WO2016010396A1 - 무선통신 시스템의 상향링크 동기화 장치 및 방법 - Google Patents

무선통신 시스템의 상향링크 동기화 장치 및 방법 Download PDF

Info

Publication number
WO2016010396A1
WO2016010396A1 PCT/KR2015/007453 KR2015007453W WO2016010396A1 WO 2016010396 A1 WO2016010396 A1 WO 2016010396A1 KR 2015007453 W KR2015007453 W KR 2015007453W WO 2016010396 A1 WO2016010396 A1 WO 2016010396A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
value
terminal
uplink
signal
Prior art date
Application number
PCT/KR2015/007453
Other languages
English (en)
French (fr)
Inventor
정철
박정호
김재원
유현규
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to US15/327,018 priority Critical patent/US10334540B2/en
Priority to EP15822197.8A priority patent/EP3171647B1/en
Publication of WO2016010396A1 publication Critical patent/WO2016010396A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time

Definitions

  • the present invention relates to synchronization of a wireless communication system.
  • a 5G communication system or a pre-5G communication system is called a system after a 4G network (Beyond 4G Network) or a system after an LTE system (Post LTE).
  • 5G communication systems are being considered for implementation in the ultra-high frequency (mmWave) band (eg, such as the 60 Gigabit (60 GHz) band).
  • mmWave ultra-high frequency
  • FD-MIMO massive array multiple input / output
  • FD-MIMO massive array multiple input / output
  • Array antenna, analog beam-forming, and large scale antenna techniques are discussed.
  • 5G communication systems have advanced small cells, advanced small cells, cloud radio access network (cloud RAN), ultra-dense network (ultra-dense network) , Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, Coordinated Multi-Points (CoMP), and interference cancellation
  • cloud RAN cloud radio access network
  • ultra-dense network ultra-dense network
  • D2D Device to Device communication
  • wireless backhaul moving network
  • cooperative communication Coordinated Multi-Points (CoMP), and interference cancellation
  • Hybrid FSK and QAM Modulation FQAM
  • SWSC Slide Window Superposition Coding
  • ACM Advanced Coding Modulation
  • FBMC Fan Bank Multi Carrier
  • NOMA non orthogonal multiple access
  • SCMA sparse code multiple access
  • interference may occur between subcarriers and successive subframes in a Long Term Evolution (LTE) system. Due to the interference, the packet error rate is increased, which may cause a decrease in system performance. Therefore, it is important to match uplink synchronization of UEs.
  • LTE Long Term Evolution
  • embodiments of the present invention are to provide a method and apparatus for synchronizing uplink synchronization in a wireless communication system.
  • Embodiments of the present invention provide a method and apparatus for transmitting an uplink signal to reduce an overhead of a channel structure for uplink synchronization in a wireless communication system.
  • a method of operating a terminal of a wireless communication system includes: receiving, from a first base station, an adjustment message including a first timing advance (TA) value; And transmitting an uplink signal to the second base station based on the second TA value for the second base station configured based on the first TA value.
  • TA timing advance
  • a method of operating a first base station of a wireless communication system includes: transmitting an adjustment message including a first timing advance (TA) value to a terminal; And transmitting an uplink transmission command message to the terminal so that the terminal transmits an uplink signal to the second base station based on the second TA value for the second base station configured based on the first TA value.
  • TA timing advance
  • a method of operating a second base station of a wireless communication system includes: receiving an uplink signal transmitted from a terminal based on a second timing advance (TA) value for the second base station; do.
  • the second TA value is set based on the first TA value for the first base station.
  • a terminal apparatus of a wireless communication system includes: a receiver for receiving a coordination message from a first base station including a first timing advance (TA) value; And a transmitter for transmitting an uplink signal to the second base station based on the second TA value for the second base station configured based on the first TA value.
  • TA timing advance
  • a first base station apparatus of a wireless communication system includes: a control unit for generating an uplink transmission command message and an adjustment message including a first timing advance (TA) value; And a transmitter.
  • the transmitter transmits the coordination message and transmits an uplink signal to the second base station based on a second TA value for a second base station configured based on the first TA value.
  • the transmission command message is transmitted to the terminal.
  • a second base station apparatus of a wireless communication system includes: a receiver for receiving an uplink signal transmitted from a terminal based on a second timing advance (TA) value for the second base station.
  • the second TA value is set based on the first TA value for the first base station.
  • the overhead of uplink resources is reduced by adjusting the uplink signal time sent to another base station or another cell using information for uplink synchronization in one base station or one cell in a wireless communication system. Can be.
  • FIGS. 1A to 1C are diagrams illustrating a configuration of a wireless communication system to which an uplink synchronization operation is applied according to embodiments of the present invention.
  • FIG. 2 illustrates an example of synchronizing uplink symbol synchronization in a wireless communication system.
  • FIG. 3 illustrates an example of synchronizing uplink symbol synchronization in a wireless communication system according to embodiments of the present invention.
  • FIG. 4 is a diagram illustrating a processing flow in a terminal for an uplink synchronization operation according to embodiments of the present invention.
  • FIG. 5 is a diagram illustrating a processing flow in a first base station for an uplink synchronization operation according to embodiments of the present invention.
  • FIG. 6 is a diagram illustrating a processing flow in a second base station for uplink synchronization according to embodiments of the present invention.
  • FIG. 7 illustrates an example of a transmission frame structure of an uplink signal according to embodiments of the present invention.
  • FIG. 8 is a diagram illustrating an example of a structure of an uplink signal according to embodiments of the present invention.
  • FIG. 9 is a diagram illustrating a processing flow in a terminal for an uplink synchronization operation according to an embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a processing flow in a terminal for an uplink synchronization operation according to another embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a processing flow in a first base station for an uplink synchronization operation according to an embodiment of the present invention.
  • FIG. 12 is a diagram illustrating a processing flow in a second base station for uplink synchronization operation according to an embodiment of the present invention.
  • FIG. 13 is a diagram illustrating a transmission / reception time relationship between uplink and downlink of a base station and a terminal when symbol lengths of two base stations for different uplink synchronization operations are different according to embodiments of the present invention.
  • FIG. 14 is a block diagram of a terminal device for an uplink synchronization operation according to embodiments of the present invention.
  • 15 is a block diagram of a first base station apparatus for uplink synchronization according to embodiments of the present invention.
  • 16 is a block diagram of a second base station apparatus for uplink synchronization according to embodiments of the present invention.
  • Embodiments of the present invention can be applied to a wireless communication system of Long Term Evolution (LTE).
  • embodiments of the present invention may be applied to a wireless communication system using a beamforming technique.
  • embodiments of the present invention can be applied to a case where a long-term evolution wireless communication system and a wireless communication system using beamforming technology coexist.
  • LTE Long Term Evolution
  • embodiments of the present invention can be applied to a case where a long-term evolution wireless communication system and a wireless communication system using beamforming technology coexist.
  • an LTE system uses a timing advance (TA) value.
  • the terminal transmits an uplink signal by advancing a predetermined time based on downlink signal synchronization.
  • This advance time is called a timing advance (TA) and is a value that the base station informs the terminal.
  • the base station may adjust uplink synchronization of various terminals by adjusting the TA value for each terminal.
  • the terminal performs a random access procedure whenever accessing each wireless communication system.
  • the base station uses an uplink signal (eg, a random access preamble, a physical uplink shared channel, a sounding reference signal, etc.) transmitted from the terminal.
  • an uplink signal eg, a random access preamble, a physical uplink shared channel, a sounding reference signal, etc.
  • the terminal should transmit an uplink signal for each carrier.
  • the terminal and the base station each operate a plurality of beams. Since there are multiple transmission beams of the terminal and reception beams of the base station in uplink, the terminal should transmit the uplink signals for all beam pairs when accessing this system.
  • the base station selects a beam pair having the best channel quality and calculates a TA value to be applied by the terminal to the beam pair.
  • FIGS. 1A to 1C are diagrams illustrating a configuration of a wireless communication system to which an uplink synchronization operation is applied according to embodiments of the present invention.
  • the terminal 100 communicates with two base stations 200,300.
  • the terminal 100 receives downlink reference signals 31 and 32 from the first base station 200 and the second base station 300, respectively.
  • information eg, a TA value
  • uplink synchronization for each base station 200,300 must be known.
  • base station 200 and base station 300 use the same Radio Access Technology (RAT).
  • RAT Radio Access Technology
  • base station 200 and base station 300 use the LTE scheme.
  • base station 200 and base station 300 use different RATs.
  • the base station 200 uses the LTE scheme
  • the base station 300 uses the Wireless Gigabits (WiGig) scheme.
  • base station 200 and base station 300 are at different geographical locations. In another embodiment, base station 200 and base station 300 are geographically in the same location.
  • the frequency domain used by base station 200 and base station 300 is the same. In another embodiment, the frequency domains used by base station 200 and base station 300 are different.
  • the terminal 100 communicates with two base stations 200 and 300 that are physically different from each other.
  • the base station 200 transmits and receives a signal with the terminal 100 through a first carrier 410 of the first frequency domain.
  • the base station 300 transmits and receives a signal with the terminal 100 through the second carrier 420 in the second frequency domain.
  • the first carrier 410 and the second carrier 420 may be used together by carrier aggregation technology.
  • the base station 200 may be a base station of an LTE cell, that is, a primary cell (PCell), and the base station 300 may be a base station of a secondary cell (SCell).
  • LTE cell that is, a primary cell (PCell)
  • SCell secondary cell
  • both the first carrier 410 and the second carrier 420 may be carriers in the LTE frequency band.
  • the first carrier 410 may be a carrier of the LTE frequency band
  • the second carrier 420 may be a carrier of the millimeter wave (mmWave) band.
  • the frame structures of the first carrier 410 and the second carrier 420 are different from each other.
  • the terminal 100 communicates with a base station 200.
  • the base station 200 transmits and receives a signal with the terminal 100 through the first carrier 410 in the first frequency domain.
  • the base station 200 transmits and receives a signal with the terminal 100 through the second carrier 420 in the second frequency domain.
  • the first carrier 410 and the second carrier 420 may be used together by a carrier aggregation technique.
  • the base station 200 may be a base station of an LTE cell, that is, a primary cell (PCell), and the base station 300 may be a base station of a secondary cell (SCell).
  • LTE cell that is, a primary cell (PCell)
  • SCell secondary cell
  • both the first carrier 410 and the second carrier 420 may be carriers in the LTE frequency band.
  • the first carrier 410 may be a carrier of the LTE frequency band
  • the second carrier 420 may be a carrier of the millimeter wave (mmWave) band.
  • the frame structures of the first carrier 410 and the second carrier 420 are different from each other.
  • FIG. 2 illustrates an example of synchronizing uplink symbol synchronization in a wireless communication system.
  • the UE adjusts uplink symbol synchronization using a TA value received from the base station is shown.
  • the downlink symbol S210 transmitted by the base station arrives at the terminal after a time delay of T (S220).
  • the terminal receives a TA adjustment message from the base station and calculates a T TA value.
  • the base station receives an uplink signal such as a random access preamble or a sounding reference signal transmitted by the terminal to estimate a T TA value (S240).
  • TDD time division duplex
  • FIG. 3 illustrates an example of synchronizing uplink symbol synchronization in a wireless communication system according to embodiments of the present invention.
  • the terminal calculates a TA value for another base station (eg, the second base station) based on the TA value for one base station (eg, the first base station), the uplink and downlink link between the base stations and the terminal is determined.
  • the transmission / reception time relationship is shown.
  • the downlink symbol S310 transmitted by the base station 1 arrives at the terminal after a time delay of T 1 (S330), and the downlink symbol S320 transmitted by the base station 2 is T 2 .
  • T 1 time delay
  • T 2 time delay
  • T E symbol times received from the two base stations by the terminal
  • T D time between two base stations transmitting a downlink symbol
  • the terminal receives the TA adjustment message from the base station 1, calculates and knows the value of T TA, 1 , according to an embodiment of the present invention, the T TA, 2 value for the base station 2 is calculated as in Equation 1 below.
  • the T TA, 2 value for the base station 2 is equal to the T TA, 1 value for the base station 1 plus two times the difference T E of the symbol time received from the two base stations. It can be seen that the base station is equal to the difference T D subtracted by the time for transmitting the downlink symbol.
  • the UE may calculate the T TA, 2 value for the base station 2 using T TA, 1 , T D , and T E even though the TA adjustment message for the base station 2 is not received.
  • the terminal sets a TA value as shown in Equation 1 (S370) and transmits an uplink symbol to the base station 2 (S380).
  • the UE advances the synchronization by T TA, 1 value from the time point at which the downlink signal of the base station 1 is received and transmits an uplink signal to the base station 1 (S350). Then, the base station 1 receives the uplink signal at the time T 1 has elapsed from the time S350 at which the UE transmits the uplink signal (S360). In addition, the UE transmits an uplink signal to the base station 2 after synchronizing synchronization by advancing the T TA, 2 value from the time point of receiving the downlink signal of the base station 2 (S370). Then, the base station 2 receives the uplink signal at the time T 2 has elapsed from the time S370 at which the UE transmits the uplink signal (S380).
  • FIG. 4 is a diagram illustrating a processing flow in a terminal for an uplink synchronization operation according to embodiments of the present invention.
  • this processing flow may be performed by terminal 100 shown in FIG. 1A.
  • the terminal 100 receives a coordination message including a first TA value from the first base station 200 (S410). Next, the terminal transmits an uplink signal to the second base station 300 based on the second TA value for the second base station 300 set based on the first TA value (S420).
  • the second TA value is the difference between the first TA value, the time when the downlink signal transmitted from the first base station 200 and the second base station 300 is received at the terminal 100, the first base station 200 and the second Based on the difference in time when the downlink signal is transmitted from the base station 300, it is set.
  • the second TA value is Is set based on
  • T TA, 2 represents a second TA value
  • T TA, 1 represents a first TA value
  • T E represents a downlink signal transmitted from the first base station 200 and the second base station 300 from the terminal 100.
  • T D represents a difference in time
  • T D represents a difference in time when a downlink signal is transmitted from the first base station 200 and the second base station 300.
  • the uplink signal comprises a beam training signal.
  • the terminal 100 receives an uplink transmission command message to the second base station 300 from the first base station 200.
  • the uplink transmission command message may include at least one of sequence information for the beam training signal and a resource location for transmitting the beam training signal.
  • the sequence information includes an index indicating a sequence for the beam training signal.
  • the terminal transmits a beam training signal including a sequence corresponding to the index to the second base station 300.
  • the terminal transmits a beam training signal to the second base station 300 at the resource location.
  • the terminal receives a coordination message and uplink optimal beam information including a second TA value from the second base station 300, and uses the uplink optimal beam to receive an uplink signal based on a second TA value
  • the second base station 300 transmits.
  • the first base station 200 and the second base station 300 use the same radio access technology or different radio access technologies.
  • the first base station 200 and the second base station 300 are physically located at the same location or at different locations.
  • the first base station 200 uses carriers in the first frequency domain
  • the second base station 300 uses carriers in a second frequency domain different from the first frequency domain.
  • the transmission frame (downlink frame or uplink frame) structure of the first base station 200 and the transmission frame (downlink frame or uplink frame) structure of the second base station 300 is different from each other.
  • FIG. 5 is a diagram illustrating a processing flow in a first base station for an uplink synchronization operation according to embodiments of the present invention.
  • this processing flow may be performed by the first base station 200 shown in FIG. 1A.
  • the first base station 200 transmits an adjustment message including the first TA value to the terminal 100 (S510).
  • the first base station 200 transmits an uplink transmission command message so that the terminal 100 transmits an uplink signal to the second base station 300 based on the second TA value for the second base station 300 set based on the first TA value. Transmission to the terminal 100 (S520).
  • the second TA value is the difference between the first TA value, the time when the downlink signal transmitted from the first base station 200 and the second base station 300 is received at the terminal 100, the first base station 200 and the second Based on the difference in time when the downlink signal is transmitted from the base station 300, it is set.
  • the second TA value is Is set based on
  • T TA, 2 represents a second TA value
  • T TA, 1 represents a first TA value
  • T E represents a downlink signal transmitted from the first base station 200 and the second base station 300 from the terminal 100.
  • T D represents a difference in time
  • T D represents a difference in time when a downlink signal is transmitted from the first base station 200 and the second base station 300.
  • the uplink signal comprises a beam training signal.
  • the first base station 200 transmits an uplink transmission command message to the second base station 300 to the terminal 100.
  • the uplink transmission command message may include at least one of sequence information for the beam training signal and a resource location for transmitting the beam training signal.
  • the sequence information includes an index indicating a sequence for the beam training signal.
  • the terminal transmits a beam training signal including a sequence corresponding to the index to the second base station 300.
  • the terminal transmits a beam training signal to the second base station 300 at the resource location.
  • the first base station 200 and the second base station 300 use the same radio access technology or different radio access technologies.
  • the first base station 200 and the second base station 300 are physically located at the same location or at different locations.
  • the first base station 200 uses carriers in the first frequency domain
  • the second base station 300 uses carriers in a second frequency domain different from the first frequency domain.
  • the transmission frame (downlink frame or uplink frame) structure of the first base station 200 and the transmission frame (downlink frame or uplink frame) structure of the second base station 300 is different from each other.
  • FIG. 6 is a diagram illustrating a processing flow in a second base station for uplink synchronization according to embodiments of the present invention.
  • this processing flow may be performed by the second base station 300 shown in FIG. 1A.
  • the second base station 300 receives an uplink signal transmitted from the terminal 100 based on a second TA value for the second base station 300.
  • the second TA value is set based on the first TA value for the first base station 200.
  • the second TA value is the difference between the first TA value, the time when the downlink signal transmitted from the first base station 200 and the second base station 300 is received at the terminal 100, the first base station 200 and the second Based on the difference in time when the downlink signal is transmitted from the base station 300, it is set.
  • the second TA value is Is set based on
  • T TA, 2 represents a second TA value
  • T TA, 1 represents a first TA value
  • T E represents a downlink signal transmitted from the first base station 200 and the second base station 300 from the terminal 100.
  • T D represents a difference in time
  • T D represents a difference in time when a downlink signal is transmitted from the first base station 200 and the second base station 300.
  • the uplink signal comprises a beam training signal.
  • the uplink signal is transmitted by the terminal 100 in response to the uplink transmission command message to the second base station 300 being received from the first base station 200.
  • the uplink transmission command message may include at least one of sequence information for the beam training signal and a resource location for transmitting the beam training signal.
  • the sequence information includes an index indicating a sequence for the beam training signal.
  • the terminal transmits a beam training signal including a sequence corresponding to the index to the second base station 300.
  • the terminal transmits a beam training signal to the second base station 300 at the resource location.
  • the second base station 300 searches for uplink optimal beam information of the terminal 100 for the second base station 300, calculates a TA value for the second base station 300, and includes a message including the calculated TA value; And transmitting the searched uplink optimal beam information to the terminal 100 and receiving the uplink signal transmitted from the terminal 100 based on the calculated TA value using the uplink optimal beam.
  • the first base station 200 and the second base station 300 use the same radio access technology or different radio access technologies.
  • the first base station 200 and the second base station 300 are physically located at the same location or at different locations.
  • the first base station 200 uses carriers in the first frequency domain
  • the second base station 300 uses carriers in a second frequency domain different from the first frequency domain.
  • the transmission frame (downlink frame or uplink frame) structure of the first base station 200 and the transmission frame (downlink frame or uplink frame) structure of the second base station 300 is different from each other.
  • FIG. 7 illustrates an example of a transmission frame structure of an uplink signal according to embodiments of the present invention.
  • This figure shows an example of a frame structure for transmitting an uplink beam training signal when two transmission beams of a terminal and six reception beams of a base station are used in a beamforming based wireless communication system.
  • 710 represents an uplink frame.
  • the base station allocates an uplink resource for the terminal to transmit the beam training signal in consideration of the number of transmission beams operated by the terminal, the number of received beams operated by the base station, and the channel quality of the terminal.
  • the terminal transmits a signal using the first transmission beam from the region 721 to the six regions 720, and the base station receives the signal using the reception beams 1 to 6 sequentially.
  • the terminal sends a signal using the second transmission beam over the area 731 to the six areas 730, and the base station receives the signal using the reception beams 1 to 6 sequentially.
  • the base station can increase the beam training performance of the terminal by allocating a larger amount of time resources to the terminal having a poor channel quality of the terminal.
  • the overhead can be reduced by allocating a smaller amount of time resources to the terminal having good channel quality.
  • An array antenna is connected to a digital chain of the terminal, and a beam may be formed from the array antenna.
  • the terminal may form multiple beams simultaneously. Therefore, if the base station simultaneously allocates several resources to the terminal on the frequency axis, the terminal uses different transmission beams for each frequency to provide beam training signals. By sending, the latency of beam training can be reduced.
  • base station 1 When base station 1 and base station 2 are located at different locations, base station 1 should transmit the location information of the uplink resource to base station 2. In addition, the base station 2 may inform the sequence information of the beam training signal to be used by the terminal.
  • the location information of the uplink resource may be known as system information of the base station 2.
  • FIG. 8 is a diagram illustrating an example of a structure of an uplink signal according to embodiments of the present invention. This figure illustrates a structure of an uplink beam training signal transmitted by a terminal 100 shown in FIG. 1A in a beamforming based wireless communication system.
  • 810 shows a transmission signal structure when the terminal 100 transmits a beam training signal for a plurality of transmission / reception beam pairs.
  • One beam training signal 820 for one transmit / receive beam pair is composed of a cyclic prefix (CP) 822 and a sequence 824. Since the base station does not have distance information with the terminal, it may not know when to receive the beam training signal transmitted by the terminal. In addition, due to the multipath delay spread of the channel, the uncertainty interval for the reception time increases. At this time, considering the uncertainty of the reception time, the CP length is determined to be greater than the maximum value of the round-trip delay and the maximum value of the multipath delay spread between the base station and the terminal.
  • CP cyclic prefix
  • the terminal may receive a TA value received from the base station 1, a difference T E value of the symbol time received from the two base stations, and a difference T D value of the time at which the two base stations transmit downlink symbols. Calculate the TA value for the base station 2. Since the uplink signal is synchronized by transmitting the uplink signal as much as the calculated TA and then transmitted, the portion due to the bidirectional delay of the terminal disappears in the uncertainty of receiving the signal from the base station. In other words, the CP length may be larger than the maximum value of the multipath delay spread. According to one embodiment of the present invention, the CP length of the beam training signal can be designed to be short. Therefore, overhead of uplink resources can be reduced.
  • FIG. 9 is a diagram illustrating a processing flow in a terminal for an uplink synchronization operation according to an embodiment of the present invention.
  • This flow illustrates a procedure in which the terminal transmits an uplink signal when the reception signal quality of the terminal is good in the beamforming-based wireless communication system.
  • the flow may be performed by the terminal 100 illustrated in FIG. 1A. have.
  • the determination of the received signal quality of the terminal may be performed before the uplink signal transmission operation is performed. If the received signal quality is good, the uplink signal transmission procedure is performed according to the flow shown in FIG. 9, whereas if the received signal quality is not good, the uplink signal transmission procedure is according to the flow shown in FIG. 10 to be described later. Perform
  • the terminal 100 receives a TA adjustment message from the base station 1 200 (S910).
  • the terminal 100 receives a command message for transmitting an uplink beam training signal from the base station 1 200 to the base station 2 300 (S920).
  • the terminal 100 obtains all or part of the information included in the message from the command message (S930).
  • the beam training command message may include (i) the sequence index of the beam training signal, (ii) the time position to transmit the beam training signal, and (iii) the frequency position to transmit the beam training signal, and (iv) the base stations 200,300 down. It may include any one of the information on the time difference T D value of the link symbol transmission, or a combination of two or more information, or all the information.
  • the terminal 100 sets a TA value for the base station 2 300 based on the TA value for the base station 1 200 (S940).
  • the terminal 100 generates a beam training signal using the sequence and transmits the beam training signal to the base station 2 300 using the resource location (S950).
  • FIG. 10 is a diagram illustrating a processing flow in a terminal for an uplink synchronization operation according to another embodiment of the present invention.
  • This flow illustrates a procedure in which the terminal transmits an uplink signal when the reception signal quality of the terminal is poor in the beamforming-based wireless communication system.
  • the flow may be performed by the terminal 100 illustrated in FIG. 1A.
  • the received signal quality of the UE include path loss, signal-to-noise ratio (SNR), signal-to-interference ratio (SIR), signal-to-interference plus noise ratio (SINR), and SLNR.
  • SNR signal-to-noise ratio
  • SIR signal-to-interference ratio
  • SINR signal-to-interference plus noise ratio
  • SLNR SLNR
  • At least one of a signal-to-leakage plus noise ratio (RSI), a reference signal strength indicator (RSSI), a reference signal received quality (RSRQ), and a reference signal received power (RSRP) may be included.
  • the terminal 100 receives a TA adjustment message from the base station 1 200 (S1010).
  • the terminal 100 receives a command message for transmitting an uplink beam training signal from the base station 1 200 to the base station 2 300 (S1020).
  • the terminal 100 obtains all or part of the information included in the message from the command message (S1030).
  • the beam training command message may include (i) the sequence index of the beam training signal, (ii) the time position to transmit the beam training signal, and (iii) the frequency position to transmit the beam training signal, and (iv) the base stations 200,300 down. It may include any one of the information on the time difference T D value of the link symbol transmission, or a combination of two or more information, or all the information.
  • the terminal 100 sets a TA value for the base station 2 300 based on the TA value for the base station 1 200 (S1040).
  • the terminal 100 generates a beam training signal using the sequence and transmits the beam training signal to the base station 2 300 using the resource location (S1050).
  • the terminal 100 receives a TA adjustment message for the base station 2 300 and an uplink optimal transmission beam index for the base station 2 (S1060).
  • the terminal 100 receives a TA coordination message for the base station 2 300 and an uplink optimal transmit beam index for the base station 2 from the base station 2 300.
  • the terminal 100 receives a TA coordination message for base station 2 300 and an uplink optimal transmit beam index for base station 2 from base station 1 200.
  • the terminal 100 sets a TA value for the base station 2 300 based on the received TA adjustment message (S1070).
  • the terminal 100 transmits a beam training signal to the base station 2 300 using the optimal transmission beam according to the TA value for the base station 2 300 (S1080).
  • the position information of the sequence and the resource used for transmitting the beam training signal may be included in the uplink beam training signal transmission command message or may be obtained according to a predetermined rule.
  • the structure of the beam training signal used in the step S1080 and the beam training signal used in the step S1050 may be different.
  • a beam training signal having a structure such as 810 may be transmitted, and in operation S1080, a beam training signal having a longer length than the 810 structure may be transmitted, such as 820. This is to reduce overhead by shortening the beam training signal for finding the uplink optimal beam and to increase the accuracy of the synchronization by lengthening the long beam training signal for uplink synchronization.
  • FIG. 11 is a diagram illustrating a processing flow in a first base station for an uplink synchronization operation according to an embodiment of the present invention. This flow illustrates a procedure performed by the first base station to enable the second base station of the beamforming-based wireless communication system to receive an uplink beam training signal from the terminal, for example, the first base station shown in FIG. 1A. 200 may be performed.
  • the base station 1 200 transmits a TA adjustment message for the base station 1 to the terminal 100 (S1110).
  • the base station 1 200 determines the sequence index and the resource location to be used by the terminal 100 to transmit the beam training signal to the base station 2 300 (S1120).
  • the base station 1 200 transmits a message to the terminal 100 instructing the terminal 100 to transmit an uplink beam training signal to the base station 2 300 (S1130).
  • FIG. 12 is a diagram illustrating a processing flow in a second base station for uplink synchronization operation according to an embodiment of the present invention.
  • This flow illustrates a procedure for receiving an uplink beam training signal from a terminal in a second base station of a beamforming based wireless communication system, and may be performed by the second base station 300 illustrated in FIG. 1A, for example.
  • the base station 2 300 receives an uplink beam training signal transmitted by the terminal 100 using a plurality of transmission beams (S1210).
  • the base station 2 300 finds an optimal transmission beam index for the base station 2 of the terminal 100 using the received beam training signal and calculates a TA value for the base station 2 (S1220).
  • the base station 2 300 transmits the TA adjustment message for the base station 2 and the optimal transmission beam index of the terminal for the base station 2 to the terminal 100 (S1230).
  • the base station 2 300 receives the beam training signal transmitted by the terminal 100 using the optimal transmission beam (S1240).
  • the base station 2 300 transmits a TA adjustment message for the base station 2 to the terminal 100 (S1250).
  • FIG. 13 illustrates transmission and reception of uplink and downlink of a base station and a terminal when the symbol lengths of two base stations are different when calculating a TA value of another base station based on a TA value of one base station according to embodiments of the present invention.
  • the time relationship is shown.
  • the length of the transmission frame of the first base station 200 illustrated in FIG. 1A is greater than the length of the transmission frame of the second base station 300.
  • the length of the downlink symbol 1301-1306 transmitted by the base station 1 200 is different from the length of the downlink symbol 1311-1313 transmitted by the base station 2 300.
  • the time difference between the symbol received by the terminal 100 from the two base stations and the time difference between the two base stations transmitting the downlink symbol may be different depending on which symbol is used as a reference.
  • the downlink symbol 1301 transmitted by the base station 1 200 arrives at the terminal 100 at a time of 1321 symbol after a time delay of T 1 .
  • the downlink symbol 1311 transmitted by the base station 2 300 arrives at the terminal 100 at a time of 1331 symbols after a time delay of T 2 .
  • the time difference between the symbols 1321 and 1331 received by the terminal 100 from two base stations is called T E, 1 . Times of the downlink symbols 1301 and 1311 transmitted by the two base stations are different by T D, 1 .
  • the downlink symbol 1304 transmitted by the base station 1 200 arrives at the terminal 100 at a time of 1324 symbols after a time delay of T 1 .
  • the downlink symbol 1313 transmitted by the base station 2 300 arrives at the terminal 100 at a time of 1333 symbols after a time delay of T 2 .
  • the time difference between the symbols 1324 and 1333 received by the terminal 100 from the two base stations is called T E, 2 .
  • the time of downlink symbols 1304 and 1313 transmitted by the two base stations differs by T D, 2 . In this case, T E, 1 and T E, 2 may be different from each other. Likewise, T D, 1 and T D, 2 may be different.
  • the terminal 100 receives the TA adjustment message from the base station 1 200 and calculates and knows the T TA, 1 value , the terminal 100 receives the TA adjustment message from the two base stations in order to use the method of calculating the T TA, 2 value for the base station 2 300.
  • the terminal 100 adjusts the uplink symbol transmission time for the base station 1 200 based on the start time of 1324 symbols to be received by the terminal 100, and synchronizes the uplink symbol transmission time for the base station 2 300.
  • the terminal 100 should calculate a time difference between two base stations transmitting downlink symbols based on 1304 symbols and 1313 symbols and time of symbols received from the two base stations. The difference must be calculated based on 1324 symbols and 1333 symbols. At this time, even if the base station receives information about T D, 1 , T D, 2 may be calculated using the difference between symbol lengths of the two base stations. In addition, if the UE calculates T E, 1 , T E, 2 may be calculated using the difference between symbol lengths of the two base stations.
  • FIG. 14 is a block diagram of a terminal device for an uplink synchronization operation according to embodiments of the present invention.
  • this block configuration may be implemented by the terminal 100 shown in FIG. 1A.
  • the terminal 100 includes a transceiver 1410 and a controller 1420.
  • the transceiver 1410 includes a transmitter 1412 and a receiver 1414.
  • the controller 1420 controls the transmitter 1412 and the receiver 1414 according to an uplink synchronization operation according to embodiments of the present invention. For example, the controller 1420 controls the operation according to the flow shown in FIG. 4 and the flow shown in FIG. 9 or 10.
  • Receiver 1414 receives a coordination message from the first base station 200 that includes the first TA value.
  • the transmitter 1412 transmits an uplink signal to the second base station 300 based on the second TA value for the second base station 300 configured based on the first TA value.
  • the second TA value is the difference between the first TA value, the time when the downlink signal transmitted from the first base station 200 and the second base station 300 is received at the terminal 100, the first base station 200 and the second Based on the difference in time when the downlink signal is transmitted from the base station 300, it is set.
  • the second TA value is Is set based on
  • T TA, 2 represents a second TA value
  • T TA, 1 represents a first TA value
  • TE is a time when a downlink signal transmitted from the first base station 200 and the second base station 300 is received at the terminal 100.
  • T D represents a difference in time when the downlink signal is transmitted from the first base station 200 and the second base station 300.
  • the uplink signal comprises a beam training signal.
  • the terminal 100 receives an uplink transmission command message to the second base station 300 from the first base station 200.
  • the uplink transmission command message may include at least one of sequence information for the beam training signal and a resource location for transmitting the beam training signal.
  • the sequence information includes an index indicating a sequence for the beam training signal.
  • the terminal transmits a beam training signal including a sequence corresponding to the index to the second base station 300.
  • the terminal transmits a beam training signal to the second base station 300 at the resource location.
  • the terminal receives a coordination message and uplink optimal beam information including a second TA value from the second base station 300, and uses the uplink optimal beam to receive an uplink signal based on a second TA value
  • the second base station 300 transmits.
  • FIG. 15 is a block diagram of a first base station apparatus for uplink synchronization according to embodiments of the present invention.
  • this block configuration can be implemented by the first base station 200 shown in FIG. 1A.
  • the first base station 200 includes a transceiver 1510 and a controller 1520.
  • the transceiver 1510 includes a transmitter 1512 and a receiver 1514.
  • the controller 1520 controls the transmitter 1512 and the receiver 1514 according to an uplink synchronization operation according to embodiments of the present invention. For example, the controller 1520 controls to perform an operation according to the flows shown in FIGS. 5 and 11.
  • the transmitter 1512 transmits an adjustment message including the first TA value to the terminal 100.
  • the transmitter 1512 transmits an uplink transmission command message to the terminal 100 so that the terminal 100 transmits an uplink signal to the second base station 300 based on the second TA value for the second base station 300 set based on the first TA value. Send.
  • the second TA value is the difference between the first TA value, the time when the downlink signal transmitted from the first base station 200 and the second base station 300 is received at the terminal 100, the first base station 200 and the second Based on the difference in time when the downlink signal is transmitted from the base station 300, it is set.
  • the second TA value is Is set based on
  • T TA, 2 represents a second TA value
  • T TA, 1 represents a first TA value
  • TE is a time when a downlink signal transmitted from the first base station 200 and the second base station 300 is received at the terminal 100.
  • T D represents a difference in time when the downlink signal is transmitted from the first base station 200 and the second base station 300.
  • the uplink signal comprises a beam training signal.
  • the first base station 200 transmits an uplink transmission command message to the second base station 300 to the terminal 100.
  • the uplink transmission command message may include at least one of sequence information for the beam training signal and a resource location for transmitting the beam training signal.
  • the sequence information includes an index indicating a sequence for the beam training signal.
  • the terminal transmits a beam training signal including a sequence corresponding to the index to the second base station 300.
  • the terminal transmits a beam training signal to the second base station 300 at the resource location.
  • FIG. 16 is a block diagram of a second base station apparatus for uplink synchronization according to embodiments of the present invention.
  • this block configuration may be implemented by the second base station 300 shown in FIG. 1A.
  • the second base station 300 includes a transceiver 1610 and a controller 1620.
  • the transceiver 1610 includes a transmitter 1612 and a receiver 1614.
  • the controller 1620 controls the transmitter 1612 and the receiver 1614 according to the uplink synchronization operation according to the embodiments of the present invention. For example, the controller 1620 controls the operation according to the flow shown in FIGS. 6 and 12.
  • the receiver 1614 receives an uplink signal transmitted from the terminal 100 based on the second TA value for the second base station 300.
  • the second TA value is set based on the first TA value for the first base station 200.
  • the second TA value is the difference between the first TA value, the time when the downlink signal transmitted from the first base station 200 and the second base station 300 is received at the terminal 100, the first base station 200 and the second Based on the difference in time when the downlink signal is transmitted from the base station 300, it is set.
  • the second TA value is Is set based on
  • T TA, 2 represents a second TA value
  • T TA, 1 represents a first TA value
  • T E represents a downlink signal transmitted from the first base station 200 and the second base station 300 from the terminal 100.
  • T D represents a difference in time
  • T D represents a difference in time when a downlink signal is transmitted from the first base station 200 and the second base station 300.
  • the uplink signal comprises a beam training signal.
  • the uplink signal is transmitted by the terminal 100 in response to the uplink transmission command message to the second base station 300 being received from the first base station 200.
  • the uplink transmission command message may include at least one of sequence information for the beam training signal and a resource location for transmitting the beam training signal.
  • the sequence information includes an index indicating a sequence for the beam training signal.
  • the terminal transmits a beam training signal including a sequence corresponding to the index to the second base station 300.
  • the terminal transmits a beam training signal to the second base station 300 at the resource location.
  • the second base station 300 searches for uplink optimal beam information of the terminal 100 for the second base station 300, calculates a TA value for the second base station 300, and includes a message including the calculated TA value; And transmitting the searched uplink optimal beam information to the terminal 100 and receiving the uplink signal transmitted from the terminal 100 based on the calculated TA value using the uplink optimal beam.
  • the first base station 200 and the second base station 300 illustrated in FIGS. 15 and 16 may use the same radio access technology or different radio access technologies.
  • the first base station 200 and the second base station 300 may be physically located at the same location or at different locations.
  • the first base station 200 may use carriers in the first frequency domain
  • the second base station 300 may use carriers in a second frequency domain different from the first frequency domain.
  • the transmission frame structure of the first base station 200 and the transmission frame structure of the second base station 300 may be different from each other.
  • the embodiments of the present invention are configured by adjusting uplink signal time sent to another base station or another cell by using information (eg, TA value) for uplink synchronization in one base station or one cell in a wireless communication system.
  • information eg, TA value
  • the overhead of link resources can be reduced.
  • the present invention has been described by way of limited embodiments and drawings, but the present invention is not limited to the above embodiments, and various modifications and variations are possible to those skilled in the art to which the present invention pertains. Do.
  • the embodiments of the present invention have been described mainly as an example applied to a wireless communication system configured as shown in FIG. 1A, as described above, the embodiments of the present invention are located at different positions as shown in FIGS. 1B and 1C. The same may be applied to the case where the respective carriers of the base stations or the multiple carriers of the base station in the same location are serviced by the carrier aggregation technology.
  • operations in accordance with embodiments of the present invention may be implemented by a single processor.
  • program instructions for performing various computer-implemented operations may be recorded on a computer-readable medium.
  • the computer-determinable medium may include program instructions, data files, data structures, and the like, alone or in combination.
  • the program instructions may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well known and available to those skilled in the art.
  • Examples of computer readable recording media include magnetic media such as hard disks, floppy disks and magnetic tape, optical recording media such as CD-ROMs or DVDs, magnetic-optical media such as floppy disks and ROMs.
  • Examples of program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
  • a computer readable recording medium storing the computer program is also included in the present invention. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined not only by the claims below but also by the equivalents of the claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시는 LTE와 같은 4G 통신 시스템 이후 보다 높은 데이터 전송률을 지원하기 제공될 5G 또는 pre-5G 통신 시스템에 관련된 것이다. 본 발명의 실시예들은 무선통신 시스템에서 상향링크 동기를 맞추기 위한 방법 및 장치를 제공하기 위한 것이다. 본 발명의 일 실시예에 따르면, 무선통신 시스템의 단말의 동작 방법은: 제1 타이밍 어드밴스(TA) 값을 포함하는 조정 메시지를 제1 기지국으로부터 수신하는 과정; 및 상기 제1 TA 값에 기반하여 설정된 제2 기지국에 대한 제2 TA 값에 기반하여 상향링크 신호를 상기 제2 기지국으로 송신하는 과정을 포함한다. 이러한 본 발명의 실시예에 따르면, 무선통신 시스템에서 한 기지국 또는 한 셀에서의 상향링크 동기화를 위한 정보를 이용하여 다른 기지국 또는 다른 셀로 보내는 상향링크 신호 시간을 조정함으로써 상향링크 자원의 오버헤드를 줄일 수 있다.

Description

무선통신 시스템의 상향링크 동기화 장치 및 방법
본 발명은 무선통신 시스템의 동기화에 관한 것이다.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 이후의 시스템이라 불리어지고 있다.
높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다.
또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다.
이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non orthogonal multiple access), 및SCMA(sparse code multiple access) 등이 개발되고 있다.
무선통신 시스템의 기지국에서 여러 단말들로부터 수신하는 신호들의 동기가 서로 맞지 않는다면, 간섭이 발생할 수 있다. 예를 들어, LTE(Long Term Evolution) 시스템에서 서브캐리어(Subcarrier)들 사이와 연속한 서브프레임(Subframe)들 사이에서 간섭이 발생할 수 있다. 발생한 간섭에 의해 패킷 오류율(Packet Error Rate)이 증가하여 시스템의 성능 저하가 생길 수 있다. 따라서 단말들의 상향링크 동기를 서로 맞추는 것이 중요하다.
따라서 본 발명의 실시 예들은 무선통신 시스템에서 상향링크 동기를 맞추기 위한 방법 및 장치를 제공하기 위한 것이다.
본 발명의 실시 예들은 무선통신 시스템의 상향링크 동기를 위한 채널 구조의 오버헤드(Overhead)를 줄이기 위하여 상향링크 신호를 전송하는 방법 및 장치를 제공하기 위한 것이다.
본 발명의 일 실시예에 따르면, 무선통신 시스템의 단말의 동작 방법은: 제1 타이밍 어드밴스(Timing Advance, TA) 값을 포함하는 조정 메시지를 제1 기지국으로부터 수신하는 과정; 및 상기 제1 TA 값에 기반하여 설정된 제2 기지국에 대한 제2 TA 값에 기반하여 상향링크 신호를 상기 제2 기지국으로 송신하는 과정을 포함한다.
본 발명의 다른 실시예에 따르면, 무선통신 시스템의 제1 기지국의 동작 방법은: 제1 타이밍 어드밴스(TA) 값을 포함하는 조정 메시지를 단말로 송신하는 과정; 및 상기 제1 TA 값에 기반하여 설정된 제2 기지국에 대한 제2 TA 값에 기반하여 상향링크 신호를 상기 단말이 상기 제2 기지국으로 송신하도록, 상향링크 전송 명령 메시지를 상기 단말로 송신하는 과정을 포함한다.
본 발명의 다른 실시예에 따르면, 무선통신 시스템의 제2 기지국의 동작 방법은: 제2 기지국에 대한 제2 타이밍 어드밴스(TA) 값에 기반하여 송신된 상향링크 신호를 단말로부터 수신하는 과정을 포함한다. 상기 제2 TA 값은, 제1 기지국에 대한 제1 TA 값에 기반하여 설정된다.
본 발명의 다른 실시예에 따르면, 무선통신 시스템의 단말 장치는: 제1 타이밍 어드밴스(TA) 값을 포함하는 조정 메시지를 제1 기지국으로부터 수신하는 수신기; 및 상기 제1 TA 값에 기반하여 설정된 제2 기지국에 대한 제2 TA 값에 기반하여 상향링크 신호를 상기 제2 기지국으로 송신하는 송신기를 포함한다.
본 발명의 다른 실시예에 따르면, 무선통신 시스템의 제1 기지국 장치는: 제1 타이밍 어드밴스(TA) 값을 포함하는 조정 메시지 및 상향링크 전송 명령 메시지를 생성하는 제어부; 및 송신기를 포함한다. 상기 송신기는, 상기 조정 메시지를 송신하고, 상기 제1 TA 값에 기반하여 설정된 제2 기지국에 대한 제2 TA 값에 기반하여 상향링크 신호를 상기 단말이 상기 제2 기지국으로 송신하도록, 상기 상향링크 전송 명령 메시지를 상기 단말로 송신한다.
본 발명의 다른 실시예에 따르면, 무선통신 시스템의 제2 기지국 장치는: 제2 기지국에 대한 제2 타이밍 어드밴스(TA) 값에 기반하여 송신된 상향링크 신호를 단말로부터 수신하는 수신기를 포함한다. 상기 제2 TA 값은, 제1 기지국에 대한 제1 TA 값에 기반하여 설정된다.
본 발명의 실시예들에 따르면, 무선통신 시스템에서 한 기지국 또는 한 셀에서의 상향링크 동기화를 위한 정보를 이용하여 다른 기지국 또는 다른 셀로 보내는 상향링크 신호 시간을 조정함으로써 상향링크 자원의 오버헤드를 줄일 수 있다.
본 발명 및 그의 효과에 대한 보다 완벽한 이해를 위해, 첨부되는 도면들을 참조하여 하기의 설명들이 이루어질 것이고, 여기서 동일한 참조 부호들은 동일한 부분들을 나타낸다.
도 1a 내지 도 1c는 본 발명의 실시예들에 따른 상향링크 동기화 동작이 적용되는 무선통신 시스템의 구성을 보여주는 도면들이다.
도 2는 무선통신 시스템에서 상향링크 심볼 동기를 맞추는 예를 보여주는 도면이다.
도 3은 본 발명의 실시예들에 따라 무선통신 시스템에서 상향링크 심볼 동기를 맞추는 예를 보여주는 도면이다.
도 4는 본 발명의 실시예들에 따른 상향링크 동기화 동작을 위한 단말에서의 처리 흐름을 보여주는 도면이다.
도 5는 본 발명의 실시예들에 따른 상향링크 동기화 동작을 위한 제1 기지국에서의 처리 흐름을 보여주는 도면이다.
도 6은 본 발명의 실시예들에 따른 상향링크 동기화 동작을 위한 제2 기지국에서의 처리 흐름을 보여주는 도면이다.
도 7은 본 발명의 실시예들에 따른 상향링크 신호의 전송 프레임 구조의 일 예를 보여주는 도면이다.
도 8은 본 발명의 실시예들에 따른 상향링크 신호의 구조의 일 예를 보여주는 도면이다.
도 9는 본 발명의 일 실시예에 따른 상향링크 동기화 동작을 위한 단말에서의 처리 흐름을 보여주는 도면이다.
도 10은 본 발명의 다른 실시예에 따른 상향링크 동기화 동작을 위한 단말에서의 처리 흐름을 보여주는 도면이다.
도 11은 본 발명의 일 실시예에 따른 상향링크 동기화 동작을 위한 제1 기지국에서의 처리 흐름을 보여주는 도면이다.
도 12는 본 발명의 일 실시예에 따른 상향링크 동기화 동작을 위한 제2 기지국에서의 처리 흐름을 보여주는 도면이다.
도 13은 본 발명의 실시예들에 따른 상향링크 동기화 동작을 위한 2개 기지국들에서의 심볼 길이가 서로 다른 경우, 기지국들과 단말의 상향링크와 하향링크의 송수신 시간 관계를 도시하는 도면이다.
도 14는 본 발명의 실시예들에 따른 상향링크 동기화 동작을 위한 단말 장치의 블록 구성을 보여주는 도면이다.
도 15는 본 발명의 실시예들에 따른 상향링크 동기화 동작을 위한 제1 기지국 장치의 블록 구성을 보여주는 도면이다.
도 16은 본 발명의 실시예들에 따른 상향링크 동기화 동작을 위한 제2 기지국 장치의 블록 구성을 보여주는 도면이다.
본 특허 명세서에서 본 발명의 원리들을 설명하기 위해 사용되어지는 도 1a 내지 도 16은 단지 예시를 위한 것인 바, 발명의 범위를 제한하는 어떠한 것으로도 해석되어져서는 아니된다. 당해 분야에서 통상의 지식을 가진 자는 본 발명의 원리들이 적절하게 배치된 임의의 무선통신 시스템과 빔포밍 기반 무선통신 시스템에서도 구현되어질 수 있음을 이해할 것이다.
하기에서는 본 발명의 실시예들에 따른, 무선통신 시스템에서 단말들 사이의 상향링크 동기를 맞추면서도, 상향링크 자원의 오버헤드를 줄일 수 있는 상향링크 동기화 방법 및 장치가 설명될 것이다. 본 발명의 실시예들은 롱텀 에볼루션(Long Term Evolution, LTE) 방식의 무선통신 시스템에 적용될 수 있다. 또한, 본 발명의 실시예들은 빔포밍(beamforming) 기술을 사용하는 무선통신 시스템에 적용될 수 있다. 또한, 본 발명의 실시예들은 롱텀 에볼루션 방식의 무선통신 시스템과 빔포밍 기술을 사용하는 무선통신 시스템이 공존하는 경우에 적용될 수 있다.
단말들의 상향링크 동기를 맞추는 방법의 일 예로 LTE 시스템에서는 타이밍 어드밴스(Timing Advance, TA) 값을 이용한다. 단말은 하향링크 신호 동기를 기준으로 일정 시간만큼 앞당겨서 상향링크 신호를 전송한다. 이 앞당기는 시간은 타이밍 어드밴스(Timing Advance, TA)라 하여 기지국이 단말에게 알려주는 값이다. 기지국은 TA 값을 각 단말마다 조정해줌으로써 여러 단말들의 상향링크 동기를 서로 맞출 수 있다.
여러 개의 서로 다른 무선통신 시스템(3G, 4G 등)이 공존하는 환경에서 단말은 각 무선통신 시스템에 접속할 때마다 랜덤 억세스(Random Access) 절차를 수행을 한다. 이때 단말이 보낸 상향링크 신호(예; LTE 시스템의 경우 랜덤 억세스 프리앰블(Random Access Preamble), 상향링크 물리 공유 채널(Physical Uplink Shared Channel), 사운딩 참조 신호(Sounding Reference Signal) 등)을 이용하여 기지국은 단말이 적용해야 할 TA 값을 계산한다. 한 무선통신 시스템에서 단말이 여러 캐리어(Carrier)를 동시에 사용할 때, 각 캐리어에 대한 TA 값이 다르게 적용되어야 한다면 단말은 각 캐리어에 대해 상향링크 신호를 전송해야 한다.
고주파(High Frequency) 대역에서 빔포밍 기술을 사용하는 무선통신 시스템에서 단말과 기지국은 각각 여러 개의 빔들을 운용한다. 상향링크에서 단말의 송신빔과 기지국의 수신빔 쌍이 여러 개 있기 때문에, 단말은 이 시스템에 접속할 때 모든 빔 쌍에 대해 상향링크 신호를 전송해야 한다. 기지국은 채널 품질이 가장 좋은 빔 쌍을 선택하고 그 빔 쌍에 대해 단말이 적용해야 할 TA 값을 계산한다.
도 1a 내지 도 1c는 본 발명의 실시예들에 따른 상향링크 동기화 동작이 적용되는 무선통신 시스템의 구성을 보여주는 도면들이다.
도 1a를 참조하면, 단말 100은 두 기지국들 200,300과 통신한다. 단말 100은 제1 기지국 200과 제2 기지국 300로부터 각각 하향링크 참조 신호들 31,32를 수신한다. 단말 100이 각 기지국 200,300으로 상향링크 신호 41, 42를 전송하기 위해서는 각 기지국 200,300에 대한 상향링크 동기화를 위한 정보(예; TA 값)를 알아야 한다.
일 실시예에서, 기지국 200과 기지국 300은 동일한 무선 접속 기술(Radio Access Technology, RAT)을 사용한다. 예를 들어, 기지국 200과 기지국 300은 LTE 방식을 사용한다. 다른 실시예에서, 기지국 200과 기지국 300은 서로 다른 RAT을 사용한다. 예를 들어, 기지국 200은 LTE 방식을 사용하고, 기지국 300은 와이기그(Wireless Gigabits, WiGig) 방식을 사용한다.
일 실시예에서, 기지국 200과 기지국 300은 지리적으로 서로 다른 위치에 있다. 다른 실시예에서, 기지국 200과 기지국 300은 지리적으로 동일 위치에 있다.
일 실시예에서, 기지국 200과 기지국 300이 사용하는 주파수 영역은 동일하다. 다른 실시예에서, 기지국 200과 기지국 300이 사용하는 주파수 영역은 서로 다르다.
도 1b를 참조하면, 단말 100은 물리적으로 서로 다른 위치에 있는 두 기지국들 200,300과 통신한다. 기지국 200은 제1 주파수 영역의 제1 캐리어(carrier) 410을 통해 단말 100과 신호를 송수신한다. 기지국 300은 제2 주파수 영역의 제2 캐리어 420을 통해 단말 100과 신호를 송수신한다. 제1 캐리어 410과 제2 캐리어 420은 캐리어 집성(carrier aggregation) 기술에 의해 함께 사용될 수 있다. 이러한 경우 기지국 200은 LTE 셀, 즉 프라이머리 셀(primary cell, PCell)의 기지국이 될 수 있으며, 기지국 300은 세컨더리 셀(secondary cell, SCell)의 기지국이 될 수 있다.
일 실시예에서, 제1 캐리어 410 및 제2 캐리어 420은 모두 LTE 주파수 대역의 캐리어일 수 있다. 다른 실시예에서, 제1 캐리어 410은 LTE 주파수 대역의 캐리어일 수 있으며, 제2 캐리어 420은 밀리미터파(Millimeter Wave, mmWave) 대역의 캐리어일 수 있다. 이러한 경우 제1 캐리어 410과 제2 캐리어 420의 프레임 구조는 서로 다르다.
도 1c를 참조하면, 단말 100은 기지국 200과 통신한다. 기지국 200은 제1 주파수 영역의 제1 캐리어 410을 통해 단말 100과 신호를 송수신한다. 또한, 기지국 200은 제2 주파수 영역의 제2 캐리어 420을 통해 단말 100과 신호를 송수신한다. 제1 캐리어 410과 제2 캐리어 420은 캐리어 집성 기술에 의해 함께 사용될 수 있다. 이러한 경우 기지국 200은 LTE 셀, 즉 프라이머리 셀(primary cell, PCell)의 기지국이 될 수 있으며, 기지국 300은 세컨더리 셀(secondary cell, SCell)의 기지국이 될 수 있다.
일 실시예에서, 제1 캐리어 410 및 제2 캐리어 420은 모두 LTE 주파수 대역의 캐리어일 수 있다. 다른 실시예에서, 제1 캐리어 410은 LTE 주파수 대역의 캐리어일 수 있으며, 제2 캐리어 420은 밀리미터파(mmWave) 대역의 캐리어일 수 있다. 이러한 경우 제1 캐리어 410과 제2 캐리어 420의 프레임 구조는 서로 다르다.
도 2는 무선통신 시스템에서 상향링크 심볼 동기를 맞추는 예를 보여주는 도면이다. 여기서는 단말이 기지국으로부터 받은 TA 값을 이용하여 상향링크 심볼 동기를 맞추는 예를 보여준다.
도 2를 참조하면, 기지국이 전송한 하향링크 심볼(S210)은 T만큼의 시간 지연 후에 단말에 도착한다(S220). 단말은 기지국으로부터 TA 조정 메시지를 수신하여 TTA 값을 계산한다. 단말은 상향링크 신호를 보낼 때 기지국의 하향링크 심볼을 수신한 시점으로부터 TTA 값만큼 앞당겨서 동기를 맞춘 후 보낸다(S230). 기지국 내의 모든 단말이 이와 같이 상향링크 신호를 보냄으로써 기지국에서 수신하는 단말의 상향링크 신호의 동기를 맞출 수 있다. 기지국은 단말이 전송한 랜덤 액세스 프리앰블(Random Access Preamble)이나 사운딩 참조 신호(Sounding Reference signal) 등의 상향링크 신호를 수신하여 TTA 값을 추정한다(S240). LTE 시스템에서 시분할다중화(Time Division Duplex, TDD) 모드인 경우 단말이 상향링크 신호를 보낼 때 TTA 값에 특정 상수(Constant) 값을 더하여 송신 신호를 앞당긴다. 이하 TTA 값만큼 앞당기는 것으로 설명할지라도 위의 특정 상수를 더하는 실시 예를 배제하지 않는다.
도 3은 본 발명의 실시예들에 따라 무선통신 시스템에서 상향링크 심볼 동기를 맞추는 예를 보여주는 도면이다. 이 도면은 단말이 한 기지국(예; 제1 기지국)에 대한 TA 값을 바탕으로 다른 기지국(예; 제2 기지국)에 대한 TA 값을 계산할 때, 기지국들과 단말 사이의 상향링크와 하향링크의 송수신 시간 관계를 도시하고 있다.
도 3을 참조하면, 기지국 1이 전송한 하향링크 심볼(S310)은 T1만큼의 시간 지연 후에 단말에 도착하고(S330), 기지국 2가 전송한 하향링크 심볼(S320)은 T2만큼의 시간 지연 후에 단말에 도착한다(S340). 단말이 두 기지국으로부터 수신한 심볼 시간의 차이를 TE라 한다(S350). 두 기지국이 하향링크 심볼을 전송하는 시간은 TD만큼 차이가 난다(S320). 단말이 기지국 1으로부터 TA 조정 메시지를 받아 TTA,1 값을 계산하여 알고 있을 때, 본 발명의 일 실시 예에 따르면 기지국 2에 대한 TTA,2 값은 다음의 수학식 1과 같이 계산된다.
수학식 1
Figure PCTKR2015007453-appb-M000001
상기 <수학식 1>를 참조하면, 기지국 2에 대한 TTA,2 값은 기지국 1에 대한 TTA,1 값에 단말이 두 기지국으로부터 수신한 심볼 시간의 차이 TE 값의 2배를 더하고 두 기지국이 하향링크 심볼을 전송한 시간의 차이 TD만큼 빼준 것과 같다는 것을 알 수 있다. 다시 말해, 단말은 기지국 2에 대한 TA 조정 메시지를 받지 않더라도 TTA,1, TD, 그리고 TE를 이용하여 기지국 2에 대한 TTA,2 값을 계산할 수 있다. 단말은 상기 <수학식 1>과 같이 TA 값을 설정하여(S370) 기지국 2에 상향링크 심볼을 전송한다(S380).
이와 같이, 단말은 기지국 1의 하향링크 신호를 수신한 시점으로부터 TTA,1 값만큼 앞당겨서 동기를 맞춘 후 기지국 1로 상향링크 신호를 송신한다(S350). 그러면 기지국 1은 단말이 상향링크 신호를 송신한 시점(S350)부터 T1이 경과한 시점에 상향링크 신호를 수신한다(S360). 또한, 단말은 기지국 2의 하향링크 신호를 수신한 시점으로부터 TTA,2 값만큼 앞당겨서 동기를 맞춘 후 기지국 2로 상향링크 신호를 송신한다(S370). 그러면 기지국 2는 단말이 상향링크 신호를 송신한 시점(S370)부터 T2가 경과한 시점에 상향링크 신호를 수신한다(S380).
도 4는 본 발명의 실시예들에 따른 상향링크 동기화 동작을 위한 단말에서의 처리 흐름을 보여주는 도면이다. 예를 들어, 이 처리 흐름은 도 1a에 도시된 단말 100에 의해 수행될 수 있다.
도 4를 참조하면, 단말 100은 제1 TA 값을 포함하는 조정 메시지를 제1 기지국 200으로부터 수신한다(S410). 다음에, 단말은 제1 TA 값에 기반하여 설정된 제2 기지국 300에 대한 제2 TA 값에 기반하여 상향링크 신호를 제2 기지국 300으로 송신한다(S420).
일 실시예에서, 제2 TA 값은, 제1 TA 값과, 제1 기지국 200 및 제2 기지국 300으로부터 송신된 하향링크 신호가 단말 100에서 수신된 시간의 차이와, 제1 기지국 200 및 제2 기지국 300에서 하향링크 신호가 송신된 시간의 차이에 기반하여, 설정된다.
일 실시예에서, 제2 TA 값은 수학식
Figure PCTKR2015007453-appb-I000001
에 기반하여 설정된다. 여기서, TTA,2는 제2 TA 값을 나타내고, TTA,1은 제1 TA 값을 나타내고, TE는 제1 기지국 200 및 제2 기지국 300으로부터 송신된 하향링크 신호가 단말 100에서 수신된 시간의 차이를 나타내고, TD는 제1 기지국 200 및 제2 기지국 300에서 하향링크 신호가 송신된 시간의 차이를 나타낸다.
일 실시예에서, 상향링크 신호는 빔 트레이닝 신호를 포함한다.
일 실시예에서, 단말 100은 제2 기지국 300으로의 상향링크 전송 명령 메시지를 제1 기지국 200으로부터 수신한다. 예를 들어, 상향링크 전송 명령 메시지는 빔 트레이닝 신호를 위한 시퀀스 정보, 및 빔 트레이닝 신호를 전송할 자원 위치 중의 적어도 하나를 포함할 수 있다. 일 실시예에서, 시퀀스 정보는 빔 트레이닝 신호를 위한 시퀀스를 나타내는 인덱스를 포함한다. 이러한 경우 단말은 상기 인덱스에 대응하는 시퀀스를 포함하는 빔 트레이닝 신호를 제2 기지국 300으로 송신한다. 다른 실시예에서, 단말은 상기 자원 위치에서 빔 트레이닝 신호를 제2 기지국 300으로 송신한다.
일 실시예에서, 단말은 제2 TA 값을 포함하는 조정 메시지와 상향링크 최적 빔 정보를 제2 기지국 300으로부터 수신하고, 상기 상향링크 최적 빔을 이용하여 제2 TA 값에 기반하는 상향링크 신호를 제2 기지국 300으로 송신한다.
일 실시예에서, 제1 기지국 200과 제2 기지국 300은 동일한 무선접속 기술 또는 서로 다른 무선접속 기술을 사용한다.
일 실시예에서, 제1 기지국 200과 제2 기지국 300은 물리적으로 동일한 위치에 위치해 있거나 다른 위치에 위치해 있다.
일 실시예에서, 제1 기지국 200은 제1 주파수 영역의 캐리어를 사용하고, 제2 기지국 300은 제1 주파수 영역과 다른 제2 주파수 영역의 캐리어를 사용한다.
일 실시예에서, 제1 기지국 200의 전송 프레임(하향링크 프레임 또는 상향링크 프레임) 구조와 제2 기지국 300의 전송 프레임(하향링크 프레임 또는 상향링크 프레임) 구조는 서로 다르다.
도 5는 본 발명의 실시예들에 따른 상향링크 동기화 동작을 위한 제1 기지국에서의 처리 흐름을 보여주는 도면이다. 예를 들어, 이 처리 흐름은 도 1a에 도시된 제1 기지국 200에 의해 수행될 수 있다.
도 5를 참조하면, 제1 기지국 200은 제1 TA 값을 포함하는 조정 메시지를 단말 100으로 송신한다(S510). 다음에, 제1 기지국 200은 제1 TA 값에 기반하여 설정된 제2 기지국 300에 대한 제2 TA 값에 기반하여 상향링크 신호를 단말 100이 제2 기지국 300으로 송신하도록, 상향링크 전송 명령 메시지를 단말 100으로 송신한다(S520).
일 실시예에서, 제2 TA 값은, 제1 TA 값과, 제1 기지국 200 및 제2 기지국 300으로부터 송신된 하향링크 신호가 단말 100에서 수신된 시간의 차이와, 제1 기지국 200 및 제2 기지국 300에서 하향링크 신호가 송신된 시간의 차이에 기반하여, 설정된다.
일 실시예에서, 제2 TA 값은 수학식
Figure PCTKR2015007453-appb-I000002
에 기반하여 설정된다. 여기서, TTA,2는 제2 TA 값을 나타내고, TTA,1은 제1 TA 값을 나타내고, TE는 제1 기지국 200 및 제2 기지국 300으로부터 송신된 하향링크 신호가 단말 100에서 수신된 시간의 차이를 나타내고, TD는 제1 기지국 200 및 제2 기지국 300에서 하향링크 신호가 송신된 시간의 차이를 나타낸다.
일 실시예에서, 상향링크 신호는 빔 트레이닝 신호를 포함한다.
일 실시예에서, 제1 기지국 200은 제2 기지국 300으로의 상향링크 전송 명령 메시지를 단말 100으로 송신한다. 예를 들어, 상향링크 전송 명령 메시지는 빔 트레이닝 신호를 위한 시퀀스 정보, 및 빔 트레이닝 신호를 전송할 자원 위치 중의 적어도 하나를 포함할 수 있다. 일 실시예에서, 시퀀스 정보는 빔 트레이닝 신호를 위한 시퀀스를 나타내는 인덱스를 포함한다. 이러한 경우 단말은 상기 인덱스에 대응하는 시퀀스를 포함하는 빔 트레이닝 신호를 제2 기지국 300으로 송신한다. 다른 실시예에서, 단말은 상기 자원 위치에서 빔 트레이닝 신호를 제2 기지국 300으로 송신한다.
일 실시예에서, 제1 기지국 200과 제2 기지국 300은 동일한 무선접속 기술 또는 서로 다른 무선접속 기술을 사용한다.
일 실시예에서, 제1 기지국 200과 제2 기지국 300은 물리적으로 동일한 위치에 위치해 있거나 다른 위치에 위치해 있다.
일 실시예에서, 제1 기지국 200은 제1 주파수 영역의 캐리어를 사용하고, 제2 기지국 300은 제1 주파수 영역과 다른 제2 주파수 영역의 캐리어를 사용한다.
일 실시예에서, 제1 기지국 200의 전송 프레임(하향링크 프레임 또는 상향링크 프레임) 구조와 제2 기지국 300의 전송 프레임(하향링크 프레임 또는 상향링크 프레임) 구조는 서로 다르다.
도 6은 본 발명의 실시예들에 따른 상향링크 동기화 동작을 위한 제2 기지국에서의 처리 흐름을 보여주는 도면이다. 예를 들어, 이 처리 흐름은 도 1a에 도시된 제2 기지국 300에 의해 수행될 수 있다.
도 6을 참조하면, 제2 기지국 300은 제2 기지국 300에 대한 제2 TA 값에 기반하여 송신된 상향링크 신호를 단말 100으로부터 수신한다. 제2 TA 값은, 제1 기지국 200에 대한 제1 TA 값에 기반하여 설정된다.
일 실시예에서, 제2 TA 값은, 제1 TA 값과, 제1 기지국 200 및 제2 기지국 300으로부터 송신된 하향링크 신호가 단말 100에서 수신된 시간의 차이와, 제1 기지국 200 및 제2 기지국 300에서 하향링크 신호가 송신된 시간의 차이에 기반하여, 설정된다.
일 실시예에서, 제2 TA 값은 수학식
Figure PCTKR2015007453-appb-I000003
에 기반하여 설정된다. 여기서, TTA,2는 제2 TA 값을 나타내고, TTA,1은 제1 TA 값을 나타내고, TE는 제1 기지국 200 및 제2 기지국 300으로부터 송신된 하향링크 신호가 단말 100에서 수신된 시간의 차이를 나타내고, TD는 제1 기지국 200 및 제2 기지국 300에서 하향링크 신호가 송신된 시간의 차이를 나타낸다.
일 실시예에서, 상향링크 신호는 빔 트레이닝 신호를 포함한다. 상기 상향링크 신호는 제2 기지국 300으로의 상향링크 전송 명령 메시지가 제1 기지국 200으로부터 수신됨에 응답하여 단말 100에 의해 송신된다. 예를 들어, 상향링크 전송 명령 메시지는 빔 트레이닝 신호를 위한 시퀀스 정보, 및 빔 트레이닝 신호를 전송할 자원 위치 중의 적어도 하나를 포함할 수 있다. 일 실시예에서, 시퀀스 정보는 빔 트레이닝 신호를 위한 시퀀스를 나타내는 인덱스를 포함한다. 이러한 경우 단말은 상기 인덱스에 대응하는 시퀀스를 포함하는 빔 트레이닝 신호를 제2 기지국 300으로 송신한다. 다른 실시예에서, 단말은 상기 자원 위치에서 빔 트레이닝 신호를 제2 기지국 300으로 송신한다.
일 실시예에서, 제2 기지국 300은 제2 기지국 300에 대한 단말 100의 상향링크 최적 빔 정보를 탐색하고, 제2 기지국 300에 대한 TA 값을 계산하고, 상기 계산된 TA 값을 포함하는 메시지와 상기 탐색된 상향링크 최적 빔 정보를 단말 100으로 송신하고, 상기 상향링크 최적 빔을 이용하여 상기 계산된 TA 값에 기반하여 송신된 상향링크 신호를 단말 100으로부터 수신하는 과정을 더 수행한다.
일 실시예에서, 제1 기지국 200과 제2 기지국 300은 동일한 무선접속 기술 또는 서로 다른 무선접속 기술을 사용한다.
일 실시예에서, 제1 기지국 200과 제2 기지국 300은 물리적으로 동일한 위치에 위치해 있거나 다른 위치에 위치해 있다.
일 실시예에서, 제1 기지국 200은 제1 주파수 영역의 캐리어를 사용하고, 제2 기지국 300은 제1 주파수 영역과 다른 제2 주파수 영역의 캐리어를 사용한다.
일 실시예에서, 제1 기지국 200의 전송 프레임(하향링크 프레임 또는 상향링크 프레임) 구조와 제2 기지국 300의 전송 프레임(하향링크 프레임 또는 상향링크 프레임) 구조는 서로 다르다.
도 7은 본 발명의 실시예들에 따른 상향링크 신호의 전송 프레임 구조의 일 예를 보여주는 도면이다. 이 도면은 빔포밍 기반의 무선통신 시스템에서 단말의 송신 빔이 2개이고, 기지국의 수신 빔이 6개인 경우에, 상향링크 빔 트레이닝 신호를 전송하는 프레임 구조의 예를 도시하고 있다.
도 7을 참조하면, 710은 상향링크 프레임을 나타낸다. 기지국은 단말이 운용하는 송신 빔 개수, 기지국이 운용하는 수신 빔 개수, 단말의 채널 품질 등을 고려하여 단말이 빔 트레이닝 신호 전송에 사용할 상향링크 자원을 할당한다. 721영역부터 여섯 영역들 720에 걸쳐 단말은 첫 번째 송신빔을 사용하여 신호를 보내고, 기지국은 수신빔 1부터 6까지를 순차적으로 사용하여 신호를 받는다. 731영역부터 여섯 영역들 730에 걸쳐 단말은 두 번째 송신빔을 사용하여 신호를 보내고, 기지국은 수신빔 1부터 6까지를 순차적으로 사용하여 신호를 받는다. 기지국은 단말의 채널 품질이 좋지 않은 단말에게는 좀 더 많은 양의 시간 자원을 할당해줌으로써 단말의 빔 트레이닝 성능을 높일 수 있다. 반면에, 채널 품질이 좋은 단말에게는 더 적은 양의 시간 자원을 할당해줌으로써 오버헤드를 줄일 수 있다. 단말의 디지털 체인(Digital Chain)에 어레이(Array) 안테나가 연결되어 있는데, 이 어레이 안테나에서 한 빔을 형성할 수 있다. 단말이 복수의 디지털 체인을 가지고 있는 경우 단말은 여러 빔을 동시에 형성할 수 있으므로, 기지국이 단말에게 주파수 축으로 여러 자원을 동시에 할당해주면 단말은 각 주파수마다 서로 다른 송신빔을 사용하여 빔 트레이닝 신호를 보냄으로써 빔 트레이닝의 지연 시간(Latency)을 줄일 수 있다.
기지국 1과 기지국 2가 서로 다른 위치에 있는 경우, 기지국 1에서 상기 상향링크 자원의 위치 정보를 기지국 2로 전송해주어야 한다. 또한 단말이 사용할 빔 트레이닝 신호의 시퀀스 정보도 기지국 2에 알려줄 수 있다.
일 실시예에서, 상기 상향링크 자원의 위치 정보는 기지국 2의 시스템 정보(System Information)로서 알려질 수 있다.
도 8은 본 발명의 실시예들에 따른 상향링크 신호의 구조의 일 예를 보여주는 도면이다. 이 도면은 빔포밍 기반의 무선 통신 시스템에서 도 1a에 도시된 단말 100이 전송하는 상향링크 빔 트레이닝 신호의 구조를 도시한다.
도 8을 참조하면, 810은 단말 100이 복수의 송수신 빔 쌍에 대해 빔 트레이닝 신호를 전송할 때의 송신 신호 구조를 나타낸다. 한 송수신 빔 쌍에 대한 한 빔 트레이닝 신호 820은 사이클릭 프리픽스(Cyclic Prefix, CP) 822와, 시퀀스 824로 이루어져 있다. 기지국은 단말과의 거리 정보가 없기 때문에 단말이 전송한 빔 트레이닝 신호를 언제 수신할지 모른다. 또한 채널의 다중 경로(Multipath) 지연확산(Delay Spread)으로 인해 수신 시간에 대한 불확실 구간은 더 늘어난다. 이때 수신 시간에 대한 불확실성을 고려하여, CP 길이를 기지국과 단말의 양방향 지연(Round-Trip Delay)의 최대값과 다중 경로 지연확산의 최대값을 더한 값보다 크도록 정한다.
본 발명의 일 실시 예에 따르면, 단말은 기지국 1으로부터 받은 TA 값, 단말이 두 기지국으로부터 수신한 심볼 시간의 차이 TE 값, 그리고 두 기지국이 하향링크 심볼을 전송한 시간의 차이 TD 값을 이용하여 기지국 2에 대한 TA 값을 계산한다. 단말이 계산한 TA만큼 상향링크 신호를 앞당겨서 동기를 맞춘 후 전송하기 때문에 기지국에서 신호를 수신하는 시간의 불확실성에서 단말의 양방향 지연으로 인한 부분은 사라진다. 다시 말해, CP길이를 다중 경로 지연확산의 최대값보다 크게 하면 된다. 이러한 본 발명의 일 실시 예에 의하여 빔 트레이닝 신호의 CP 길이를 짧게 설계할 수 있는 효과가 있다. 따라서 상향링크 자원의 오버헤드를 감소시킬 수 있다.
도 9는 본 발명의 일 실시예에 따른 상향링크 동기화 동작을 위한 단말에서의 처리 흐름을 보여주는 도면이다. 이 흐름은 빔포밍 기반의 무선통신 시스템에서 단말의 수신 신호 품질이 양호할 때 단말이 상향링크 신호를 전송하는 절차를 도시한 것으로, 예를 들어, 도 1a에 도시된 단말 100에 의해 수행될 수 있다. 단말의 수신 신호 품질에 대한 판단은 상향링크 신호 전송 동작이 수행되기 이전에 수행될 수 있다. 수신 신호 품질이 양호한 경우는 도 9에 도시된 흐름에 따라 상향링크 신호 전송 절차를 수행하는 반면에, 수신 신호 품질이 양호하지 않은 경우는 후술될 도 10에 도시된 흐름에 따라 상향링크 신호 전송 절차를 수행한다.
도 9를 참조하면, 단말 100은 기지국 1 200으로부터 TA 조정 메시지를 수신한다(S910). 다음에, 단말 100은 기지국 1 200으로부터 기지국 2 300으로 상향링크 빔 트레이닝 신호를 전송하라는 명령 메시지를 수신한다(S920). 다음에, 단말 100은 상기 명령 메시지로부터 이 메시지에 포함된 정보의 전부 또는 일부를 획득한다(S930). 예를 들어, 빔 트레이닝 명령 메시지는 (i) 빔 트레이닝 신호의 시퀀스 인덱스, (ii) 빔 트레이닝 신호를 전송할 시간 위치, 및 (iii) 빔 트레이닝 신호를 전송할 주파수 위치, (iv) 기지국들 200,300이 하향링크 심볼을 전송한 시간의 차이 TD 값에 대한 정보들 중 어느 한 정보, 또는 2가지 이상의 정보의 조합, 또는 모든 정보를 포함할 수 있다.
다음에, 단말 100은 기지국 1 200에 대한 TA 값을 바탕으로 기지국 2 300에 대한 TA 값을 설정한다(S940). 다음에, 단말 100은 상기 시퀀스를 사용하여 빔 트레이닝 신호를 생성하고, 상기 자원 위치를 사용하여 빔 트레이닝 신호를 기지국 2 300으로 전송한다(S950).
도 10은 본 발명의 다른 실시예에 따른 상향링크 동기화 동작을 위한 단말에서의 처리 흐름을 보여주는 도면이다. 이 흐름은 빔포밍 기반의 무선통신 시스템에서 단말의 수신 신호 품질이 나쁠 때 단말이 상향링크 신호를 전송하는 절차를 도시한 것으로, 예를 들어, 도 1a에 도시된 단말 100에 의해 수행될 수 있다. 단말의 수신 신호 품질을 나타내는 값으로는 경로 손실(Path loss), SNR(Signal-to-noise ratio), SIR(Signal-to-interference ratio), SINR(Signal-to-interference plus noise ratio), SLNR(Signal-to-leakage plus noise ratio), RSSI(Reference Signal Strength Indicator), RSRQ(Reference Signal Received Quality), RSRP(Reference Signal Received Power) 중의 적어도 어느 하나가 포함될 수 있다.
도 10을 참조하면, 단말 100은 기지국 1 200으로부터 TA 조정 메시지를 수신한다(S1010). 다음에, 단말 100은 기지국 1 200으로부터 기지국 2 300으로 상향링크 빔 트레이닝 신호를 전송하라는 명령 메시지를 수신한다(S1020). 다음에, 단말 100은 상기 명령 메시지로부터 이 메시지에 포함된 정보의 전부 또는 일부를 획득한다(S1030). 예를 들어, 빔 트레이닝 명령 메시지는 (i) 빔 트레이닝 신호의 시퀀스 인덱스, (ii) 빔 트레이닝 신호를 전송할 시간 위치, 및 (iii) 빔 트레이닝 신호를 전송할 주파수 위치, (iv) 기지국들 200,300이 하향링크 심볼을 전송한 시간의 차이 TD 값에 대한 정보들 중 어느 한 정보, 또는 2가지 이상의 정보의 조합, 또는 모든 정보를 포함할 수 있다.
다음에, 단말 100은 기지국 1 200에 대한 TA 값을 바탕으로 기지국 2 300에 대한 TA 값을 설정한다(S1040). 다음에, 단말 100은 상기 시퀀스를 사용하여 빔 트레이닝 신호를 생성하고, 상기 자원 위치를 사용하여 빔 트레이닝 신호를 기지국 2 300으로 전송한다(S1050).
이후, 단말 100은 기지국 2 300에 대한 TA 조정 메시지와 기지국 2에 대한 상향링크 최적 송신 빔 인덱스를 수신한다(S1060). 일 실시예에서, 단말 100은 기지국 2 300으로부터 기지국 2 300에 대한 TA 조정 메시지와 기지국 2에 대한 상향링크 최적 송신 빔 인덱스를 수신한다. 다른 실시예에서, 단말 100은 기지국 1 200으로부터 기지국 2 300에 대한 TA 조정 메시지와 기지국 2에 대한 상향링크 최적 송신 빔 인덱스를 수신한다.
다음에, 단말 100은 상기 수신된 TA 조정 메시지를 바탕으로 기지국 2 300에 대한 TA 값을 설정한다(S1070). 다음에, 단말 100은 기지국 2 300에 대한 TA 값에 따라 상기 최적 송신 빔을 사용하여 기지국 2 300로 빔 트레이닝 신호를 전송한다(S1080). 이때 빔 트레이닝 신호를 전송할 때 사용하는 시퀀스와 자원의 위치 정보는 상향링크 빔 트레이닝 신호 전송 명령 메시지에 포함되거나 미리 정해진 규칙에 따라 정보를 획득할 수 있다. 이때 (S1080) 단계에 사용하는 빔 트레이닝 신호와 (S1050) 단계에 사용하는 빔 트레이닝 신호의 구조는 다를 수 있다. 일 실시예에서 (S1050) 단계에서는 810과 같은 구조의 빔 트레이닝 신호를 보내고 (S1080) 단계에서는 820과 같이 시퀀스의 길이가 810 구조보다 더 긴 형태의 빔 트레이닝 신호를 보낼 수 있다. 이는 상향링크 최적 빔을 찾기 위한 빔 트레이닝 신호를 짧게 하여 오버헤드를 줄이고, 상향링크 동기를 맞추기 위한 긴 빔 트레이닝 신호를 길게 하여 동기의 정확도를 높이기 위한 것이다.
도 11은 본 발명의 일 실시예에 따른 상향링크 동기화 동작을 위한 제1 기지국에서의 처리 흐름을 보여주는 도면이다. 이 흐름은 빔포밍 기반의 무선 통신 시스템의 제2 기지국이 단말로부터 상향링크 빔 트레이닝 신호를 수신할 수 있도록 제1 기지국에서 수행되는 절차를 도시한 것으로, 예를 들어 도 1a에 도시된 제1 기지국 200에 의해 수행될 수 있다.
도 11을 참조하면, 기지국 1 200은 기지국 1에 대한 TA 조정 메시지를 단말 100로 전송한다(S1110). 다음에, 기지국 1 200은 단말 100이 기지국 2 300으로의 빔 트레이닝 신호 전송에 사용할 시퀀스 인덱스와 자원 위치를 결정한다(S1120). 다음에, 기지국 1 200은 단말 100이 기지국 2 300으로 상향링크 빔 트레이닝 신호를 전송할 것을 명령하는 메시지를 단말 100으로 전송한다(S1130).
도 12는 본 발명의 일 실시예에 따른 상향링크 동기화 동작을 위한 제2 기지국에서의 처리 흐름을 보여주는 도면이다. 이 흐름은 빔포밍 기반의 무선 통신 시스템의 제2 기지국에서 단말로부터 상향링크 빔 트레이닝 신호를 수신하는 절차를 도시한 것으로, 예를 들어 도 1a에 도시된 제2 기지국 300에 의해 수행될 수 있다.
도 12을 참조하면, 기지국 2 300은 단말 100이 복수의 송신빔을 사용하여 전송한 상향링크 빔 트레이닝 신호를 수신한다(S1210). 다음에, 기지국 2 300은 수신한 빔 트레이닝 신호를 이용하여 단말 100의 기지국 2에 대한 최적 송신빔 인덱스를 찾고 기지국 2에 대한 TA 값을 계산한다(S1220). 다음에, 기지국 2 300은 기지국 2에 대한 TA 조정 메시지와 기지국 2에 대한 단말의 최적 송신빔 인덱스를 단말 100으로 전송한다(S1230). 다음에, 기지국 2 300은 단말 100이 상기 최적 송신빔을 사용하여 전송한 빔 트레이닝 신호를 수신한다(S1240). 다음에, 기지국 2 300은 기지국 2에 대한 TA 조정 메시지를 단말 100으로 전송한다(S1250).
도 13은 본 발명의 실시예들에 따라 한 기지국에 대한 TA 값을 바탕으로 다른 기지국에 대한 TA 값을 계산할 때, 두 기지국들의 심볼 길이가 서로 다른 경우 기지국과 단말의 상향링크와 하향링크의 송수신 시간 관계를 도시하고 있다. 예를 들어, 도 1a에 도시된 제1 기지국 200의 전송 프레임의 길이가 제2 기지국 300의 전송 프레임의 길이보다 큰 경우를 나타내고 있다.
도 13을 참조하면, 기지국 1 200이 전송한 하향링크 심볼 1301-1306의 길이와 기지국 2 300이 전송한 하향링크 심볼 1311-1313의 길이가 다르다. 이때, 어느 심볼을 기준으로 삼는지에 따라 단말 100이 두 기지국으로부터 수신한 심볼의 시간 차와 두 기지국이 하향링크 심볼을 전송하는 시간 차가 다를 수 있다. 기지국 1 200이 전송한 하향링크 심볼 1301은 T1만큼의 시간 지연 후에 1321 심볼 시간에 단말 100에 도착한다. 반면에, 기지국 2 300이 전송한 하향링크 심볼 1311은 T2만큼의 시간 지연 후에 1331 심볼 시간에 단말 100에 도착한다. 단말 100이 두 기지국으로부터 수신한 심볼들 1321과 1331의 시간 차를 TE,1이라 한다. 두 기지국이 전송한 하향링크 심볼들 1301과 1311의 시간은 TD,1만큼 차이가 난다.
기지국 1 200이 전송한 하향링크 심볼 1304는 T1만큼의 시간 지연 후에 1324 심볼 시간에 단말 100에 도착한다. 반면에, 기지국 2 300이 전송한 하향링크 심볼 1313은 T2만큼의 시간 지연 후에 1333 심볼 시간에 단말 100에 도착한다. 단말 100이 두 기지국으로부터 수신한 심볼들 1324와 1333의 시간 차를 TE,2이라 한다. 두 기지국이 전송한 하향링크 심볼들 1304와 1313의 시간은 TD,2만큼 차이가 난다. 이때, TE,1과 TE,2는 서로 다를 수 있다. 마찬가지로 TD,1과 TD,2는 서로 다를 수 있다.
단말 100이 기지국 1 200으로부터 TA 조정 메시지를 받아 TTA,1 값을 계산하여 알고 있을 때, 기지국 2 300에 대한 TTA,2 값을 계산하는 방법을 사용하기 위해서는 단말 100이 두 기지국으로부터 수신한 심볼의 시간 차와 두 기지국이 하향링크 심볼을 전송하는 시간 차를 계산할 때 기준으로 삼는 심볼을 알맞게 선택해야 한다. 도 13을 참조하면, 단말 100이 기지국 1 200에 대한 상향링크 심볼 송신 시간의 동기를 단말 100이 수신할 1324 심볼의 시작 시간을 기준으로 맞추고, 기지국 2 300에 대한 상향링크 심볼 송신 시간의 동기를 단말 100이 수신할 1333 심볼의 시작 시간을 기준으로 맞추려고 한다면, 단말 100은 두 기지국이 하향링크 심볼을 전송하는 시간 차를 1304 심볼과 1313 심볼을 기준으로 계산해야 하고 두 기지국으로부터 수신한 심볼의 시간 차를 1324 심볼과 1333 심볼을 기준으로 계산해야 한다. 이때, 기지국으로부터 TD,1에 대한 정보를 받았어도 두 기지국의 심볼 길이의 차를 이용하여 TD,2를 계산할 수 있다. 또한 단말이 TE,1을 계산했다면, 두 기지국의 심볼 길이의 차를 이용하여 TE,2를 계산할 수 있다.
도 14는 본 발명의 실시예들에 따른 상향링크 동기화 동작을 위한 단말 장치의 블록 구성을 보여주는 도면이다. 예를 들어, 이 블록 구성은 도 1a에 도시된 단말 100에 의해 구현될 수 있다.
도 14를 참조하면, 단말 100은 송수신기 1410과, 제어부 1420을 포함한다. 송수신기 1410은 송신기 1412와 수신기 1414를 포함한다. 제어부 1420은 본 발명의 실시예들에 따른 상향링크 동기화 동작에 따라 송신기 1412와 수신기 1414를 제어한다. 예를 들어, 제어부 1420은 도 4에 도시된 흐름과, 도 9 또는 도 10에 도시된 흐름에 따른 동작이 수행되도록 제어한다.
수신기 1414는 제1 TA 값을 포함하는 조정 메시지를 제1 기지국 200으로부터 수신한다. 송신기 1412는 제1 TA 값에 기반하여 설정된 제2 기지국 300에 대한 제2 TA 값에 기반하여 상향링크 신호를 제2 기지국 300으로 송신한다.
일 실시예에서, 제2 TA 값은, 제1 TA 값과, 제1 기지국 200 및 제2 기지국 300으로부터 송신된 하향링크 신호가 단말 100에서 수신된 시간의 차이와, 제1 기지국 200 및 제2 기지국 300에서 하향링크 신호가 송신된 시간의 차이에 기반하여, 설정된다.
일 실시예에서, 제2 TA 값은 수학식
Figure PCTKR2015007453-appb-I000004
에 기반하여 설정된다. 여기서, TTA,2는 제2 TA 값을 나타내고, TTA,1은 제1 TA 값을 나타내고, TE는 제1 기지국 200 및 제2 기지국 300으로부터 송신된 하향링크 신호가 단말 100에서 수신된 시간의 차이를 나타내고, TD는 제1 기지국 200 및 제2 기지국 300에서 하향링크 신호가 송신된 시간의 차이를 나타낸다.
일 실시예에서, 상향링크 신호는 빔 트레이닝 신호를 포함한다.
일 실시예에서, 단말 100은 제2 기지국 300으로의 상향링크 전송 명령 메시지를 제1 기지국 200으로부터 수신한다. 예를 들어, 상향링크 전송 명령 메시지는 빔 트레이닝 신호를 위한 시퀀스 정보, 및 빔 트레이닝 신호를 전송할 자원 위치 중의 적어도 하나를 포함할 수 있다. 일 실시예에서, 시퀀스 정보는 빔 트레이닝 신호를 위한 시퀀스를 나타내는 인덱스를 포함한다. 이러한 경우 단말은 상기 인덱스에 대응하는 시퀀스를 포함하는 빔 트레이닝 신호를 제2 기지국 300으로 송신한다. 다른 실시예에서, 단말은 상기 자원 위치에서 빔 트레이닝 신호를 제2 기지국 300으로 송신한다.
일 실시예에서, 단말은 제2 TA 값을 포함하는 조정 메시지와 상향링크 최적 빔 정보를 제2 기지국 300으로부터 수신하고, 상기 상향링크 최적 빔을 이용하여 제2 TA 값에 기반하는 상향링크 신호를 제2 기지국 300으로 송신한다.
도 15는 본 발명의 실시예들에 따른 상향링크 동기화 동작을 위한 제1 기지국 장치의 블록 구성을 보여주는 도면이다. 예를 들어, 이 블록 구성은 도 1a에 도시된 제1 기지국 200에 의해 구현될 수 있다.
도 15를 참조하면, 제1 기지국 200은 송수신기 1510과, 제어부 1520을 포함한다. 송수신기 1510은 송신기 1512와 수신기 1514를 포함한다. 제어부 1520은 본 발명의 실시예들에 따른 상향링크 동기화 동작에 따라 송신기 1512와 수신기 1514를 제어한다. 예를 들어, 제어부 1520은 도 5 및 도 11에 도시된 흐름에 따른 동작이 수행되도록 제어한다.
송신기 1512는 제1 TA 값을 포함하는 조정 메시지를 단말 100으로 송신한다. 또한, 송신기 1512는 제1 TA 값에 기반하여 설정된 제2 기지국 300에 대한 제2 TA 값에 기반하여 상향링크 신호를 단말 100이 제2 기지국 300으로 송신하도록, 상향링크 전송 명령 메시지를 단말 100으로 송신한다.
일 실시예에서, 제2 TA 값은, 제1 TA 값과, 제1 기지국 200 및 제2 기지국 300으로부터 송신된 하향링크 신호가 단말 100에서 수신된 시간의 차이와, 제1 기지국 200 및 제2 기지국 300에서 하향링크 신호가 송신된 시간의 차이에 기반하여, 설정된다.
일 실시예에서, 제2 TA 값은 수학식
Figure PCTKR2015007453-appb-I000005
에 기반하여 설정된다. 여기서, TTA,2는 제2 TA 값을 나타내고, TTA,1은 제1 TA 값을 나타내고, TE는 제1 기지국 200 및 제2 기지국 300으로부터 송신된 하향링크 신호가 단말 100에서 수신된 시간의 차이를 나타내고, TD는 제1 기지국 200 및 제2 기지국 300에서 하향링크 신호가 송신된 시간의 차이를 나타낸다.
일 실시예에서, 상향링크 신호는 빔 트레이닝 신호를 포함한다.
일 실시예에서, 제1 기지국 200은 제2 기지국 300으로의 상향링크 전송 명령 메시지를 단말 100으로 송신한다. 예를 들어, 상향링크 전송 명령 메시지는 빔 트레이닝 신호를 위한 시퀀스 정보, 및 빔 트레이닝 신호를 전송할 자원 위치 중의 적어도 하나를 포함할 수 있다. 일 실시예에서, 시퀀스 정보는 빔 트레이닝 신호를 위한 시퀀스를 나타내는 인덱스를 포함한다. 이러한 경우 단말은 상기 인덱스에 대응하는 시퀀스를 포함하는 빔 트레이닝 신호를 제2 기지국 300으로 송신한다. 다른 실시예에서, 단말은 상기 자원 위치에서 빔 트레이닝 신호를 제2 기지국 300으로 송신한다.
도 16은 본 발명의 실시예들에 따른 상향링크 동기화 동작을 위한 제2 기지국 장치의 블록 구성을 보여주는 도면이다. 예를 들어, 이 블록 구성은 도 1a에 도시된 제2 기지국 300에 의해 구현될 수 있다.
도 16을 참조하면, 제2 기지국 300은 송수신기 1610과, 제어부 1620을 포함한다. 송수신기 1610은 송신기 1612와 수신기 1614를 포함한다. 제어부 1620은 본 발명의 실시예들에 따른 상향링크 동기화 동작에 따라 송신기 1612와 수신기 1614를 제어한다. 예를 들어, 제어부 1620은 도 6 및 도 12에 도시된 흐름에 따른 동작이 수행되도록 제어한다.
수신기 1614는 제2 기지국 300에 대한 제2 TA 값에 기반하여 송신된 상향링크 신호를 단말 100으로부터 수신한다. 제2 TA 값은, 제1 기지국 200에 대한 제1 TA 값에 기반하여 설정된다.
일 실시예에서, 제2 TA 값은, 제1 TA 값과, 제1 기지국 200 및 제2 기지국 300으로부터 송신된 하향링크 신호가 단말 100에서 수신된 시간의 차이와, 제1 기지국 200 및 제2 기지국 300에서 하향링크 신호가 송신된 시간의 차이에 기반하여, 설정된다.
일 실시예에서, 제2 TA 값은 수학식
Figure PCTKR2015007453-appb-I000006
에 기반하여 설정된다. 여기서, TTA,2는 제2 TA 값을 나타내고, TTA,1은 제1 TA 값을 나타내고, TE는 제1 기지국 200 및 제2 기지국 300으로부터 송신된 하향링크 신호가 단말 100에서 수신된 시간의 차이를 나타내고, TD는 제1 기지국 200 및 제2 기지국 300에서 하향링크 신호가 송신된 시간의 차이를 나타낸다.
일 실시예에서, 상향링크 신호는 빔 트레이닝 신호를 포함한다. 상기 상향링크 신호는 제2 기지국 300으로의 상향링크 전송 명령 메시지가 제1 기지국 200으로부터 수신됨에 응답하여 단말 100에 의해 송신된다. 예를 들어, 상향링크 전송 명령 메시지는 빔 트레이닝 신호를 위한 시퀀스 정보, 및 빔 트레이닝 신호를 전송할 자원 위치 중의 적어도 하나를 포함할 수 있다. 일 실시예에서, 시퀀스 정보는 빔 트레이닝 신호를 위한 시퀀스를 나타내는 인덱스를 포함한다. 이러한 경우 단말은 상기 인덱스에 대응하는 시퀀스를 포함하는 빔 트레이닝 신호를 제2 기지국 300으로 송신한다. 다른 실시예에서, 단말은 상기 자원 위치에서 빔 트레이닝 신호를 제2 기지국 300으로 송신한다.
일 실시예에서, 제2 기지국 300은 제2 기지국 300에 대한 단말 100의 상향링크 최적 빔 정보를 탐색하고, 제2 기지국 300에 대한 TA 값을 계산하고, 상기 계산된 TA 값을 포함하는 메시지와 상기 탐색된 상향링크 최적 빔 정보를 단말 100으로 송신하고, 상기 상향링크 최적 빔을 이용하여 상기 계산된 TA 값에 기반하여 송신된 상향링크 신호를 단말 100으로부터 수신하는 과정을 더 수행한다.
도 15 및 도 16에 도시된 제1 기지국 200과 제2 기지국 300은 동일한 무선접속 기술 또는 서로 다른 무선접속 기술을 사용할 수 있다. 제1 기지국 200과 제2 기지국 300은 물리적으로 동일한 위치에 위치해 있거나 다른 위치에 위치해 있을 수 있다. 제1 기지국 200은 제1 주파수 영역의 캐리어를 사용하고, 제2 기지국 300은 제1 주파수 영역과 다른 제2 주파수 영역의 캐리어를 사용할 수 있다. 제1 기지국 200의 전송 프레임 구조와 제2 기지국 300의 전송 프레임 구조는 서로 다를 수 있다.
전술한 바와 같이 본 발명의 실시예들은 무선통신 시스템에서 한 기지국 또는 한 셀에서의 상향링크 동기화를 위한 정보(예; TA 값)를 이용하여 다른 기지국 또는 다른 셀로 보내는 상향링크 신호 시간을 조정함으로써 상향링크 자원의 오버헤드를 줄일 수 있다.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나 본 발명은 상기의 실시예에 한정되는 것은 아니며 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 본 발명의 실시예들은 도 1a에 도시된 바와 같이 구성되는 무선통신 시스템에 적용되는 예로서 중점적으로 설명되었지만, 앞서서 설명한 바와 같이 도 1b 및 도 1c에 도시된 바와 같이 서로 다른 위치에 있는 기지국들의 각 캐리어들 또는 동일한 위치에 있는 기지국의 다수 캐리어들이 캐리어 집성 기술에 의해 서비스가 이루어지는 경우에도 동일하게 적용될 수 있을 것이다.
또한, 본 발명의 실시예에 따른 동작들은 단일의 프로세서에 의해 그 동작이 구현될 수 있을 것이다. 이러한 경우 다양한 컴퓨터로 구현되는 동작을 수행하기 위한 프로그램 명령이 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판단 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM이나 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드 뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 본 발명에서 설명된 기지국 또는 릴레이의 전부 또는 일부가 컴퓨터 프로그램으로 구현된 경우 상기 컴퓨터 프로그램을 저장한 컴퓨터 판독 가능 기록 매체도 본 발명에 포함된다. 그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위 뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 할 것이다.

Claims (14)

  1. 무선통신 시스템의 단말의 동작 방법에 있어서:
    제1 타이밍 어드밴스(TA) 값을 포함하는 조정 메시지를 제1 기지국으로부터 수신하는 과정; 및
    상기 제1 TA 값에 기반하여 설정된 제2 기지국에 대한 제2 TA 값에 기반하여 상향링크 신호를 상기 제2 기지국으로 송신하는 과정을 포함하는 방법.
  2. 무선통신 시스템의 제1 기지국의 동작 방법에 있어서:
    제1 타이밍 어드밴스(TA) 값을 포함하는 조정 메시지를 단말로 송신하는 과정; 및
    상기 제1 TA 값에 기반하여 설정된 제2 기지국에 대한 제2 TA 값에 기반하여 상향링크 신호를 상기 단말이 상기 제2 기지국으로 송신하도록, 상향링크 전송 명령 메시지를 상기 단말로 송신하는 과정을 포함하는 방법.
  3. 무선통신 시스템의 제2 기지국의 동작 방법에 있어서:
    제2 기지국에 대한 제2 타이밍 어드밴스(TA) 값에 기반하여 송신된 상향링크 신호를 단말로부터 수신하는 과정을 포함하고,
    상기 제2 TA 값은, 제1 기지국에 대한 제1 TA 값에 기반하여 설정되는 방법.
  4. 무선통신 시스템의 단말 장치에 있어서:
    제1 타이밍 어드밴스(TA) 값을 포함하는 조정 메시지를 제1 기지국으로부터 수신하는 수신기; 및
    상기 제1 TA 값에 기반하여 설정된 제2 기지국에 대한 제2 TA 값에 기반하여 상향링크 신호를 상기 제2 기지국으로 송신하는 송신기를 포함하는 장치.
  5. 무선통신 시스템의 제1 기지국 장치에 있어서:
    제1 타이밍 어드밴스(TA) 값을 포함하는 조정 메시지 및 상향링크 전송 명령 메시지를 생성하는 제어부; 및
    송신기를 포함하고,
    상기 송신기는,
    상기 조정 메시지를 송신하고,
    상기 제1 TA 값에 기반하여 설정된 제2 기지국에 대한 제2 TA 값에 기반하여 상향링크 신호를 상기 단말이 상기 제2 기지국으로 송신하도록, 상기 상향링크 전송 명령 메시지를 상기 단말로 송신하는 장치.
  6. 무선통신 시스템의 제2 기지국 장치에 있어서:
    제2 기지국에 대한 제2 타이밍 어드밴스(TA) 값에 기반하여 송신된 상향링크 신호를 단말로부터 수신하는 수신기를 포함하고,
    상기 제2 TA 값은, 제1 기지국에 대한 제1 TA 값에 기반하여 설정되는 장치.
  7. 청구항 1 내지 6중의 어느 한 항에 있어서, 상기 제2 TA 값은,
    상기 제1 TA 값과, 상기 제1 기지국 및 상기 제2 기지국으로부터 송신된 하향링크 신호가 상기 단말에서 수신된 시간의 차이와, 상기 제1 기지국 및 상기 제2 기지국에서 상기 하향링크 신호가 송신된 시간의 차이에 기반하여, 설정되는 방법 또는 장치.
  8. 청구항 7에 있어서, 상기 제2 TA 값은,
    수학식
    Figure PCTKR2015007453-appb-I000007
    에 기반하여 설정되는 방법 또는 장치.
    여기서, TTA,2는 상기 제2 TA 값을 나타내고, TTA,1은 상기 제1 TA 값을 나타내고, TE는 상기 제1 기지국 및 상기 제2 기지국으로부터 송신된 하향링크 신호가 상기 단말에서 수신된 시간의 차이를 나타내고, TD는 상기 제1 기지국 및 상기 제2 기지국에서 상기 하향링크 신호가 송신된 시간의 차이를 나타낸다.
  9. 청구항 1 내지 6중의 어느 한 항에 있어서, 상기 상향링크 신호는,
    빔 트레이닝 신호를 포함하고,
    상기 상향링크 신호는,
    상기 제2 기지국으로의 상향링크 전송 명령 메시지가 상기 제1 기지국으로부터 수신됨에 응답하여 상기 단말에 의해 송신되고,
    상기 상향링크 전송 명령 메시지는,
    상기 빔 트레이닝 신호를 위한 시퀀스 정보,
    상기 빔 트레이닝 신호를 전송할 자원 위치, 및
    상기 기지국들이 하향링크 신호를 전송한 시간의 차이 값에 대한 정보 중의 적어도 하나를 포함하는 방법 또는 장치.
  10. 청구항 9에 있어서, 상기 시퀀스 정보는,
    상기 빔 트레이닝 신호를 위한 시퀀스를 나타내는 인덱스를 포함하고,
    상기 자원 위치에서 상기 인덱스에 대응하는 시퀀스를 포함하는 상기 빔 트레이닝 신호가 상기 단말로부터 상기 제2 기지국으로 송신되는 방법 또는 장치.
  11. 청구항 9에 있어서, 상기 수신기는,
    제2 TA 값을 포함하는 조정 메시지와 상향링크 최적 빔 정보를 상기 제2 기지국으로부터 더 수신하고,
    상기 송신기는,
    상기 상향링크 최적 빔을 이용하여 상기 제2 TA 값에 기반하는 상향링크 신호를 상기 제2 기지국으로 더 송신하는 방법 또는 장치.
  12. 청구항 9에 있어서,
    상기 제2 기지국에 대한 상기 단말의 상향링크 최적 빔 정보를 탐색하고, 상기 제2 기지국에 대한 TA 값을 계산하는 제어부; 및
    상기 계산된 TA 값을 포함하는 메시지와 상기 탐색된 상향링크 최적 빔 정보를 상기 단말로 송신하는 송신기를 더 포함하고,
    상기 수신기는,
    상기 상향링크 최적 빔을 이용하여 상기 계산된 TA 값에 기반하여 송신된 상향링크 신호를 상기 단말로부터 더 수신하는 방법 또는 장치.
  13. 청구항 1 내지 6중의 어느 한 항에 있어서, 상기 제1 기지국과 상기 제2 기지국은 동일한 무선접속 기술 또는 서로 다른 무선접속 기술을 사용하는 장치.
  14. 청구항 13에 있어서, 상기 제1 기지국과 상기 제2 기지국은 물리적으로 동일한 위치 또는 서로 다른 위치에 위치해 있고,
    상기 제1 기지국은 제1 주파수 영역의 캐리어를 사용하고, 상기 제2 기지국은 상기 제1 주파수 영역과 다른 제2 주파수 영역의 캐리어를 사용하고,
    상기 제1 기지국의 전송 프레임 구조와 상기 제2 기지국의 전송 프레임 구조는 서로 다른 방법 또는 장치.
PCT/KR2015/007453 2014-07-17 2015-07-17 무선통신 시스템의 상향링크 동기화 장치 및 방법 WO2016010396A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/327,018 US10334540B2 (en) 2014-07-17 2015-07-17 Uplink synchronization device and method of wireless communication system
EP15822197.8A EP3171647B1 (en) 2014-07-17 2015-07-17 Uplink synchronization device and method of wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0090450 2014-07-17
KR1020140090450A KR102238768B1 (ko) 2014-07-17 2014-07-17 무선통신 시스템의 상향링크 동기화 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2016010396A1 true WO2016010396A1 (ko) 2016-01-21

Family

ID=55078799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007453 WO2016010396A1 (ko) 2014-07-17 2015-07-17 무선통신 시스템의 상향링크 동기화 장치 및 방법

Country Status (4)

Country Link
US (1) US10334540B2 (ko)
EP (1) EP3171647B1 (ko)
KR (1) KR102238768B1 (ko)
WO (1) WO2016010396A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017132997A1 (zh) * 2016-02-05 2017-08-10 广东欧珀移动通信有限公司 用于切换的资源配置的方法、网络接入点以及移动台
US10581722B2 (en) * 2016-08-22 2020-03-03 Qualcomm Incorporated Power control for independent links
KR102616419B1 (ko) * 2016-10-12 2023-12-21 삼성전자주식회사 무선 통신 시스템에서 안테나 구성에 기반한 빔 탐색 장치 및 방법
CN109391295B (zh) * 2017-08-09 2020-10-27 维沃移动通信有限公司 一种波束指示的处理方法、移动终端及网络侧设备
US11375524B2 (en) * 2017-08-09 2022-06-28 Apple Inc. Time advance adjustment delay for shortened transmission time interval under carrier aggregation or dual connectivity
KR102528856B1 (ko) * 2018-03-07 2023-05-04 삼성전자주식회사 무선 통신 시스템에서 동기 회복을 위한 장치 및 방법
US10608805B2 (en) 2018-04-20 2020-03-31 At&T Intellectual Property I, L.P. Supplementary uplink with LTE coexistence adjacent to frequency division duplex spectrum for radio networks
EP4179801A4 (en) * 2020-07-13 2024-08-14 Samsung Electronics Co Ltd METHOD AND DEVICE FOR DETERMINING TIME INFORMATION
KR102661246B1 (ko) * 2020-11-25 2024-04-26 한국전자통신연구원 무선 통신 시스템에서의 프레임 구조 및 단말 동기 방법 및 장치
US11895603B2 (en) 2020-11-25 2024-02-06 Electronics And Telecommunications Research Institute Frame structure and terminal synchronization method and apparatus in wireless communication system
US11764856B2 (en) * 2020-12-09 2023-09-19 Qualcomm Incorporated Enhanced frequency range 2 (FR2) sidelink re-discovery
KR20240066209A (ko) * 2022-11-04 2024-05-14 삼성전자주식회사 무선 통신 시스템에서 전이중 통신을 위한 개선된 시간 도메인의 방법 및 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165138A1 (ko) * 2012-04-29 2013-11-07 엘지전자 주식회사 상향링크 신호 전송 및 수신 방법, 및 이들을 위한 장치
US20140050205A1 (en) * 2011-09-29 2014-02-20 Lg Electronics Inc. Method for controlling uplink transmission power and wireless device using same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080084849A1 (en) * 2006-10-06 2008-04-10 Interdigital Technology Corporation Autonomous timing advance adjustment during handover
KR101350441B1 (ko) 2007-09-27 2014-01-23 삼성전자주식회사 무선 통신 시스템에서 상향링크 송신 타이밍 추정 방법 및장치
JP5789668B2 (ja) * 2010-09-30 2015-10-07 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 複数のアップリンク・コンポーネント・キャリアに関するタイミング・アドバンス構成
JP5908504B2 (ja) * 2011-03-08 2016-04-26 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 複数のコンポーネント・キャリアに関する伝搬遅延差レポート
US9391758B2 (en) * 2011-05-06 2016-07-12 Lg Electronics Inc. Method and apparatus for adjusting transmission timing in wireless access system supporting carrier aggregation
EP2768170B1 (en) * 2011-07-14 2018-09-05 LG Electronics Inc. Methods and apparatus for allocating transmission timings to multilpe timing advance groups in a wireless communication system for supporting carrier aggregation
TW201320796A (zh) * 2011-09-06 2013-05-16 Innovative Sonic Corp 在無線通訊系統中執行提前時序群組變更的方法及裝置
JP5905749B2 (ja) * 2012-03-06 2016-04-20 株式会社Nttドコモ 無線基地局
US8958412B2 (en) * 2012-05-11 2015-02-17 Samsung Electronics Co., Ltd. Methods and apparatus for uplink timing alignment in system with large number of antennas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140050205A1 (en) * 2011-09-29 2014-02-20 Lg Electronics Inc. Method for controlling uplink transmission power and wireless device using same
WO2013165138A1 (ko) * 2012-04-29 2013-11-07 엘지전자 주식회사 상향링크 신호 전송 및 수신 방법, 및 이들을 위한 장치

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Timing advance for TDD-FDD carrier aggregation", R1-140314, 3GPP TSG RAN WG1 MEETING #76, 1 February 2014 (2014-02-01), Prague, Czech Republic, XP050751946 *
PANASONIC: "Comparison of uplink time alignment synchronization methods for SCell TA groups", RI-112350, 3GPP TSG RAN WG1 #66, 16 August 2011 (2011-08-16), Athens, Greece, XP050537478 *
See also references of EP3171647A4 *
TEXAS INSTRUMENTS: "Support of multiple timing advance commands", RL-112153, 3GPP TSG RAN WGI #66, 16 August 2011 (2011-08-16), Atliens, Greece, XP050537320 *

Also Published As

Publication number Publication date
KR20160009918A (ko) 2016-01-27
EP3171647A4 (en) 2018-02-21
EP3171647B1 (en) 2021-10-20
US20170164310A1 (en) 2017-06-08
EP3171647A1 (en) 2017-05-24
KR102238768B1 (ko) 2021-04-09
US10334540B2 (en) 2019-06-25

Similar Documents

Publication Publication Date Title
WO2016010396A1 (ko) 무선통신 시스템의 상향링크 동기화 장치 및 방법
WO2018203738A1 (ko) 무선 통신 시스템에서 릴레이 단말이 사이드링크 신호의 전력을 제어하는 방법 및 이를 위한 장치
WO2018147699A1 (ko) 무선 통신 시스템에서 d2d 단말이 통신 장치와 통신 링크를 형성하는 방법 및 이를 위한 장치
WO2020167038A1 (ko) 사이드링크 통신에서 빔 관리 방법 및 장치
WO2016159715A2 (ko) 무선 통신 시스템에서 v2x 단말이 신호를 송수신 하는 방법 및 장치
WO2016171495A1 (ko) 무선 통신 시스템에서 장치 대 장치 통신 단말의 릴레이 선택 및 신호 송수신 방법 및 장치
WO2018030854A1 (ko) 무선 통신 시스템에서 단말이 다른 단말에게 데이터를 전송하는 방법
WO2015156575A1 (ko) 빔포밍 기반 셀룰러 시스템의 상향링크 빔 추적 방법 및 장치
WO2018131927A1 (ko) 무선 통신 시스템에서 카운터 정보에 기초한 릴레이 통신을 수행하는 방법 및 장치
WO2018062846A1 (ko) 무선 통신 시스템에서 자원을 선택하고 pssch를 전송하는 방법 및 장치
WO2017196124A1 (ko) 무선 통신 시스템에서 빔 탐색 또는 빔 전송을 수행하는 방법
WO2017196129A1 (ko) 무선 통신 시스템에서 ue의 사이드링크 신호 송수신 방법
WO2018131934A1 (ko) 무선 통신 시스템에서 위치 에러 정보에 기초한 빔 탐색 또는 빔 전송을 수행하는 방법 및 장치
WO2017171447A2 (ko) 무선 통신 시스템에서 gnss 타이밍을 사용하는 ue의 사이드링크 신호 송수신 방법
WO2010137917A2 (ko) 공간 사일런싱을 이용한 신호 전송 방법 및 이를 위한 장치
WO2018174684A1 (ko) 무선 통신 시스템에서 사이드링크 신호를 전송하는 방법 및 장치
WO2018030788A1 (ko) 무선 통신 시스템에서 단말의 사이드링크 신호 송수신 방법
WO2016032202A2 (ko) 무선 통신 시스템에서 동기 신호를 송수신하는 방법 및 이를 수행하는 장치
WO2019027288A1 (ko) 단말 간 통신을 지원하는 무선통신시스템에서 단말이 레인징 정보를 산출하는 방법 및 이를 위한 장치
WO2017111466A1 (ko) 무선 통신 시스템에서 참조신호와 데이터를 생성하고 전송하는 방법 및 장치
WO2018143725A1 (ko) 무선 통신 시스템에서 단말이 cr을 측정하고 전송을 수행하는 방법 및 장치
WO2018038496A1 (ko) 무선 통신 시스템에서 단말의 측정을 통한 자원 선택 및 데이터 전송 방법 및 장치
WO2018021784A1 (ko) 무선 통신 시스템에서 플래툰 통신에 관련된 신호 송수신 방법
WO2019066576A1 (ko) 무선통신시스템에서 단말이 복수의 구성 반송파 상에서 동기 신호를 송수신하는 방법 및 장치
WO2018212526A1 (ko) 무선 통신 시스템에서 사이드링크 신호를 송신하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822197

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015822197

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015822197

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15327018

Country of ref document: US