WO2016011587A1 - Bridge calibration method for vertical seismic profile data of large inclined-angle area - Google Patents

Bridge calibration method for vertical seismic profile data of large inclined-angle area Download PDF

Info

Publication number
WO2016011587A1
WO2016011587A1 PCT/CN2014/082655 CN2014082655W WO2016011587A1 WO 2016011587 A1 WO2016011587 A1 WO 2016011587A1 CN 2014082655 W CN2014082655 W CN 2014082655W WO 2016011587 A1 WO2016011587 A1 WO 2016011587A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
matrix
nmo
vsp
new
Prior art date
Application number
PCT/CN2014/082655
Other languages
French (fr)
Chinese (zh)
Inventor
王雅苹
Original Assignee
王雅苹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王雅苹 filed Critical 王雅苹
Priority to CN201480002836.3A priority Critical patent/CN105683780A/en
Priority to PCT/CN2014/082655 priority patent/WO2016011587A1/en
Publication of WO2016011587A1 publication Critical patent/WO2016011587A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction

Abstract

A bridge calibration method for vertical seismic profile (VSP) data of a large inclined-angle area, comprising the following steps: 1) collecting VSP data, and performing TAR compensation and channel equalization during VSP processing to obtain accurate unconverted NMO data; dividing the NMO data into two parts, one part comprising a description such as a volume header and a channel header in a SEG-Y data format and the other part comprising pure numerical values; 2) performing an NMO data conversion on the pure numerical values of the NMO data according to a specific method; and 3) outputting a through-well seismic profile, well log data, a well log profile, and the converted matrix data obtained in step 2) as images, combining the images, and performing VSP calibration based on actual drilling stratification data.

Description

说 明 书 一种大倾角地区的垂直地震数据桥式标定方法  A vertical seismic data bridge calibration method for large dip areas
技术领域 本发明属于非常规油气地震勘探领域,是一种利用转换正常动校正(NMO ) 数据进行大倾角地区的垂直地震桥式标定方法。 背景技术 桥式标定是垂直地震( VSP )资料的重要用途之一, 是利用 VSP数据建立地 面地震反射与井中地层之间的关系,通常的做法是基于 VSP时深关系将 VSP的 NMO剖面和走廊叠加剖面、 过井地震剖面、 测井曲线、 岩合柱状图组合起来, 得到 VSP桥式标定成果。 随着近些年来 VSP应用范围的不断扩大,在许多大倾角地区进行了 VSP釆 集, 现有的 VSP走廊标定流程为: 首先处理得到的 MO数据, 然后在近井口 位置沿某一时间 (或深度)进行窄走廊切除, 进而利用数据叠加的方法得到走 廊叠加剖面。 由于地层倾角的存在,数据 NMO波场中上行波反射同相轴与时间 轴(或深度轴)存在夹角, 因此利用现有的方法不能同相叠加得到可靠的 VSP 走廊剖面, 并且现有的桥式标定方法主要是基于 VSP走廊和过井地震剖面的波 阻特征进行对比标定, 走廊不可靠就大大的影响了 VSP桥式标定的准确性。 发明内容 本发明的目的是提供一种标定准确、 可靠性高的利用转换 NMO数据进行大 倾角地区的垂直地震数据桥式标定方法。 TECHNICAL FIELD The present invention belongs to the field of unconventional oil and gas seismic exploration, and is a vertical seismic bridge calibration method using a normal dynamic correction (NMO) data for large dip areas. BACKGROUND OF THE INVENTION Bridge calibration is one of the important uses of vertical seismic (VSP) data. It is the use of VSP data to establish the relationship between ground seismic reflection and the formation in the well. The usual practice is to use the VSP time-depth relationship to the NMO profile and corridor of the VSP. The superimposed profile, the cross-well seismic profile, the logging curve, and the lithology histogram are combined to obtain the VSP bridge calibration results. With the continuous expansion of VSP applications in recent years, VSP collections have been carried out in many large dip areas. The existing VSP corridor calibration process is: First process the obtained MO data, and then at a near wellhead location along a certain time (or Depth) Perform a narrow corridor resection, and then use the data superposition method to obtain the corridor superimposed section. Due to the existence of the dip angle of the formation, the upstream wave reflection in the data NMO wave field has an angle with the time axis (or the depth axis), so the existing method cannot be superimposed in phase to obtain a reliable VSP corridor profile, and the existing bridge type The calibration method is mainly based on the comparison of the wave resistance characteristics of the VSP corridor and the cross-section seismic section. The unreliable corridor greatly affects the accuracy of the VSP bridge calibration. SUMMARY OF THE INVENTION It is an object of the present invention to provide a calibration method for vertical seismic data bridge calibration in a large dip area using converted NMO data with accurate calibration and high reliability.
本发明通过以下步骤实现:  The invention is achieved by the following steps:
1 )釆集 VSP数据, 在 VSP处理中, 进行 TAR补偿 (真振幅恢复)和道均 衡处理, 得到保真的转换前 NMO数据; 将 NMO数据分离成两部分, 其一为数据格式 SEGY的卷头、 道头等说明部 分, 其二为纯数值部分; 1) Collecting VSP data, performing TAR compensation (true amplitude recovery) and track equalization processing in the VSP processing, and obtaining the pre-conversion NMO data; The NMO data is separated into two parts, one of which is a description part of a data head format SEGY, a head, and the like, and the other is a pure value part;
所述的 TAR补偿和道均衡处理是保证剖面中不同位置的能量相对稳定, 不 因转换处理出现能量不均衡现象。  The TAR compensation and the track equalization process ensure that the energy at different positions in the section is relatively stable, and no energy imbalance occurs due to the conversion process.
所述的处理在时间域和深度域中方法完全相同。  The described process is identical in both the time domain and the depth domain.
所述的数据格式为 SEGY格式。  The data format is SEGY format.
2 )按照以下方式对 NMO数据纯数值部分进行 NMO数据转换:  2) Perform NMO data conversion on the pure value part of the NMO data as follows:
①将 NMO纯数值部分以矩阵的方式排列,矩阵的行数为最大釆样点数,列数 为 NMO数据所包含的总道数;  1 Arrange the NMO pure value parts in a matrix, the number of rows of the matrix is the maximum number of samples, and the number of columns is the total number of tracks included in the NMO data;
②利用地震处理中初至拾取的方法,拾取 NMO纯数值部分数据的原始初至 时间序列, 每一道对应一个初至时间;  2 Using the method of picking up from the first time in the seismic processing, picking up the original first arrival time series of the NMO pure value part data, each channel corresponding to a first arrival time;
③对初至时间序列进行整数釆样计算, 使各点时间值均为釆样率的整数倍, 得到新初至时间序列  3 Perform an integer calculation on the first arrival time series, so that the time values of each point are integer multiples of the sampling rate, and the new first arrival time series is obtained.
所述的计算依下式进行: r = int(— )*At ( 1 )  The calculation is performed as follows: r = int(-)*At ( 1 )
At  At
其中 r为计算得到的新初至时间序列, τ为步骤②拾取的原始初至时间序 列, At为数据的釆样率, int为取整函数;  Where r is the calculated new first arrival time series, τ is the original first arrival time sequence picked up in step 2, At is the sampling rate of the data, and int is the rounding function;
所述的釆样率为数据记录时间除以最大釆样点数。  The sample rate is the data recording time divided by the maximum number of samples.
④依据新初至时间序列, 将步骤①矩阵的每一道进行分段,得到包含系列子 矩阵的新矩阵;  4 segmenting each of the steps 1 matrix according to the new first arrival time sequence to obtain a new matrix containing the series of sub-matrices;
⑤将得到新矩阵进行数据变换运算;  5 will get a new matrix for data transformation operations;
所述的数据变换运算依下述方法进行:  The data conversion operation is performed as follows:
首先取出矩阵的右下三角阵, 然后对三角阵进行左右翻转, 并将翻转后三角 阵中各子矩阵顺序不变的重新排布回原三角阵的子矩阵位置, 进而将新三角阵 替换步骤⑤中新矩阵的右下三角部分, 最后展开新矩阵中各个子矩阵, 得到与 步骤①大小完全相同的转换后矩阵数据。  First, the right lower triangular matrix of the matrix is taken out, then the triangular array is flipped left and right, and the submatrix in the inverted triangular matrix is rearranged and returned to the submatrix position of the original triangular matrix, and then the new triangular array replacement step is performed. 5 The lower right triangle part of the new matrix, and finally the respective sub-matrices in the new matrix are expanded to obtain the converted matrix data of exactly the same size as step 1.
⑥将步骤 1 )中分离得到的卷头、道头等说明信息, 与转换后矩阵数据拼合, 得到 SEGY格式的新 NMO地震数据;  6 Combining the description information of the roll head and the track head separated in step 1) with the converted matrix data to obtain new NMO seismic data in SEGY format;
3 )按照以下方式进行 VSP桥式标定:  3) Perform VSP bridge calibration as follows:
将过井地震剖面、 测井数据、 录井剖面、 以及步骤 2 )得到的转换后矩阵数 据以图像方式输出, 然后拼合, 再以实钻分层数据进行 VSP标定。 本发明与目前的 VSP桥式标定方法不同的是, 标定结果中不再需要 VSP走 廊叠加剖面, 这是因为通过上述系列转换, 已将井口附近的地震反射轴转移至The converted seismic data, the logging data, the logging profile, and the converted matrix data obtained in step 2) are image-outputted, and then combined, and the VSP calibration is performed with the solid-layered hierarchical data. The present invention is different from the current VSP bridge calibration method in that the VSP corridor superposition profile is no longer needed in the calibration result, because the seismic reflection axis near the wellhead has been transferred to the above series of conversions to
NMO剖面一侧, 与地面地震剖面可直接进行对比, 在回避大倾角地区走廊不能 同相叠加问题的同时, 得到更直观、 更可靠的桥式标定结果。 附图说明 图 1为原始 NMO数据 (左)和转换后 NMO数据(右) 示意图; 图 2为实际 VSP资料的原始的 NMO波场(左)和转换后的 NMO ( ^) 图 3为原始的 NMO波场的近井口切除剖面(左)、 VSP走廊叠加剖面(中)、 VSP走廊镶嵌到过井地震剖面 (右); 图 4为转换后 NMO波场与过井地震剖面拼接对比; 图 5为塔里木库车地区某井转换 NMO波场的 VSP标定实例。 具体实施方式 本发明具体实施方式通过以下步骤实现: On the side of the NMO section, it can be directly compared with the ground seismic section. When avoiding the problem of superposition of the corridor in the large dip area, a more intuitive and reliable bridge calibration result is obtained. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of original NMO data (left) and converted NMO data (right); FIG. 2 is an original NMO wave field (left) and converted NMO (^) of actual VSP data. The near-wellhead cut-off section of the NMO wave field (left), the VSP corridor superimposed section (middle), and the VSP corridor are inlaid into the cross-well seismic section (right); Figure 4 shows the spliced contrast of the converted NMO wavefield and the cross-well seismic section; An example of VSP calibration for converting a NMO wave field to a well in the Tarim Kuqa area. DETAILED DESCRIPTION OF THE INVENTION The specific embodiments of the present invention are implemented by the following steps:
1 )利用釆集得到的 VSP数据, 进行常规地震资料处理, 其中 TAR补偿和 道均衡处理两步流程影响到剖面中的能量分布, 要通过对比观察的方式确定最 佳参数, 进而处理得到保真的转换前 NMO数据;  1) Using the VSP data obtained from the set, the conventional seismic data processing is performed, wherein the two-step process of TAR compensation and track equalization affects the energy distribution in the profile, and the optimal parameters are determined by contrast observation, and then processed to obtain fidelity. Pre-conversion NMO data;
将 NMO数据分离成两部分, 其一为数据格式 SEGY的卷头、 道头等说明部 分, 其二为纯数值部分。  The NMO data is separated into two parts, one of which is the description part of the data format SEGY, the head, and the like, and the other is the pure value part.
2 )按照以下方式对 NMO数据纯数值部分进行数据转换:  2) Perform data conversion on the pure value part of the NMO data as follows:
①将上步得到的 NMO纯数值部分记作 , 它由 X «个元素 构成, 其中 ΐ:为 数据样点值, 双下标指示元素在矩阵中的位置, 如 在矩阵中的位置是第 1行 第 1歹 ij,其物理意义是 NMO数据中第 1道的第 1个样点值,以此类推, 为 NMO 数据所包含的总道数, ^为数据最大釆样点数, 如下式所示: 1 Record the NMO pure value part obtained in the previous step, which is composed of X « elements, where ΐ: is the data sample value, and the double subscript indicates the position of the element in the matrix, as the position in the matrix is the first Line 1 歹 ij, whose physical meaning is the first sample value of the first track in the NMO data, and so on, is the total number of tracks included in the NMO data, ^ is the maximum number of data points, as shown in the following equation :
Figure imgf000005_0001
由 SEGY数据卷头、道头信息可知 的釆样间隔 Δέ, λ ^的记录长度除以最 大样点数 得到釆样间隔 。
Figure imgf000005_0001
The sampling interval of the sampling interval Δέ and λ^, which is known from the SEGY data head and the head information, is divided by the maximum number of samples to obtain the sampling interval.
②利用地震处理中初至拾取的方法, 拾取 NMO数据的 VSP初至时间, 得 到初至时间序列' , 它由 ¾个元素构成, 其中每个为各道中的初至时间, 其数值 随着 VSP釆集深度的增加而增大。 2 Using the first-time pick-up method in the seismic processing, picking up the VSP first arrival time of the NMO data, and obtaining the first arrival time sequence', which is composed of 3⁄4 elements, each of which is the first arrival time in each track, and its value follows the VSP The depth of the collection increases and increases.
τ = j¾ ¾ … ^- < <… < - < ί¾) ( 3 ) τ = j¾ ¾ ... ^ - <<...<-<ί ¾) (3)
③对时间序列 7进行整数釆样计算, 使各点时间值均为釆样率 的整数倍, 得到新初至时间序列 , 如式(1 )所示, 其中 r为计算得到的新初至时间序列, τ为步骤(2)中所拾取的时间序列, Δί为数据的釆样率, ί为取整函数(四舍五 该步骤使得初至精度变低,但该初至仅用于数据转换, 并且数据转换过程中 最大时间精度即为 Δί,因此该初至精度变化对于整个处理流程的精度是没有影响 的。 将(3)式代入(1 )式中, 可以计算得到新的时间序列 r, 该序列中每个元 素^对应 Δί整数倍的各道初至时间, 如下式所示: = … ] ( ^ < <… < d < 4) (4)3 Perform an integer sample calculation on time series 7 so that the time values of each point are integer multiples of the sampling rate, and obtain a new first arrival time sequence, as shown in equation (1), where r is the calculated new first arrival time. The sequence, τ is the time series picked up in step (2), Δί is the sampling rate of the data, and ί is the rounding function (the rounding step makes the first arrival precision lower, but the first arrival is only used for data conversion. and the data conversion process, the maximum time accuracy is the Δί, so that the beginning to the variation in the precision for the accuracy of the process flow is not affected. the (3) into (1) can be calculated new time series r Each element in the sequence corresponds to the first arrival time of the integer multiple of Δί, as shown in the following equation: = ... ] ( ^ <<...< d < 4) (4)
④由于 Τ'中各元素 t '代表不同的初至时间, 则依据这个时间, 可以将每道数 据划分为 + 1)段, 于是(2) 式变换为: 4 Since each element t' in Τ' represents a different first arrival time, according to this time, each data can be divided into + 1 ) segments, and then (2) is transformed into:
! =! =
Figure imgf000006_0001
Figure imgf000006_0001
其中 ^为分段后矩阵, 它由 ( + ¾x 个子矩阵列构成, 为了简便起见, 上式 中各个子矩阵用 表示, 此时双下标表示子矩阵在大矩阵中的位置, 贝' J:
Figure imgf000007_0001
Where ^ is a segmented matrix, which consists of ( + 3⁄4 x sub-matrix columns. For the sake of simplicity, each sub-matrix is represented by the above formula. At this time, the double subscript indicates the position of the sub-matrix in the large matrix. :
Figure imgf000007_0001
⑤将得到新矩阵进行数据变换运算, 依下述方法进行:  5 will get the new matrix for data transformation, according to the following method:
X X
a)取出上步矩阵- 的右下三角阵
Figure imgf000007_0002
a) Take the upper right triangle of the upper step matrix -
Figure imgf000007_0002
b)对三角阵进行左右翻转, 得到 , 如式(8)所示;  b) flipping the triangle array left and right to obtain, as shown in equation (8);
.右下 .bottom right
C)将翻转后三角阵中各子矩阵顺序不变的重新排布回原三角阵 矩阵位置, 得到 "', 如式(9)所示;  C) rearranging the order of the sub-matrices in the inverted triangular matrix back to the original triangular matrix matrix position, and obtaining "', as shown in equation (9);
d)将新三角阵替换步骤(4) 中矩阵 ^的右下三角部分, 得到新矩阵 y, 如式( 10) 所示; e)最后展开新矩阵5^中各个子矩阵, 得到与步骤(1 ) 大小完全相同的转 换后矩阵数据。 d) replacing the new triangular matrix with the lower right triangle of the matrix ^ in step (4) to obtain a new matrix y , as shown in equation (10); e) finally expanding each submatrix in the new matrix 5 ^, obtaining the step with 1) Converted matrix data of exactly the same size.
Figure imgf000007_0003
(8) - 0 0 0 ..、.r 0 0 !
Figure imgf000007_0003
(8) - 0 0 0 ..,. r 0 0 !
0 0 0 .. 0  0 0 0 .. 0
0 0 0 . !  0 0 0 . !
0 Q 0 .. " 1}  0 Q 0 .. " 1}
0 0
-i) ( 9 )  -i) ( 9 )
Figure imgf000008_0001
图 1为转换前后 NMO数据的示意图, 直观的指示了通过上述计算后, 样点 位置的变化情况。
Figure imgf000008_0001
Figure 1 is a schematic diagram of NMO data before and after conversion, which visually indicates the change in sample position after the above calculation.
⑥将步骤 1 ) 中分离得到的卷头、 道头等说明信息, 与转换后矩阵数据 F拼 合,得到 SEGY格式的新 NMO地震数据。 图 2为大倾角地区垂直地震 NMO数 据转换前后的实例, 可以看到依上述方法, 得到了保真转换数据。 6 Combine the description information of the roll head and the track head separated in step 1) with the converted matrix data F to obtain new NMO seismic data in SEGY format. Figure 2 shows an example of the NMO data before and after the vertical seismic survey in the large dip area. It can be seen that the fidelity conversion data is obtained according to the above method.
3 )按照以下方式进行 VSP桥式标定:  3) Perform VSP bridge calibration as follows:
将过井地震剖面、 测井数据、 录井剖面、 以及步骤 2 )得到的转换后 NMO 数据以图像方式输出, 然后拼合, 再以实钻分层数据进行 VSP标定。 与目前的 VSP桥式标定方法不同的是, 标定结果中不再需要 VSP走廊叠加剖面, 这是因 为通过上述系列转换, 已将井口附近的地震反射轴转移至 NMO剖面一侧, 与地 面地震剖面可直接进行对比, 在回避大倾角地区走廊不能同相叠加问题的同时, 得到更直观、 更可靠的桥式标定结果。  The converted seismic profile, the logging data, the logging profile, and the converted NMO data obtained in step 2) are image-outputted, and then combined, and then the VSP calibration is performed with the solid-layered hierarchical data. Different from the current VSP bridge calibration method, the VSP corridor superposition profile is no longer needed in the calibration results. Because of the above series of transformations, the seismic reflection axis near the wellhead has been transferred to the NMO profile side, and the ground seismic profile. It can be directly compared, and the bridge calibration results can be obtained more intuitively and reliably while avoiding the problem of overlapping the corridors in the large dip area.
图 3为现有的走廊切除、 叠加进行地震剖面标定方法的效果图, 图 4为新方 法的效果图, 对比可知, 新方法具有明显优势。 图 5 所示的为新方法在塔里木 地区一个 VSP项目的标定实例, 从标定图中可看到, 新方法保留现有桥式标定 的所有功能, 同时回避了大倾角地区地层反射不能同相叠加的问题, 实现了转 换后 NMO剖面与地震剖面在井位处无缝对接, 波阻特征对比直观、 可靠。 上述实施例为本发明较佳的实施方式, 但本发明的实施方式并不受上述实 施例的限制, 其他的任何未背离本发明的精神实质与原理下所作的改变、 修饰、 替代、 组合、 简化, 均应为等效的置换方式, 都包含在本发明的保护范围之内。  Fig. 3 is an effect diagram of the existing corridor resection and superposition method for seismic section calibration, and Fig. 4 is an effect diagram of the new method. The comparison shows that the new method has obvious advantages. Figure 5 shows a calibration example of a new method for a VSP project in the Tarim region. As can be seen from the calibration chart, the new method preserves all the functions of the existing bridge calibration, while avoiding the fact that the formation reflections in the large dip area cannot be superimposed in phase. The problem is that the NMO profile and the seismic profile are seamlessly connected at the well location after conversion, and the wave resistance characteristics are intuitive and reliable. The above embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited to the above embodiments, and any other changes, modifications, substitutions, combinations, and modifications may be made without departing from the spirit and scope of the invention. Simplifications, which are equivalent replacement means, are included in the scope of the present invention.

Claims

要 求 书 Request
1、 一种利用大倾角地区的垂直地震数据桥式标定方法, 其特征在于通过以 下步骤实现: 1. A vertical seismic data bridge calibration method using a large dip area, which is characterized by the following steps:
1 )釆集 VSP数据, 在 VSP处理中, 进行 TAR补偿和道均衡处理, 得到保 真的转换前 NMO数据; 1) Collecting VSP data, performing TAR compensation and channel equalization processing in VSP processing, and obtaining pre-conversion NMO data;
将 NMO数据分离成两部分, 其一为数据格式 SEGY的卷头、 道头等说明部 分, 其二为纯数值部分;  Separating the NMO data into two parts, one of which is the description part of the data format SEGY, the head of the track, and the like, and the second part is a pure value part;
2 )按照以下方式对 NMO数据纯数值部分进行 NMO数据转换:  2) Perform NMO data conversion on the pure value part of the NMO data as follows:
①将 NMO纯数值部分以矩阵的方式排列,矩阵的行数为最大釆样点数,列数 为 NMO数据所包含的总道数;  1 Arrange the NMO pure value parts in a matrix, the number of rows of the matrix is the maximum number of samples, and the number of columns is the total number of tracks included in the NMO data;
②利用地震处理中初至拾取的方法,拾取 NMO纯数值部分数据的原始初至 时间序列, 每一道对应一个初至时间;  2 Using the method of picking up from the first time in the seismic processing, picking up the original first arrival time series of the NMO pure value part data, each channel corresponding to a first arrival time;
③对初至时间序列进行整数釆样计算, 使各点时间值均为釆样率的整数倍, 得到新初至时间序列 τ': 3 Perform an integer-like calculation on the first-time time series so that the time values of each point are integer multiples of the sampling rate, and obtain a new first-time time series τ ':
④依据新初至时间序列, 将步骤①矩阵的每一道进行分段,得到包含系列子 矩阵的新矩阵;  4 segmenting each of the steps 1 matrix according to the new first arrival time sequence to obtain a new matrix containing the series of sub-matrices;
⑤将得到新矩阵进行数据变换运算;  5 will get a new matrix for data transformation operations;
⑥将步骤 1 ) 中分离得到的卷头、 道头这些说明信息, 与转换后矩阵数据拼 合, 得到 SEGY格式的新 ΝΜΟ地震数据;  6 Combine the description information of the roll head and the track head separated in step 1) with the converted matrix data to obtain new seismic data in SEGY format;
3 )按照以下方式进行 VSP桥式标定:  3) Perform VSP bridge calibration as follows:
将过井地震剖面、 测井数据、 录井剖面、 以及步骤 2 )得到的转换后矩阵数 据以图像方式输出, 然后拼合, 再以实钻分层数据进行 VSP标定。  The converted seismic data, the logging data, the logging profile, and the converted matrix data obtained in step 2) are image-outputted, and then combined, and the VSP calibration is performed with the solid-layered hierarchical data.
2、 根据权利要求 1所述的一种利用大倾角地区的垂直地震数据桥式标定方 法, 其特征在于: 步骤 1 ) 所述的 TAR补偿和道均衡处理是保证剖面中不同位 置的能量相对稳定, 不因转换处理出现能量不均衡现象。  2. The method for calibrating a vertical seismic data bridge using a large dip area according to claim 1, wherein: the step 1) the TAR compensation and the channel equalization processing are to ensure that the energy at different positions in the section is relatively stable. , there is no energy imbalance due to conversion processing.
3、 根据权利要求 1所述的一种利用大倾角地区的垂直地震数据桥式标定方 法,其特征在于: 步骤 1 )所述的道均衡处理在时间域和深度域中方法完全相同。  3. The vertical seismic data bridge calibration method using a large dip area according to claim 1, wherein: step 1) the track equalization processing is exactly the same in the time domain and the depth domain.
4、 根据权利要求 1所述的一种利用大倾角地区的垂直地震数据桥式标定方 法, 其特征在于: 步骤 1 ) 所述的 ΝΜΟ数据格式为 SEGY格式。  4. The method of claim 1, wherein the step data format is SEGY format.
5、 根据权利要求 1所述的一种利用大倾角地区的垂直地震数据桥式标定方 法, 其特征在于: 步骤 2 ) 所述的整数釆样计算依下式进行: r' = int(一 ) * At 5. The vertical seismic data bridge calibration method using a large dip area according to claim 1, wherein: step 2) said integer integer calculation is performed according to the following formula: r' = int(1) * At
At  At
其中 r为计算得到的新初至时间序列, τ为步骤②拾取的原始初至时间序 列, Δ为数据的釆样率, int为取整函数;  Where r is the calculated new first arrival time series, τ is the original first arrival time sequence picked up in step 2, Δ is the sampling rate of the data, and int is the rounding function;
所述的釆样率为数据记录时间除以最大釆样点数。  The sample rate is the data recording time divided by the maximum number of samples.
6、 根据权利要求 1所述的一种利用大倾角地区的垂直地震数据桥式标定方 法, 其特征在于: 步骤 2 ) 所述的数据变换运算依下述方法进行:  6. The vertical seismic data bridge calibration method using a large dip area according to claim 1, wherein: step 2) said data conversion operation is performed according to the following method:
首先取出矩阵的右下三角阵, 然后对三角阵进行左右翻转, 并将翻转后三角 阵中各子矩阵顺序不变的重新排布回原三角阵的子矩阵位置, 进而将新三角阵 替换步骤⑤中新矩阵的右下三角部分, 最后展开新矩阵中各个子矩阵, 得到与 步骤①大小完全相同的转换后矩阵数据。  First, the right lower triangular matrix of the matrix is taken out, then the triangular array is flipped left and right, and the submatrix in the inverted triangular matrix is rearranged and returned to the submatrix position of the original triangular matrix, and then the new triangular array replacement step is performed. 5 The lower right triangle part of the new matrix, and finally the respective sub-matrices in the new matrix are expanded to obtain the converted matrix data of exactly the same size as step 1.
PCT/CN2014/082655 2014-07-21 2014-07-21 Bridge calibration method for vertical seismic profile data of large inclined-angle area WO2016011587A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480002836.3A CN105683780A (en) 2014-07-21 2014-07-21 Bridge calibration method for vertical seismic profile data of large inclined-angle area
PCT/CN2014/082655 WO2016011587A1 (en) 2014-07-21 2014-07-21 Bridge calibration method for vertical seismic profile data of large inclined-angle area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/082655 WO2016011587A1 (en) 2014-07-21 2014-07-21 Bridge calibration method for vertical seismic profile data of large inclined-angle area

Publications (1)

Publication Number Publication Date
WO2016011587A1 true WO2016011587A1 (en) 2016-01-28

Family

ID=55162392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082655 WO2016011587A1 (en) 2014-07-21 2014-07-21 Bridge calibration method for vertical seismic profile data of large inclined-angle area

Country Status (2)

Country Link
CN (1) CN105683780A (en)
WO (1) WO2016011587A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111323813B (en) * 2018-12-13 2022-06-03 中国石油天然气集团有限公司 Corridor stacked profile generation method and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5303524A (en) * 1992-03-09 1994-04-19 Caspe Marc S Earthquaker protection system and method of installing same
CN101071175A (en) * 2006-05-11 2007-11-14 中国石油集团东方地球物理勘探有限责任公司 Zero hypocentral distance vertical seismic section compressional-shear wave data depth field corridor stacked section processing method
CN101109821A (en) * 2007-08-16 2008-01-23 中国石化集团胜利石油管理局 Method for improving seismic data resolution capacity based on system identification
CN101609164A (en) * 2009-07-17 2009-12-23 中国石化集团胜利石油管理局 Utilize VSP transformed wave data to carry out the method for ground converted wave horizon Calibration of Seismic Data
CN104375174A (en) * 2013-08-15 2015-02-25 中国石油天然气集团公司 Vertical seismic profiling data bridge type calibration method for large-inclination-angle regions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5303524A (en) * 1992-03-09 1994-04-19 Caspe Marc S Earthquaker protection system and method of installing same
CN101071175A (en) * 2006-05-11 2007-11-14 中国石油集团东方地球物理勘探有限责任公司 Zero hypocentral distance vertical seismic section compressional-shear wave data depth field corridor stacked section processing method
CN101109821A (en) * 2007-08-16 2008-01-23 中国石化集团胜利石油管理局 Method for improving seismic data resolution capacity based on system identification
CN101609164A (en) * 2009-07-17 2009-12-23 中国石化集团胜利石油管理局 Utilize VSP transformed wave data to carry out the method for ground converted wave horizon Calibration of Seismic Data
CN104375174A (en) * 2013-08-15 2015-02-25 中国石油天然气集团公司 Vertical seismic profiling data bridge type calibration method for large-inclination-angle regions

Also Published As

Publication number Publication date
CN105683780A (en) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2017024523A1 (en) Inversion method for ray elastic parameter
CN105182420B (en) A kind of Dynamic Matching moves bearing calibration
CN104459782B (en) Horizon chromatography inversion earthquake speed modeling method with thin layers used and modeling unit
CN102221709A (en) Velocity analysis and dynamic correction method based on formation parameter information
CN104316966B (en) A kind of Fluid Identification Method and system
CN104570122A (en) Seismic data static correction method and device based on reflected waves
CN109884709A (en) A kind of converted wave statics method chromatographed when the travelling based on surface wave
Duvail et al. Correlation between onshore and offshore Pliocene–Quaternary systems tracts below the Roussillon Basin (eastern Pyrenees, France)
Bulut et al. Spatiotemporal earthquake clusters along the North Anatolian fault zone offshore Istanbul
WO2016011587A1 (en) Bridge calibration method for vertical seismic profile data of large inclined-angle area
Wolf et al. On the measurement of S diff splitting caused by lowermost mantle anisotropy
WO2016011586A1 (en) Bridge calibration method for vertical seismic profile data of large inclined-angle area
CN104375174A (en) Vertical seismic profiling data bridge type calibration method for large-inclination-angle regions
Major et al. Quaternary hinterland evolution of the active Banda Arc: Surface uplift and neotectonic deformation recorded by coral terraces at Kisar, Indonesia
CN106125136B (en) A kind of common point main road set creation method of relief surface
CN104536046A (en) Focus excitation signal consistency evaluating method based on earthquake records
Hinkley et al. Prestack gather flattening for AVO
Enters et al. Establishing a chronology for lacustrine sediments using a multiple dating approach—A case study from the Frickenhauser See, central Germany
CN105223630A (en) Based on the omnibearing observation systematic parameter Demonstration Method of geologic model
CN104777508A (en) Digital pulse overlapping peak separation algorithm based on model base
CN111323813B (en) Corridor stacked profile generation method and system
WO2023123971A1 (en) Vsp-based level calibration method and apparatus for depth-domain seismic profile
CN112433247B (en) While-drilling adjusting method and device for position of stratum to be drilled
Zdraveva et al. Building geologically plausible anisotropic models using well data and horizon-guided interpolation
CN107238861A (en) The automatic means of interpretation of normal-moveout spectrum and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/05/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14898078

Country of ref document: EP

Kind code of ref document: A1