、所定粘度以下の溶融状態の高分子材料の流れがエアの流れに巻き込まれる際、高分子材料は、エアによって融点以下に冷却されることなしに、エアの流れにより、噴射方向に延伸され、それにより細径化され、高分子材料の種類に応じて、たとえば、溶融状態の高分子材料の流量を下げる一方、エアの噴射速度を上げる等の調整により、ナノファイバーを形成することが可能である。 According to the nanofiber-forming jet nozzle head having the above configuration, at least a molten polymer material is melted from the air jet port while jetting a molten polymer material having a predetermined viscosity or less from the polymer material jet port. When air heated to a temperature higher than the temperature is at least faster than the injection speed of the polymer material in the molten state and in the same direction as the injection direction of the polymer material in the molten state, the melt injected from the polymer material injection port The plurality of polymer material injection ports are arranged around the single air injection port so that the polymer material in the state is caught in the air flow from the single air injection port and extends in the injection direction. Since it is provided downstream from the air injection port in the injection direction, when the flow of the molten polymer material having a predetermined viscosity or less is caught in the air flow, the polymer material is cooled to the melting point or less by the air. Without being stretched in the injection direction by the flow of air and thereby reduced in diameter, depending on the type of polymer material, for example, the flow rate of the molten polymer material is reduced while the air injection speed is increased. It is possible to form nanofibers by adjusting the above.
  さらに、前記単一エア噴射口が最縮径開口部を構成し、前記単一エア噴射口からエアの噴射方向に末広がりの末広ノズルを有するのが好ましい。
 
また、前記末広ノズルの最拡径開口部まわりのノズル周端部は、前記末広ノズルの該最拡径開口部からのエアの流れが溶融状態の高分子材料の流れと平行となるような形状とされるのがよい。
さらにまた、前記末広ノズルは、対称軸線をエア噴射方向に沿うように配置した軸対称構造であり、前記単一エア噴射口は、円形開口であり、該対称軸線がその中心を通るように配置されるのがよい。
Furthermore, it is preferable that the single air injection port constitutes the most contracted diameter opening portion, and has a divergent nozzle that spreads in the air injection direction from the single air injection port.

In addition, the nozzle peripheral end portion around the widest diameter opening portion of the divergent nozzle is shaped so that the air flow from the widest diameter opening portion of the divergent nozzle is parallel to the flow of the molten polymer material. It is good to be taken.
Furthermore, the divergent nozzle has an axisymmetric structure in which a symmetric axis is arranged along the air injection direction, and the single air injection port is a circular opening, and the symmetric axis passes through the center thereof. It is good to be done.
 加えて、前記末広ノズルは、截頭円錐状であるのがよい。
 さらに、前記複数の高分子材料噴射口それぞれは、前記末広ノズルの最拡径開口部の外側に設けられるのがよい。
さらにまた、前記末広ノズルの末広がり角度は、前記単一エア噴射口から噴射するエア流れが前記複数の高分子材料噴射口に達するまでに、高速中心流れ領域のまわりに、高速中心流れより低速のエア流れ領域が形成されるのに十分なスペースが構成されるように設定されるのがよい。
In addition, the divergent nozzle may have a truncated cone shape.
Furthermore, it is preferable that each of the plurality of polymer material injection ports is provided outside the widest diameter opening of the divergent nozzle.
Furthermore, the divergent angle of the divergent nozzle is lower than the high-speed central flow around the high-speed central flow region until the air flow injected from the single air injection port reaches the plurality of polymer material injection ports. It is preferable to set so that a sufficient space is formed to form the air flow region.
また、前記複数の高分子材料噴射口は、前記単一エア噴射口を中心にそのまわりに同心円状に配置され、周方向に隣接する前記高分子材料噴射口は、所定の角度間隔を隔てるのがよい。
さらに、前記複数の高分子材料噴射口は、前記単一エア噴射口を中心に多層状に配置されるのがよい。
さらにまた、前記ナノファイバー形成用噴射ノズルヘッドは、対向する端面と、対向する端面間の周側面とを有するモノシリック中実体であり、
 前記複数の高分子材料噴射口および前記末広ノズルの最拡径開口部が、前記対向する端面の一方の端面上に形成され、
 前記モノシリック中実体には、一方の端開口が前記高分子材料噴射開口を形成し、高分子材料の流路を構成する高分子材料用貫通孔が設けられるとともに、一方の端開口が前記単一エア噴射開口を形成し、エアの流路を構成するエア用貫通孔が設けられ、
  前記末広ノズルは、前記エア用貫通孔の他方の端開口に連通し、前記対向する端面の一方の端面に向かって延びる貫通路として構成されるのがよい。
The plurality of polymer material injection ports are arranged concentrically around the single air injection port, and the polymer material injection ports adjacent in the circumferential direction are spaced apart from each other by a predetermined angle. Is good.
Furthermore, it is preferable that the plurality of polymer material injection ports are arranged in a multilayer shape with the single air injection port as a center.
Furthermore, the nanofiber-forming jet nozzle head is a monolithic solid body having opposing end surfaces and a peripheral side surface between the opposing end surfaces,
The plurality of polymer material injection ports and the widest diameter opening of the divergent nozzle are formed on one end surface of the opposed end surfaces,
In the monolithic solid body, one end opening forms the polymer material injection opening, and a polymer material through-hole forming a flow path of the polymer material is provided, and one end opening is the single opening. An air through hole is formed, forming an air injection opening and constituting an air flow path,
The divergent nozzle may be configured as a through passage that communicates with the other end opening of the air through hole and extends toward one end face of the opposing end face.
   加えて、前記複数の高分子材料噴射口と前記単一エア噴射口との噴射方向の間隔、および前記複数の高分子材料噴射口と前記単一エア噴射口の前記一方の端面上での間隔は、エアの流量および高分子材料の流量に応じて、ナノファイバー径を達成可能なように設定されるのがよい。 In addition, the interval in the injection direction between the plurality of polymer material injection ports and the single air injection port, and the interval on the one end surface of the plurality of polymer material injection ports and the single air injection port Is preferably set so that the nanofiber diameter can be achieved according to the flow rate of air and the flow rate of the polymer material.
さらに、前記高分子材料用貫通孔の他方の端開口は、前記対向端面の他方の端面上に設けられ、前記高分子材料用貫通孔は、前記モノシリック中実体の長手方向に延び、
   前記エア用貫通孔の他方の端開口は、前記周側面上に設けられ、前記高分子材料用貫通孔は、前記モノシリック中実体の長手方向に交差する方向に延びる部分を有するのがよい。
Further, the other end opening of the through hole for polymer material is provided on the other end surface of the opposed end surface, and the through hole for polymer material extends in the longitudinal direction of the monolithic solid body,
The other end opening of the air through hole may be provided on the peripheral side surface, and the polymer material through hole may have a portion extending in a direction crossing the longitudinal direction of the monolithic solid body.
 さらにまた、前記対向する端面の前記他方の端面上には、窪み状の高分子材料溜め部が形成され、
 前記高分子材料用貫通孔それぞれは、前記高分子材料溜め部に連通するのがよい。
Furthermore, a concave polymer material reservoir is formed on the other end surface of the opposing end surfaces,
Each of the polymer material through holes may communicate with the polymer material reservoir.
  上記課題を達成するために、本発明のナノファイバーの製造装置は、
  請求項1ないし請求項13のいずれか1項に記載のナノファイバー形成用噴射ノズルヘッドと、
 前記ナノファイバー形成用噴射ノズルヘッドに向かって高分子材料を供給する高分子材料供給部と、
 前記ナノファイバー形成用噴射ノズルヘッドに向かってエアを供給するエア供給部とを有し、
 前記高分子材料供給部は、高分子材料の加熱手段と、高分子材料の混練搬送手段とを有し、
前記エア供給部は、エアの加熱手段と、エアの圧送手段とを有する、構成としている。
In order to achieve the above object, the nanofiber production apparatus of the present invention comprises:
An injection nozzle head for forming nanofibers according to any one of claims 1 to 13,
A polymer material supply unit for supplying a polymer material toward the nanofiber-forming jet nozzle head;
An air supply unit that supplies air toward the nanofiber-forming injection nozzle head;
The polymer material supply unit includes a polymer material heating unit and a polymer material kneading and conveying unit.
The air supply unit includes an air heating unit and an air pressure feeding unit.
 さらに、前記高分子材料供給部は、内部に高分子材料の混練搬送スペースを構成する筒体を有し、該筒体には、ビーズ状の高分子材料原料を受け入れる投入口が設けられ、前記混練搬送スペースには、ビーズ状の高分子材料原料を混練搬送する螺旋状スクリューが配置され、
前記ナノファイバー形成用噴射ノズルヘッドの外周面および前記筒体の混練搬送スペースに相当する部分の外周面にはそれぞれ、バンド式ヒーターが巻き付けられ、
前記ナノファイバー形成用噴射ノズルヘッドは、その軸線方向が、前記螺旋状スクリューの軸線方向と一致するように、前記他方の端面が前記筒体の端面と突き合わせられることにより、前記螺旋状スクリューの前方に設けられるのがよい。
Further, the polymer material supply unit has a cylindrical body constituting a kneading and conveying space for the polymeric material therein, and the cylindrical body is provided with an inlet for receiving a bead-shaped polymeric material raw material, In the kneading and conveying space, a spiral screw for kneading and conveying the bead-shaped polymer material raw material is disposed,
A band heater is wound around the outer peripheral surface of the nanofiber-forming spray nozzle head and the outer peripheral surface of the portion corresponding to the kneading and conveying space of the cylindrical body,
The nanofiber-forming injection nozzle head has the other end face abutted against the end face of the cylindrical body so that the axial direction thereof coincides with the axial direction of the helical screw. It is good to be provided.
 さらに、前記複数の高分子材料用貫通孔を洗浄するための洗浄液供給部が設けられ、該洗浄液供給部は、前記複数の高分子材料用貫通孔それぞれの他方の端開口から一方の端開口に向かって洗浄液を内部に供給するのでもよい。
 さらに、前記エア用貫通孔の他方の端開口に連通可能に接続された外部エア搬送管を有し、
 前記エアの加熱手段は、エアの圧送手段該外部エア搬送管の外周面に巻き付けられたバンド式エアヒーターであり、
前記エアの圧送手段は、該外部エア搬送管の端部に接続されたエアエアコンプレッサーであるのがよい。
Further, a cleaning liquid supply unit for cleaning the plurality of polymer material through holes is provided, and the cleaning liquid supply unit is provided from the other end opening of each of the plurality of polymer material through holes to one end opening. The cleaning liquid may be supplied to the inside.
Furthermore, it has an external air conveyance pipe connected so as to be able to communicate with the other end opening of the air through hole,
The air heating means is a band-type air heater wound around the outer peripheral surface of the air pressure feeding means and the external air conveyance pipe,
The air pressure feeding means may be an air air compressor connected to an end of the external air conveyance pipe.
 さらに、前記混練搬送スペース内の高分子材料の温度を検出する高分子材料温度検出手段と、前記混練搬送スペースから前記複数の高分子材料用貫通孔に向かって混練搬送される高分子材料の流量を検出する高分子材料流量検出手段と、エア流路内のエアの温度を検出するエア温度検出手段と、エア流路内のエアの流量を検出するエア流量検出手段とを有し、
前記高分子材料温度検出手段により検出される高分子材料の温度、および前記高分子材料流量検出手段により検出される高分子材料の流量に基づいて、前記バンド式ヒーターの加熱量および/または前記螺旋状スクリューの回転数を制御するとともに、前記エア温度検出手段により検出されるエアの温度、および前記エア流量検出手段により検出されるエアの流量に基づいて、前記バンド式エアヒーターの加熱量および/または前記エアエアコンプレッサーの吐出圧力を制御する制御部を有するのがよい。
Further, a polymer material temperature detecting means for detecting the temperature of the polymer material in the kneading and conveying space, and a flow rate of the polymer material kneaded and conveyed from the kneading and conveying space toward the plurality of polymer material through holes. A polymeric material flow rate detecting means for detecting air temperature detecting means for detecting the temperature of air in the air flow path, and an air flow rate detecting means for detecting the flow rate of air in the air flow path,
Based on the temperature of the polymer material detected by the polymer material temperature detection means and the flow rate of the polymer material detected by the polymer material flow rate detection means, the heating amount of the band heater and / or the spiral And controlling the number of rotations of the screw and the heating amount of the band-type air heater and / or the temperature of the air detected by the air temperature detecting means and the air flow detected by the air flow detecting means. Or it is good to have a control part which controls the discharge pressure of the air air compressor.
 前記ナノファイバー製造装置は、キャスター付き可搬式タイプであってもよい。
また、請求項11に記載のナノファイバー形成用噴射ノズルヘッドにおいて、前記複数の高分子材料噴射口の各々および前記単一エア噴射口の口径、前記複数の高分子材料噴射口と前記単一エア噴射口との噴射方向の間隔、および前記複数の高分子材料噴射口と前記単一エア噴射口の前記一方の端面上での間隔のうち少なくとも1つが相違する複数のナノファイバー形成用噴射ノズルヘッドを具備し、高分子材料の種類に応じて、前記複数のナノファイバー形成用噴射ノズルヘッドから選択して用いるのでもよい。
さらに、前記高分子材料用貫通孔それぞれは、前記高分子材料溜め部に連通する拡径部と、前記高分子材料噴射口に連通する縮径部と、該拡径部と該縮径部とを接続するテーパー部とを有するのがよい。
加えて、前記高分子材料は、熱可塑性樹脂、熱可塑性エラストマー、ポリカプロラクトン、ポリ乳酸、ポリグリコール酸、コラーゲン、ポリヒドロキシ酪酸、ポリ酢酸ビニル、ポリペプチドを含むのでもよい。
The nanofiber manufacturing apparatus may be a portable type with a caster.
The nanofiber-forming injection nozzle head according to claim 11, wherein each of the plurality of polymer material injection ports and the diameter of the single air injection port, the plurality of polymer material injection ports and the single air A plurality of nanofiber-forming injection nozzle heads that differ in at least one of the intervals in the injection direction from the injection ports and the intervals on the one end face of the plurality of polymer material injection ports and the single air injection port And may be selected from the plurality of nanofiber forming nozzle heads according to the type of polymer material.
Further, each of the through holes for the polymer material includes an enlarged diameter portion communicating with the polymer material reservoir, a reduced diameter portion communicating with the polymer material injection port, the enlarged diameter portion, and the reduced diameter portion. It is preferable to have a tapered portion that connects the two.
In addition, the polymer material may include a thermoplastic resin, a thermoplastic elastomer, polycaprolactone, polylactic acid, polyglycolic acid, collagen, polyhydroxybutyric acid, polyvinyl acetate, and a polypeptide.
本発明に係るナノファイバーの製造装置の第1実施形態を、図面を参照しながら、以下に詳細に説明する。 A nanofiber manufacturing apparatus according to a first embodiment of the present invention will be described below in detail with reference to the drawings.
 ここで、ナノファイバーの原料としては、ポリプロピレン、ポリエチレン、ポリスチレン、ポリエチレンオキサイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ-m-フェニレンテレフタレート、ポリ-p-フェニレンイソフタレート、ポリフッ化ビニリデン、ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン-アクリレート共重合体、ポリアクリロニトリル、ポリアクリロニトリル-メタクリレート共重合体、ポリカーボネート、ポリアリレート、ポリエステルカーボネート、ポリアミド、アラミド、ポリイミド等の熱可塑性樹脂を例示でき、これらより選ばれる一種でもよく、また、複数種類が混在してもかまわない。 Here, the raw materials of the nanofiber include polypropylene, polyethylene, polystyrene, polyethylene oxide, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, poly-m-phenylene terephthalate, poly-p-phenylene isophthalate, polyvinylidene fluoride, polyfluoride. Heat of vinylidene fluoride-hexafluoropropylene copolymer, polyvinyl chloride, polyvinylidene chloride-acrylate copolymer, polyacrylonitrile, polyacrylonitrile-methacrylate copolymer, polycarbonate, polyarylate, polyester carbonate, polyamide, aramid, polyimide, etc. A plastic resin can be illustrated, 1 type chosen from these may be sufficient, and multiple types may be mixed.
図1に示すように、ナノファイバー製造装置10は、ナノファイバー形成用噴射ノズルヘッド12と、ナノファイバー形成用噴射ノズルヘッド12に向かって熱可塑性樹脂を供給する熱可塑性樹脂供給部14と、ナノファイバー形成用噴射ノズルヘッド12に向かってエアを供給するエア供給部16とを有し、熱可塑性樹脂供給部14は、熱可塑性樹脂の加熱手段18と、熱可塑性樹脂の混練搬送手段20とを有し、エア供給部16は、エアの加熱手段22と、エアの圧送手段24とを有する。 As shown in FIG. 1, the nanofiber manufacturing apparatus 10 includes a nanofiber-forming injection nozzle head 12, a thermoplastic resin supply unit 14 that supplies a thermoplastic resin toward the nanofiber-forming injection nozzle head 12, An air supply unit 16 that supplies air toward the fiber forming jet nozzle head 12. The thermoplastic resin supply unit 14 includes a thermoplastic resin heating unit 18 and a thermoplastic resin kneading and conveying unit 20. The air supply unit 16 includes an air heating unit 22 and an air pressure feeding unit 24.
図2に示すように、熱可塑性樹脂供給部14は、内部に熱可塑性樹脂の混練搬送スペース26を構成する筒体のバレルを有し、バレルには、ビーズ状またはペレット状の熱可塑性樹脂原料を受け入れるホッパー28が設けられ、混練搬送スペース26には、熱可塑性樹脂原料を混練搬送する螺旋状スクリュー30が配置され、筒体の混練搬送スペース26に相当する部分の外周面には、バンド状ヒーター32A,B,Cが、バレルの軸線方向に互いに間隔を隔てた状態で巻き付けられ、ナノファイバー形成用噴射ノズルヘッド12は、その軸線方向が、螺旋状スクリュー30の軸線方向と一致するように、他方の端面54Bが筒体の端面と突き合わせられることにより、螺旋状スクリュー30の前方に設けられる。
ナノファイバー形成用噴射ノズルヘッド12は、螺合形態で複数のねじ穴57を介して、バレル側に連結固定される。
 螺旋状スクリュー30の先端は、後に説明するナノファイバー形成用噴射ノズルヘッド12の熱可塑性樹脂溜まり部62に臨むように設けられる。
As shown in FIG. 2, the thermoplastic resin supply unit 14 has a cylindrical barrel constituting a kneading and conveying space 26 for the thermoplastic resin therein, and the barrel is made of a thermoplastic resin material in the form of beads or pellets. The kneading and conveying space 26 is provided with a helical screw 30 for kneading and conveying the thermoplastic resin material, and a band-like shape is provided on the outer peripheral surface of the portion corresponding to the kneading and conveying space 26 of the cylindrical body. The heaters 32A, B, and C are wound in a state of being spaced apart from each other in the axial direction of the barrel, and the nanofiber-forming injection nozzle head 12 has an axial direction that coincides with the axial direction of the spiral screw 30. The other end face 54B is abutted with the end face of the cylindrical body, so that it is provided in front of the spiral screw 30.
The nanofiber-forming injection nozzle head 12 is connected and fixed to the barrel side through a plurality of screw holes 57 in a screwed form.
The tip of the spiral screw 30 is provided so as to face the thermoplastic resin reservoir 62 of the nanofiber forming injection nozzle head 12 described later.
螺旋状スクリュー30はその基端でスクリュー駆動モーター31と連結され、回転軸受(図示せず)を介してバレルにより支持され、スクリュー駆動モーター31により、バレルの軸線方向を中心に回転駆動される。 The spiral screw 30 is connected to a screw drive motor 31 at its proximal end, supported by a barrel via a rotary bearing (not shown), and is driven to rotate about the axial direction of the barrel by the screw drive motor 31.
 熱可塑性樹脂をバレルに供給するための漏斗状のホッパー28がバレルの基端部側に取り付けられ、熱可塑性樹脂はペレット状あるいはビーズ状でホッパー28を通じてバレルの混練搬送スペース26内に供給される。 A funnel-shaped hopper 28 for supplying the thermoplastic resin to the barrel is attached to the base end side of the barrel, and the thermoplastic resin is supplied into the kneading and conveying space 26 of the barrel through the hopper 28 in the form of pellets or beads. .
 バレルは、軸線方向に沿って複数の温度制御ゾーン、例えばZ1~Z5に区分けされる。各温度制御ゾーンZ2~Z4に対応して、バンド式ヒーター32A,B,Cがバレルの周囲を囲むように設けられる。温度制御ゾーンZ5に対応して、ナノファイバー形成用噴射ノズルヘッド12の周側面56には、バレルと同様に、バンド式ヒーター32Dが設置されている。一方、温度制御ゾーンZ1に対応して、冷却装置35がバレルのホッパー28側に設けられる。
 バンド式ヒーター32A,B,C,Dについて、熱可塑性樹脂の温度が熱可塑性樹脂噴射口42それぞれに近づくに連れて、徐々に溶融状態となるように、バレルの外表面温度は、バンド式ヒーター32Aの加熱温度<バンド式ヒーター32B,Cの加熱温度<バンド式ヒーター32Dの加熱温度となるようにしており、これにより各温度制御ゾーンZ2~Z4に対応するバレル内の熱可塑性樹脂の温度を調整する。
The barrel is divided into a plurality of temperature control zones, for example, Z1 to Z5 along the axial direction. Corresponding to the temperature control zones Z2 to Z4, band heaters 32A, B, C are provided so as to surround the barrel. Corresponding to the temperature control zone Z5, a band heater 32D is installed on the peripheral side surface 56 of the nanofiber forming jet nozzle head 12 in the same manner as the barrel. On the other hand, a cooling device 35 is provided on the hopper 28 side of the barrel corresponding to the temperature control zone Z1.
Regarding the band heaters 32A, B, C, and D, the outer surface temperature of the barrel is set to be a band heater so that the thermoplastic resin gradually melts as the temperature of the thermoplastic resin approaches each of the thermoplastic resin injection ports 42. The heating temperature of 32A <the heating temperature of the band heaters 32B and C <the heating temperature of the band heater 32D, so that the temperature of the thermoplastic resin in the barrel corresponding to each temperature control zone Z2 to Z4 is set. adjust.
図3ないし図5に示すように、ナノファイバー形成用噴射ノズルヘッド12は、所定粘度以下の溶融状態の熱可塑性樹脂を噴射する複数の熱可塑性樹脂噴射口42と、少なくとも溶融状態の熱可塑性樹脂の温度より高温に加熱されたエアを、少なくとも溶融状態の熱可塑性樹脂の噴射速度より高速で、溶融状態の熱可塑性樹脂の噴射方向と同じ向きに噴射する単一エア噴射口44とを有する。 As shown in FIGS. 3 to 5, the nanofiber forming injection nozzle head 12 includes a plurality of thermoplastic resin injection ports 42 for injecting a molten thermoplastic resin having a predetermined viscosity or less, and at least a molten thermoplastic resin. And a single air injection port 44 that injects air heated to a temperature higher than the temperature of at least the same direction as the injection direction of the molten thermoplastic resin at a speed higher than the injection speed of the molten thermoplastic resin.
複数の熱可塑性樹脂噴射口42それぞれは、同径の円形形状であり、たとえば、径は、0.4ミリである。一方、単一エア噴射口44は、円形形状であり、たとえば、径は、2ミリである。
複数の熱可塑性樹脂噴射口42それぞれから噴射する溶融状態の熱可塑性樹脂が、単一エア噴射口44から噴射するエアの流れに巻き込まれて、噴射方向に延伸するように、複数の熱可塑性樹脂噴射口42は、単一エア噴射口44のまわりに、単一エア噴射口44から噴射方向下流側に設けられる。
Each of the plurality of thermoplastic resin injection ports 42 has a circular shape with the same diameter, and for example, the diameter is 0.4 mm. On the other hand, the single air injection port 44 has a circular shape, for example, a diameter of 2 mm.
The plurality of thermoplastic resins so that the thermoplastic resin in a molten state injected from each of the plurality of thermoplastic resin injection ports 42 is caught in the flow of air injected from the single air injection port 44 and extends in the injection direction. The injection port 42 is provided around the single air injection port 44 and downstream of the single air injection port 44 in the injection direction.
所望の圧力の圧縮空気を形成するエアコンプレッサー16が、外部エア搬送管61の先端に設けられ、外部エア搬送管61および内部エア搬送管60を介して、圧縮空気を供給するようにしている。
 外部エア搬送管61は、ナノファイバー形成用噴射ノズルヘッド12に螺合形態で内部エア搬送管60と連通可能に接続される。外部エア搬送管61の外周面には、バンド式エアヒーター22が巻き付けられ、エアコンプレッサー16から圧送されるエアが外部エア搬送管61内を流れる際、バンド式エアヒーター22によりエアを少なくとも熱可塑性樹脂の溶融温度より高い温度に加熱するようにしている。
An air compressor 16 that forms compressed air having a desired pressure is provided at the distal end of the external air conveyance pipe 61 so as to supply the compressed air via the external air conveyance pipe 61 and the internal air conveyance pipe 60.
The external air conveyance pipe 61 is connected to the nanofiber-forming injection nozzle head 12 so as to be able to communicate with the internal air conveyance pipe 60 in a threaded form. A band-type air heater 22 is wound around the outer peripheral surface of the external air conveyance pipe 61, and when the air pressure-fed from the air compressor 16 flows through the external air conveyance pipe 61, the band-type air heater 22 causes at least thermoplasticity of the air. The temperature is higher than the melting temperature of the resin.
  単一エア噴射口44は、最縮径開口部46を構成し、単一エア噴射口44からエアの噴射方向に末広がりの末広ノズル48を有する。
末広ノズル48は、対称軸線をエア噴射方向に沿うように配置した軸対称構造な截頭円錐状であり、単一エア噴射口44は、円形開口であり、対称軸線がその中心を通るように配置される。
末広ノズル48の末広がり角度αは、単一エア噴射口44から噴射するエア流れが複数の熱可塑性樹脂噴射口42に達するまでに、高速中心流れAのまわりに、高速中心流れAより低速のエア流れBが形成されるのに十分なスペースが構成されるように設定される。換言すれば、末広がり角度αが小さいと、低速のエア流れBの範囲が末広ノズル48の内周面まで及び接触することから、このようなことがないように末広がり角度αを設定する。
末広ノズル48の最拡径開口部50まわりのノズル周端部52は、円筒状としている。
The single air injection port 44 constitutes a diameter-reduced diameter opening 46 and has a divergent nozzle 48 that spreads from the single air injection port 44 in the air injection direction.
The divergent nozzle 48 has a truncated cone shape with an axially symmetrical structure in which a symmetric axis is arranged along the air injection direction, and the single air injection port 44 is a circular opening so that the symmetric axis passes through the center thereof. Be placed.
The divergent angle α of the divergent nozzle 48 is such that the air flow that is ejected from the single air injection port 44 has a lower speed than the high-speed central flow A around the high-speed central flow A until the air flow reaches the plurality of thermoplastic resin injection ports 42. It is set so that there is sufficient space for the flow B to be formed. In other words, if the divergent angle α is small, the range of the low-speed air flow B reaches and contacts the inner peripheral surface of the divergent nozzle 48. Therefore, the divergent angle α is set so as not to cause such a situation.
The nozzle peripheral end 52 around the maximum diameter opening 50 of the divergent nozzle 48 is cylindrical.
次に、複数の熱可塑性樹脂噴射口42は、末広ノズル48の最拡径開口部50の外側に、単一エア噴射口44を中心にそのまわりに同心円状に配置され、周方向に隣接する熱可塑性樹脂噴射口42は、所定の角度間隔を隔てる。具体的には、5つの熱可塑性樹脂噴射口42AないしEが、等角度間隔を隔てて配置されている。なお、周方向に隣接する熱可塑性樹脂噴射口42の角度間隔は、後に説明するように、それぞれの噴射口から噴射された熱可塑性樹脂が、エアの流れに巻き込まれるまでに互いに接触せず、かつ、延伸化された後、捕集部50まで空中を飛行中に、互いに絡み合って進むところ、このような絡み合いの程度を考慮して、設定すればよい。 Next, the plurality of thermoplastic resin injection ports 42 are disposed concentrically around the single air injection port 44 around the single-diameter injection port 44 on the outer side of the largest-diameter opening 50 of the divergent nozzle 48 and are adjacent to each other in the circumferential direction. The thermoplastic resin injection ports 42 are spaced at a predetermined angular interval. Specifically, five thermoplastic resin injection holes 42A to 42E are arranged at equiangular intervals. In addition, the angular interval between the thermoplastic resin injection ports 42 adjacent in the circumferential direction is not in contact with each other until the thermoplastic resin injected from each injection port is caught in the air flow, as will be described later. And after extending | stretching, while flying in the air to the collection part 50, it progresses intertwining each other, What is necessary is just to set in consideration of the grade of such an intertwining.
 ナノファイバー形成用噴射ノズルヘッド12は、対向する端面54A,Bと、対向する端面54A,B間の周側面56とを有するモノシリック中実体である。モノシリック中実体は、円柱状であり、材質は、SUS製である。複数の熱可塑性樹脂噴射口42および末広ノズル48の最拡径開口部50が、対向する端面54A,Bの一方の端面54A上に形成され、モノシリック中実体には、一方の端開口が熱可塑性樹脂噴射口42を形成し、熱可塑性樹脂の流路を構成する熱可塑性樹脂用貫通孔58が設けられるとともに、一方の端開口が単一エア噴射口44を形成し、エアの流路を構成するエア用貫通孔60が設けられ、末広ノズル48は、エア用貫通孔60の他方の端開口に連通し、対向する端面54A,Bの一方の端面54Aに向かって延びる貫通路として構成される。
熱可塑性樹脂用貫通孔58それぞれは、熱可塑性樹脂溜め部62に連通する拡径部61と、熱可塑性樹脂噴射口42AないしEに連通する縮径部59と、拡径部61と縮径部59とを接続するテーパー部55とを有する。これにより、拡径部61を熱可塑性樹脂溜め部62とともに、熱可塑性樹脂のバッファスペースとして、熱可塑性樹脂噴射口42からの熱可塑性樹脂の円滑な噴射を確保するようにしている。拡径部61と縮径部59との径比は、このような観点から定めればよい。
The nanofiber-forming jet nozzle head 12 is a monolithic solid body having opposed end faces 54A, B and a peripheral side face 56 between the opposed end faces 54A, 54B. The monolithic solid body is cylindrical, and the material is made of SUS. The plurality of thermoplastic resin injection ports 42 and the widest diameter opening 50 of the divergent nozzle 48 are formed on one end surface 54A of the opposing end surfaces 54A, B, and one end opening is thermoplastic in the monolithic solid body. The resin injection port 42 is formed, and a thermoplastic resin through-hole 58 constituting a flow path of the thermoplastic resin is provided, and one end opening forms a single air injection port 44 to form an air flow path. The air through hole 60 is provided, and the divergent nozzle 48 is configured as a through passage that communicates with the other end opening of the air through hole 60 and extends toward one end face 54A of the opposing end faces 54A, B. .
Each of the through holes 58 for thermoplastic resin includes a diameter-expanded portion 61 that communicates with the thermoplastic resin reservoir 62, a diameter-reduced portion 59 that communicates with the thermoplastic resin injection ports 42A to 42E, a diameter-expanded portion 61, and a diameter-reduced portion. And a taper portion 55 that connects to 59. Thus, the diameter-expanded portion 61 and the thermoplastic resin reservoir portion 62 are used as a buffer space for the thermoplastic resin to ensure smooth injection of the thermoplastic resin from the thermoplastic resin injection port 42. The diameter ratio between the enlarged diameter portion 61 and the reduced diameter portion 59 may be determined from such a viewpoint.
 熱可塑性樹脂用貫通孔58の他方の端開口は、対向する端面54A,Bの他方の端面54B上に設けられ、熱可塑性樹脂用貫通孔58は、モノシリック中実体の長手方向に延び、エア用貫通孔60の他方の端開口は、周側面56上に設けられ、エア用貫通孔60は、モノシリック中実体の長手方向に交差する方向に延びる部分を有する。具体的には、エア用貫通孔60は、ほぼL字形をなし、ナノファイバー形成用噴射ノズルヘッド12の下部に、エア用貫通孔60を設ける関係から、干渉を回避するために、熱可塑性樹脂噴射口42AないしEは、ナノファイバー形成用噴射ノズルヘッド12の上部に設けている。
 複数の熱可塑性樹脂噴射口42と単一エア噴射口44との噴射方向の間隔D1、および複数の熱可塑性樹脂噴射口42と単一エア噴射口44の一方の端面54A上での間隔D2は、エアの噴射流量および熱可塑性樹脂の噴射流量に応じて、熱可塑性樹脂に要求される延伸化を達成可能なように設定される。
The other end opening of the through hole 58 for thermoplastic resin is provided on the other end face 54B of the opposing end surfaces 54A and 54B. The through hole 58 for thermoplastic resin extends in the longitudinal direction of the monolithic solid body and is used for air. The other end opening of the through hole 60 is provided on the peripheral side surface 56, and the air through hole 60 has a portion extending in a direction intersecting the longitudinal direction of the monolithic solid body. Specifically, the air through hole 60 is substantially L-shaped, and the thermoplastic resin is used to avoid interference because the air through hole 60 is provided below the nanofiber-forming injection nozzle head 12. The injection ports 42A to 42E are provided in the upper part of the nanofiber forming injection nozzle head 12.
The interval D1 in the injection direction between the plurality of thermoplastic resin injection ports 42 and the single air injection port 44 and the interval D2 on one end face 54A of the plurality of thermoplastic resin injection ports 42 and the single air injection port 44 are as follows: Depending on the injection flow rate of air and the injection flow rate of the thermoplastic resin, the stretching required for the thermoplastic resin can be achieved.
 対向する端面54A,Bの他方の端面54B上には、窪み状の熱可塑性樹脂溜め部62が形成され、ナノファイバー形成用噴射ノズルヘッド12をバレルの端面に螺合形態で固定する祭、バレル内の混練搬送スペース26と連通し、図2に示すように、螺旋状スクリュー30の先端が熱可塑性樹脂溜め部62まで及ぶ。熱可塑性樹脂用貫通孔58それぞれは、熱可塑性樹脂溜め部62に連通する。熱可塑性樹脂溜め部62は、噴射上流方向に先細形状をなし、たとえば、軸対称構造な截頭円錐状でよい。この場合、截頭円錐の底面の径は、熱可塑性樹脂用貫通孔58それぞれが截頭円錐の外周面に対して接続可能な観点から定めればよい。
 捕集部50は、たとえば、捕集ドラムからなり、ドラムの周表面に、ナノファイバーを捕集するようにしている。ナノファイバー部材またはナノファイバー綿を製造する場合、層厚を調整するのに、ナノファイバーの製造中に、捕集ドラムをドラムの軸線方向に往復移動させてもよい。
On the other end face 54B of the facing end faces 54A, 54B, a hollow thermoplastic resin reservoir 62 is formed, and the nanofiber forming injection nozzle head 12 is fixed to the end face of the barrel in a threaded manner. As shown in FIG. 2, the tip of the spiral screw 30 extends to the thermoplastic resin reservoir 62, communicating with the kneading and conveying space 26 inside. Each of the through holes 58 for thermoplastic resin communicates with the thermoplastic resin reservoir 62. The thermoplastic resin reservoir 62 has a tapered shape in the upstream direction of injection, and may be, for example, a truncated cone having an axially symmetric structure. In this case, the diameter of the bottom surface of the truncated cone may be determined from the viewpoint that each through hole 58 for thermoplastic resin can be connected to the outer peripheral surface of the truncated cone.
The collection part 50 consists of a collection drum, for example, and it is made to collect nanofiber on the surrounding surface of a drum. When the nanofiber member or the nanofiber cotton is manufactured, the collection drum may be reciprocated in the axial direction of the drum during the manufacture of the nanofiber in order to adjust the layer thickness.
 さらに、図15に示すように、混練搬送スペース26内の熱可塑性樹脂の温度を検出する熱可塑性樹脂温度検出手段80と、混練搬送スペース26から複数の熱可塑性樹脂用貫通孔に向かって混練搬送される熱可塑性樹脂の流量を検出する熱可塑性樹脂流量検出手段82と、エア流路内のエアの温度を検出するエア温度検出手段84と、エア流路内のエアの流量を検出するエア流量検出手段86とが設けられ、熱可塑性樹脂温度検出手段80により検出される熱可塑性樹脂の温度、および熱可塑性樹脂流量検出手段82により検出される熱可塑性樹脂の流量に基づいて、バンド式ヒーター32A,B,C,Dの加熱量および螺旋状スクリュー30の回転数を制御するとともに、エア温度検出手段84により検出されるエアの温度、およびエア流量検出手段86により検出されるエアの流量に基づいて、バンド式エアヒーター22の加熱量およびエアコンプレッサー16の吐出圧力を制御する制御部88を有する。
 制御部88は、CPU、メモリ、ディスプレイを備えるコンピュータでよく、エアコンプレッサー16、駆動モーター31、バンド式ヒーター32A,B,C,D、冷却装置35、およびバンド式ヒーター22を集中制御するとともに、操作者にナノファイバー製造装置10の動作状態を知らせる。ナノファイバー製造装置10の動作状態は、たとえば、操作パネルのディスプレイに表示される。
 この場合、制御部88において、熱可塑性樹脂温度検出手段80により検出される熱可塑性樹脂の温度、および熱可塑性樹脂流量検出手段82により検出される熱可塑性樹脂の流量に基づいて、バンド式ヒーター32A,B,C,Dの加熱量および螺旋状スクリュー30の回転数を制御するとともに、エア温度検出手段84により検出されるエアの温度、およびエア流量検出手段86により検出されるエアの流量に基づいて、バンド式エアヒーター22の加熱量およびエアコンプレッサー16の吐出圧力を制御する際、エアの目標温度と熱可塑性樹脂の目標温度との温度差、エアの目標流量と熱可塑性樹脂の目標流量との流量差を予め設定しておき、熱可塑性樹脂の目標温度および目標流量を設定すれば、エアの目標温度およびエアの目標流量が自動的に設定されるようにしてもよい。あるいは、用いる熱可塑性樹脂材料の種類に応じて、熱可塑性樹脂材料の融点データとともに、エアの目標温度と熱可塑性樹脂の目標温度との温度差、およびエアの目標流量と熱可塑性樹脂の目標流量との流量差のテーブルを作成しておくのもよい。
Further, as shown in FIG. 15, a thermoplastic resin temperature detecting means 80 for detecting the temperature of the thermoplastic resin in the kneading and conveying space 26, and kneading and conveying from the kneading and conveying space 26 toward a plurality of through holes for thermoplastic resin. The thermoplastic resin flow rate detection means 82 for detecting the flow rate of the thermoplastic resin to be performed, the air temperature detection means 84 for detecting the temperature of the air in the air flow path, and the air flow rate for detecting the flow rate of the air in the air flow path Detection means 86 is provided, and based on the temperature of the thermoplastic resin detected by the thermoplastic resin temperature detection means 80 and the flow rate of the thermoplastic resin detected by the thermoplastic resin flow rate detection means 82, the band heater 32A , B, C, and D and the number of revolutions of the spiral screw 30 are controlled, the air temperature detected by the air temperature detecting means 84, and the air flow rate detecting means Based on the air flow rate detected by the stage 86, a control unit 88 that controls the heating amount of the band type air heater 22 and the discharge pressure of the air compressor 16 is provided.
The control unit 88 may be a computer including a CPU, a memory, and a display, and performs centralized control of the air compressor 16, the drive motor 31, the band heaters 32A, B, C, and D, the cooling device 35, and the band heater 22, The operator is notified of the operating state of the nanofiber manufacturing apparatus 10. The operating state of the nanofiber manufacturing apparatus 10 is displayed on, for example, a display on the operation panel.
In this case, in the control unit 88, based on the temperature of the thermoplastic resin detected by the thermoplastic resin temperature detection means 80 and the flow rate of the thermoplastic resin detected by the thermoplastic resin flow rate detection means 82, the band heater 32A. , B, C, and D and the number of revolutions of the spiral screw 30 are controlled, and based on the air temperature detected by the air temperature detector 84 and the air flow detected by the air flow detector 86. When the heating amount of the band type air heater 22 and the discharge pressure of the air compressor 16 are controlled, the temperature difference between the target temperature of the air and the target temperature of the thermoplastic resin, the target flow rate of the air and the target flow rate of the thermoplastic resin If the target temperature and target flow rate of the thermoplastic resin are set in advance, the target temperature of air and the target flow rate of air are automatically set. You may make it set to. Or, depending on the type of thermoplastic resin material used, along with the melting point data of the thermoplastic resin material, the temperature difference between the target temperature of the air and the target temperature of the thermoplastic resin, and the target flow rate of the air and the target flow rate of the thermoplastic resin It is also possible to create a flow rate difference table.
 さらに、複数の熱可塑性樹脂用貫通孔58を洗浄するための洗浄液供給部34が設けられ、洗浄液供給部34は、複数の熱可塑性樹脂用貫通孔58それぞれの他方の端開口56Bから一方の端開口56Aに向かって洗浄液を内部に供給する。これにより、ナノファイバー製造装置10のメンテナンスの際、複数の熱可塑性樹脂用貫通孔58それぞれの内部に残存付着する固化した熱可塑性樹脂を除去し、目詰まりを防止するようにしている。 Further, a cleaning liquid supply unit 34 for cleaning the plurality of through holes 58 for thermoplastic resin is provided, and the cleaning liquid supply unit 34 has one end from the other end opening 56B of each of the plurality of through holes 58 for thermoplastic resin. A cleaning liquid is supplied to the inside toward the opening 56A. As a result, during maintenance of the nanofiber manufacturing apparatus 10, the solidified thermoplastic resin remaining and adhered inside each of the plurality of thermoplastic resin through holes 58 is removed to prevent clogging.
変形例として、ナノファイバー製造装置10は、キャスター付き可搬式タイプでもよく、これにより、たとえば、リサイクルPETを原料とする場合、コンパクトなナノファイバー製造装置10をリサイクルPETの収集現場に搬送して、その場でナノファイバーを製造してもよい。
さらなる変形例として、ナノファイバー形成用噴射ノズルヘッド12において、複数の熱可塑性樹脂噴射口42の各々および単一エア噴射口44の口径、複数の熱可塑性樹脂噴射口42と単一エア噴射口44との噴射方向の間隔D1、および複数の熱可塑性樹脂噴射口42と単一エア噴射口44の一方の端面54A上での間隔D2のうち少なくとも1つが相違する複数のナノファイバー形成用噴射ノズルヘッド12を準備し、熱可塑性樹脂の種類に応じて、複数のナノファイバー形成用噴射ノズルヘッド12から選択して用いるのでもよい。これにより、熱可塑性樹脂の種類に係わらず、所望径のナノファイバーを製造するのをより確実にすることが可能である。
As a modification, the nanofiber manufacturing apparatus 10 may be a portable type with a caster, and, for example, when recycled PET is used as a raw material, the compact nanofiber manufacturing apparatus 10 is transported to the collection site of the recycled PET, Nanofibers may be produced on the spot.
As a further modification, in the nanofiber forming injection nozzle head 12, each of the plurality of thermoplastic resin injection ports 42 and the diameter of the single air injection port 44, the plurality of thermoplastic resin injection ports 42 and the single air injection port 44. A plurality of nanofiber-forming injection nozzle heads that differ in at least one of the interval D1 in the injection direction and the interval D2 on one end face 54A of the plurality of thermoplastic resin injection ports 42 and the single air injection port 44 12 may be prepared, and selected from a plurality of nanofiber forming nozzle heads 12 according to the type of thermoplastic resin. Thereby, it is possible to more reliably produce nanofibers having a desired diameter regardless of the type of thermoplastic resin.
以上の構成を有するナノファイバー形成用噴射ノズルヘッド12によれば、熱可塑性樹脂噴射口42から所定粘度以下の溶融状態の熱可塑性樹脂を噴射しつつ、エア噴射口44から、少なくとも溶融状態の熱可塑性樹脂の温度より高温に加熱されたエアを、少なくとも溶融状態の熱可塑性樹脂の噴射速度より高速で、溶融状態の熱可塑性樹脂の噴射方向と同じ向きに噴射する際、熱可塑性樹脂噴射口42は、熱可塑性樹脂噴射口42から噴射する溶融状態の熱可塑性樹脂が、単一エア噴射口44からのエアの流れに巻き込まれて、噴射方向に延伸するように、複数の熱可塑性樹脂噴射口42は、単一エア噴射口44のまわりに、単一エア噴射口44から噴射方向下流側に設けられることから、所定粘度以下の溶融状態の熱可塑性樹脂の流れがエアの流れに巻き込まれる際、エアによって融点以下に冷却されることなしに、エアの流れにより、噴射方向に延伸され、それにより細径化され、熱可塑性樹脂の種類に応じて、たとえば、溶融状態の熱可塑性樹脂の流量を下げる一方、エアの噴射速度を上げる等の調整により、ナノファイバーを形成することが可能である。 According to the nanofiber-forming injection nozzle head 12 having the above-described configuration, at least molten heat is injected from the air injection port 44 while injecting a molten thermoplastic resin having a predetermined viscosity or less from the thermoplastic resin injection port 42. When the air heated to a temperature higher than the temperature of the thermoplastic resin is jetted in the same direction as the jet direction of the molten thermoplastic resin at least at a higher speed than the jet speed of the molten thermoplastic resin, the thermoplastic resin injection port 42. The plurality of thermoplastic resin injection ports so that the molten thermoplastic resin injected from the thermoplastic resin injection port 42 is caught in the air flow from the single air injection port 44 and extends in the injection direction. 42 is provided around the single air injection port 44 on the downstream side in the injection direction from the single air injection port 44, so that the flow of the molten thermoplastic resin having a predetermined viscosity or less When being entrained in the flow of air, it is not cooled to below the melting point by air, but is stretched in the injection direction by the air flow, thereby reducing its diameter, and depending on the type of thermoplastic resin, for example, melting Nanofibers can be formed by adjusting the flow rate of the thermoplastic resin in the state while adjusting the air injection speed.
以上の構成を有するナノファイバー製造装置10について、ナノファイバーの製造方法を含めその作用について、特に図6を参照しながら、以下に詳細に説明する。
ナノファイバーの製造方法は、ナノファイバー製造装置10を用いて、所定粘度以下となるように加熱溶融した熱可塑性樹脂を糸状に噴射させつつ、熱可塑性樹脂の流れを巻き込むように、熱可塑性樹脂の噴射速度より高い噴射速度で、熱可塑性樹脂の噴射方向と同じ向きに平行に、熱可塑性樹脂の溶融温度より高い温度に加熱したエアを噴射し、それにより、噴射方向に沿って、高速の中心流れ領域と、そのまわりの、中心流れ領域より低速の周辺流れ領域とが生じ、溶融状態に維持された糸状の熱可塑性樹脂が、周辺流れ領域の外側周辺から中心流れ領域に向かって徐々に巻き込まれることにより、延伸化され、空中で生成したナノファイバーを受け止めて捕集する。より具体的に、以下に説明する。
The operation of the nanofiber manufacturing apparatus 10 having the above configuration, including the nanofiber manufacturing method, will be described in detail below with reference to FIG. 6 in particular.
The nanofiber manufacturing method uses a nanofiber manufacturing apparatus 10 to inject a thermoplastic resin that is heated and melted so as to have a predetermined viscosity or less into a thread shape, while entraining the flow of the thermoplastic resin. Injecting air heated to a temperature higher than the melting temperature of the thermoplastic resin in parallel to the same direction as the injection direction of the thermoplastic resin at a higher injection speed than the injection speed, thereby causing a high-speed center along the injection direction A flow region and a peripheral flow region that is slower than the central flow region are formed around the flow region, and the filamentous thermoplastic resin maintained in a molten state is gradually drawn from the outer periphery of the peripheral flow region toward the central flow region. As a result, the nanofibers that have been drawn and formed in the air are received and collected. More specific description will be given below.
 まず、エアコンプレッサー16を駆動して、熱可塑性樹脂の噴射速度より高い噴射速度となるように、外部搬送管61を通じてエアをナノファイバー形成用噴射ノズルヘッド12に向かって供給する。その際、バンド式ヒーター22により、熱可塑性樹脂の溶融温度より高い温度となるようにエアを加熱する。次いで、内部搬送管60を通じて、単一エア噴射口44から高温高圧エアが水平方向に噴射する。その際、高温高圧エアにより中心流れAが発生し、中心流れAのまわりに、気圧差を発生し、中心流れAより低速低圧エアの周辺流れBが生じる。 First, the air compressor 16 is driven, and air is supplied toward the nanofiber-forming injection nozzle head 12 through the external conveyance pipe 61 so that the injection speed is higher than the injection speed of the thermoplastic resin. At that time, air is heated by the band heater 22 so that the temperature becomes higher than the melting temperature of the thermoplastic resin. Next, high-temperature and high-pressure air is ejected from the single air ejection port 44 in the horizontal direction through the internal conveyance pipe 60. At that time, the center flow A is generated by the high-temperature and high-pressure air, a pressure difference is generated around the center flow A, and the peripheral flow B of the low-speed and low-pressure air is generated from the center flow A.
 次いで、熱可塑性樹脂を熱可塑性樹脂噴射口42Aないし42Eそれぞれから噴射する。より詳細には、ホッパー28からバレル内にビーズ状あるいはペレット状の熱可塑性樹脂原料が供給され、熱可塑性樹脂原料は、バレルの外周面に設けられたバンド式ヒーター32A,B,Cにより加熱されるとともに、駆動モーター61により回転する螺旋スクリュー30により、ナノファイバー形成用噴射ノズルヘッド12に向かって混練搬送される。
 この場合、バンド式ヒーター32A,B,Cにより、熱可塑性樹脂原料が混練搬送されながら、徐々に加熱されて、溶融状態となるようにする一方、冷却装置により、ホッパー28のまわりが過熱状態となるのを防止している。
 各温度制御ゾーンZ1~Z5では、熱可塑性樹脂温度検出手段80の検出結果に基づいて、制御部88が冷却装置35及びバンド式ヒーター32A,B,C,Dを各目標温度になるよう制御する。
Next, a thermoplastic resin is injected from each of the thermoplastic resin injection ports 42A to 42E. More specifically, a bead-shaped or pellet-shaped thermoplastic resin raw material is supplied from the hopper 28 into the barrel, and the thermoplastic resin raw material is heated by the band heaters 32A, B, C provided on the outer peripheral surface of the barrel. At the same time, the helical screw 30 rotated by the drive motor 61 is kneaded and conveyed toward the nanofiber forming injection nozzle head 12.
In this case, while the thermoplastic resin raw material is kneaded and conveyed by the band type heaters 32A, 32B, and 32C, it is gradually heated so as to be in a molten state, while the hopper 28 is overheated by the cooling device. Is prevented.
In each of the temperature control zones Z1 to Z5, the control unit 88 controls the cooling device 35 and the band heaters 32A, B, C, and D to reach the respective target temperatures based on the detection result of the thermoplastic resin temperature detection means 80. .
 温度制御ゾーンZ2を例にすれば、バレルに設けられた熱可塑性樹脂温度検出手段80の検出結果が、制御部88に出力され、制御部では熱可塑性樹脂温度検出手段80の出力値(バレル温度)と設定された目標温度を比較し、補正値を計算し、補正値に基づいて制御部88はバンド式ヒーター32Aを駆動制御する。なお、目標温度は各温度制御ゾーンで異なる値が設定されている。 Taking the temperature control zone Z2 as an example, the detection result of the thermoplastic resin temperature detecting means 80 provided in the barrel is output to the control section 88, and the control section outputs the output value (barrel temperature) of the thermoplastic resin temperature detecting means 80. ) And the set target temperature, the correction value is calculated, and based on the correction value, the controller 88 controls the driving of the band heater 32A. The target temperature is set to a different value in each temperature control zone.
次いで、溶融状態の熱可塑性樹脂原料は、熱可塑性樹脂溜まり部62に一時的に溜まり、熱可塑性樹脂用貫通孔58Aないし58Eそれぞれを介して、熱可塑性樹脂噴射口42Aないし42Eそれぞれから水平方向に噴射する。より詳細には、熱可塑性樹脂溜まり部62に溜まっている溶融状態の熱可塑性樹脂原料は、ほぼ均等に、熱可塑性樹脂用貫通孔58Aないし58Eそれぞれに供給され、より具体的には、拡径部61、テーパー部55および縮径部59を介して、熱可塑性樹脂噴射口42Aないし42Eに到る。これにより、拡径部61がさらに一時的な溜め部として機能することにより、熱可塑性樹脂噴射口42Aないし42Eから滞りを生じることなしに、溶融状態の熱可塑性樹脂原料が円滑に噴射するようにしている。
その際、熱可塑性樹脂噴射口42Aないし42Eそれぞれから噴射する溶融状態の熱可塑性樹脂原料の噴射方向は、単一エア噴射口44から噴射されるエア流れとほぼ平行となるようにしている。
Next, the molten thermoplastic resin raw material temporarily accumulates in the thermoplastic resin reservoir 62 and horizontally extends from the thermoplastic resin injection holes 42A to 42E via the thermoplastic resin through holes 58A to 58E, respectively. Spray. More specifically, the molten thermoplastic resin raw material stored in the thermoplastic resin reservoir 62 is supplied to each of the through holes 58A to 58E for the thermoplastic resin almost evenly. The thermoplastic resin injection ports 42A to 42E are reached through the portion 61, the tapered portion 55, and the reduced diameter portion 59. As a result, the expanded diameter portion 61 further functions as a temporary reservoir so that the molten thermoplastic resin material can be smoothly injected without causing a stagnation from the thermoplastic resin injection ports 42A to 42E. ing.
At that time, the injection direction of the thermoplastic resin material in the molten state injected from each of the thermoplastic resin injection ports 42A to 42E is made substantially parallel to the air flow injected from the single air injection port 44.
次いで、所定粘度以下となるように加熱溶融した熱可塑性樹脂を糸状に噴射させつつ、熱可塑性樹脂の流れを巻き込むように、少なくとも熱可塑性樹脂の噴射速度より高い噴射速度で、熱可塑性樹脂の噴射方向と同じ向きに、少なくとも加熱温度より高い温度に加熱したエアを噴射し、それにより、糸状の溶融熱可塑性樹脂を延伸することにより、ナノレベルまで細経化する。
 エアを噴射する際、噴射方向に沿って、高速の中心流れ領域Aと、そのまわりの、中心流れ領域Aより低速の周辺流れ領域Bとが生じ、熱可塑性樹脂を噴射することにより、糸状の熱可塑性樹脂が、周辺流れ領域Bの外側周辺から中心流れ領域Aに向かって徐々に巻き込まれることにより、延伸化される。
Next, the thermoplastic resin is injected at a higher injection speed than at least the injection speed of the thermoplastic resin so as to entrain the flow of the thermoplastic resin while injecting the thermoplastic resin heated and melted so as to have a predetermined viscosity or less into a thread shape. In the same direction as the direction, air heated to at least a temperature higher than the heating temperature is jetted, and thereby the filament-like molten thermoplastic resin is stretched to be nanoscaled to the nano level.
When injecting air, along the injection direction, a high-speed central flow region A and a surrounding peripheral flow region B around the central flow region A are generated, and by injecting the thermoplastic resin, The thermoplastic resin is drawn by being gradually wound from the outer periphery of the peripheral flow region B toward the central flow region A.
図6に示すように、より具体的には、熱可塑性樹脂噴射口42Aないし42Eそれぞれから糸状に噴射する溶融状態の熱可塑性樹脂原料は、単一エア噴射口44から噴射されるエア流れに巻き込まれることにより、延伸化される。
   より詳細には、熱可塑性樹脂の流れCを、まず低速の周辺流れBに中心流れAに向かって巻き込み、ここで、糸状の熱可塑性樹脂が延伸化され、さらに、中心流れAに巻き込まれて、より延伸化され、糸状の熱可塑性樹脂が細径化され、D3が延伸化領域を形成する。
   このようにして、溶融状態に維持された糸状の熱可塑性樹脂の流れが徐々に段階的に延伸化されて、空中で絡み合いながら捕集部50まで進むことにより、従来のように、熱可塑性樹脂の流れが急激に延伸化されることにより、短繊維化あるいは粒子化するのを有効に防止することが可能となる。
More specifically, as shown in FIG. 6, the molten thermoplastic resin raw material injected into the thread form from each of the thermoplastic resin injection ports 42 </ b> A to 42 </ b> E is caught in the air flow injected from the single air injection port 44. Is stretched.
More specifically, the flow C of the thermoplastic resin is first entangled in the low-speed peripheral flow B toward the central flow A, where the thread-like thermoplastic resin is stretched and further entrapped in the central flow A. More stretched, the thread-shaped thermoplastic resin is reduced in diameter, and D3 forms a stretched region.
In this way, the flow of the thread-like thermoplastic resin maintained in the molten state is gradually stretched stepwise and proceeds to the collecting unit 50 while being entangled in the air, so that the thermoplastic resin is conventionally obtained. It is possible to effectively prevent short fibers or particles from being formed by rapidly stretching the flow.
以上のように、熱可塑性樹脂噴射口42Aないし42Eを単一エア噴射口44のまわりに、単一エア噴射口44を中心とする同心配置することにより、熱可塑性樹脂噴射口42Aないし42Eそれぞれにおいて、単一エア噴射口44を共用化しており、それにより、熱可塑性樹脂噴射口とエア噴射口とを一対一対応させる場合に比べて、ナノファイバーを製造するのに、必要なエア量を低減することが可能であり、製造されるナノファイバーを安価にて製造することが可能である。
 単一エア噴射口44と熱可塑性樹脂噴射口42との噴射方向の距離D1を調整することにより、単一エア噴射口44から噴射するエアが、熱可塑性樹脂噴射口42を直撃して、熱可塑性樹脂が糸状に噴射するのを阻害し、場合により、熱可塑性樹脂が端面54A上で液だれするのを防止するのが可能である。
 一方、単一エア噴射口44と熱可塑性樹脂噴射口42との半径方向の距離D2を調整することにより、エアの噴射流量が一定の場合、熱可塑性樹脂のエア流れへの巻き込みの程度を調整することが可能である。
As described above, by arranging the thermoplastic resin injection ports 42A to 42E concentrically around the single air injection port 44 and centering on the single air injection port 44, the thermoplastic resin injection ports 42A to 42E are respectively provided. The single air injection port 44 is shared, thereby reducing the amount of air required to manufacture nanofibers compared to a one-to-one correspondence between the thermoplastic resin injection port and the air injection port. It is possible to manufacture the manufactured nanofibers at low cost.
By adjusting the distance D1 in the injection direction between the single air injection port 44 and the thermoplastic resin injection port 42, the air injected from the single air injection port 44 directly hits the thermoplastic resin injection port 42 to generate heat. It is possible to prevent the plastic resin from being ejected in the form of a thread, and in some cases, it is possible to prevent the thermoplastic resin from dripping on the end face 54A.
On the other hand, by adjusting the radial distance D2 between the single air injection port 44 and the thermoplastic resin injection port 42, the degree of entrainment of the thermoplastic resin in the air flow is adjusted when the air injection flow rate is constant. Is possible.
次いで、熱可塑性樹脂の延伸化により、空中で生成したナノファイバーを受け止めることにより、捕集部50に糸状の長繊維(フィラメントヤーン)として捕集される。空中で生成したナノファイバーを受け止めることにより、捕集する段階を有する。
なお、メンテナンスの際、洗浄液により熱可塑性樹脂用貫通孔58Aないし58Eの内部に付着した熱可塑性樹脂を洗浄すればよい。これにより、熱可塑性樹脂用貫通孔58Aないし58Eの目詰まりを有効に防止することが可能である。
Next, by drawing the nanofibers generated in the air by stretching the thermoplastic resin, the thermoplastic resin is collected as filamentous long fibers (filament yarns) in the collection unit 50. It has a step of collecting by receiving nanofibers generated in the air.
In the maintenance, the thermoplastic resin adhering to the insides of the through holes 58A to 58E for the thermoplastic resin may be cleaned with a cleaning liquid. Thereby, clogging of the through holes 58A to 58E for the thermoplastic resin can be effectively prevented.
熱可塑性樹脂製ナノファイバーの仕様に応じて、どのように製造するかについて、以下に説明する。
熱可塑性樹脂製ナノファイバーの要求径、および熱可塑性樹脂の種類に応じて、熱可塑性樹脂の加熱温度および噴射流量を決定し、決定した熱可塑性樹脂の加熱温度および噴射流量に基づいて、エアの加熱温度および噴射流量を決定する。
その際、エアの噴射流量を調整することにより、高速の中心流れ領域および低速の周辺流れ領域の及ぶ範囲を調整する段階を有する。
主として、時間当たりのナノファイバーの製造量およびナノファイバー径に注目して、熱可塑性樹脂の温度、噴射流量、およびエアの温度、噴射流量を制御パラメータとして、熱可塑性樹脂の種類、特に融点に応じて、試行錯誤を通じて、所望の時間当たりのナノファイバーの製造量および/またはナノファイバー径を達成するために、熱可塑性樹脂を加熱するバンド式ヒーター32、螺旋状スクリュー30を回転駆動する駆動モーター31、エアを加熱するバンド式ヒーター22およびエアを供給するエアエアコンプレッサー16を制御する。
How to manufacture according to the specification of the nanofiber made of thermoplastic resin will be described below.
According to the required diameter of the nanofiber made of thermoplastic resin and the type of thermoplastic resin, the heating temperature and the injection flow rate of the thermoplastic resin are determined, and based on the determined heating temperature and injection flow rate of the thermoplastic resin, Determine the heating temperature and injection flow rate.
At this time, the method has a step of adjusting the range covered by the high-speed central flow region and the low-speed peripheral flow region by adjusting the air injection flow rate.
Mainly focusing on the nanofiber production amount and nanofiber diameter per hour, and using the thermoplastic resin temperature, jet flow rate, air temperature, jet flow rate as control parameters, depending on the type of thermoplastic resin, especially the melting point In order to achieve a desired nanofiber production amount and / or nanofiber diameter per trial and error, a band heater 32 that heats the thermoplastic resin, and a drive motor 31 that rotationally drives the helical screw 30. The band heater 22 for heating the air and the air air compressor 16 for supplying the air are controlled.
より具体的には、時間当たりのナノファイバーの製造量を一定に、ナノファイバー径をより細径化する場合には、駆動モーター31により螺旋状スクリュー30の回転数を増大して、熱可塑性樹脂の噴射流量を増大するとともに、熱可塑性樹脂を溶融状態に維持するために、それに応じて、バンド式ヒーター32A,B,C,Dの時間当たりの加熱量を増大する。一方、熱可塑性樹脂の噴射流量増大に応じて、それに見合うように、エアエアコンプレッサー16によりエアの噴射流量を増大し、その分、噴射する熱可塑性樹脂が噴射するエアにより、さらに空冷されて粘度低下を引き起こすことから、バンド式ヒーター22によりエアをより加熱する。 More specifically, when the production amount of nanofibers per time is constant and the nanofiber diameter is further reduced, the rotational speed of the helical screw 30 is increased by the drive motor 31 and the thermoplastic resin is increased. In order to maintain the thermoplastic resin in a molten state, the heating amount per hour of the band heaters 32A, B, C, and D is increased accordingly. On the other hand, according to the increase in the injection flow rate of the thermoplastic resin, the air injection flow rate is increased by the air-air compressor 16 so as to be commensurate with it, and the viscosity is lowered further by the air injected by the thermoplastic resin to be injected. Therefore, the air is further heated by the band heater 22.
時間当たりのナノファイバーの製造量を増大しつつ、ナノファイバー径をより細径化する場合には、駆動モーター31により螺旋状スクリュー30の回転数を増大して、熱可塑性樹脂の噴射流量を増大するとともに、熱可塑性樹脂を溶融状態に維持するために、それに応じて、バンド式ヒーター32A,B,C,Dの時間当たりの加熱量を増大する。一方、熱可塑性樹脂の延伸化をより促進するために、熱可塑性樹脂の噴射流量増大に見合う分以上に、エアエアコンプレッサー16によりエアの噴射流量を増大し、その分、噴射する熱可塑性樹脂が噴射するエアにより、さらに空冷されて粘度低下を引き起こすことから、バンド式ヒーター22によりエアをさらにより加熱する。 When the nanofiber diameter is further reduced while increasing the production amount of nanofiber per hour, the rotational speed of the helical screw 30 is increased by the drive motor 31 and the injection flow rate of the thermoplastic resin is increased. At the same time, in order to maintain the thermoplastic resin in a molten state, the heating amount per hour of the band heaters 32A, B, C, D is increased accordingly. On the other hand, in order to further promote the stretching of the thermoplastic resin, the air injection flow rate is increased by the air air compressor 16 more than the amount commensurate with the increase in the injection flow rate of the thermoplastic resin. Since the air is further cooled by air to cause a decrease in viscosity, the air is further heated by the band heater 22.
特に、エアの加熱段階は、熱可塑性樹脂の流れを巻き込むまでに、エアの温度が低下する分を見込んで、糸状の熱可塑性樹脂を溶融状態に維持した状態で延伸可能なように、エアを加熱するのでもよく、エアの加熱段階は、エアに巻き込まれるまでに、熱可塑性樹脂の温度が低下する分を見込んで、巻き込みの際、熱可塑性樹脂を再溶融するように、エアを加熱するのでもよい。
そのため、エアの加熱段階は、エアの噴射速度に応じて、熱可塑性樹脂の流れを巻き込むまでに、エアの温度が低下する分、および/または、熱可塑性樹脂の噴射速度に応じて、エアに巻き込まれるまでに、熱可塑性樹脂の温度が低下する分を見込んで、エアの目的温度を決定し、エアが目的温度となるようにエアを加熱するのがよい。
In particular, in the air heating stage, the air is allowed to be stretched in a state in which the filamentous thermoplastic resin is maintained in a molten state in anticipation of a decrease in the temperature of the air before the flow of the thermoplastic resin is involved. The heating stage of the air may be heated, and the air is heated so that the thermoplastic resin is re-melted at the time of entrainment in anticipation of the temperature of the thermoplastic resin decreasing before being entrained in the air. It's okay.
Therefore, in the air heating stage, depending on the air injection speed, the temperature of the air decreases before the thermoplastic resin flow is involved, and / or the air injection speed depends on the thermoplastic resin injection speed. It is preferable to determine the target temperature of the air in anticipation of a decrease in the temperature of the thermoplastic resin before being caught, and to heat the air so that the air reaches the target temperature.
以下に、本発明の第2実施形態について、図7および図8を参照しながら説明する。以下の説明において、第1実施形態と同様な構成要素については、同様な参照番号を付することによりその説明は省略し、以下では、本実施形態の特徴部分について詳細に説明する。
本実施形態の特徴は、ナノファイバー形成用噴射ノズルヘッド12において、末広ノズル48の形態および温度センサーを設けた点にある。
より詳細には、末広ノズル48の形態に関し、第1実施形態においては、末広ノズル48の最拡開口部の周縁部の形状を円筒状としているのに対して、本実施形態においては、このような円筒状を省略して、末広ノズル48の全体形状を完全な截頭円錐状としている。
Below, 2nd Embodiment of this invention is described, referring FIG. 7 and FIG. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. Hereinafter, the characteristic portions of the present embodiment will be described in detail.
The feature of this embodiment is that the nanofiber-forming jet nozzle head 12 is provided with a configuration of a divergent nozzle 48 and a temperature sensor.
More specifically, regarding the form of the divergent nozzle 48, in the first embodiment, the shape of the peripheral edge of the widest opening of the divergent nozzle 48 is cylindrical, whereas in the present embodiment, this is the case. The overall shape of the divergent nozzle 48 is a complete frustoconical shape.
これにより、エアの噴射量によっては、単一エア噴射口44から噴射するエア流れの噴射方向の拡散範囲を抑制することが可能であり、熱可塑性樹脂がエア流れに巻き込まれて延伸化することにより、ナノファイバー化して、捕集部50により捕集される際、捕集部50における飛来するナノファイバーの広がり範囲を制限して、捕集の便宜を図ることが可能である。 Thereby, depending on the air injection amount, it is possible to suppress the diffusion range in the injection direction of the air flow injected from the single air injection port 44, and the thermoplastic resin is drawn into the air flow and stretched. Therefore, when the nanofibers are collected and collected by the collection unit 50, it is possible to limit the spread range of the flying nanofibers in the collection unit 50 to facilitate the collection.
温度センサーに関し、図8に示すように、ナノファイバー形成用噴射ノズルヘッド12の周側面56の上部にセンサー用穴37を設け、そこに温度センサーを配置して、熱可塑性樹脂噴射口42AないしEそれぞれから噴射する直前の熱可塑性樹脂の温度を検出して、検出した熱可塑性樹脂の温度に基づいて、バンド式ヒーター32による加熱量を調整して、延伸化するのに必要な熱可塑性樹脂の最低粘度をより正確に達成することが可能であり、それにより、バンド式ヒーター32の消費電力を抑制することが可能である。センサー用穴37の深さは、このような観点から定めればよい。 With respect to the temperature sensor, as shown in FIG. 8, a sensor hole 37 is provided in the upper part of the peripheral side surface 56 of the nanofiber-forming injection nozzle head 12, and the temperature sensor is arranged there, and the thermoplastic resin injection holes 42A to 42E. The temperature of the thermoplastic resin immediately before spraying from each is detected, and the amount of the thermoplastic resin necessary for stretching is adjusted by adjusting the heating amount by the band type heater 32 based on the detected temperature of the thermoplastic resin. It is possible to achieve the minimum viscosity more accurately, thereby suppressing the power consumption of the band heater 32. The depth of the sensor hole 37 may be determined from such a viewpoint.
以下に、本発明の第3実施形態について、図9を参照しながら説明する。以下の説明において、第1実施形態と同様な構成要素については、同様な参照番号を付することによりその説明は省略し、以下では、本実施形態の特徴部分について詳細に説明する。
本実施形態の特徴は、ナノファイバー形成用噴射ノズルヘッド12において、熱可塑性樹脂噴射口42の態様にある。より詳細には、熱可塑性樹脂噴射口42AないしEを単一エア噴射口44のまわりに、単一エア噴射口44を中心とする同心状に配置する点は、第1実施形態および第2実施形態と同様であるが、熱可塑性樹脂噴射口を2層状に配置して点にある。
Below, 3rd Embodiment of this invention is described, referring FIG. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. Hereinafter, the characteristic portions of the present embodiment will be described in detail.
The feature of this embodiment is in the aspect of the thermoplastic resin injection port 42 in the injection nozzle head 12 for forming nanofibers. More specifically, the thermoplastic resin injection ports 42A to 42E are arranged around the single air injection port 44 in a concentric manner with the single air injection port 44 as the center, in the first and second embodiments. Although it is the same as a form, it has the point which arrange | positions a thermoplastic resin injection port in 2 layers.
具体的には、図9に示すように、熱可塑性樹脂噴射口42AないしEのまわりに、熱可塑性樹脂噴射口42FないしJを、同様に、単一エア噴射口44を中心とする同心状に配置している。この場合、内側の1層の熱可塑性樹脂噴射口42AないしEと、外側の1層の熱可塑性樹脂噴射口42FないしJとは、互い違いに配置しており、それにより、たとえば、熱可塑性樹脂噴射口42Aから噴射する熱可塑性樹脂と、熱可塑性樹脂噴射口42Fから噴射する熱可塑性樹脂とが、エアの流れに巻き込まれるまでに、互いに接触して合体しないようにしている。変形例として、内側の1層の熱可塑性樹脂噴射口42AないしEと、外側の1層の熱可塑性樹脂噴射口42FないしJとの半径方向の間隔を十分に確保可能な場合には、互い違いに配置する必要はない。なお、熱可塑性樹脂噴射口42FないしJそれぞれについて、熱可塑性樹脂噴射口42AないしEと同様に、熱可塑性樹脂溜まり部62と連通する熱可塑性樹脂用貫通孔58を設けている。
熱可塑性樹脂噴射口42FないしJと単一エア噴射口44との間隔について、熱可塑性樹脂噴射口42FないしJそれぞれから噴射する熱可塑性樹脂が、単一エア噴射口44から噴射するエア流れに巻き込まれ、それにより、延伸化されるように設定する限り、熱可塑性樹脂噴射口42AないしJについて、単一エア噴射口44を共用化することにより、熱可塑性樹脂噴射口42AないしJそれぞれに個別にエア噴射口を設ける場合に比べて、ナノファイバー化に必要なエア量を格段に低減することが可能である。
Specifically, as shown in FIG. 9, the thermoplastic resin injection ports 42F to 42J are similarly concentrically around the single air injection port 44 around the thermoplastic resin injection ports 42A to 42E. It is arranged. In this case, the inner one-layer thermoplastic resin injection ports 42A to 42E and the outer one-layer thermoplastic resin injection ports 42F to J are alternately arranged, so that, for example, thermoplastic resin injection The thermoplastic resin injected from the port 42A and the thermoplastic resin injected from the thermoplastic resin injection port 42F are brought into contact with each other and do not coalesce before being caught in the air flow. As a modified example, when it is possible to secure a sufficient radial distance between the inner one-layer thermoplastic resin injection ports 42A to 42E and the outer one-layer thermoplastic resin injection ports 42F to 42J, they are alternately changed. There is no need to place them. For each of the thermoplastic resin injection ports 42F to 42J, a through hole 58 for thermoplastic resin that communicates with the thermoplastic resin reservoir portion 62 is provided in the same manner as the thermoplastic resin injection ports 42A to 42E.
With respect to the interval between the thermoplastic resin injection ports 42F to 42J and the single air injection port 44, the thermoplastic resin injected from each of the thermoplastic resin injection ports 42F to 42J is involved in the air flow injected from the single air injection port 44. Therefore, as long as it is set so as to be stretched, the thermoplastic resin injection ports 42A to 42J can be individually used for the thermoplastic resin injection ports 42A to 42J by sharing the single air injection port 44. Compared with the case where an air injection port is provided, it is possible to significantly reduce the amount of air necessary for nanofiber formation.
 変形例として、図10に示すように、2層の熱可塑性樹脂噴射口のうち、内側の1層の熱可塑性樹脂噴射口について、末広ノズル48に設けてもよい。すなわち、末広ノズル48は、単一エア噴射口44を最縮径開口とする点では、第1実施形態と同様であるが、截頭円錐状でなく、縮径D6の円筒部72と、拡径D5の円筒部74とからなり、円筒部72と円筒部74との境界部に環状肩部76を設け、環状肩部76に内側の1層の熱可塑性樹脂噴射口を配置している。この場合、単一エア噴射口44と内側の1層の熱可塑性樹脂噴射口との半径方向の間隔は、単一エア噴射口44から噴射するエアの流れが内側の1層の熱可塑性樹脂噴射口42に及ばず、かつ、内側の1層の熱可塑性樹脂噴射口から噴射する熱可塑性樹脂の流れが単一エア噴射口44から噴射するエアの流れに対して巻き込み可能なように設定すればよい。 As a modified example, as shown in FIG. 10, among the two layers of thermoplastic resin injection ports, the inner one layer of thermoplastic resin injection ports may be provided in the divergent nozzle 48. That is, the divergent nozzle 48 is the same as the first embodiment in that the single air injection port 44 is the most contracted diameter opening, but is not in the shape of a frustoconical shape but a cylindrical portion 72 having a reduced diameter D6, and an enlarged diameter. The annular shoulder portion 76 is provided at the boundary between the cylindrical portion 72 and the cylindrical portion 74, and one inner layer thermoplastic resin injection port is disposed on the annular shoulder portion 76. In this case, the radial distance between the single air injection port 44 and the inner layer of the thermoplastic resin injection port is such that the flow of air injected from the single air injection port 44 is the inner layer of the thermoplastic resin injection. If it is set so that the flow of the thermoplastic resin injected from the thermoplastic resin injection port of the inner one layer does not reach the port 42 and can be entrained with respect to the flow of air injected from the single air injection port 44 Good.
以下に、本発明の第4実施形態について、図11を参照しながら説明する。以下の説明において、第1実施形態と同様な構成要素については、同様な参照番号を付することによりその説明は省略し、以下では、本実施形態の特徴部分について詳細に説明する。
本実施形態の特徴は、ナノファイバー形成用噴射ノズルヘッド12において、熱可塑性樹脂噴射口42の配置にある。より詳細には、熱可塑性樹脂噴射口42AないしEを単一エア噴射口44のまわりに、単一エア噴射口44を中心とする同心状に配置する点は、第1実施形態および第2実施形態と同様であるが、熱可塑性樹脂噴射口を末広ノズル48の傾斜周面上に配置して点にある。
Below, 4th Embodiment of this invention is described, referring FIG. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. Hereinafter, the characteristic portions of the present embodiment will be described in detail.
The feature of this embodiment is the arrangement of the thermoplastic resin injection ports 42 in the nanofiber forming injection nozzle head 12. More specifically, the thermoplastic resin injection ports 42A to 42E are arranged around the single air injection port 44 in a concentric manner with the single air injection port 44 as the center, in the first and second embodiments. Although it is the same as the form, the thermoplastic resin injection port is arranged on the inclined circumferential surface of the divergent nozzle 48.
より詳細には、末広ノズル48は、単一エア噴射口44を最縮径開口とする截頭円錐状である点では、第1実施形態と同様であるが、第1実施形態のように熱可塑性樹脂噴射口42を対向端面54A上でなく、末広ノズル48の傾斜周面上に配置している。この場合、単一エア噴射口44と熱可塑性樹脂噴射口42との半径方向の間隔は、単一エア噴射口44から噴射するエアの流れが熱可塑性樹脂噴射口42に及ばず、しかも、熱可塑性樹脂噴射口42から噴射する熱可塑性樹脂の流れが単一エア噴射口44から噴射するエアの流れに対して巻き込み可能なように設定すればよい。 More specifically, the divergent nozzle 48 is similar to the first embodiment in that it has a truncated conical shape with the single air injection port 44 as the most contracted diameter opening, but as in the first embodiment, The plastic resin injection port 42 is disposed on the inclined peripheral surface of the divergent nozzle 48 instead of on the facing end surface 54A. In this case, the radial distance between the single air injection port 44 and the thermoplastic resin injection port 42 is such that the flow of air injected from the single air injection port 44 does not reach the thermoplastic resin injection port 42, and What is necessary is just to set so that the flow of the thermoplastic resin injected from the plastic resin injection port 42 can be entangled with the flow of air injected from the single air injection port 44.
以下に、本発明の第5実施形態について、図12を参照しながら説明する。以下の説明において、第1実施形態と同様な構成要素については、同様な参照番号を付することによりその説明は省略し、以下では、本実施形態の特徴部分について詳細に説明する。
本実施形態の特徴は、ナノファイバー形成用噴射ノズルヘッド12において、末広ノズル48の形状にある。より詳細には、第1実施形態においては、末広ノズル48は、単一エア噴射口44を最縮径開口とする截頭円錐状としているが、本実施形態においては、径D5の円筒状としている。この場合、径D5は、熱可塑性樹脂噴射口42から噴射する熱可塑性樹脂の流れが単一エア噴射口44から噴射するエアの流れに対して巻き込み可能なように、単一エア噴射口44から噴射するエアの流れが、最拡径開口部50から外部に飛び出すまでに、円筒状の内周面に及ばないように設定すればよい。
Below, 5th Embodiment of this invention is described, referring FIG. In the following description, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. Hereinafter, the characteristic portions of the present embodiment will be described in detail.
The feature of this embodiment is the shape of the divergent nozzle 48 in the nanofiber-forming jet nozzle head 12. More specifically, in the first embodiment, the divergent nozzle 48 has a frustoconical shape with the single air injection port 44 as the most reduced diameter opening, but in the present embodiment, the divergent nozzle 48 has a cylindrical shape with a diameter D5. Yes. In this case, the diameter D5 is set from the single air injection port 44 so that the flow of the thermoplastic resin injected from the thermoplastic resin injection port 42 can be entangled with the air flow injected from the single air injection port 44. What is necessary is just to set so that the flow of the air to be injected may not reach the cylindrical inner peripheral surface until it jumps out from the largest diameter opening 50.
 本件出願人は、熱可塑性樹脂を用いて、本願発明に係るナノファイバー製造装置およびナノファイバー製造方法により、ナノファイバーを製造可能である点を確認している。
(1)  試験条件
(イ)  材料:熱可塑性樹脂(ポリプロピレン)
        Lyonbellbasell 社製 PWH00N
(ロ)  ナノファイバー製造装置
  第1実施形態のナノファイバー製造装置(図1ないし図5)による。
(i)        樹脂側条件
(a)   樹脂流路(図6の参照番号58)
(イ)  噴射口径:0.4ミリ(図6の参照番号42)
(ロ)  流路径 :3ミリ
(b)   スクリュー回転数:
住友重機械ギアモーター株式会社製モーター(ZNHM05-1280-AV-30/J2ATRA)をインバータ制御により25Hzで運転
(c)   加熱温度(バレル表面温度):
260℃(図2のヒーター32A)
280℃(図2のヒーター32Bおよびヒーター32C)
420℃ (図2のヒーター32D)
(ii)      エア側
(d)   エア流路(図6の参照番号60)
(ハ)  噴射口径:2ミリ(図6の参照番号46)
(ニ)  流路径 :4ミリ
(e)   噴射口径:2ミリ
(f)   吐出圧力:0.13MPa
(g)   加熱温度(エア搬送管の表面温度):600℃
(iii)     その他の諸元
(h)   図6の参照番号D1:11.5ミリ
(i)   図6の参照番号D2:13ミリ
(j)   図6の最拡径開口の径:22ミリ
The present applicant has confirmed that nanofibers can be produced using a thermoplastic resin and the nanofiber production apparatus and nanofiber production method according to the present invention.
(1) Test conditions (a) Material: Thermoplastic resin (polypropylene)
Lyonbellbasell PWH00N
(B) Nanofiber manufacturing apparatus According to the nanofiber manufacturing apparatus (FIGS. 1 to 5) of the first embodiment.
(I) Resin side condition (a) Resin flow path (reference number 58 in FIG. 6)
(A) Injection port diameter: 0.4 mm (reference numeral 42 in FIG. 6)
(B) Channel diameter: 3 mm (b) Screw rotation speed:
A motor (ZNHM05-1280-AV-30 / J2ATRA) manufactured by Sumitomo Heavy Industries Gear Motor Co., Ltd. is operated at 25 Hz by inverter control (c) Heating temperature (barrel surface temperature):
260 ° C (heater 32A in Fig. 2)
280 ° C (heater 32B and heater 32C in Fig. 2)
420 ° C (heater 32D in Fig. 2)
(Ii) Air side (d) Air flow path (reference number 60 in FIG. 6)
(C) Injection port diameter: 2 mm (reference number 46 in FIG. 6)
(D) Channel diameter: 4 mm (e) Injection port diameter: 2 mm (f) Discharge pressure: 0.13 MPa
(G) Heating temperature (surface temperature of air carrier tube): 600 ° C
(Iii) Other specifications (h) Reference number D1: 11.5 mm (i) in FIG. 6 Reference number D2 in FIG. 6: 13 mm (j) Diameter of the most enlarged opening in FIG. 6: 22 mm
(2)試験方法
(ハ)  ナノファイバー製造方法
 所定粘度以下となるように加熱溶融した熱可塑性樹脂を糸状に噴射させつつ、熱可塑性樹脂の流れを巻き込むように、熱可塑性樹脂の噴射速度より高い噴射速度で、熱可塑性樹脂の噴射方向と同じ向きに平行に、熱可塑性樹脂の溶融温度より高い温度に加熱したエアを噴射し、それにより、噴射方向に沿って、高速の中心流れ領域と、そのまわりの、中心流れ領域より低速の周辺流れ領域とが生じ、溶融状態に維持された糸状の熱可塑性樹脂が、周辺流れ領域の外側周辺から中心流れ領域に向かって徐々に巻き込まれることにより、延伸化され、空中で生成したナノファイバーを受け止めて捕集する。
(ニ)  ナノファイバー径の測定方法
日立走査電子顕微鏡(SU1510)による。
(2) Test method (c) Nanofiber manufacturing method Higher than the injection speed of the thermoplastic resin so as to entrain the flow of the thermoplastic resin while injecting the thermoplastic resin heated and melted to a predetermined viscosity or less into a thread shape Injecting air heated to a temperature higher than the melting temperature of the thermoplastic resin in parallel with the injection direction of the thermoplastic resin at an injection speed, thereby causing a high-speed central flow region along the injection direction; A peripheral flow region that is slower than the central flow region is generated around it, and the thread-like thermoplastic resin maintained in a molten state is gradually wound from the outer periphery of the peripheral flow region toward the central flow region, The nanofibers that have been drawn and formed in the air are received and collected.
(D) Measuring method of nanofiber diameter By Hitachi scanning electron microscope (SU1510).
(3)試験結果
  ナノファイバーの製造量は、3Kg/hrであった。
 ナノファイバー径の測定結果を図13および図14に示す。
図13に示すように、捕集されたナノファイバーは、適度に絡み合い、短繊維化あるいは粒子化を生じていないことがわかる。
図14に示すように、ナノファイバー径は、86.2nmであり、100nm以下のナノファイバーを製造可能である点を確認した。
以上より、本試験結果により、単純かつコンパクトなナノファイバー製造装置でありながら、短繊維化あるいは粒子化を引き起こすことなく、製造量を確保しつつ細径化が可能である点を確認している。
(3) Test result The production amount of the nanofiber was 3 Kg / hr.
The measurement results of the nanofiber diameter are shown in FIG. 13 and FIG.
As shown in FIG. 13, it can be seen that the collected nanofibers are appropriately entangled and do not have short fibers or particles.
As shown in FIG. 14, the nanofiber diameter was 86.2 nm, and it was confirmed that nanofibers of 100 nm or less could be produced.
Based on the above results, it has been confirmed from this test result that although it is a simple and compact nanofiber manufacturing apparatus, it is possible to reduce the diameter while securing the production amount without causing shortening or particle formation. .
以上、本発明の実施形態を詳細に説明したが、本発明の範囲から逸脱しない範囲内において、当業者であれば、種々の修正あるいは変更が可能である。
たとえば、本実施形態において、ナノファイバーの原料として、熱可塑性樹脂として説明したが、それに限定されることなく、溶融加熱した原料を噴射して、高速エアの流れに巻き込ませて、延伸化が可能である限り、ポリカプロラクトン、ポリ乳酸、ポリグリコール酸、コラーゲン、ポリヒドロキシ酪酸、ポリ酢酸ビニル、ポリペプチド等およびこれらの共重合体にも適用可能である。
The embodiments of the present invention have been described in detail above, but various modifications or changes can be made by those skilled in the art without departing from the scope of the present invention.
For example, in the present embodiment, the raw material of the nanofiber has been described as a thermoplastic resin, but is not limited thereto, and the melted and heated raw material is jetted and entrained in a flow of high-speed air, and can be stretched. As long as it is, it can be applied to polycaprolactone, polylactic acid, polyglycolic acid, collagen, polyhydroxybutyric acid, polyvinyl acetate, polypeptide and the like and copolymers thereof.
たとえば、本実施形態において、複数の熱可塑性樹脂噴射口および単一エア噴射口の形状および配置に関し、熱可塑性樹脂噴射口および単一エア噴射口いずれも円形開口であり、複数の熱可塑性樹脂噴射口の径はすべて同じであり、周方向に隣接する熱可塑性樹脂噴射口の角度間隔は、すべて同じものとして説明したが、それに限定されることなく、ナノファイバーに要求される仕様を達成可能である限り、円形開口でなく、非円形開口、たとえば矩形開口、環状開口でもよく、熱可塑性樹脂噴射口の径および角度間隔は、適宜に設定すればよい。 For example, in this embodiment, regarding the shape and arrangement of a plurality of thermoplastic resin injection ports and a single air injection port, both the thermoplastic resin injection port and the single air injection port are circular openings, and a plurality of thermoplastic resin injections The diameters of all the nozzles are the same, and the angular intervals of the thermoplastic resin injection holes adjacent to each other in the circumferential direction are all assumed to be the same, but the specification required for nanofibers can be achieved without being limited thereto. As long as it is not a circular opening, it may be a non-circular opening, for example, a rectangular opening or an annular opening, and the diameter and angular interval of the thermoplastic resin injection port may be set appropriately.
たとえば、本実施形態において、複数の熱可塑性樹脂噴射口を、エア噴射口を中心として同心状に配置する際、ノズルヘッドの下側にエア流路が配置されることから、ノズルヘッドの上側の周方向半円の角度範囲に亘って、均等な角度間隔として説明したが、それに限定されることなく、ノズルヘッドの周方向360度に亘って、配置してもよい。 For example, in the present embodiment, when the plurality of thermoplastic resin injection ports are arranged concentrically around the air injection port, the air flow path is arranged below the nozzle head. Although it was described as an equal angular interval over the angular range of the circumferential semicircle, the present invention is not limited to this, and the nozzle head may be disposed over the circumferential direction of 360 degrees.
たとえば、本実施形態において、1種類のビーズ状の熱可塑性樹脂原料を用いて、混練中に加熱溶融させるものとして説明したが、それに限定されることなく、溶融状態の熱可塑性樹脂を噴射口より噴射可能である限り、複数種類の熱可塑性樹脂原料を用いてもよい。
たとえば、本実施形態において、ナノファイバー製品として、糸状の長繊維(フィラメントヤーン)のものとして説明したが、それに限定されることなく、二次元化(平面化)した製品形態であるフィルム、織物、不織布、編物等や、三次元(立体化)した製品形態である立体成型物、立体織物・編物、組紐等や、さらには、織物、不織布、編物の上にナノファイバーをコーティングしたり、酵素や微生物と複合した高分子として紡糸するのに利用することも可能である。
For example, in the present embodiment, one kind of bead-shaped thermoplastic resin material has been described as being heated and melted during kneading, but the present invention is not limited thereto, and the molten thermoplastic resin is injected from the injection port. A plurality of types of thermoplastic resin raw materials may be used as long as injection is possible.
For example, in the present embodiment, the nanofiber product has been described as a thread-like long fiber (filament yarn), but is not limited thereto, and is a two-dimensional (planarized) product form of film, woven fabric, Non-woven fabrics, knitted fabrics, three-dimensional (three-dimensional) product forms, three-dimensional molded products, three-dimensional woven fabrics, knitted fabrics, braids, etc. It can also be used for spinning as a polymer combined with microorganisms.
たとえば、本実施形態において、エア噴射用ノズルとして、通常のものとして説明したが、それに限定されることなく、ナノファイバー材料を巻き込んで延伸化するのに、亜音速あるいは超音速のエア噴射速度を達成するのに、ラバールノズルを採用してもよい。 For example, in the present embodiment, the air injection nozzle has been described as a normal nozzle. However, the present invention is not limited thereto, and a subsonic or supersonic air injection speed is used to draw and stretch the nanofiber material. A Laval nozzle may be employed to accomplish this.
本発明の第1実施形態に係るナノファイバー製造装置10の全体構成図である。1 is an overall configuration diagram of a nanofiber manufacturing apparatus 10 according to a first embodiment of the present invention. 本発明の第1実施形態に係るナノファイバー製造装置10の全体図である。1 is an overall view of a nanofiber manufacturing apparatus 10 according to a first embodiment of the present invention. 本発明の第1実施形態に係るナノファイバー製造装置10のナノファイバー形成用噴射ノズルヘッド12の断面図である。It is sectional drawing of the injection nozzle head 12 for nanofiber formation of the nanofiber manufacturing apparatus 10 which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るナノファイバー製造装置10のナノファイバー形成用噴射ノズルヘッド12の端面図である。1 is an end view of a nanofiber forming jet nozzle head 12 of a nanofiber manufacturing apparatus 10 according to a first embodiment of the present invention. 本発明の第1実施形態に係るナノファイバー製造装置10のナノファイバー形成用噴射ノズルヘッド12の端面図である。1 is an end view of a nanofiber forming jet nozzle head 12 of a nanofiber manufacturing apparatus 10 according to a first embodiment of the present invention. 本発明の第1実施形態に係るナノファイバー製造装置10のナノファイバー形成用噴射ノズルヘッド12から噴射される熱可塑性樹脂およびエアの相互作用を示す概念図である。It is a conceptual diagram which shows the interaction of the thermoplastic resin and the air which are injected from the injection nozzle head 12 for nanofiber formation of the nanofiber manufacturing apparatus 10 which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るナノファイバー製造装置10のナノファイバー形成用噴射ノズルヘッド12の断面図であり、図3と同様な図である。It is sectional drawing of the injection nozzle head 12 for nanofiber formation of the nanofiber manufacturing apparatus 10 which concerns on 2nd Embodiment of this invention, and is a figure similar to FIG. 図7の線A-Aに沿う部分断面図である。FIG. 8 is a partial cross-sectional view taken along line AA in FIG. 7. 本発明の第3実施形態に係るナノファイバー製造装置10のナノファイバー形成用噴射ノズルヘッド12の端面図であり、図5と同様な図である。FIG. 6 is an end view of a nanofiber forming spray nozzle head 12 of a nanofiber manufacturing apparatus 10 according to a third embodiment of the present invention, and is a view similar to FIG. 5. 本発明の第3実施形態に係るナノファイバー製造装置10のナノファイバー形成用噴射ノズルヘッド12の変形例であり、図3と同様な図である。It is a modification of the injection nozzle head 12 for nanofiber formation of the nanofiber manufacturing apparatus 10 which concerns on 3rd Embodiment of this invention, and is a figure similar to FIG. 本発明の第4実施形態に係るナノファイバー製造装置10のナノファイバー形成用噴射ノズルヘッド12の断面図であり、図3と同様な図である。It is sectional drawing of the injection nozzle head 12 for nanofiber formation of the nanofiber manufacturing apparatus 10 which concerns on 4th Embodiment of this invention, and is a figure similar to FIG. 本発明の第5実施形態に係るナノファイバー製造装置10のナノファイバー形成用噴射ノズルヘッド12の断面図であり、図3と同様な図である。It is sectional drawing of the injection nozzle head 12 for nanofiber formation of the nanofiber manufacturing apparatus 10 which concerns on 5th Embodiment of this invention, and is a figure similar to FIG. 本発明の第1実施形態に係るナノファイバー製造装置を用いて製造したナノファイバーの顕微鏡写真である。It is a microscope picture of the nanofiber manufactured using the nanofiber manufacturing apparatus concerning a 1st embodiment of the present invention. 図13の部分拡大図であり、ナノファイバーの径を示す顕微鏡写真である。It is the elements on larger scale of FIG. 13, and is a microscope picture which shows the diameter of nanofiber. 本発明の第1実施形態に係るナノファイバー製造装置10の制御構成図である。It is a control block diagram of the nanofiber manufacturing apparatus 10 which concerns on 1st Embodiment of this invention.
α 末広角度
A 高速エア中心流れ領域
B 低速エア流れ領域
C 熱可塑性樹脂流れ
D1 熱可塑性樹脂噴射口と単一エア噴射口との噴射方向距離
D2 熱可塑性樹脂噴射口と単一エア噴射口との半径方向距離
D3 延伸化エリア
D5 最拡径開口部の径
D6 縮径円筒部の径
Z1ないしZ5 バレル温度領域
10 ナノファイバー製造装置
12 ナノファイバー形成用噴射ノズルヘッド
14 熱可塑性樹脂供給部
16 エア供給部
18 樹脂加熱手段
20 樹脂混練搬送手段
22 エア加熱手段
24 エア圧送手段
26 混練搬送スペース
28 ホッパー
30 螺旋状スクリュー
31 モーター
32 バンド状ヒーター
33 螺旋羽根
34 洗浄液供給部
35 冷却装置
36 樹脂温度検出手段
37 温度センサー設置穴
42 熱可塑性樹脂噴射口
44 単一エア噴射口
46 最縮径開口部
48 末広ノズル
50 最拡径開口部
52 ノズル周端部
54 対向端面
55 テーパー部
56 周側面
57 ねじ穴
58 熱可塑性樹脂用貫通孔
59 縮径部
60 エア用貫通孔
61 拡径部
62 熱可塑性樹脂溜まり部
72 縮径円筒部
74 拡径円筒部
76 環状肩部
80 熱可塑性樹脂温度検出手段
82 熱可塑性樹脂流量検出手段
84 エア温度検出手段
86 エア流量検出手段
88 制御部
α Wide angle
A High-speed air center flow area
B Low-speed air flow area
C Thermoplastic flow
D1 Injection direction distance between thermoplastic resin injection port and single air injection port
D2 Radial distance between thermoplastic injection port and single air injection port
D3 Extension area
D5 Diameter of the largest diameter opening
D6 Diameter of reduced diameter cylindrical part
Z1 to Z5 Barrel temperature range 10 Nanofiber production apparatus 12 Nanofiber forming injection nozzle head 14 Thermoplastic resin supply unit 16 Air supply unit 18 Resin heating unit 20 Resin kneading and conveying unit 22 Air heating unit 24 Air pressure feeding unit 26 Kneading and conveying space 28 Hopper 30 Spiral screw 31 Motor 32 Band heater 33 Spiral blade 34 Cleaning liquid supply unit 35 Cooling device 36 Resin temperature detection means 37 Temperature sensor installation hole 42 Thermoplastic resin injection port 44 Single air injection port 46 Smallest diameter opening 48 Widest nozzle 50 Largest diameter opening 52 Nozzle peripheral end 54 Opposing end surface 55 Tapered portion 56 Peripheral side surface 57 Screw hole 58 Through hole 59 for thermoplastic resin Reduced diameter portion 60 Through hole 61 for air Large diameter portion 62 Thermoplastic resin Pool portion 72 Reduced diameter cylindrical portion 74 Expanded diameter cylindrical portion 76 Annular shoulder 80 Heatable RESIN temperature detecting means 82 thermoplastic resin flow rate detecting unit 84 air temperature detecting means 86 air flow rate detecting unit 88 control unit

Claims (22)

  1. 所定粘度以下の溶融状態の高分子材料を噴射する複数の高分子材料噴射口と
    少なくとも溶融状態の高分子材料の温度より高温に加熱されたエアを、少なくとも溶融状態の高分子材料の噴射速度より高速で、溶融状態の高分子材料の噴射方向と同じ向きに噴射する単一エア噴射口とを有し、
    前記複数の高分子材料噴射口それぞれから噴射する溶融状態の高分子材料が、前記単一エア噴射口から噴射するエアの流れに巻き込まれて、噴射方向に延伸するように、前記複数の高分子材料噴射口は、前記単一エア噴射口のまわりに、前記単一エア噴射口から噴射方向下流側に設けられる、ことを特徴とするナノファイバー形成用噴射ノズルヘッド。
    A plurality of polymer material injection ports for injecting a molten polymer material having a predetermined viscosity or less, and at least air heated to a temperature higher than the temperature of the polymer material in the molten state, based on at least the injection speed of the polymer material in the molten state A single air injection port that injects in the same direction as the injection direction of the molten polymer material at high speed,
    The plurality of macromolecules so that the polymer material in a molten state ejected from each of the plurality of polymer material ejection ports is caught in a flow of air ejected from the single air ejection port and extends in the ejection direction. An injection nozzle head for forming nanofibers, wherein a material injection port is provided around the single air injection port and downstream from the single air injection port in the injection direction.
  2.   さらに、前記単一エア噴射口が最縮径開口部を構成し、前記単一エア噴射口からエアの噴射方向に末広がりの末広ノズルを有する、請求項1に記載のナノファイバー形成用噴射ノズルヘッド。 2. The nanofiber-forming injection nozzle head according to claim 1, wherein the single air injection port has a narrowest diameter opening portion and has a divergent nozzle that spreads in the air injection direction from the single air injection port. .
  3. 前記末広ノズルの最拡径開口部まわりのノズル周端部は、前記末広ノズルの該最拡径開口部からのエアの流れが溶融状態の高分子材料の流れと平行となるような形状とされる、請求項2に記載のナノファイバー形成用噴射ノズルヘッド。 The peripheral edge of the nozzle around the widest diameter opening of the divergent nozzle is shaped so that the air flow from the widest diameter opening of the divergent nozzle is parallel to the flow of the molten polymer material. The nanofiber-forming jet nozzle head according to claim 2.
  4. 前記末広ノズルは、対称軸線をエア噴射方向に沿うように配置した軸対称構造であり、前記単一エア噴射口は、円形開口であり、該対称軸線がその中心を通るように配置される、請求項3に記載のナノファイバー形成用噴射ノズルヘッド。 The divergent nozzle has an axisymmetric structure in which a symmetric axis is arranged along the air injection direction, and the single air injection port is a circular opening, and is arranged so that the symmetric axis passes through the center thereof. The injection nozzle head for nanofiber formation according to claim 3.
  5.  前記末広ノズルは、截頭円錐状である、請求項4に記載のナノファイバー形成用噴射ノズルヘッド。 The spray nozzle head for forming nanofibers according to claim 4, wherein the divergent nozzle has a truncated cone shape.
  6. 前記複数の高分子材料噴射口それぞれは、前記末広ノズルの最拡径開口部の外側に設けられる、請求項4または請求項5に記載のナノファイバー形成用噴射ノズルヘッド。 6. The nanofiber-forming injection nozzle head according to claim 4, wherein each of the plurality of polymer material injection ports is provided outside a maximum diameter opening of the divergent nozzle.
  7. 前記末広ノズルの末広がり角度は、前記単一エア噴射口から噴射するエア流れが前記複数の高分子材料噴射口に達するまでに、高速中心流れ領域のまわりに、高速中心流れより低速のエア流れ領域が形成されるのに十分なスペースが構成されるように設定される、請求項6に記載のナノファイバー形成用噴射ノズルヘッド。 The divergent angle of the divergent nozzle is such that an air flow region that is slower than the high-speed central flow around the high-speed central flow region until the air flow injected from the single air injection port reaches the plurality of polymer material injection ports. The nanofiber-forming jet nozzle head according to claim 6, wherein the jet nozzle head is configured so that a sufficient space is formed to form a nanofiber.
  8. 前記複数の高分子材料噴射口は、前記単一エア噴射口を中心にそのまわりに同心円状に配置され、周方向に隣接する前記高分子材料噴射口は、所定の角度間隔を隔てる、請求項1ないし請求項7のいずれか1項に記載のナノファイバー形成用噴射ノズルヘッド。 The plurality of polymer material injection ports are concentrically arranged around the single air injection port, and the polymer material injection ports adjacent in the circumferential direction are spaced apart from each other by a predetermined angle. The injection nozzle head for nanofiber formation according to any one of claims 1 to 7.
  9.  前記複数の高分子材料噴射口は、前記単一エア噴射口を中心に多層状に配置される、請求項8に記載のナノファイバー形成用噴射ノズルヘッド。 The nanofiber-forming injection nozzle head according to claim 8, wherein the plurality of polymer material injection ports are arranged in a multilayered manner centering on the single air injection port.
  10.  前記ナノファイバー形成用噴射ノズルヘッドは、対向する端面と、対向する端面間の周側面とを有するモノシリック中実体であり、
     前記複数の高分子材料噴射口および前記末広ノズルの最拡径開口部が、前記対向する端面の一方の端面上に形成され、
     前記モノシリック中実体には、一方の端開口が前記高分子材料噴射開口を形成し、高分子材料の流路を構成する高分子材料用貫通孔が設けられるとともに、一方の端開口が前記単一エア噴射開口を形成し、エアの流路を構成するエア用貫通孔が設けられ、
      前記末広ノズルは、前記エア用貫通孔の他方の端開口に連通し、前記対向する端面の一方の端面に向かって延びる貫通路として構成される、請求項1ないし請求項9のいずれか1項に記載のナノファイバー形成用噴射ノズルヘッド。
    The nanofiber forming injection nozzle head is a monolithic solid body having opposing end faces and a peripheral side face between the opposing end faces,
    The plurality of polymer material injection ports and the widest diameter opening of the divergent nozzle are formed on one end surface of the opposed end surfaces,
    In the monolithic solid body, one end opening forms the polymer material injection opening, and a polymer material through-hole forming a flow path of the polymer material is provided, and one end opening is the single opening. An air through hole is formed, forming an air injection opening and constituting an air flow path,
    The said divergent nozzle is connected to the other end opening of the said through-hole for air, and is comprised as a through-passage extended toward one end surface of the said opposing end surface, The any one of Claim 1 thru | or 9 2. An injection nozzle head for forming nanofibers.
  11.  前記複数の高分子材料噴射口と前記単一エア噴射口との噴射方向の間隔、および前記複数の高分子材料噴射口と前記単一エア噴射口の前記一方の端面上での間隔は、エアの流量および高分子材料の流量に応じて、ナノファイバー径を達成可能なように設定される、請求項10に記載のナノファイバー形成用噴射ノズルヘッド。 The intervals in the injection direction of the plurality of polymer material injection ports and the single air injection port, and the intervals on the one end surface of the plurality of polymer material injection ports and the single air injection port are air The jet nozzle head for forming nanofibers according to claim 10, which is set so as to achieve a nanofiber diameter according to the flow rate of the polymer material and the flow rate of the polymer material.
  12.    前記高分子材料用貫通孔の他方の端開口は、前記対向端面の他方の端面上に設けられ、前記高分子材料用貫通孔は、前記モノシリック中実体の長手方向に延び、
       前記エア用貫通孔の他方の端開口は、前記周側面上に設けられ、前記高分子材料用貫通孔は、前記モノシリック中実体の長手方向に交差する方向に延びる部分を有する、請求項10または請求項11に記載のナノファイバー形成用噴射ノズルヘッド。
    The other end opening of the through hole for polymer material is provided on the other end surface of the opposed end surface, and the through hole for polymer material extends in the longitudinal direction of the monolithic solid body,
    The other end opening of the air through hole is provided on the peripheral side surface, and the polymer material through hole has a portion extending in a direction intersecting with a longitudinal direction of the monolithic solid body. The injection nozzle head for nanofiber formation according to claim 11.
  13.  前記対向する端面の前記他方の端面上には、窪み状の高分子材料溜め部が形成され、
     前記高分子材料用貫通孔それぞれは、前記高分子材料溜め部に連通する、請求項12に記載のナノファイバー形成用噴射ノズルヘッド。
    On the other end face of the opposing end face, a hollow polymer material reservoir is formed,
    13. The nanofiber-forming jet nozzle head according to claim 12, wherein each of the polymer material through holes communicates with the polymer material reservoir.
  14.  請求項1ないし請求項13のいずれか1項に記載のナノファイバー形成用噴射ノズルヘッドと、
     前記ナノファイバー形成用噴射ノズルヘッドに向かって高分子材料を供給する高分子材料供給部と、
     前記ナノファイバー形成用噴射ノズルヘッドに向かってエアを供給するエア供給部とを有し、
     前記高分子材料供給部は、高分子材料の加熱手段と、高分子材料の混練搬送手段とを有し、
    前記エア供給部は、エアの加熱手段と、エアの圧送手段とを有することを特徴とする、ナノファイバー製造装置。
    An injection nozzle head for forming nanofibers according to any one of claims 1 to 13,
    A polymer material supply unit for supplying a polymer material toward the nanofiber-forming jet nozzle head;
    An air supply unit that supplies air toward the nanofiber-forming injection nozzle head;
    The polymer material supply unit includes a polymer material heating unit and a polymer material kneading and conveying unit.
    The said air supply part has a heating means of air, and a pressure sending means of air, The nanofiber manufacturing apparatus characterized by the above-mentioned.
  15. 前記高分子材料供給部は、内部に高分子材料の混練搬送スペースを構成する筒体を有し、該筒体には、ビーズ状の高分子材料原料を受け入れる投入口が設けられ、前記混練搬送スペースには、ビーズ状の高分子材料原料を混練搬送する螺旋状スクリューが配置され、
    前記ナノファイバー形成用噴射ノズルヘッドの外周面および前記筒体の混練搬送スペースに相当する部分の外周面にはそれぞれ、バンド式ヒーターが巻き付けられ、
    前記ナノファイバー形成用噴射ノズルヘッドは、その軸線方向が、前記螺旋状スクリューの軸線方向と一致するように、前記他方の端面が前記筒体の端面と突き合わせられることにより、前記螺旋状スクリューの前方に設けられる、請求項14に記載のナノファイバー製造装置。
    The polymer material supply unit includes a cylindrical body that constitutes a kneading and conveying space for the polymeric material therein, and the cylindrical body is provided with an inlet for receiving a bead-shaped polymeric material raw material. In the space, a spiral screw for kneading and conveying the bead-shaped polymer material raw material is arranged,
    A band heater is wound around the outer peripheral surface of the nanofiber-forming spray nozzle head and the outer peripheral surface of the portion corresponding to the kneading and conveying space of the cylindrical body,
    The nanofiber-forming injection nozzle head has the other end face abutted against the end face of the cylindrical body so that the axial direction thereof coincides with the axial direction of the helical screw. The nanofiber manufacturing apparatus according to claim 14, wherein the nanofiber manufacturing apparatus is provided.
  16.  さらに、前記複数の高分子材料用貫通孔を洗浄するための洗浄液供給部が設けられ、該洗浄液供給部は、前記複数の高分子材料用貫通孔それぞれの他方の端開口から一方の端開口に向かって洗浄液を内部に供給する、請求項15に記載のナノファイバー製造装置。 Further, a cleaning liquid supply unit for cleaning the plurality of polymer material through holes is provided, and the cleaning liquid supply unit is provided from the other end opening of each of the plurality of polymer material through holes to one end opening. The nanofiber manufacturing apparatus according to claim 15, wherein the cleaning liquid is supplied to the inside.
  17.  さらに、前記エア用貫通孔の他方の端開口に連通可能に接続された外部エア搬送管を有し、
     前記エアの加熱手段は、エアの圧送手段該外部エア搬送管の外周面に巻き付けられたバンド式エアヒーターであり、
    前記エアの圧送手段は、該外部エア搬送管の端部に接続されたエアエアコンプレッサーである、請求項15に記載のナノファイバー製造装置。
    Furthermore, it has an external air conveyance pipe connected so as to be able to communicate with the other end opening of the air through hole,
    The air heating means is a band-type air heater wound around the outer peripheral surface of the air pressure feeding means and the external air conveyance pipe,
    The nanofiber manufacturing apparatus according to claim 15, wherein the air pressure feeding means is an air air compressor connected to an end of the external air conveyance pipe.
  18.  さらに、前記混練搬送スペース内の高分子材料の温度を検出する高分子材料温度検出手段と、前記混練搬送スペースから前記複数の高分子材料用貫通孔に向かって混練搬送される高分子材料の流量を検出する高分子材料流量検出手段と、エア流路内のエアの温度を検出するエア温度検出手段と、エア流路内のエアの流量を検出するエア流量検出手段とを有し、
    前記高分子材料温度検出手段により検出される高分子材料の温度、および前記高分子材料流量検出手段により検出される高分子材料の流量に基づいて、前記バンド式ヒーターの加熱量および/または前記螺旋状スクリューの回転数を制御するとともに、前記エア温度検出手段により検出されるエアの温度、および前記エア流量検出手段により検出されるエアの流量に基づいて、前記バンド式エアヒーターの加熱量および/または前記エアエアコンプレッサーの吐出圧力を制御する制御部を有する、請求項14に記載のナノファイバー製造装置。
    Further, a polymer material temperature detecting means for detecting the temperature of the polymer material in the kneading and conveying space, and a flow rate of the polymer material kneaded and conveyed from the kneading and conveying space toward the plurality of polymer material through holes. A polymeric material flow rate detecting means for detecting air temperature detecting means for detecting the temperature of air in the air flow path, and an air flow rate detecting means for detecting the flow rate of air in the air flow path,
    Based on the temperature of the polymer material detected by the polymer material temperature detection means and the flow rate of the polymer material detected by the polymer material flow rate detection means, the heating amount of the band heater and / or the spiral And controlling the number of rotations of the screw and the heating amount of the band-type air heater and / or the temperature of the air detected by the air temperature detecting means and the air flow detected by the air flow detecting means. Or the nanofiber manufacturing apparatus of Claim 14 which has a control part which controls the discharge pressure of the said air air compressor.
  19.  前記ナノファイバー製造装置は、キャスター付き可搬式タイプである、請求項14に記載のナノファイバー製造装置。 The nanofiber manufacturing apparatus according to claim 14, wherein the nanofiber manufacturing apparatus is a portable type with a caster.
  20. 請求項11に記載のナノファイバー形成用噴射ノズルヘッドにおいて、前記複数の高分子材料噴射口の各々および前記単一エア噴射口の口径、前記複数の高分子材料噴射口と前記単一エア噴射口との噴射方向の間隔、および前記複数の高分子材料噴射口と前記単一エア噴射口の前記一方の端面上での間隔のうち少なくとも1つが相違する複数のナノファイバー形成用噴射ノズルヘッドを具備し、高分子材料の種類に応じて、前記複数のナノファイバー形成用噴射ノズルヘッドから選択して用いる、請求項14に記載のナノファイバー製造装置。 12. The nanofiber forming injection nozzle head according to claim 11, wherein each of the plurality of polymer material injection ports and the diameter of the single air injection port, the plurality of polymer material injection ports and the single air injection port. A plurality of injection nozzle heads for forming nanofibers, wherein at least one of the intervals in the injection direction and the intervals on the one end surface of the plurality of polymer material injection ports and the single air injection port is different. The nanofiber manufacturing apparatus according to claim 14, wherein the apparatus is selected from the plurality of nanofiber forming nozzle heads according to the type of the polymer material.
  21. 前記高分子材料用貫通孔それぞれは、前記高分子材料溜め部に連通する拡径部と、前記高分子材料噴射口に連通する縮径部と、該拡径部と該縮径部とを接続するテーパー部とを有する、請求項13に記載のナノファイバー製造装置。 Each of the through holes for the polymer material connects the enlarged diameter portion communicating with the polymer material reservoir portion, the reduced diameter portion communicating with the polymer material injection port, and the enlarged diameter portion and the reduced diameter portion. The nanofiber manufacturing apparatus according to claim 13, further comprising a tapered portion.
  22. 前記高分子材料は、熱可塑性樹脂、熱可塑性エラストマー、ポリカプロラクトン、ポリ乳酸、ポリグリコール酸、コラーゲン、ポリヒドロキシ酪酸、ポリ酢酸ビニル、ポリペプチドを含む、請求項1ないし請求項21のいずれか1項記載のナノファイバー製造装置。
     
    The polymer material includes a thermoplastic resin, a thermoplastic elastomer, polycaprolactone, polylactic acid, polyglycolic acid, collagen, polyhydroxybutyric acid, polyvinyl acetate, and a polypeptide. The nanofiber manufacturing apparatus according to Item.
PCT/JP2014/069263 2014-07-21 2014-07-21 Nanofibre-forming injection nozzle head, and nanofibre production device equipped with nanofibre-forming injection nozzle head WO2016013051A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014555011A JP5782594B1 (en) 2014-07-21 2014-07-21 Nanofiber forming spray nozzle head and nanofiber manufacturing apparatus comprising nanofiber forming spray nozzle head
PCT/JP2014/069263 WO2016013051A1 (en) 2014-07-21 2014-07-21 Nanofibre-forming injection nozzle head, and nanofibre production device equipped with nanofibre-forming injection nozzle head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/069263 WO2016013051A1 (en) 2014-07-21 2014-07-21 Nanofibre-forming injection nozzle head, and nanofibre production device equipped with nanofibre-forming injection nozzle head

Publications (1)

Publication Number Publication Date
WO2016013051A1 true WO2016013051A1 (en) 2016-01-28

Family

ID=54200729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069263 WO2016013051A1 (en) 2014-07-21 2014-07-21 Nanofibre-forming injection nozzle head, and nanofibre production device equipped with nanofibre-forming injection nozzle head

Country Status (2)

Country Link
JP (1) JP5782594B1 (en)
WO (1) WO2016013051A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152999A1 (en) * 2015-03-26 2016-09-29 セイントフォース株式会社 Nanofiber production device and nanofiber production method
JP2019149505A (en) * 2018-02-28 2019-09-05 株式会社大木工藝 Electric double layer capacitor and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6463733B2 (en) * 2014-03-28 2019-02-06 ゼッタ ナノ テクノロジー カンパニー リミテッド Nanofiber manufacturing equipment
WO2017072930A1 (en) * 2015-10-30 2017-05-04 博之 居野家 Resin fiber manufacturing method and manufacturing device, and functional sheet material manufacturing method and manufacturing device
JPWO2017150740A1 (en) * 2016-03-04 2019-02-14 エム・テックス株式会社 Oil and fat adsorption mat and method for producing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173109A (en) * 1984-02-17 1985-09-06 Toray Ind Inc Circulation washing device in polymerizing and spinning apparatus
US6520425B1 (en) * 2001-08-21 2003-02-18 The University Of Akron Process and apparatus for the production of nanofibers
JP2006083511A (en) * 2004-09-17 2006-03-30 Reifenhaeuser Gmbh & Co Kg Maschinenfabrik Mechanism for producing filament from thermoplastic synthetic material
JP2006526083A (en) * 2003-05-16 2006-11-16 コロビン ゲーエムベーハー Method and apparatus for producing filament spunbond fabrics
JP2007197860A (en) * 2006-01-25 2007-08-09 Espinex:Kk Spinneret, method for producing nanofiber using the same and nanofiber
JP2012112077A (en) * 2010-11-26 2012-06-14 Japan Vilene Co Ltd Equipment and method for manufacturing nonwoven fabric, and nonwoven fabric manufactured by the method
JP2012154009A (en) * 2011-01-28 2012-08-16 Japan Vilene Co Ltd Apparatus and method for manufacturing nonwoven fabric, and nonwoven fabric manufactured by the method
JP2013185272A (en) * 2012-03-06 2013-09-19 Tamaru Seisakusho:Kk Method for manufacturing nanofiber laminate of polymer material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173109A (en) * 1984-02-17 1985-09-06 Toray Ind Inc Circulation washing device in polymerizing and spinning apparatus
US6520425B1 (en) * 2001-08-21 2003-02-18 The University Of Akron Process and apparatus for the production of nanofibers
JP2006526083A (en) * 2003-05-16 2006-11-16 コロビン ゲーエムベーハー Method and apparatus for producing filament spunbond fabrics
JP2006083511A (en) * 2004-09-17 2006-03-30 Reifenhaeuser Gmbh & Co Kg Maschinenfabrik Mechanism for producing filament from thermoplastic synthetic material
JP2007197860A (en) * 2006-01-25 2007-08-09 Espinex:Kk Spinneret, method for producing nanofiber using the same and nanofiber
JP2012112077A (en) * 2010-11-26 2012-06-14 Japan Vilene Co Ltd Equipment and method for manufacturing nonwoven fabric, and nonwoven fabric manufactured by the method
JP2012154009A (en) * 2011-01-28 2012-08-16 Japan Vilene Co Ltd Apparatus and method for manufacturing nonwoven fabric, and nonwoven fabric manufactured by the method
JP2013185272A (en) * 2012-03-06 2013-09-19 Tamaru Seisakusho:Kk Method for manufacturing nanofiber laminate of polymer material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152999A1 (en) * 2015-03-26 2016-09-29 セイントフォース株式会社 Nanofiber production device and nanofiber production method
JP2016183435A (en) * 2015-03-26 2016-10-20 セイントフォース株式会社 Nanofiber production apparatus and nanofiber production method
JP2019149505A (en) * 2018-02-28 2019-09-05 株式会社大木工藝 Electric double layer capacitor and manufacturing method thereof
JP7116468B2 (en) 2018-02-28 2022-08-10 株式会社大木工藝 Method for manufacturing electric double layer capacitor

Also Published As

Publication number Publication date
JP5782594B1 (en) 2015-09-24
JPWO2016013051A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
US8524140B2 (en) Process of making nanofibers
JP5782594B1 (en) Nanofiber forming spray nozzle head and nanofiber manufacturing apparatus comprising nanofiber forming spray nozzle head
JP4803113B2 (en) Nanofiber compounding method and apparatus
WO2016013052A1 (en) Method for producing nanofibres made from polymer material
JP4591499B2 (en) Method and apparatus for producing nanofiber and polymer web
US8110136B2 (en) Method and apparatus for producing nanofibers and polymer web
JP5394368B2 (en) Production of nanofibers by melt spinning
JP4692585B2 (en) Nanofiber spinning method and apparatus
JP4877140B2 (en) Nanofiber manufacturing method and apparatus
JP2016023399A (en) Ejection nozzle head for forming nanofibers and manufacturing apparatus of nanofibers provided with ejection nozzle head for forming nanofibers
JP4922144B2 (en) Nanofiber compounding method and apparatus
JP4880550B2 (en) Nanofiber compounding method and apparatus
JP4880627B2 (en) Nanofiber compounding method and apparatus
US10138574B2 (en) Blowing-assisted electrospinning
JP5225827B2 (en) Nanofiber manufacturing equipment
JP4853452B2 (en) Nanofiber manufacturing equipment
JP2017061754A (en) Ejection nozzle head for forming nanofiber and manufacturing apparatus of nanofiber including ejection nozzle head for forming nanofiber
JP4922237B2 (en) Nanofiber compounding method and apparatus
KR20100070203A (en) Making apparatus and method of fiber aggregate composed of nanofibers using vertical flow and centrifugal force
JP5225885B2 (en) Nanofiber manufacturing apparatus and manufacturing method
JP5234355B2 (en) Nanofiber manufacturing apparatus and manufacturing method
JP5185090B2 (en) Nanofiber manufacturing method and manufacturing apparatus
JP4954946B2 (en) Nanofiber manufacturing equipment
JP2016204774A (en) Nanofiber forming spray nozzle head and nanofiber manufacturing device
JP5006862B2 (en) Nanofiber manufacturing method and manufacturing apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014555011

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/04/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14898285

Country of ref document: EP

Kind code of ref document: A1