WO2016012650A1 - Sistema solar fresnel lineal transportable en un contenedor de mercancías - Google Patents

Sistema solar fresnel lineal transportable en un contenedor de mercancías Download PDF

Info

Publication number
WO2016012650A1
WO2016012650A1 PCT/ES2015/070573 ES2015070573W WO2016012650A1 WO 2016012650 A1 WO2016012650 A1 WO 2016012650A1 ES 2015070573 W ES2015070573 W ES 2015070573W WO 2016012650 A1 WO2016012650 A1 WO 2016012650A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
linear
mirrors
receiver
rows
Prior art date
Application number
PCT/ES2015/070573
Other languages
English (en)
French (fr)
Inventor
Raul VILLALBA VAN DIJK
Miguel HERRAIZ FRASQUET
Original Assignee
Solatom Csp S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solatom Csp S.L. filed Critical Solatom Csp S.L.
Priority to US15/326,971 priority Critical patent/US10976077B2/en
Priority to MX2017000856A priority patent/MX2017000856A/es
Publication of WO2016012650A1 publication Critical patent/WO2016012650A1/es

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/77Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/50Rollable or foldable solar heat collector modules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/79Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S30/00Arrangements for moving or orienting solar heat collector modules
    • F24S30/40Arrangements for moving or orienting solar heat collector modules for rotary movement
    • F24S30/42Arrangements for moving or orienting solar heat collector modules for rotary movement with only one rotation axis
    • F24S30/425Horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/20Cleaning; Removing snow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • F24S2023/872Assemblies of spaced reflective elements on common support, e.g. Fresnel reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • F24S2025/01Special support components; Methods of use
    • F24S2025/012Foldable support elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the present invention can be included in the field technician of linear fresnel solar systems used to produce thermal energy from the concentration of solar energy Thermal energy generated can then be used directly in any process that require the use of a hot fluid or in the electricity generation
  • the portable linear solar fresnel system of the present invention allows to build a solar system complete on a commercial merchandise container in factory, and transport it easily on that same container to the desired location. May once Located in the desired place, be mounted quickly.
  • a linear fresnel solar system is composed of rows of flat or semi-flat mirrors placed next to each other of another in the same plane. These rows of mirrors have freedom of movement to rotate on themselves, so that can track solar by targeting different angles depending on the solar position.
  • the solar energy reflected by the mirrors impacts on a linear receiver located at a certain height above the plane of the mirrors.
  • the total area of the rows of mirror is significantly superior to the surface exposed of the linear receiver so, in the receiver manages to concentrate solar radiation, with a degree equivalent to the relationship between the areas of the mirrors and the linear receiver
  • the present invention solves the drawbacks previously mentioned, by means of a solar system of type transportable fresnel which comprises a series of rows of reflective mirrors, an automatic cleaning system, a linear receiver and a support structure designed to mounted on a commercial merchandise container.
  • the transportable fresnel solar system it comprises a support structure which in turn comprises two folding side platforms where the rows are arranged of reflector mirrors mounted on mirror holders and ballast deposits. These folding platforms laterals are arranged vertically with respect to freight container floor, when the collector is being transported and / or stored. When the system is deploys the side platforms fold down to reach a horizontal position on the sides of the container. During This movement the merchandise container remains fixed.
  • the mirror holders allow to adjust the height of the rows of mirrors, so that all can be aligned correctly.
  • the automatic cleaning system comprises a series of cleaning units mounted on intermediate stiffeners which slide parallel to the mirror rows, both ways.
  • the cleaning units comprise an absorbent material that performs the function of contact cleaning, a cover protective to prevent fouling of the material absorbent, and some water outlet elements.
  • the water outlet elements are preferably branches spray that are connected to the cleaning units and from which clean water is directed to the surface Reflective mirrors to clean them.
  • the water is directs the mirrors in a vertical direction, from top to down.
  • the absorbent material of the cleaning units travel the row of mirrors thanks to the movement of the stiffeners During this movement the elements of water outlet provide the water needed to perform the mirror cleaning.
  • the linear receiver comprises an insulated housing protected by a transparent cover inside which It has at least one tubular receiver where it is made circulate the heat transfer fluid and a secondary reflective surface used to redirect towards the receiver the reflected rays that do not impact directly on the front face of the tubular receiver.
  • the correct position of the linear receiver is achieved by means of articulated end brackets in the merchandise container structure.
  • the extreme supports When the system the extreme supports are being transported and / stored they place the linear receiver within the volume contained by the structure of the merchandise container while when the system is deployed, the brackets are articulated until the linear receiver is placed in the position of operation.
  • the end brackets of the linear receiver are articulate in the pillars of the container and the platforms folding are articulated by hinges placed in the container base.
  • the platforms folding are upright and contained in the inner volume of the container.
  • the extreme supports are dejected and the linear receiver is also within the volume of the container. In this position the upper terminals of the container pillars they are free so that another container can be located above.
  • the folding platforms are deployed horizontally and the linear receiver is placed in its operating position by rotating the end brackets.
  • module When the area required by the project is elevated, larger systems can be created by joining in series one or more containers.
  • the minimum system unit called "module" is a container.
  • Reduce assembly time The system is designed so that it is pre-assembled at the factory, so which significantly reduces field assembly time. Once transported to the project site, it is simply necessary to deploy the different components and join the necessary number of containers. In addition, the additional weight of the merchandise container, as well as the contribution of ballast deposits make it possible to do without foundations, which entails an additional reduction of field assembly time. The time saved in the assembly, it is time that the system can be in operation, and therefore producing.
  • Reuse components By minimizing time and therefore the cost of assembly, utilization This system makes projects of reduced duration viable. In this case, when the project ends, it is possible move the collectors to another location by reusing almost The totality of the components. In addition, this feature makes possible business models such as rent, or sale of energy services, where it is not necessary for the customer buy the collector.
  • FIG. 1 shows a perspective view of the system deployed at the project site and in operating position, the figure shows the main components thereof.
  • FIG. 1 shows a system view represented in figure 1 when in position of transport and / or storage and the elements they remain contained in the volume of the container.
  • FIG. 1 shows a view of the system in the embodiment of figures 1 and 2 in which appreciate in detail the cleaning system of mirrors, their components, as well as the address Preferred system slip.
  • the transportable linear fresnel solar system in a merchandise container comprises a container Open or Flat Rack (1) which in turn is part of the structure that supports the rest of the elements.
  • This support structure comprises two folding platforms lateral (2) where the rows of mirrors are located (6) mounted on mirror holders (7). Platforms lateral folding (2) is located in position vertical to the ground when the system is in deployed or operating position ( Figure 1), and in horizontal position, that is, parallel to the ground, when the system is in transport position and / or storage (Figure 2)
  • the lateral folding platforms (2) comprise at least one ballast tank (11).
  • This ballast tank (11) remains empty during transport and / or storage, and it is filled with water or other fluid when the system is deployed. Once the ballast tank (11) is filled, the additional weight of the fluid incorporated into the system, it functions as overweight allowing to reduce and in some cases avoid, The use of foundation.
  • the movement of the folding platforms lateral (2), from the vertical position to the horizontal position, is achieved by using hinges (24) anchored to the base of the structure of the container (1) or other system that allows the abatement.
  • the mirror holders (7) are formed by a certain number of metal structures that give support and rigidity to the rows of mirrors (6).
  • the bench height is adjusted so that the rows of Mirrors (6) are installed at design height. He number of mirror holders (7) needed depends of the design stiffness of the rows of mirrors (6).
  • the rows of mirrors (6) comprise a number set of mirrors (17) continuously aligned forming a row This row joins everyone together the mirrors (17) it contains, so when move the row of mirrors (6), move all the mirrors (17) contained in it.
  • the movement of the rows of mirrors (6) is a rotational movement around the axis of the row (19). This movement of rotation is achieved through a mechanism of follow-up (20) than in a preferred embodiment, It consists of a linear actuator.
  • the linear receiver (18) comprises a housing external (4), end brackets (3) and brackets intermediate (5).
  • the outer shell (4) comprises its once a transparent cover (23), an insulation (21), a secondary reflective surface (22) and at least one tubular receiver (9).
  • the outer shell (4) creates a hollow cavity where the tubular receiver (9) is housed. This cavity it is isolated from the top by a insulation (21) intended to reduce losses thermal, and closed by a transparent cover (23) by its lower part.
  • the transparent cover (23) It is intended to reduce thermal losses (mainly convective losses).
  • a surface is arranged secondary reflective (22) intended to redirect towards the tubular receiver (9), the reflected rays that do not impact directly on the front face of the receiver tubular (9).
  • the secondary reflective surface (22) It can be designed using different geometries.
  • TO a fluid is passed through the tubular receiver (9) heat carrier which absorbs and transports energy concentrated solar, taking it to the point of consumption.
  • the correct positioning of the receiver linear (18), is achieved by extreme supports (3) attached to the container structure (1) by some joints (8).
  • the end brackets (3) place the linear receiver (18) within the interior volume of the container structure (1), leaving space enough for the side folding platforms (2) can be placed in an upright position.
  • the end brackets (3) pivot through joints (8), until the linear receiver (18) is placed in its operating position
  • intermediate support system (5) To support the loads on the linear receiver (18), is available when at least some are necessary intermediate support system (5).
  • These supports intermediates may be, in a preferred embodiment, metal structures anchored to the base of the container structure (1) and outer shell of the receiver (4). Although intermediate brackets they could also consist of other grip systems such as metal braces.
  • the automatic cleaning system comprises travel rails (12) through which they transfer central stiffeners (16). United to these central stiffeners (16) by means of a shaft (25), and at the height of the rows of mirrors (6), at least one cleaning unit (15) for each row of mirrors (6).
  • the cleaning units (15) comprise turn an element made of absorbent materials (13), a top cover (14) to prevent it from deposit dirt on this absorbent element, and a water feed system.
  • the underside of the absorbent material (13) of the cleaning units (15), is located at the same height as the rows of mirrors (6), and in a position parallel to the plane of the rows of mirrors (6), when they are in an angular position called "Cleaning position".
  • the relative position between cleaning units (15) and mirrors (17), allows the sliding of the cleaning units (15) in longitudinal direction, as represented by arrows A in figure 3.
  • the material absorbent (13) cleans mirror surfaces (17) using the clean water provided by the water supply system of the cleaning unit (fifteen).
  • the movement of cleaning units (15) along the rows of mirrors (6) is performed in solidarity with that of the central stiffeners (16) a along the travel lanes (12), thanks to an axis (25) that joins the central stiffeners (16) with cleaning units (15).
  • the movement of central stiffeners (16) is achieved by direct motorization or cable drag.
  • the automatic cleaning system (10) is located in the “zone of rest ”. This resting area is located at the end of the row of mirrors (6), outside the mirror surface In this way, when the system Automatic cleaning (10) is in that area, the rows of mirrors (6) can rotate freely without risk of be blocked by the cleaning units (15).
  • the cleaning order is given, the rows of mirrors (6) are placed in the angular cleaning position, and a once there, the central stiffeners (16) move to along the lane (12) dragging the units of cleaning (15), and cleaning the surface of the mirrors (17) in his movement.
  • the water feed system brings clean water to the cleaning unit (15).
  • Figure 4 shows the sequence of system deployment from the position of transport / storage to the position of operation.
  • the system In the transport / storage position represented both in scheme 1 of figure 4, and in figure 2, the system remains contained in the volume delimited by the container structure (1).
  • the container terminals remain free being able to accommodate another container in the part top or be loaded on a means of transport of conventional merchandise.
  • the walls of the container can be covered with some material (textile, metallic or other) to protect the elements.
  • container walls may be covered to avoid the deterioration of the elements as well as to prevent theft.
  • the lateral folding platforms (2) remain in vertical position, the linear receiver (18) is content inside the container because the end supports of the receiver (3) are collapsed. In addition, in this position ballast deposits (11) they are empty. In this position the benches mirror holders (7) are mounted on the platforms lateral (2) but mirrors (17) may or may not be mounted on the benches. In the embodiment shown in figure 2, the mirrors (17) of the platforms sides (2) have been disassembled to prevent breakage during transport
  • the first step is fold down the side platforms (2).
  • the turn is done by means of a joint (24) anchored at the base of the container (1).
  • This movement is represented in the Scheme 2 of Figure 4 by letter B.
  • the movement is preferably performed using a light auxiliary device (pulley system, crane small, lifting platform, etc.) not represented in Figure 4
  • ballast tanks (11) are filled, and using the same auxiliary lightweight device it places the linear receiver (18) in its position of operation. This movement is achieved by pivoting the extreme supports connected to the receiver (3) thanks to joints (8) anchored in the structure container support (1). This movement is represented with the letter C in scheme 3 of figure 4.
  • the maximum system length is defined by the container structure length (1).
  • the Standard commercial containers have two measures, 12 and 24 feet, so when required, by size of the project, of a larger area, must serially connect as many containers as necessary.
  • the minimum system unit, called “Module” is a container.
  • Figure 6 shows the connection of two modules.
  • connection of modules is done by joining the linear receivers (8) of each module by means of a connecting cylindrical part (26) welded or screwed to the external housing (4) of each module.
  • a connecting cylindrical part (26) welded or screwed to the external housing (4) of each module.
  • the structure of the containers (1) of Each module is connected by metal joints (27) bolted or welded.

Abstract

Sistema solar fresnel lineal transportable en un contenedor de mercancías que comprende una serie de filas de espejos reflectantes (6), un sistema de limpieza automático (10), un receptor lineal (18) y una estructura soporte diseñada para montarse sobre un contenedor de mercancías comercial (1). La estructura soporte comprende a su vez dos plataformas laterales abatibles (2) capaces de adquirir dos posiciones fijas, una vertical, donde todos los elementos de la plataforma quedan dentro del volumen de la estructura del contenedor, permitiendo que este sea transportado y/o almacenado utilizando métodos convencionales, y otra horizontal que permite al sistema operar como un colector solar fresnel lineal convencional. En las plataformas laterales abatibles (2) se disponen las filas de espejos reflectores (6) montadas en bancadas porta-espejos (7) y al menos dos depósitos de lastre (11) utilizados como sobrepeso para reducir la cimentación necesaria. El sistema de limpieza automático (10) comprende unos carriles de desplazamiento (12) por los que se trasladan unos rigidizadores centrales (16). Unidos a estos rigidizadores centrales (16) se dispone de al menos una unidad de limpieza (15) por cada fila de espejos (6). Las unidades de limpieza (15) comprenden a su vez un elemento fabricado con materiales absorbentes (13), una cubierta superior (14) y un sistema de alimentación de agua. El receptor lineal (18) comprende una carcasa externa (4), unos soportes extremos (3) y unos soportes intermedios (5). La carcasa externa (4) comprende a su vez una cubierta transparente (23), un aislamiento (21), una superficie reflectiva secundaria (22) y al menos un receptor tubular (9).

Description

SISTEMA SOLAR FRESNEL LINEAL TRANSPORTABLE EN UN CONTENEDOR DE MERCANCÍAS OBJETO DE LA INVENCIÓN
La presente invención se puede incluir en el campo técnico de los sistemas solares de tipo fresnel lineal utilizados para producir energía térmica a partir de la concentración de energía solar. La energía térmica generada puede luego utilizarse directamente en cualquier proceso que requiera la utilización de un fluido caliente o en la generación de electricidad.
El sistema solar fresnel lineal transportable de la presente invención permite construir un sistema solar completo sobre un contenedor de mercancías comercial en fábrica, y transportarlo de manera sencilla sobre ese mismo contenedor hasta el emplazamiento deseado. Pudiendo, una vez situado en el lugar deseado, ser montado de manera rápida.
ANTECEDENTES DE LA INVENCIÓN
Un sistema solar fresnel lineal está compuesto por filas de espejos planos o semiplanos colocadas una al lado de otra en un mismo plano. Estas filas de espejos tienen libertad de movimiento para rotar sobre si mismas, de manera que pueden realizar un seguimiento solar orientándose en diferentes ángulos en función de la posición solar. La energía solar reflejada por los espejos impacta en un receptor lineal situado a una altura determinada sobre el plano de los espejos. La superficie total de las filas de espejo es significativamente superior a la superficie expuesta del receptor lineal por lo que, en el receptor se consigue concentrar la radiación solar, con un grado equivalente a relación entre las áreas de los espejos y del receptor lineal.
La energía solar concentrada en el receptor lineal se transporta utilizando un fluido de transporte de calor (normalmente agua presurizada o aceite térmico) el cual circula por el receptor. De esta manera, el fluido absorbe la energía solar aumentando su temperatura y por tanto refrigerando el receptor. La energía térmica es transportada mediante el fluido hacia el punto de consumo.
Existe a día de hoy una extensa experiencia en el uso de este tipo de sistemas solares en aplicaciones de calor de proceso industrial. Testimonio de ello son los proyectos actualmente funcionando o en construcción, por mencionar algunos de los más significativos: Sistema de frio solar de 750 kW en el estadio de futbol de Doha (Qatar) o instalación de 175 kW para la climatización de la escuela de ingenieros de la universidad de Sevilla (España). También, aunque en menor medida este tipo de sistemas han sido utilizados para la generación de energía eléctrica en centrales de gran tamaño. Un ejemplo en territorio español es la central de Puerto Errado (Murcia) de 1.4MW, aunque hay otros proyectos de gran tamaño alrededor del mundo como la central de 5MW Kimberlina en California (EEUU).
A pesar de la existencia de proyectos comerciales en operación y del notable interés del mercado, esta tecnología no es todavía tan competitiva como las basadas en combustibles fósiles, por lo que es preciso insistir en el desarrollo de actuaciones que consigan reducir el coste de la energía producida.
Por desgracia, este tipo de sistemas presenta ciertas barreras tecnológicas que limitan su competitividad y están retrasando su implantación a gran escala. Las barreras tecnológicas son las siguientes:
- Elevado coste de los componentes: La mayor parte de los productores de componentes de la industria solar están localizados en Europa y China, mientras que los proyectos solares se ubican en diferentes emplazamientos alrededor del mundo (normalmente aquellos con una elevada radiación solar). La elevada distancia existente entre el lugar de producción y lugar donde finalmente se realiza el proyecto, hace que en la mayoría de casos la alternativa más económica sea trasladar la fabricación al lugar del proyecto. Esto no sólo implica el coste directo del montaje de una planta de producción y la infraestructura necesaria para dar servicio a los trabajadores, sino que además implica la búsqueda de nuevos suministradores, formar a nuevos trabajadores o trasladar a los ya existentes, etc. Todo ello repercute en un encarecimiento importante del producto final, haciendo inviable proyectos de menor tamaño donde no es posible amortizar el coste del traslado de la producción.
- Deterioro de la calidad del producto final: Cuando se traslada la producción al lugar del proyecto, se construyen centros de producción temporales los cuales se deben desmontar cuando termina el proyecto. Esto hace que no sea viable económicamente disponer de la maquinaria e instrumentación que se dispondría en un centro de producción fijo. Es necesario por tanto relajar las exigencias de calidad en relación a las que se darían cuando la producción es en fábrica y se cuenta con todos los medios disponibles.
- Elevado tiempo de montaje: Los sistemas solares de concentración están formados por un elevado número de elementos, los cuales se fabrican por separado y se montan en el emplazamiento del proyecto. Este proceso requiere personal de alta capacitación y su duración es considerable, con lo que no sólo se incurre en importantes gastos de montaje (debido al salario del personal dedicado a ello), sino que además el tiempo de montaje es tiempo en el que la planta no está todavía operativa, y por tanto no está produciendo.
- Puesta en marcha de la instalación muy exigente: Debido a la propia naturaleza de la concentración solar, que requiere de una alta precisión, es necesario verificar los sistemas una vez construidos para asegurar su buen funcionamiento. La imprecisión lógica del montaje en campo hace imposible cumplir los requisitos de precisión requerida en el apunte y seguimiento solar, por lo que hace necesario que se lleven a cabo tareas de ajuste fino una vez terminada la construcción. Para este tipo de tareas es necesario emplear a trabajadores con una formación específica así como utilizar instrumentación especialmente diseñada. Todo ello encarece y alarga la puesta en marcha de este tipo de centrales, elevando ostensiblemente el coste de la energía producida.
- Escasa reutilización de los componentes: Debido al elevado coste del montaje y a que gran parte de la instalación no es reutilizable (por ejemplo la cimentación), es necesario que los proyectos de este tipo se planteen con elevados ciclos de vida. De lo contrario, una utilización de menor duración no podría amortizar los costes generados. Esto hace que sólo sean viables los proyectos de elevada duración. Sin embargo, en una tecnología todavía no demasiado extendida como esta, promover proyectos de larga duración crea incertidumbre y rechazo entre los potenciales clientes, los cuales optan por tecnologías más convencionales para proyectos de larga duración. Además limita modelos de negocio en los cuales sólo se vende al cliente la energía producida y la propiedad del sistema continúa en manos del promotor, ya que obliga a asegurarse una fidelización del cliente a muy largo plazo.
DESCRIPCION DE LA INVENCIÓN
La presente invención resuelve los inconvenientes anteriormente citados, mediante un sistema solar de tipo fresnel transportable el cual comprende una serie de filas de espejos reflectantes, un sistema de limpieza automático, un receptor lineal y una estructura soporte diseñada para montarse sobre un contenedor de mercancías comercial.
El sistema solar de tipo fresnel transportable comprende una estructura soporte que a su vez comprende dos plataformas laterales abatibles donde se disponen las filas de espejos reflectores montadas en bancadas porta-espejos y los depósitos de lastre. Estas plataformas abatibles laterales están dispuestas en posición vertical respecto suelo del contenedor de mercancías, cuando el colector está siendo transportado y/o almacenado. Cuando el sistema se despliega las plataformas laterales se abaten hasta alcanzar una posición horizontal a los lados del contenedor. Durante este movimiento el contenedor de mercancías permanece fijo. Las bancadas porta-espejos permiten regular la altura de las filas de espejos, de manera que todas puedan quedar alineadas de manera correcta.
El sistema automático de limpieza comprende una serie de unidades de limpieza montadas sobre unos rigidizadores intermedios los cuales se deslizan paralelamente a las filas de espejo, en ambos sentidos. Las unidades de limpieza comprenden un material absorbente que realiza la función de limpieza por contacto, una cubierta protectora para evitar el ensuciamiento del material absorbente, y unos elementos de salida de agua. Los elementos de salida de agua son preferentemente unas ramas de aspersión que están conectadas a las unidades de limpieza y desde las cuales se dirige agua limpia a la superficie reflectante de los espejos para limpiarlos. El agua se dirige a los espejos en dirección vertical, de arriba hacia abajo. El material absorbente de las unidades de limpieza recorre la fila de espejos gracias al movimiento de los rigidizadores. Durante este movimiento los elementos de salida de agua aportan el agua necesaria para realizar la limpieza de los espejos.
El receptor lineal comprende una carcasa aislada protegida por una cubierta transparente en cuyo interior se dispone de al menos un receptor tubular por donde se hace circular el fluido de transferencia de calor y una superficie reflectiva secundaria utilizada para redirigir hacia el receptor los rayos reflejados que no impactan directamente en la cara frontal del receptor tubular.
La correcta posición del receptor lineal se consigue mediante unos soportes extremos articulados en la estructura del contenedor de mercancías. Cuando el sistema está siendo transportado y/almacenado, los soportes extremos sitúan al receptor lineal dentro del volumen contenido por la estructura del contenedor de mercancías, mientras que cuando el sistema está desplegado, los soportes se articulan hasta que el receptor lineal es ubicado en la posición de operación.
En una realización de la invención en la que el contenedor comercial utilizado es del tipo abierto (ISO 22P4 “Flat Rack”), los soportes extremos del receptor lineal se articulan en los pilares del contenedor y las plataformas abatibles se articulan mediante bisagras colocadas en la base del contenedor. En esta realización, cuando el sistema está en transporte o almacenamiento, las plataformas abatibles están en posición vertical y contenidas en el volumen interior del contenedor. De la misma manera los soportes extremos están abatidos y el receptor lineal queda también dentro del volumen del contenedor. En esta posición los terminales superiores de los pilares del contenedor quedan libres de manera que otro contenedor puede ser ubicado encima. Cuando el sistema está en el lugar del proyecto, las plataformas abatibles se despliegan horizontalmente y el receptor lineal se coloca en su posición de operación rotando los soportes extremos.
Cuando la superficie requerida por el proyecto es elevada, se pueden crear sistemas de mayor tamaño uniendo en serie uno o más contenedores. La unidad mínima del sistema llamada “módulo” es un contendor.
Este sistema presenta importantes mejoras respecto a los sistemas convencionales, permitiendo:
Reducir el coste de los componentes: Debido a que el sistema es transportable mediante los canales de distribución convencionales de transporte de mercancías en contenedor, los componentes pueden ser producidos en una fábrica fija equipada adecuadamente y luego transportados al lugar del proyecto. De esta manera no es necesario incurrir en el sobrecoste de construir un centro de producción temporal en el lugar del proyecto, sino que se puede centralizar la producción por ejemplo en países cuyo coste de producción sea reducido. Además, la posibilidad de almacenaje del sistema, permitiría la producción en cadena reduciendo todavía más el coste.
Mejorar la calidad del producto final: Al producirse todos los elementos en las instalaciones centrales se puede llevar un control de calidad más exigente ya que se dispone de mejores medios que en los centros de producción temporales.
Reducir el tiempo de montaje: El sistema está diseñado de manera que es pre-ensamblado en fábrica, por lo que se reduce ostensiblemente el tiempo de montaje en campo. Una vez transportado al lugar del proyecto, simplemente es necesario desplegar los diferentes componentes y unir el número necesario de contenedores. Además, el peso adicional del contenedor de mercancías, así como el aporte de los depósitos de lastre hacen posible prescindir de cimentaciones, lo que conlleva una reducción adicional del tiempo de montaje en campo. El tiempo ahorrado en el montaje, es tiempo que la sistema puede estar en operación, y por tanto produciendo.
Agilizar la puesta en marcha de las instalaciones: Debido a que el sistema se transporta pre-ensamblado es posible ensayarlo directamente en fábrica, pudiendo prescindir de las costosas verificaciones in-situ, e incluso realizando algunas medidas que no pueden ser realizadas en campo. Cuando se despliega el sistema en el lugar del proyecto, no se realizan cambios estructurales, por lo que se tiene la garantía de que el sistema se comportará como en fábrica. El tiempo ahorrado en la puesta en marcha, es tiempo que la sistema puede estar en operación, y por tanto produciendo.
Reutilizar los componentes: Al reducir al mínimo el tiempo y por tanto el coste del montaje, la utilización de este sistema hace viables proyectos de duración reducida. En este caso, cuando el proyecto termina, es posible trasladar los colectores a otra ubicación reutilizando casi la totalidad de los componentes. Además, esta característica hace posible modelos de negocio como el alquiler, o la venta de servicios energéticos, donde no es necesario que el cliente compre el colector.
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un conjunto de dibujos no limitativos:
Fig.1
muestra una vista en perspectiva del sistema desplegado en el lugar del proyecto y en posición de operación, en la figura se aprecia los principales componentes del mismo.
Fig.2
muestra una vista del sistema representado en la figura 1 cuando está en posición de transporte y/o almacenamiento y los elementos quedan contenidos en el volumen del contenedor.
Fig.3
muestra una vista del sistema en la realización de las figuras 1 y 2 en la que se aprecia en detalle el sistema de limpieza de espejos, sus componentes, así como la dirección preferente de deslizamiento del sistema.
Fig.4
muestra una secuencia de movimientos en la que se representa la realización de las figuras 1 y 2, desde la posición de transporte/almacenamiento hasta que es completamente desplegada.
Fig.5
muestra una sección transversal del receptor lineal en la que se aprecian los componentes del receptor.
Fig.6
muestra la conexión de dos módulos de la realización de las figuras 1 y 2, cuando el proyecto requiere utilizar dos o más módulos.
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
Seguidamente se presenta, con ayuda de las figuras 1 a 6 anteriormente referidas, una descripción en detalle de una posible realización de la invención utilizando contenedores de mercancías abiertos o Flat Rack.
El sistema solar fresnel lineal transportable en un contenedor de mercancías comprende un contendor abierto o Flat Rack (1) que a su vez forma parte de la estructura que da soporte al resto de elementos. Esta estructura soporte comprende dos plataformas abatibles laterales (2) donde se ubican las filas de espejos (6) montados en bancadas porta-espejos (7). Las plataformas abatibles laterales (2) está situadas en posición vertical respecto al terreno cuando el sistema está en posición desplegada o de operación (Figura 1), y en posición horizontal, es decir, paralela al terreno, cuando el sistema está en posición de transporte y/o almacenamiento (Figura 2)
Las plataformas abatibles laterales (2) comprenden al menos un depósito de lastre (11). Este depósito de lastre (11) permanece vacío durante el transporte y/o almacenamiento, y se rellena de agua u otro fluido cuando el sistema se despliega. Una vez el depósito de lastre (11) se llena, el peso adicional del fluido incorporado en el sistema, hace las funciones de sobrepeso permitiendo reducir y en algunos casos evitar, el uso de cimentación.
El movimiento de las plataformas abatibles laterales (2), desde la posición vertical hasta la posición horizontal, se consigue mediante el uso de bisagras (24) ancladas a la base de la estructura del contenedor (1) u otro sistema que permita el abatimiento.
Las bancadas porta-espejos (7) están formadas por un número determinado de estructuras metálicas que dan soporte y rigidez a las filas de espejos (6). La altura de las bancadas se ajusta para que las filas de espejos (6) queden instaladas a la altura de diseño. El número de bancadas porta-espejos (7) necesarias depende de la rigidez de diseño de las filas de espejos (6).
Las filas de espejos (6) comprenden un número determinado de espejos (17) alineados de forma continua formando una fila. Esta fila une solidariamente a todos los espejos (17) que contiene, de forma que cuando se mueve la fila de espejos (6), se mueven todos los espejos (17) contenidos en ella. El movimiento de las filas de espejos (6) es un movimiento de rotación alrededor del eje de la fila (19). Este movimiento de rotación se consigue a través de un mecanismo de seguimiento (20) que en una realización preferente, consiste en un actuador lineal.
El receptor lineal (18) comprende una carcasa externa (4), unos soportes extremos (3) y unos soportes intermedios (5). La carcasa externa (4) comprende a su vez una cubierta transparente (23), un aislamiento (21), una superficie reflectiva secundaria (22) y al menos un receptor tubular (9).
La carcasa externa (4) crea una cavidad hueca donde se aloja el receptor tubular (9). Esta cavidad está aislada por la parte superior mediante un aislamiento (21) destinado a reducir las pérdidas térmicas, y cerrada por una cubierta transparente (23) por su parte inferior. La cubierta transparente (23) está destinada a reducir pérdidas térmicas (principalmente pérdidas convectivas). En la parte inferior del material se dispone una superficie reflectiva secundaria (22) destinada a redirigir hacia el receptor tubular (9), los rayos reflejados que no impactan directamente en la cara frontal del receptor tubular (9). La superficie reflectiva secundaria (22) puede ser diseñada utilizando diferentes geometrías. A través del receptor tubular (9) se hace pasar un fluido caloportador el cual absorbe y transporte la energía solar concentrada, llevándola hasta el punto de consumo.
El correcto posicionamiento del receptor lineal (18), se consigue mediante unos soportes extremos (3) unidos a la estructura del contenedor (1) mediante unas articulaciones (8). Cuando el sistema está en posición de transporte/almacenamiento, como se muestra en la figura 2, los soportes extremos (3) colocan al receptor lineal (18) dentro del volumen interior de la estructura del contenedor (1), dejando espacio suficiente para que las plataformas abatibles laterales (2) puedan colocarse en posición vertical. Cuando el sistema está es posición de operación, figura 1, los soportes extremos (3) pivotan mediante articulaciones (8), hasta colocar el receptor lineal (18) en su posición de operación.
Para soportar las cargas en el receptor lineal (18), se dispone cuando es necesario de al menos algún sistema de soporte intermedio (5). Estos soportes intermedios pueden ser, en una realización preferente, estructuras metálicas ancladas a la base de la estructura del contenedor (1) y a la carcasa exterior del receptor (4). Aunque los soportes intermedios también podrían consistir en otros sistemas de agarre como por ejemplo tirantes metálicos.
El sistema automático de limpieza comprende unos carriles de desplazamiento (12) por los que se trasladan unos rigidizadores centrales (16). Unidos a estos rigidizadores centrales (16) mediante un eje (25), y a la altura de las filas de espejos (6), se dispone de al menos una unidad de limpieza (15) por cada fila de espejos (6). Las unidades de limpieza (15) comprenden a su vez un elemento fabricado con materiales absorbentes (13), una cubierta superior (14) para evitar que se deposite suciedad en este elemento absorbente, y un sistema de alimentación de agua.
La cara inferior del material absorbente (13) de las unidades de limpieza (15), está situadas a la misma altura que las filas de espejos (6), y en una posición paralela al plano de las filas de espejos (6), cuando estas están en una posición angular denominada “posición de limpieza”. La posición relativa entre unidades de limpieza (15) y espejos (17), permite el deslizamiento de la unidades de limpieza (15) en dirección longitudinal, tal y como representan las flechas A en la figura 3.
Durante este deslizamiento, el material absorbente (13) limpia las superficies de los espejos (17) haciendo uso del agua limpia aportada por el sistema de alimentación de agua de la unidad de limpieza (15).
El movimiento de las unidades de limpieza (15) a lo largo de las filas de espejos (6) se realiza solidariamente al de los rigidizadores centrales (16) a lo largo de los carriles de desplazamiento (12), gracias a un eje (25) que une los rigidizadores centrales (16) con las unidades de limpieza (15). El movimiento de los rigidizadores centrales (16) se consigue mediante motorización directa o arrastre por cable.
Durante la operación normal del sistema, el sistema automático de limpieza (10) se sitúa en la “zona de reposo”. Esta zona de reposo está localizada al final de la fila de espejos (6), en el exterior de la superficie de espejos. De esta forma, cuando el sistema automático de limpieza (10) está en esa zona, las filas de espejos (6) pueden rotar libremente sin riesgo de quedar bloqueadas por las unidades de limpieza (15). Cuando se da la orden de limpieza, las filas de espejos (6) se colocan en la posición angular de limpieza, y una vez ahí, los rigidizadores centrales (16) se desplazan a lo largo del carril (12) arrastrando a las unidades de limpieza (15), y limpiando la superficie de los espejos (17) en su movimiento. Durante este movimiento, el sistema de alimentación de agua aporta agua limpia a la unidad de limpieza (15).
Los procesos requeridos para la limpieza: Posicionamiento angular de las filas de espejos (6) en “posición limpieza”, y movimiento de los rigidizadores centrales (16) desde la zona de reposo a lo largo de toda la fila de espejos (6), están totalmente automatizados. Por tanto, la limpieza de la superficie de los espejos (17) se realiza automáticamente, pudiendo programarse durante los momentos del día en los que no hay producción.
En la figura 4 se representa la secuencia de despliegue del sistema desde la posición de transporte/almacenamiento hasta la posición de operación. En la posición de transporte/almacenamiento representada tanto en el esquema 1 de la figura 4, como en la figura 2, el sistema permanece contenido en el volumen delimitado por la estructura del contenedor (1). De esta manera, los terminales del contenedor permanecen libres pudiendo alojar otro contenedor en la parte superior o ser cargado en un medio de transporte de mercancías convencional. En esta posición, las paredes del contenedor pueden ser cubiertas con algún material (textil, metálico u otro) para proteger los elementos. Cuando se prevea un almacenamiento de larga duración las paredes del contenedor podrán ser cubiertas para evitar el deterioro de los elementos así como para evitar robos.
En la posición de transporte/almacenamiento las plataformas abatibles laterales (2) permanecen en posición vertical, el receptor lineal (18) queda contenido en el interior del contenedor gracias a que los soportes extremos del receptor (3) están abatidos. Además, en esta posición los depósitos de lastre (11) están vacíos. En esta posición las bancadas porta-espejos (7) están montadas en las plataformas laterales (2) pero los espejos (17) pueden estar o no montados sobre las bancadas. En la realización mostrada en la figura 2, los espejos (17) de las plataformas laterales (2) han sido desmontados para evitar roturas durante su transporte.
Cuando el sistema se despliega desde la posición de transporte/almacenamiento, el primer paso es abatir las plataformas laterales (2). El giro se realiza mediante una articulación (24) anclada en la base del contenedor (1). Este movimiento está representado en el esquema 2 de la figura 4 mediante la letra B. El movimiento se realiza preferentemente utilizando un dispositivo ligero auxiliar (sistema de poleas, grúa pequeña, plataforma elevadora, etc.) no representado en la figura 4.
Una vez las plataformas laterales (2) han sido desplegadas se rellenan los depósitos de lastre (11), y utilizando el mismo dispositivo ligero auxiliar se coloca el receptor lineal (18) en su posición de operación. Este movimiento se consigue pivotando los soportes extremos conectados al receptor (3) gracias a unas articulaciones (8) ancladas en la estructura soporte del contenedor (1). Este movimiento está representado con la letra C en el esquema 3 de la figura 4.
Posteriormente se asegura la posición del receptor lineal (18) mediante los soporte extremos libres (3). Este movimiento está indicado con la letra D en el esquema 4 de la figura 4. Una vez el soporte del receptor lineal (18) está asegurado mediante los soportes extremos (3), se debe conectar los soportes intermedios en caso que fueran necesarios (5). Cuando el receptor lineal (18) está en su posición de operación y se ha asegurado su estabilidad con los soportes, se retira el dispositivo ligero auxiliar.
Finalmente se colocan los espejos (8) que no hubieran sido montados anteriormente en las bancadas porta-espejos (7).
Cuando el proyecto es de gran tamaño es necesario conexionar varios sistemas en serie. La longitud máxima del sistema viene definida por la longitud de la estructura del contenedor (1). Los contenedores comerciales estándar tienen dos medidas, 12 y 24 pies, por lo que cuando se requiera, por el tamaño del proyecto, de una superficie mayor, deberán conexionarse en serie tantos contenedores como sea necesario. La unidad mínima del sistema, llamada “módulo”, es un contenedor. En la figura 6 se muestra el conexionado de dos módulos.
El conexionado de módulos se realiza uniendo los receptores lineales (8) de cada módulo mediante una pieza cilíndrica de conexión (26) soldada o atornillada a la carcasa externa (4) de cada módulo. Con el fin de evitar problemas de alineación e inestabilidad estructural, la estructura de los contenedores (1) de cada módulo, se conexiona mediante uniones metálicas (27) atornilladas o soldadas.
Una vez las uniones mecánicas han sido conectadas, se realiza la unión eléctrica, de datos e hidráulica de los módulos mediante elementos convencionales.

Claims (7)

  1. Sistema solar fresnel lineal transportable en un contenedor de mercancías donde el sistema comprende una serie de filas de espejos reflectantes (6), un sistema de limpieza automático (10), un receptor lineal (18) y una estructura soporte diseñada para montarse sobre un contenedor de mercancías comercial (1). La estructura soporte comprende a su vez dos plataformas laterales abatibles (2) donde se disponen las filas de espejos reflectores (6) montadas en bancadas porta-espejos (7) y al menos dos depósitos de lastre (11).
  2. Sistema solar fresnel lineal transportable en un contenedor de mercancías según la reivindicación 1 caracterizado por que las plataformas laterales abatibles (2) en las que se montan los espejos (8) mediante bancadas porta-espejos (7) permiten colocarse en dos posiciones fijas, gracias a un sistema articulado (24) anclado en la base de la estructura del contenedor (1). Las dos posiciones anteriormente mencionadas son las siguientes: [1]una posición vertical respecto a la base de la estructura del contenedor (1) denominada de “transporte/almacenamiento”, en la que los elementos de la plataforma lateral abatible (2) quedan en el interior del volumen del contenedor (1), permitiendo que este sea transportado y/o almacenado utilizando los medios convencionales, y [2] una posición horizontal respecto a la base de la estructura del contenedor (1) denominada de “operación/despliegue”, en la que los elementos de la plataforma lateral abatible (2) adoptan una configuración que permite su funcionamiento como colector solar del tipo fresnel lineal.
  3. Sistema solar fresnel lineal transportable en un contenedor de mercancías según la reivindicación 1 caracterizado por que comprende un receptor lineal (18) que comprende a su vez unos soportes extremos (3) articulados en la estructura del contenedor de mercancías (1) de forma que la estructura del contenedor (1), contribuye a soportar las cargas del receptor lineal (18) así como permite posicionar el receptor lineal (18) en la posición correcta de operación.
  4. Sistema de soportes extremos (3) según la reivindicación 3 caracterizado por que comprende una articulación (8) anclada a la estructura del contenedor (1) de forma que cuando el sistema está en posición de transporte/almacenamiento, los soportes extremos (3) basculan hacia el interior y el receptor lineal (8) queda en el interior del volumen del contenedor (1), permitiendo que este sea transportado y/o almacenado utilizando los medios convencionales. Mientras que cuando el sistema está en posición de operación, los soportes extremos (3) basculan hacia el exterior y posicionan en receptor lineal (8) en posición de operación.
  5. Sistema solar fresnel lineal transportable en un contenedor de mercancías según la reivindicación 1 caracterizado por que dispone de al menos dos depósitos de lastre (11), uno en cada plataforma lateral abatible (2), que realizan las funciones de sobrepeso para reducir la cimentación necesaria.
  6. Sistema solar fresnel lineal transportable en un contenedor de mercancías según la reivindicación 1 caracterizado por que comprende un sistema de limpieza automático (10) que a su vez comprende unos carriles de desplazamiento (12) por los que se trasladan unos rigidizadores centrales (16). Unidos a estos rigidizadores centrales (16) mediante un eje (25), y a la altura de las filas de espejos (6), se dispone de al menos una unidad de limpieza (15) por cada fila de espejos (6). Las unidades de limpieza (15) comprenden a su vez un elemento fabricado con materiales absorbentes (13), una cubierta superior (14) para evitar que se deposite suciedad en este elemento absorbente, y un sistema de alimentación de agua.
  7. Sistema solar fresnel lineal transportable en un contenedor de mercancías según la reivindicación 1 caracterizado por poder ser conexionado con más unidades del mismo sistema cuando el tamaño de la superficie reflectiva requerida sea superior al de una unidad.
PCT/ES2015/070573 2014-07-25 2015-07-24 Sistema solar fresnel lineal transportable en un contenedor de mercancías WO2016012650A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/326,971 US10976077B2 (en) 2014-07-25 2015-07-24 Linear fresnel solar power system that can be transported in a goods container
MX2017000856A MX2017000856A (es) 2014-07-25 2015-07-24 Sistema solar fresnel lineal transportable en un contenedor de mercancias.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201431121A ES2557501B1 (es) 2014-07-25 2014-07-25 Sistema solar fresnel lineal transportable en un contenedor de mercancías
ESP201431121 2014-07-25

Publications (1)

Publication Number Publication Date
WO2016012650A1 true WO2016012650A1 (es) 2016-01-28

Family

ID=55086875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070573 WO2016012650A1 (es) 2014-07-25 2015-07-24 Sistema solar fresnel lineal transportable en un contenedor de mercancías

Country Status (4)

Country Link
US (1) US10976077B2 (es)
ES (1) ES2557501B1 (es)
MX (1) MX2017000856A (es)
WO (1) WO2016012650A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107150886A (zh) * 2016-03-04 2017-09-12 菲涅尔有限公司 用于安装在太阳能发电场中的镜单元的运输装置和运输方法
WO2018184605A1 (de) * 2017-04-05 2018-10-11 Frenell Gmbh Transportvorrichtung und -verfahren für spiegeleinheiten zur montage in einem solarfeld

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2601222B1 (es) * 2016-10-11 2017-09-15 Universidad De Oviedo Concentrador solar lineal fresnel con triple movimiento
EP3587955A1 (en) * 2018-06-21 2020-01-01 Rioglass Solar, S.A. Solar concentrating system
CZ309335B6 (cs) * 2022-01-20 2022-08-31 Strojírny Bohdalice A.S. Mobilní skládací koncentrační solární elektrárna

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4051834A (en) * 1976-04-28 1977-10-04 Nasa Portable, linear-focused solar thermal energy collecting system
DE29808939U1 (de) * 1998-05-19 1998-10-22 Dessel Jochen Solarkocher
WO2009004476A2 (en) * 2007-07-04 2009-01-08 Biosolar Flenco Group S.R.L. Modular assembly for the production and accumulation of solar energy
DE202009009020U1 (de) * 2009-07-01 2009-09-17 Schiffers, Guido Transportable und erweiterbare Reinigungsmaschine für Solaranlagen
DE102009031905A1 (de) * 2009-07-02 2011-01-05 Saenergy Systems Gmbh Sonnenstrahlenkonzentrator
ES2431463T3 (es) * 2008-02-21 2013-11-26 Heiner Gerbracht Contenedor y central de energía solar

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101641798B (zh) * 2007-03-23 2011-06-01 尚能有限公司 跟踪式太阳能采集器组件和建造跟踪式太阳能采集器设施的方法
US8978641B2 (en) * 2009-03-16 2015-03-17 B. Shawn Buckley Solar energy module
CN103238033B (zh) * 2010-04-22 2016-03-02 特雷弗.鲍威尔 太阳能收集器系统
AT509886B1 (de) * 2010-06-29 2011-12-15 Alexander Swatek Solarmodul
WO2013049610A1 (en) * 2011-09-30 2013-04-04 Day and Night Solar, LLC Portable solar panel power source
US9246035B2 (en) * 2011-09-30 2016-01-26 Day and Night Solar, LLC Portable solar panel power source
US9612039B2 (en) * 2013-05-14 2017-04-04 Mobile Grid, Llc Mobile solar power rack
WO2015073936A1 (en) * 2013-11-18 2015-05-21 Cowham Walter Photovoltaic power apparatus for rapid deployment
US20160352285A1 (en) * 2015-05-26 2016-12-01 Solarcity Corporation Field-deployable self-contained photovoltaic power system
US11283397B2 (en) * 2016-08-29 2022-03-22 SacTec Solar Inc. Rapidly deploying transportable solar panel systems and methods of using same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4051834A (en) * 1976-04-28 1977-10-04 Nasa Portable, linear-focused solar thermal energy collecting system
DE29808939U1 (de) * 1998-05-19 1998-10-22 Dessel Jochen Solarkocher
WO2009004476A2 (en) * 2007-07-04 2009-01-08 Biosolar Flenco Group S.R.L. Modular assembly for the production and accumulation of solar energy
ES2431463T3 (es) * 2008-02-21 2013-11-26 Heiner Gerbracht Contenedor y central de energía solar
DE202009009020U1 (de) * 2009-07-01 2009-09-17 Schiffers, Guido Transportable und erweiterbare Reinigungsmaschine für Solaranlagen
DE102009031905A1 (de) * 2009-07-02 2011-01-05 Saenergy Systems Gmbh Sonnenstrahlenkonzentrator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107150886A (zh) * 2016-03-04 2017-09-12 菲涅尔有限公司 用于安装在太阳能发电场中的镜单元的运输装置和运输方法
WO2018184605A1 (de) * 2017-04-05 2018-10-11 Frenell Gmbh Transportvorrichtung und -verfahren für spiegeleinheiten zur montage in einem solarfeld
CN110506010A (zh) * 2017-04-05 2019-11-26 菲涅尔有限公司 用于安装在太阳场中的反射镜单元的输送装置和方法

Also Published As

Publication number Publication date
ES2557501A1 (es) 2016-01-26
US10976077B2 (en) 2021-04-13
MX2017000856A (es) 2017-06-07
ES2557501B1 (es) 2016-11-02
US20170205118A1 (en) 2017-07-20

Similar Documents

Publication Publication Date Title
WO2016012650A1 (es) Sistema solar fresnel lineal transportable en un contenedor de mercancías
ES2733039T3 (es) Receptor solar de sal fundida de flujo de serpentina vertical ensamblado en taller
ES2383786B2 (es) Dispositivo de generación de energía a partir de calor solar.
ES2760915T3 (es) Colector de energía solar térmica de estado solido
ES2387710B1 (es) Método para controlar un heliostato utilizado para condensar la luz solar y dispositivo para el mismo.
ES2429216T3 (es) Sistema colector de energía solar
ES2748181T3 (es) Soporte para módulos
ES2525834T3 (es) Sistema solar de receptor central con un campo de helióstatos y procedimiento para la producción de un campo de helióstatos de tal sistema
WO2013093909A1 (en) System and method for solar energy utilization
ES1068787U (es) Estructura de soporte de paneles solares.
ES2631805T3 (es) Conjunto óptico con alto nivel de eficiencia para el almacenamiento y el uso de energía de una fuente solar
ES2388530A1 (es) Un sistema receptor central solar
ES2391500T3 (es) Isla solar fotovoltaica
ES2304116A1 (es) Seguidor solar.
ES2387775B1 (es) Seguidor solar.
WO2015017943A1 (es) Sistemas de generación solar de puente receptor común y colectores de multiples velos móviles
WO2018050931A1 (es) Contenedor marítimo convertible en una central fotovoltaica
ES2703050T3 (es) Sistema de concentración de energía solar que comprende unas estructuras de soporte para múltiples heliostatos
ES2842528B2 (es) Planta de premontaje de seguidores solares fotovoltaicos y procedimiento de premontaje asociado a dicha planta
ES2446890A1 (es) Estructura soporte para colector solar cilíndrico de concentración y colector solar que comprende la mencionada estructura
ES2453716B1 (es) Estructura para sistema de concentración solar puntual de tipo disco, y sistema de concentración que incorpora dicha estructura
ES2726474B2 (es) Sistema para medir radiacion solar concentrada y vehiculo aereo no tripulado que lo comprende
ES1062111U (es) Seguidor solar con sistema de sustentacion mediante plataforma rodante sobre superficie horizontal.
ES1074545U (es) Armadura para multiples heliostatos o paneles fotovoltaicos con ajuste independiente y arrastre automatico.
ES2257949A1 (es) Seguidor solar basado en cinematica paralela.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15824477

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15326971

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/000856

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15824477

Country of ref document: EP

Kind code of ref document: A1