WO2016011642A1 - 串扰估计方法、装置及系统 - Google Patents

串扰估计方法、装置及系统 Download PDF

Info

Publication number
WO2016011642A1
WO2016011642A1 PCT/CN2014/082934 CN2014082934W WO2016011642A1 WO 2016011642 A1 WO2016011642 A1 WO 2016011642A1 CN 2014082934 W CN2014082934 W CN 2014082934W WO 2016011642 A1 WO2016011642 A1 WO 2016011642A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
pilot
training signal
signal
pilot training
Prior art date
Application number
PCT/CN2014/082934
Other languages
English (en)
French (fr)
Inventor
涂建平
潘众
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14898201.0A priority Critical patent/EP3154230B1/en
Priority to PCT/CN2014/082934 priority patent/WO2016011642A1/zh
Priority to CN201480011127.1A priority patent/CN105453501B/zh
Publication of WO2016011642A1 publication Critical patent/WO2016011642A1/zh
Priority to US15/412,678 priority patent/US9756178B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing
    • H04B3/487Testing crosstalk effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03159Arrangements for removing intersymbol interference operating in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • H04M11/06Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors
    • H04M11/062Simultaneous speech and data transmission, e.g. telegraphic transmission over the same conductors using different frequency bands for speech and other data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/22Arrangements for supervision, monitoring or testing
    • H04M3/26Arrangements for supervision, monitoring or testing with means for applying test signals or for measuring
    • H04M3/34Testing for cross-talk
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • H04L2012/6478Digital subscriber line, e.g. DSL, ADSL, HDSL, XDSL, VDSL

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a crosstalk estimation method, apparatus, and system.
  • X Digital Subscriber Line is a high-speed data transmission technology that transmits over the twisted pair (Unshielded Twist Pair, UTP for short).
  • the xDSL of the passband transmission uses the frequency division multiplexing technology to make the xDSL and the traditional telephone service (Plain Old Telephone Service, POTS for short) coexist on the same pair of twisted pairs, where xDSL occupies the high frequency band and the POTS occupies 4 kilohertz (KHz) or less.
  • a splitter is used to separate the POTS signal from the xDSL signal.
  • a system that provides multiple xDSL access is called a DSL Access Multiplexer (DSLAM).
  • DSL Access Multiplexer DSL Access Multiplexer
  • Crosstalk includes far-end crosstalk (FEXT) and near-end crosstalk (NEXT), as shown in Figure 1 for far-end crosstalk.
  • Figure 2 shows the schematic diagram of the near-end crosstalk.
  • TX represents the signal transmitting end
  • RX represents the signal receiving end
  • CO represents the central office
  • CPE represents the user side
  • downstream represents the downlink signal
  • upstream represents the uplink signal.
  • the VDSL2 standard defines eight configuration attributes (profiles) called 8a, 8b, 8c, 8d, 12a, 12b, 17a, 30a.
  • attributes in the Vector system, such as the 17a line (ie, attributes).
  • the 17a line has an out-of-band spectrum outside of 17M.
  • a low-pass filter can be used, the out-of-band spectrum power of 17-21MHZ is still above -80dBm/Hz.
  • the signal is transmitted on the 17a line.
  • the out-of-band spectrum will generate strong FEXT interference for frequencies above 17M on the 30a line.
  • the spectrum above 17M on the 30a line will also generate FEXT interference on the out-of-band spectrum of the 17a line.
  • this part of the out-of-band interference is aliased into the band of the 17a line, causing the 17a line rate to decrease.
  • Embodiments of the present invention provide a crosstalk estimation method, apparatus, and system for solving the problem of FEXT crosstalk between two sets of different attributes in an existing Vector system, affecting the effect and stability of the FTTC speed increase.
  • an embodiment of the present invention provides a crosstalk estimation method, including: a transceiver at one end of a first line receives a first pilot sequence allocated by a vectorization control entity in a digital subscriber line system;
  • the transceiver at one end of the first line generates and sends a first pilot training signal and a third pilot training signal according to the first pilot sequence, where the first pilot training signal is the first line a pilot training signal in a range overlapping with a spectrum of the second line, where the third pilot training signal is a pilot training signal of the first line outside the spectrum overlapping with the second line, the band of the second line
  • the outer spectrum overlaps with the in-band spectrum of the first line;
  • the transceiver at the opposite end of the first line generates an error sample signal according to the first pilot training signal and the third pilot training signal;
  • a transceiver at the opposite end of the first line transmits the error sample signal to a vectoring control entity to determine a first crosstalk channel coefficient of the second line to the first line.
  • the transceiver at the opposite end of the first line sends the error sample signal to the vectorization control entity to determine the first line of the second line to the first line.
  • Crosstalk channel coefficients including:
  • the transceiver at the opposite end of the first line sends the error sample signal to the vectorization control entity, so that the vectorization control entity according to the error sample signal, the first pilot sequence And determining, by the second pilot sequence, the first crosstalk channel coefficient of the second line to the first line; the second pilot sequence is a pilot sequence allocated by the vectorization control entity to the second line, where The first pilot training signal is orthogonal to the second pilot training signal generated by the transceiver of one end of the second line according to the second pilot sequence, the third pilot training signal and the second The out-of-band image signal of the pilot training signal is orthogonal.
  • the third pilot training signal is that the first pilot training signal is in the An image signal outside the overlapping area of the first line and the second line spectrum is described.
  • the first pilot training signal and the third pilot training signal are respectively associated with the second pilot
  • the training signals are orthogonal to each other.
  • the transceiver at one end of the first line generates and sends the first according to the first pilot sequence.
  • the pilot training signal and the third pilot training signal include:
  • the transceiver at one end of the first line generates a first pilot training signal corresponding to the first pilot sequence and 1 or 0 on other subcarriers on an odd subcarrier satisfying a preset modulation period, and A third pilot training signal corresponding to the first pilot sequence and having 1 or 0 on other subcarriers is generated on even subcarriers satisfying a preset modulation period.
  • the transceiver at one end of the first line generates and sends the first according to the first pilot sequence.
  • the pilot training signal and the third pilot training signal include:
  • the transceiver at one end of the first line generates a first pilot training signal corresponding to the first pilot sequence and the signal on the other subcarriers is 1 or 0 on an even subcarrier satisfying a preset modulation period, And generating a third pilot training signal corresponding to the first pilot sequence and 1 or 0 on other subcarriers on odd subcarriers satisfying a preset modulation period.
  • the preset modulation period is an integer multiple of 2.
  • the method further includes:
  • a transceiver at one end of the first line receives a third allocated by the vectoring control entity a pilot sequence, the first pilot sequence, the second pilot sequence, and the third pilot sequence satisfy orthogonality; a transceiver at one end of the first line generates and transmits a first pilot sequence according to the first pilot sequence a pilot training signal and a third pilot training signal, including:
  • the transceiver at one end of the first line generates and transmits a first pilot training signal according to the first pilot sequence, and generates and transmits a third pilot training signal according to the third pilot sequence.
  • the first line is a 30a line
  • the second line is a 17a line.
  • an embodiment of the present invention provides a line device, including:
  • a first transceiver configured to receive a first pilot sequence allocated by a vectoring control entity in a digital subscriber line system
  • the first transceiver is further configured to generate and send a first pilot training signal and a third pilot training signal according to the first pilot sequence, where the first pilot training signal is a pilot training signal in a range overlapping with a spectrum of the second line, where the third pilot training signal is a pilot training signal of the first line outside the spectrum overlapping with the second line, the band of the second line
  • the outer spectrum overlaps with the in-band spectrum of the first line;
  • a second transceiver configured to generate an error sample signal according to the first pilot training signal and the third pilot training signal
  • the second transceiver is further configured to send the error sample signal to a vectorization control entity to determine a first crosstalk channel coefficient of the second line to the first line.
  • the second transceiver is configured to: send the error sample signal to a vectorization control entity, so that the vectorization control entity is configured according to the error Determining, by the sample signal, the first pilot sequence and the second pilot sequence, a first crosstalk channel coefficient of the second line to the first line;
  • the second pilot sequence is a pilot sequence allocated by the vectorization control entity to the second line, and the first pilot training signal and the transceiver of one end of the second line are according to the second
  • the second pilot training signal generated by the pilot sequence is orthogonal
  • the third pilot training signal is orthogonal to the out-of-band mirror signal of the second pilot training signal.
  • the third pilot training signal is the first pilot training signal An image signal outside the overlap region of the first line and the second line spectrum.
  • the first pilot training signal and the third pilot training signal are respectively associated with the second pilot
  • the training signals are orthogonal to each other.
  • the first transceiver is specifically configured to generate and generate on an odd subcarrier that meets a preset modulation period.
  • a first pilot training signal corresponding to the first pilot sequence and having 1 or 0 on other subcarriers, and corresponding to the first pilot sequence and other sub-carriers on an even subcarrier satisfying a preset modulation period
  • the first transceiver is specifically configured to generate and generate on an even subcarrier that meets a preset modulation period.
  • a first pilot training signal corresponding to the first pilot sequence and having a signal of 1 or 0 on other subcarriers, and corresponding to the first pilot sequence generated on an odd subcarrier satisfying a preset modulation period
  • the preset modulation period is an integer multiple of 2.
  • the first transceiver is further configured to receive, by the vectorization control entity a third pilot sequence, the first pilot sequence and the third pilot sequence satisfy orthogonality, and generate and transmit a first pilot training signal according to the first pilot sequence, according to the third pilot The sequence generates and transmits a third pilot training signal.
  • the first line is a 30a line
  • the second line is a 17a line.
  • an embodiment of the present invention provides a crosstalk estimation system, including the line device and the vectorization control entity as described in the foregoing second embodiment.
  • the transceiver of the line respectively generates pilots in different frequency ranges that satisfy the preset relationship with the pilot training signals of other lines according to the pilot sequences allocated by the vectorization control entity.
  • Frequency training signal so that the receiver of the line can determine the sample error according to different pilot training signals
  • the vectoring control entity determines other lines
  • the in-band spectrum of the line and the cross-talk channel coefficient of the out-of-band spectrum so that the pre-coding process of the data signal to be transmitted on the line can eliminate the crosstalk effect of other lines on the in-band and out-of-band spectrum of the line.
  • Figure 1 is a schematic diagram of the far-end crosstalk
  • Figure 2 is a schematic diagram of near-end crosstalk
  • Figure 3 shows the working situation of peer-to-peer transmission on the DSLAM side
  • Figure 4 shows the working situation of simultaneous reception on the DSLAM side
  • FIG. 5 is a schematic flowchart of Embodiment 1 of a crosstalk estimation method according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of Embodiment 2 of a crosstalk estimation method according to an embodiment of the present invention
  • FIG. 7 is a crosstalk estimation method according to an embodiment of the present invention
  • FIG. 8 is a schematic flowchart of Embodiment 4 of a crosstalk estimation method according to an embodiment of the present invention
  • FIG. 9 is a schematic flowchart of Embodiment 5 of a crosstalk estimation method according to an embodiment of the present invention
  • FIG. 11 is a schematic flowchart of Embodiment 7 of a crosstalk estimation method according to an embodiment of the present invention
  • FIG. 12 is a flowchart of Embodiment 8 of a crosstalk estimation method according to an embodiment of the present invention
  • FIG. 13 is a schematic structural diagram of Embodiment 9 of a crosstalk estimation method according to an embodiment of the present invention
  • FIG. 14 is a schematic structural diagram of Embodiment 1 of a vectorization control apparatus according to an embodiment of the present invention
  • FIG. 16 is a schematic structural diagram of a second embodiment of a vector control device
  • FIG. The schematic structural diagram of a network control device
  • FIG. 17 is a schematic structural diagram of an embodiment of a line device according to an embodiment of the present invention
  • FIG. 18 is a schematic structural diagram of a line device according to an embodiment of the present invention.
  • the joint transmission and reception can be performed at the DSLAM end, and the signal processing method is used to cancel the FEXT interference.
  • Figure 3 shows the working situation of the same transmission on the DSLAM side.
  • 4 is the working situation of the same reception on the DSLAM terminal.
  • the shared channel H shown in Figures 3 and 4 can be represented as a matrix in the k-th frequency interval of the frequency domain as shown in equation (1):
  • the joint transmission processing of the signal at the CO end introduces a precoder P at the CO end, and the transmitted signal can be expressed by the equation (4):
  • the transmitted signal can be expressed by the equation (4):
  • the signal received by the receiver can be expressed by the equation (5):
  • the transmitting end modulates the pilot sequence on the same symbol, and the receiving end receives the sample error on the same symbol, and sends the received sample error to the VCE.
  • the Vectored DSL system can eliminate the far-end crosstalk. effect.
  • the above-mentioned Vectored DSL technology can only cancel the FEXT dry crosstalk of different users on the same frequency in the passband range. If the Vectored DSL system simultaneously distributes the 17a and 30a lines, that is, the original VDSL2 17a 4k symbol rate line coexists with the new 30a 4k symbol rate line, since most of the existing VDSL2 modems are The double sampling used causes the original VDSL2 17a line to have an out-of-band spectrum outside of 17M. Although a low-pass filter is used, the out-of-band spectral power of 17-21 MHz is still above -80 dBm/Hz.
  • the out-of-band spectrum of the 17a line transmission signal will generate strong FEXT interference to the frequency corresponding to the 30a line; on the other hand, the spectrum above 17M of the 30a line will also generate FEXT interference to the spectrum outside the 17a line, when 17a
  • this part of the out-of-band interference will be aliased into the band of the VDSL2 17a line, which will reduce the original VDSL2 17a line rate.
  • a similar situation may occur for the upstream direction.
  • the first line and the second line mentioned in the embodiments of the present invention may refer to any one of two types of lines with overlapping spectrum ranges, for example, one of the lines with the attribute 30a of the first line, and the second line. Refers to one of the lines with attribute 17a, corresponding to the end of the first line
  • the transceiver refers to the transceiver at the transmitting end of the line
  • the transceiver at the opposite end of the line refers to the transceiver at the receiving end of the line.
  • the first line and the second line in each embodiment may also refer to a certain type of line whose spectrum range overlaps with other lines, for example, the first line refers to a type of line with attribute 30a, and the second line refers to attribute 17a.
  • the transceiver at one end of the first line refers to the transceiver at the transmitting end of any one of the lines
  • the transceiver at the opposite end of the first line refers to the transceiver of the same line at the receiving end of the line.
  • first line as a 30a line
  • second line as a 17a line
  • FIG. 5 is a schematic flowchart diagram of Embodiment 1 of a crosstalk estimation method according to an embodiment of the present invention. As shown in Figure 5, the method includes:
  • the vectorization control entity allocates a first pilot sequence and a second pilot sequence to the first line and the second line in the system, respectively, so that the transceiver at one end of the first line is according to the first pilot.
  • the sequence transmits a first pilot training signal and a third pilot training signal, and the transceiver at one end of the second line transmits a second pilot training signal according to the second pilot sequence.
  • the first pilot sequence and the second pilot sequence satisfy orthogonality, and an out-of-band spectrum of the second line overlaps with an in-band spectrum of the first line
  • the first pilot training signal is a pilot training signal in a range in which the first line overlaps with a spectrum of the second line
  • the third pilot training signal is a pilot training signal in a range overlapping the spectrum of the first line with the second line
  • the second pilot training signal is a pilot training signal of the second line in the in-band spectrum range
  • the first pilot training signal is orthogonal to the second pilot training signal
  • the third guide The frequency training signal is orthogonal to the out-of-band image signal of the second pilot training signal.
  • the Vectoring Control Entity (VCE) in the Vectored DSL system is the control entity of the entire Vectored DSL system.
  • the VCE is first based on the Vectored DSL system.
  • the size or number of the user lines generates a training pilot sequence matrix, such as a Walsh matrix.
  • the training pilot sequence matrix can be directly allocated.
  • the first pilot sequence and the second pilot sequence satisfy orthogonality
  • the first pilot sequence and the second pilot sequence may be orthogonal pilot sequences, or may be other pilot sequences satisfying orthogonality. , for example, a pseudo-random sequence long enough.
  • all pilot sequences are described as orthogonal pilot sequences.
  • the transmitting end of each line is each user end, and each user end sends a pilot training signal to the DSLAM end; for the downlink signal, the transmitting end of each line is a DSLAM end, and the pilot training signal is sent through each subcarrier. To each client.
  • each of the line transceivers modulates the pilot sequence on the same symbol, that is, the pilot training signal in the embodiments of the present invention is carried on the same symbol, and the first pilot training is performed in each embodiment of the present invention.
  • the signal and the third pilot training signal distinguish the pilot signals of the first line over the spectral overlap with the second line and the homophonic symbols outside the spectral overlap.
  • the pilot training signal generated and transmitted by the transceiver at the transmitting end of each line is divided into a pilot training signal in a range overlapping with the spectrum of the other line and a pilot training signal outside the spectrum overlapping range.
  • the pilot training signal returned by the 30a line includes the spectrum below 17.6MHz.
  • the first pilot training signal in the range further includes the third pilot training signal in the spectrum range of 17.6 MHz to 35.2 MHz, and the pilot training signal returned by the 17a line is the second pilot training in the spectrum range of 0 to 17.6 MHz. signal.
  • the first line In order for the first line to determine the crosstalk channel coefficient of the second line to the first line according to the first pilot training signal, the second pilot training signal and the third pilot training signal, it is necessary to ensure that the second line and the first line are
  • the first pilot training signal and the second pilot training signal in the spectral overlap range are orthogonal, and the in-band spectrum training signal of the second line obtained by sampling overlaps the in-band spectrum signal of the first line with the in-band spectrum of the first line
  • the pilot training signals are orthogonal, wherein the out-of-band image signal is in a conjugate symmetric relationship with the in-band signal, that is, the out-of-band image signal of the second pilot training signal is orthogonal to the third pilot training signal.
  • the vectorization control entity receives an error sample signal sent by a transceiver of a peer end of the first line and a transceiver of a peer end of the second line.
  • the error sample signal is determined by the transceiver of the opposite end of the first line and the transceiver of the opposite end of the second line according to the received pilot training signal.
  • the receiving end of the line receives the signal, and the far-end crosstalk is generated between different lines during the transmission of the signal on the line, so the signal received by the transceiver at the receiving end is received. There may be a signal between the signal sent by the sender The difference is determined, the transceiver at the receiving end determines the pilot training signal sent by the transmitting end according to the received pilot training signal, calculates a difference between the received signal and the transmitted signal, obtains an error sample signal, and sends the error sample signal Give VCE.
  • the vectorization control entity determines, according to the error sample signal, the first pilot sequence, and the second pilot sequence, a first crosstalk channel coefficient of the second line to the first line, and the first line pair. The second crosstalk channel coefficient of the second line.
  • the VCE can analyze and determine the in-band spectrum and out-of-band of each line according to the received error sample signals on each line.
  • Crosstalk channel coefficients between spectrums For example, 30a line in-band spectrum pair 17a line in-band and out-of-band spectrum crosstalk channel coefficients, 17a line out-of-band spectrum pair 30a line in-band spectrum crosstalk channel coefficients.
  • the crosstalk channel coefficients described above may be, for example, a crosstalk cancellation matrix and a vector precoding matrix.
  • the VCE may calculate, according to the feedback error sample signal returned by the first line, a first crosstalk channel matrix of the second line to the first line, and perform inverse matrix transformation on the first crosstalk channel matrix to obtain a first a crosstalk channel coefficient, that is, a first precoding coefficient; correspondingly, calculating, according to the feedback error sample signal returned by the second line, a second crosstalk channel matrix of the first line to the second line, and using the second crosstalk channel The matrix performs inverse matrix transformation to obtain a second crosstalk channel coefficient, that is, a second precoding coefficient.
  • the VCE pre-codes the data signals to be sent on each line according to the determined crosstalk cancellation matrix and the vector precoding matrix, thereby eliminating the far-end crosstalk between the lines. For example, for the 30a line, the VCE can eliminate the 17a line by the above method.
  • the in-band signal crosstalks the 30a line, and also eliminates the crosstalk of the out-of-band spectrum to the 30a line between 17.6 MHz and 35.2 MHz on the 17a line.
  • the vectorization control entity can determine the crosstalk channel coefficient between each line according to the sample error determined by each line according to the pilot training signal in different frequency ranges, and then send the line to be sent.
  • the pre-coding process of the data signal can eliminate the crosstalk effect between the in-band and out-of-band spectrum between lines, and reduce the influence of crosstalk between lines on the line rate in the system where the different attribute lines coexist, thereby increasing the speed of the FTTC. Effect and stability.
  • the following crosstalk processing is taken as an example, and the uplink direction is similar.
  • the third pilot training signal is an image signal of the first pilot training signal outside the overlapping region of the first line and the second line spectrum.
  • the background noise signal vector of 0 ⁇ 17.6MHz indicates the channel matrix of the 30a line at 0 ⁇ 17.6MHz
  • H represents the crosstalk channel matrix of the 17a line in the VDSL2 system at 0 ⁇ 17.6MHz to the 30a line.
  • the signal vector sent by the 17a line and the signal vector sent by the 30a line are mutually orthogonal, but not orthogonal to ⁇ 4 ° 9 ⁇ , so that the crosstalk channel matrix and the precoding coefficient matrix of ⁇ 7 cannot be trained.
  • X H ( X U , then X 4 3 is orthogonal to the out-of-band image signal of a, so that the first pilot can generate the first pilot training signal after the first pilot training signal is generated.
  • Conjugate symmetry is performed in the range of 17.6 MHz to 35.2 MHz, thereby obtaining a third pilot training signal.
  • the transmitted signal vector of 17a in the frequency range of 0 ⁇ 17.6 ⁇ And vector of the signal sent by 30a. 96 - are mutually orthogonal, and the signal vector transmitted by 30a and the image signal vector of the 17a transmission signal are orthogonal to each other in the frequency range of 17.6 to 35.2 MHz, so that VCE can be trained.
  • the VCE uses the above method to determine the crosstalk channel coefficient between the 17a line and the 30a line in the Vcetored DSL system
  • the pre-coded signal of the 17a line and the 30a line to be transmitted is pre-coded by using the determined crosstalk channel coefficient, and the crosstalk canceled 17a can be obtained.
  • FIG. 6 is a schematic flowchart of Embodiment 2 of a crosstalk estimation method according to an embodiment of the present invention. As shown in FIG. 6, based on the embodiment shown in FIG. 5, after the above S520, the method further includes:
  • the vectorization control entity acquires a second image signal of the second line to be sent of the second line that is outside the second line.
  • the VCE determines the crosstalk channel coefficient of the in-band signal pair of the 17a line in the range of 0 to 17.6 MHz and the in-band signal of the 17a line in the out-of-band image signal pair 30a line at 17.6 MHz to 30.2 according to the above method.
  • the crosstalk channel coefficient of the 30a line in the MHz range it is necessary to use the obtained crosstalk channel coefficient to precode the data signal to be transmitted on the 30a line, so as to eliminate the crosstalk of the 17a line to the 30a line during the transmission.
  • the 17a line can first generate an out-of-band mirror data signal in the range of 17.6MHz ⁇ 30.2MHz according to the data signal to be transmitted in the range of 0 ⁇ 17.6MHz, and send the sum to the VCE, or the 17a line can also be directly
  • the data signal X 6- to be transmitted in the range of 0 ⁇ 17.6MHz is sent to the VCE, which is generated by the VCE. . This embodiment does not limit this.
  • the vectorization control entity performs precoding processing on the to-be-transmitted signals of the first line and the second line according to the first crosstalk channel coefficient, the second crosstalk channel coefficient, and the second image signal to determine Precoding signals of signals to be transmitted of the first line and the second line. Then the precoding processing signal of the 17a line and the 30a line is the equation (6)
  • the precoding coefficient of the 17a line from 0 to 17.6 MHz for the 30a line, ⁇ is the precoding coefficient of the line 30a for the line 30a at 0 ⁇ 17.6MHz, and the precoding coefficient of 0 ⁇ 17.6MHz between the lines of 30a, 17a line at
  • the vectorization control entity can determine the crosstalk channel coefficient between each line according to the sample error determined by each line according to the pilot training signal in different frequency ranges, and then wait for the acquired line.
  • the image signal of the transmission signal and the signal to be transmitted is precoded to eliminate the influence of the in-band spectrum between the lines and the crosstalk of the out-of-band spectrum, and avoid the line rate degradation caused by crosstalk between lines in a system in which different attribute lines coexist. Thereby increasing the effect and stability of the FTTC speed increase.
  • the VCE does not need to acquire the out-of-band image signal of the 17a line to be transmitted data, and may also determine the to-be-transmitted signal of the 30a line.
  • FIG. 7 is a crosstalk estimation provided by the embodiment of the present invention. The schematic diagram of the process of the third embodiment of the method. As shown in FIG. 7, on the basis of the first embodiment shown in FIG. 5, after S520, the method further includes:
  • the vectorization control entity determines the first crosstalk channel coefficient:
  • the VCE conjugates the first crosstalk channel coefficients to obtain a first image coefficient of the crosstalk channel coefficients.
  • the vectorization control entity acquires a third image signal of the third to-be-transmitted signal of the first line.
  • the third to-be-sent signal is a to-be-transmitted signal of the first line outside the spectrum overlapping with the second line, and the third image-on-signal is the third to-be-transmitted signal.
  • the third image signal of the third to-be-transmitted signal (X ⁇ f may be the same by the 30a line at 17.6 MHz ⁇ 35.2 MHz data signal to be transmitted ⁇ 4 + ⁇ is obtained by conjugate symmetry and then sent to VCE, or it can be 30a line to send data signal at 17.6MHz ⁇ 35.2 MHz ⁇ 6+ ⁇ It is sent to the VCE and is obtained by conjugate symmetry of X 4 +i by VCE.
  • the vectorization control entity performs precoding processing on the to-be-transmitted signals of the first line and the second line according to the first crosstalk channel coefficient, the second crosstalk channel coefficient, the first image coefficient, and the third image signal. Determining a precoding signal of the first to-be-transmitted signal of the first line, a pre-coding signal of the third image signal, and a pre-coding signal of the second to-be-transmitted signal of the second line.
  • the first to-be-transmitted signal is a to-be-transmitted signal in which the first line is in a range overlapping with the second line spectrum.
  • CD is the image coefficient of the crosstalk signal coefficient between 17.6MHz and 35.2 MHz between the 30a lines, ie the image coefficient of the precoding coefficient, (P o m 17a line is pre-scheduled for the 30a line from 17.6MHz to 35.2 MHz)
  • P o m 17a line is pre-scheduled for the 30a line from 17.6MHz to 35.2 MHz
  • VCE sends 6 - ⁇ to the 17a line, H and (x a 6+k ) H to the 30a line, and the 30a line conjugates the (i U" symmetry to get it at 17.6MHz ⁇ 35.2 MHz.
  • the signal to be transmitted in the spectrum range is then sent out by the transmitting end of the line.
  • the vectorization control entity after determining the crosstalk channel coefficient between the lines, performs the conjugate symmetry of the crosstalk channel coefficient to obtain the image coefficient, and then the signal to be transmitted and the signal to be transmitted are acquired.
  • the pre-coding process of the image signal can eliminate the crosstalk effect between the in-band and out-of-band spectrum between lines, and reduce the influence of crosstalk between lines on the line rate in the system where the different attribute lines coexist, thereby increasing the speed of the FTTC. Effect and stability.
  • the crosstalk of the signal in the 17a line to the line 30a can be eliminated, and the crosstalk of the out-of-band signal of the line 17a to the line 30a can be eliminated.
  • the 17a line in addition to eliminating the crosstalk of the signal in the 30a line to the 17a line by the above method, it is also necessary to eliminate the interference of the in-band spectral crosstalk between the 17.7 MHz and 35.2 MHz of the 30a line to the 17a line.
  • the pilot training signal of the 30a line is 17.6MHz ⁇ 35.2MHz and the pilot training signal of 0 ⁇ 17.6MHz is conjugate symmetric
  • the pilot training signal of the 17.6MHz ⁇ 35.2MHz of the 30a line is mirrored to 17.6 by the out-of-band crosstalk.
  • the pilot training signal is the same as the 30a line at 0 ⁇ 17.6MHz, so the 17a line cannot estimate the crosstalk channel of the interference source, in order to eliminate the out-of-band spectrum of the 17a line from 17.6MHz to 35.2MHz.
  • Abandoning the in-band spectrum of the image interference 17a line, the first pilot training signal and the third pilot training signal are orthogonal to the second pilot training signal, respectively, so that the VCE receives 17a.
  • the second crosstalk channel coefficient of the 30a line to the 17a line can be determined, that is, the crosstalk channel coefficient of the band spectrum of the 17a line in the 0a line at 0 ⁇ 17.6MHz and at 17.6MHz ⁇ 35.2MHz
  • the crosstalk channel coefficient for the out-of-band spectrum of the 17a line is determined, that is, the crosstalk channel coefficient of the band spectrum of the 17a line in the 0a line at 0 ⁇ 17.6MHz and at 17.6MHz ⁇ 35.2MHz.
  • FIG. 8 is a schematic flowchart diagram of Embodiment 4 of a crosstalk estimation method according to an embodiment of the present disclosure.
  • the first pilot training signal and the second guide may be used.
  • the frequency training signal and the third pilot training signal are mutually orthogonal signals, as shown in FIG. 8, the crosstalk estimation method includes: S800.
  • the vectorization control entity allocates a first pilot sequence and a third pilot sequence to a first line in the digital subscriber line system, and allocates a second pilot sequence to the second line, so that the first line is Transceivers at one end send a first pilot training signal according to the first pilot sequence, and send a third pilot training signal according to the third pilot sequence, and the transceiver at one end of the second line is according to the
  • the second pilot sequence transmits a second pilot training signal.
  • the first pilot sequence, the second pilot sequence, and the third pilot sequence satisfy orthogonality.
  • the VCE can directly select an appropriate number of pilot sequences from the trained pilot sequence matrix to assign to each line.
  • a specific VCE allocates a pilot sequence to the first line (30a)
  • the orthogonality is satisfied such that the 30a line modulates the paired pilot sequences on a portion of the frequency of the homograph and the other portion of the frequency, respectively.
  • a 30a line and a 17a line have a spectral overlap area, and then two pilot sequences satisfying orthogonality are selected for the 30a line, and an additional pilot sequence is selected for the 17a line, assuming The PS 1 and PS2 pilot sequences are selected for the 30a line, and the PS3 pilot sequence is selected for the 17a line.
  • the PS1, PS2, and PS3 satisfy the orthogonality.
  • VTU VDSL Transceiver Unit
  • the Vector DSL system needs to be satisfied.
  • the VDSL Transceiver Unit at the Remote (VTU-R) at the user end needs to support receiving on different frequencies of the same symbol.
  • the VDSL Transceiver Unit at the ONU (VTU-O) and the VTU-R of the central office need to notify each other whether Supports paired pilot sequences on the upstream frequency.
  • a bit value in the notification may be used to identify whether the VTU-0 or the VTU-R supports a pair of pilot sequences on the uplink frequency.
  • the bit value of 1 indicates that the VTU-0 or the VTU-R supports the uplink frequency.
  • 0 means that VTU-0 or VTU-R does not support paired pilot sequences on the upstream frequency.
  • #0 and #1 are defined as two pilot sequences paired in frequency, and then the 30a line transmitting end modulates the pilot sequences #0 and #1 to non-overlapping of the same symbol, respectively.
  • VTU-0 when the pilot sequence is updated, VTU-0 sends a pilot update command to VTU-R and transmits #0 and #1 pilot sequences to VTU-R, VTU-R A response message is sent to VTU-0 to let VTU-0 know if the VTU-R was updated successfully.
  • the vectorization control entity receives an error sample signal sent by a transceiver of a peer end of the first line and a transceiver of a peer end of the second line, respectively.
  • the error sample signal is determined by the transceiver of the opposite end of the first line and the transceiver of the opposite end of the second line according to the received pilot training signal.
  • the vectorization control entity determines, according to the error sample signal, the first pilot sequence, and the third pilot sequence, the third crosstalk channel coefficient and the fourth crosstalk channel coefficient of the second line to the first line, according to The error sample signal and the second pilot sequence determine a second crosstalk channel coefficient of the first line to the second line.
  • the third crosstalk channel coefficient is an in-band crosstalk channel coefficient of the 30a line pair 17a line
  • the fourth crosstalk channel coefficient is an outband crosstalk channel coefficient of the 30a line pair 17a line.
  • S810-S820 can refer to the detailed description of S510-S520 in the first embodiment of the crosstalk estimation method, and details are not described herein again.
  • the VCE uses the above method to determine the in-band and out-of-band crosstalk channel coefficients between the first line and the second line, and then pre-codes the data signals to be transmitted of the first line and the second line, thereby eliminating the second line.
  • the out-of-band spectrum crosstalks the in-band spectrum of the first line, and also eliminates the image signal of the first line in-band spectrum to the second line in-band spectral crosstalk.
  • the crosstalk channel coefficients between the 17a line and the 30a line determined by the above method are used, and the data signals to be transmitted of the 17a line and the 30a line are precoded, and then eliminated.
  • the precoded signal of the 17a line to be transmitted signal affected by the 17a line after the in-band spectrum of the 30a line is mirrored from 17.6MHz to 35.2MHz to 0 ⁇ 17.6MHz.
  • the vectorization control entity can determine the crosstalk channel coefficient between the lines according to the sample error determined by the pilot training signals in different frequency ranges of each line, and then wait for each line.
  • Sending the data signal for precoding processing can eliminate the crosstalk effect between the in-band and out-of-band spectrum between lines, and reduce the system in which different attribute lines coexist. Due to the influence of crosstalk between lines on the line speed, the effect and stability of the FTTC speed increase are increased.
  • FIG. 9 is a schematic flowchart of Embodiment 5 of the crosstalk estimation method according to an embodiment of the present invention.
  • the crosstalk estimation method includes:
  • the vectorization control entity allocates a first pilot sequence and a second pilot sequence to the first line and the second line in the digital subscriber line system, respectively, so that the transceiver at one end of the first line meets the preset. Generating, on the odd subcarriers of the modulation period, a first pilot training signal corresponding to the first pilot sequence and having 1 or 0 on other subcarriers, and generating and reporting on even subcarriers satisfying a preset modulation period The third pilot training signal corresponding to the first pilot sequence and having 1 or 0 on the other subcarriers.
  • the first pilot sequence and the second pilot sequence satisfy orthogonality.
  • the preset modulation period is an integer multiple of 2. For example, if the modulation period of the first line is 2, the pilot value on each odd subcarrier of the first pilot training signal generated by the first line corresponds to the pilot sequence, and the pilot values on the other subcarriers are all For 1 or 0, the pilot value on each even subcarrier of the generated third pilot training signal corresponds to the pilot sequence, and the pilot values on the other subcarriers are all 1 or 0. If the modulation period of the first line is 4, the pilot sequence is modulated on subcarriers such as 1, 5, 9, ...
  • subcarriers such as 2, 3, 4 a pilot sequence with a modulated signal of 1 or 0 on the subcarriers of 6, 7, 8 or the like, and a pilot sequence modulated on the subcarriers of the second pilot training signal 2, 6, 10, ..., on other subcarriers, such as 1 A pilot sequence with a modulation signal of 1 or 0 on subcarriers of 3, 4, 5, 7, 8, 9, etc., and so on.
  • the 30a line is modulated on the odd subcarriers satisfying the preset modulation period in the same modulation period according to a preset modulation period.
  • a pilot sequence and modulating a pilot sequence with pilot values all 1 or 0 on other subcarriers of the same symbol; spectrum overlap between the 30a line and the 17a line Outside, the first pilot sequence is modulated on the even subcarriers of the homograph symbol that satisfy the preset modulation period, and the pilot sequences whose pilot values are all 1 or 0 are modulated on the other subcarriers of the same symbol.
  • the transceiver at one end of the first line may further generate the even subcarriers that meet the preset modulation period and the a first pilot training signal corresponding to a first pilot sequence and having a signal of 1 or 0 on other subcarriers, and a signal on an odd subcarrier satisfying a preset modulation period corresponding to the first pilot sequence and A third pilot training signal of 1 or 0 on the other subcarriers.
  • the 30a line modulates the first pilot sequence on an even subcarrier of the homograph symbol that satisfies a preset modulation period, and A pilot sequence in which pilot values are all 1 or 0 is modulated on other subcarriers of the same symbol; outside the spectral overlap range of the 30a line and the 17a line, on odd subcarriers in which the same symbol satisfies a preset modulation period
  • the first pilot sequence is modulated, and a pilot sequence with pilot values all 1 or 0 is modulated on other subcarriers of the same symbol.
  • the identification mode of the same symbol in the system supports identification on odd or even subcarriers, and the identification period is an integer multiple of 2.
  • the identification mode of the downlink homologous symbol is to be supported on the odd or even subcarriers within the spectrum overlapping range of the 30a line and the 17a line, and the identification period is an integer multiple of 2, and in the 30a line and The even or odd subcarriers outside the spectrum overlap range of the 17a line are identified, and the identification period is an integer multiple of 2.
  • the VTU-0 and the VTU-R are notified to each other during the handshake phase, and whether each of the parity is supported.
  • Pilot sequences with different frequencies for example, defining a certain identification bit to 1 indicates support, 0 indicates no support, then in the handshake phase, the VTU-R sends a notification to the VTU-0 that the bit is 1, and the VTU-0 direction If the bit is also 1 in the notification sent by the VTU-R, it means that both the VTU-R and the VTU-0 support the pilot sequences with different parity frequencies, and the identification mode of the uplink homologous symbol is supported on the 30a line and the 17a line.
  • the identification period is an integer multiple of 2, and even or odd numbers outside the spectral overlap of the 30a line and the 17a line Identified on a carrier, the identification period is an integer multiple of 2.
  • the first pilot sequence is separately modulated to an index of 2 «+1 within the spectral overlap of the 30a line and the 17a line.
  • the subcarriers, and sub-carriers whose index is outside the spectral overlap range of the 30a line and the 17a line, are 2n.
  • VTU-R transmits the pilot sequence of the above form to the VTU-R, and the VTU-R sends a message to respond to whether the VTU-0 is updated successfully.
  • the pilot training signal is the same signal, then the signal mirror crosstalk of the 30a line in the range of 17.6MHz ⁇ 35.2MHz is 0 ⁇ 17.6 MHz after the 17a line, and the line 17a is 0 ⁇ 17.6.
  • the signals within MHz are orthogonal to each other.
  • the vectorization control entity receives an error sample signal sent by a transceiver of a peer end of the first line and a transceiver of a peer end of the second line, respectively.
  • the error sample signal is determined by the transceiver of the opposite end of the first line and the opposite transceiver of the second line according to the received pilot training signal.
  • the vectorization control entity calculates a third crosstalk channel coefficient of the first line to the second line on an odd subcarrier that satisfies a preset modulation period, and respectively on an even subcarrier that satisfies a preset modulation period. Calculating a fourth crosstalk channel coefficient of the first line to the second line.
  • the third crosstalk channel coefficient is an in-band crosstalk channel coefficient of the 30a line pair 17a line
  • the fourth crosstalk channel coefficient is an outband crosstalk channel coefficient of the 30a line pair 17a line.
  • the crosstalk channel coefficients determined by the VCE through the above method are only the crosstalk channel coefficients on the odd or even subcarriers, and then the crosstalk channel coefficients on all the subcarriers can be obtained by interpolation.
  • the corresponding S920 is:
  • the vectoring control entity calculates a third crosstalk channel coefficient of the first line to the second line on an even subcarrier that satisfies a preset modulation period, and respectively calculates on an odd subcarrier that satisfies a preset modulation period. a fourth crosstalk channel coefficient of the first line to the second line.
  • the system includes N lines, and the N lines are equally divided into M groups of lines, and the M groups of lines include The first line and the second line
  • another possible implementation form of the foregoing S900 is: the vectoring control entity allocates a first pilot sequence and a second guide respectively for the first line and the second line in the system.
  • Frequency sequence such that the transceiver of one end of any one of the M groups adopts a period of 2M, respectively generating 2M+1, 2M+3, 2M+5... 2M+(2M-1) subcarriers Corresponding to the first pilot sequence, and 2M+2, 2M+4, 2M+6...
  • the first pilot training signal with a signal of 1 or 0 on the 2M+2M subcarrier, and 2M+2, 2M+ 4, 2M+6...
  • the signal on the 2M+2M subcarrier corresponds to the first pilot sequence and 2M+1, 2M+3, 2M+5... 2M+ (2M-1) is 1 on the subcarrier a third pilot training signal of 0;
  • the generation corresponds to the first pilot sequence on 2M+2, 2M+4, 2M+5... 2M+2M subcarriers, and 2M+1, 2M+3, 2M+5... 2M+ (2M-1) a first pilot training signal with a signal of 1 or 0 on the subcarrier, and a signal on the 2M+1, 2M+3, 2M+5... 2M+(2M-1) subcarriers and the first pilot
  • the sequence corresponds to and the 2M+2, 2M+4, 2M+6... 2M+2M subcarriers are 1 or 0 third pilot training signals.
  • the vectorization control entity separately calculates the M group first line pair on the 2M+1, 2M+3, 2M+5... 2M+(2M-1) subcarriers Calculating the third crosstalk channel coefficient of the second line of the group, and calculating, on the 2M+2, 2M+4, 2M+5, ... 2M+2M subcarriers, the first line of the M group and the second line of the M group respectively Four crosstalk channel coefficients; or: the vectoring control entity calculates the M group first line pair and the M group second on the 2M+2, 2M+4, 2M+6, ...
  • 2M+2M subcarriers respectively Calculating the third crosstalk channel coefficient of the line, respectively calculating the first line of the M group to the second line of the M group on the 2M+1, 2M+3, 2M+5... 2M+(2M-1) subcarriers Four crosstalk channel coefficients.
  • VCE divides the lines into 4 groups, and each group has 64 lines, then VCE uses a set of pilot sequences of length 64 for each group, but the modulation is different.
  • the pilot sequence of the line is separately modulated to subcarriers with indices of 8n+l, 8n+3, 8n+5 and 8n+7, in the 17a line and the 30a line.
  • the pilot sequences of the lines are modulated to an index of 8n+2, respectively.
  • the pilot sequence of the line is separately modulated to subcarriers with indices of 8n+2, 8n+4, 8n+6, and 8n+8, in the 17a line and the 30a line.
  • the pilot sequences of the lines are modulated onto subcarriers with indices of 8n+l, 8n+3, 8n+5 and 8n+7, respectively. Then, when the VCE performs the crosstalk channel coefficient estimation according to the error sample signal, the error sample signals of the odd subcarriers 8n+l, 8n+3, 8n+5, and 8n+7 are respectively estimated to be the first group, the second group, and the third.
  • the vectorization control entity determines the crosstalk channel coefficients between the in-band spectrum and the out-band spectrum according to the sample error of each line, and then pre-codes the signals to be transmitted of the lines, that is, It can eliminate the crosstalk effect between the in-band and out-of-band spectrum between lines, and reduce the influence of crosstalk between lines on the line rate in the system where different attribute lines coexist, thus increasing the effect and stability of FTTC speed increase.
  • FIG. 10 is a schematic flowchart diagram of Embodiment 6 of a crosstalk estimation method according to an embodiment of the present invention. As shown in FIG. 10, after the VCE is in S920, the method further includes:
  • the vectorization control entity determines a fourth image coefficient of the fourth crosstalk channel coefficient in a spectral overlap range of the first line and the second line.
  • the VCE determines the crosstalk channel coefficient of the out-of-band spectrum of the 17a line from the 30a line to the error sample signal, that is, the precoding coefficient, and then conjugates the coefficient to obtain the conjugate symmetry coefficient OP ⁇ H)".
  • the vectorization control entity of S102 acquires a third image signal of the third to-be-sent signal of the first line.
  • the third to-be-sent signal is a to-be-transmitted signal outside the spectrum overlapping range of the first line with the second line
  • the third image-to-send signal is the third to-be-sent signal in the An image signal of a line within a range of overlap with the spectrum of the second line.
  • the vectorization control entity pairs the first line and the second crosstalk channel coefficient, the third crosstalk channel coefficient, the fourth crosstalk channel coefficient, the fourth image coefficient, and the third image signal. Performing a precoding process on the to-be-transmitted signal of the second line, determining a precoding signal of the first to-be-transmitted signal of the first line, a pre-coding signal of the third to-be-transmitted signal, and a second to-be-transmitted signal of the second line Precoded signal.
  • the first to-be-sent signal is a to-be-transmitted signal in a range in which the first line overlaps with the second line spectrum
  • the third to-be-sent signal is the first line and the second The signal to be transmitted outside the overlapping range of the line spectrum.
  • S900 ⁇ S920 in this embodiment may also be S800 ⁇ S820.
  • the vectorization control entity determines the crosstalk channel coefficients between the in-band spectrum and the out-band spectrum according to the sample error of each line, and performs precoding processing on the signals to be transmitted of the lines. It can eliminate the crosstalk effect between the in-band and out-of-band spectrum between lines, and reduce the influence of crosstalk between lines on the line rate in the system where different attribute lines coexist, thus increasing the effect and stability of FTTC speed increase.
  • FIG. 11 is a schematic flowchart diagram of Embodiment 7 of a crosstalk estimation method according to an embodiment of the present invention. As shown in FIG. 11, the crosstalk estimation method includes:
  • the transceiver at one end of the first line receives the first pilot sequence allocated by the vectoring control entity in the digital subscriber line system.
  • the first line and the second line mentioned in the embodiments of the present invention may refer to any one of two types of lines with overlapping spectrum ranges, for example, one of the lines with the attribute 30a of the first line, and the second line. Refers to one of the lines with attribute 17a.
  • the transceiver at one end of the corresponding first line refers to the transceiver at the transmitting end of the line, and the transceiver at the opposite end of the line refers to the transceiver at the receiving end of the line.
  • the first line and the second line in each embodiment may also refer to a certain type of line whose spectrum range overlaps with other lines, for example, the first line refers to a type of line with attribute 30a, and the second line refers to attribute 17a.
  • the transceiver at one end of the first line refers to the transceiver at the transmitting end of one of the lines
  • the transceiver at the opposite end of the line refers to the transceiver of the same line at the receiving end of the line.
  • first line as a 30a line
  • second line as a 17a line
  • the transceiver at one end of the first line refers to the transceiver at the transmitting end of the line.
  • the transmitting end of each line is each user end, and each user end sends a pilot training signal to the DSLAM terminal;
  • each line The sender is the DSLAM, and the transmitter is sent through each subcarrier. Frequency training signals to each client.
  • the transceiver at one end of the first line generates and sends a first pilot training signal and a third pilot training signal according to the first pilot sequence.
  • the first pilot training signal is a pilot training signal in which the first line overlaps with the second line spectrum
  • the third pilot training signal is that the first line overlaps with the second line spectrum.
  • the transceiver of the transmitting end of the 30a line receives the pilot sequence allocated by the VCE, and then modulates the first pilot sequence on the 0 ⁇ 17.6MHz subcarrier and the 17.6MHz ⁇ 35.2MHz subcarrier that are the same, respectively, to generate the first pilot sequence. Pilot training signal and third pilot training signal.
  • the transceiver at the opposite end of the first line generates an error sample signal according to the first pilot training signal and the third pilot training signal.
  • the opposite end of the line refers to the receiving end of the line, and for the uplink signal, the receiving end of each line is the DSLAM end; for the downlink signal, the receiving end of each line is the user end.
  • the transceiver of the receiving end of the 30a line After receiving the pilot training signal sent by the transmitting end of the 30a line, the transceiver of the receiving end of the 30a line generates a far-end crosstalk between different lines during the transmission of the signal on the line, so the signal received by the receiving end is There may be a certain difference between the signals sent by the transmitting end.
  • the receiving end determines the pilot training signal sent by the transmitting end according to the received pilot training signal, and calculates the difference between the received signal and the transmitted signal to obtain an error sample signal.
  • the transceiver of the opposite end of the first line sends the error sample signal to a vectoring control entity to determine a first crosstalk channel coefficient of the second line to the first line.
  • the 30a line sends the error sample signal to the VCE, and the VCE can calculate the first crosstalk channel matrix of the second line to the first line according to the feedback error sample signal returned by the first line, and perform inverse matrix of the first crosstalk channel matrix.
  • the first crosstalk channel coefficient, ie the precoding coefficient, is obtained by transforming.
  • the VCE pre-codes the data signals to be sent on each line according to the determined pre-coding coefficients, thereby eliminating the far-end crosstalk between the lines.
  • the VCE can eliminate the 17a line in-band signal pair 30a by the above method.
  • the crosstalk of the out-of-band spectrum to the 30a line between 17.6 MHz and 35.2 MHz of the 17a line can be eliminated.
  • the transceiver of the first line is controlled according to vectorization
  • the pilot sequence allocated by the entity generates pilot training signals in different frequency ranges, and then determines the sample error, so that the vectoring control entity determines the crosstalk channel coefficient of the second line to the first line, thereby passing the first line
  • the pre-coded data signal to be pre-coded can eliminate the crosstalk effect of the second line on the first line band and the out-of-band spectrum, and reduce the crosstalk between the lines due to the crosstalk between the lines. The effect, which increases the effect and stability of the FTTC speed increase.
  • precoding process of the signal to be transmitted on the second line can also be realized by the same method.
  • the foregoing S114 includes:
  • the transceiver at the opposite end of the first line sends the error sample signal to the vectorization control entity, so that the vectorization control entity determines according to the error sample signal, the first pilot sequence and the second pilot sequence a first crosstalk channel coefficient of the second line to the first line;
  • the second pilot sequence is a pilot sequence allocated by the vectorization control entity to the second line, the first pilot training signal
  • a transceiver of one end of the second line is orthogonal according to the second pilot training signal generated by the second pilot sequence, and the third pilot training signal and the second pilot training signal are out of band
  • the image signal is orthogonal.
  • the VCE can analyze and determine according to the received error sample signals on each line and the pilot sequence allocated to each line.
  • the third pilot training signal is a mirror signal of the first pilot training signal outside the overlapping region of the first line and the second line spectrum.
  • the crosstalk estimation method is performed in the first embodiment of the crosstalk estimation method.
  • the related description in the first embodiment of the crosstalk estimation method and details are not described herein again.
  • the crosstalk of the signal in the 17a line to the line 30a can be eliminated, and the crosstalk of the out-of-band signal of the line 17a to the line 30a can be eliminated.
  • the in-band spectrum crosstalk between the 17.7MHz and 35.2MHz lines of the 30a line is also eliminated. Internal interference.
  • the pilot training signal of the 30a line is 17.6MHz ⁇ 35.2MHz and the pilot training signal of 0 ⁇ 17.6MHz is conjugate symmetric
  • the pilot training signal of the 17.6MHz ⁇ 35.2MHz of the 30a line is mirrored to 17.6 by the out-of-band crosstalk.
  • the pilot training signal is the same as the 30a line at 0 ⁇ 17.6MHz, so the 17a line cannot estimate the crosstalk channel of the interference source, in order to eliminate the out-of-band spectrum of the 17a line from 17.6MHz to 35.2MHz.
  • the in-band spectrum affecting the image interference 17a line needs to be satisfied, and the first pilot training signal and the third pilot training signal are orthogonal to the second pilot training signal, respectively, so that the VCE returns on the 17a line.
  • the second crosstalk channel coefficient of the 30a line to the 17a line can be determined, that is, the crosstalk channel coefficient of the intra-band spectrum of the 17a line in the 0a line at 0 ⁇ 17.6MHz and the 17a to 17.2MHz pair 17a The crosstalk channel coefficient of the out-of-band spectrum of the line.
  • the second pilot sequence and the first pilot sequence satisfy orthogonality, that is, the first pilot sequence and the second pilot sequence may be mutually orthogonal pilot sequences, and may also satisfy orthogonality.
  • Other pilot sequences such as pseudo-random sequences that are long enough. In the embodiments of the present invention, all pilot sequences are described as orthogonal pilot sequences.
  • FIG. 12 is a schematic flowchart diagram of Embodiment 8 of a crosstalk estimation method according to an embodiment of the present disclosure. As shown in FIG. 12, this embodiment includes:
  • the transceiver at one end of the first line receives the first pilot sequence allocated by the vectoring control entity in the digital subscriber line system.
  • the transceiver at one end of the first line generates a first pilot training signal corresponding to the first pilot sequence and 1 or 0 on other subcarriers on odd subcarriers that meet a preset modulation period. And generating, on an even subcarrier satisfying the preset modulation period, a third pilot training signal corresponding to the first pilot sequence and having 1 or 0 on other subcarriers.
  • the preset modulation period is an integer multiple of 2. For example, if the modulation period is 2, and the modulation period of the first line is 2, the pilot value on each odd subcarrier of the first pilot training signal generated by the first line corresponds to the pilot sequence, and other subcarriers are used. The pilot values on all are 1 or 0, and the pilot values on each even subcarrier of the generated third pilot training signal correspond to the pilot sequence, and the pilot values on the other subcarriers are all 1 or 0. If the modulation period of the first line is 4, the pilot sequence is modulated on subcarriers such as 1, 5, 9, ...
  • pilot sequence of the first pilot training signal generated by the first line, and other subcarriers, such as 2, 3, 4 , 6, 7, 8 and other subcarriers on the modulated signal is 1 Or a pilot sequence of 0, a pilot pilot sequence on a subcarrier of 2, 6, 10, etc. of the third pilot training signal, in other subcarriers, such as 1, 3, 4, 5, 7, 8, 9, etc.
  • the 30a line is modulated on the odd subcarriers satisfying the preset modulation period in the same modulation period according to a preset modulation period.
  • the first pilot sequence is modulated on the even subcarriers of the period, and the pilot sequences with pilot values all 1 or 0 are modulated on the other subcarriers of the same symbol.
  • S 122 can also be:
  • the transceiver at one end of the first line generates a first pilot training signal corresponding to the first pilot sequence and the signal on the other subcarriers is 1 or 0 on an even subcarrier satisfying a preset modulation period, And generating a third pilot training signal corresponding to the first pilot sequence and 1 or 0 on other subcarriers on odd subcarriers satisfying a preset modulation period.
  • the 30a line modulates the first pilot sequence on an even subcarrier of the homograph symbol that satisfies a preset modulation period, and A pilot sequence in which pilot values are all 1 or 0 is modulated on other subcarriers of the same symbol; outside the spectral overlap range of the 30a line and the 17a line, on odd subcarriers in which the same symbol satisfies a preset modulation period
  • the first pilot sequence is modulated, and a pilot sequence with pilot values all 1 or 0 is modulated on other subcarriers of the same symbol.
  • the transceiver at the opposite end of the first line generates an error sample signal according to the first pilot training signal and the third pilot training signal.
  • the transceiver of the opposite end of the first line sends the error sample signal to a vectoring control entity to determine a first crosstalk channel coefficient of the second line to the first line.
  • the identification mode of the same symbol in the system supports identification on odd or even subcarriers, and the identification period is an integer multiple of 2.
  • the identification mode of the downlink peer symbol is supported on the 30a line.
  • the identification is performed on the odd or even subcarriers within the spectrum overlapping range of the 17a line, the identification period is an integer multiple of 2, and the identification is performed on the even or odd subcarriers outside the spectrum overlapping range of the 30a line and the 17a line, and the identification period
  • VTU-0 and VTU-R should notify each other in the handshake phase whether they support the pilot sequences with different parity frequencies. For example, defining a certain identification bit to 1 indicates support.
  • the bit sent by the VTU-R to the VTU-0 is 1 and the bit sent by the VTU-0 to the VTU-R is also 1 indicating the VTU-R and VTU-0 supports the pilot sequences with different parity frequencies, and the identification mode of the uplink homologous symbol supports identification on odd or even subcarriers within the spectral overlap range of the 30a line and the 17a line, and the identification period is 2.
  • An integer multiple, and is identified on an even or odd subcarrier outside the spectral overlap of the 30a line and the 17a line, and the identification period is an integer multiple of 2.
  • the first pilot sequence is separately modulated to sub-carriers with an index of 2 «+1 within the spectral overlap of the 30a line and the 17a line, and the index outside the spectral overlap of the 30a line and the 17a line is 2n.
  • Subcarrier When the pilot sequence is updated, VTU-0 sends a pilot update command to
  • VTU-R transmits the pilot sequence of the above form to the VTU-R, and the VTU-R sends a message to respond to whether the VTU-0 is updated successfully.
  • the first line determines the sample according to the pilot sequence allocated by the vectorization control entity, the pilot training signal generated in a preset period in different frequency ranges and on different subcarriers.
  • the error can not only enable the vectoring control entity to determine the crosstalk channel coefficient of the second line to the first line, but also determine the crosstalk channel coefficient of the first line to the second line, thereby allowing the first line and the second line to be processed
  • the data signal is transmitted for precoding processing to eliminate the crosstalk between the in-band and out-of-band spectrum between the lines, and the system in which the coexistence of different attribute lines is reduced, and the influence of the crosstalk between the lines on the line rate is increased, thereby increasing the speed of the FTTC. The effect and stability.
  • FIG. 13 is a schematic flowchart diagram of Embodiment 9 of a crosstalk estimation method according to an embodiment of the present invention.
  • the first pilot training signal, the second pilot training signal, and the third pilot training are mutually orthogonal signals
  • the first pilot training signal and the third pilot training signal may be respectively implemented.
  • the second pilot training signal is orthogonal to each other, as shown in FIG. 13, the crosstalk estimation method includes:
  • the transceiver at one end of the first line receives the vectorization control in the digital subscriber line system The first pilot sequence assigned by the entity.
  • the transceiver at one end of the first line receives a third pilot sequence allocated by the vectorization control entity.
  • the first pilot sequence, the second pilot sequence, and the third pilot sequence satisfy orthogonality.
  • a specific VCE allocates a pilot sequence to the first line (30a)
  • the orthogonality is satisfied such that the 30a line modulates the paired pilot sequences on a portion of the frequency of the homograph and the other portion of the frequency, respectively.
  • a 30a line and a 17a line have a spectral overlap area, and then two pilot sequences satisfying orthogonality are selected for the 30a line, and an additional pilot sequence is selected for the 17a line, assuming The PS 1 and PS2 pilot sequences are selected for the 30a line, and the PS3 pilot sequence is selected for the 17a line.
  • PS 1 , PS 2 , and PS 3 satisfy the orthogonality.
  • VTU VDSL Transceiver Unit
  • the Vector DSL system needs to be satisfied.
  • the VDSL Transceiver Unit at the Remote (VTU-R) at the user end needs to support receiving on different frequencies of the same symbol.
  • the value of the different pilot sequences and the error sample signal are calculated;
  • the VDSL Transceiver Unit at the ONU (VTU-O) and the VTU-R need to notify each other whether Supports paired pilot sequences on the upstream frequency.
  • a bit value in the notification may be used to identify whether the VTU-0 or the VTU-R supports a pair of pilot sequences on the uplink frequency.
  • the bit value of 1 indicates that the VTU-0 or the VTU-R supports the uplink frequency.
  • 0 means that VTU-0 or VTU-R does not support paired pilot sequences on the upstream frequency.
  • #0 and #1 are defined as two pilot sequences paired in frequency, and then the 30a line transmitting end modulates the pilot sequences #0 and #1 to non-overlapping of the same symbol, respectively.
  • VTU-0 when the pilot sequence is updated, VTU-0 sends a pilot update command to VTU-R and transmits #0 and #1 pilot sequences to VTU-R, VTU-R A response message is sent to VTU-0 to let VTU-0 know if the VTU-R was updated successfully.
  • the transceiver of one end of the first line generates and sends a first pilot training signal according to the first pilot sequence, and generates and sends a third pilot training signal according to the third pilot sequence. number.
  • the transceiver of the opposite end of the first line generates an error sample signal according to the first pilot training signal and the third pilot training signal.
  • the transceiver of the opposite end of the first line sends the error sample signal to a vectorization control entity to determine a first crosstalk channel coefficient of the second line to the first line.
  • the first line determines the sample according to two orthogonal pilot pilot sequences generated by the vectorization control entity and the mutually orthogonal pilot training signals generated in different frequency ranges.
  • the error can not only enable the vectoring control entity to determine the crosstalk channel coefficient of the second line to the first line, but also determine the crosstalk channel coefficient of the first line to the second line, thereby allowing the first line and the second line to be processed
  • the data signal is transmitted for precoding processing to eliminate the crosstalk between the in-band and out-of-band spectrum between the lines, and the system in which the coexistence of different attribute lines is reduced, and the influence of the crosstalk between the lines on the line rate is increased, thereby increasing the speed of the FTTC. The effect and stability.
  • FIG. 14 is a schematic structural diagram of Embodiment 1 of a vectorization control apparatus according to an embodiment of the present invention. As shown in FIG. 14, the apparatus 14 includes: an allocation module 141, a receiving module 142, and a determining module 143.
  • the allocating module 141 is configured to respectively allocate a first pilot sequence and a second pilot sequence to the first line and the second line in the digital subscriber line system, so that the transceiver at one end of the first line is according to the Transmitting, by the first pilot sequence, a first pilot training signal and a third pilot training signal, where the transceiver at one end of the second line sends a second pilot training signal according to the second pilot sequence, the second The out-of-band spectrum of the line overlaps with the in-band spectrum of the first line, the first pilot sequence and the second pilot sequence satisfy orthogonality, and the first pilot training signal is the first line a pilot training signal in a range overlapping with a spectrum of the second line, where the third pilot training signal is a pilot training signal of the first line outside the spectrum overlapping with the second line, the second pilot training The signal is a pilot training signal of the second line in the in-band spectrum, the first pilot training signal is orthogonal to the third pilot training signal, and the second pilot training signal is Band of third pilot training
  • the signal, the error sample signal is determined by the transceiver of the opposite end of the first line and the transceiver of the opposite end of the second line according to the received pilot training signal; the determining module 143 is configured to use the error sample signal according to the A pilot sequence and a second pilot sequence determine a first crosstalk channel coefficient of the second line to the first line and a second crosstalk channel coefficient of the first line to the second line.
  • the third pilot training signal is a mirror signal of the first pilot training signal outside the overlapping region of the first line and the second line spectrum.
  • the vectorization control device provided in this embodiment is a vectorization control entity in a Vector DSL system.
  • the function and crosstalk estimation process of each module in the vectorization control device may refer to the detailed description in the first embodiment of the crosstalk estimation method. Let me repeat.
  • the vectorization control apparatus can determine the crosstalk channel coefficient between each line according to the sample error determined by the pilot training signals in different frequency ranges of each line, and then perform the data signal to be transmitted of each line.
  • the precoding process can eliminate the crosstalk effect between the in-band and out-of-band spectrum between lines, and reduce the effect of crosstalk between lines on the line rate in the system where the different attribute lines coexist, thereby increasing the effect and stability of the FTTC speed increase. Sex.
  • FIG. 15 is a schematic structural diagram of Embodiment 2 of a vectorization control apparatus according to an embodiment of the present invention. As shown in FIG. 15, the vectoring control device 14 further includes a first obtaining module 151 and a first processing module 152 on the basis of FIG.
  • the first obtaining module 151 is configured to acquire a second image signal of the second line to be sent of the second line that is outside the second line band.
  • the first processing module 152 is configured to use the first crosstalk channel coefficient. And the second crosstalk channel coefficient and the second image signal perform precoding processing on the to-be-transmitted signals of the first line and the second line, and determine precoding signals of the to-be-transmitted signals of the first line and the second line.
  • the determining module 143 is further configured to determine a first image coefficient of the first crosstalk channel coefficient; the vectorization control device 14 further includes a second acquiring module and Second processing module.
  • the second acquiring module is configured to acquire a third image signal of the third to-be-transmitted signal of the first line, where the third to-be-transmitted signal is a spectrum overlapping range of the first line with the second line.
  • a signal to be transmitted the third image signal is the third signal to be transmitted a second image processing module, configured to: according to the first crosstalk channel coefficient, the second crosstalk channel coefficient, the first image coefficient, and the third image And performing precoding processing on the to-be-transmitted signal of the first line and the second line, determining a pre-coding signal of the first to-be-transmitted signal, a pre-coding signal of the third image signal, and the second a precoding signal of the second to-be-transmitted signal of the line, where the first to-be-transmitted signal is a to-be-transmitted signal in a range in which the first line overlaps with the second line spectrum.
  • the vectoring control device can eliminate the crosstalk of the signal in the 17a line to the line 30a, and eliminate the crosstalk of the out-of-band signal of the 17a line to the line 30a.
  • the 17a line in addition to eliminating the crosstalk of the 17a line in the 30a line in the above method, it is also necessary to eliminate the interference of the in-band spectral crosstalk of the 30a line between 17.6MHz and 35.2MHz to the 17a line.
  • the pilot training signal of the 30a line is 17.6MHz ⁇ 35.2MHz and the pilot training signal of 0 ⁇ 17.6MHz is conjugate symmetric
  • the pilot training signal of the 17.6MHz ⁇ 35.2MHz of the 30a line is mirrored to 17.6 by the out-of-band crosstalk.
  • the pilot training signal is the same as the 30a line at 0 ⁇ 17.6MHz, so the 17a line cannot estimate the crosstalk channel of the interference source, in order to eliminate the out-of-band spectrum of the 17a line from 17.6MHz to 35.2MHz.
  • the in-band spectrum affecting the image interference 17a line needs to be satisfied, and the first pilot training signal and the third pilot training signal are orthogonal to the second pilot training signal, respectively, so that the VCE returns feedback on the 17a line.
  • the second crosstalk channel coefficient of the 30a line to the 17a line can be determined, that is, the crosstalk channel coefficient of the band spectrum of the 17a line in the 0a line at 0 ⁇ 17.6MHz and the 17a line band in the 17.6MHz ⁇ 35.2MHz pair.
  • the crosstalk channel coefficient of the outer spectrum is, that is, the crosstalk channel coefficient of the band spectrum of the 17a line in the 0a line at 0 ⁇ 17.6MHz and the 17a line band in the 17.6MHz ⁇ 35.2MHz pair.
  • the allocation module 141 is specifically configured to allocate a first pilot sequence and a third pilot sequence to the first line in the system, and allocate a second pilot sequence to the second line, so that the first line is according to the Transmitting, by the first pilot sequence, a first pilot training signal, transmitting a third pilot training signal according to the third pilot sequence, and sending, by the second line, the second pilot training signal according to the second pilot sequence,
  • the first pilot sequence, the second pilot sequence, and the third pilot sequence satisfy orthogonality
  • the determining module 143 is specifically configured to use, according to the error sample signal, the first pilot sequence, and the third pilot sequence Determining, by the second line, a third crosstalk channel coefficient and a fourth crosstalk channel coefficient of the first line, determining, according to the error sample signal and the second pilot sequence, the first line pair The second crosstalk channel coefficient of the two lines.
  • the allocation module 141 is specifically configured to allocate a first pilot sequence and a second pilot sequence to the first line and the second line in the system, respectively, so that the transceiver at one end of the first line is satisfied.
  • the first pilot sequence corresponds to a third pilot training signal of 1 or 0 on other subcarriers;
  • the determining module 143 is specifically configured to calculate the first line on an odd subcarrier that satisfies a preset modulation period. And calculating, by the third crosstalk channel coefficient of the second line, a fourth crosstalk channel coefficient of the first line to the second line on an even subcarrier that satisfies a preset modulation period.
  • the allocation module 141 is specifically configured to allocate a first pilot sequence and a second pilot sequence to the first line and the second line in the system, respectively, so that the transceiver at one end of the first line is satisfied.
  • the first pilot sequence corresponds to a third pilot training signal that is 1 or 0 on the other subcarriers.
  • the determining module 143 is specifically configured to separately calculate the first on the even subcarriers that meet the preset modulation period. And calculating, by the line to the third crosstalk channel coefficient of the second line, a fourth crosstalk channel coefficient of the first line to the second line, respectively, on an odd subcarrier that satisfies a preset modulation period.
  • the preset modulation period is an integer multiple of 2.
  • the determining module is further configured to determine a fourth image coefficient of the fourth crosstalk channel coefficient within a spectral overlap range of the first line and the second line;
  • a third acquiring module configured to acquire a third image signal of the third to-be-transmitted signal of the first line, where the third to-be-transmitted signal is a spectrum overlap of the first line with the second line An out-of-range signal to be transmitted, wherein the third image signal is an image signal of the third to-be-transmitted signal in a range in which the first line overlaps with a spectrum of the second line;
  • the determining module is further configured to: wait for the first line and the second line according to the second crosstalk channel coefficient, the third crosstalk channel coefficient, the fourth crosstalk channel coefficient, the fourth image coefficient, and the third image signal Transmitting a signal to perform precoding processing, determining a precoding signal of the first to-be-transmitted signal of the first line, a pre-coding signal of the third to-be-transmitted signal, and a second of the second line a pre-coded signal to be transmitted, the first to-be-transmitted signal is a to-be-transmitted signal in a range in which the first line overlaps with the second line spectrum, and the third to-be-sent signal is the first line A signal to be transmitted outside a range overlapping with the second line spectrum.
  • the vectorization control apparatus can determine the crosstalk channel coefficient between each line according to the sample error determined by the pilot training signals in different frequency ranges of each line, and then perform the data signal to be transmitted of each line.
  • the precoding process can eliminate the crosstalk effect between the in-band and out-of-band spectrum between lines, and reduce the effect of crosstalk between lines on the line rate in the system where the different attribute lines coexist, thereby increasing the effect and stability of the FTTC speed increase. Sex.
  • FIG. 16 is a schematic structural diagram of a network control device according to an embodiment of the present invention. As shown in FIG. 16, the network control device 16 includes: a processor 161, a memory 162, and at least one communication port 163.
  • the communication port 163 is configured to communicate with an external device, the memory 162 is configured to store computer program instructions, and the processor 161 is coupled to the memory 162 for calling a computer program stored in the memory.
  • the instructions are to perform a crosstalk estimation method as shown in Embodiment 1 to Embodiment 6 of the crosstalk estimation method.
  • FIG. 17 is a schematic structural diagram of an embodiment of a line device according to an embodiment of the present invention. As shown in FIG. 17, the line device 17 includes: a first transceiver 171 and a second transceiver 172.
  • the first transceiver 171 is configured to receive a first pilot sequence allocated by the vectorization control entity in the digital subscriber line system, where the first transceiver 171 is further configured to generate and send the first according to the first pilot sequence.
  • a pilot training signal and a third pilot training signal wherein the first pilot training signal is a pilot training signal in a range in which the first line overlaps with a second line spectrum, and the third pilot training signal is a pilot training signal of the first line outside the spectrum overlap with the second line, the out-of-band spectrum of the second line overlapping with the in-band spectrum of the first line;
  • the second transceiver 172 is configured to The first pilot training signal and the third pilot training signal generate an error sample signal;
  • the second transceiver 172 is further configured to send the error sample signal to the vectorization control entity to determine the second line pair The first crosstalk channel coefficient of a line.
  • the second transceiver is specifically configured to: send the error sample signal to a vectorization control entity, so that the vectorization control is Determining, according to the error sample signal, the first pilot sequence and the second pilot sequence, the first crosstalk channel coefficient of the second line to the first line;
  • the second pilot sequence is a pilot sequence allocated by the vectorization control entity to the second line, and the first pilot training signal and the transceiver of one end of the second line are according to the second
  • the second pilot training signal generated by the pilot sequence is orthogonal
  • the third pilot training signal is orthogonal to the out-of-band mirror signal of the second pilot training signal.
  • the third pilot training signal is an image signal of the first pilot training signal outside the overlapping region of the first line and the second line spectrum.
  • the first pilot training signal and the third pilot training signal are respectively associated with the second pilot training signal Mutual orthogonal signals.
  • the first transceiver is specifically configured to generate, on an odd subcarrier that meets a preset modulation period, a first pilot training signal that is corresponding to the first pilot sequence and that is 1 or 0 on other subcarriers, And generating a third pilot training signal corresponding to the first pilot sequence and 1 or 0 on other subcarriers on an even subcarrier satisfying a preset modulation period.
  • the first transceiver is specifically configured to generate, on an even subcarrier that meets a preset modulation period, a first pilot training signal that is corresponding to the first pilot sequence and that has a signal of 1 or 0 on other subcarriers. And generating a third pilot training signal corresponding to the first pilot sequence and 1 or 0 on other subcarriers on odd subcarriers satisfying a preset modulation period.
  • the preset modulation period is an integer multiple of 2.
  • VDSL VDSL
  • VTU-O The Transceiver Unit at the ONU
  • VTU-R the VTU-R
  • a bit value in the notification may be used to identify whether the VTU-0 or the VTU-R supports a pair of pilot sequences on the uplink frequency.
  • the bit value of 1 indicates that the VTU-0 or the VTU-R supports the uplink frequency.
  • the pilot sequence of the pair 0 means that VTU-0 or VTU-R does not support paired pilot sequences on the upstream frequency.
  • the first transceiver is further configured to receive a third pilot sequence allocated by the vectorization control entity, where the first pilot sequence and the second pilot training signal are orthogonal to each other.
  • the third pilot sequence satisfies orthogonality, and generates and transmits a first pilot training signal according to the first pilot sequence, and generates and transmits a third pilot training signal according to the third pilot sequence.
  • the line device provided in this embodiment according to the pilot sequence allocated by the vectorization control entity, generates pilot training signals according to a preset period in different frequency ranges and on different subcarriers, thereby determining a sample error, which can not only make the sample error
  • the vectoring control entity determines a crosstalk channel coefficient of the second line to the first line, and may also determine a crosstalk channel coefficient of the first line to the second line, thereby pre-predicting the data signal to be transmitted of the first line and the second line Encoding process to eliminate the crosstalk between the in-band and out-of-band spectrum between lines, reduce the effect of crosstalk between lines on the line rate, and increase the effect and stability of FTTC speed increase. .
  • FIG. 18 is a schematic structural diagram of a line device according to an embodiment of the present invention. As shown in FIG. 18, the line device 18 includes: a processor 181, a memory 182, and at least one communication port 183.
  • the communication port 183 is configured to communicate with an external device, the memory 182 is configured to store computer program instructions, and the processor 181 is coupled to the memory 182 for invoking a computer program stored in the memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

本发明提供一种串扰估计方法、装置和系统。本发明实施例提供的串扰处理方法、装置和系统,线路的收发器根据矢量化控制实体分配的导频序列,分别生成与其它线路的导频训练信号满足预设关系的不同频谱范围内的导频训练信号,使线路的接收器可分别根据不同的导频训练信号确定样本误差,从而使矢量化控制实体确定其它线路对该线路的带内频谱、带外频谱的串扰信道系数,从而通过对该线路的待发送数据信号进行预编码处理,即可消除其它线路对该线路带内和带外频谱间的串扰影响,降低了不同属性线路共存的系统内,由于线路间的串扰对线路速率的影响,从而增加了FTTC提速的效果和稳定性。

Description

串扰估计方法、 装置及系统
技术领域
本发明实施例涉及通信技术领域, 尤其涉及一种串扰估计方法、 装置 及系统。
背景技术
数字用户线路 (X Digital Subscriber Line, 简称 xDSL) 是一种在电话 双绞线 (无屏蔽双绞线, Unshielded Twist Pair, 简称 UTP ) 传输的高速数 据传输技术。 通带传输的 xDSL利用频分复用技术使得 xDSL与传统电话 业务 (Plain Old Telephone Service, 简称 POTS ) 共存于同一对双绞线上, 其中 xDSL占据高频段, POTS 占用 4千赫兹 (KHz ) 以下基带部分, 在 信号接收端, 采用分离器分离 POTS信号与 xDSL信号。 提供多路 xDSL 接入的系统叫做 DSL接入复用器(DSL Access Multiplexer,简称 DSLAM)。
由于电磁感应原理, DSLAM接入的多路信号之间, 会相互产生干扰, 称为串音(Crosstalk) 。 串音包括远端串音(FEXT )和近端串音(NEXT ) 两种, 如图 1 为远端串音示意图。 如图 2为近端串音示意图。 其中, TX 表示信号发送端, RX表示信号接收端, CO表示中心局, CPE表示用户侧, downstream表示下行信号, upstream表示上行信号。
近端串音和远端串音能量都会随着频段升高而增强。 现有的 xDSL技术, 如 ADSL, ADSL2 , ADSL2+, VDSL, VDSL2等, 上下行信道采用频分复 用 (FDD ) , 近端串音 (NEXT ) 对系统的性能的影响可以忽略不计, 主 要存在远端串音 (FEXT ) 的影响, 但由于 xDSL使用的频段越来越宽, 远 端串音 (FEXT ) 愈发严重地影响 VDSL2的传输性能。 目前业界提出, 使 用 Vectoring技术在中心局 ( Central Office, 简称 CO )端进行联合收发来抵 消 FEXT串音。
VDSL2标准定义了 8种配置属性(Profile ), 称为 8a、 8b、 8c、 8d、 12a, 12b、 17a、 30a, 在 Vector系统中也会存在多种属性的线路, 比如在 17a线 (即属性为 17a的线路)路与 30a线路(即属性为 17a的线路)共存的情况下, 一方面, 17a的线路在 17M以外还存在带外频谱, 虽然可使用低通滤波器, 但 17-21MHZ的带外频谱功率仍在 -80dBm/Hz以上, 在下行方向, 在 17a线 路上发送信号的带外频谱会对 30a线路 17M以上的频率产生较强的 FEXT干 扰; 另一方面, 30a线路 17M以上的频谱也会对 17a线路的带外的频谱产生 FEXT干扰, 当 17a线路接收端的调整解调器 modem采用 1倍采样时, 这部 分带外干扰会被混叠到 17a线路的带内, 使得 17a线路速率降低。
上述 17a线路和 30a线路间的 FEXT串扰, 影响了光纤到用户 (Fiber To The Customer, 简称 FTTC ) 提速的效果和稳定性。 发明内容 本发明实施例提供一种串扰估计方法、 装置及系统, 用于解决现有 Vector系统中, 两组不同属性的线路间的 FEXT串扰, 影响 FTTC提速的效 果和稳定性的问题。
第一方面, 本发明实施例提供一种串扰估计方法, 包括: 第一线路的 一端的收发器接收数字用户线路系统中矢量化控制实体分配的第一导频 序列;
所述第一线路的一端的收发器根据所述第一导频序列生成并发送第 一导频训练信号和第三导频训练信号, 所述第一导频训练信号为所述第一 线路在与第二线路频谱重叠范围内的导频训练信号, 所述第三导频训练信 号为所述第一线路在与第二线路频谱重叠范围外的导频训练信号, 所述第 二线路的带外频谱与所述第一线路的带内频谱重叠;
所述第一线路的对端的收发器根据所述第一导频训练信号及第三导 频训练信号生成误差样本信号;
所述第一线路的对端的收发器将所述误差样本信号发送给矢量化控 制实体来确定所述第二线路对第一线路的第一串扰信道系数。
在第一方面的第一种可能的实现形式中, 所述第一线路的对端的收发 器将所述误差样本信号发送给矢量化控制实体来确定所述第二线路对第 一线路的第一串扰信道系数, 包括:
所述第一线路的对端的收发器将所述误差样本信号发送给矢量化控 制实体, 以使所述矢量化控制实体根据所述误差样本信号、 第一导频序列 及第二导频序列确定所述第二线路对第一线路的第一串扰信道系数; 所述第二导频序列为所述矢量化控制实体为所述第二线路分配的导 频序列, 所述第一导频训练信号与所述第二线路的一端的收发器根据所述 第二导频序列生成的第二导频训练信号正交, 所述第三导频训练信号与所 述第二导频训练信号的带外镜像信号正交。
结合第一方面或第一方面的第一种可能的实现形式, 在第一方面的第 二种可能的实现形式中, 所述第三导频训练信号为所述第一导频训练信号 在所述第一线路与所述第二线路频谱重叠区域外的镜像信号。
结合第一方面的第一种可能的实现形式, 在第一方面的第三种可能的 实现形式中, 所述第一导频训练信号和第三导频训练信号分别与所述第二 导频训练信号互为正交信号。
结合第一方面的第三种可能的实现形式, 在第一方面的第四种可能的 实现形式中, 所述第一线路的一端的收发器根据所述第一导频序列生成并 发送第一导频训练信号和第三导频训练信号, 包括:
所述第一线路的一端的收发器在满足预设调制周期的奇数子载波上 生成与所述第一导频序列对应且其它子载波上为 1或者 0的第一导频训练 信号, 以及在满足预设调制周期的偶数子载波上生成与所述第一导频序列 对应且其它子载波上为 1或者 0的第三导频训练信号。
结合第一方面的第三种可能的实现形式, 在第一方面的第五种可能的 实现形式中, 所述第一线路的一端的收发器根据所述第一导频序列生成并 发送第一导频训练信号和第三导频训练信号, 包括:
所述第一线路的一端的收发器在满足预设调制周期的偶数子载波上 生成与所述第一导频序列对应且其它子载波上的信号为 1或者 0的第一导 频训练信号, 以及在满足预设调制周期的奇数子载波上生成与所述第一导 频序列对应且其它子载波上为 1或者 0的第三导频训练信号。
结合第一方面的第四种或第五种可能的实现形式,在第一方面的第六 种可能的实现形式中, 所述预设的调制周期为 2的整数倍。
结合第一方面或第一方面的第一种可能的实现形式, 在第一方面的第 七种可能的实现形式中, 还包括:
所述第一线路的一端的收发器接收所述矢量化控制实体分配的第三 导频序列,所述第一导频序列、第二导频序列及第三导频序列满足正交性; 所述第一线路的一端的收发器根据所述第一导频序列生成并发送第 一导频训练信号和第三导频训练信号, 包括:
所述第一线路的一端的收发器根据所述第一导频序列生成并发送第 一导频训练信号, 根据所述第三导频序列生成并发送第三导频训练信号。
结合第一方面、 第一方面的第一种、 第二种、 第三种、 第四种、 第五 种、 第六种或第七种可能的实现形式, 在第一方面的第八种可能的实现形 式中, 所述第一线路为 30a线路, 所述第二线路为 17a线路。
第二方面, 本发明实施例提供一种线路装置, 包括:
第一收发器, 用于接收数字用户线路系统中矢量化控制实体分配的第 一导频序列;
所述第一收发器, 还用于根据所述第一导频序列生成并发送第一导频 训练信号和第三导频训练信号, 所述第一导频训练信号为所述第一线路在 与第二线路频谱重叠范围内的导频训练信号, 所述第三导频训练信号为所 述第一线路在与第二线路频谱重叠范围外的导频训练信号, 所述第二线路 的带外频谱与所述第一线路的带内频谱重叠;
第二收发器, 用于根据所述第一导频训练信号及第三导频训练信号生 成误差样本信号;
所述第二收发器, 还用于将所述误差样本信号发送给矢量化控制实体 来确定所述第二线路对第一线路的第一串扰信道系数。
在第二方面的第一种可能的实现形式中,所述第二收发器,具体用于: 将所述误差样本信号发送给矢量化控制实体, 以使所述矢量化控制实 体根据所述误差样本信号、 第一导频序列及第二导频序列确定所述第二线 路对第一线路的第一串扰信道系数;
所述第二导频序列为所述矢量化控制实体为所述第二线路分配的导 频序列, 所述第一导频训练信号与所述第二线路的一端的收发器根据所述 第二导频序列生成的第二导频训练信号正交, 所述第三导频训练信号与所 述第二导频训练信号的带外镜像信号正交。
结合第二方面或第二方面的第一种可能的实现形式, 在第二方面的第 二种可能的实现形式中, 所述第三导频训练信号为所述第一导频训练信号 在所述第一线路与所述第二线路频谱重叠区域外的镜像信号。
结合第二方面的第二种可能的实现形式, 在第二方面的第三种可能的 实现形式中, 所述第一导频训练信号和第三导频训练信号分别与所述第二 导频训练信号互为正交信号。
结合第二方面的第三种可能的实现形式, 在第二方面的第四种可能的 实现形式中, 所述第一收发器, 具体用于在满足预设调制周期的奇数子载 波上生成与所述第一导频序列对应且其它子载波上为 1或者 0的第一导频 训练信号, 以及在满足预设调制周期的偶数子载波上生成与所述第一导频 序列对应且其它子载波上为 1或者 0的第三导频训练信号。
结合第二方面的第三种可能的实现形式, 在第二方面的第五种可能的 实现形式中, 所述第一收发器, 具体用于在满足预设调制周期的偶数子载 波上生成与所述第一导频序列对应且其它子载波上的信号为 1或者 0的第 一导频训练信号, 以及在满足预设调制周期的奇数子载波上生成与所述第 一导频序列对应且其它子载波上为 1或者 0的第三导频训练信号。
结合第二方面的第四种或第五种可能的实现形式,在第二方面的第六 种可能的实现形式中, 所述预设的调制周期为 2的整数倍。
结合第二方面或第二方面的第一种可能的实现形式, 在第二方面的第 七种可能的实现形式中, 所述第一收发器, 还用于接收所述矢量化控制实 体分配的第三导频序列, 所述第一导频序列及第三导频序列满足正交性, 并根据所述第一导频序列生成并发送第一导频训练信号, 根据所述第三导 频序列生成并发送第三导频训练信号。
结合第一方面、 第一方面的第一种、 第二种、 第三种、 第四种、 第五 种、 第六种或第七种可能的实现形式, 在第一方面的第八种可能的实现形 式中, 所述第一线路为 30a线路, 所述第二线路为 17a线路。
第三方面, 本发明实施例提供一种串扰估计系统, 包括如上述第二方 面实施例中所述的线路装置及矢量化控制实体。
本发明实施例提供的串扰估计方法、 装置及系统, 线路的收发器根据 矢量化控制实体分配的导频序列, 分别生成与其它线路的导频训练信号满 足预设关系的不同频谱范围内的导频训练信号, 使线路的接收器可分别根 据不同的导频训练信号确定样本误差, 从而使矢量化控制实体确定其它线 路对该线路的带内频谱、 带外频谱的串扰信道系数, 从而通过对该线路的 待发送数据信号进行预编码处理, 即可消除其它线路对该线路带内和带外 频谱间的串扰影响, 降低了不同属性线路共存的系统内, 由于线路间的串 扰对线路速率的影响, 从而增加了 FTTC提速的效果和稳定性。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见 地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的 附图。
图 1为远端串音示意图;
图 2为近端串音示意图;
图 3为在 DSLAM端同歩发送的工作情形;
图 4为在 DSLAM端同歩接收的工作情形;
图 5为本发明实施例提供的串扰估计方法实施例一的流程示意图; 图 6为本发明实施例提供的串扰估计方法实施例二的流程示意图; 图 7为本发明实施例提供的串扰估计方法实施例三的流程示意图; 图 8为本发明实施例提供的串扰估计方法实施例四的流程示意图; 图 9为本发明实施例提供的串扰估计方法实施例五的流程示意图; 图 10为本发明实施例提供的串扰估计方法实施例六的流程示意图; 图 11为本发明实施例提供的串扰估计方法实施例七的流程示意图; 图 12为本发明实施例提供的串扰估计方法实施例八的流程示意图; 图 13为本发明实施例提供的串扰估计方法实施例九的流程示意图; 图 14为本发明实施例提供的矢量化控制装置实施例一的结构示意图; 图 15为本发明实施例提供的矢量化控制装置实施例二的结构示意图; 图 16为本发明实施例提供的网络控制设备的结构示意图;
图 17为本发明实施例提供的线路装置实施例的结构示意图; 图 18为本发明实施例提供的线路设备结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然,所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
在矢量数字用户线路(Vectored Digital Subscriber Line, 简称 Vectored DSL) 系统中, 可以在 DSLAM端进行联合收发, 使用信号处理的方法来 抵消 FEXT干扰, 图 3为在 DSLAM端同歩发送的工作情形, 图 4为在 DSLAM端同歩接收的工作情形。
图 3和图 4所示的共享信道 H在频率域第 k个频率区间上可以表示为矩阵 形式如式 (1) 所示:
Figure imgf000009_0001
其中, 是从线对 到线对 的传输方程。 在实际情况下, '相等且等于 共享信道中相互具有串扰关系的信道个数, 在这里设为 M。 那么 H是一个 MXM的信道传输矩阵。假设 X是一个 MX1的信道输入向量, 是一个 MX1 的信道输出向量, Z是一个 MX1的噪声向量。则信道传输方程表达为式(2) 形式:
F=HX+Z (2) 对于上行, 在 CO端做信号的联合接收处理, 在接收端引入一个串音 抵消器 W, 接收到的信号为式 (3) 所示,
F = WF = WHZ + WZ (3) 当 WH为一个对角矩阵时, 相应分量乘以一个系数, 再加上噪声, 消除了发送信号其它分量的影响, 从而消除了串扰。
对于下行, 在 CO端做信号的联合发送处理, 在 CO端引入一个预编码 器 P , 那么发送的信号可用式 (4 ) 表示: ( 4 ) 接收端接收到的信号可用式 (5 ) 表示:
F = HX + Z = HPX + Z ( 5 ) 同样地, 当 HP为一个对角阵时, 串扰得到了消除。
发送端在同歩符号上调制导频序列, 接收端在同歩符号上接收样本误 差, 并将接收的样本误差发送给 VCE, 通过上述对上下行联合处理, Vectored DSL系统可达到消除远端串扰的效果。
但是,上述的 Vectored DSL技术只能抵消通带范围内不同用户在同一 频率上相互之前的 FEXT干串扰。 如果 Vectored DSL系统同时布放了 17a 和 30a 线路, 即原有的 VDSL2 17a 4k符号率线路与新的 30a 4k符号率线 路共存的情况, 由于现有的大部分 VDSL2的调制器 (modem) 都是采用 的一倍采样, 导致原有 VDSL2 17a的线路在 17M以外还存在带外频谱, 虽然使用了低通滤波器, 但 17-21MHZ的带外频谱功率仍在 -80dBm/Hz以 上。 在下行方向, 17a线路发送信号的带外频谱会对 30a线路对应的频率 产生较强的 FEXT干扰; 另一方面 30a线路 17M以上的频谱也会对 17a 线路带外的频谱产生 FEXT干扰, 当 17a线路接收端的 modem采用 1倍 采样时, 这部分带外干扰会被混叠到 VDSL2 17a线路的带内, 使得原有的 VDSL2 17a线路速率降低。 对于上行方向, 类似的情况也可能出现。
可知,现有的 Vectored DSL技术只能抵消 17a线路和 30a线路之间通 带内的串扰,无法抵消 17a和 30a线路之间通带外的串扰,这影响了 FTTC 提速的效果和稳定性
本发明各实施例中提到的第一线路和第二线路可以指频谱范围有重 叠的某两类线路中的任意一条线路, 比如第一线路指属性为 30a的线路中 的一条, 第二线路指属性为 17a的线路中的一条, 相应的第一线路一端的 收发器指该条线路发送端的收发器, 第一线路对端的收发器指该条线路接 收端的收发器。 或者, 各实施例中的第一线路和第二线路也可以指频谱范 围与其它线路有重叠的某类线路,比如第一线路指属性为 30a的一类线路, 第二线路指属性为 17a的一类线路, 此时, 第一线路一端的收发器指该类 线路中任意一条线路发送端的收发器, 第一线路对端的收发器指同一条该 类线路接收端的收发器。
为方便说明, 本发明各实施例以第一线路为一条 30a线路, 第二线路 为一条 17a线路为例展开说明。
图 5为本发明实施例提供的串扰估计方法实施例一的流程示意图。 如 图 5所示, 该方法包括:
S500,矢量化控制实体为系统中的第一线路和第二线路分别分配第一 导频序列和第二导频序列, 以使所述第一线路的一端的收发器根据所述第 一导频序列发送第一导频训练信号和第三导频训练信号, 所述第二线路的 一端的收发器根据所述第二导频序列发送第二导频训练信号。
其中, 所述第一导频序列和第二导频序列满足正交性, 所述第二线路 的带外频谱与所述第一线路的带内频谱重叠, 所述第一导频训练信号为所 述第一线路在与第二线路频谱重叠范围内的导频训练信号, 所述第三导频 训练信号为所述第一线路在与第二线路频谱重叠范围外的导频训练信号, 所述第二导频训练信号为所述第二线路在带内频谱范围内的导频训练信 号, 所述第一导频训练信号与所述第二导频训练信号正交, 所述第三导频 训练信号与所述第二导频训练信号的带外镜像信号正交。
在本发明实施例中, Vectored DSL系统中矢量化控制实体(Vectoring Control Entity, 简称 VCE)是整个 Vectored DSL系统的控制实体, 在如图 3和 4中的 DSLAM中, VCE首先根据 Vectored DSL系统中用户线路的规 模或数量, 生成训练导频序列矩阵, 比如 Walsh矩阵, 在后续为各线路分 配导频序列时, 可以基于该训练导频序列矩阵直接进行分配。
具体的, 第一导频序列和第二导频序列满足正交性, 第一导频序列和 第二导频序列可以是正交导频序列, 也可以是满足正交性的其它导频序 列, 比如, 足够长的伪随机序列。 本发明各实施例中以所有导频序列为正 交导频序列进行说明。 各线路发送端的收发器在收到导频序列后, 向对端发送导频序列的调 制信号, 即本发明实施例中的导频训练信号。 对于上行信号, 各线路的发 送端即为各用户端, 各用户端发送导频训练信号至 DSLAM端; 对于下行 信号, 各线路的发送端即为 DSLAM端, 通过每个子载波发送导频训练信 号至各用户端。
需要说明的是, 各线路收发器是在同歩符号上调制导频序列的, 即本 发明各实施例中的导频训练信号承载在同歩符号上, 本发明各实施例用第 一导频训练信号和第三导频训练信号来区分第一线路在与第二线路的频 谱重叠范围内和频谱重叠范围外的同歩符号上的导频信号。
其中, 本发明中, 各线路的发送端的收发器生成并发送的导频训练信 号分为该线路与其它线路频谱重叠范围内的导频训练信号及频谱重叠范 围外的导频训练信号。 举例来说, 对于 30a线路和 17a线路, 由于 17a线 路的频谱范围为 0~17.6MHz, 30a线路的频谱范围为 0~35.2MHz, 因此, 30a线路返回的导频训练信号, 包括 17.6MHz以下频谱范围内的第一导频 训练信号, 还包括 17.6MHz~35.2MHz频谱范围内的第三导频训练信号, 17a线路返回的导频训练信号为 0~17.6MHz频谱范围内的第二导频训练信 号。 为了使第一线路可根据第一导频训练信号、 第二导频训练信号和第三 导频训练信号确定第二线路对第一线路的串扰信道系数, 需保证第二线路 和第一线路在频谱重叠范围内的第一导频训练信号和第二导频训练信号 正交, 且经采样获得的第二线路的带内频谱训练信号在带外的镜像信号与 第一线路的带内频谱重叠的导频训练信号正交, 其中带外镜像信号与带内 信号是共轭对称的关系, 即第二导频训练信号的带外镜像信号与第三导频 训练信号正交。
S510,所述矢量化控制实体接收所述第一线路的对端的收发器和第二 线路的对端的收发器发送的误差样本信号。
其中, 所述误差样本信号由所述第一线路的对端的收发器和第二线路 的对端的收发器根据接收的导频训练信号确定。
具体的, 线路的发送端的收发器发送导频训练信号后, 由该线路的接 收端进行接收, 信号在线路上传输的过程中不同线路间会产生远端串扰, 所以接收端的收发器接收到的信号与发送端发送的信号之间可能存在一 定的差异, 接收端的收发器根据接收到的导频训练信号判断发送端发送的 导频训练信号, 并计算接收信号与发送信号之间的差异, 获得误差样本信 号, 并将该误差样本信号发送给 VCE。
S520, 所述矢量化控制实体根据所述误差样本信号、 第一导频序列及 第二导频序列确定所述第二线路对第一线路的第一串扰信道系数及所述 第一线路对所述第二线路的第二串扰信道系数。
由于各线路返回给 VCE的导频训练信号是根据该线路与其它线路的 频谱重叠情况生成的, VCE根据接收到的各线路上的误差样本信号即可分 析确定各线路的带内频谱及带外频谱间的串扰信道系数。 比如, 30a线路 带内频谱对 17a线路带内和带外频谱的串扰信道系数, 17a线路带外频谱 对 30a线路带内频谱的串扰信道系数。 上述串扰信道系数可以是比如串扰 抵消矩阵和向量预编码矩阵。
具体的, VCE可根据第一线路返回的反馈误差样本信号,计算第二线 路对所述第一线路的第一串扰信道矩阵, 将所述第一串扰信道矩阵进行逆 矩阵变换即可得到第一串扰信道系数, 即第一预编码系数; 相应的, 根据 第二线路返回的反馈误差样本信号, 计算第一线路对所述第二线路的第二 串扰信道矩阵, 并将所述第二串扰信道矩阵进行逆矩阵变换即可得到第二 串扰信道系数, 即第二预编码系数。
VCE根据确定的串扰抵消矩阵和向量预编码矩阵对各线路待发送的 数据信号进行预编码处理, 即可消除线路间的远端串扰, 比如对于 30a线 路, VCE通过上述方法, 除了可消除 17a线路带内信号对 30a线路的串扰 夕卜, 还可消除 17a线路在 17.6MHz~35.2MHz间的带外频谱对 30a线路的 串扰。
本发明实施例提供的串扰估计方法, 矢量化控制实体根据各线路根据 不同频谱范围内的导频训练信号确定的样本误差, 即可确定各线路间的串 扰信道系数, 再对各线路的待发送数据信号进行预编码处理, 即可消除线 路间带内和带外频谱间的串扰影响, 降低了不同属性线路共存的系统内, 由于线路间的串扰对线路速率的影响, 从而增加了 FTTC提速的效果和稳 定性。
本发明各实施例均以下行串扰处理为例进行说明, 上行方向类似。 在上述实施例一种可能的实现形式中, 所述第三导频训练信号为所述 第一导频训练信号在所述第一线路与所述第二线路频谱重叠区域外的镜 像信号。
具体的, 假设 30a线路在 0~17.6MHz频段的接收的导频训练信号为: 其中4096_ ^ = 1,-,40%表示 0~17.6MHz的子载波集合, x "表示 30a 线路在 0~17.6MHz发送的信号向量, 即第一导频训练信号向量, 表 示 17a线路在 0~17.6MHz发送的信号向量, " "表示 30a线路在
0~17.6MHz的背景噪声信号向量, 表示 30a线路在 0~17.6MHz的信 道矩阵, H 表示 VDSL2系统中 17a线路在 0~17.6MHz对 30a线路的 串扰信道矩阵。
假设 30a线路在 17.6MHz~35.2MHz频段的接收信号向量为:
y 其中4096+ ^ = 1,-,4096表示 π.6ΜΗζ~35.2ΜΗζ的子载波集合, "表 示 30a线路在 17.6~35.2MHz发送的信号向量, 即第二导频训练信号向量, X^6-k ) 表示 17a线路在 0~17.6MHz发送的信号向量在 17.6MHz~35.2MHz 的镜像信号向量, ^ 表示 30a线路在 17.6MHz~35.2MHz的背景噪声信 号向量, "496+表示 30a线路在 17.6~35.2MHz的信道矩阵, "496"表示系 统中 17a线路在 17.6MHz~35.2MHz范围内对 30a线路的串扰信道矩阵。 由于在常规的在常规的导频训练信号中, 在 0~17.6MHz的频率范围内
17a线路发送的信号向量 和 30a线路发送的信号向量 是相互正交 的, 但是 与 ^4°9^ 之间不是正交的, 这样不能训练出 ^^^7 的串扰 信道矩阵和预编码系数矩阵。 若令 XH = (XU , 那么 X4 3。 就与 a的 带外镜像信号 正交了, 即可使第一线路在生成第一导频训练信号 后, 将第一导频训练信号在 17.6MHz~35.2MHz范围内进行共轭对称, 从而 获得第三导频训练信号。
本实施例中,在 0~17.6ΜΗζ的频率范围内 17a的发送信号向量 和 30a发送信号的向量^。96-是相互正交的, 在 17.6~35.2MHz的频率范围 内 30a发送的信号向量 和 17a发送信号的镜像信号向量 之间 是相互正交的,这样 VCE就能训练出 。96"的串扰信道矩阵和预编码系数 矩阵, 即串扰信道系数。
VCE利用上述方法确定 Vcetored DSL系统中 17a线路和 30a线路间 的串扰信道系数后, 利用确定的串扰信道系数对 17a线路和 30a线路的待 发送信号进行预编码处理, 即可得到串扰消除后的 17a线路和 30a线路的 待发送信号。
图 6为本发明实施例提供的串扰估计方法实施例二的流程示意图。 如 图 6所示, 在图 5所示的实施例基础上, 在上述 S520之后, 该方法还包 括:
S600,所述矢量化控制实体获取所述第二线路的第二待发送信号在所 述第二线路带外的第二镜像信号。
具体的, VCE在根据上述方法确定 17a线路的带内信号对 30a线路 在 0~17.6MHz范围内的串扰信道系数及 17a线路的带内信号在带外的镜像 信号对 30a线路在 17.6MHz~30.2MHz范围内对 30a线路的串扰信道系数 后, 需要利用得到的串扰信道系数, 对 30a线路待发送的数据信号进行预 编码处理,才能消除信号在传输过程中 17a线路对 30a线路的串扰,为此, 17a线路可首先根据其在 0~17.6MHz范围内待发送的数据信号 , 生 成在 17.6MHz~30.2MHz范围内的带外镜像数据信号 , 并将 和 发送给 VCE, 或者, 17a线路也可直接将其在 0~17.6MHz范围 内待发送的数据信号 X 6-发送给 VCE, 由 VCE根据 生成
Figure imgf000015_0001
。 本实施例对此不做限定。
S610, 所述矢量化控制实体根据所述第一串扰信道系数、 第二串扰信 道系数及所述第二镜像信号对所述第一线路和第二线路的待发送信号进 行预编码处理, 确定所述第一线路及第二线路的待发送信号的预编码信 号。 则 17a线路和 30a线路的预编码处理信号为式 (6 )
Figure imgf000016_0001
其中, X "为 a线路的预编码处理信号, Χ 6λ为 30a线路在
0~17.6MHz范围内的预编码处理信号, 30a线路在 17.6MHz~35.2 MHz范围内的预编码处理信号, U 17a线路之间在 0~17.6MHz的串扰 信道系数, 即预编码系数,
Figure imgf000016_0002
为 30a线路在 0~17.6MHz对 17a线路的预 编码系数, ^^ 为 17a线路在 0~17.6MHz对 30a线路的预编码系数, 为 30a线路之间在 0~17.6MHz的预编码系数, 为 17a线路在
17.6MHz~35.2MHz对 30a线路的预编码系数, m6+k 30a线路之间在 17.6MHz~35.2 MHz的预编码系数。
本实施例提供的频谱串扰处理方法, 矢量化控制实体根据各线路根据 不同频谱范围内的导频训练信号确定的样本误差, 即可确定各线路间的串 扰信道系数, 然后对获取的线路的待发送信号及待发送信号的镜像信号进 行预编码处理, 以消除线路间的带内频谱和带外频谱的串扰影响, 避免不 同属性线路共存的系统中, 由于线路间串扰引起的线路速率的降低, 从而 增加了 FTTC提速的效果和稳定性。
本发明实施例的另一种可能的实现形式中, VCE无需获取 17a线路待 发送数据信号的带外镜像信号, 也可确定 30a线路的待发送信号, 图 7为 本发明实施例提供的串扰估计方法实施例三的流程示意图。 如图 7所: 在图 5所示的实施例一的基础上, 在 S520之后, 还包括:
S700,所述矢量化控制实体确定所述第一串扰信道系数的:
VCE将该第一串扰信道系数进行共轭对称,得到该串扰信道系数的第 一镜像系数。
S710,所述矢量化控制实体获取所述第一线路的第三待发送信号的第 三镜像信号。
其中, 所述第三待发送信号为所述第一线路在与所述第二线路的频谱 重叠范围外的待发送信号, 所述第三镜像信号为所述第三待发送信号在所 述第一线路在与所述第二线路的频谱重叠范围内的镜像信号。
与上述实施例中 VCE获取第二线路的第二待发送信号的第二镜像信 号过程相似, 该第三待发送信号的第三镜像信号 (X^ f , 可以是由 30a 线路将其在 17.6MHz~35.2 MHz的待发送数据信号 Χ4 +ί进行共轭对称后得 到,然后再发送给 VCE的,或者,也可以是 30a线路将其在 17.6MHz~35.2 MHz 的待发送数据信号 Χ 6+ί发送给 VCE, 由 VCE对 X4 +i进行共轭对称后得到 的。
S720, 所述矢量化控制实体根据所述第一串扰信道系数、 第二串扰信 道系数、 第一镜像系数及第三镜像信号对所述第一线路和第二线路的待发 送信号进行预编码处理, 确定所述第一线路的第一待发送信号的预编码信 号、第三镜像信号的预编码信号及所述第二线路的第二待发送信号的预编 码信号。
其中, 所述第一待发送信号为所述第一线路在与所述第二线路频谱重 叠范围内的待发送信号。
贝 Ij l7a线路和 30a线路待发送信号的预编码信号为式 (7 ) :
Figure imgf000017_0001
( 7 ) 其中, C D"为 30a线路之间在 17.6MHz~35.2 MHz串扰信号系数的 镜像系数,即预编码系数的镜像系数, (Pom 17a线路在 17.6MHz~35.2 MHz对 30a线路的预编码系数的镜像系数。
之后, VCE将 6λ发送给 17a线路、 将 H和 (x a 6+k )H发送给 30a 线路, 30a线路再将 (i U"进行共轭对称后,得到其在 17.6MHz~35.2 MHz 频谱范围内的待发送信号, 然后再由线路的发送端发送出去。
本发明实施例提供的串扰估计方法, 矢量化控制实体在确定线路间的 串扰信道系数后, 再将串扰信道系数进行共轭对称得到其镜像系数, 然后 对获取的线路待发送信号及待发送信号的镜像信号进行预编码处理, 即可 消除线路间带内和带外频谱间的串扰影响, 降低了不同属性线路共存的系 统内, 线路间的串扰对线路速率的影响, 从而增加了 FTTC提速的效果和 稳定性。 对于 30a线路, 通过上述方法, 即可消除 17a线路带内信号对 30a线 路的串扰, 又可消除 17a线路的带外信号对 30a线路的串扰。 对于 17a线 路, 通过上述方法, 除了可消除 30a线路带内信号对 17a线路的串扰外, 还需消除 30a线路在 17.6MHz~35.2MHz间的带内频谱串扰对 17a线路带 内的干扰。
具体的, 假设 17a线路在 0~17.6MHz频段的接收信号向量为:
― I
1 J I J J
其中 4096_ ¾ = 1 .. 4096表不0~17.6]\4112的子载波集合, X^6_k表不 17a线路在 0~17.6MHz发送的信号向量, λ表示 30a线路在 0~17.6MHz发送的信号向 量, (Χ4 3。¾Η表示 30a线路在 17.6~35MHz发送的信号向量镜像到 0~17.6MHz的 信号向量, ^表示 17a线路在 0~17.6MHz的背景噪声信号向量, C 示 17a线路在 0~17.6MHz的信道矩阵, (H 6+ 表示 17a线路在 17.6~35MHz的信 道矩阵的镜像信道矩阵, H=a表示 30a线路在 0~17.6MHz对 17a线路的串扰信 道矩阵, (H=广表示 30a线路在 17.6MHz~30 .2MHz对 17a线路的串扰信道矩 阵。
若 30a线路在 17.6MHz~35.2MHz的导频训练信号和 0~17.6MHz的导 频训练信号是共轭对称的, 这样 30a线路 17.6MHz~35.2MHz的导频训练 信号通过带外串扰镜像到 17.6MHz以内后, 和 30a线路在 0~17.6MHz的 导频训练信号是一样的, 所以 17a线路无法估计干扰源的串扰信道, 为了 消除 30a线路在 17.6MHz~35.2MHz对 17a线路的带外频谱的影响镜像干 扰 17a线路的带内频谱, 需满足, 所述第一导频训练信号和第三导频训练 信号分别与所述第二导频训练信号互为正交信号, 这样 VCE在收到 17a 线路返回的反馈误差样本信号后, 即可确定 30a线路对 17a线路的第二串 扰信道系数,即 30a线路在 0~17.6MHz内对 17a线路带内频谱的串扰信道 系数及在 17.6MHz~35.2MHz对 17a线路带外频谱的串扰信道系数。
图 8为本发明实施例提供的串扰估计方法实施例四的流程示意图。 如 图 8所示, 为实现上述第一导频训练信号和第三导频训练信号分别与所述 第二导频训练信号互为正交信号, 可使第一导频训练信号、 第二导频训练 信号及第三导频训练信号都互为正交信号实现, 则如图 8所示, 该串扰估 计方法包括: S800,所述矢量化控制实体为数字用户线路系统中的第一线路分配第 一导频序列和第三导频序列, 为第二线路分配第二导频序列, 以使所述第 一线路的一端的收发器根据所述第一导频序发送第一导频训练信号, 根据 所述第三导频列发送第三导频训练信号, 所述第二线路的一端的收发器根 据所述第二导频序列发送第二导频训练信号。
其中,上述第一导频序列、第二导频序列及第三导频序列满足正交性。 VCE在为线路分配导频序列时,可以直接从训练的导频序列矩阵中选 取合适数量的导频序列分配给各线路。 具体的 VCE为第一线路 (30a) 分 配导频序列时, 不再是所有频谱仅分一个导频序列, 而是在所有频率上分 配成对的导频序列, 且该成对的导频序列满足正交性, 使得 30a线路将成 对的导频序列分别调制在同歩符号的一部分频率上和另一部分频率上。 比 如, 30a线路与 17a线路共存的系统中, 30a线路与 17a线路有频谱重叠区, 则选择两个满足正交性的导频序列给 30a线路, 选取一个另外的导频序列 给 17a线路, 假设选取 PS 1和 PS2导频序列给 30a线路, 选取 PS3导频序 列给 17a线路, PS1、 PS2、 PS3三者彼此满足正交性。
其中, 系统中的 VDSL收发器单元 (VDSL Transceiver Unit, 简称 VTU) 支持在同步符号的不同频率上接收不同导频序列的值及计算误差样本信号。
具体的, 为了实现上述工作方式, Vector DSL系统需满足, 对于下行 方向, 位于用户端的 VDSL收发器单元 ( VDSL Transceiver Unit at the Remote, 简称 VTU-R) 需要支持在同歩符号的不同频率上接收不同导频 序列的值和计算误差样本信号; 对于上行方向, 在握手阶段, 中心局的 VDSL收发器单元 (VDSL Transceiver Unit at the ONU, 简称 VTU-O ) 和 VTU-R间需要相互通知各自是否支持上行频率上成对的导频序列。 其中, 可通过通知中的一个比特值标识 VTU-0或 VTU-R是否支持上行频率上成 对的导频序列, 比如, 该比特值为 1表示 VTU-0或 VTU-R支持上行频率 上成对的导频序列,为 0表示 VTU-0或 VTU-R不支持上行频率上成对的 导频序列。 举例来说, 上行方向上, 定义 #0和 #1为频率上成对的两个导 频序列, 则 30a线路发送端将导频序列 #0和 #1分别调制到同歩符号的非 重叠的子载波和重叠的子载波上, 当对导频序列进行更新时, VTU-0发送 一个导频更新命令给 VTU-R,并给 VTU-R传送 #0和 #1导频序列, VTU-R 发送一个响应消息给 VTU-0 , 以使 VTU-0获知 VTU-R是否更新成功。
S810,所述矢量化控制实体分别接收所述第一线路的对端的收发器和 第二线路的对端的收发器发送的误差样本信号。
其中, 所述误差样本信号由所述第一线路的对端的收发器和第二线路 的对端的收发器根据接收的导频训练信号确定。
其中, S810可参照上述实施例中的 S510, 此处不再赘述。
S820, 所述矢量化控制实体根据所述误差样本信号、 第一导频序列及 第三导频序列确定所述第二线路对第一线路的第三串扰信道系数及第四 串扰信道系数, 根据所述误差样本信号及第二导频序列确定所述第一线路 对所述第二线路的第二串扰信道系数。
其中, 上述第三串扰信道系数为 30a线路对 17a线路的带内串扰信道 系数, 第四串扰信道系数为 30a线路对 17a线路的带外串扰信道系数。
具体的, 上述 S810-S820可参照上述串扰估计方法实施例一中的 S510-S520的具体描述, 此处不再赘述。
VCE利用上述方法确定第一线路和第二线路间的带内、带外间的串扰 信道系数后, 再对第一线路和第二线路的待发送数据信号进行预编码处 理, 不仅可消除第二线路的带外频谱对第一线路带内频谱的串扰, 还能消 除第一线路带内频谱对第二线路带内频谱串扰的镜像信号。 比如, 在 17a 和 30a线路共存的系统中, 利用通过上述方法确定的 17a线路与 30a线路 间的串扰信道系数, 对 17a线路和 30a线路的待发送数据信号进行预编码 处理后, 即可得到消除了 30a线路在 17.6MHz~35.2MHz的带内频谱镜像 到 0~17.6MHz后对 17a线路影响的 17a线路待发送信号的预编码信号。
则 VCE确定的 17a线路及 30a线路的预编码信号为式 (8 ) :
Figure imgf000020_0001
本发明实施例提供的串扰估计方法, 矢量化控制实体根据各线路由的 不同频谱范围内的导频训练信号确定的样本误差, 即可确定各线路间的串 扰信道系数, 再对各线路的待发送数据信号进行预编码处理, 即可消除线 路间带内和带外频谱间的串扰影响, 降低了不同属性线路共存的系统内, 由于线路间的串扰对线路速率的影响, 从而增加了 FTTC提速的效果和稳 定性。
但是, 上述由 VCE为与其它线路有频谱重叠的线路分配多个导频序 列的方法中, 在系统中有多个线路都间都有频谱重叠的情况时, 导频序列 的数量增多, 导频序列的长度变长, 导致 VCE训练导频序列的时间会增 加很多, 从而整个串扰消除处理过程也会较长, 影响了用户体验。 为了尽 量降低串扰消除的处理时间, 图 9为本发明实施例提供的串扰估计方法实 施例五的流程示意图。 为实现上述第一导频训练信号和第三导频训练信号 分别与所述第二导频训练信号互为正交信号, 如图 9所示, 该串扰估计方 法包括:
S900,矢量化控制实体为数字用户线路系统中第一线路和第二线路分 别分配第一导频序列和第二导频序列, 以使所述第一线路的一端的收发器 在满足预设的调制周期的奇数子载波上生成与所述第一导频序列对应且 其它子载波上为 1或者 0的第一导频训练信号, 以及满足预设的调制周期 的偶数子载波上生成与所述第一导频序列对应且其它子载波上为 1或者 0 的第三导频训练信号。
其中, 第一导频序列和第二导频序列满足正交性。 预设的调制周期为 2的整数倍。 比如, 第一线路采用的调制周期为 2, 则第一线路生成的第 一导频训练信号的每个奇数子载波上的导频值与导频序列对应, 其它子载 波上的导频值全为 1或者 0, 生成的第三导频训练信号的每个偶数子载波 上的导频值与导频序列对应, 其它子载波上的导频值全为 1或者 0。 若第 一线路采用的调制周期为 4,则第一线路生成的第一导频训练信号的 1、5、 9……等子载波上调制导频序列, 在其它子载波, 如 2、 3、 4、 6、 7、 8等 子载波上调制信号为 1或 0的导频序列,第三导频训练信号的 2、 6、 10…… 等子载波上调制导频序列, 在其它子载波, 如 1、 3、 4、 5、 7、 8、 9等子 载波上调制信号为 1或 0的导频序列, 依次类推。
即在 30a线路与 17a线路共存的系统中, 在 30a线路与 17a线路的频 谱重叠范围内, 30a线路按预设的调制周期, 在同歩符号的满足预设调制 周期的奇数子载波上调制第一导频序列, 且在同歩符号的其它子载波上调 制导频值全为 1或者 0的导频序列; 在 30a线路与 17a线路的频谱重叠范 围外, 在同歩符号的满足预设的调制周期的偶数子载波上调制第一导频序 列, 且在同歩符号的其它子载波上调制导频值全为 1或者 0的导频序列。
或者, 上述 S900的另一种实现方式中, 第一线路的一端的收发器接 收到 VCE分配的第一导频序列后, 还可以生成在满足预设的调制周期的 偶数子载波上与所述第一导频序列对应且其它子载波上的信号为 1或者 0 的第一导频训练信号, 以及在满足预设的调制周期的奇数子载波上的信号 与所述第一导频序列对应且其它子载波上为 1或者 0的第三导频训练信 号。
即在 30a线路与 17a线路共存的系统中, 在 30a线路与 17a线路的频 谱重叠范围内, 30a线路在同歩符号的满足预设的调制周期的偶数子载波 上调制第一导频序列, 且在同歩符号的其它子载波上调制导频值全为 1或 者 0的导频序列; 在 30a线路与 17a线路的频谱重叠范围外, 按在同歩符 号满足预设的调制周期的奇数子载波上调制第一导频序列, 且在同歩符号 的其它子载波上调制导频值全为 1或者 0的导频序列。
需要说明的是, 在上述系统中, 为了实现这种工作方式, 系统中同歩 符号的标识模式支持在奇数或者偶数子载波上进行标识, 标识周期为 2的 整数倍。
具体的, 对于下行方向, 下行同歩符号的标识模式要支持在 30a线路 与 17a线路的频谱重叠范围内的奇数或者偶数子载波上进行标识, 标识周 期为 2的整数倍, 以及在 30a线路与 17a线路的频谱重叠范围外的偶数或 者奇数子载波上进行标识, 标识周期为 2的整数倍; 对于上行方向, 在握 手阶段 VTU-0和 VTU-R间要互相通知对方,各自是否支持上述奇偶频率 不同的导频序列, 比如, 定义某一标识比特为 1表示支持, 0表示不支持, 则在握手阶段, VTU-R向 VTU-0发送的通知中该比特为 1, 且 VTU-0向 VTU-R发送的通知中该比特也为 1,则表示 VTU-R和 VTU-0都支持上述 奇偶频率不同的导频序列, 且上行同歩符号的标识模式支持在在 30a线路 与 17a线路的频谱重叠范围内的奇数或者偶数子载波上进行标识, 标识周 期为 2的整数倍, 以及在 30a线路与 17a线路的频谱重叠范围外的偶数或 者奇数子载波上进行标识, 标识周期为 2的整数倍。 例如, 第一导频序列 被分别调制到在 30a线路与 17a线路的频谱重叠范围内的索引为 2«+1的 子载波, 以及在 30a线路与 17a线路的频谱重叠范围外的索引为 2η的子 载波。 当对导频序列进行更新时, VTU-0发送一个导频更新命令给
VTU-R , 并给 VTU-R传送上述形式的导频序列, VTU-R发送一个消息响 应 VTU-0是否更新成功。
若 30a线路采用上述方式调制生成的导频训练信号即同歩信号,则 30a 线路在 17.6MHz~35.2MHz范围内的信号镜像串扰到 17a线路的 0~17.6 MHz后, 与 17a线路在 0~ 17.6MHz内的信号互为正交。
S910 ,所述矢量化控制实体分别接收所述第一线路的对端的收发器和 第二线路的对端的收发器发送的误差样本信号。
其中, 所述误差样本信号由所述第一线路的对端的收发器和第二线路 的对端收发器根据接收的导频训练信号确定。
S920 , 所述矢量化控制实体在满足预设调制周期的奇数子载波上计算 所述第一线路对所述第二线路的第三串扰信道系数, 在满足预设调制周期 的偶数子载波上分别计算所述第一线路对所述第二线路的第四串扰信道 系数。
其中, 上述第三串扰信道系数为 30a线路对 17a线路的带内串扰信道 系数, 第四串扰信道系数为 30a线路对 17a线路的带外串扰信道系数。
VCE通过上述方法确定的串扰信道系数仅是奇数或偶数子载波上的 串扰信道系数, 之后可再通过插值获取全部子载波上串扰信道系数。
或者, 若 30a线路按上述 S900的另一种实现方式生成导频训练信号, 则上述 S920相应的为:
所述矢量化控制实体在满足预设调制周期的偶数子载波上分别计算 所述第一线路对所述第二线路的第三串扰信道系数, 在满足预设调制周期 的奇数子载波上分别计算所述第一线路对所述第二线路的第四串扰信道 系数。
通常 Vectored DSL系统中有较多不同属性线路, 为了进一歩加快 Vector的训练时间, 上述方法还可以和 G.993.5标准中频率依赖点序列 ( Frequency Dependent Pilot Sequence , 简称 FDPS ) 相结合使用。
进一歩地, 本发明实施例的一种可能的实现形式中, 所述系统中包括 N条线路, 将所述 N条线路平均分为 M组线路, 所述 M组线路中均包括 第一线路和第二线路, 则上述 S900的另一种可能的实现形式为: 所述矢 量化控制实体为所述系统中第一线路和第二线路分别分配第一导频序列 和第二导频序列, 以使所述 M组中的任意一条第一线路的一端的收发器 采用 2M的周期, 分别生成在 2M+1、 2M+3、 2M+5…… 2M+(2M-1)子载波 上与第一导频序列对应, 且 2M+2、 2M+4、 2M+6…… 2M+2M子载波上的 信号为 1或者 0的第一导频训练信号,以及 2M+2、 2M+4、 2M+6…… 2M+2M 子载波上的信号与所述第一导频序列对应且 2M+1、 2M+3、 2M+5…… 2M+ ( 2M-1 ) 子载波上为 1或者 0的第三导频训练信号;
或者, 生成在 2M+2、 2M+4、 2M+5…… 2M+2M子载波上与第一导频 序列对应, 且 2M+1、 2M+3、 2M+5…… 2M+ ( 2M-1 ) 子载波上的信号为 1或者 0的第一导频训练信号, 以及 2M+1、 2M+3、 2M+5…… 2M+(2M-1) 子载波上的信号与所述第一导频序列对应且 2M+2、 2M+4、 2M+6…… 2M+2M子载波上为 1或者 0的第三导频训练信号。
相应的, 上述 S920具体为: 所述矢量化控制实体在 2M+1、 2M+3、 2M+5…… 2M+(2M-1)子载波上分别计算所述 M组第一线路对所述 M组第 二线路的第三串扰信道系数, 在 2M+2、 2M+4、 2M+5…… 2M+2M子载波 上分别计算所述 M组第一线路对所述 M组第二线路的第四串扰信道系数; 或者为: 所述矢量化控制实体在 2M+2、 2M+4、 2M+6…… 2M+2M子载波 上分别计算所述 M组第一线路对所述 M组第二线路的第三串扰信道系数, 在 2M+1、 2M+3、 2M+5…… 2M+(2M-1)子载波上分别计算所述 M组第一 线路对所述 M组第二线路的第四串扰信道系数。
举例来说, 若上述系统中有 256条线路, VCE将线路分为 4组, 且每组 有 64条线路, 则 VCE为每个组都使用长度为 64的导频序列集合, 但调制在 不同的子载波上。 比如, 在 17a线路与 30a线路的频谱重叠区, 线路的导频 序列被分别调制到索引为 8n+l, 8n+3, 8n+5和 8n+7的子载波, 在 17a线路 与 30a线路的频谱重叠外, 线路的导频序列被分别调制到索引为 8n+2,
8n+4, 8n+6和 8n+8的子载波上。
或者, 在 17a线路与 30a线路的频谱重叠区, 线路的导频序列被分别 调制到索引为 8n+2, 8n+4, 8n+6和 8n+8的子载波, 在 17a线路与 30a线 路的频谱重叠外, 线路的导频序列被分别调制到索引为 8n+l, 8n+3, 8n+5 和 8n+7的子载波上。 则 VCE根据误差样本信号进行串扰信道系数估计时, 需在奇数子载波 8n+l、 8n+3、 8n+5、 8n+7的误差样本信号分别估计出第一组、 第二组、 第 三组、 第四组的 30a线路对所有 17a线路带内的串扰信道系数, 从偶数子 8n+2、 8n+4、 8n+6、 8n+8的误差样本信号估计出第一组、第二组、第三组、 第四组的 30a线路对所有 17a线路带外的串扰信道系数; 或者, 在奇数子载 波 8n+l、 8n+3、 8n+5、 8n+7的误差样本信号分别估计出第一组、 第二组、 第三组、 第四组的 30a线路对所有 17a线路带外的串扰信道系数, 从偶数子 载波 8n+2、 8n+4、 8n+6、 8n+8的误差样本信号估计出第一组、 第二组、 第 三组、 第四组的 30a线路对所有 17a线路带内的串扰信道系数。 最后通过插 值得到各组 30a线路对 17a线路全部子载波上的带内和带外串扰信道系数。
本实施例提供的串扰估计方法,矢量化控制实体根据各线路的样本误差, 确定各线路带内频谱及带外频谱间的串扰信道系数, 再对个线路的待发送信 号进行预编码处理, 即可消除线路间带内和带外频谱间的串扰影响, 降低了 不同属性线路共存的系统内, 线路间的串扰对线路速率的影响, 从而增加了 FTTC提速的效果和稳定性。
图 10为本发明实施例提供的串扰估计方法实施例六的流程示意图。 如图 10所示, VCE在 S920之后, 该方法还包括:
S101 , 所述矢量化控制实体确定所述第四串扰信道系数在所述第一线 路与第二线路的频谱重叠范围内的第四镜像系数。
假设 VCE根据误差样本信号确定的 30a线路对 17a线路的带外频谱 的串扰信道系数即预编码系数为 则将该系数进行共轭对称后得到 其共轭对称系数 OP^H)"。
S102所述矢量化控制实体获取所述第一线路的第三待发送信号的第 三镜像信号。
其中, 所述第三待发送信号为所述第一线路在与所述第二线路的频谱 重叠范围外的待发送信号, 所述第三镜像信号为所述第三待发送信号在所 述第一线路在与所述第二线路的频谱重叠范围内的镜像信号。
上述 S 1020可参照上述实施例中的 S710的详细描述,此处不再赘述。 S 103 , 所述矢量化控制实体根据第二串扰信道系数、 第三串扰信道系 数、 第四串扰信道系数、 第四镜像系数及第三镜像信号对所述第一线路和 第二线路的待发送信号进行预编码处理, 确定所述第一线路的第一待发送 信号的预编码信号、第三待发送信号的预编码信号及所述第二线路的第二 待发送信号的预编码信号。
其中, 所述第一待发送信号为所述第一线路在与所述第二线路频谱重 叠范围内的待发送信号, 所述第三待发送信号为所述第一线路在与所述第 二线路频谱重叠范围外的待发送信号。
需要说明的是, 本实施例中的 S900~S920也可以为 S800~S820。
本实施例提供的频谱串扰处理方法, 矢量化控制实体根据各线路的样 本误差, 确定各线路带内频谱及带外频谱间的串扰信道系数, 再对个线路 的待发送信号进行预编码处理, 即可消除线路间带内和带外频谱间的串扰 影响, 降低了不同属性线路共存的系统内, 线路间的串扰对线路速率的影 响, 从而增加了 FTTC提速的效果和稳定性。
图 11为本发明实施例提供的串扰估计方法实施例七的流程示意图。 如图 11所示, 本串扰估计方法包括:
S 111 ,第一线路的一端的收发器接收数字用户线路系统中矢量化控制 实体分配的第一导频序列。
本发明各实施例中提到的第一线路和第二线路可以指频谱范围有重 叠的某两类线路中的任意一条线路, 比如第一线路指属性为 30a的线路中 的一条, 第二线路指属性为 17a的线路中的一条, 相应的第一线路一端的 收发器指该条线路发送端的收发器, 第一线路对端的收发器指该条线路接 收端的收发器。 或者, 各实施例中的第一线路和第二线路也可以指频谱范 围与其它线路有重叠的某类线路,比如第一线路指属性为 30a的一类线路, 第二线路指属性为 17a的一类线路, 此时, 第一线路一端的收发器指该类 线路中某条线路发送端的收发器, 第一线路对端的收发器指同一条该类线 路接收端的收发器。
为方便说明, 本发明各实施例以第一线路为某条 30a线路, 第二线路 为某条 17a线路为例进行说明。
第一线路的一端的收发器,指该线路发送端的收发器,对于上行信号, 各线路的发送端即为各用户端,各用户端发送导频训练信号至 DSLAM端; 对于下行信号, 各线路的发送端即为 DSLAM端, 通过每个子载波发送导 频训练信号至各用户端。
5112,所述第一线路的一端的收发器根据所述第一导频序列生成并发 送第一导频训练信号和第三导频训练信号。
其中, 第一导频训练信号为所述第一线路在与第二线路频谱重叠范围 内的导频训练信号, 所述第三导频训练信号为所述第一线路在与第二线路 频谱重叠范围外的导频训练信号, 所述第二线路的带外频谱与所述第一线 路的带内频谱重叠。
具体的, 30a线路的发送端的收发器接收 VCE分配的导频序列, 之后 分别在同歩符合的 0~17.6MHz子载波和 17.6MHz~35.2MHz子载波上调制 第一导频序列, 生成第一导频训练信号及第三导频训练信号。
5113 ,所述第一线路的对端的收发器根据所述第一导频训练信号及第 三导频训练信号生成误差样本信号。
其中, 线路的对端指线路的接收端, 对于上行信号, 各线路的接收端 即为 DSLAM端; 对于下行信号, 各线路的接收端即为用户端。
具体的, 30a线路的接收端的收发器接收到 30a线路的发送端发送的 导频训练信号后, 由于信号在线路上传输的过程中不同线路间会产生远端 串扰, 所以接收端接收到的信号与发送端发送的信号之间可能存在一定的 差异, 接收端根据接收到的导频训练信号判断发送端发送的导频训练信 号, 并计算接收信号与发送信号之间的差异, 获得误差样本信号。
S 114,所述第一线路的对端的收发器将所述误差样本信号发送给矢量 化控制实体来确定所述第二线路对第一线路的第一串扰信道系数。
30a线路将该误差样本信号发送给 VCE, VCE可根据第一线路返回的 反馈误差样本信号, 计算第二线路对所述第一线路的第一串扰信道矩阵, 将第一串扰信道矩阵进行逆矩阵变换即可得到第一串扰信道系数, 即预编 码系数。
VCE根据确定的预编码系数对各线路待发送的数据信号进行预编码 处理, 即可消除线路间的远端串扰, 比如对于 30a线路, VCE通过上述方 法, 除了可消除 17a线路带内信号对 30a线路的串扰外, 还可消除 17a线 路在 17.6MHz~35.2MHz间的带外频谱对 30a线路的串扰。
本发明实施例提供的串扰估计方法, 第一线路的收发器根据矢量化控 制实体分配的导频序列, 生成不同频谱范围内的导频训练信号, 进而确定 样本误差, 即可使矢量化控制实体确定第二线路对第一线路的串扰信道系 数, 从而通过对第一线路的待发送数据信号进行预编码处理, 即可消除第 二线路对第一线路带内和带外频谱间的串扰影响, 降低了不同属性线路共 存的系统内, 由于线路间的串扰对线路速率的影响, 从而增加了 FTTC提 速的效果和稳定性。
可以理解的是, 通过同样的方法, 也可实现对第二线路待发送信号的 预编码处理。
本实施例的一种可能的实现形式中, 上述 S 114包括:
所述第一线路的对端的收发器将所述误差样本信号发送给矢量化控 制实体, 以使所述矢量化控制实体根据所述误差样本信号、 第一导频序列 及第二导频序列确定所述第二线路对第一线路的第一串扰信道系数; 所述第二导频序列为所述矢量化控制实体为所述第二线路分配的导 频序列, 所述第一导频训练信号与所述第二线路的一端的收发器根据所述 第二导频序列生成的第二导频训练信号正交, 所述第三导频训练信号与所 述第二导频训练信号的带外镜像信号正交。
由于各线路返回给 VCE的导频训练信号是根据该线路与其它线路的 频谱重叠情况生成的, VCE根据接收到的各线路上的误差样本信号及分配 给各线路的导频序列即可分析确定各线路的带内频谱及带外频谱间的串 扰信道系数。
本实施例的再一种可能的实现形式中,所述第三导频训练信号为所述 第一导频训练信号在所述第一线路与所述第二线路频谱重叠区域外的镜 像信号。
本实施例中是与上述串扰估计方法实施例一交互的串扰估计方法, 相 关的详细描述可参照上述串扰估计方法实施例一中的相关描述, 此处不再 赘述。
对于 30a线路, 通过上述方法, 即可消除 17a线路带内信号对 30a线 路的串扰, 又可消除 17a线路的带外信号对 30a线路的串扰。 对于 17a线 路, 通过上述方法, 除了可消除 30a线路带内信号对 17a线路的串扰外, 还需消除 30a线路在 17.6MHz~35.2MHz间的带内频谱串扰对 17a线路带 内的干扰。
若 30a线路在 17.6MHz~35.2MHz的导频训练信号和 0~17.6MHz的导 频训练信号是共轭对称的, 这样 30a线路 17.6MHz~35.2MHz的导频训练 信号通过带外串扰镜像到 17.6MHz以内后, 和 30a线路在 0~17.6MHz的 导频训练信号是一样的, 所以 17a线路无法估计干扰源的串扰信道, 为了 消除 30a线路在 17.6MHz~35.2MHz对 17a线路的带外频谱的影响镜像干 扰 17a线路的带内频谱, 需满足, 所述第一导频训练信号和第三导频训练 信号分别与第二导频训练信号互为正交信号, 这样 VCE在收到 17a线路 返回的反馈误差样本信号后, 即可确定 30a线路对 17a线路的第二串扰信 道系数,即 30a线路在 0~17.6MHz内对 17a线路带内频谱的串扰信道系数 及在 17.6MHz~35.2MHz对 17a线路带外频谱的串扰信道系数。
具体的, 第二导频序列与第一导频序列满足正交性, 即第一导频序列 与第二导频序列可以是互为正交的导频序列, 还可以是满足正交性的其它 导频序列, 比如, 足够长的伪随机序列。 本发明各实施例中以所有导频序 列为正交导频序列进行说明。
图 12为本发明实施例提供的串扰估计方法实施例八的流程示意图。 如图 12所示, 该实施例包括:
S 121 ,第一线路的一端的收发器接收数字用户线路系统中矢量化控制 实体分配的第一导频序列。
S 122,所述第一线路的一端的收发器在满足预设调制周期的奇数子载 波上生成与所述第一导频序列对应且其它子载波上为 1或者 0的第一导频 训练信号, 以及在满足预设调制周期的偶数子载波上生成与所述第一导频 序列对应且其它子载波上为 1或者 0的第三导频训练信号。
其中, 预设的调制周期为 2的整数倍。 比如, 若调制周期为 2, 第一 线路采用的调制周期为 2, 则第一线路生成的第一导频训练信号的每个奇 数子载波上的导频值与导频序列对应, 其它子载波上的导频值全为 1或者 0, 生成的第三导频训练信号的每个偶数子载波上的导频值与导频序列对 应, 其它子载波上的导频值全为 1或者 0。 若第一线路采用的调制周期为 4, 则第一线路生成的第一导频训练信号的 1、 5、 9……等子载波上调制导 频序列, 在其它子载波, 如 2、 3、 4、 6、 7、 8等子载波上调制信号为 1 或 0的导频序列, 第三导频训练信号的 2、 6、 10……等子载波上调制导频 序列, 在其它子载波, 如 1、 3、 4、 5、 7、 8、 9等子载波上调制信号为 1 或 0的导频序列, 依次类推。
即在 30a线路与 17a线路共存的系统中, 在 30a线路与 17a线路的频 谱重叠范围内, 30a线路按预设的调制周期, 在同歩符号的满足预设调制 周期的奇数子载波上调制第一导频序列, 且在同歩符号的其它子载波上调 制导频值全为 1或者 0的导频序列; 在 30a线路与 17a线路的频谱重叠范 围外, 在同歩符号的满足预设的调制周期的偶数子载波上调制第一导频序 列, 且在同歩符号的其它子载波上调制导频值全为 1或者 0的导频序列。
或者, S 122还可以为:
所述第一线路的一端的收发器在满足预设调制周期的偶数子载波上 生成与所述第一导频序列对应且其它子载波上的信号为 1或者 0的第一导 频训练信号, 以及在满足预设调制周期的奇数子载波上生成与所述第一导 频序列对应且其它子载波上为 1或者 0的第三导频训练信号。
即在 30a线路与 17a线路共存的系统中, 在 30a线路与 17a线路的频 谱重叠范围内, 30a线路在同歩符号的满足预设的调制周期的偶数子载波 上调制第一导频序列, 且在同歩符号的其它子载波上调制导频值全为 1或 者 0的导频序列; 在 30a线路与 17a线路的频谱重叠范围外, 按在同歩符 号满足预设的调制周期的奇数子载波上调制第一导频序列, 且在同歩符号 的其它子载波上调制导频值全为 1或者 0的导频序列。
5123 ,所述第一线路的对端的收发器根据所述第一导频训练信号及第 三导频训练信号生成误差样本信号。
5124,所述第一线路的对端的收发器将所述误差样本信号发送给矢量 化控制实体来确定所述第二线路对第一线路的第一串扰信道系数。
上述 S 121、 S 123和 S 124可参照上述实施例中的 S l l l、 S113和 S114 的详细描述, 此处不再赘述。
需要说明的是, 在上述系统中, 为了实现这种工作方式, 系统中同歩 符号的标识模式支持在奇数或者偶数子载波上进行标识, 标识周期为 2的 整数倍。
具体的, 对于下行方向, 下行同歩符号的标识模式要支持在 30a线路 与 17a线路的频谱重叠范围内的奇数或者偶数子载波上进行标识, 标识周 期为 2的整数倍, 以及在 30a线路与 17a线路的频谱重叠范围外的偶数或 者奇数子载波上进行标识, 标识周期为 2的整数倍; 对于上行方向, 在握 手阶段 VTU-0和 VTU-R间要互相通知对方,各自是否支持上述奇偶频率 不同的导频序列, 比如, 定义某一标识比特为 1表示支持, 0表示不支持, 则在握手阶段, VTU-R向 VTU-0发送的通知中该比特为 1, 且 VTU-0向 VTU-R发送的通知中该比特也为 1,则表示 VTU-R和 VTU-0都支持上述 奇偶频率不同的导频序列, 且上行同歩符号的标识模式支持在在 30a线路 与 17a线路的频谱重叠范围内的奇数或者偶数子载波上进行标识, 标识周 期为 2的整数倍, 以及在 30a线路与 17a线路的频谱重叠范围外的偶数或 者奇数子载波上进行标识, 标识周期为 2的整数倍。 例如, 第一导频序列 被分别调制到在 30a线路与 17a线路的频谱重叠范围内的索引为 2«+1的 子载波, 以及在 30a线路与 17a线路的频谱重叠范围外的索引为 2η的子 载波。 当对导频序列进行更新时, VTU-0发送一个导频更新命令给
VTU-R , 并给 VTU-R传送上述形式的导频序列, VTU-R发送一个消息响 应 VTU-0是否更新成功。
本发明实施例提供的串扰估计方法, 第一线路根据矢量化控制实体分 配的导频序列, 在不同频谱范围内、 不同的子载波上按预设的周期生成的 导频训练信号, 进而确定样本误差, 不仅可使矢量化控制实体确定第二线 路对第一线路的串扰信道系数, 还可确定第一线路对第二线路的串扰信道 系数, 从而可通过对第一线路和第二线路的待发送数据信号进行预编码处 理, 来消除线路间的带内和带外频谱间的串扰影响, 降低了不同属性线路 共存的系统内, 由于线路间的串扰对线路速率的影响, 从而增加了 FTTC 提速的效果和稳定性。
图 13为本发明实施例提供的串扰估计方法实施例九的流程示意图。 如图 13所示, 若第一导频训练信号、 第二导频训练信号和第三导频训练 互为正交信号, 则可实现上述第一导频训练信号和第三导频训练信号分别 与第二导频训练信号互为正交信号, 则如图 13所示, 该串扰估计方法包 括:
S 131 ,第一线路的一端的收发器接收数字用户线路系统中矢量化控制 实体分配的第一导频序列。
5132 , 所述第一线路的一端的收发器接收所述矢量化控制实体分配的 第三导频序列。
其中,所述第一导频序列、第二导频序列及第三导频序列满足正交性。 具体的 VCE为第一线路 (30a) 分配导频序列时, 不再是所有频谱仅 分一个导频序列, 而是在所有频率上分配成对的导频序列, 且该成对的导 频序列满足正交性, 使得 30a线路将成对的导频序列分别调制在同歩符号 的一部分频率上和另一部分频率上。 比如, 30a线路与 17a线路共存的系 统中, 30a线路与 17a线路有频谱重叠区, 则选择两个满足正交性的导频 序列给 30a线路, 选取一个另外的导频序列给 17a线路, 假设选取 PS 1和 PS2导频序列给 30a线路, 选取 PS3导频序列给 17a线路, PS 1、 PS2、 PS3 三者彼此满足正交性。
其中, 系统中的 VDSL收发器器 (VDSL Transceiver Unit, 简称 VTU) 支持在同步符号的不同频率上接收不同导频序列的值及计算误差样本信号。
具体的, 为了实现上述工作方式, Vector DSL系统需满足, 对于下行 方向,位于用户端的 VDSL收发器器(VDSL Transceiver Unit at the Remote, 简称 VTU-R)需要支持在同歩符号的不同频率上接收不同导频序列的值和 计算误差样本信号; 对于上行方向, 在握手阶段, 中心局的 VDSL收发器 器 (VDSL Transceiver Unit at the ONU, 简称 VTU-O ) 和 VTU-R间需要 相互通知各自是否支持上行频率上成对的导频序列。 其中, 可通过通知中 的一个比特值标识 VTU-0或 VTU-R是否支持上行频率上成对的导频序 列, 比如, 该比特值为 1表示 VTU-0或 VTU-R支持上行频率上成对的导 频序列, 为 0表示 VTU-0或 VTU-R不支持上行频率上成对的导频序列。 举例来说, 上行方向上, 定义 #0和 #1为频率上成对的两个导频序列, 则 30a线路发送端将导频序列 #0和 #1分别调制到同歩符号的非重叠的子载 波和重叠的子载波上, 当对导频序列进行更新时, VTU-0发送一个导频更 新命令给 VTU-R, 并给 VTU-R传送 #0和 #1导频序列, VTU-R发送一个 响应消息给 VTU-0, 以使 VTU-0获知 VTU-R是否更新成功。
5133 , 所述第一线路的一端的收发器根据所述第一导频序列生成并发 送第一导频训练信号, 根据所述第三导频序列生成并发送第三导频训练信 号。
5134,所述第一线路的对端的收发器根据所述第一导频训练信号及第 三导频训练信号生成误差样本信号。
5135 ,所述第一线路的对端的收发器将所述误差样本信号发送给矢量 化控制实体来确定所述第二线路对第一线路的第一串扰信道系数。
具体的, 上述 S131、 S134和 S135可参照上述 Sl l l、 S113和 S114 的详细说明, 此处不再赘述。
本发明实施例提供的串扰估计方法, 第一线路根据矢量化控制实体分 配的两个满足正交性的导频序列, 在不同频谱范围内生成的相互正交的导 频训练信号, 进而确定样本误差, 不仅可使矢量化控制实体确定第二线路 对第一线路的串扰信道系数, 还可确定第一线路对第二线路的串扰信道系 数, 从而可通过对第一线路和第二线路的待发送数据信号进行预编码处 理, 来消除线路间的带内和带外频谱间的串扰影响, 降低了不同属性线路 共存的系统内, 由于线路间的串扰对线路速率的影响, 从而增加了 FTTC 提速的效果和稳定性。
图 14为本发明实施例提供的矢量化控制装置实施例一的结构示意图。 如图 14所示, 该装置 14包括: 分配模块 141、 接收模块 142和确定模块 143。
其中, 分配模块 141用于为数字用户线路系统中的第一线路和第二线 路分别分配第一导频序列和第二导频序列, 以使所述第一线路的一端的收 发器根据所述第一导频序列发送第一导频训练信号和第三导频训练信号, 所述第二线路的一端的收发器根据所述第二导频序列发送第二导频训练 信号, 所述第二线路的带外频谱与所述第一线路的带内频谱重叠, 所述第 一导频序列与第二导频序列满足正交性, 所述第一导频训练信号为所述第 一线路在与第二线路频谱重叠范围内的导频训练信号, 所述第三导频训练 信号为所述第一线路在与第二线路频谱重叠范围外的导频训练信号, 所述 第二导频训练信号为所述第二线路在带内频谱范围内的导频训练信号, 所 述第一导频训练信号与所述第三导频训练信号正交, 所述第二导频训练信 号与所述第三导频训练信号的带外镜像信号正交; 接收模块 142用于接收 所述第一线路的对端的收发器和第二线路的对端的收发器发送的误差样 本信号, 所述误差样本信号由所述第一线路的对端的收发器和第二线路的 对端的收发器根据接收的导频训练信号确定; 确定模块 143用于根据所述 误差样本信号、第一导频序列及第二导频序列确定所述第二线路对第一线 路的第一串扰信道系数及所述第一线路对所述第二线路的第二串扰信道 系数。
本实施例的一种可能的实现形式中, 所述第三导频训练信号为所述第 一导频训练信号在所述第一线路与所述第二线路频谱重叠区域外的镜像 信号。
本实施例提供的矢量化控制装置为 Vector DSL系统中的矢量化控制 实体, 矢量化控制装置中各模块的功能和串扰估计流程可参照上述串扰估 计方法实施例一中的详细描述, 此处不再赘述。
本实施例提供的矢量化控制装置, 根据各线路由的不同频谱范围内的 导频训练信号确定的样本误差, 即可确定各线路间的串扰信道系数, 再对 各线路的待发送数据信号进行预编码处理, 即可消除线路间带内和带外频 谱间的串扰影响, 降低了不同属性线路共存的系统内, 由于线路间的串扰 对线路速率的影响, 从而增加了 FTTC提速的效果和稳定性。
图 15为本发明实施例提供的矢量化控制装置实施例二的结构示意图。 如图 15所示, 在图 14所示的基础上该矢量化控制装置 14还包括: 第一 获取模块 151和第一处理模块 152。
其中, 第一获取模块 151用于获取所述第二线路的第二待发送信号在 所述第二线路带外的第二镜像信号; 第一处理模块 152用于根据所述第一 串扰信道系数、第二串扰信道系数及第二镜像信号对所述第一线路和第二 线路的待发送信号进行预编码处理, 确定所述第一线路及第二线路的待发 送信号的预编码信号。
或者, 在本实施例的一种可能的实现形式中, 所述确定模块 143还用 于确定所述第一串扰信道系数的第一镜像系数; 该矢量化控制装置 14还 包括第二获取模块和第二处理模块。
其中, 第二获取模块用于获取所述第一线路的第三待发送信号的第三 镜像信号, 所述第三待发送信号为所述第一线路在与所述第二线路的频谱 重叠范围外的待发送信号, 所述第三镜像信号为所述第三待发送信号在所 述第一线路在与所述第二线路的频谱重叠范围内的镜像信号; 第二处理模 块, 用于根据所述第一串扰信道系数、 第二串扰信道系数、 第一镜像系数 及第三镜像信号对所述第一线路和第二线路的待发送信号进行预编码处 理, 确定所述第一线路的第一待发送信号的预编码信号、 第三镜像信号的 预编码信号及所述第二线路的第二待发送信号的预编码信号, 所述第一待 发送信号为所述第一线路在与所述第二线路频谱重叠范围内的待发送信 号。
对于 30a线路, 矢量化控制装置即可消除 17a线路带内信号对 30a线 路的串扰, 又可消除 17a线路的带外信号对 30a线路的串扰。 对于 17a线 路, 通过上述方法, 除了可消除 30a线路带内信号对 17a线路的串扰外, 还需消除 30a线路在 17.6MHz~35.2MHz间的带内频谱串扰对 17a线路带 内的干扰。
若 30a线路在 17.6MHz~35.2MHz的导频训练信号和 0~17.6MHz的导 频训练信号是共轭对称的, 这样 30a线路 17.6MHz~35.2MHz的导频训练 信号通过带外串扰镜像到 17.6MHz以内后, 和 30a线路在 0~17.6MHz的 导频训练信号是一样的, 所以 17a线路无法估计干扰源的串扰信道, 为了 消除 30a线路在 17.6MHz~35.2MHz对 17a线路的带外频谱的影响镜像干 扰 17a线路的带内频谱, 需满足, 第一导频训练信号和第三导频训练信号 分别与第二导频训练信号互为正交信号, 这样 VCE在收到 17a线路返回 的反馈误差样本信号后, 即可确定 30a线路对 17a线路的第二串扰信道系 数,即 30a线路在 0~17.6MHz内对 17a线路带内频谱的串扰信道系数及在 17.6MHz~35.2MHz对 17a线路带外频谱的串扰信道系数。
则所述分配模块 141具体用于为系统中的第一线路分配第一导频序列 和第三导频序列, 为第二线路分配第二导频序列, 以使所述第一线路根据 所述第一导频序发送第一导频训练信号, 根据所述第三导频列发送第三导 频训练信号, 所述第二线路根据所述第二导频序列发送第二导频训练信 号, 所述第一导频序列、 第二导频序列和第三导频序列满足正交性; 所述 确定模块 143具体用于根据所述误差样本信号、第一导频序列及第三导频 序列确定所述第二线路对第一线路的第三串扰信道系数及第四串扰信道 系数, 根据所述误差样本信号及第二导频序列确定所述第一线路对所述第 二线路的第二串扰信道系数。
或者, 所述分配模块 141具体用于为所述系统中第一线路和第二线路 分别分配第一导频序列和第二导频序列, 以使所述第一线路的一端的收发 器在满足预设调制周期的奇数子载波上生成与所述第一导频序列对应且 其它子载波上为 1或者 0的第一导频训练信号, 以及在满足预设调制周期 的偶数子载波上生成与所述第一导频序列对应且其它子载波上为 1或者 0 的第三导频训练信号; 所述确定模块 143具体用于在满足预设调制周期的 奇数子载波上计算所述第一线路对所述第二线路的第三串扰信道系数, 在 满足预设调制周期的偶数子载波上计算所述第一线路对所述第二线路的 第四串扰信道系数。
或者, 所述分配模块 141具体用于为所述系统中第一线路和第二线路 分别分配第一导频序列和第二导频序列, 以使所述第一线路的一端的收发 器在满足预设调制周期的偶数子载波上生成与所述第一导频序列对应且 其它子载波上为 1或者 0的第一导频训练信号, 以及在满足预设调制周期 的奇数子载波上生成与所述第一导频序列对应且其它子载波上为 1或者 0 的第三导频训练信号; 所述确定模块 143具体用于在满足预设调制周期的 偶数子载波上分别计算所述第一线路对所述第二线路的第三串扰信道系 数, 在满足预设调制周期的奇数子载波上分别计算所述第一线路对所述第 二线路的第四串扰信道系数。
具体的, 所述预设的调制周期为 2的整数倍。
进一歩地,所述确定模块,还用于确定所述第四串扰信道系数在所述 第一线路与第二线路的频谱重叠范围内的第四镜像系数;
还包括第三获取模块, 用于获取所述第一线路的第三待发送信号的第 三镜像信号, 所述第三待发送信号为所述第一线路在与所述第二线路的频 谱重叠范围外的待发送信号, 所述第三镜像信号为所述第三待发送信号在 所述第一线路在与所述第二线路的频谱重叠范围内的镜像信号;
所述确定模块, 还用于根据所述第二串扰信道系数、 第三串扰信道系 数、 第四串扰信道系数、 第四镜像系数及第三镜像信号对所述第一线路和 第二线路的待发送信号进行预编码处理, 确定所述第一线路的第一待发送 信号的预编码信号、第三待发送信号的预编码信号及所述第二线路的第二 待发送信号的预编码信号, 所述第一待发送信号为所述第一线路在与所述 第二线路频谱重叠范围内的待发送信号, 所述第三待发送信号为所述第一 线路在与所述第二线路频谱重叠范围外的待发送信号。
本实施例提供的矢量化控制装置中各模块的功能及串扰估计流程可 参照上述串扰估计方法实施例二至实施例六的详细描述, 此处不再赘述。
本实施例提供的矢量化控制装置, 根据各线路由的不同频谱范围内的 导频训练信号确定的样本误差, 即可确定各线路间的串扰信道系数, 再对 各线路的待发送数据信号进行预编码处理, 即可消除线路间带内和带外频 谱间的串扰影响, 降低了不同属性线路共存的系统内, 由于线路间的串扰 对线路速率的影响, 从而增加了 FTTC提速的效果和稳定性。
图 16为本发明实施例提供的网络控制设备的结构示意图。 如图 16所 示, 该网络控制设备 16包括: 处理器 161、 存储器 162以及至少一个通信 端口 163。
其中, 所述通信端口 163用于与外部设备进行通信, 所述存储器 162 用于存储计算机程序指令, 所述处理器 161, 与所述存储器 162耦合, 用 于调用所述存储器中存储的计算机程序指令, 以执行如串扰估计方法实施 例一到实施例六所示的串扰估计方法。
图 17为本发明实施例提供的线路装置实施例的结构示意图。 如图 17 所示, 该线路装置 17包括: 第一收发器 171和第二收发器 172。
其中, 第一收发器 171用于接收数字用户线路系统中矢量化控制实体 分配的第一导频序列; 所述第一收发器 171还用于根据所述第一导频序列 生成并发送第一导频训练信号和第三导频训练信号, 所述第一导频训练信 号为所述第一线路在与第二线路频谱重叠范围内的导频训练信号, 所述第 三导频训练信号为所述第一线路在与第二线路频谱重叠范围外的导频训 练信号, 所述第二线路的带外频谱与所述第一线路的带内频谱重叠; 第二 收发器 172用于根据所述第一导频训练信号及第三导频训练信号生成误差 样本信号; 所述第二收发器 172还用于将所述误差样本信号发送给矢量化 控制实体来确定所述第二线路对第一线路的第一串扰信道系数。
上述实施例的一种可能的实现形式中, 所述第二收发器具体用于: 将所述误差样本信号发送给矢量化控制实体, 以使所述矢量化控制实 体根据所述误差样本信号、 第一导频序列及第二导频序列确定所述第二线 路对第一线路的第一串扰信道系数;
所述第二导频序列为所述矢量化控制实体为所述第二线路分配的导 频序列, 所述第一导频训练信号与所述第二线路的一端的收发器根据所述 第二导频序列生成的第二导频训练信号正交, 所述第三导频训练信号与所 述第二导频训练信号的带外镜像信号正交。 上述实施例的另一种可能的实 现形式中, 所述第三导频训练信号为所述第一导频训练信号在所述第一线 路与所述第二线路频谱重叠区域外的镜像信号。
一种较优的实现形式中, 为了消除各线路的带内及带外频谱间的信号 干扰, 所述第一导频训练信号与第三导频训练信号分别与所述第二导频训 练信号互为正交信号。
相应的, 所述第一收发器具体用于在满足预设调制周期的奇数子载波 上生成与所述第一导频序列对应且其它子载波上为 1或者 0的第一导频训 练信号, 以及在满足预设调制周期的偶数子载波上生成与所述第一导频序 列对应且其它子载波上为 1或者 0的第三导频训练信号。
或者, 所述第一收发器具体用于在满足预设调制周期的偶数子载波上 生成与所述第一导频序列对应且其它子载波上的信号为 1或者 0的第一导 频训练信号, 以及在满足预设调制周期的奇数子载波上生成与所述第一导 频序列对应且其它子载波上为 1或者 0的第三导频训练信号。
其中, 所述预设的调制周期为 2的整数倍。
或者, 对于下行方向, 若系统中线路装置支持在同歩符号的不同频率 上接收不同导频序列的值和计算误差样本信号; 对于上行方向, 在握手阶 段, 中心局的 VDSL收发器器 (VDSL Transceiver Unit at the ONU, 简称 VTU-O ) 和 VTU-R间需要相互通知各自是否支持上行频率上成对的导频 序列。 其中, 可通过通知中的一个比特值标识 VTU-0或 VTU-R是否支持 上行频率上成对的导频序列, 比如, 该比特值为 1表示 VTU-0或 VTU-R 支持上行频率上成对的导频序列,为 0表示 VTU-0或 VTU-R不支持上行 频率上成对的导频序列。
或者, 为了若第一导频训练信号、 第三导频训练信号与第二导频训练 信号都互为正交信号, 也可满足上述第一导频训练信号与第三导频训练信 号分别与所述第二导频训练信号互为正交信号, 则所述第一收发器还用于 接收所述矢量化控制实体分配的第三导频序列, 所述第一导频序列及第三 导频序列满足正交性, 并根据所述第一导频序列生成并发送第一导频训练 信号, 根据所述第三导频序列生成并发送第三导频训练信号。
本实施例提供的线路装置的各模块的具体功能及串扰估计流程可参 照上述串扰估计方法实施例七到九的详细描述, 此处不再赘述。
本实施例提供的线路装置, 根据矢量化控制实体分配的导频序列, 在 不同频谱范围内、 不同的子载波上按预设的周期生成的导频训练信号, 进 而确定样本误差, 不仅可使矢量化控制实体确定第二线路对第一线路的串 扰信道系数, 还可确定第一线路对第二线路的串扰信道系数, 从而可通过 对第一线路和第二线路的待发送数据信号进行预编码处理, 来消除线路间 的带内和带外频谱间的串扰影响, 降低了不同属性线路共存的系统内, 由 于线路间的串扰对线路速率的影响, 从而增加了 FTTC提速的效果和稳定 性。
图 18为本发明实施例提供的线路设备结构示意图。 如图 18所示, 该 线路设备 18包括: 处理器 181、 存储器 182以及至少一个通信端口 183。
其中, 所述通信端口 183用于与外部设备进行通信, 所述存储器 182 用于存储计算机程序指令, 所述处理器 181, 与所述存储器 182耦合, 用 于调用所述存储器中存储的计算机程序指令, 以执行如上述串扰估计方法 实施例七到九的串扰估计方法。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤可 以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读取存 储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储 介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非 对其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的 普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进 行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或 者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范 围。

Claims

权 利 要 求 书
1、 一种串扰估计方法, 其特征在于, 包括:
第一线路的一端的收发器接收数字用户线路系统中矢量化控制实体 分配的第一导频序列;
所述第一线路的一端的收发器根据所述第一导频序列生成并发送第 一导频训练信号和第三导频训练信号, 所述第一导频训练信号为所述第一 线路在与第二线路频谱重叠范围内的导频训练信号, 所述第三导频训练信 号为所述第一线路在与第二线路频谱重叠范围外的导频训练信号, 所述第 二线路的带外频谱与所述第一线路的带内频谱重叠;
所述第一线路的对端的收发器根据所述第一导频训练信号及第三导 频训练信号生成误差样本信号;
所述第一线路的对端的收发器将所述误差样本信号发送给矢量化控 制实体来确定所述第二线路对第一线路的第一串扰信道系数。
2、 根据权利要求 1所述的串扰估计方法, 其特征在于, 所述第一线 路的对端的收发器将所述误差样本信号发送给矢量化控制实体来确定所 述第二线路对第一线路的第一串扰信道系数, 包括:
所述第一线路的对端的收发器将所述误差样本信号发送给矢量化控 制实体, 以使所述矢量化控制实体根据所述误差样本信号、 第一导频序列 及第二导频序列确定所述第二线路对第一线路的第一串扰信道系数; 所述第二导频序列为所述矢量化控制实体为所述第二线路分配的导 频序列, 所述第一导频训练信号与所述第二线路的一端的收发器根据所述 第二导频序列生成的第二导频训练信号正交, 所述第三导频训练信号与所 述第二导频训练信号的带外镜像信号正交。
3、 根据权利要求 1或 2所述的串扰估计方法, 其特征在于, 所述第 三导频训练信号为所述第一导频训练信号在所述第一线路与所述第二线 路频谱重叠区域外的镜像信号。
4、 根据权利要求 2所述的串扰估计方法, 其特征在于, 所述第一导 频训练信号和第三导频训练信号分别与所述第二导频训练信号互为正交 信号。
5、 根据权利要求 4所述的串扰估计方法, 其特征在于, 所述第一线 路的一端的收发器根据所述第一导频序列生成并发送第一导频训练信号 和第三导频训练信号, 包括:
所述第一线路的一端的收发器在满足预设调制周期的奇数子载波上 生成与所述第一导频序列对应且其它子载波上为 1或者 0的第一导频训练 信号, 以及在满足预设调制周期的偶数子载波上生成与所述第一导频序列 对应且其它子载波上为 1或者 0的第三导频训练信号。
6、 根据权利要求 4所述的串扰估计方法, 其特征在于, 所述第一线 路的一端的收发器根据所述第一导频序列生成并发送第一导频训练信号 和第三导频训练信号, 包括:
所述第一线路的一端的收发器在满足预设调制周期的偶数子载波上 生成与所述第一导频序列对应且其它子载波上的信号为 1或者 0的第一导 频训练信号, 以及在满足预设调制周期的奇数子载波上生成与所述第一导 频序列对应且其它子载波上为 1或者 0的第三导频训练信号。
7、 根据权利要求 5或 6所述的串扰估计方法, 其特征在于, 所述预 设的调制周期为 2的整数倍。
8、 根据权利要求 1或 2所述的串扰估计方法, 其特征在于, 还包括: 所述第一线路的一端的收发器接收所述矢量化控制实体分配的第三 导频序列,所述第一导频序列、第二导频序列及第三导频序列满足正交性; 所述第一线路的一端的收发器根据所述第一导频序列生成并发送第 一导频训练信号和第三导频训练信号, 包括:
所述第一线路的一端的收发器根据所述第一导频序列生成并发送第 一导频训练信号, 根据所述第三导频序列生成并发送第三导频训练信号。
9、 根据权利要求 1~8任一所述的串扰估计方法, 其特征在于, 所述 第一线路为 30a线路, 所述第二线路为 17a线路。
10、 一种线路装置, 其特征在于, 包括:
第一收发器, 用于接收数字用户线路系统中矢量化控制实体分配的第 一导频序列;
所述第一收发器, 还用于根据所述第一导频序列生成并发送第一导频 训练信号和第三导频训练信号, 所述第一导频训练信号为所述第一线路在 与第二线路频谱重叠范围内的导频训练信号, 所述第三导频训练信号为所 述第一线路在与第二线路频谱重叠范围外的导频训练信号, 所述第二线路 的带外频谱与所述第一线路的带内频谱重叠;
第二收发器, 用于根据所述第一导频训练信号及第三导频训练信号生 成误差样本信号;
所述第二收发器, 还用于将所述误差样本信号发送给矢量化控制实体 来确定所述第二线路对第一线路的第一串扰信道系数。
11、 根据权利要求 10所述的线路装置, 其特征在于, 所述第二收发 器, 具体用于:
将所述误差样本信号发送给矢量化控制实体, 以使所述矢量化控制实 体根据所述误差样本信号、 第一导频序列及第二导频序列确定所述第二线 路对第一线路的第一串扰信道系数;
所述第二导频序列为所述矢量化控制实体为所述第二线路分配的导 频序列, 所述第一导频训练信号与所述第二线路的一端的收发器根据所述 第二导频序列生成的第二导频训练信号正交, 所述第三导频训练信号与所 述第二导频训练信号的带外镜像信号正交。
12、 根据权利要求 10或 11所述的线路装置, 其特征在于, 所述第三 导频训练信号为所述第一导频训练信号在所述第一线路与所述第二线路 频谱重叠区域外的镜像信号。
13、 根据权利要求 11所述的线路装置, 其特征在于,
所述第一导频训练信号和第三导频训练信号分别与所述第二导频训 练信号互为正交信号。
14、 根据权利要求 13所述的线路装置, 其特征在于,
所述第一收发器, 具体用于在满足预设调制周期的奇数子载波上生成 与所述第一导频序列对应且其它子载波上为 1或者 0的第一导频训练信 号, 以及在满足预设调制周期的偶数子载波上生成与所述第一导频序列对 应且其它子载波上为 1或者 0的第三导频训练信号。
15、 根据权利要求 13所述的线路装置, 其特征在于,
所述第一收发器, 具体用于在满足预设调制周期的偶数子载波上生成 与所述第一导频序列对应且其它子载波上的信号为 1或者 0的第一导频训 练信号, 以及在满足预设调制周期的奇数子载波上生成与所述第一导频序 列对应且其它子载波上为 1或者 0的第三导频训练信号。
16、 根据权利要求 14或 15所述的线路装置, 其特征在于, 所述预设 的调制周期为 2的整数倍。
17、 根据权利要求 10或 11所述的线路装置, 其特征在于, 所述第一收发器, 还用于接收所述矢量化控制实体分配的第三导频序 列, 所述第一导频序列及第三导频序列满足正交性, 并根据所述第一导频 序列生成并发送第一导频训练信号, 根据所述第三导频序列生成并发送第 三导频训练信号。
18、 根据权利要求 10~17任一所述的线路装置, 其特征在于, 所述第 一线路为 30a线路, 所述第二线路为 17a线路。
19、 一种系统, 其特征在于, 包括: 如权利要求 10~18任一所述的线 路装置及矢量化控制实体。
PCT/CN2014/082934 2014-07-24 2014-07-24 串扰估计方法、装置及系统 WO2016011642A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14898201.0A EP3154230B1 (en) 2014-07-24 2014-07-24 Crosstalk estimation method, device, and system
PCT/CN2014/082934 WO2016011642A1 (zh) 2014-07-24 2014-07-24 串扰估计方法、装置及系统
CN201480011127.1A CN105453501B (zh) 2014-07-24 2014-07-24 串扰估计方法、装置及系统
US15/412,678 US9756178B2 (en) 2014-07-24 2017-01-23 Crosstalk estimation method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/082934 WO2016011642A1 (zh) 2014-07-24 2014-07-24 串扰估计方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/412,678 Continuation US9756178B2 (en) 2014-07-24 2017-01-23 Crosstalk estimation method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2016011642A1 true WO2016011642A1 (zh) 2016-01-28

Family

ID=55162441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082934 WO2016011642A1 (zh) 2014-07-24 2014-07-24 串扰估计方法、装置及系统

Country Status (4)

Country Link
US (1) US9756178B2 (zh)
EP (1) EP3154230B1 (zh)
CN (1) CN105453501B (zh)
WO (1) WO2016011642A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018098709A1 (zh) * 2016-11-30 2018-06-07 华为技术有限公司 信道估计的方法及装置
WO2020083107A1 (zh) * 2018-10-25 2020-04-30 中兴通讯股份有限公司 一种矢量化技术中节省功耗的方法及相关设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102014799B1 (ko) * 2014-08-21 2019-10-21 엘지전자 주식회사 무선 통신 시스템에서 파일럿 시퀀스를 생성하고 전송하는 방법
WO2016172885A1 (zh) * 2015-04-29 2016-11-03 华为技术有限公司 一种发送信号的方法、装置和系统
CN107979390B (zh) * 2016-10-25 2021-10-12 中兴通讯股份有限公司 一种矢量化系统识别外部串入端口的方法及装置
WO2018091086A1 (en) * 2016-11-16 2018-05-24 Huawei Technologies Duesseldorf Gmbh Techniques for pre- and decoding a multicarrier signal based on a mapping function with respect to inband and out-of-band subcarriers
CN109600179B (zh) 2017-09-30 2021-04-27 富士通株式会社 信道间线性串扰的估计方法、装置和接收机
CN109728837B (zh) * 2017-10-30 2020-11-17 桐乡市定邦信息技术有限公司 一种抵消串扰信号的方法、装置及系统
CN110752863B (zh) * 2019-10-25 2021-07-20 中国人民解放军空军工程大学航空机务士官学校 一种多线间单粒子串扰的估计方法
CN112751792B (zh) * 2019-10-31 2022-06-10 华为技术有限公司 一种信道估计方法及装置
US11677540B1 (en) * 2020-01-28 2023-06-13 Cable Television Laboratories, Inc. Systems and methods for data frame and data symbol synchronization in a communication network
WO2022165334A1 (en) * 2021-01-29 2022-08-04 Marvell Asia Pte Ltd Method and apparatus for training a full-duplex communication link

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101350659A (zh) * 2007-07-20 2009-01-21 重庆无线绿洲通信技术有限公司 空分码分混合多址通信中动态分配扩频码字的方法及其设备
CN101795152A (zh) * 2010-01-15 2010-08-04 清华大学 前向链路基于sc-ofdma的卫星移动通信系统
CN102388588A (zh) * 2011-09-30 2012-03-21 华为技术有限公司 一种串扰信道估计方法、装置及系统
US20140050273A1 (en) * 2012-08-15 2014-02-20 Ikanos Communications, Inc. Robust handshake procedure in cross-talk environments

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140369480A1 (en) * 2013-06-12 2014-12-18 Adaptive Spectrum And Signal Alignment, Inc. Systems, methods, and apparatuses for implementing a dsl system
EP2319191A4 (en) * 2008-08-23 2017-06-28 Ikanos Communications, Inc. Method and apparatus for dmt crosstalk cancellation
US8204100B2 (en) * 2009-01-15 2012-06-19 Lantiq Deutschland Gmbh Methods and apparatuses for data transmission
CN101997796B (zh) * 2009-08-27 2013-11-06 华为技术有限公司 一种消除多载波调制系统中混叠噪声的方法、装置和系统
US10033431B2 (en) * 2013-05-05 2018-07-24 Lantiq Deutschland Gmbh Training optimization of multiple lines in a vectored system using a prepared-to-join group

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101350659A (zh) * 2007-07-20 2009-01-21 重庆无线绿洲通信技术有限公司 空分码分混合多址通信中动态分配扩频码字的方法及其设备
CN101795152A (zh) * 2010-01-15 2010-08-04 清华大学 前向链路基于sc-ofdma的卫星移动通信系统
CN102388588A (zh) * 2011-09-30 2012-03-21 华为技术有限公司 一种串扰信道估计方法、装置及系统
US20140050273A1 (en) * 2012-08-15 2014-02-20 Ikanos Communications, Inc. Robust handshake procedure in cross-talk environments

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018098709A1 (zh) * 2016-11-30 2018-06-07 华为技术有限公司 信道估计的方法及装置
WO2020083107A1 (zh) * 2018-10-25 2020-04-30 中兴通讯股份有限公司 一种矢量化技术中节省功耗的方法及相关设备
CN111106850A (zh) * 2018-10-25 2020-05-05 中兴通讯股份有限公司 一种矢量化技术中节省功耗的方法及相关设备

Also Published As

Publication number Publication date
EP3154230A1 (en) 2017-04-12
EP3154230A4 (en) 2017-06-28
EP3154230B1 (en) 2018-10-24
CN105453501B (zh) 2019-02-19
US9756178B2 (en) 2017-09-05
US20170134569A1 (en) 2017-05-11
CN105453501A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
WO2016011642A1 (zh) 串扰估计方法、装置及系统
JP5808507B2 (ja) 漏話を低減する方法およびシステム
EP1583308B1 (en) Semi-distributed power spectrum control for DSL communications
US8427933B2 (en) Method and apparatus for DMT crosstalk cancellation
US9548792B2 (en) Adaptive monitoring of crosstalk coupling strength
US9020145B2 (en) MIMO mechanism for strong FEXT mitigation
WO2014032260A1 (zh) 一种兼容vdsl2传统用户端设备的方法、装置及系统
US10367554B2 (en) Multi-user multiple-input and multiple-output for digital subscriber line
WO2014015813A1 (en) Time Division Multiple Access Far End Crosstalk Channel Estimation
WO2016061254A1 (en) Crosstalk cancellation over multiple mediums
WO2012109856A1 (zh) 信号处理方法、设备及系统
CN110100406B (zh) 用于有线传输介质上的全双工通信的方法和装置
US9473240B2 (en) Method and apparatus for providing twisted pair multilink communications
WO2014100991A1 (zh) 一种线路的初始化方法及设备
CN102474409A (zh) 用于mimo系统的近端串话减少
WO2015165091A1 (zh) 一种dsl系统中抵消线路串扰的方法、设备和系统
AU2010245307B2 (en) Method and apparatus for optimizing dynamic range in DMT modems
US8908489B2 (en) Method and device for data processing and communication system comprising such device
WO2011022968A1 (zh) 一种消除多载波调制系统中混叠噪声的方法、装置和系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480011127.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898201

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014898201

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014898201

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE