WO2016010118A1 - Gas barrier film and method for producing gas barrier film - Google Patents

Gas barrier film and method for producing gas barrier film Download PDF

Info

Publication number
WO2016010118A1
WO2016010118A1 PCT/JP2015/070423 JP2015070423W WO2016010118A1 WO 2016010118 A1 WO2016010118 A1 WO 2016010118A1 JP 2015070423 W JP2015070423 W JP 2015070423W WO 2016010118 A1 WO2016010118 A1 WO 2016010118A1
Authority
WO
WIPO (PCT)
Prior art keywords
barrier layer
film
group
gas
gas barrier
Prior art date
Application number
PCT/JP2015/070423
Other languages
French (fr)
Japanese (ja)
Inventor
晃矢子 和地
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016534490A priority Critical patent/JPWO2016010118A1/en
Publication of WO2016010118A1 publication Critical patent/WO2016010118A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00

Definitions

  • the present invention relates to a gas barrier film and a method for producing the gas barrier film. More specifically, the present invention relates to a gas barrier film with reduced barrier property deterioration and a method for producing the same.
  • a gas barrier film that prevents the permeation of water vapor, oxygen, etc., which has been provided with a metal oxide deposition film or resin coating film on the surface of a resin film. It has been known.
  • resin base materials have been used for the purpose of providing lightness, resistance to cracking, and flexibility.
  • gas barrier films There is a growing demand for gas barrier films. These electronic devices are required to have a higher level of water vapor gas barrier properties that can withstand even under high temperature and high humidity, depending on their usage.
  • a gas barrier layer is mainly formed on a substrate such as a film by a plasma CVD method (chemical vapor deposition method) as a dry method.
  • a plasma CVD method chemical vapor deposition method
  • a coating solution containing polysilazane as a main component is applied on a substrate, and then a surface treatment (modification treatment) is performed on the coating film.
  • the wet method does not require large-scale equipment, is not affected by the surface roughness of the base material, and cannot be pinholed. Therefore, it is attracting attention as a method for obtaining a uniform gas barrier film with good reproducibility. .
  • Conventionally known methods for modifying polysilazane include a plasma treatment method and a vacuum ultraviolet light irradiation method (for example, JP-A-8-281861, JP-A-2009-255040, and International Publication No. 2011). / 007543).
  • Japanese Patent Application Laid-Open No. 8-281186 discloses a gas barrier property comprising a silicon oxide layer having a thickness of 10 to 200 nm formed by plasma CVD and a silicon oxide layer having a thickness of 0.1 to 2 ⁇ m formed by converting polysilazane. A film is disclosed. However, the performance is not sufficient as a barrier film that requires high barrier properties such as when used for an organic EL substrate.
  • JP-A-2009-255040 describes that a flexible gas barrier film is produced by laminating a polysilazane film irradiated with a vacuum ultraviolet excimer lamp.
  • the gas barrier film obtained by this method has no defects, has a smooth surface, does not easily crack, and has excellent gas barrier properties.
  • a gas barrier film is produced by irradiating a polysilazane film with plasma or ultraviolet light in an atmosphere substantially free of oxygen or water vapor.
  • the gas barrier film obtained by this method is excellent in gas barrier properties such as water vapor gas barrier properties and oxygen gas barrier properties and scratch resistance.
  • the present invention has been made in view of the above problems, and prevents the occurrence of a difference in the degree of modification of the polysilazane film even when a long body is formed, and further generates cracks under high temperature and high humidity.
  • An object of the present invention is to provide a gas barrier film having excellent gas barrier performance capable of preventing the above. Furthermore, another object is to provide a production method capable of producing such a gas barrier film with high productivity.
  • the inventor of the present invention has made the present invention as a result of intensive studies to solve the above-mentioned problems.
  • the above object of the present invention is achieved by the following means.
  • the first aspect of the present invention has a barrier layer containing a silicon compound and a metal atom on a resin substrate,
  • a ratio B of silicon element amount Si and metal element amount M Si: M is 1: 1 to 1: 0.1
  • region B of film thickness Th2 includes:
  • the Th1 and Th2 are the following formulas (1) and (2): (1) Th1 / Th2 ⁇ 2 (2) 20 nm ⁇ Th1 ⁇ 300 nm It is a gas barrier film that satisfies the above.
  • the second aspect of the present invention is the first barrier layer precursor liquid containing a silicon compound precursor and a solvent having a solubility parameter of 15.5 to 20.0 on the resin substrate, the metal compound and the solubility parameter being A method for producing a gas barrier film, comprising a film forming step including applying a second barrier layer precursor liquid containing a solvent of 26.0 to 32.0.
  • FIG. 1 10 represents a gas barrier film
  • 11 represents a (resin) substrate
  • 12 represents an inorganic barrier layer
  • 13 represents a barrier layer
  • 14 represents a region derived from the first barrier layer
  • 15 represents a region B
  • 16 represents a region A
  • 17 represents a region derived from the second barrier layer
  • 18 represents a first barrier layer
  • 19 represents a second barrier layer
  • 20 represents a precursor film.
  • FIG. 1 represents a gas barrier film
  • 11 represents a (resin) substrate
  • 12 represents an inorganic barrier layer
  • 13 represents a barrier layer
  • 14 represents a region derived from the first barrier layer
  • 15 represents a region B
  • 16 represents a region A
  • 17 represents a region derived from the second barrier layer
  • 18 represents a first barrier layer
  • 19 represents a second barrier layer
  • 20 represents a precursor film.
  • It is a schematic diagram which shows an example of the manufacturing apparatus used for formation of the inorganic barrier layer which concerns on this invention
  • 1 represents a gas barrier film
  • 2 represents a (resin) substrate
  • 3 represents an inorganic barrier layer
  • 31 represents a production apparatus
  • 32 represents a feed roller
  • 33, 34, 35, 36 represents a transport roller
  • 39 and 40 represent film forming rollers
  • 41 represents a gas supply pipe
  • 42 represents a plasma generation power source
  • 43 and 44 represent a magnetic field generator
  • 45 represents a take-up roller.
  • 101 represents a (vacuum) plasma CVD apparatus
  • 102 represents a vacuum chamber
  • 103 represents a cathode electrode
  • 105 represents a susceptor
  • 106 represents a heat medium circulation system
  • 107 represents a vacuum exhaust system.
  • 108 represents a gas introduction system
  • 109 represents a high-frequency power source
  • 110 represents a base material
  • 160 represents a heating and cooling device.
  • the gas barrier film of the present invention has a barrier layer containing a silicon compound and a metal atom on a resin substrate, and the amount of silicon element and the amount of metal element satisfy the predetermined relationship described above.
  • the barrier layer when the barrier layer includes a layer containing a metal atom that satisfies a specific thickness condition, it is possible to prevent the barrier property from being lowered due to a difference in the degree of modification of the polysilazane film.
  • a gas barrier film capable of preventing the occurrence of cracks at high temperature and high humidity.
  • the production method of the present invention by using solvents having different solubility parameters for the coating solutions of the first barrier layer and the second barrier layer, respectively, the gas barrier property with higher productivity and superior barrier performance.
  • a film can be produced.
  • the electronic device using the gas barrier film of the present invention can improve durability by using a film having high barrier performance.
  • FIG. 1 is a schematic cross-sectional view showing the structure of an example of the gas barrier film 10 of the present invention.
  • the gas barrier film 10 of the present invention is obtained by modifying the precursor film 20.
  • a resin base material 11, an inorganic barrier layer 12, and a barrier layer 13 are laminated in this order.
  • the precursor film 20 includes a resin base material 11, an inorganic barrier layer 12, a first barrier layer 18 that is a coating film containing a silicon compound precursor before modification, and a second barrier layer 19 that is a coating film containing a metal compound. They are stacked in this order.
  • the barrier layer 13 of the gas barrier film 10 is configured by modifying the first barrier layer 18 and the second barrier layer 19 of the precursor film 20.
  • the barrier layer 13 of the gas barrier film 10 is a film having a region 14 derived from the first barrier layer 18 and a ratio Si: M between the silicon element amount Si and the metal element amount M of 1: 1 to 1: 0.1. It is composed of a region B15 having a thickness Th2 and a region 17 derived from the second barrier layer. Further, the region 17 of the barrier layer 13 includes a region A16 having a thickness Th1 in which the ratio Si: M between the silicon element amount Si and the metal element amount M is 1: x and x ⁇ 2.
  • the components of the gas barrier film 10 will be described.
  • a resin base material plastic film or sheet
  • a film or sheet made of a colorless and transparent resin is preferably used as the base material.
  • the resin substrate used is not particularly limited in material, thickness, and the like as long as it is a film that can hold a barrier layer, a hard coat layer, and the like, and can be appropriately selected according to the purpose of use.
  • Specific examples of the resin substrate include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyether.
  • Imide resin cellulose acylate resin, polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyether sulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring modified polycarbonate resin, fat
  • thermoplastic resins such as a ring-modified polycarbonate resin, a fluorene ring-modified polyester resin, and an acryloyl compound.
  • the substrates disclosed in paragraphs “0056” to “0075” of JP2012-116101A, paragraphs “0125” to “0131” of JP2013-226758A, etc. are also appropriately employed. Is done.
  • the thickness of the resin substrate used in the gas barrier film according to the present invention is not particularly limited because it is appropriately selected depending on the application, but is typically 1 to 800 ⁇ m, preferably 5 ⁇ m to 500 ⁇ m, more preferably. Is 25 to 250 ⁇ m.
  • These resin base materials may have functional layers such as a transparent conductive layer and a primer layer.
  • As the functional layer those described in paragraph numbers “0036” to “0038” of JP-A-2006-289627 can be preferably used.
  • the substrate preferably has a high surface smoothness.
  • the surface smoothness those having an average surface roughness (Ra) of 2 nm or less are preferable. Although there is no particular lower limit, it is practically 0.01 nm or more. If necessary, both surfaces of the substrate, at least the side on which the barrier layer is provided, may be polished to improve smoothness.
  • various known treatments for improving adhesion such as corona discharge treatment, flame treatment, oxidation treatment, or plasma. It is preferable to perform treatment, lamination of a primer layer, which will be described later, and more preferably to combine the above treatments as necessary.
  • an anchor coat layer (easy adhesion layer) may be formed on the substrate. It is also possible to expect a higher adhesion by forming a thin film of monomolecular level to nano level like silane coupling agent and providing an anchor coat layer with a material capable of forming a molecular bond at the layer interface. It can be preferably used.
  • a stress relaxation layer made of resin, etc., a smoothing layer for smoothing the surface of the resin base material, a bleed out prevention layer for preventing bleed out from the resin base material, etc. are additionally provided on the base material. Also good.
  • the barrier layer of the present invention contains a silicon compound and a metal atom.
  • the ratio Si: M between the silicon element amount Si and the metal element amount M is 1: x, and x ⁇ 2, the region A of the film thickness Th1, and the silicon element amount Si and the metal element amount M And a region B having a thickness Th2 in which the ratio Si: M is 1: 1 to 1: 0.1.
  • Th1 and Th2 are the following formulas (1) and (2): (1) Th1 / Th2 ⁇ 2 (2) 20 nm ⁇ Th1 ⁇ 300 nm Meet.
  • the barrier layer is mainly derived from the first barrier layer before modification, the region mainly containing a silicon compound, and the second barrier layer, mainly a metal compound (compound containing a metal atom). And a region in which the first barrier layer and the second barrier layer in between are slightly mixed and the silicon compound and metal atoms are mixed.
  • a region B where the ratio Si: M of the silicon element amount Si to the metal element amount M is 1: 1 to 1: 0.1 corresponds to a region where a silicon compound and metal atoms are mixed.
  • the region A in which the ratio Si: M between the silicon element amount Si and the metal element amount M is 1: x and x ⁇ 2 is included in a region mainly composed of a metal compound with a large amount of metal element.
  • the film thickness Th1 in the region A is thicker than the film thickness Th2 in the region B, and Th1 and Th2 satisfy the formula (1) Th1 / Th2 ⁇ 2. That is, the region A mainly composed of the metal compound has a thickness that is twice or more that of the region B mixed with the silicon compound, so to speak, it remains without being mixed with the lower layer. In other words, in the present invention, it is preferable that the mixed region has a smaller film thickness and the silicon compound and the metal atom are not mixed as much as possible.
  • the film thickness Th1 of the region A satisfies the formula (2) 20 nm ⁇ Th1 ⁇ 300 nm. That is, the region A mainly composed of a metal compound is more than twice as large as the region B and remains with a certain substantial film thickness.
  • the region A mainly composed of the metal compound remains with a predetermined film thickness, so that the gas barrier film becomes an unmodified silicon compound precursor, particularly under high temperature and high humidity.
  • the region A can absorb the distortion generated by the modification. Therefore, generation of cracks in the gas barrier film under high temperature and high humidity is prevented, and a gas barrier film with high gas barrier performance is obtained.
  • the effect of preventing cracks is particularly remarkable when the thickness of the second barrier layer containing a silicon compound is thick.
  • the region B is thinner, and the region A remains with a certain thickness, so that the above condition is satisfied. It was found that differences in the degree of modification of the compound precursor can be prevented. This is presumably because the low-molecular component of the silicon compound volatilizes during the modification, adheres to the reforming lamp, and the illuminance of the lamp decreases, resulting in a difference in the degree of modification over time. It is considered that the region A remaining at a predetermined thickness prevents volatilization and scattering of low molecular components of the silicon compound and suppresses a decrease in illuminance of the reforming lamp. As a result, the gas barrier film of the present invention is a film that exhibits excellent barrier performance over the entire elongated body.
  • the ratio of Th1 and Th2 is more preferably 5.0 ⁇ Th1 / Th2 ⁇ 2.5, and further preferably 4.0 ⁇ Th1 / Th2 ⁇ 3.2. It is preferable that the ratio of Th1 and Th2 is in such a range because the desired effects of the present invention, prevention of cracking at high temperature and high humidity, and realization of uniform barrier performance by suppressing the difference in the degree of modification are higher.
  • the film thickness of Th1 is 20 nm or more, preferably more than 20 nm, and more preferably 50 nm or more. Further, Th1 ⁇ 300 nm, preferably Th1 ⁇ 200 nm, and more preferably satisfies Th1 ⁇ 100 nm. When Th1 is 20 nm or more, the effect of preventing the volatilization or scattering of the low-molecular silicon compound is more reliable, and when it is 200 nm or less, the flexibility of the gas barrier film is high.
  • the XPS depth profile is measured, and the distribution of the Si element amount and the metal element amount is obtained. Based on this distribution, the thickness of the region B where Si: M is 1: 1 to 1: 0.1 and the region A where Si: M is 1: x and x ⁇ 2 is calculated.
  • the conditions described in Examples described later are used.
  • the silicon compound forming the barrier layer has the following general formula (1):
  • R 1 , R 2 and R 3 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. , It is preferable that it is obtained by modifying the silicon compound precursor having the structure represented by the following by irradiating with active energy rays.
  • the silicon compound precursor which has a structure shown by the said General formula (1) is mentioned.
  • the silicon compound of the general formula (1) is a polymer having a silicon-nitrogen (Si—N) bond in the structure, and has SiO 2 , Si 3 N having a bond such as Si—N, Si—H, or N—H. 4 and their intermediate solid solution SiO x N y and other ceramic precursor inorganic polymers.
  • the silicon compound precursor of the general formula (1) is also referred to as “polysilazane”.
  • the silicon compound precursor having the structure represented by the general formula (1) may be used alone or two or more silicon compound precursors of the formula (1) may be included.
  • examples of the alkyl group include linear, branched or cyclic alkyl groups having 1 to 8 carbon atoms. More specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n -Hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group and the like.
  • aryl group examples include aryl groups having 6 to 30 carbon atoms. More specifically, non-condensed hydrocarbon groups such as phenyl group, biphenyl group, terphenyl group; pentarenyl group, indenyl group, naphthyl group, azulenyl group, heptaenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenenyl group , Condensed polycyclic hydrocarbon groups such as acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceantrirenyl group, triphenylenyl group, pyrenyl group, chrysenyl group, naphthacenyl group, etc.
  • non-condensed hydrocarbon groups such as phenyl group, biphenyl group
  • the (trialkoxysilyl) alkyl group includes an alkyl group having 1 to 8 carbon atoms having a silyl group substituted with an alkoxy group having 1 to 8 carbon atoms. More specific examples include 3- (triethoxysilyl) propyl group and 3- (trimethoxysilyl) propyl group.
  • the substituent optionally present in R 1 to R 3 is not particularly limited, and examples thereof include an alkyl group, a halogen atom, a hydroxyl group (—OH), a mercapto group (—SH), a cyano group (—CN), There are a sulfo group (—SO 3 H), a carboxyl group (—COOH), a nitro group (—NO 2 ) and the like. Note that the optionally present substituent is not the same as R 1 to R 3 to be substituted. For example, when R 1 to R 3 are alkyl groups, they are not further substituted with an alkyl group.
  • R 1 , R 2 and R 3 are preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a phenyl group, a vinyl group, 3 -(Triethoxysilyl) propyl group or 3- (trimethoxysilylpropyl) group.
  • Perhydropolysilazane (PHPS) in which all of R 1 , R 2 and R 3 are hydrogen atoms is particularly preferred.
  • a gas barrier layer (gas barrier film) formed from such polysilazane exhibits high density.
  • n is an integer representing the number of structural units of the formula: — [Si (R 1 ) (R 2 ) —N (R 3 )] —, and the general formula (1) It is preferable that the polysilazane having the structure represented by the formula is determined so as to have a number average molecular weight of 150 to 150,000 g / mol.
  • Perhydropolysilazane in which all of R 1 , R 2 and R 3 are hydrogen atoms, is particularly preferred from the viewpoint of denseness as a gas barrier layer film.
  • Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on a 6-membered ring and an 8-membered ring. Its molecular weight is about 600 to 2000 in terms of number average molecular weight (Mn) (gel Polystyrene conversion by permeation chromatography), which is a liquid or solid substance.
  • Mn number average molecular weight
  • Polysilazane is commercially available in the form of a solution dissolved in an organic solvent, and a commercially available product can be used as it is as a polysilazane-containing coating solution.
  • Examples of commercially available polysilazane solutions include AQUAMICA (registered trademark) NN120-10, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20, NL150A, and NP110 manufactured by AZ Electronic Materials Co., Ltd. NP140, SP140 and the like.
  • polysilazane used in the present invention are not particularly limited and include known ones. For example, those disclosed in paragraphs “0043” to “0058” of JP2013-022799A, paragraphs “0038” to “0056” of JP2013-226758A are appropriately adopted. Of these, perhydropolysilazane is most preferably used.
  • polysilazane examples include, but are not limited to, for example, silicon alkoxide-added polysilazane obtained by reacting the above polysilazane with silicon alkoxide (Japanese Patent Laid-Open No.
  • glycidol addition obtained by reacting glycidol Polysilazane (JP-A-6-122852), alcohol-added polysilazane obtained by reacting an alcohol (JP-A-6-240208), metal carboxylate-added polysilazane obtained by reacting a metal carboxylate 6-299118), acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329), metal fine particle-added polysilazane obtained by adding metal fine particles (specialty) Kaihei 7- Publication), etc.
  • No. 96986 include polysilazane ceramic at low temperatures.
  • the silicon compound precursor for forming the barrier layer is not particularly limited as long as the coating liquid can be prepared.
  • a silazane compound, an aminosilane compound, A silylacetamide compound, a silylimidazole compound, or the like is used.
  • silazane compounds preferably used in the present invention include dimethyldisilazane, trimethyldisilazane, tetramethyldisilazane, pentamethyldisilazane, hexamethyldisilazane, and 1,3-divinyl-1,1,3,3. -Examples include, but are not limited to, tetramethyldisilazane.
  • the metal compound is not particularly limited as long as it is a compound containing a metal atom.
  • the metal atom contained in the barrier layer of the present invention is not particularly limited as long as it has the above effects. Specifically, boron atom (B), aluminum atom (Al), titanium atom (Ti), zirconium atom (Zr), zinc atom (Zn), gallium atom (Ga), indium atom (In), chromium atom ( Cr), iron atom (Fe), magnesium atom (Mg), tin atom (Sn), nickel atom (Ni), palladium atom (Pd), lead atom (Pb), manganese atom (Mn), lithium atom (Li) , Germanium atoms (Ge), copper atoms (Cu), sodium atoms (Na), potassium atoms (K), calcium atoms (Ca), and cobalt atoms (Co).
  • a boron atom (B), an aluminum atom (Al), a titanium atom (Ti), and a zirconium atom (Zr) are more preferable.
  • the metal atoms may be used alone or in the form of a mixture of two or more. By containing these metal atoms, it is possible to further improve the effects of preventing volatilization and scattering of low-molecular silicon compounds and preventing cracking at high temperatures and high humidity.
  • Metal atoms are contained in the metal compound contained in the barrier layer.
  • the metal compound is preferably a compound having a metal atom, an oxygen atom and a carbon atom.
  • the metal compound may be contained singly or two or more metal compounds may be contained.
  • the metal compound contains an oxygen (O) atom
  • the metal compound is not particularly limited as long as it has a metal atom, an oxygen atom, and a carbon atom.
  • an alkali metal alkoxide the following general formula (2):
  • metal compounds having a structural unit represented by The above metal compounds may be used alone or in the form of a mixture of two or more.
  • the alkali metal alkoxide is not particularly limited, but an alkali metal having an alkoxy group having 1 to 10 carbon atoms bonded to the alkali metal is preferable.
  • Specific examples include sodium methoxide, sodium ethoxide, sodium propoxide, sodium isopropoxide, sodium butoxide, potassium methoxide, potassium ethoxide, potassium propoxide, potassium isopropoxide, potassium butoxide and the like.
  • the metal compound which has a structural unit shown by the said General formula (2) can be used as a metal compound.
  • M represents boron (B), aluminum (Al), titanium (Ti), zirconium (Zr), zinc (Zn), gallium (Ga), indium (In), chromium (Cr). , Iron (Fe), magnesium (Mg), tin (Sn), nickel (Ni), palladium (Pd), lead (Pb), manganese (Mn), lithium (Li), germanium (Ge), copper (Cu) , Sodium (Na), potassium (K), calcium (Ca), or cobalt (Co).
  • n is 2 or more (i.e., - [M (R 4) m1] - there are a plurality) in case each - [M (R 4) m1 ] - M in the unit, respectively, It may be the same or different.
  • M is preferably boron (B), aluminum (Al), titanium (Ti), or zirconium (Zr) from the viewpoints of VUV light transmittance, reactivity with polysilazane, and the like, and aluminum (Al), Titanium (Ti) and zirconium (Zr) are more preferable.
  • Y represents a single bond or an oxygen atom (—O—).
  • R 4 , R 5, and R 6 are a hydrogen atom, a halogen atom, a cyano group (—CN), a nitro group (—NO 2 ), a mercapto group (—SH), an epoxy group (a 3-membered ring ether oxacyclo Propyl group), a hydroxyl group (—OH), a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms, a substituted or unsubstituted cycloalkyl group having 2 to 10 carbon atoms, or Unsubstituted alkenyl group, substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, acetoacetate group (—O—C (CH 3 ) ⁇ CH —C ( ⁇ O)
  • R 4 , R 5 and R 6 may be the same or different.
  • n is 2 or more in the case of (i.e., - there are a plurality - [M (R 4) m1 ]), each - [M (R 4) m1 ] - R 4 in the units, respectively, It may be the same or different.
  • the halogen atom may be a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the alkyl group having 1 to 10 carbon atoms is not particularly limited, but is a linear or branched alkyl group having 1 to 10 carbon atoms.
  • Nonyl group, decyl group, 2-ethylhexyl group and the like can be mentioned.
  • linear or branched alkyl groups having 1 to 6 carbon atoms are preferred, and linear or branched alkyl groups having 1 to 5 carbon atoms.
  • An alkyl group is more preferred.
  • the cycloalkyl group having 3 to 10 carbon atoms is not particularly limited, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • the alkenyl group having 2 to 10 carbon atoms is not particularly limited, but is a linear or branched alkenyl group having 2 to 10 carbon atoms.
  • vinyl group allyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 1-hexenyl Group, 2-hexenyl group, 3-hexenyl group, 1-heptenyl group, 2-heptenyl group, 5-heptenyl group, 1-octenyl group, 3-octenyl group, 5-octenyl group and the like.
  • the alkynyl group having 2 to 10 carbon atoms is not particularly limited, but is a linear or branched alkynyl group having 2 to 10 carbon atoms.
  • Examples include 2-hexynyl group, 3-hexynyl group, 1-heptynyl group, 2-heptynyl group, 5-heptynyl group, 1-octynyl group, 3-octynyl group, and 5-octynyl group.
  • the alkoxy group having 1 to 10 carbon atoms is not particularly limited, but is a linear or branched alkoxy group having 1 to 10 carbon atoms.
  • a linear or branched alkoxy group having 1 to 8 carbon atoms is preferable from the viewpoint of VUV light permeability, reactivity with polysilazane, and film denseness, and has 1 to 5 carbon atoms.
  • a linear or branched alkoxy group is preferred.
  • the (alkyl) acetoacetate group having 4 to 25 carbon atoms is not particularly limited, but represents a group in which a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms is bonded to the acetoacetate group.
  • an acetoacetate group (—O—C (CH 3 ) ⁇ CH—C ( ⁇ O) —OH), a methyl acetoacetate group (—O—C (CH 3 ) ⁇ CH—C ( ⁇ O) —C— O—CH 3 ), ethyl acetoacetate group (—O—C (CH 3 ) ⁇ CHC ( ⁇ O) —C—O—C 2 H 5 ), propyl acetoacetate group, isopropyl acetoacetate group, octadecyl acetoacetate group Etc.
  • ethyl acetoacetate group, methyl acetoacetate group, and acetoacetate group are preferable from the viewpoints of VUV light permeability and film density.
  • the aryl group having 6 to 30 carbon atoms is not particularly limited, and examples thereof include a phenyl group, a naphthyl group, a biphenyl group, a fluorenyl group, an anthryl group, a pyrenyl group, an azulenyl group, an acenaphthylenyl group, a terphenyl group, and a phenanthryl group. Is mentioned.
  • the heterocyclic group is not particularly limited, but thiophene ring, dithienothiophene ring, cyclopentadithiophene ring, phenylthiophene ring, diphenylthiophene ring, imidazole ring, oxazole ring, isoxazole ring, thiazole ring, pyrrole ring, furan Ring, benzofuran ring, isobenzofuran ring, coumarin ring (for example, 3,4-dihydrocoumarin), benzimidazole ring, benzoxazole ring, rhodanine ring, pyrazolone ring, imidazolone ring, pyran ring, pyridine ring, pyrazine ring, pyrazole ring , Pyrimidine ring, pyridazine ring, triazine ring, fluorene ring, benzothiophene ring, benzo (
  • a halogen atom fluorine atom, chlorine atom, bromine atom, iodine atom
  • a linear or branched alkyl group having 1 to 24 carbon atoms for example, a cycloalkyl group having 3 to 24 carbon atoms (for example, Cyclopentyl group, cyclohexyl group), hydroxyalkyl group having 1 to 24 carbon atoms (for example, hydroxymethyl group, hydroxyethyl group), alkoxyalkyl group having 2 to 24 carbon atoms (for example, methoxyethyl group), carbon atom
  • An alkoxy group of 1 to 24 for example, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, pentyloxy group, hexyloxy group, 2-ethylhexyloxy group, octyloxy group,
  • an alkyl group, an alkenyl group, an alkynyl group, an amino group, and an aryl group have the same definition as described above, a description thereof is omitted here.
  • the number of substituents is not particularly limited, and can be appropriately selected in consideration of desired effects (VUV light permeability, solubility, reactivity with polysilazane, etc.). In the above, it is not substituted with the same substituent. That is, a substituted alkyl group is not substituted with an alkyl group.
  • At least one of R 4 , R 5 and R 6 preferably represents a hydroxyl group, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms.
  • the bond of the alkoxy group part or the hydroxyl group part is easily cleaved by VUV light, and the cleaved alkoxy group part or hydroxyl group part reacts quickly with polysilazane. Great reaction promotion effect.
  • a compound containing an alkyl group can form a flexible film.
  • R 4 , R 5 and R 6 is an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms or an (alkyl) acetoacetate group having 4 to 25 carbon atoms. More preferably, it represents an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, and even more preferably represents an alkoxy group having 1 to 10 carbon atoms.
  • n and m2 are integers of 1 or more, and m1 + m2 is an integer defined by M, and is uniquely defined by the number of M bonds.
  • m1 and m2 may be the same integer or different integers.
  • n is an integer of 1 or more, and is preferably an integer of 1 to 10, more preferably 1 to 4, from the viewpoints of VUV light permeability, film density, and the like.
  • Examples of the metal compound represented by the general formula (2) include triisopropyl borate, aluminum isopropoxide, aluminum-sec-butyrate, titanium isopropoxide, aluminum triethylate, aluminum triisopropylate, aluminum tritert-butylate.
  • triisopropyl borate, aluminum ethyl acetoacetate diisopropylate, aluminum sec-butyrate, titanium isopropoxide, titanium tetraisopropoxide (titanium (IV) isopropylate) ) are preferred, and triisopropyl borate, aluminum ethyl acetoacetate diisopropylate, and titanium tetraisopropoxide (titanium (IV) isopropylate) are more preferred.
  • the metal compound may be synthesized or a commercially available product may be used.
  • the gas barrier film of the present invention preferably further includes an inorganic barrier layer formed by a chemical vapor deposition (CVD) method between the resin base material and the barrier layer.
  • CVD chemical vapor deposition
  • the inorganic barrier layer has high density and further has gas barrier properties.
  • the gas barrier property of the inorganic barrier layer is calculated with a laminate in which the inorganic barrier layer is formed on the substrate, the water vapor permeability (WVTR) is preferably 0.1 g / (m 2 ⁇ day) or less, More preferably, it is 0.01 g / (m 2 ⁇ day) or less.
  • the inorganic barrier layer contains an inorganic compound.
  • the inorganic compound is not particularly limited, and examples thereof include metal oxides, metal nitrides, metal carbides, metal oxynitrides, and metal oxycarbides.
  • oxides, nitrides, carbides, oxynitrides or oxycarbides containing one or more metals selected from Si, Al, In, Sn, Zn, Ti, Cu, Ce and Ta in terms of gas barrier performance are preferably used, and an oxide, nitride or oxynitride of a metal selected from Si, Al, In, Sn, Zn and Ti is more preferable, and in particular, an oxide of at least one of Si and Al, Nitride or oxynitride is preferred.
  • suitable inorganic compounds include composites such as silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, aluminum oxide, titanium oxide, or aluminum silicate. You may contain another element as a secondary component.
  • the content of the inorganic compound contained in the inorganic barrier layer is not particularly limited, but is preferably 50% by mass or more, more preferably 80% by mass or more, and 95% by mass or more in the inorganic barrier layer. Is more preferably 98% by mass or more, and most preferably 100% by mass (that is, the inorganic barrier layer is made of an inorganic compound).
  • the film thickness per layer of the inorganic barrier layer is preferably 20 to 3000 nm, more preferably 50 to 2500 nm, and particularly preferably 30 to 1000 nm. With such a film thickness, the gas barrier film can exhibit excellent gas barrier properties and the effect of suppressing / preventing cracking during bending.
  • each inorganic barrier layer has a film thickness as mentioned above.
  • the inorganic barrier layer does not need to be formed on the surface of the resin base material.
  • the base layer smooth layer, primer layer), anchor coat layer (anchor layer), protective layer, hygroscopic layer and antistatic layer are not required between the resin base material.
  • a functional layer or the like of the layer may be provided.
  • the formation method of the inorganic barrier layer is not limited to the chemical vapor deposition method (CVD method).
  • a vacuum film-forming method such as a physical vapor deposition method (PVD method) or a method of forming a film by modifying a coating film formed by applying a liquid containing an inorganic compound, preferably a liquid containing a silicon compound ( Hereinafter, it is also simply referred to as a coating method).
  • PVD method physical vapor deposition method
  • chemical vapor deposition is particularly preferred.
  • the gas barrier film of the present invention may have a smooth layer between the substrate and the barrier layer.
  • the smooth layer used in the present invention flattens the rough surface of the transparent resin film support with protrusions or the like, or fills the irregularities and pinholes generated in the transparent inorganic compound layer with the protrusions present on the transparent resin film support. Provided for flattening.
  • the materials, methods, etc. disclosed in paragraphs “0233” to “0248” of JP2013-52561A are appropriately employed as the constituent material, forming method, surface roughness, film thickness, etc. of the smooth layer.
  • an anchor coat layer On the surface of the substrate according to the present invention, an anchor coat layer (anchor layer) may be formed as an easy adhesion layer for the purpose of improving adhesiveness (adhesion).
  • the anchor coating agent used in this anchor coat layer include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicon resin, and alkyl titanate. One type or two or more types can be used in combination. A commercially available product may be used as the anchor coating agent.
  • siloxane-based UV curable polymer solution manufactured by Shin-Etsu Chemical Co., Ltd., 3% isopropyl alcohol solution of “X-12-2400”
  • UV curable organic / inorganic hybrid hard coat material manufactured by JSR Corporation OPSTARZ7501
  • the above-mentioned anchor coating agent is coated on a substrate by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and is coated by drying and removing the solvent, diluent, etc. Can do.
  • the application amount of the anchor coating agent is preferably about 0.1 to 5 g / m 2 (dry state).
  • a commercially available base material with an easy-adhesion layer may be used.
  • the anchor coat layer can be formed by a vapor phase method such as physical vapor deposition or chemical vapor deposition.
  • a vapor phase method such as physical vapor deposition or chemical vapor deposition.
  • an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like.
  • the thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10.0 ⁇ m.
  • the gas barrier film of the present invention may have a bleed-out preventing layer on the substrate surface opposite to the surface on which the smooth layer is provided.
  • the bleed-out prevention layer is for the purpose of suppressing the phenomenon that, when a film having a smooth layer is heated, unreacted oligomers etc. migrate from the film having the smooth layer to the surface and contaminate the contact surface.
  • the bleed-out prevention layer may basically have the same configuration as the smooth layer as long as it has this function.
  • an intermediate layer may be formed between each barrier layer or between the barrier layer and the substrate.
  • a method of forming a polysiloxane modified layer can be applied as a method of forming the intermediate layer.
  • a coating solution containing polysiloxane is applied onto the barrier layer by a wet coating method and dried, and then the dried coating film is irradiated with vacuum ultraviolet light to form a polysiloxane modified layer. It is a method of forming.
  • the coating solution used for forming the intermediate layer in the present invention mainly contains polysiloxane and an organic solvent.
  • the constituent material and forming method of the intermediate layer for example, the materials and methods disclosed in paragraphs “0161” to “0185” of JP-A-2014-046272 can be appropriately employed.
  • a protective layer containing an organic compound may be provided on the barrier layer.
  • an organic resin such as an organic monomer, oligomer or polymer, or an organic-inorganic composite resin layer using a siloxane or silsesquioxane monomer, oligomer or polymer having an organic group is preferably used. Can do.
  • a first barrier layer precursor liquid containing a silicon compound precursor and a solvent having a solubility parameter of 15.5 to 20.0 on a resin substrate, a metal compound and a solubility parameter are provided.
  • the above-mentioned Th1 and Th2 satisfy the relationship of the above formulas (1) and (2)
  • the gas barrier film of the present invention having the following can be achieved.
  • the film forming step includes applying a first barrier layer precursor liquid including a silicon compound precursor and a solvent having a solubility parameter of 15.5 to 20.0 on a resin substrate.
  • the first barrier layer precursor liquid and the second barrier layer precursor liquid are applied by a simultaneous multilayer coating method, and the first barrier layer and the second barrier layer are formed simultaneously. May be.
  • the solubility parameter is a value defined by the regular solution theory introduced by Hildebrand, and is used as an indicator of the solubility and compatibility of solvents and organic compounds.
  • the solubility parameter can be determined by a known method from the structure and physical properties of the chemical substance.
  • the first barrier layer refers to a coating film formed by applying a first barrier layer precursor liquid
  • the second barrier layer refers to a coating film formed by applying a second barrier layer precursor liquid.
  • the barrier layer of the gas barrier film of the present invention includes a part mainly containing a silicon compound derived from the first barrier layer, a part mainly containing a metal compound derived from the second barrier layer, and a first barrier layer therebetween. It is comprised with the part which the 2nd barrier layer mixed.
  • the region A containing a large amount of metal atoms remains in a predetermined thickness, and the region B in which the silicon compound and the metal atoms are mixed.
  • the silicon compound and the metal atom are not mixed as much as possible. Therefore, in the production method of the present invention, the first barrier layer precursor liquid containing the silicon compound precursor and the second barrier layer precursor liquid containing the metal compound are difficult to mix with each other. That is, solvents having different solubility parameters are used for the first barrier layer precursor liquid and the second barrier layer precursor liquid, respectively.
  • a solvent having a solubility parameter of 15.5 to 20.0 is used for the first barrier layer precursor liquid, and a solubility parameter of 26.0 to 32.0 is used for the second barrier layer precursor liquid.
  • Use a solvent By using each of the solvents having the solubility parameter range, the region A containing the metal atoms derived from the second barrier layer can be left in a predetermined thickness, and the first barrier layer and the second barrier layer The mixing area can be made thinner.
  • the layer containing such a metal compound it is possible to prevent the low-molecular silicon compound from being volatilized or scattered during the reforming and adhering to the reforming lamp. Therefore, even when producing a long gas barrier film, a reduction in lamp illuminance is prevented, there is no difference in the degree of modification, and a gas barrier film having a uniform and excellent barrier performance is provided.
  • the first barrier layer precursor liquid and the second barrier layer precursor liquid each use a solvent having different solubility parameters, so that the first barrier layer and the second barrier layer precursor liquid It can prevent mixing with a 2nd barrier layer more than predetermined amount. Therefore, the manufacturing process is simpler and shorter than the conventional method of forming the second barrier layer after modifying the first barrier layer, and the productivity is improved. Even in the case of the sequential coating method, there is no need for modification for each film formation, and drying can be completed in a short time, so that an effect of improving productivity can be obtained.
  • the difference between the solubility parameter of the solvent contained in the first barrier layer precursor liquid and the solubility parameter of the solvent contained in the second barrier layer precursor liquid is more preferably 7.5 to 17.5, It is preferably 11 to 17.5.
  • the difference in solubility parameter is 7.5 to 17.5, the desired effect of the present invention is to prevent the generation of cracks under high temperature and high humidity, and to achieve uniform barrier performance by preventing the difference in the degree of modification. The effect of improving productivity and productivity is higher. If the solubility parameter difference is 11 or more, the first barrier layer is reliably formed, and if the solubility parameter difference is 17.5 or less, the second barrier layer reliably remains at a predetermined thickness, and the film is formed. Is done.
  • the first barrier layer and the second barrier layer are formed by simultaneous multilayer coating, if the difference in solubility parameter is 11 or more, the above Th1 and Th2 are related to the above formulas (1) and (2). A barrier layer that satisfies the above can be obtained more efficiently.
  • the method for producing a gas barrier film of the present invention preferably further includes an inorganic barrier layer film forming step of forming an inorganic barrier layer on the resin substrate by a chemical vapor deposition (CVD) method before the film forming step.
  • the method for forming the inorganic barrier layer is not particularly limited, but a vacuum film formation method such as physical vapor deposition (PVD method) or chemical vapor deposition (CVD), or a liquid containing an inorganic compound, preferably a silicon compound And a method of reforming and forming a coating film formed by applying a liquid containing a liquid (hereinafter also simply referred to as a coating method).
  • the inorganic barrier layer is preferably formed by a chemical vapor deposition (CVD) method.
  • CVD chemical vapor deposition
  • the physical vapor deposition method is a method of depositing a target material, for example, a thin film such as a carbon film, on the surface of the material in a gas phase by a physical method. Examples thereof include a DC sputtering method, an RF sputtering method, an ion beam sputtering method, and a magnetron sputtering method, a vacuum deposition method, and an ion plating method.
  • the chemical vapor deposition method (Chemical Vapor Deposition, CVD method) is a method of depositing a film by supplying a source gas containing a target thin film component onto a substrate and performing a chemical reaction on the surface of the substrate or in the gas phase. It is. In addition, for the purpose of activating the chemical reaction, there is a method of generating plasma or the like.
  • Known CVD such as thermal CVD method, catalytic chemical vapor deposition method, photo CVD method, vacuum plasma CVD method, atmospheric pressure plasma CVD method, etc. The method etc. are mentioned. Although not particularly limited, it is preferable to apply the plasma CVD method from the viewpoint of film forming speed and processing area.
  • the inorganic barrier layer obtained by the vacuum plasma CVD method, or the plasma CVD method under atmospheric pressure or a pressure near atmospheric pressure has conditions such as the metal compound (decomposition material), decomposition gas, decomposition temperature, and input power as raw materials. This is preferable because the desired compound can be produced.
  • silicon oxide is generated.
  • highly active charged particles and active radicals exist in the plasma space at a high density, so that multistage chemical reactions are accelerated at high speed in the plasma space, and the elements present in the plasma space are thermodynamic. This is because it is converted into an extremely stable compound in a very short time.
  • a raw material compound it is preferable to use a silicon compound, a titanium compound, and an aluminum compound. These raw material compounds can be used alone or in combination of two or more.
  • titanium compounds include titanium methoxide, titanium ethoxide, titanium isopropoxide, titanium tetraisopropoxide, titanium n-butoxide, titanium diisopropoxide (bis-2,4-pentanedionate), titanium dioxide.
  • examples thereof include isopropoxide (bis-2,4-ethylacetoacetate), titanium di-n-butoxide (bis-2,4-pentanedionate), titanium acetylacetonate, and butyl titanate dimer.
  • Examples of the aluminum compound include aluminum ethoxide, aluminum triisopropoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum s-butoxide, aluminum t-butoxide, aluminum acetylacetonate, triethyldialuminum tri-s-butoxide, and the like. Can be mentioned.
  • a decomposition gas for decomposing a raw material gas containing these metals to obtain an inorganic compound hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, nitrogen gas, ammonia gas, nitrous oxide
  • examples include gas, nitrogen oxide gas, nitrogen dioxide gas, oxygen gas, and water vapor.
  • the decomposition gas may be mixed with an inert gas such as argon gas or helium gas.
  • a desired inorganic barrier layer can be obtained by appropriately selecting a source gas containing a source compound and a decomposition gas.
  • the inorganic barrier layer formed by the CVD method is preferably a layer containing oxide, nitride, oxynitride, or oxycarbide.
  • FIG. 3 is a schematic view showing an example of a vacuum plasma CVD apparatus used for forming the inorganic barrier layer according to the present invention.
  • the vacuum plasma CVD apparatus 101 has a vacuum chamber 102, and a susceptor 105 is disposed on the bottom surface inside the vacuum chamber 102.
  • a base material 110 to be deposited is placed on the susceptor 105.
  • a cathode electrode 103 is disposed on the ceiling side inside the vacuum chamber 102 at a position facing the susceptor 105.
  • a heat medium circulation system 106, a vacuum exhaust system 107, a gas introduction system 108, and a high-frequency power source 109 are disposed outside the vacuum chamber 102.
  • a heat medium is disposed in the heat medium circulation system 106.
  • the heat medium circulation system 106 stores a pump for moving the heat medium, a heating device for heating the heat medium, a cooling device for cooling, a temperature sensor for measuring the temperature of the heat medium, and a set temperature of the heat medium.
  • a heating / cooling device 160 having a storage device is provided.
  • the inorganic barrier layer preferably contains carbon, silicon, and oxygen as constituent elements.
  • a more preferable form is a layer that satisfies the following requirements (i) to (iii).
  • the inorganic barrier layer is (i) the distance (L) from the surface of the inorganic barrier layer in the film thickness direction of the inorganic barrier layer, and the ratio of the amount of silicon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms.
  • the thickness of the inorganic barrier layer is 90%. % (Upper limit: 100%) in the order of (atomic ratio of oxygen), (atomic ratio of silicon), and (atomic ratio of carbon) (atomic ratio is preferably O> Si> C).
  • the gas barrier property and flexibility of the obtained gas barrier film can be improved.
  • the relationship of the above (atomic ratio of oxygen), (atomic ratio of silicon) and (atomic ratio of carbon) is at least 90% or more of the film thickness of the inorganic barrier layer (upper limit: 100 %), More preferably at least 93% or more (upper limit: 100%).
  • at least 90% or more of the film thickness of the inorganic barrier layer does not have to be continuous in the inorganic barrier layer, and only needs to satisfy the above-described relationship at 90% or more.
  • the carbon distribution curve has at least two extreme values.
  • the inorganic barrier layer preferably has at least three extreme values in the carbon distribution curve, more preferably has at least four extreme values, but may have five or more extreme values.
  • the extreme value of the carbon distribution curve is two or more, the gas barrier property when the obtained gas barrier film is bent can be improved.
  • the upper limit of the extreme value of the carbon distribution curve is not particularly limited, for example, it is preferably 30 or less, more preferably 25 or less, but the number of extreme values is also caused by the film thickness of the inorganic barrier layer. It cannot be stipulated in general.
  • the absolute value of the difference in distance (L) is preferably 200 nm or less, more preferably 100 nm or less, and 75 nm or less. Is particularly preferred. If the distance is between such extreme values, the inorganic barrier layer has a portion having a large carbon atom ratio (maximum value) at an appropriate period, so that the inorganic barrier layer is provided with appropriate flexibility and gas barrier properties.
  • the “extreme value” refers to the maximum value or the minimum value of the atomic ratio of the element to the distance (L) from the surface of the inorganic barrier layer in the film thickness direction of the inorganic barrier layer. Further, in this specification, the “maximum value” means that the value of the atomic ratio of an element (oxygen, silicon or carbon) changes from increasing to decreasing when the distance from the surface of the inorganic barrier layer is changed.
  • “minimum value” means that the value of the atomic ratio of an element (oxygen, silicon, or carbon) changes from decrease to increase when the distance from the surface of the inorganic barrier layer is changed.
  • the lower limit of the distance between the extreme values in the case of having at least three extreme values is particularly high because the smaller the distance between the extreme values, the higher the effect of suppressing / preventing crack generation when the gas barrier film is bent.
  • it is preferably 10 nm or more, more preferably 30 nm or more in consideration of the flexibility of the inorganic barrier layer, the effect of suppressing / preventing cracks, thermal expansion, and the like.
  • the inorganic barrier layer has (iii) an absolute value of a difference between a maximum value and a minimum value of the atomic ratio of carbon in the carbon distribution curve (hereinafter, also simply referred to as “C max ⁇ C min difference”) of 3 at% or more. It is preferable that When the absolute value is 3 at% or more, the gas barrier property when the obtained gas barrier film is bent can be improved.
  • the C max ⁇ C min difference is more preferably 5 at% or more, further preferably 7 at% or more, and particularly preferably 10 at% or more. By setting the C max ⁇ C min difference, the gas barrier property can be further improved.
  • the “maximum value” is the atomic ratio of each element that is maximum in the distribution curve of each element, and is the highest value among the maximum values.
  • the “minimum value” is the atomic ratio of each element that is the minimum in the distribution curve of each element, and is the lowest value among the minimum values.
  • the upper limit of the C max -C min difference is not particularly limited, but it is preferably 50 at% or less in consideration of the effect of suppressing / preventing crack generation during bending of the gas barrier film, and is preferably 40 at% or less. It is more preferable that
  • the oxygen distribution curve of the inorganic barrier layer preferably has at least one extreme value, more preferably has at least two extreme values, and more preferably has at least three extreme values.
  • the oxygen distribution curve has at least one extreme value, the gas barrier property when the obtained gas barrier film is bent is further improved as compared with a gas barrier film having no extreme value.
  • the upper limit of the extreme value of the oxygen distribution curve is not particularly limited, but is preferably 20 or less, more preferably 10 or less, for example. Even in the number of extreme values of the oxygen distribution curve, there is a portion caused by the film thickness of the inorganic barrier layer, and it cannot be specified unconditionally.
  • the distance from the surface of the inorganic barrier layer in the film thickness direction of the inorganic barrier layer at one extreme value of the oxygen distribution curve and the extreme value adjacent to the extreme value is preferably 200 nm or less, and more preferably 100 nm or less. With such a distance between extreme values, the occurrence of cracks during bending of the gas barrier film can be more effectively suppressed / prevented.
  • the lower limit of the distance between the extreme values in the case of having at least three extreme values is not particularly limited, but considering the improvement effect of crack generation suppression / prevention when the gas barrier film is bent, the thermal expansion property, etc.
  • the thickness is preferably 10 nm or more, and more preferably 30 nm or more.
  • the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of oxygen in the oxygen distribution curve of the inorganic barrier layer (hereinafter also simply referred to as “O max ⁇ O min difference”) is 3 at% or more. Is preferably 6 at% or more, and more preferably 7 at% or more. When the absolute value is 3 at% or more, the gas barrier property when the obtained gas barrier film is bent is further improved.
  • the upper limit of the O max -O min difference is not particularly limited, but is preferably 50 at% or less, and is preferably 40 at% or less in consideration of the effect of suppressing / preventing crack generation when the gas barrier film is bent. It is more preferable that
  • the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of silicon in the silicon distribution curve of the inorganic barrier layer (hereinafter, also simply referred to as “Si max ⁇ Si min difference”) is preferably 10 at% or less, It is more preferably 7 at% or less, and further preferably 3 at% or less. When the absolute value is 10 at% or less, the gas barrier property of the obtained gas barrier film is further improved.
  • the lower limit of Si max -Si min difference because the effect of improving the crack generation suppression / prevention during bending of Si max -Si min as gas barrier property difference is small film is high, is not particularly limited, and gas barrier property In consideration, it is preferably 1 at% or more, and more preferably 2 at% or more.
  • the total amount of carbon and oxygen atoms with respect to the film thickness direction of the inorganic barrier layer is preferably substantially constant.
  • an inorganic barrier layer exhibits moderate flexibility, and generation
  • the absolute value of the difference between the maximum value and the minimum value of the oxygen-carbon atomic ratio in the oxygen-carbon distribution curve (hereinafter simply referred to as “OC max -OC min difference ”) is preferably less than 5 at%, more preferably less than 4 at%, and even more preferably less than 3 at%.
  • the absolute value is less than 5 at%, the gas barrier property of the obtained gas barrier film is further improved.
  • the lower limit of the OC max -OC min difference since preferably as OC max -OC min difference is small, but is 0 atomic%, it is sufficient if more than 0.1 at%.
  • the silicon distribution curve, the oxygen distribution curve, the carbon distribution curve, and the oxygen carbon distribution curve are a combination of X-ray photoelectron spectroscopy (XPS) measurement and rare gas ion sputtering such as argon.
  • XPS X-ray photoelectron spectroscopy
  • rare gas ion sputtering such as argon.
  • the etching time is generally correlated with the distance (L) from the surface of the inorganic barrier layer in the film thickness direction of the inorganic barrier layer in the film thickness direction. Therefore, as the “distance from the surface of the inorganic barrier layer in the film thickness direction of the inorganic barrier layer”, the surface of the inorganic barrier layer calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement The distance from can be adopted.
  • the silicon distribution curve, oxygen distribution curve, carbon distribution curve, and oxygen carbon distribution curve can be prepared under the following measurement conditions.
  • Etching ion species Argon (Ar + ) Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec Etching interval (SiO 2 equivalent value): 10 nm
  • X-ray photoelectron spectrometer Model name “VG Theta Probe” manufactured by Thermo Fisher Scientific Irradiation X-ray: Single crystal spectroscopy AlK ⁇ X-ray spot and its size: 800 ⁇ 400 ⁇ m oval.
  • the film thickness (dry film thickness) of the inorganic barrier layer formed by the above plasma CVD method is not particularly limited.
  • the thickness of the inorganic barrier layer per layer is preferably 20 to 3000 nm, more preferably 50 to 2500 nm, and particularly preferably 30 to 1000 nm.
  • the gas barrier film can exhibit excellent gas barrier properties and the effect of suppressing / preventing cracking during bending.
  • each inorganic barrier layer has a film thickness as mentioned above.
  • the inorganic barrier layer is substantially in the film surface direction (direction parallel to the surface of the inorganic barrier layer). Preferably it is uniform.
  • the inorganic barrier layer is substantially uniform in the film surface direction means that the oxygen distribution curve, the carbon distribution curve, and the carbon distribution curve at any two measurement points on the film surface of the inorganic barrier layer by XPS depth profile measurement.
  • the carbon distribution curve is substantially continuous.
  • the carbon distribution curve is substantially continuous means that the carbon distribution curve does not include a portion where the atomic ratio of carbon changes discontinuously.
  • the carbon distribution curve is calculated from the etching rate and the etching time. Between the distance (x, unit: nm) from the surface of the inorganic barrier layer in the film thickness direction of at least one of the inorganic barrier layers to be applied and the atomic ratio of carbon (C, unit: at%) Means satisfying the condition represented by the following formula 1.
  • the inorganic barrier layer that satisfies all of the above conditions (i) to (iii) may include only one layer or two or more layers. Furthermore, when two or more such inorganic barrier layers are provided, the materials of the plurality of inorganic barrier layers may be the same or different.
  • the silicon atomic ratio, the oxygen atomic ratio, and the carbon atomic ratio are 90% or more of the film thickness of the inorganic barrier layer.
  • the atomic ratio of the content of silicon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the inorganic barrier layer is 20 to 45 at%. Preferably, it is 25 to 40 at%.
  • the atomic ratio of the oxygen atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the inorganic barrier layer is preferably 45 to 75 at%, more preferably 50 to 70 at%. preferable.
  • the atomic ratio of the carbon atom content to the total amount of silicon atoms, oxygen atoms and carbon atoms in the inorganic barrier layer is preferably 0.5 to 25 at%, and preferably 1 to 20 at%. Is more preferable.
  • the method for forming the inorganic barrier layer is not particularly limited, and the conventional method and the method can be applied in the same manner or appropriately modified.
  • the inorganic barrier layer is preferably formed by a chemical vapor deposition (CVD) method, particularly a plasma chemical vapor deposition method (plasma CVD, plasma-enhanced chemical vapor deposition (PECVD), hereinafter also simply referred to as “plasma CVD method”). More preferably, the substrate is formed by a plasma CVD method in which a base material is disposed on a pair of film forming rollers and plasma is generated by discharging between the pair of film forming rollers.
  • CVD chemical vapor deposition
  • PECVD plasma-enhanced chemical vapor deposition
  • Method of forming inorganic barrier layer by plasma CVD method As a method for forming the inorganic barrier layer according to the present invention on the surface of the substrate, it is preferable to employ a plasma CVD method from the viewpoint of gas barrier properties.
  • the plasma CVD method may be a Penning discharge plasma type plasma CVD method.
  • plasma discharge in a space between a plurality of film forming rollers it is preferable to generate plasma discharge in a space between a plurality of film forming rollers.
  • a pair of film forming rollers is used, and each of the pair of film forming rollers is used. More preferably, a substrate is placed and discharged between a pair of film forming rollers to generate plasma.
  • the film formation rate can be doubled compared to the plasma CVD method without using any roller, and since it is possible to form a film having a structure that is substantially the same, it is possible to at least double the extreme value in the carbon distribution curve, It is possible to efficiently form a layer that satisfies all of the above conditions (i) to (iii).
  • the film forming gas used in such a plasma CVD method preferably includes an organic silicon compound and oxygen, and the content of oxygen in the film forming gas is determined by the organosilicon compound in the film forming gas. It is preferable that the amount of oxygen be less than the theoretical oxygen amount necessary for complete oxidation.
  • the inorganic barrier layer is preferably a layer formed by a continuous film formation process.
  • the gas barrier film according to the present invention preferably has the inorganic barrier layer formed on the surface of the substrate by a roll-to-roll method from the viewpoint of productivity.
  • an apparatus that can be used when manufacturing the inorganic barrier layer by such a plasma CVD method is not particularly limited, and includes at least a pair of film forming rollers and a plasma power source, and the pair of components. It is preferable that the apparatus has a configuration capable of discharging between film rollers. For example, when the manufacturing apparatus shown in FIG. 2 is used, the apparatus is manufactured by a roll-to-roll method using a plasma CVD method. It is also possible to do.
  • FIG. 2 is a schematic view showing an example of a manufacturing apparatus that can be suitably used for manufacturing an inorganic barrier layer by this manufacturing method.
  • the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
  • the manufacturing apparatus 31 shown in FIG. 2 includes a delivery roller 32, transport rollers 33, 34, 35, and 36, film formation rollers 39 and 40, a gas supply pipe 41, a plasma generation power source 42, and a film formation roller 39. And magnetic field generators 43 and 44 installed inside 40 and a winding roller 45.
  • a vacuum chamber (not shown).
  • the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump.
  • each film-forming roller has a power source for plasma generation so that the pair of film-forming rollers (the film-forming roller 39 and the film-forming roller 40) can function as a pair of counter electrodes. 42. Therefore, in such a manufacturing apparatus 31, it is possible to discharge into the space between the film forming roller 39 and the film forming roller 40 by supplying electric power from the plasma generating power source 42. Plasma can be generated in the space between the film roller 39 and the film formation roller 40. In this way, when the film forming roller 39 and the film forming roller 40 are also used as electrodes, the material and design thereof may be appropriately changed so that they can also be used as electrodes.
  • the film forming rate can be doubled and a film having the same structure can be formed. Can be at least doubled.
  • magnetic field generators 43 and 44 fixed so as not to rotate even when the film forming roller rotates are provided, respectively.
  • the magnetic field generators 43 and 44 provided on the film forming roller 39 and the film forming roller 40 are respectively a magnetic field generating device 43 provided on one film forming roller 39 and a magnetic field generating device provided on the other film forming roller 40. It is preferable to arrange the magnetic poles so that the magnetic field lines do not cross between them and the magnetic field generators 43 and 44 form a substantially closed magnetic circuit. By providing such magnetic field generators 43 and 44, it is possible to promote the formation of a magnetic field in which magnetic lines of force swell near the opposing surface of each film forming roller 39 and 40, and the plasma is converged on the bulging portion. Since it becomes easy, it is excellent at the point which can improve the film-forming efficiency.
  • the magnetic field generators 43 and 44 provided in the film forming roller 39 and the film forming roller 40 respectively have racetrack-shaped magnetic poles that are long in the roller axis direction, and one magnetic field generator 43 and the other magnetic field generator. It is preferable to arrange the magnetic poles so that the magnetic poles facing to 44 have the same polarity.
  • By providing such magnetic field generators 43 and 44 the opposing space along the length direction of the roller shaft without straddling the magnetic field generator on the roller side where the magnetic lines of force of each of the magnetic field generators 43 and 44 are opposed.
  • a racetrack-like magnetic field can be easily formed in the vicinity of the roller surface facing the (discharge region), and the plasma can be focused on the magnetic field, so that a wide base wound around the roller width direction can be obtained.
  • the material 2 is excellent in that the inorganic barrier layer 3 that is a vapor deposition film can be efficiently formed.
  • the film formation roller 39 and the film formation roller 40 known rollers can be used as appropriate. As such film forming rollers 39 and 40, those having the same diameter are preferably used from the viewpoint of forming a thin film more efficiently. Further, the diameter of the film forming rollers 39 and 40 is preferably in the range of 300 to 1000 mm ⁇ , particularly in the range of 300 to 700 mm ⁇ , from the viewpoint of discharge conditions, chamber space, and the like. If the diameter of the film forming roller is 300 mm ⁇ or more, the plasma discharge space will not be reduced, so that the productivity will not be deteriorated and it is possible to avoid applying the total amount of heat of the plasma discharge to the substrate 2 in a short time. It is preferable because damage to the material 2 can be reduced. On the other hand, if the diameter of the film forming roller is 1000 mm ⁇ or less, it is preferable because practicality can be maintained in terms of apparatus design including uniformity of plasma discharge space.
  • the base material 2 is disposed on a pair of film forming rollers (the film forming roller 39 and the film forming roller 40) so that the surfaces of the base material 2 face each other.
  • the base material 2 By disposing the base material 2 in this manner, when the plasma is generated by performing discharge in the facing space between the film formation roller 39 and the film formation roller 40, the base existing between the pair of film formation rollers is present.
  • Each surface of the material 2 can be formed simultaneously. That is, according to such a manufacturing apparatus, the inorganic barrier layer component is deposited on the surface of the substrate 2 on the film forming roller 39 by the plasma CVD method, and further the inorganic barrier layer component is formed on the film forming roller 40. Therefore, it is possible to efficiently form an inorganic barrier layer on the surface of the substrate 2.
  • the take-up roller 45 is not particularly limited as long as it can take up the gas barrier film 1 in which the inorganic barrier layer 3 is formed on the substrate 2, and a known roller is appropriately used. Can do.
  • gas supply pipe 41 and the vacuum pump those capable of supplying or discharging the raw material gas at a predetermined speed can be appropriately used.
  • the gas supply pipe 41 as a gas supply means is preferably provided in one of the facing spaces (discharge region; film formation zone) between the film formation roller 39 and the film formation roller 40, and is a vacuum as a vacuum exhaust means.
  • a pump (not shown) is preferably provided on the other side of the facing space.
  • the plasma generating power source 42 a known power source of a plasma generating apparatus can be used as appropriate.
  • a plasma generating power supply 42 supplies power to the film forming roller 39 and the film forming roller 40 connected thereto, and makes it possible to use these as counter electrodes for discharge.
  • Such a plasma generating power source 42 can perform plasma CVD more efficiently, and can alternately reverse the polarity of the pair of film forming rollers (AC power source or the like). Is preferably used.
  • the plasma generating power source 42 can perform plasma CVD more efficiently, the applied power can be set to 100 W to 10 kW, and the AC frequency can be set to 50 Hz to 500 kHz. More preferably, it is possible to do this.
  • the magnetic field generators 43 and 44 known magnetic field generators can be used as appropriate.
  • the base material 2 in addition to the base material used in the present invention, a material in which the inorganic barrier layer 3 is previously formed can be used. As described above, the inorganic barrier layer 3 can be made thicker by using the substrate 2 in which the inorganic barrier layer 3 is previously formed.
  • the inorganic barrier layer according to the present invention can be produced by appropriately adjusting the speed. That is, using the manufacturing apparatus 31 shown in FIG. 2, a discharge is generated between the pair of film forming rollers (film forming rollers 39 and 40) while supplying a film forming gas (raw material gas, etc.) into the vacuum chamber.
  • the film-forming gas (raw material gas or the like) is decomposed by plasma, and the inorganic barrier layer 3 is plasma on the surface of the base material 2 on the film-forming roller 39 and the surface of the base material 2 on the film-forming roller 40. It is formed by the CVD method.
  • a racetrack-shaped magnetic field is formed in the vicinity of the roller surface facing the facing space (discharge region) along the length direction of the roller axes of the film forming rollers 39 and 40, and the plasma is converged on the magnetic field. For this reason, when the base material 2 passes through the point A of the film forming roller 39 and the point B of the film forming roller 40 in FIG.
  • the maximum value of the carbon distribution curve is formed in the inorganic barrier layer.
  • the minimum value of the carbon distribution curve in the inorganic barrier layer Is formed. For this reason, five extreme values are usually generated for two film forming rollers.
  • the distance between extreme values of the inorganic barrier layer (the distance (L) from the surface of the inorganic barrier layer in the film thickness direction of the inorganic barrier layer at one extreme value of the carbon distribution curve and the extreme value adjacent to the extreme value) (The absolute value of the difference) can be adjusted by the rotation speed of the film forming rollers 39 and 40 (base material transport speed).
  • the substrate 2 is conveyed by the delivery roller 32, the film formation roller 39, and the like, respectively, so that the surface of the substrate 2 is formed by a roll-to-roll continuous film formation process.
  • the inorganic barrier layer 3 is formed.
  • a raw material gas, a reactive gas, a carrier gas, or a discharge gas can be used alone or in combination of two or more.
  • the source gas in the film forming gas used for forming the inorganic barrier layer 3 can be appropriately selected and used according to the material of the inorganic barrier layer 3 to be formed.
  • a source gas for example, an organic silicon compound containing silicon or an organic compound gas containing carbon can be used.
  • organosilicon compounds examples include hexamethyldisiloxane (HMDSO), hexamethyldisilane (HMDS), 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane.
  • HMDSO hexamethyldisiloxane
  • HMDS hexamethyldisilane
  • 1,1,3,3-tetramethyldisiloxane vinyltrimethylsilane
  • methyltrimethylsilane hexamethyldisilane.
  • Methylsilane dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane, methyltriethoxy
  • TMOS tetramethoxysilane
  • TEOS tetraethoxysilane
  • Examples include silane and octamethylcyclotetrasiloxane.
  • organosilicon compounds hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoints of handling properties of the compound and gas barrier properties of the resulting inorganic barrier layer.
  • organosilicon compounds can be used alone or in combination of two or more.
  • the organic compound gas containing carbon include methane, ethane, ethylene, and acetylene.
  • an appropriate source gas is selected according to the type of the inorganic barrier layer 3.
  • a reactive gas may be used in addition to the raw material gas.
  • a gas that reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used.
  • a reaction gas for forming an oxide for example, oxygen or ozone can be used.
  • a reactive gas for forming nitride nitrogen and ammonia can be used, for example. These reaction gases can be used singly or in combination of two or more. For example, when forming an oxynitride, a reaction gas for forming an oxide and a nitride are formed. It can be used in combination with a reaction gas.
  • a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber.
  • a discharge gas may be used as necessary in order to generate plasma discharge.
  • carrier gas and discharge gas known ones can be used as appropriate, for example, rare gases such as helium, argon, neon, xenon; hydrogen can be used.
  • the ratio of the source gas and the reactive gas is the reaction gas that is theoretically necessary for completely reacting the source gas and the reactive gas. It is preferable not to make the ratio of the reaction gas excessive rather than the ratio of the amount. By not making the ratio of the reaction gas excessive, the formed inorganic barrier layer 3 is excellent in that excellent gas barrier properties and bending resistance can be obtained. Further, when the film forming gas contains the organosilicon compound and oxygen, the amount is less than the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film forming gas. It is preferable.
  • a gas containing hexamethyldisiloxane (organosilicon compound, HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reaction gas is used as the film forming gas.
  • organosilicon compound, HMDSO, (CH 3 ) 6 Si 2 O) organosilicon compound, HMDSO, (CH 3 ) 6 Si 2 O
  • oxygen (O 2 ) oxygen
  • a film-forming gas containing hexamethyldisiloxane (HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reactive gas is reacted by plasma CVD to form a silicon-oxygen-based system
  • HMDSO, (CH 3 ) 6 Si 2 O hexamethyldisiloxane
  • O 2 oxygen
  • the amount of oxygen required to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol. Therefore, a uniform silicon dioxide film is formed when oxygen is contained in the film forming gas in an amount of 12 moles or more per mole of hexamethyldisiloxane and a uniform silicon dioxide film is formed (a carbon distribution curve exists). Therefore, it becomes impossible to form an inorganic barrier layer that satisfies all the above conditions (i) to (iii).
  • the oxygen amount is set to a stoichiometric ratio with respect to 1 mol of hexamethyldisiloxane so that the reaction of the reaction formula 1 does not proceed completely.
  • the raw material hexamethyldisiloxane and the reaction gas oxygen are supplied from the gas supply unit to the film formation region to form a film, so the molar amount of oxygen in the reaction gas Even if the (flow rate) is 12 times the molar amount (flow rate) of the raw material hexamethyldisiloxane (flow rate), the reaction cannot actually proceed completely, and the oxygen content is reduced.
  • the reaction is completed only when a large excess is supplied compared to the stoichiometric ratio (for example, in order to obtain silicon oxide by complete oxidation by CVD, the molar amount (flow rate) of oxygen is changed to the hexamethyldioxide raw material.
  • the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of the raw material hexamethyldisiloxane is preferably an amount of 12 times or less (more preferably 10 times or less) which is the stoichiometric ratio. .
  • the molar amount of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the deposition gas is preferably greater than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane, more preferably greater than 0.5 times.
  • the pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.5 Pa to 50 Pa.
  • an electrode drum connected to the plasma generating power source 42 (in this embodiment, the film forming roller 39) is used.
  • the power applied to the power source can be adjusted as appropriate according to the type of the source gas, the pressure in the vacuum chamber, and the like. It is preferable to be in the range. If such an applied power is 100 W or more, the generation of particles can be sufficiently suppressed. On the other hand, if the applied power is 10 kW or less, the amount of heat generated at the time of film formation can be suppressed. An increase in surface temperature can be suppressed. Therefore, it is excellent in that wrinkles can be prevented during film formation without causing the substrate to lose heat.
  • the conveyance speed (line speed) of the base material 2 can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.25 to 100 m / min. More preferably, it is in the range of 5 to 20 m / min. If the line speed is 0.25 m / min or more, generation of wrinkles due to heat in the substrate can be effectively suppressed. On the other hand, if it is 100 m / min or less, it is excellent at the point which can ensure sufficient film thickness as an inorganic barrier layer, without impairing productivity.
  • the inorganic barrier layer according to the present invention is formed by a plasma CVD method using the plasma CVD apparatus (roll-to-roll method) having the counter roll electrode shown in FIG. It is characterized by forming a film.
  • This is excellent in flexibility (flexibility) and mechanical strength, especially when transported by roll-to-roll, when mass-produced using a plasma CVD apparatus (roll-to-roll method) having a counter roll electrode. This is because it is possible to efficiently produce an inorganic barrier layer in which gas barrier performance is compatible.
  • Such a manufacturing apparatus is also excellent in that it can inexpensively and easily mass-produce gas barrier films that are required for durability against temperature changes used in solar cells and electronic components.
  • the film forming process can be performed by dividing it into a first film forming process and a second film forming process.
  • the first film forming step is a step of forming a first barrier layer, and includes applying a first barrier layer precursor liquid containing a silicon compound precursor and a solvent having a solubility parameter of 15.5 to 20.0.
  • the silicon compound precursor those described in the above item (Silicon compound) can be used.
  • the first barrier layer precursor solution can be prepared by dissolving the silicon compound precursor and, if necessary, a catalyst in a solvent having a solubility parameter of 15.5 to 20.0.
  • the solvent for preparing the coating solution is preferably a solvent capable of dissolving the silicon compound precursor (polysilazane) of the general formula (1).
  • An organic solvent that does not contain water and reactive groups (for example, hydroxyl group or amine group) that easily react with polysilazane and is inert to polysilazane is preferable, and an aprotic organic solvent is more preferable.
  • the solvent having a solubility parameter of 15.5 to 20.0 include aliphatic hydrocarbons such as cyclohexane, dodecane, methylcyclohexane, octane, and hydrogenated triisobutylene; benzene, ethylbenzene, toluene, o-xylene, and the like.
  • Aromatic hydrocarbons such as dibutyl ether, dioxane and tetrahydrofuran; ethers such as alicyclic ethers; pyridine, 1-methylpiperidine, 1-ethylpiperidine, 2-hydroxymethylpiperidine, 3-hydroxymethylpiperidine And amine compounds such as N, N′-dimethylpiperazine; and halogenated hydrocarbons such as chloroform, 1,2 dichloroethane, and trichloroethylene.
  • o-xylene SP value: 18.1
  • toluene SP value: 18.2
  • cyclohexane SP value: 17.3
  • n-butyl acetate SP value: 17.4
  • diethyl etc.
  • Ether SP value: 15.5
  • dibutyl ether SP value: 15.9
  • piperidine SP value: 19.7
  • the said solvent may be used independently or may be used with the form of a 2 or more types of mixture.
  • Means for reducing the oxygen concentration and water content in the solvent are not particularly limited, and conventionally known methods can be applied.
  • the concentration of the silicon compound precursor of the general formula (1) in the first barrier layer precursor liquid is not particularly limited and varies depending on the film thickness of the gas barrier layer and the pot life of the coating liquid, but is preferably 0.2 to 80 mass. %, More preferably 1 to 50% by mass, particularly preferably 1.5 to 35% by mass.
  • the first barrier layer precursor liquid may contain a catalyst together with polysilazane in order to promote modification to silicon oxynitride.
  • a basic catalyst is preferable, and in particular, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, Amine catalysts such as N ′, N′-tetramethyl-1,3-diaminopropane, N, N, N ′, N′-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, propion Examples thereof include metal catalysts such as Pd compounds such as acid Pd, Rh compounds such as Rh acetylacetonate, and N-heterocyclic compounds.
  • the concentration of the catalyst added at this time is preferably in the range of 0.1 to 10% by mass, more preferably 0.5 to 5% by mass, based on polysilazane. By setting the addition amount of the catalyst within this range, it is possible to avoid excessive silanol formation due to rapid progress of the reaction, reduction in film density, increase in film defects, and the like.
  • the following additives can be used in the first barrier layer precursor liquid as necessary.
  • cellulose ethers, cellulose esters for example, ethyl cellulose, nitrocellulose, cellulose acetate, cellulose acetobutyrate, etc.
  • natural resins for example, rubber, rosin resin, etc., synthetic resins
  • Aminoplasts especially urea resins, melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, polysiloxanes, and the like.
  • the method for forming the first barrier layer (coating film) is not particularly limited and may be formed by any method.
  • the first barrier layer (coating film) may be formed by wet coating with a first barrier layer precursor liquid containing a silicon compound precursor. It is preferable.
  • a coating method a conventionally known appropriate wet coating method can be adopted. Specific examples include spin coating method, roll coating method, flow coating method, ink jet method, spray coating method, printing method, dip coating method, casting film forming method, bar coating method, wireless bar coating method, gravure printing method, etc. Is mentioned.
  • the first barrier layer may be a laminate of two or more layers.
  • the method for forming a coating film when the first barrier layer is a laminate of two or more layers is not particularly limited, and may be a sequential multilayer coating method or a simultaneous multilayer coating method.
  • the first barrier layer precursor liquid is applied onto a resin substrate together with a second barrier layer precursor liquid described later by a simultaneous multilayer coating method, and the first barrier layer and the second barrier liquid are applied.
  • the layers may be formed simultaneously.
  • the simultaneous multi-layer coating method uses multiple coaters to apply the next layer before drying the already applied layer and simultaneously dry multiple layers, or use slide coating or curtain coating to apply multiple layers on the slide surface. There is a method of laminating and applying liquids. According to the present invention, since the solubility parameters of the solvents are different, the first barrier layer and the second barrier layer are not mixed in a certain amount or more even by the simultaneous multilayer coating method, and the above-described region A Remains at a predetermined thickness. Therefore, the simultaneous multi-layer coating method with higher productivity can be preferably applied.
  • the thickness (application thickness) of the coating film of the first barrier layer is not particularly limited, and can be appropriately set according to the desired thickness (dry film thickness) of the first barrier layer.
  • the thickness (coating thickness) of the coating film is preferably about 1 nm to 100 ⁇ m, more preferably about 5 nm to 10 ⁇ m, and more preferably 10 nm to 1 ⁇ m, as the thickness after drying (dry film thickness). It is even more preferable that the thickness is 30 to 500 nm. If the thickness of the coating film is 1 nm or more, gas barrier properties (for example, low oxygen permeability and low water vapor permeability) can be obtained, and if it is 100 ⁇ m or less, stable coating properties when forming the first barrier layer. And high light transmittance can be realized. In addition, when a coating film is laminated
  • the thickness (dry film thickness) of a layer (coating film) is measured by making a TEM observation of a cross section of each sample after producing a flake with the following FIB processing apparatus. Also, the presence or absence of modification of the layer (coating film) is the same as described above, and after producing a flake with the following FIB processing apparatus, if this sample is continuously irradiated with an electron beam, A contrast difference appears in the other part. At this time, the portion that has undergone the modification treatment is densified and thus is less susceptible to electron beam damage, but the other portion is damaged by electron beam damage, and alteration is confirmed. By the cross-sectional TEM observation confirmed in this way, the film thicknesses of the modified portion and the unmodified portion can be calculated.
  • the first barrier layer is formed by drying the coating film.
  • the drying conditions are not particularly limited as long as a coating film is formed.
  • the drying temperature is preferably 50 to 150 ° C, more preferably 80 to 100 ° C.
  • the drying time is preferably 0.5 to 60 minutes, more preferably 1 to 10 minutes.
  • ⁇ Second film forming step> After forming the first barrier layer as described above, applying a second barrier layer precursor solution containing a metal compound and a solvent having a solubility parameter of 26.0 to 32.0 is included. Then, the second film forming step for forming the second barrier layer is performed.
  • the metal compound those described in the above section (Metal compound) can be used as appropriate.
  • the second barrier layer precursor liquid can be prepared by dissolving a metal compound in a solvent.
  • the solvent for preparing the coating solution is not particularly limited as long as it satisfies the above solubility parameter range and can dissolve the metal compound.
  • water that easily reacts with the metal compound and reactive groups are not included, and an organic solvent inert to the metal compound is preferable, and a polar organic solvent is more preferable.
  • a divalent solvent such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, diethylene glycol, 1,3-propanediol, etc.
  • examples include compounds, lower alcohols such as isopropanol, butanol, and ethanol.
  • ethanol SP value: 26.5
  • propylene glycol SP value: 29.1
  • 1,3-propanediol SP value: 31.7
  • diethylene glycol SP value: 27.9
  • Dipropylene glycol SP value: 26.4
  • methoxymethanol SP value: 26.1
  • the concentration of the metal compound in the second barrier layer precursor liquid is not particularly limited and varies depending on the film thickness of the barrier layer and the pot life of the coating liquid, but is preferably 0.2 to 80% by mass, and more preferably 1 to 50%. % By mass, particularly preferably 1.5 to 35% by mass.
  • the second barrier layer precursor liquid containing the metal compound is wet-applied on the first barrier layer to form a coating film.
  • a coating method a conventionally known appropriate wet coating method can be adopted. Specific examples include spin coating method, roll coating method, flow coating method, ink jet method, spray coating method, printing method, dip coating method, casting film forming method, bar coating method, wireless bar coating method, gravure printing method, etc. Is mentioned.
  • the second barrier layer may be a laminate of two or more layers.
  • the method for forming a coating film when the second barrier layer is a laminate of two or more layers is not particularly limited, and may be a sequential multilayer coating method or a simultaneous multilayer coating method.
  • the second barrier layer precursor liquid is simultaneously applied onto the resin substrate together with the first barrier layer precursor liquid by the simultaneous multilayer coating method
  • Two barrier layers may be formed simultaneously.
  • the simultaneous multi-layer coating method uses multiple coaters to apply the next layer before drying the already applied layer and simultaneously dry multiple layers, or use slide coating or curtain coating to apply multiple layers on the slide surface.
  • the first barrier layer precursor liquid and the second barrier layer precursor liquid have different solvent solubility parameters, so that the first barrier layer and the second barrier layer can be obtained by the simultaneous multilayer coating method. None mix more than a certain amount. Therefore, the above-described region A remains with a predetermined thickness.
  • the silicon compound precursor is represented by the following general formula (1):
  • R 1 , R 2 and R 3 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group.
  • the second barrier layer is applied and formed before the modification, and then the active energy rays are irradiated through the second barrier layer, Modify the barrier layer.
  • the first barrier layer is modified by irradiating active energy rays through the second barrier layer.
  • solvents having different solubility parameters are used, the first barrier layer and the second barrier layer are only slightly mixed in the vicinity of the interface at the time of modification. Remains at a predetermined thickness.
  • the first barrier layer and the second barrier layer can be laminated by the simultaneous multilayer coating method, and after the two layers are laminated, the modification process can be performed to complete the barrier layer.
  • the modification process was performed after the first barrier layer was formed, and the second barrier layer was formed. Therefore, the lamp illuminance decreased due to volatilization and scattering of low-molecular silicon compounds during the modification of the first barrier layer. However, it is inevitable that a difference occurs in the degree of modification.
  • the method of the present embodiment since the reforming process is performed in a state where the second barrier layer is formed on the first barrier layer, volatilization or scattering of the silicon compound can be prevented, and the barrier performance is uniform and excellent.
  • the gas barrier film can be produced.
  • the modification treatment in the present invention refers to a reaction in which part or all of the silicon compound precursor (polysilazane) is converted into silicon oxide or silicon oxynitride.
  • an inorganic thin film of a level that can contribute to the development of the gas barrier property (water vapor permeability of 1 ⁇ 10 ⁇ 3 g / m 2 ⁇ day or less) as a whole of the gas barrier film of the present invention can be formed.
  • the modification treatment includes heat treatment, plasma treatment, active energy ray irradiation treatment, and the like. Among these, from the viewpoint that it can be modified at a low temperature and has a high degree of freedom in selecting a base material species, a treatment with active energy ray irradiation is preferable.
  • Heat treatment As a heat treatment method, for example, a method of heating a coating film by heat conduction by bringing a substrate into contact with a heating element such as a heat block, a method of heating an environment in which the coating film is placed by an external heater such as a resistance wire, Although the method using the light of infrared region, such as IR heater, is mentioned, It is not limited to these. What is necessary is just to select suitably the method which can maintain the smoothness of a coating film, when performing heat processing.
  • the temperature for heating the coating film is preferably in the range of 40 to 250 ° C, more preferably in the range of 60 to 150 ° C.
  • the heating time is preferably in the range of 10 seconds to 100 hours, and more preferably in the range of 30 seconds to 5 minutes.
  • a known method can be used as the plasma treatment that can be used as the modification treatment, and an atmospheric pressure plasma treatment or the like can be preferably used.
  • the atmospheric pressure plasma CVD method which performs plasma CVD processing near atmospheric pressure, does not need to be reduced in pressure and is more productive than the plasma CVD method under vacuum.
  • the film speed is high, and further, under a high pressure condition of atmospheric pressure as compared with the conditions of a normal CVD method, the gas mean free path is very short, so that a very homogeneous film can be obtained.
  • nitrogen gas or a group 18 atom of the long-period periodic table specifically helium, neon, argon, krypton, xenon, radon, or the like is used.
  • nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost.
  • active energy ray irradiation treatment for example, infrared rays, visible rays, ultraviolet rays, X rays, electron rays, ⁇ rays, ⁇ rays, ⁇ rays and the like can be used, but electron rays or ultraviolet rays are preferable, and ultraviolet rays are more preferable.
  • Ozone and active oxygen atoms generated by ultraviolet light have high oxidation ability, and can form a silicon-containing film having high density and insulating properties at low temperatures.
  • UV irradiation treatment As one of the methods for modifying the first barrier layer, treatment by ultraviolet irradiation is preferable.
  • Ozone and active oxygen atoms generated by ultraviolet rays (synonymous with ultraviolet light) have high oxidation ability, and can form silicon oxide films or silicon oxynitride films with high density and insulation at low temperatures It is.
  • the base material is heated, and O 2 and H 2 O contributing to ceramicization (silica conversion), an ultraviolet absorber, and polysilazane itself are excited and activated.
  • the conversion to ceramics is promoted, and the obtained first barrier layer becomes denser. Irradiation with ultraviolet rays is effective at any time after the formation of the coating film.
  • any commonly used ultraviolet ray generator can be used.
  • the ultraviolet ray referred to in the present invention generally refers to an electromagnetic wave having a wavelength of 10 to 400 nm, but in the case of an ultraviolet irradiation treatment other than the vacuum ultraviolet ray (10 to 200 nm) treatment described later, it is preferably 210 to 375 nm. Use ultraviolet light.
  • the irradiation intensity and the irradiation time be set within the range where the substrate carrying the first barrier layer to be irradiated is not damaged.
  • a plastic film for example, a 2 kW (80 W / cm ⁇ 25 cm) lamp is used, and the strength of the base material surface is 20 to 300 mW / cm 2 , preferably 50 to 200 mW / cm.
  • the distance between the base material and the ultraviolet irradiation lamp is set so as to be 2, and irradiation can be performed for 0.1 seconds to 10 minutes.
  • ultraviolet ray generating means examples include metal halide lamps, high pressure mercury lamps, low pressure mercury lamps, xenon arc lamps, carbon arc lamps, and excimer lamps (single wavelengths of 172 nm, 222 nm, and 308 nm, for example, USHIO INC. Manufactured by MD Excimer Co., Ltd.), UV light laser, and the like.
  • excimer lamps single wavelengths of 172 nm, 222 nm, and 308 nm, for example, USHIO INC. Manufactured by MD Excimer Co., Ltd.
  • UV light laser and the like.
  • the ultraviolet rays from the generation source are reflected by the reflector and then applied to the first barrier layer. Is preferred.
  • UV irradiation can be applied to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate used.
  • the laminated body having the first barrier layer on the surface can be processed in an ultraviolet baking furnace equipped with the above-described ultraviolet ray generation source.
  • the ultraviolet baking furnace itself is generally known.
  • an ultraviolet baking furnace manufactured by I-Graphics Co., Ltd. can be used.
  • the laminated body which has a 1st barrier layer on the surface is a long film form, by conveying this, continuously irradiating with an ultraviolet-ray in the drying zone equipped with the above ultraviolet-ray generation sources. It can be made into ceramics.
  • the time required for ultraviolet irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, depending on the base material used and the composition and concentration of the first barrier layer.
  • the most preferable modification treatment method is treatment by vacuum ultraviolet irradiation (excimer irradiation treatment).
  • the treatment by the vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy of a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the polysilazane compound, and bonds atoms with only photons called photon processes.
  • This is a method of forming a silicon oxide film at a relatively low temperature (about 200 ° C. or lower) by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly by action.
  • the radiation source in the present invention may be any radiation source that emits light having a wavelength of 100 to 180 nm, but is preferably an excimer radiator having a maximum emission at about 172 nm (eg, Xe excimer lamp), and has an emission line at about 185 nm.
  • Excimer radiator having a maximum emission at about 172 nm (eg, Xe excimer lamp)
  • the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen.
  • the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds. Due to the high energy possessed by the active oxygen, ozone and ultraviolet radiation, the polysilazane coating can be modified in a short time.
  • ⁇ Excimer lamps have high light generation efficiency and can be lit with low power.
  • light having a long wavelength that causes a temperature increase due to light is not emitted, and energy is irradiated in the ultraviolet region, that is, in a short wavelength, so that the increase in the surface temperature of the target object is suppressed.
  • it is suitable for flexible film materials such as PET that are easily affected by heat.
  • Oxygen is required for the reaction at the time of ultraviolet irradiation, but since vacuum ultraviolet rays are absorbed by oxygen, the efficiency in the ultraviolet irradiation process tends to decrease. It is preferable to perform in a state where the water vapor concentration is low. That is, the oxygen concentration at the time of irradiation with vacuum ultraviolet rays is preferably 10 to 20,000 volume ppm, more preferably 50 to 10,000 volume ppm. Also, the water vapor concentration during the conversion process is preferably in the range of 1000 to 4000 ppm by volume.
  • the gas satisfying the irradiation atmosphere used at the time of irradiation with vacuum ultraviolet rays is preferably a dry inert gas, and particularly preferably dry nitrogen gas from the viewpoint of cost.
  • the oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
  • the illuminance of the vacuum ultraviolet light on the coating surface received by the polysilazane coating is preferably 1 mW / cm 2 to 10 W / cm 2 , more preferably 30 mW / cm 2 to 200 mW / cm 2. preferably, further preferably at 50mW / cm 2 ⁇ 160mW / cm 2. If it is 1 mW / cm 2 or more, sufficient reforming efficiency is obtained, and if it is 10 W / cm 2 or less, it is difficult to cause ablation in the coating film and damage the substrate.
  • Irradiation energy amount of the VUV in the coated surface it preferably from 10 ⁇ 10000mJ / cm 2, more preferably 100 ⁇ 8000mJ / cm 2, a 200 ⁇ 6000mJ / cm 2 Is more preferable. If it is 10 mJ / cm 2 or more, the modification can proceed sufficiently. If it is 10,000 mJ / cm 2 or less, cracking due to over-reformation and thermal deformation of the substrate are unlikely to occur.
  • the oxygen concentration at the time of irradiation with vacuum ultraviolet light (VUV) is preferably 300 to 10000 volume ppm (1 volume%), more preferably 500 to 5000 volume ppm. By adjusting to such an oxygen concentration range, it is possible to prevent the formation of an excessive oxygen barrier layer and to prevent the deterioration of the barrier property.
  • the Xe excimer lamp is excellent in luminous efficiency because it emits ultraviolet light having a short wavelength of 172 nm at a single wavelength. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen. In addition, it is known that the energy of light having a short wavelength of 172 nm for dissociating the bonds of organic substances has high ability.
  • the coating layer containing the polysilazane compound can be modified in a short time by the high energy of the active oxygen, ozone and ultraviolet radiation.
  • the layer formed by the above coating has a composition of SiO x N y M z as a whole layer by modifying at least part of the polysilazane in the step of irradiating the coating film containing the polysilazane compound with vacuum ultraviolet rays.
  • a barrier layer comprising the silicon oxynitride shown is formed.
  • the film composition can be measured by measuring the atomic composition ratio using an XPS surface analyzer.
  • the barrier layer formed by applying a solution containing a polysilazane compound is cut, and the cut surface can be measured by measuring the atomic composition ratio with an XPS surface analyzer.
  • the film density can be appropriately set according to the purpose.
  • the film density of the barrier layer formed by applying a solution containing a polysilazane compound is preferably in the range of 1.5 to 2.6 g / cm 3 . Within this range, the density of the film can be improved and deterioration of gas barrier properties and film deterioration under high temperature and high humidity conditions can be prevented.
  • the vacuum ultraviolet light used for reforming may be generated by plasma formed in a gas containing at least one of CO 2 and CH 4.
  • the gas containing at least one of CO, CO 2 and CH 4 hereinafter also referred to as carbon-containing gas
  • the carbon-containing gas may be used alone, but carbon containing rare gas or H 2 as the main gas. It is preferable to add a small amount of the contained gas. Examples of plasma generation methods include capacitively coupled plasma.
  • the barrier layer is completed, and the gas barrier film of the present invention is obtained.
  • the barrier layer formed by applying a solution containing a polysilazane compound may be subjected to post-treatment after coating or after modification, in particular after modification.
  • the post-treatment described here includes temperature treatment (heat treatment) at a temperature of 40 to 120 ° C. or humidity: 30% to 100%, or humidity treatment immersed in a water bath, and the treatment time is from 30 seconds to 100 hours. It is defined as a range selected from the range. Both temperature and humidity treatments may be performed, or only one of them may be performed, but at least temperature treatment (heat treatment) is preferably performed.
  • Preferred conditions are a temperature of 40 to 120 ° C., a humidity of 30% to 85%, and a treatment time of 30 seconds to 100 hours.
  • any method such as a contact method such as placing on a hot plate or a non-contact method standing on an oven may be used.
  • the barrier layer formed by applying a solution containing a polysilazane compound may form only one layer or may laminate two or more layers.
  • the gas barrier property can be further improved.
  • two or more barrier layers formed by applying a solution containing a polysilazane compound containing an additive element on a substrate and then forming a barrier layer formed by vapor phase film formation, for example, Two or three layers are stacked.
  • the gas barrier film of the present invention can be preferably used for a device whose performance is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air. Accordingly, the present invention also provides an electronic device comprising the electronic device body and the gas barrier film produced by the method of the present invention or the gas barrier film according to the present invention.
  • Examples of the devices include electronic devices such as organic EL elements, liquid crystal display elements (LCD), thin film transistors, touch panels, electronic paper, solar cells (PV), and the like. From the viewpoint that the effect of the present invention can be obtained more efficiently, it is preferably used for an organic EL device or a solar cell, and particularly preferably used for an organic EL device.
  • organic EL elements liquid crystal display elements (LCD), thin film transistors, touch panels, electronic paper, solar cells (PV), and the like.
  • LCD liquid crystal display elements
  • PV solar cells
  • the gas barrier film of the present invention can also be used for device film sealing. That is, the present invention also provides an electronic device including the electronic device body and the gas barrier film of the present invention. Specifically, the gas barrier film of the present invention is provided on the surface of the device itself as a support. Note that the device may be covered with a protective layer before providing the gas barrier film.
  • the gas barrier film of the present invention can also be used as a device substrate or a film for sealing by a solid sealing method.
  • the solid sealing method is a method in which after a protective layer is formed on a device, an adhesive layer and a gas barrier film are stacked and cured.
  • an adhesive agent A thermosetting epoxy resin, a photocurable acrylate resin, etc. are illustrated.
  • organic EL element an example of an organic EL element using a gas barrier film is described in detail in JP-A-2007-30387.
  • a reflective liquid crystal display device is composed of a lower substrate, a reflective electrode, a lower alignment film, a liquid crystal layer, an upper alignment film, a transparent electrode, an upper substrate, a ⁇ / 4 plate, and a polarizing film in order from the bottom. It has a configuration.
  • the gas barrier film in the present invention can be used as the transparent electrode substrate and the upper substrate.
  • the gas barrier film of the present invention can also be used as a sealing film for solar cell elements.
  • the gas barrier film of the present invention is preferably sealed so that the barrier layer is closer to the solar cell element.
  • the thin film transistor described in JP-T-10-512104 the touch panel described in JP-A-5-127822, JP-A-2002-48913, etc., and described in JP-A-2000-98326 Electronic paper and the like.
  • the gas barrier film of the present invention can also be used as an optical member.
  • the optical member include a circularly polarizing plate.
  • the circularly polarizing plate can be produced by laminating a ⁇ / 4 plate and a polarizing plate using the gas barrier film in the present invention as a substrate. In this case, the lamination is performed so that the angle formed by the slow axis of the ⁇ / 4 plate and the absorption axis of the polarizing plate is 45 °.
  • a polarizing plate one that is stretched in a direction of 45 ° with respect to the longitudinal direction (MD) is preferably used.
  • MD longitudinal direction
  • those described in JP-A-2002-865554 can be suitably used. .
  • roller CVD method Formation of inorganic barrier layer: Roller CVD method
  • the back surface of the resin substrate the surface opposite to the side on which the anchor layer is provided
  • a resin base material is attached to the apparatus so as to be in contact with the film forming roller, and an inorganic barrier layer is formed on the anchor layer under a condition that the thickness is 100 nm under the following film forming conditions (plasma CVD conditions). did.
  • ⁇ Plasma CVD conditions Feed rate of raw material gas (hexamethyldisiloxane, abbreviation: HMDSO): 50 sccm (Standard Cubic Centimeter per Minute) Supply amount of oxygen gas (O 2 ): 500 sccm Degree of vacuum in the vacuum chamber: 3Pa Applied power from the power source for plasma generation: 0.8 kW Frequency of power source for plasma generation: 70 kHz Resin substrate transport speed: 2 m / min (Formation of first barrier layer: silazane layer) Subsequently, the following first barrier layer precursor liquid was applied and formed as a hexamethyldisilazane (also referred to as silazane) layer on the inorganic barrier layer by a die coater method, and then dried at 80 ° C. In this way, a first barrier layer having a thickness of 50 nm was formed on the inorganic barrier layer.
  • HMDSO Hexamethyldisiloxane
  • Second barrier layer metal compound layer
  • a solution obtained by diluting [B (OCH (CH 3 ) 2 ) 3 ] (manufactured by Tokyo Chemical Industry Co., Ltd., triisopropyl borate) with methoxymethanol to 2% by mass on the first barrier layer by a die coater method.
  • a coating film was formed.
  • a second barrier layer having a thickness of 80 nm was formed on the first barrier layer as the second layer.
  • the following vacuum ultraviolet ray treatment was performed to modify the second layer (first barrier layer) and the third layer (second barrier layer).
  • VUV light vacuum ultraviolet irradiation treatment conditions
  • irradiation with vacuum ultraviolet rays was performed under the following conditions, using the following apparatus, placing the sample so that the distance between the lamp and the sample (also referred to as Gap) was 6 mm.
  • the oxygen concentration during irradiation with vacuum ultraviolet rays (VUV light) is adjusted by measuring the flow rate of nitrogen gas and oxygen gas introduced into the irradiation chamber with a flow meter, and nitrogen gas / oxygen gas of the gas introduced into the chamber. The flow rate ratio was adjusted.
  • Vacuum ultraviolet irradiation equipment Xenon excimer irradiation equipment (MD excimer, MECL-M-1-200) Illuminance: 140 mW / cm 2 (172 nm) Processing environment: Under dry nitrogen gas atmosphere Oxygen concentration in processing environment: 0.1% by volume Substrate transport speed: 5 m / min Excimer light exposure integrated amount: 6000 mJ / cm 2 ⁇ Examples 1-2 to 1-8> A gas barrier film was produced in the same manner as in Example 1-1 except that the materials and conditions listed in Table 1-1 were used.
  • ALCH means aluminum ethyl acetoacetate diisopropylate manufactured by Kawaken Fine Chemical Co., Ltd.
  • R in Ti (OR) 4 means a propyl group.
  • DBE means dibutyl ether
  • PHPS means perhydropolysilazane.
  • the formation method of the 1st barrier layer at the time of using PHPS is as follows.
  • the following are examples of formation methods when n-butyl acetate is used as a solvent.
  • the solvents listed in Table 1-1 were used as the solvent.
  • first barrier layer using PHPS: polysilazane layer
  • first barrier layer precursor solution using PHPS was coated on the inorganic barrier layer as a perhydropolysilazane layer by a die coater method, and then dried at 80 ° C. . In this way, a first barrier layer having a thickness of 50 nm was formed on the inorganic barrier layer.
  • Perhydropolysilazane (PHPS) solution is a non-catalytic perhydropolysilazane 20% by weight dibutyl ether solution (manufactured by AZ Electronic Materials, Aquamica (registered trademark) NN120-20), amine catalyst (N, N, N ′ , N′-tetramethyl-1,6-diaminohexane) perhydropolysilazane in an amount of 5% by mass with respect to perhydropolysilazane, 20% by mass dibutyl ether solution (manufactured by AZ Electronic Materials Co., Ltd., Aquamica NAX120-20) Were used as a mixture.
  • This mixed solution was appropriately diluted with n-butyl acetate to prepare an n-butyl acetate solution containing 1% by mass of the amine catalyst with respect to perhydropolysilazane and 1.7% by mass of perhydropolysilazane.
  • first barrier layers of Comparative Examples 1-1 to 1-5, Examples 2-1 to 2-3, Comparative Example 2-1, Examples 3-1 to 3-3, and Comparative Example 3-1 which will be described later.
  • first barrier layer using PHPS polysilazane layer
  • solvents and conditions are those shown in Table 1-1, Table 2-1, and Table 3-1. It was prepared using.
  • Examples 2-1 to 2-3> A gas barrier film was produced in the same manner as in Example 1-1 except that the materials and conditions described in Table 2-1 were used. For Examples 2-1 to 2-3, a film having a thick second barrier layer of 200 nm was manufactured.
  • Example 2-1 A gas barrier film was produced in the same manner as in Example 1-1 except that the materials and conditions described in Table 2-1 were used. In Comparative Example 2-1, the second barrier layer was not formed.
  • Examples 3-1 to 3-3 A gas barrier film was produced in the same manner as in Example 1-1 except that the materials and conditions shown in Table 3-1 were used.
  • the first barrier layer and the second barrier layer were formed by the simultaneous multilayer coating method.
  • Example 3-1 A gas barrier film was produced in the same manner as in Example 1-1 except that the materials and conditions shown in Table 3-1 were used. In Comparative Example 3-1, the second barrier layer was not formed.
  • Etching ion species Argon (Ar + ) Etching rate (converted to SiO 2 thermal oxide film): 0.01 nm / sec
  • X-ray photoelectron spectrometer Model name “VG Theta Probe” manufactured by Thermo Fisher Scientific Irradiation X-ray: Single crystal spectroscopy AlK ⁇ X-ray spot and its size: 800 ⁇ 400 ⁇ m oval.
  • the distribution of the amount of Si element and the amount of metal (M) element contained in the metal compound was obtained from the XPS measurement result in the film thickness direction. From the distribution, the thickness of the region where M / Si ⁇ 2 is Th1, and the thickness of the region where 0.1 ⁇ M / Si ⁇ 1 is Th2.
  • the metal calcium vapor deposition surface is bonded and bonded to quartz glass having a thickness of 0.2 mm via a sealing ultraviolet curable resin (manufactured by Nagase ChemteX) and irradiated with ultraviolet rays.
  • a sealing ultraviolet curable resin manufactured by Nagase ChemteX
  • An evaluation cell was produced.
  • the obtained sample (evaluation cell) was stored under high temperature and high humidity of 85 ° C. and 85% RH, and the time taken for the metal calcium to corrode 100% was measured.
  • the 100% corrosion time of each gas barrier film thus obtained was evaluated in the following 6 stages. ⁇ : 30 hours or less ⁇ ⁇ : 30 hours to 100 hours or less ⁇ : 100 hours to 300 hours or less ⁇ ⁇ : 300 hours to 600 hours or less ⁇ : 600 hours to 1000 hours or less ⁇ : 1000 Over time.
  • the illuminance of the lamp used for the modification was measured by measuring with a UV (VUV) illuminometer. The ratio of the UV illuminance after 2000 m film formation to the UV illuminance before 2000 m film formation was calculated.
  • the lamp illuminance was evaluated according to the following evaluation criteria. A: 98% or more B: 93% or more, less than 98% ⁇ : 85% or more, less than 93% ⁇ ⁇ : 70% or more, less than 85% ⁇ : less than 70%
  • Examples 1-1 to 1-8 were compared by using a solvent having a solubility parameter within a specific range in each of the first barrier layer formation and the second barrier layer formation. Compared to Examples 1-3 to 1-5, it can be seen that excellent barrier performance was exhibited even under high temperature and high humidity, and the occurrence of cracks could be prevented. Further, in comparison with Comparative Examples 1-3 to 1-5, in Examples 1-1 to 1-8, even when a 2000 m long film was produced, the barrier performance derived from the difference in the degree of modification It can be seen that the decrease in the is suppressed.
  • Comparative Example 1-1 in which the solubility parameter of the solvent of the first barrier layer precursor liquid is smaller than that of the production method of the present invention, the first barrier layer (second layer) was not formed.
  • Comparative Example 1-2 where the solubility parameter of the solvent of the second barrier layer precursor liquid is larger than the specified range of the production method of the present invention, the second barrier layer (third layer) was not formed.
  • the thickness of the second barrier layer is 200 nm in Examples 2-1 to 2-3. It turns out that even if it becomes thick, the barrier performance fall by the crack generation under high temperature and high humidity is suppressed, and also the barrier performance fall after forming a long body is also controlled.
  • the first barrier layer and the second barrier layer are formed by simultaneous multilayer coating.
  • the first barrier layer and the second barrier layer are mostly used by using a solvent having a solubility parameter in a specific range for each of the solvent for the first barrier layer and the solvent for the second barrier layer.
  • Th1 is formed with a predetermined thickness without mixing. Therefore, it can be seen that a decrease in barrier performance due to the occurrence of cracks at high temperature and high humidity and a decrease in lamp illuminance over time are suppressed.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Provided is a gas barrier film with which a degradation in barrier performance due to a difference in degree of reforming is prevented even when a long body is produced. The present invention provides a gas barrier film that has, atop a resin substrate, a barrier layer including a silicon compound and metal atoms, wherein said barrier layer includes a region A of film thickness Th1 in which the ratio Si:M of the silicon element content Si to the metallic element content M is 1:x, where x ≥ 2, and a region B of film thickness Th2 in which the ratio Si:M of the silicon element content Si to the metallic element content M is 1:1-1:0.1, and Th1 and Th2 satisfy formulas (1) and (2): (1) Th1/Th2 ≥ 2, (2) 20 nm ≤ Th1 < 300 nm.

Description

ガスバリア性フィルムおよびガスバリア性フィルムの製造方法Gas barrier film and method for producing gas barrier film
 本発明は、ガスバリア性フィルムおよびガスバリア性フィルムの製造方法に関する。より詳細には、バリア性の劣化が低減されたガスバリア性フィルムおよびその製造方法に関する。 The present invention relates to a gas barrier film and a method for producing the gas barrier film. More specifically, the present invention relates to a gas barrier film with reduced barrier property deterioration and a method for producing the same.
 食品、包装材料、医薬品などの分野で、従来から樹脂フィルムの表面に金属酸化物などの蒸着膜や樹脂などの塗布膜を設けた、比較的簡易な水蒸気や酸素などの透過を防ぐガスバリア性フィルムが知られている。また、近年、液晶表示素子(LCD)、太陽電池(PV)、有機エレクトロルミネッセンス(EL)などの電子デバイス分野においても、軽くて割れにくく、フレキシブル性を持たせることを目的として樹脂基材を用いたガスバリア性フィルムへの要望が高まっている。これらの電子デバイスにおいては、その使用形態から高温高湿下でも耐えうる、さらに高いレベルの水蒸気ガスバリア性が求められている。 In the fields of food, packaging materials, pharmaceuticals, etc., a gas barrier film that prevents the permeation of water vapor, oxygen, etc., which has been provided with a metal oxide deposition film or resin coating film on the surface of a resin film. It has been known. In recent years, in the field of electronic devices such as liquid crystal display elements (LCD), solar cells (PV), and organic electroluminescence (EL), resin base materials have been used for the purpose of providing lightness, resistance to cracking, and flexibility. There is a growing demand for gas barrier films. These electronic devices are required to have a higher level of water vapor gas barrier properties that can withstand even under high temperature and high humidity, depending on their usage.
 このようなガスバリア性フィルムを製造する方法としては、主に、ドライ法として、プラズマCVD法(Chemical Vapor Deposition:化学気相成長法、化学蒸着法)によってフィルムなどの基材上にガスバリア層を形成する方法や、ウェット法として、ポリシラザンを主成分とする塗布液を基材上に塗布した後、塗膜に表面処理(改質処理)を施してガスバリア層を形成する方法が知られている。ドライ法とは異なり、ウェット法は大型の設備を必要とせず、さらに基材の表面粗さに影響されず、ピンホールもできないので、再現性良く均一なガスバリア膜を得る手法として注目されている。 As a method for producing such a gas barrier film, a gas barrier layer is mainly formed on a substrate such as a film by a plasma CVD method (chemical vapor deposition method) as a dry method. As a method for forming a gas barrier layer, a coating solution containing polysilazane as a main component is applied on a substrate, and then a surface treatment (modification treatment) is performed on the coating film. Unlike the dry method, the wet method does not require large-scale equipment, is not affected by the surface roughness of the base material, and cannot be pinholed. Therefore, it is attracting attention as a method for obtaining a uniform gas barrier film with good reproducibility. .
 従来知られているポリシラザンの改質方法としては、プラズマ処理する方法や真空紫外光照射する方法がある(例えば、特開平8-281861号公報、特開2009-255040号公報、および国際公開第2011/007543号を参照)。 Conventionally known methods for modifying polysilazane include a plasma treatment method and a vacuum ultraviolet light irradiation method (for example, JP-A-8-281861, JP-A-2009-255040, and International Publication No. 2011). / 007543).
 特開平8-281861号公報には、プラズマCVD法により形成した10~200nm厚さのケイ素酸化物層と、ポリシラザンが転化されてなる0.1~2μm厚さのケイ素酸化物層を備えるガスバリア性フィルムが開示されている。しかしながら、有機ELの基板に用いる場合など、高いバリア性が求められるバリアフィルムとしては、性能が充分ではなかった。 Japanese Patent Application Laid-Open No. 8-281186 discloses a gas barrier property comprising a silicon oxide layer having a thickness of 10 to 200 nm formed by plasma CVD and a silicon oxide layer having a thickness of 0.1 to 2 μm formed by converting polysilazane. A film is disclosed. However, the performance is not sufficient as a barrier film that requires high barrier properties such as when used for an organic EL substrate.
 特開2009-255040号公報には、真空紫外エキシマランプ照射したポリシラザン膜を積層することにより、フレキシブルなガスバリア性フィルムを製造することが記載される。当該方法により得られるガスバリア性フィルムは、欠陥がなく表面が平滑であり、クラックも生じにくく、ガスバリア性に優れる。 JP-A-2009-255040 describes that a flexible gas barrier film is produced by laminating a polysilazane film irradiated with a vacuum ultraviolet excimer lamp. The gas barrier film obtained by this method has no defects, has a smooth surface, does not easily crack, and has excellent gas barrier properties.
 国際公開第2011/007543号には、酸素または水蒸気を実質的に含まない雰囲気下で、ポリシラザン膜にプラズマ照射または紫外線照射することにより、ガスバリア性フィルムを製造することが記載される。当該方法により得られるガスバリア性フィルムは、水蒸気ガスバリア性や酸素ガスバリア性等のガスバリア性や耐擦傷性に優れる。 International Publication No. 2011/007543 describes that a gas barrier film is produced by irradiating a polysilazane film with plasma or ultraviolet light in an atmosphere substantially free of oxygen or water vapor. The gas barrier film obtained by this method is excellent in gas barrier properties such as water vapor gas barrier properties and oxygen gas barrier properties and scratch resistance.
 しかしながら、上記のポリシラザン膜を改質して用いる従来技術においては、特にロールに巻回して使用する、長尺体の成膜を行った際、長手方向においてポリシラザン膜の改質度合いに差異が生じて、バリア性能を劣化させるという問題があることが分かった。また、高温高湿環境下に置いた際に、ガスバリア性フィルムにクラックが発生し、バリア性能が劣化する場合があった。また、塗布方法を用いたガスバリア性フィルムの製造方法としては、より生産性の高い方法が要求されていた。 However, in the conventional technology that uses the modified polysilazane film, there is a difference in the degree of modification of the polysilazane film in the longitudinal direction, particularly when the elongated body is used by being wound around a roll. Thus, it has been found that there is a problem of deteriorating the barrier performance. In addition, when placed in a high-temperature and high-humidity environment, cracks may occur in the gas barrier film and the barrier performance may deteriorate. Further, as a method for producing a gas barrier film using a coating method, a method with higher productivity has been required.
 本発明は、上記問題に鑑みてなされたものであり、長尺体を成膜した場合にも、ポリシラザン膜の改質度合いに差異が生じることを防止し、さらに高温高湿下でのクラック発生を防止しうる、優れたガスバリア性能を有するガスバリア性フィルムを提供することを目的とする。さらに、そのようなガスバリア性フィルムを、高い生産性で製造し得る製造方法を提供することを今一つの目的とする。 The present invention has been made in view of the above problems, and prevents the occurrence of a difference in the degree of modification of the polysilazane film even when a long body is formed, and further generates cracks under high temperature and high humidity. An object of the present invention is to provide a gas barrier film having excellent gas barrier performance capable of preventing the above. Furthermore, another object is to provide a production method capable of producing such a gas barrier film with high productivity.
 本発明者は、上記課題を解決すべく鋭意検討した結果、本発明に至った。本発明の上記課題は以下の手段により達成される。 The inventor of the present invention has made the present invention as a result of intensive studies to solve the above-mentioned problems. The above object of the present invention is achieved by the following means.
 すなわち、本発明の第一の態様は、樹脂基材上に、ケイ素化合物および金属原子を含むバリア層を有し、前記バリア層は、
 ケイ素元素量Siと金属元素量Mの比率Si:Mが、1:xであり、x≧2である、膜厚Th1の領域Aと、
 ケイ素元素量Siと金属元素量Mの比率Si:Mが、1:1~1:0.1である、膜厚Th2の領域Bと、を含み、
 前記Th1および前記Th2とは下記式(1)および(2):
 (1) Th1/Th2≧2
 (2) 20nm≦Th1<300nm
を満たす、ガスバリア性フィルムである。
That is, the first aspect of the present invention has a barrier layer containing a silicon compound and a metal atom on a resin substrate,
The region A of the film thickness Th1 in which the ratio Si: M of the silicon element amount Si and the metal element amount M is 1: x and x ≧ 2,
A ratio B of silicon element amount Si and metal element amount M Si: M is 1: 1 to 1: 0.1, and region B of film thickness Th2 includes:
The Th1 and Th2 are the following formulas (1) and (2):
(1) Th1 / Th2 ≧ 2
(2) 20 nm ≦ Th1 <300 nm
It is a gas barrier film that satisfies the above.
 また、本発明の第二の態様は、樹脂基材上に、ケイ素化合物前駆体および溶解度パラメーターが15.5~20.0の溶媒を含む第1バリア層前駆体液と、金属化合物および溶解度パラメーターが26.0~32.0の溶媒を含む第2バリア層前駆体液と、を塗布することを含む成膜工程を有する、ガスバリア性フィルムの製造方法である。 The second aspect of the present invention is the first barrier layer precursor liquid containing a silicon compound precursor and a solvent having a solubility parameter of 15.5 to 20.0 on the resin substrate, the metal compound and the solubility parameter being A method for producing a gas barrier film, comprising a film forming step including applying a second barrier layer precursor liquid containing a solvent of 26.0 to 32.0.
本発明のガスバリア性フィルムの概略構成を示す断面図である。図1において、10はガスバリア性フィルムを表し、11は(樹脂)基材を表し、12は無機バリア層を表し、13はバリア層を表し、14は第1バリア層に由来する領域を表し、15は領域Bを表し、16は領域Aを表し、17は第2バリア層に由来する領域を表し、18は第1バリア層を表し、19は第2バリア層を表し、20は前駆体フィルムを表す。It is sectional drawing which shows schematic structure of the gas barrier film of this invention. In FIG. 1, 10 represents a gas barrier film, 11 represents a (resin) substrate, 12 represents an inorganic barrier layer, 13 represents a barrier layer, 14 represents a region derived from the first barrier layer, 15 represents a region B, 16 represents a region A, 17 represents a region derived from the second barrier layer, 18 represents a first barrier layer, 19 represents a second barrier layer, and 20 represents a precursor film. Represents. 本発明に係る無機バリア層の形成に用いられる製造装置の一例を示す模式図である。図2において、1はガスバリア性フィルムを表し、2は(樹脂)基材を表し、3は無機バリア層を表し、31は製造装置を表し、32は送り出しローラーを表し、33、34、35、36は搬送ローラーを表し、39、40は成膜ローラーを表し、41はガス供給管を表し、42はプラズマ発生用電源を表し、43、44は磁場発生装置を表し、45は巻取りローラーを表す。It is a schematic diagram which shows an example of the manufacturing apparatus used for formation of the inorganic barrier layer which concerns on this invention. 2, 1 represents a gas barrier film, 2 represents a (resin) substrate, 3 represents an inorganic barrier layer, 31 represents a production apparatus, 32 represents a feed roller, 33, 34, 35, 36 represents a transport roller, 39 and 40 represent film forming rollers, 41 represents a gas supply pipe, 42 represents a plasma generation power source, 43 and 44 represent a magnetic field generator, and 45 represents a take-up roller. To express. 本発明に係る無機バリア層の形成に用いられる他の製造装置(真空プラズマCVD装置)の一例を示す模式図である。図3において、101は(真空)プラズマCVD装置を表し、102は真空槽を表し、103はカソード電極を表し、105はサセプタを表し、106は熱媒体循環系を表し、107は真空排気系を表し、108はガス導入系を表し、109は高周波電源を表し、110は基材を表し、160は加熱冷却装置を表す。It is a schematic diagram which shows an example of the other manufacturing apparatus (vacuum plasma CVD apparatus) used for formation of the inorganic barrier layer which concerns on this invention. 3, 101 represents a (vacuum) plasma CVD apparatus, 102 represents a vacuum chamber, 103 represents a cathode electrode, 105 represents a susceptor, 106 represents a heat medium circulation system, and 107 represents a vacuum exhaust system. 108 represents a gas introduction system, 109 represents a high-frequency power source, 110 represents a base material, and 160 represents a heating and cooling device.
 以下、本発明を実施するための形態について説明する。初めに本発明のガスバリア性フィルムの特徴および各要素について説明し、次にガスバリア性フィルムの製造方法について説明する。 Hereinafter, modes for carrying out the present invention will be described. First, features and elements of the gas barrier film of the present invention will be described, and then a method for producing the gas barrier film will be described.
 [ガスバリア性フィルム]
 本発明のガスバリア性フィルムは、樹脂基材上に、ケイ素化合物および金属原子を含むバリア層を有し、ケイ素元素量および金属元素量が上記した所定の関係を満たす。
[Gas barrier film]
The gas barrier film of the present invention has a barrier layer containing a silicon compound and a metal atom on a resin substrate, and the amount of silicon element and the amount of metal element satisfy the predetermined relationship described above.
 本発明によれば、バリア層が、特定の厚み条件を満たす金属原子を含む層を含むことにより、ポリシラザン膜の改質度合いに差異が生じてバリア性が低下することを防止でき、さらには、高温高湿時のクラック発生も防止できる、ガスバリア性フィルムが提供される。また、本発明の製造方法によれば、溶解度パラメーターの互いに異なる溶媒を第1バリア層と第2バリア層との塗布液にそれぞれ用いることにより、より高い生産性で、優れたバリア性能のガスバリア性フィルムを製造しうる。また、本発明のガスバリア性フィルムを使用した電子デバイスは、バリア性能の高いフィルムを使用することにより、耐久性を向上し得る。 According to the present invention, when the barrier layer includes a layer containing a metal atom that satisfies a specific thickness condition, it is possible to prevent the barrier property from being lowered due to a difference in the degree of modification of the polysilazane film. There is provided a gas barrier film capable of preventing the occurrence of cracks at high temperature and high humidity. In addition, according to the production method of the present invention, by using solvents having different solubility parameters for the coating solutions of the first barrier layer and the second barrier layer, respectively, the gas barrier property with higher productivity and superior barrier performance. A film can be produced. Moreover, the electronic device using the gas barrier film of the present invention can improve durability by using a film having high barrier performance.
 図1は、本発明のガスバリア性フィルム10の一例の構成を示す概略断面図である。本発明のガスバリア性フィルム10は、前駆体フィルム20を改質して得られる。ガスバリア性フィルム10は、樹脂基材11、無機バリア層12、バリア層13がこの順に積層されている。前駆体フィルム20は、樹脂基材11、無機バリア層12、改質前のケイ素化合物前駆体を含む塗布膜である第1バリア層18、金属化合物を含む塗布膜である第2バリア層19がこの順に積層されている。ガスバリア性フィルム10のバリア層13は、前駆体フィルム20の第1バリア層18および第2バリア層19が改質処理されることにより、構成される。ガスバリア性フィルム10のバリア層13は、第1バリア層18由来の領域14と、ケイ素元素量Siと金属元素量Mの比率Si:Mが、1:1~1:0.1である、膜厚Th2の領域B 15と、第2バリア層由来の領域17で構成される。さらに、バリア層13の領域17は、ケイ素元素量Siと金属元素量Mの比率Si:Mが、1:xであり、x≧2である、膜厚Th1の領域A 16を含んでいる。以下、ガスバリア性フィルム10の構成要素について説明する。 FIG. 1 is a schematic cross-sectional view showing the structure of an example of the gas barrier film 10 of the present invention. The gas barrier film 10 of the present invention is obtained by modifying the precursor film 20. In the gas barrier film 10, a resin base material 11, an inorganic barrier layer 12, and a barrier layer 13 are laminated in this order. The precursor film 20 includes a resin base material 11, an inorganic barrier layer 12, a first barrier layer 18 that is a coating film containing a silicon compound precursor before modification, and a second barrier layer 19 that is a coating film containing a metal compound. They are stacked in this order. The barrier layer 13 of the gas barrier film 10 is configured by modifying the first barrier layer 18 and the second barrier layer 19 of the precursor film 20. The barrier layer 13 of the gas barrier film 10 is a film having a region 14 derived from the first barrier layer 18 and a ratio Si: M between the silicon element amount Si and the metal element amount M of 1: 1 to 1: 0.1. It is composed of a region B15 having a thickness Th2 and a region 17 derived from the second barrier layer. Further, the region 17 of the barrier layer 13 includes a region A16 having a thickness Th1 in which the ratio Si: M between the silicon element amount Si and the metal element amount M is 1: x and x ≧ 2. Hereinafter, the components of the gas barrier film 10 will be described.
 <樹脂基材>
 本発明に係るガスバリア性フィルムは、通常、樹脂基材(プラスチックフィルムまたはシート)が用いられ、無色透明な樹脂からなるフィルムまたはシート(樹脂基材)が基材として好ましく用いられる。用いられる樹脂基材は、バリア層、ハードコート層等を保持できるフィルムであれば材質、厚み等に特に制限はなく、使用目的等に応じて適宜選択することができる。前記樹脂基材としては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸-マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂が挙げられる。
<Resin substrate>
As the gas barrier film according to the present invention, a resin base material (plastic film or sheet) is usually used, and a film or sheet (resin base material) made of a colorless and transparent resin is preferably used as the base material. The resin substrate used is not particularly limited in material, thickness, and the like as long as it is a film that can hold a barrier layer, a hard coat layer, and the like, and can be appropriately selected according to the purpose of use. Specific examples of the resin substrate include polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, polyamideimide resin, and polyether. Imide resin, cellulose acylate resin, polyurethane resin, polyether ether ketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyether sulfone resin, polysulfone resin, cycloolefin copolymer, fluorene ring modified polycarbonate resin, fat Examples thereof include thermoplastic resins such as a ring-modified polycarbonate resin, a fluorene ring-modified polyester resin, and an acryloyl compound.
 また、本発明において、特開2012-116101号公報の段落「0056」~「0075」や特開2013-226758号公報の段落「0125」~「0131」などに開示されている基材も適宜採用される。 In the present invention, the substrates disclosed in paragraphs “0056” to “0075” of JP2012-116101A, paragraphs “0125” to “0131” of JP2013-226758A, etc. are also appropriately employed. Is done.
 本発明に係るガスバリア性フィルムに用いられる樹脂基材の厚みは、用途によって適宜選択されるため特に制限がないが、典型的には1~800μmであり、好ましくは5μm~500μmであり、より好ましくは25~250μmである。これらの樹脂基材は、透明導電層、プライマー層等の機能層を有していても良い。機能層については、特開2006-289627号公報の段落番号「0036」~「0038」に記載されているものを好ましく採用できる。 The thickness of the resin substrate used in the gas barrier film according to the present invention is not particularly limited because it is appropriately selected depending on the application, but is typically 1 to 800 μm, preferably 5 μm to 500 μm, more preferably. Is 25 to 250 μm. These resin base materials may have functional layers such as a transparent conductive layer and a primer layer. As the functional layer, those described in paragraph numbers “0036” to “0038” of JP-A-2006-289627 can be preferably used.
 基材は、表面の平滑性が高いものが好ましい。表面の平滑性としては、平均表面粗さ(Ra)が2nm以下であるものが好ましい。下限は特にないが、実用上、0.01nm以上である。必要に応じて、基材の両面、少なくともバリア層を設ける側を研摩し、平滑性を向上させておいてもよい。 The substrate preferably has a high surface smoothness. As the surface smoothness, those having an average surface roughness (Ra) of 2 nm or less are preferable. Although there is no particular lower limit, it is practically 0.01 nm or more. If necessary, both surfaces of the substrate, at least the side on which the barrier layer is provided, may be polished to improve smoothness.
 基材の少なくとも本発明に係るガスバリア層(無機バリア層及び第2層)を設ける側には、密着性向上のための公知の種々の処理、例えばコロナ放電処理、火炎処理、酸化処理、またはプラズマ処理や、後述するプライマー層の積層等を行うことが好ましく、必要に応じて上記処理を組み合わせて行うことがより好ましい。 At least on the side of the substrate on which the gas barrier layer (inorganic barrier layer and second layer) according to the present invention is provided, various known treatments for improving adhesion, such as corona discharge treatment, flame treatment, oxidation treatment, or plasma. It is preferable to perform treatment, lamination of a primer layer, which will be described later, and more preferably to combine the above treatments as necessary.
 また、基材上にアンカーコート層(易接着層)を形成してもよい。また、シランカップリング剤のように単分子レベル~ナノレベルの薄膜を形成し、層界面で分子結合を形成できるような材料でアンカーコート層を設けることも、より高い密着性が期待できる点で好ましく用いることができる。また、基材上に更に樹脂などから成る応力緩和層や樹脂基材の表面を平滑化するための平滑層、樹脂基材からのブリードアウトを防止するためのブリードアウト防止層などを別途設けてもよい。 Further, an anchor coat layer (easy adhesion layer) may be formed on the substrate. It is also possible to expect a higher adhesion by forming a thin film of monomolecular level to nano level like silane coupling agent and providing an anchor coat layer with a material capable of forming a molecular bond at the layer interface. It can be preferably used. In addition, a stress relaxation layer made of resin, etc., a smoothing layer for smoothing the surface of the resin base material, a bleed out prevention layer for preventing bleed out from the resin base material, etc. are additionally provided on the base material. Also good.
 <バリア層>
 本発明のバリア層は、ケイ素化合物および金属原子を含む。バリア層は、ケイ素元素量Siと金属元素量Mの比率Si:Mが、1:xであり、x≧2である、膜厚Th1の領域Aと、ケイ素元素量Siと金属元素量Mの比率Si:Mが、1:1~1:0.1である、膜厚Th2の領域Bと、を含んでいる。さらに、Th1およびTh2は下記式(1)および(2):
 (1) Th1/Th2≧2
 (2) 20nm≦Th1<300nm
を満たす。
<Barrier layer>
The barrier layer of the present invention contains a silicon compound and a metal atom. In the barrier layer, the ratio Si: M between the silicon element amount Si and the metal element amount M is 1: x, and x ≧ 2, the region A of the film thickness Th1, and the silicon element amount Si and the metal element amount M And a region B having a thickness Th2 in which the ratio Si: M is 1: 1 to 1: 0.1. Furthermore, Th1 and Th2 are the following formulas (1) and (2):
(1) Th1 / Th2 ≧ 2
(2) 20 nm ≦ Th1 <300 nm
Meet.
 本発明のガスバリア性フィルムにおいて、バリア層は、改質前の第1バリア層に由来する、主としてケイ素化合物を含む領域と、第2バリア層に由来する、主として金属化合物(金属原子を含む化合物)を含む領域と、その間の第1バリア層と第2バリア層とがわずかに混合した、ケイ素化合物および金属原子が混合した領域と、で構成される。ケイ素元素量Siと金属元素量Mの比率Si:Mが、1:1~1:0.1である領域Bは、ケイ素化合物と金属原子とが混合した領域に相当する。ケイ素元素量Siと金属元素量Mの比率Si:Mが、1:xであり、x≧2である、領域Aは、金属元素量が多く、主として金属化合物で構成される領域に含まれる。領域Aの膜厚Th1は、領域Bの膜厚Th2に比較して厚く、Th1およびTh2は、式(1)Th1/Th2≧2を満たしている。すなわち、主として金属化合物で構成される領域Aは、ケイ素化合物が混合された領域Bの2倍以上の厚さを有し、いわば下層と混合されずに残存している。言い換えれば、本発明においては混合領域はより膜厚が薄く、ケイ素化合物と金属原子とがなるべく混合しない方が好ましい。さらに、領域Aの膜厚Th1は、式(2)20nm≦Th1<300nmを満たす。すなわち、主として金属化合物で構成される領域Aは、領域Bの2倍以上であるとともに、ある程度の実質的な膜厚を有して残存している。 In the gas barrier film of the present invention, the barrier layer is mainly derived from the first barrier layer before modification, the region mainly containing a silicon compound, and the second barrier layer, mainly a metal compound (compound containing a metal atom). And a region in which the first barrier layer and the second barrier layer in between are slightly mixed and the silicon compound and metal atoms are mixed. A region B where the ratio Si: M of the silicon element amount Si to the metal element amount M is 1: 1 to 1: 0.1 corresponds to a region where a silicon compound and metal atoms are mixed. The region A in which the ratio Si: M between the silicon element amount Si and the metal element amount M is 1: x and x ≧ 2 is included in a region mainly composed of a metal compound with a large amount of metal element. The film thickness Th1 in the region A is thicker than the film thickness Th2 in the region B, and Th1 and Th2 satisfy the formula (1) Th1 / Th2 ≧ 2. That is, the region A mainly composed of the metal compound has a thickness that is twice or more that of the region B mixed with the silicon compound, so to speak, it remains without being mixed with the lower layer. In other words, in the present invention, it is preferable that the mixed region has a smaller film thickness and the silicon compound and the metal atom are not mixed as much as possible. Furthermore, the film thickness Th1 of the region A satisfies the formula (2) 20 nm ≦ Th1 <300 nm. That is, the region A mainly composed of a metal compound is more than twice as large as the region B and remains with a certain substantial film thickness.
 このように、主として金属化合物で構成される領域Aが所定の膜厚を有して残存していることにより、ガスバリア性フィルムが、特に高温高湿下において、未改質のケイ素化合物前駆体が改質されて発生する歪みを領域Aが吸収し得る。したがって、高温高湿下でのガスバリア性フィルムのクラック発生が防止され、高いガスバリア性能のガスバリア性フィルムとなる。クラック防止の効果は、特にケイ素化合物を含む第2バリア層の膜厚が厚い場合に顕著である。 Thus, the region A mainly composed of the metal compound remains with a predetermined film thickness, so that the gas barrier film becomes an unmodified silicon compound precursor, particularly under high temperature and high humidity. The region A can absorb the distortion generated by the modification. Therefore, generation of cracks in the gas barrier film under high temperature and high humidity is prevented, and a gas barrier film with high gas barrier performance is obtained. The effect of preventing cracks is particularly remarkable when the thickness of the second barrier layer containing a silicon compound is thick.
 また、長尺体のガスバリア性フィルムを製造する際にも、領域Bの膜厚がより薄く、領域Aがある程度の膜厚で残存する、上記の条件が満たされるようにしておくことにより、ケイ素化合物前躯体の改質度合いに差異が生じることを防止できることが分かった。これは、改質時にケイ素化合物の低分子成分が揮発し、改質用ランプに付着して、ランプの照度が低下するために、経時的に改質度合いに差が生じていたためと考えられる。領域Aが所定の厚さで残存していることにより、ケイ素化合物の低分子成分の揮発および飛散が防止され、改質用ランプの照度低下が抑制されたものと考えられる。その結果、本発明のガスバリア性フィルムは、長尺体の全体にわたって優れたバリア性能を示すフィルムとなる。 Further, when producing a long gas barrier film, the region B is thinner, and the region A remains with a certain thickness, so that the above condition is satisfied. It was found that differences in the degree of modification of the compound precursor can be prevented. This is presumably because the low-molecular component of the silicon compound volatilizes during the modification, adheres to the reforming lamp, and the illuminance of the lamp decreases, resulting in a difference in the degree of modification over time. It is considered that the region A remaining at a predetermined thickness prevents volatilization and scattering of low molecular components of the silicon compound and suppresses a decrease in illuminance of the reforming lamp. As a result, the gas barrier film of the present invention is a film that exhibits excellent barrier performance over the entire elongated body.
 従来は、例えば、ケイ素化合物前駆体を含む第1バリア層塗布液と、金属化合物を含む第2バリア層塗布液とを、同時重層塗布した場合には、バリア層の改質前に二層が混合してしまうことにより、金属原子を多量に含む部分が上記の領域Aのような厚さでは残らなかった。また、金属化合物を含む層を残存させようとすると、下層のケイ素化合物前駆体を含む層を予め改質しておかなければならなかった。それ故に、改質時に低分子のケイ素化合物が揮発または飛散しており、ランプの照度低下および改質度合いの差異を生じていたものと考えられる。 Conventionally, for example, when a first barrier layer coating solution containing a silicon compound precursor and a second barrier layer coating solution containing a metal compound are applied simultaneously, two layers are formed before the barrier layer is modified. As a result of mixing, a portion containing a large amount of metal atoms did not remain in the thickness as in the region A. Further, in order to leave the layer containing the metal compound, the lower layer containing the silicon compound precursor had to be modified in advance. Therefore, it is considered that the low-molecular silicon compound was volatilized or scattered during the modification, resulting in a decrease in lamp illuminance and a difference in the degree of modification.
 Th1およびTh2の比率は、より好ましくは、5.0≧Th1/Th2≧2.5、さらに好ましくは4.0≧Th1/Th2≧3.2である。Th1およびTh2の比率がかかる範囲であると、本発明の所期の効果、高温高湿時のクラック発生防止および改質度合いの差異の抑制による均一なバリア性能の実現、がより高いため好ましい。また、Th1の膜厚は、20nm以上であり、好ましくは20nm超であり、より好ましくは50nm以上である。また、Th1<300nmであり、好ましくは、Th1≦200nmであり、さらに好ましくはTh1≦100nmを満たす。Th1が20nm以上であると、低分子のケイ素化合物の揮発または飛散防止の効果がより確実であり、200nm以下であれば、ガスバリア性フィルムの柔軟性も高いものとなる。 The ratio of Th1 and Th2 is more preferably 5.0 ≧ Th1 / Th2 ≧ 2.5, and further preferably 4.0 ≧ Th1 / Th2 ≧ 3.2. It is preferable that the ratio of Th1 and Th2 is in such a range because the desired effects of the present invention, prevention of cracking at high temperature and high humidity, and realization of uniform barrier performance by suppressing the difference in the degree of modification are higher. The film thickness of Th1 is 20 nm or more, preferably more than 20 nm, and more preferably 50 nm or more. Further, Th1 <300 nm, preferably Th1 ≦ 200 nm, and more preferably satisfies Th1 ≦ 100 nm. When Th1 is 20 nm or more, the effect of preventing the volatilization or scattering of the low-molecular silicon compound is more reliable, and when it is 200 nm or less, the flexibility of the gas barrier film is high.
 Th1およびTh2を求めるには、XPSデプスプロファイルを測定し、Si元素量と金属元素量との分布を得る。その分布を基に、Si:Mが、1:1~1:0.1となる領域BおよびSi:Mが、1:xであり、x≧2である領域Aの厚さを算出する。具体的な測定条件は、後述する実施例に記載の条件を用いる。 In order to obtain Th1 and Th2, the XPS depth profile is measured, and the distribution of the Si element amount and the metal element amount is obtained. Based on this distribution, the thickness of the region B where Si: M is 1: 1 to 1: 0.1 and the region A where Si: M is 1: x and x ≧ 2 is calculated. As specific measurement conditions, the conditions described in Examples described later are used.
 (ケイ素化合物)
 バリア層を形成するケイ素化合物は、下記一般式(1):
(Silicon compound)
The silicon compound forming the barrier layer has the following general formula (1):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記一般式(1)において、R、RおよびRは、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基を表わす、
で示される構造を有するケイ素化合物前駆体を、活性エネルギー線を照射することによって改質して得られたものであることが好ましい。
In the general formula (1), R 1 , R 2 and R 3 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. ,
It is preferable that it is obtained by modifying the silicon compound precursor having the structure represented by the following by irradiating with active energy rays.
 ケイ素化合物前駆体としては、上記一般式(1)で示される構造を有するケイ素化合物前駆体が挙げられる。一般式(1)のケイ素化合物は、構造内に珪素-窒素(Si-N)結合を有するポリマーであり、Si-N、Si-H、N-H等の結合を有するSiO、Si及びこれらの中間固溶体SiO等のセラミック前駆体無機ポリマーである。なお、本明細書では、一般式(1)のケイ素化合物前駆体を「ポリシラザン」とも称する。上記一般式(1)で示される構造を有するケイ素化合物前駆体は1種単独で含んでも、または2種以上の式(1)のケイ素化合物前駆体を含んでもよい。 As a silicon compound precursor, the silicon compound precursor which has a structure shown by the said General formula (1) is mentioned. The silicon compound of the general formula (1) is a polymer having a silicon-nitrogen (Si—N) bond in the structure, and has SiO 2 , Si 3 N having a bond such as Si—N, Si—H, or N—H. 4 and their intermediate solid solution SiO x N y and other ceramic precursor inorganic polymers. In the present specification, the silicon compound precursor of the general formula (1) is also referred to as “polysilazane”. The silicon compound precursor having the structure represented by the general formula (1) may be used alone or two or more silicon compound precursors of the formula (1) may be included.
 ここで、アルキル基としては、炭素原子数1~8の直鎖、分岐鎖または環状のアルキル基が挙げられる。より具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、2-エチルヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などがある。また、アリール基としては、炭素原子数6~30のアリール基が挙げられる。より具体的には、フェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基などの縮合多環炭化水素基が挙げられる。(トリアルコキシシリル)アルキル基としては、炭素原子数1~8のアルコキシ基で置換されたシリル基を有する炭素原子数1~8のアルキル基が挙げられる。より具体的には、3-(トリエトキシシリル)プロピル基、3-(トリメトキシシリル)プロピル基などが挙げられる。上記R~Rに場合によって存在する置換基は、特に制限はないが、例えば、アルキル基、ハロゲン原子、ヒドロキシル基(-OH)、メルカプト基(-SH)、シアノ基(-CN)、スルホ基(-SOH)、カルボキシル基(-COOH)、ニトロ基(-NO)などがある。なお、場合によって存在する置換基は、置換するR~Rと同じとなることはない。例えば、R~Rがアルキル基の場合には、さらにアルキル基で置換されることはない。これらのうち、好ましくは、R、R及びRは、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、フェニル基、ビニル基、3-(トリエトキシシリル)プロピル基または3-(トリメトキシシリルプロピル)基である。R、R及びRすべてが水素原子であるパーヒドロポリシラザン(PHPS)が特に好ましい。このようなポリシラザンから形成されるガスバリア層(ガスバリア膜)は高い緻密性を示す。 Here, examples of the alkyl group include linear, branched or cyclic alkyl groups having 1 to 8 carbon atoms. More specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n -Hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group and the like. Examples of the aryl group include aryl groups having 6 to 30 carbon atoms. More specifically, non-condensed hydrocarbon groups such as phenyl group, biphenyl group, terphenyl group; pentarenyl group, indenyl group, naphthyl group, azulenyl group, heptaenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenenyl group , Condensed polycyclic hydrocarbon groups such as acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceantrirenyl group, triphenylenyl group, pyrenyl group, chrysenyl group, naphthacenyl group, etc. Can be mentioned. The (trialkoxysilyl) alkyl group includes an alkyl group having 1 to 8 carbon atoms having a silyl group substituted with an alkoxy group having 1 to 8 carbon atoms. More specific examples include 3- (triethoxysilyl) propyl group and 3- (trimethoxysilyl) propyl group. The substituent optionally present in R 1 to R 3 is not particularly limited, and examples thereof include an alkyl group, a halogen atom, a hydroxyl group (—OH), a mercapto group (—SH), a cyano group (—CN), There are a sulfo group (—SO 3 H), a carboxyl group (—COOH), a nitro group (—NO 2 ) and the like. Note that the optionally present substituent is not the same as R 1 to R 3 to be substituted. For example, when R 1 to R 3 are alkyl groups, they are not further substituted with an alkyl group. Among these, R 1 , R 2 and R 3 are preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a phenyl group, a vinyl group, 3 -(Triethoxysilyl) propyl group or 3- (trimethoxysilylpropyl) group. Perhydropolysilazane (PHPS) in which all of R 1 , R 2 and R 3 are hydrogen atoms is particularly preferred. A gas barrier layer (gas barrier film) formed from such polysilazane exhibits high density.
 また、上記一般式(1)において、nは、式:-[Si(R)(R)-N(R)]-の構成単位の数を表わす整数であり、一般式(1)で表される構造を有するポリシラザンが150~150,000g/モルの数平均分子量を有するように定められることが好ましい。 In the general formula (1), n is an integer representing the number of structural units of the formula: — [Si (R 1 ) (R 2 ) —N (R 3 )] —, and the general formula (1) It is preferable that the polysilazane having the structure represented by the formula is determined so as to have a number average molecular weight of 150 to 150,000 g / mol.
 ガスバリア層の膜としての緻密性の観点からは、R、RおよびRのすべてが水素原子であるパーヒドロポリシラザンが特に好ましい。パーヒドロポリシラザンは、直鎖構造と6員環および8員環を中心とする環構造が存在した構造と推定されており、その分子量は、数平均分子量(Mn)で約600~2000程度(ゲルパーミエーションクロマトグラフィによるポリスチレン換算)であり、液体または固体の物質である。ポリシラザンは、有機溶媒に溶解した溶液の状態で市販されており、市販品をそのままポリシラザン含有塗布液として使用することができる。ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ株式会社製のアクアミカ(登録商標) NN120-10、NN120-20、NAX120-20、NN110、NN310、NN320、NL110A、NL120A、NL120-20、NL150A、NP110、NP140、SP140等が挙げられる。 Perhydropolysilazane, in which all of R 1 , R 2 and R 3 are hydrogen atoms, is particularly preferred from the viewpoint of denseness as a gas barrier layer film. Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on a 6-membered ring and an 8-membered ring. Its molecular weight is about 600 to 2000 in terms of number average molecular weight (Mn) (gel Polystyrene conversion by permeation chromatography), which is a liquid or solid substance. Polysilazane is commercially available in the form of a solution dissolved in an organic solvent, and a commercially available product can be used as it is as a polysilazane-containing coating solution. Examples of commercially available polysilazane solutions include AQUAMICA (registered trademark) NN120-10, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20, NL150A, and NP110 manufactured by AZ Electronic Materials Co., Ltd. NP140, SP140 and the like.
 本発明に用いられるポリシラザンの例としては、特に限定されず、公知のものが挙げられる。例えば、特開2013-022799号公報の段落「0043」~「0058」や特開2013-226758号公報の段落「0038」~「0056」などに開示されているものが適宜採用される。これらの中では、パーヒドロポリシラザンが最も好ましく用いられる。 Examples of polysilazane used in the present invention are not particularly limited and include known ones. For example, those disclosed in paragraphs “0043” to “0058” of JP2013-022799A, paragraphs “0038” to “0056” of JP2013-226758A are appropriately adopted. Of these, perhydropolysilazane is most preferably used.
 ポリシラザンの別の例としては、以下に制限されないが、例えば、上記ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5-238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6-122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6-240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6-299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6-306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7-196986号公報)等の、低温でセラミック化するポリシラザンが挙げられる。 Other examples of polysilazane include, but are not limited to, for example, silicon alkoxide-added polysilazane obtained by reacting the above polysilazane with silicon alkoxide (Japanese Patent Laid-Open No. 5-238827), glycidol addition obtained by reacting glycidol Polysilazane (JP-A-6-122852), alcohol-added polysilazane obtained by reacting an alcohol (JP-A-6-240208), metal carboxylate-added polysilazane obtained by reacting a metal carboxylate 6-299118), acetylacetonate complex-added polysilazane obtained by reacting a metal-containing acetylacetonate complex (JP-A-6-306329), metal fine particle-added polysilazane obtained by adding metal fine particles (specialty) Kaihei 7- Publication), etc. No. 96986, include polysilazane ceramic at low temperatures.
 (シラザン化合物)
 バリア層を形成するためのケイ素化合物前駆体としては、塗布液の調製が可能であれば特に限定はされず、上記の一般式(1)で表されるポリシラザンの他、シラザン化合物、アミノシラン化合物、シリルアセトアミド化合物、シリルイミダゾール化合物などが用いられる。
(Silazane compound)
The silicon compound precursor for forming the barrier layer is not particularly limited as long as the coating liquid can be prepared. In addition to the polysilazane represented by the general formula (1), a silazane compound, an aminosilane compound, A silylacetamide compound, a silylimidazole compound, or the like is used.
 本発明に好ましく用いられるシラザン化合物の例としては、ジメチルジシラザン、トリメチルジシラザン、テトラメチルジシラザン、ペンタメチルジシラザン、ヘキサメチルジシラザン、および1,3-ジビニル-1,1,3,3-テトラメチルジシラザンなどが挙げられるが、これらに限定されない。 Examples of silazane compounds preferably used in the present invention include dimethyldisilazane, trimethyldisilazane, tetramethyldisilazane, pentamethyldisilazane, hexamethyldisilazane, and 1,3-divinyl-1,1,3,3. -Examples include, but are not limited to, tetramethyldisilazane.
 (金属化合物)
 金属化合物は、金属原子を含む化合物であれば特に制限されない。
(Metal compound)
The metal compound is not particularly limited as long as it is a compound containing a metal atom.
 (金属原子)
 本発明のバリア層に含まれる金属原子は、上記効果を奏するものであれば特に制限されない。具体的には、ホウ素原子(B)、アルミニウム原子(Al)、チタン原子(Ti)、ジルコニウム原子(Zr)、亜鉛原子(Zn)、ガリウム原子(Ga)、インジウム原子(In)、クロム原子(Cr)、鉄原子(Fe)、マグネシウム原子(Mg)、スズ原子(Sn)、ニッケル原子(Ni)、パラジウム原子(Pd)、鉛原子(Pb)、マンガン原子(Mn)、リチウム原子(Li)、ゲルマニウム原子(Ge)、銅原子(Cu)、ナトリウム原子(Na)、カリウム原子(K)、カルシウム原子(Ca)、及びコバルト原子(Co)が挙げられる。これらのうち、ホウ素原子(B)、アルミニウム原子(Al)、チタン原子(Ti)およびジルコニウム原子(Zr)がより好ましい。上記金属原子は、単独で使用されてもまたは2種以上の混合物の形態で使用されてもよい。これらの金属原子を含むことによって、低分子のケイ素化合物の揮発や飛散防止、および、高温高湿時のクラック発生防止の効果をより向上できる。
(Metal atom)
The metal atom contained in the barrier layer of the present invention is not particularly limited as long as it has the above effects. Specifically, boron atom (B), aluminum atom (Al), titanium atom (Ti), zirconium atom (Zr), zinc atom (Zn), gallium atom (Ga), indium atom (In), chromium atom ( Cr), iron atom (Fe), magnesium atom (Mg), tin atom (Sn), nickel atom (Ni), palladium atom (Pd), lead atom (Pb), manganese atom (Mn), lithium atom (Li) , Germanium atoms (Ge), copper atoms (Cu), sodium atoms (Na), potassium atoms (K), calcium atoms (Ca), and cobalt atoms (Co). Among these, a boron atom (B), an aluminum atom (Al), a titanium atom (Ti), and a zirconium atom (Zr) are more preferable. The metal atoms may be used alone or in the form of a mixture of two or more. By containing these metal atoms, it is possible to further improve the effects of preventing volatilization and scattering of low-molecular silicon compounds and preventing cracking at high temperatures and high humidity.
 金属原子は、バリア層に含まれる金属化合物に含まれる。金属化合物は、好ましくは、金属原子、酸素原子及び炭素原子を有する化合物である。金属化合物は1種単独で含まれていても、2種以上の金属化合物が含まれていてもよい。 Metal atoms are contained in the metal compound contained in the barrier layer. The metal compound is preferably a compound having a metal atom, an oxygen atom and a carbon atom. The metal compound may be contained singly or two or more metal compounds may be contained.
 金属化合物が酸素(O)原子を含有すると、ケイ素化合物前駆体の活性エネルギー線照射による改質時にダングリングボンドが少なく、酸素組成比率の高いガスバリア層を形成することが可能である。ここで、金属化合物は、金属原子、酸素原子及び炭素原子を有するものであれば特に制限されない。具体的には、アルカリ金属のアルコキシド、下記一般式(2): When the metal compound contains an oxygen (O) atom, it is possible to form a gas barrier layer having a high oxygen composition ratio with less dangling bonds when the silicon compound precursor is modified by irradiation with active energy rays. Here, the metal compound is not particularly limited as long as it has a metal atom, an oxygen atom, and a carbon atom. Specifically, an alkali metal alkoxide, the following general formula (2):
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
で示される構成単位を有する金属化合物などが挙げられる。上記金属化合物は、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。 And metal compounds having a structural unit represented by The above metal compounds may be used alone or in the form of a mixture of two or more.
 アルカリ金属のアルコキシドとしては、特に制限されないが、炭素原子数1~10のアルコキシ基がアルカリ金属に結合したものが好ましい。具体的には、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムプロポキシド、ナトリウムイソプロポキシド、ナトリウムブトキシド、カリウムメトキシド、カリウムエトキシド、カリウムプロポキシド、カリウムイソプロポキシド、カリウムブトキシドなどが挙げられる。 The alkali metal alkoxide is not particularly limited, but an alkali metal having an alkoxy group having 1 to 10 carbon atoms bonded to the alkali metal is preferable. Specific examples include sodium methoxide, sodium ethoxide, sodium propoxide, sodium isopropoxide, sodium butoxide, potassium methoxide, potassium ethoxide, potassium propoxide, potassium isopropoxide, potassium butoxide and the like.
 また、上記一般式(2)で示される構造単位を有する金属化合物が金属化合物として使用できる。上記一般式(2)において、Mは、ホウ素(B)、アルミニウム(Al)、チタン(Ti)、ジルコニウム(Zr)、亜鉛(Zn)、ガリウム(Ga)、インジウム(In)、クロム(Cr)、鉄(Fe)、マグネシウム(Mg)、スズ(Sn)、ニッケル(Ni)、パラジウム(Pd)、鉛(Pb)、マンガン(Mn)、リチウム(Li)、ゲルマニウム(Ge)、銅(Cu)、ナトリウム(Na)、カリウム(K)、カルシウム(Ca)、またはコバルト(Co)を表わす。ここで、nが2以上である(即ち、-[M(Rm1]-が複数個存在する)場合では、各-[M(Rm1]-単位中のMは、それぞれ、同じであってもまたは異なるものであってもよい。これらのうち、VUV光の透過性、ポリシラザンとの反応性などの観点から、Mは、ホウ素(B)、アルミニウム(Al)、チタン(Ti)、ジルコニウム(Zr)が好ましく、アルミニウム(Al)、チタン(Ti)およびジルコニウム(Zr)がより好ましい。 Moreover, the metal compound which has a structural unit shown by the said General formula (2) can be used as a metal compound. In the general formula (2), M represents boron (B), aluminum (Al), titanium (Ti), zirconium (Zr), zinc (Zn), gallium (Ga), indium (In), chromium (Cr). , Iron (Fe), magnesium (Mg), tin (Sn), nickel (Ni), palladium (Pd), lead (Pb), manganese (Mn), lithium (Li), germanium (Ge), copper (Cu) , Sodium (Na), potassium (K), calcium (Ca), or cobalt (Co). Here, n is 2 or more (i.e., - [M (R 4) m1] - there are a plurality) in case each - [M (R 4) m1 ] - M in the unit, respectively, It may be the same or different. Among these, M is preferably boron (B), aluminum (Al), titanium (Ti), or zirconium (Zr) from the viewpoints of VUV light transmittance, reactivity with polysilazane, and the like, and aluminum (Al), Titanium (Ti) and zirconium (Zr) are more preferable.
 また、Yは、単結合または酸素原子(-O-)を表わす。 Y represents a single bond or an oxygen atom (—O—).
 R、R及びRは、水素原子、ハロゲン原子、シアノ基(-CN)、ニトロ基(-NO)、メルカプト基(-SH)、エポキシ基(3員環のエーテルであるオキサシクロプロピル基)、水酸基(-OH)、炭素原子数1~10の置換若しくは非置換のアルキル基、炭素原子数3~10の置換若しくは非置換のシクロアルキル基、炭素原子数2~10の置換若しくは非置換のアルケニル基、炭素原子数2~10の置換若しくは非置換のアルキニル基、炭素原子数1~10の置換若しくは非置換のアルコキシ基、アセトアセテート基(-O-C(CH)=CH-C(=O)-CH)、炭素原子数4~25の置換若しくは非置換の(アルキル)アセトアセテート基、炭素原子数6~30の置換若しくは非置換のアリール基、置換若しくは非置換の複素環基またはアミノ基(-NH)を表わす。ここで、R、R及びRは、それぞれ、同じであってもまたは異なるものであってもよい。また、nが2以上である(即ち、-[M(Rm1]-が複数個存在する)場合では、各-[M(Rm1]-単位中のRは、それぞれ、同じであってもまたは異なるものであってもよい。 R 4 , R 5, and R 6 are a hydrogen atom, a halogen atom, a cyano group (—CN), a nitro group (—NO 2 ), a mercapto group (—SH), an epoxy group (a 3-membered ring ether oxacyclo Propyl group), a hydroxyl group (—OH), a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms, a substituted or unsubstituted cycloalkyl group having 2 to 10 carbon atoms, or Unsubstituted alkenyl group, substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, acetoacetate group (—O—C (CH 3 ) ═CH —C (═O) —CH 3 ), a substituted or unsubstituted (alkyl) acetoacetate group having 4 to 25 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, Alternatively, it represents an unsubstituted heterocyclic group or an amino group (—NH 2 ). Here, R 4 , R 5 and R 6 may be the same or different. Also, n is 2 or more in the case of (i.e., - there are a plurality - [M (R 4) m1 ]), each - [M (R 4) m1 ] - R 4 in the units, respectively, It may be the same or different.
 ここで、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子またはヨウ素原子のいずれでもよい。 Here, the halogen atom may be a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
 炭素原子数1~10のアルキル基としては、特に制限されないが、炭素原子数1~10の直鎖または分岐鎖のアルキル基である。例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基及び2-エチルヘキシル基などが挙げられる。これらのうち、VUV光の透過性、膜の緻密性などの観点から、炭素原子数1~6の直鎖または分岐鎖のアルキル基が好ましく、炭素原子数1~5の直鎖または分岐鎖のアルキル基がより好ましい。 The alkyl group having 1 to 10 carbon atoms is not particularly limited, but is a linear or branched alkyl group having 1 to 10 carbon atoms. For example, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, hexyl group, heptyl group, octyl group, Nonyl group, decyl group, 2-ethylhexyl group and the like can be mentioned. Among these, from the viewpoints of VUV light permeability, film density, etc., linear or branched alkyl groups having 1 to 6 carbon atoms are preferred, and linear or branched alkyl groups having 1 to 5 carbon atoms. An alkyl group is more preferred.
 炭素原子数3~10のシクロアルキル基としては、特に制限されないが、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基及びシクロオクチル基などが挙げられる。 The cycloalkyl group having 3 to 10 carbon atoms is not particularly limited, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
 炭素原子数2~10のアルケニル基としては、特に制限されないが、炭素原子数2~10の直鎖または分岐鎖のアルケニル基である。例えば、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、1-ヘキセニル基、2-ヘキセニル基、3-ヘキセニル基、1-ヘプテニル基、2-ヘプテニル基、5-ヘプテニル基、1-オクテニル基、3-オクテニル基、5-オクテニル基などが挙げられる。 The alkenyl group having 2 to 10 carbon atoms is not particularly limited, but is a linear or branched alkenyl group having 2 to 10 carbon atoms. For example, vinyl group, allyl group, 1-propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 1-hexenyl Group, 2-hexenyl group, 3-hexenyl group, 1-heptenyl group, 2-heptenyl group, 5-heptenyl group, 1-octenyl group, 3-octenyl group, 5-octenyl group and the like.
 炭素原子数2~10のアルキニル基としては、特に制限されないが、炭素原子数2~10の直鎖もしくは分岐状のアルキニル基である。例えば、アセチレニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、1-ペンテチル基、2-ペンテチル基、3-ペンテチル基、1-ヘキシニル基、2-ヘキシニル基、3-ヘキシニル基、1-ヘプチニル基、2-ヘプチニル基、5-ヘプチニル基、1-オクチニル基、3-オクチニル基、5-オクチニル基などが挙げられる。 The alkynyl group having 2 to 10 carbon atoms is not particularly limited, but is a linear or branched alkynyl group having 2 to 10 carbon atoms. For example, acetylenyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group, 1-pentethyl group, 2-pentethyl group, 3-pentethyl group, 1-hexynyl group, Examples include 2-hexynyl group, 3-hexynyl group, 1-heptynyl group, 2-heptynyl group, 5-heptynyl group, 1-octynyl group, 3-octynyl group, and 5-octynyl group.
 炭素原子数1~10のアルコキシ基としては、特に制限されないが、炭素原子数1~10の直鎖もしくは分岐状のアルコキシ基である。例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、2-エチルヘキシルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基などが挙げられる。これらのうち、VUV光の透過性、ポリシラザンとの反応性、膜の緻密性などの観点から、炭素原子数1~8の直鎖または分岐鎖のアルコキシ基が好ましく、炭素原子数1~5の直鎖または分岐鎖のアルコキシ基が好ましい。 The alkoxy group having 1 to 10 carbon atoms is not particularly limited, but is a linear or branched alkoxy group having 1 to 10 carbon atoms. For example, methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, 2-ethylhexyloxy group, octyloxy group, nonyloxy group And decyloxy group. Of these, a linear or branched alkoxy group having 1 to 8 carbon atoms is preferable from the viewpoint of VUV light permeability, reactivity with polysilazane, and film denseness, and has 1 to 5 carbon atoms. A linear or branched alkoxy group is preferred.
 炭素原子数4~25の(アルキル)アセトアセテート基としては、特に制限されないが、水素原子または炭素原子数1~6の直鎖または分岐鎖のアルキル基がアセトアセテート基に結合した基を表わす。例えば、アセトアセテート基(-O-C(CH)=CH-C(=O)-OH)、メチルアセトアセテート基(-O-C(CH)=CH-C(=O)-C-O-CH)、エチルアセトアセテート基(-O-C(CH)=CHC(=O)-C-O-C)、プロピルアセトアセテート基、イソプロピルアセトアセテート基、オクタデシルアセトアセテート基などが挙げられる。これらのうち、VUV光の透過性、膜の緻密性などの観点から、エチルアセトアセテート基、メチルアセトアセテート基、アセトアセテート基が好ましい。 The (alkyl) acetoacetate group having 4 to 25 carbon atoms is not particularly limited, but represents a group in which a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms is bonded to the acetoacetate group. For example, an acetoacetate group (—O—C (CH 3 ) ═CH—C (═O) —OH), a methyl acetoacetate group (—O—C (CH 3 ) ═CH—C (═O) —C— O—CH 3 ), ethyl acetoacetate group (—O—C (CH 3 ) ═CHC (═O) —C—O—C 2 H 5 ), propyl acetoacetate group, isopropyl acetoacetate group, octadecyl acetoacetate group Etc. Of these, ethyl acetoacetate group, methyl acetoacetate group, and acetoacetate group are preferable from the viewpoints of VUV light permeability and film density.
 炭素原子数6~30のアリール基としては、特に制限されないが、例えば、フェニル基、ナフチル基、ビフェニル基、フルオレニル基、アンスリル基、ピレニル基、アズレニル基、アセナフチレニル基、ターフェニル基、フェナンスリル基などが挙げられる。 The aryl group having 6 to 30 carbon atoms is not particularly limited, and examples thereof include a phenyl group, a naphthyl group, a biphenyl group, a fluorenyl group, an anthryl group, a pyrenyl group, an azulenyl group, an acenaphthylenyl group, a terphenyl group, and a phenanthryl group. Is mentioned.
 複素環基としては、特に制限されないが、チオフェン環、ジチエノチオフェン環、シクロペンタジチオフェン環、フェニルチオフェン環、ジフェニルチオフェン環、イミダゾール環、オキサゾール環、イソオキサゾール環、チアゾール環、ピロール環、フラン環、ベンゾフラン環、イソベンゾフラン環、クマリン環(例えば、3,4-ジヒドロクマリン)、ベンズイミダゾール環、ベンズオキサゾール環、ローダニン環、ピラゾロン環、イミダゾロン環、ピラン環、ピリジン環、ピラジン環、ピラゾール環、ピリミジン環、ピリダジン環、トリアジン環、フルオレン環、ベンゾチオフェン環、ベンゾ(c)チオフェン環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾイソキサゾール環、ベンゾチアゾール環、インドール環、フタラジン環、シナノリン環、キナゾリン環、カルバゾール環、カルボリン環、ジアザカルボリン環(カルボリンの任意の炭素原子の一つが窒素原子で置き換わったもの)、1,10-フェナントロリン環、キノン環、ローダニン環、ジローダニン環、チオヒダントイン環、ピラゾロン環、ピラゾリン環から導かれる基などが挙げられる。 The heterocyclic group is not particularly limited, but thiophene ring, dithienothiophene ring, cyclopentadithiophene ring, phenylthiophene ring, diphenylthiophene ring, imidazole ring, oxazole ring, isoxazole ring, thiazole ring, pyrrole ring, furan Ring, benzofuran ring, isobenzofuran ring, coumarin ring (for example, 3,4-dihydrocoumarin), benzimidazole ring, benzoxazole ring, rhodanine ring, pyrazolone ring, imidazolone ring, pyran ring, pyridine ring, pyrazine ring, pyrazole ring , Pyrimidine ring, pyridazine ring, triazine ring, fluorene ring, benzothiophene ring, benzo (c) thiophene ring, benzimidazole ring, benzoxazole ring, benzoisoxazole ring, benzothiazole ring, indole ring, lid Gin ring, sinanoline ring, quinazoline ring, carbazole ring, carboline ring, diazacarboline ring (in which one of carbon atoms of carboline is replaced by nitrogen atom), 1,10-phenanthroline ring, quinone ring, rhodanine ring, Examples include a group derived from a dirhodanine ring, a thiohydantoin ring, a pyrazolone ring, and a pyrazoline ring.
 また、上記R、R及びRに場合によって存在する置換基は、特に限定されない。具体的には、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素原子数1~24の直鎖もしくは分岐状のアルキル基、炭素原子数3~24のシクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基)、炭素原子数1~24のヒドロキシアルキル基(例えば、ヒドロキシメチル基、ヒドロキシエチル基)、炭素原子数2~24のアルコキシアルキル基(例えば、メトキシエチル基等)、炭素原子数1~24のアルコキシ基(例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、2-エチルヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、炭素原子数3~24のシクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基)アルケニル基、アルキニル基、アミノ基、アリール基、炭素原子数6~24のアリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基)、炭素原子数1~24のアルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基)、炭素原子数3~24のシクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基)、炭素原子数6~24のアリールチオ基(例えば、フェニルチオ基、ナフチルチオ基)、炭素原子数1~24のアルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基)、炭素原子数7~24のアリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基)、水酸基(-OH)、カルボキシル基(-COOH)、チオール基(-SH)、シアノ基(-CN)等が挙げられる。なお、アルキル基、アルケニル基、アルキニル基、アミノ基、アリール基は上記と同様の定義であるため、ここでは説明を省略する。また、置換基の数は特に制限はなく、所望の効果(VUV光の透過性、溶解性、ポリシラザンとの反応性など)を考慮して適宜選択されうる。上記において、同一の置換基で置換されることはない。すなわち、置換のアルキル基は、アルキル基で置換されることはない。 Moreover, the substituent which exists depending on the case in R 4 , R 5 and R 6 is not particularly limited. Specifically, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), a linear or branched alkyl group having 1 to 24 carbon atoms, a cycloalkyl group having 3 to 24 carbon atoms (for example, Cyclopentyl group, cyclohexyl group), hydroxyalkyl group having 1 to 24 carbon atoms (for example, hydroxymethyl group, hydroxyethyl group), alkoxyalkyl group having 2 to 24 carbon atoms (for example, methoxyethyl group), carbon atom An alkoxy group of 1 to 24 (for example, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, pentyloxy group, hexyloxy group, 2-ethylhexyloxy group, octyloxy group, dodecyloxy group, etc.), A cycloalkoxy group having 3 to 24 carbon atoms (for example, cyclopentyloxy group, cyclohexane Siloxy group) alkenyl group, alkynyl group, amino group, aryl group, aryloxy group having 6 to 24 carbon atoms (for example, phenoxy group, naphthyloxy group), alkylthio group having 1 to 24 carbon atoms (for example, methylthio group) , Ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group), cycloalkylthio group having 3 to 24 carbon atoms (eg, cyclopentylthio group, cyclohexylthio group), arylthio having 6 to 24 carbon atoms A group (eg, phenylthio group, naphthylthio group), an alkoxycarbonyl group having 1 to 24 carbon atoms (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group), carbon Aryloxycarbonyl group having 7 to 24 members (eg, phenyloxycarbonyl group, naphthyloxycarbonyl group), hydroxyl group (—OH), carboxyl group (—COOH), thiol group (—SH), cyano group (—CN) Etc. In addition, since an alkyl group, an alkenyl group, an alkynyl group, an amino group, and an aryl group have the same definition as described above, a description thereof is omitted here. The number of substituents is not particularly limited, and can be appropriately selected in consideration of desired effects (VUV light permeability, solubility, reactivity with polysilazane, etc.). In the above, it is not substituted with the same substituent. That is, a substituted alkyl group is not substituted with an alkyl group.
 これらのうち、R、R及びRの少なくとも1つは、水酸基、炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基を表わすことが好ましい。アルコキシ基またはヒドロキシル基を含有する化合物は、VUV光によりアルコキシ基部分またはヒドロキシル基部分の結合が開裂しやすく、開裂したアルコキシ基部分またはヒドロキシル基部分は速やかにポリシラザンと反応するため、転化反応への反応促進効果が大きい。また、アルキル基を含有する化合物は、可撓性を付与した膜の形成が可能である。また、R、R及びRの少なくとも1つは、炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基または炭素原子数4~25の(アルキル)アセトアセテート基を表わすことがより好ましく、炭素原子数1~10のアルキル基または炭素原子数1~10のアルコキシ基を表わすことがさらにより好ましく、炭素原子数1~10のアルコキシ基を表わすことが特に好ましい。 Of these, at least one of R 4 , R 5 and R 6 preferably represents a hydroxyl group, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms. In the compound containing an alkoxy group or a hydroxyl group, the bond of the alkoxy group part or the hydroxyl group part is easily cleaved by VUV light, and the cleaved alkoxy group part or hydroxyl group part reacts quickly with polysilazane. Great reaction promotion effect. In addition, a compound containing an alkyl group can form a flexible film. Further, at least one of R 4 , R 5 and R 6 is an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms or an (alkyl) acetoacetate group having 4 to 25 carbon atoms. More preferably, it represents an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, and even more preferably represents an alkoxy group having 1 to 10 carbon atoms.
 上記一般式(2)において、m1およびm2は、1以上の整数であり、m1+m2は、Mによって規定される整数であり、Mの結合手の数によって一義的に規定される。ここで、m1およびm2は、同じ整数であってもあるいは異なる整数であってもよい。nは、1以上の整数であり、VUV光の透過性、膜の緻密性などの観点から、1~10の整数であることが好ましく、1~4であることがより好ましい。 In the above general formula (2), m1 and m2 are integers of 1 or more, and m1 + m2 is an integer defined by M, and is uniquely defined by the number of M bonds. Here, m1 and m2 may be the same integer or different integers. n is an integer of 1 or more, and is preferably an integer of 1 to 10, more preferably 1 to 4, from the viewpoints of VUV light permeability, film density, and the like.
 上記一般式(2)で示される金属化合物としては、ホウ酸トリイソプロピル、アルミニウムイソプロポキシド、アルミニウム-sec-ブチレート、チタンイソプロポキシド、アルミニウムトリエチレート、アルミニウムトリイソプロピレート、アルミニウムトリtert-ブチレート、アルミニウムトリn-ブチレート、アルミニウムトリsec-ブチレート、アルミニウムエチルアセトアセテート・ジイソプロピレート、アセトアルコキシアルミニウムジイソプロピレート、カルシウムイソプロピレート、チタンテトライソプロポキシド(チタン(IV)イソプロピレート)、ジルコニウムテトラアセチルアセトネート、アルミニウムジイソプロピレートモノアルミニウムt-ブチレート、アルミニウムトリスエチルアセトアセテート、アルミニウムオキシドイソプロポキサイドトリマー、ジルコニウム(IV)イソプロピレート、トリス(2,4-ペンタンジオナト)チタニウム(V)、テトラキス(2,4-ペンタンジオナト)ジルコニウム(IV)、トリス(2,4-ペンタンジオナト)コバルト(III)、トリス(2,4-ペンタンジオナト)鉄(III)、ビス(2,4-ペンタジオナト)パラジウム(II)、トリス(2,4-ペンタンジオナト)イリジウム(III)、トリス(2,4-ペンタンジオナト)アルミニウム(III)、ビス(2,4-ペンタンジオナト)ニッケル(II)、ビス(2,4-ペンタンジオナト)銅(II)、ビス(2,4-ペンタンジオナト)亜鉛(II)、トリス(2,4-ペンタンジオナト)マンガン(III)、トリス(2,4-ペンタンジオナト)クロム(III)、トリス(2,4-ペンタンジオナト)インジウム(III)、トリス(2,4-ペンタンジオナト)カルシウム(III)、マグネシウムエトキシド、ナトリウムエトキシド、カリウムエトキシド、トリメチルガリウム、ジ-n-ブチルジメトキシ錫、テトラエチル鉛、マンガン(III)アセチルアセトナート、ジエチルジエトキシゲルマンなどが挙げられる。 Examples of the metal compound represented by the general formula (2) include triisopropyl borate, aluminum isopropoxide, aluminum-sec-butyrate, titanium isopropoxide, aluminum triethylate, aluminum triisopropylate, aluminum tritert-butylate. , Aluminum tri-n-butylate, aluminum trisec-butyrate, aluminum ethyl acetoacetate diisopropylate, acetoalkoxyaluminum diisopropylate, calcium isopropylate, titanium tetraisopropoxide (titanium (IV) isopropylate), zirconium tetraacetyl Acetonate, aluminum diisopropylate monoaluminum t-butylate, aluminum trisethylacetoacetate Aluminum oxide isopropoxide trimer, zirconium (IV) isopropylate, tris (2,4-pentandionato) titanium (V), tetrakis (2,4-pentandionato) zirconium (IV), tris (2,4- Pentandionato) cobalt (III), tris (2,4-pentandionato) iron (III), bis (2,4-pentadionato) palladium (II), tris (2,4-pentandionato) iridium (III ), Tris (2,4-pentanedionato) aluminum (III), bis (2,4-pentanedionato) nickel (II), bis (2,4-pentandedionato) copper (II), bis (2 , 4-Pentandionato) Zinc (II), Tris (2,4-pentandionato) Manganese (III), Tris 2,4-pentanedionato) chromium (III), tris (2,4-pentandionato) indium (III), tris (2,4-pentandionato) calcium (III), magnesium ethoxide, sodium ethoxide Potassium ethoxide, trimethylgallium, di-n-butyldimethoxytin, tetraethyllead, manganese (III) acetylacetonate, diethyldiethoxygermane and the like.
 これらのうち、VUV光の透過性などの観点から、ホウ酸トリイソプロピル、アルミニウムエチルアセトアセテート・ジイソプロピレート、アルミニウムsec-ブチレート、チタンイソプロポキシド、チタンテトライソプロポキシド(チタン(IV)イソプロピレート)が好ましく、ホウ酸トリイソプロピル、アルミニウムエチルアセトアセテート・ジイソプロピレート、チタンテトライソプロポキシド(チタン(IV)イソプロピレート)がより好ましい。上記金属化合物は、合成してもまたは市販品を使用してもよい。 Of these, from the viewpoint of VUV light transmission, etc., triisopropyl borate, aluminum ethyl acetoacetate diisopropylate, aluminum sec-butyrate, titanium isopropoxide, titanium tetraisopropoxide (titanium (IV) isopropylate) ) Are preferred, and triisopropyl borate, aluminum ethyl acetoacetate diisopropylate, and titanium tetraisopropoxide (titanium (IV) isopropylate) are more preferred. The metal compound may be synthesized or a commercially available product may be used.
 <無機バリア層>
 本発明のガスバリア性フィルムは、前記樹脂基材と前記バリア層との間に、化学気相成長(CVD)法により形成された無機バリア層をさらに含むことが好ましい。無機バリア層を設けることによって、樹脂基材側からのバリア層への水分の侵入を抑制・防止できるため、ガスバリア性フィルム全体のガスバリア性能がより向上する。また、バリア層中のケイ素化合物前駆体の改質(酸化)反応を低湿度条件下で緩やかに(より遅い速度で)進行させうる。このため、ガスバリア性フィルムの柔軟性および耐屈曲性を向上することもできる。
<Inorganic barrier layer>
The gas barrier film of the present invention preferably further includes an inorganic barrier layer formed by a chemical vapor deposition (CVD) method between the resin base material and the barrier layer. By providing the inorganic barrier layer, it is possible to suppress / prevent moisture from entering the barrier layer from the resin substrate side, so that the gas barrier performance of the entire gas barrier film is further improved. Also, the modification (oxidation) reaction of the silicon compound precursor in the barrier layer can proceed slowly (at a slower rate) under low humidity conditions. For this reason, the softness | flexibility and bending resistance of a gas barrier film can also be improved.
 無機バリア層は無機化合物を含むことで、高い緻密性を有し、さらにガスバリア性を有する。無機バリア層のガスバリア性は、基材上に無機バリア層を形成させた積層体で算出した際、水蒸気透過度(WVTR)が0.1g/(m・day)以下であることが好ましく、0.01g/(m・day)以下であることがより好ましい。 By including an inorganic compound, the inorganic barrier layer has high density and further has gas barrier properties. When the gas barrier property of the inorganic barrier layer is calculated with a laminate in which the inorganic barrier layer is formed on the substrate, the water vapor permeability (WVTR) is preferably 0.1 g / (m 2 · day) or less, More preferably, it is 0.01 g / (m 2 · day) or less.
 無機バリア層は、無機化合物を含む。ここで、無機化合物としては、特に限定されないが、例えば、金属酸化物、金属窒化物、金属炭化物、金属酸窒化物または金属酸炭化物が挙げられる。中でも、ガスバリア性能の点で、Si、Al、In、Sn、Zn、Ti、Cu、CeおよびTaから選ばれる1種以上の金属を含む、酸化物、窒化物、炭化物、酸窒化物または酸炭化物などを好ましく用いることができ、Si、Al、In、Sn、ZnおよびTiから選ばれる金属の酸化物、窒化物または酸窒化物がより好ましく、特にSiおよびAlの少なくとも1種の、酸化物、窒化物または酸窒化物が好ましい。好適な無機化合物として、具体的には、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素、酸炭化ケイ素、酸化アルミニウム、酸化チタン、またはアルミニウムシリケートなどの複合体が挙げられる。副次的な成分として他の元素を含有してもよい。 The inorganic barrier layer contains an inorganic compound. Here, the inorganic compound is not particularly limited, and examples thereof include metal oxides, metal nitrides, metal carbides, metal oxynitrides, and metal oxycarbides. Among these, oxides, nitrides, carbides, oxynitrides or oxycarbides containing one or more metals selected from Si, Al, In, Sn, Zn, Ti, Cu, Ce and Ta in terms of gas barrier performance Are preferably used, and an oxide, nitride or oxynitride of a metal selected from Si, Al, In, Sn, Zn and Ti is more preferable, and in particular, an oxide of at least one of Si and Al, Nitride or oxynitride is preferred. Specific examples of suitable inorganic compounds include composites such as silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, silicon oxycarbide, aluminum oxide, titanium oxide, or aluminum silicate. You may contain another element as a secondary component.
 無機バリア層に含まれる無機化合物の含有量は特に限定されないが、無機バリア層中、50質量%以上であることが好ましく、80質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、98質量%以上であることが特に好ましく、100質量%である(すなわち、無機バリア層は無機化合物からなる)ことが最も好ましい。 The content of the inorganic compound contained in the inorganic barrier layer is not particularly limited, but is preferably 50% by mass or more, more preferably 80% by mass or more, and 95% by mass or more in the inorganic barrier layer. Is more preferably 98% by mass or more, and most preferably 100% by mass (that is, the inorganic barrier layer is made of an inorganic compound).
 無機バリア層の1層当たりの膜厚は、20~3000nmであることが好ましく、50~2500nmであることがより好ましく、30~1000nmであることが特に好ましい。このような膜厚であれば、ガスバリア性フィルムは、優れたガスバリア性および屈曲時のクラック発生抑制/防止効果を発揮できる。なお、上記のプラズマCVD法により形成される無機バリア層が2層以上から構成される場合には、各無機バリア層が上記したような膜厚を有することが好ましい。 The film thickness per layer of the inorganic barrier layer is preferably 20 to 3000 nm, more preferably 50 to 2500 nm, and particularly preferably 30 to 1000 nm. With such a film thickness, the gas barrier film can exhibit excellent gas barrier properties and the effect of suppressing / preventing cracking during bending. In addition, when the inorganic barrier layer formed by said plasma CVD method is comprised from 2 or more layers, it is preferable that each inorganic barrier layer has a film thickness as mentioned above.
 無機バリア層は、樹脂基材表面に形成される必要はなく、樹脂基材との間に下地層(平滑層、プライマー層)、アンカーコート層(アンカー層)、保護層、吸湿層や帯電防止層の機能化層などが設けられてもよい。 The inorganic barrier layer does not need to be formed on the surface of the resin base material. The base layer (smooth layer, primer layer), anchor coat layer (anchor layer), protective layer, hygroscopic layer and antistatic layer are not required between the resin base material. A functional layer or the like of the layer may be provided.
 無機バリア層の形成方法は、化学気相成長法(CVD法)に制限されない。物理気相成長法(PVD法)などの真空成膜法、または無機化合物を含む液、好ましくはケイ素化合物を含有する液を塗布して形成される塗膜を改質処理して形成する方法(以下、単に塗布法とも称する)などを用いることができる。これらのうち、物理気相成長法または化学気相成長法がより好ましく、化学気相成長法が特に好ましい。 The formation method of the inorganic barrier layer is not limited to the chemical vapor deposition method (CVD method). A vacuum film-forming method such as a physical vapor deposition method (PVD method) or a method of forming a film by modifying a coating film formed by applying a liquid containing an inorganic compound, preferably a liquid containing a silicon compound ( Hereinafter, it is also simply referred to as a coating method). Of these, physical vapor deposition or chemical vapor deposition is more preferred, and chemical vapor deposition is particularly preferred.
 (平滑層(下地層、プライマー層))
 本発明のガスバリア性フィルムにおいては、基材とバリア層との間に、平滑層を有してもよい。本発明に用いられる平滑層は突起等が存在する透明樹脂フィルム支持体の粗面を平坦化し、あるいは、透明樹脂フィルム支持体に存在する突起により透明無機化合物層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。平滑層の構成材料、形成方法、表面粗さ、膜厚等は、特開2013-52561号公報の段落「0233」~「0248」に開示される材料、方法等が適宜採用される。
(Smooth layer (underlayer, primer layer))
The gas barrier film of the present invention may have a smooth layer between the substrate and the barrier layer. The smooth layer used in the present invention flattens the rough surface of the transparent resin film support with protrusions or the like, or fills the irregularities and pinholes generated in the transparent inorganic compound layer with the protrusions present on the transparent resin film support. Provided for flattening. The materials, methods, etc. disclosed in paragraphs “0233” to “0248” of JP2013-52561A are appropriately employed as the constituent material, forming method, surface roughness, film thickness, etc. of the smooth layer.
 (アンカーコート層(アンカー層))
 本発明に係る基材の表面には、接着性(密着性)の向上を目的として、アンカーコート層(アンカー層)を易接着層として形成してもよい。このアンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、およびアルキルチタネート等を、1種または2種以上併せて使用することができる。上記アンカーコート剤は、市販品を使用してもよい。具体的には、シロキサン系UV硬化型ポリマー溶液(信越化学工業株式会社製、「X-12-2400」の3%イソプロピルアルコール溶液)、UV硬化型有機/無機ハイブリッドハードコート材(JSR株式会社製OPSTARZ7501)等を用いることができる。
(Anchor coat layer (anchor layer))
On the surface of the substrate according to the present invention, an anchor coat layer (anchor layer) may be formed as an easy adhesion layer for the purpose of improving adhesiveness (adhesion). Examples of the anchor coating agent used in this anchor coat layer include polyester resin, isocyanate resin, urethane resin, acrylic resin, ethylene vinyl alcohol resin, vinyl modified resin, epoxy resin, modified styrene resin, modified silicon resin, and alkyl titanate. One type or two or more types can be used in combination. A commercially available product may be used as the anchor coating agent. Specifically, siloxane-based UV curable polymer solution (manufactured by Shin-Etsu Chemical Co., Ltd., 3% isopropyl alcohol solution of “X-12-2400”), UV curable organic / inorganic hybrid hard coat material (manufactured by JSR Corporation) OPSTARZ7501) or the like can be used.
 これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により基材上にコーティングし、溶媒、希釈剤等を乾燥除去することによりコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1~5g/m(乾燥状態)程度が好ましい。なお、市販の易接着層付き基材を用いてもよい。 Conventionally known additives can be added to these anchor coating agents. Then, the above-mentioned anchor coating agent is coated on a substrate by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and is coated by drying and removing the solvent, diluent, etc. Can do. The application amount of the anchor coating agent is preferably about 0.1 to 5 g / m 2 (dry state). A commercially available base material with an easy-adhesion layer may be used.
 または、アンカーコート層は、物理蒸着法または化学蒸着法といった気相法により形成することもできる。例えば、特開2008-142941号公報に記載のように、接着性等を改善する目的で酸化ケイ素を主体とした無機膜を形成することもできる。 Alternatively, the anchor coat layer can be formed by a vapor phase method such as physical vapor deposition or chemical vapor deposition. For example, as described in JP-A-2008-142941, an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like.
 また、アンカーコート層の厚さは、特に制限されないが、0.5~10.0μm程度が好ましい。 The thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10.0 μm.
 (ブリードアウト防止層)
 本発明のガスバリア性フィルムは、上記平滑層を設けた面とは反対側の基材面にブリードアウト防止層を有してもよい。
(Bleed-out prevention layer)
The gas barrier film of the present invention may have a bleed-out preventing layer on the substrate surface opposite to the surface on which the smooth layer is provided.
 ブリードアウト防止層は、平滑層を有するフィルムを加熱した際に、平滑層を有するフィルム中から未反応のオリゴマー等が表面へ移行して、接触する面を汚染してしまう現象を抑制する目的で、平滑層を有する基材の反対面に設けられる。ブリードアウト防止層は、この機能を有していれば基本的に平滑層と同じ構成をとっても構わない。 The bleed-out prevention layer is for the purpose of suppressing the phenomenon that, when a film having a smooth layer is heated, unreacted oligomers etc. migrate from the film having the smooth layer to the surface and contaminate the contact surface. , Provided on the opposite surface of the substrate having a smooth layer. The bleed-out prevention layer may basically have the same configuration as the smooth layer as long as it has this function.
 ブリードアウト防止層の構成材料、形成方法、膜厚等は、特開2013-52561号公報の段落「0249」~「0262」に開示される材料、方法等が適宜採用される。 The material, method, and the like disclosed in paragraphs “0249” to “0262” of JP2013-52561A are appropriately employed as the constituent material, formation method, film thickness, and the like of the bleedout prevention layer.
 (中間層)
 本発明において、バリア層が2層以上積層している場合、各バリア層の間、またはバリア層と基材との間に、中間層を形成してもよい。本発明において、中間層を形成する方法として、ポリシロキサン改質層を形成する方法を適用することができる。この方法は、ポリシロキサンを含有した塗布液を湿式塗布法によりバリア層上に塗布して乾燥した後、その乾燥した塗膜に真空紫外光を照射することによってポリシロキサン改質層とした中間層を形成する方法である。
(Middle layer)
In the present invention, when two or more barrier layers are laminated, an intermediate layer may be formed between each barrier layer or between the barrier layer and the substrate. In the present invention, a method of forming a polysiloxane modified layer can be applied as a method of forming the intermediate layer. In this method, a coating solution containing polysiloxane is applied onto the barrier layer by a wet coating method and dried, and then the dried coating film is irradiated with vacuum ultraviolet light to form a polysiloxane modified layer. It is a method of forming.
 本発明における中間層を形成するために用いる塗布液は、主には、ポリシロキサン及び有機溶媒を含有する。中間層の構成材料、形成方法などの具体的な形態は、例えば、特開2014-046272号公報の段落「0161」~「0185」に開示される材料、方法などが適宜採用されうる。 The coating solution used for forming the intermediate layer in the present invention mainly contains polysiloxane and an organic solvent. As specific forms of the constituent material and forming method of the intermediate layer, for example, the materials and methods disclosed in paragraphs “0161” to “0185” of JP-A-2014-046272 can be appropriately employed.
 (保護層)
 本発明に係るガスバリア性フィルムは、バリア層の上部に、有機化合物を含む保護層を設けてもよい。保護層に用いられる有機化合物としては、有機モノマー、オリゴマー、ポリマー等の有機樹脂、有機基を有するシロキサンやシルセスキオキサンのモノマー、オリゴマー、ポリマー等を用いた有機無機複合樹脂層を好ましく用いることができる。
(Protective layer)
In the gas barrier film according to the present invention, a protective layer containing an organic compound may be provided on the barrier layer. As the organic compound used in the protective layer, an organic resin such as an organic monomer, oligomer or polymer, or an organic-inorganic composite resin layer using a siloxane or silsesquioxane monomer, oligomer or polymer having an organic group is preferably used. Can do.
 [ガスバリア性フィルムの製造方法]
 本発明のガスバリア性フィルムの製造方法は、樹脂基材上に、ケイ素化合物前駆体および溶解度パラメーターが15.5~20.0の溶媒を含む第1バリア層前駆体液と、金属化合物および溶解度パラメーターが26.0~32.0の溶媒を含む第2バリア層前駆体液と、を塗布することを含む成膜工程を有する。本発明においては、溶媒(溶解度パラメーター)、塗布方法、塗膜の厚さなどを適切に制御することによって、上記のTh1およびTh2が上記の式(1)および(2)の関係を満たすバリア層を有する本発明のガスバリア性フィルムを達成できる。
[Method for producing gas barrier film]
In the method for producing a gas barrier film of the present invention, a first barrier layer precursor liquid containing a silicon compound precursor and a solvent having a solubility parameter of 15.5 to 20.0 on a resin substrate, a metal compound and a solubility parameter are provided. A film forming process including applying a second barrier layer precursor liquid containing a solvent of 26.0 to 32.0. In the present invention, by appropriately controlling the solvent (solubility parameter), the coating method, the thickness of the coating film, etc., the above-mentioned Th1 and Th2 satisfy the relationship of the above formulas (1) and (2) The gas barrier film of the present invention having the following can be achieved.
 一実施形態として、第1バリア層前駆体液を塗布し、第1バリア層を形成した後に、第2バリア層前駆体液を塗布し、第2バリア層を形成する、逐次塗布を実施してもよい。すなわち、成膜工程が、樹脂基材上に、ケイ素化合物前駆体および溶解度パラメーターが15.5~20.0の溶媒を含む第1バリア層前駆体液を塗布することを含む、第1バリア層を形成する第1成膜工程と、金属化合物および溶解度パラメーターが26.0~32.0の溶媒を含む第2バリア層前駆体液を塗布することを含む、第2バリア層を形成する第2成膜工程と、を有していてもよい。また、別の実施形態として、成膜工程は、第1バリア層前駆体液と第2バリア層前駆体液とを同時重層塗布方式により塗布し、第1バリア層と第2バリア層とを同時に形成してもよい。 As an embodiment, after the first barrier layer precursor liquid is applied and the first barrier layer is formed, the second barrier layer precursor liquid is applied and the second barrier layer is formed. . That is, the film forming step includes applying a first barrier layer precursor liquid including a silicon compound precursor and a solvent having a solubility parameter of 15.5 to 20.0 on a resin substrate. A first film-forming step to be formed, and a second film-forming to form a second barrier layer, comprising applying a second barrier layer precursor liquid containing a metal compound and a solvent having a solubility parameter of 26.0 to 32.0 You may have a process. As another embodiment, in the film forming step, the first barrier layer precursor liquid and the second barrier layer precursor liquid are applied by a simultaneous multilayer coating method, and the first barrier layer and the second barrier layer are formed simultaneously. May be.
 溶解度パラメーター(SP値)とは、ヒルデブラント(Hildebrand)によって導入された正則溶液論により定義された値であり、溶媒や有機化合物の溶解性や相溶性の指標として用いられる。2種類の溶媒の溶解度パラメーターが同じである場合には、それらの溶媒は混ざり合いやすく、溶解度パラメーターが互いに異なる場合には、それらの溶媒は混じりにくいと言える。溶解度パラメーターは、化学物質の構造や物理特性から公知の方法で求めることができる。 The solubility parameter (SP value) is a value defined by the regular solution theory introduced by Hildebrand, and is used as an indicator of the solubility and compatibility of solvents and organic compounds. When the solubility parameters of the two types of solvents are the same, the solvents are likely to be mixed, and when the solubility parameters are different from each other, the solvents are difficult to mix. The solubility parameter can be determined by a known method from the structure and physical properties of the chemical substance.
 ここで、第1バリア層とは、第1バリア層前駆体液を塗布して形成された塗布膜を称し、第2バリア層とは、第2バリア層前駆体液を塗布して形成された塗布膜をいう。第1バリア層と第2バリア層とは、改質時に界面でわずかに混合する。そのため、本発明のガスバリア性フィルムのバリア層は、第1バリア層に由来する主としてケイ素化合物を含む部分と、第2バリア層に由来する主として金属化合物を含む部分と、その間の第1バリア層と第2バリア層とが混合した部分とで構成される。 Here, the first barrier layer refers to a coating film formed by applying a first barrier layer precursor liquid, and the second barrier layer refers to a coating film formed by applying a second barrier layer precursor liquid. Say. The first barrier layer and the second barrier layer are slightly mixed at the interface during the modification. Therefore, the barrier layer of the gas barrier film of the present invention includes a part mainly containing a silicon compound derived from the first barrier layer, a part mainly containing a metal compound derived from the second barrier layer, and a first barrier layer therebetween. It is comprised with the part which the 2nd barrier layer mixed.
 上記式(1)および(2)が示すように、本発明のガスバリア性フィルムは、金属原子を多量に含む領域Aが所定の厚さで残存し、ケイ素化合物と金属原子とが混合した領域Bが、所定の関係を満たすより薄い膜厚で存在する。ケイ素化合物と金属原子とがなるべく混合していないことが好ましい。したがって、本発明の製造方法においては、ケイ素化合物前駆体を含む第1バリア層前駆体液と、金属化合物を含む第2バリア層前駆体液とが、互いに混合しにくい。すなわち、互いに溶解度パラメーターの異なる溶媒を、第1バリア層前駆体液と第2バリア層前駆体液とにそれぞれ使用する。より詳細には、第1バリア層前駆体液には、溶解度パラメーターが15.5~20.0の溶媒を使用し、第2バリア層前駆体液には、溶解度パラメーターが26.0~32.0の溶媒を使用する。かかる溶解度パラメーター範囲の溶媒をそれぞれ使用することにより、第2バリア層に由来する、金属原子を含む領域Aを所定の厚さで残存させることができ、第1バリア層と第2バリア層との混合領域を薄くすることができる。かかる金属化合物を含む層が存在することにより、改質時に低分子のケイ素化合物が揮発または飛散し、改質用ランプに付着することを防止できる。したがって、長尺体のガスバリア性フィルムを製造する際にも、ランプの照度低下が防止され、改質度合いに差異がなく、均質で優れたバリア性能のガスバリア性フィルムが提供される。 As shown in the above formulas (1) and (2), in the gas barrier film of the present invention, the region A containing a large amount of metal atoms remains in a predetermined thickness, and the region B in which the silicon compound and the metal atoms are mixed. However, it exists in a thinner film thickness that satisfies the predetermined relationship. It is preferable that the silicon compound and the metal atom are not mixed as much as possible. Therefore, in the production method of the present invention, the first barrier layer precursor liquid containing the silicon compound precursor and the second barrier layer precursor liquid containing the metal compound are difficult to mix with each other. That is, solvents having different solubility parameters are used for the first barrier layer precursor liquid and the second barrier layer precursor liquid, respectively. More specifically, a solvent having a solubility parameter of 15.5 to 20.0 is used for the first barrier layer precursor liquid, and a solubility parameter of 26.0 to 32.0 is used for the second barrier layer precursor liquid. Use a solvent. By using each of the solvents having the solubility parameter range, the region A containing the metal atoms derived from the second barrier layer can be left in a predetermined thickness, and the first barrier layer and the second barrier layer The mixing area can be made thinner. By the presence of the layer containing such a metal compound, it is possible to prevent the low-molecular silicon compound from being volatilized or scattered during the reforming and adhering to the reforming lamp. Therefore, even when producing a long gas barrier film, a reduction in lamp illuminance is prevented, there is no difference in the degree of modification, and a gas barrier film having a uniform and excellent barrier performance is provided.
 また、本発明によれば、第1バリア層前駆体液および第2バリア層前駆体液に、互いに異なる溶解度パラメーターの溶媒をそれぞれ使用することにより、同時重層塗布法を用いても、第1バリア層と第2バリア層とが所定量以上に混合することを防止できる。したがって、従来の、第1バリア層を改質する等した後に第2バリア層を形成する方法よりも、製造工程が簡単かつ短時間となり、生産性が向上する。逐次塗布法の場合にも、成膜毎の改質の必要がなく、乾燥も短時間で済むことからにより生産性向上の効果が得られる。 In addition, according to the present invention, the first barrier layer precursor liquid and the second barrier layer precursor liquid each use a solvent having different solubility parameters, so that the first barrier layer and the second barrier layer precursor liquid It can prevent mixing with a 2nd barrier layer more than predetermined amount. Therefore, the manufacturing process is simpler and shorter than the conventional method of forming the second barrier layer after modifying the first barrier layer, and the productivity is improved. Even in the case of the sequential coating method, there is no need for modification for each film formation, and drying can be completed in a short time, so that an effect of improving productivity can be obtained.
 さらに、第1バリア層前駆体液に含まれる溶媒の溶解度パラメーターと、第2バリア層前駆体液に含まれる溶媒の溶解度パラメーターとの差が、7.5~17.5であることがより好ましく、さらに好ましくは11~17.5である。溶解度パラメーターの差が7.5~17.5であると、本発明の所期の効果である、高温高湿下でのクラック発生防止、および、改質度合いの差異の防止による均質なバリア性能の向上、生産性の向上の効果がより高い。溶解度パラメーター差が11以上であれば、第1バリア層が確実に製膜され、溶解度パラメーター差が17.5以下であれば、第2バリア層が所定の厚さで確実に残存し、製膜される。特に、第1バリア層と第2バリア層とを同時重層塗布によって形成する場合は、溶解度パラメーターの差が11以上であれば、上記のTh1およびTh2が上記式(1)および(2)の関係を満たすバリア層をより効率的に得ることができる。 Further, the difference between the solubility parameter of the solvent contained in the first barrier layer precursor liquid and the solubility parameter of the solvent contained in the second barrier layer precursor liquid is more preferably 7.5 to 17.5, It is preferably 11 to 17.5. When the difference in solubility parameter is 7.5 to 17.5, the desired effect of the present invention is to prevent the generation of cracks under high temperature and high humidity, and to achieve uniform barrier performance by preventing the difference in the degree of modification. The effect of improving productivity and productivity is higher. If the solubility parameter difference is 11 or more, the first barrier layer is reliably formed, and if the solubility parameter difference is 17.5 or less, the second barrier layer reliably remains at a predetermined thickness, and the film is formed. Is done. In particular, when the first barrier layer and the second barrier layer are formed by simultaneous multilayer coating, if the difference in solubility parameter is 11 or more, the above Th1 and Th2 are related to the above formulas (1) and (2). A barrier layer that satisfies the above can be obtained more efficiently.
 <無機バリア層成膜工程>
 本発明のガスバリア性フィルムの製造方法は、好ましくは、成膜工程の前に、樹脂基材上に化学気相成長(CVD)法により無機バリア層を形成する、無機バリア層成膜工程をさらに有する。無機バリア層の形成方法は、特に制限されないが、物理気相成長法(PVD法)、化学気相成長法(CVD法)などの真空成膜法、または無機化合物を含む液、好ましくはケイ素化合物を含有する液を塗布して形成される塗膜を改質処理して形成する方法(以下、単に塗布法とも称する)などが挙げられる。これらのうち、物理気相成長法または化学気相成長法がより好ましく、化学気相成長法が特に好ましい。すなわち、無機バリア層は、化学気相成長(CVD)法によって形成されることが好ましい。以下、真空成膜法について説明する。
<Inorganic barrier layer deposition process>
The method for producing a gas barrier film of the present invention preferably further includes an inorganic barrier layer film forming step of forming an inorganic barrier layer on the resin substrate by a chemical vapor deposition (CVD) method before the film forming step. Have. The method for forming the inorganic barrier layer is not particularly limited, but a vacuum film formation method such as physical vapor deposition (PVD method) or chemical vapor deposition (CVD), or a liquid containing an inorganic compound, preferably a silicon compound And a method of reforming and forming a coating film formed by applying a liquid containing a liquid (hereinafter also simply referred to as a coating method). Of these, physical vapor deposition or chemical vapor deposition is more preferred, and chemical vapor deposition is particularly preferred. That is, the inorganic barrier layer is preferably formed by a chemical vapor deposition (CVD) method. Hereinafter, the vacuum film forming method will be described.
 (真空成膜法)
 物理気相成長法(Physical Vapor Deposition、PVD法)は、気相中で物質の表面に物理的手法により、目的とする物質、例えば、炭素膜等の薄膜を堆積する方法であり、例えば、スパッタ法(DCスパッタ法、RFスパッタ法、イオンビームスパッタ法、およびマグネトロンスパッタ法等)、真空蒸着法、イオンプレーティング法などが挙げられる。
(Vacuum deposition method)
The physical vapor deposition method (PVD method) is a method of depositing a target material, for example, a thin film such as a carbon film, on the surface of the material in a gas phase by a physical method. Examples thereof include a DC sputtering method, an RF sputtering method, an ion beam sputtering method, and a magnetron sputtering method, a vacuum deposition method, and an ion plating method.
 化学気相成長法(Chemical Vapor Deposition、CVD法)は、基材上に、目的とする薄膜の成分を含む原料ガスを供給し、基材表面または気相での化学反応により膜を堆積する方法である。また、化学反応を活性化する目的で、プラズマなどを発生させる方法などがあり、熱CVD法、触媒化学気相成長法、光CVD法、真空プラズマCVD法、大気圧プラズマCVD法など公知のCVD方式等が挙げられる。特に限定されるものではないが、製膜速度や処理面積の観点から、プラズマCVD法を適用することが好ましい。 The chemical vapor deposition method (Chemical Vapor Deposition, CVD method) is a method of depositing a film by supplying a source gas containing a target thin film component onto a substrate and performing a chemical reaction on the surface of the substrate or in the gas phase. It is. In addition, for the purpose of activating the chemical reaction, there is a method of generating plasma or the like. Known CVD such as thermal CVD method, catalytic chemical vapor deposition method, photo CVD method, vacuum plasma CVD method, atmospheric pressure plasma CVD method, etc. The method etc. are mentioned. Although not particularly limited, it is preferable to apply the plasma CVD method from the viewpoint of film forming speed and processing area.
 真空プラズマCVD法、大気圧または大気圧近傍の圧力下でのプラズマCVD法により得られる無機バリア層は、原材料(原料ともいう)である金属化合物、分解ガス、分解温度、投入電力などの条件を選ぶことで、目的の化合物を製造できるため好ましい。 The inorganic barrier layer obtained by the vacuum plasma CVD method, or the plasma CVD method under atmospheric pressure or a pressure near atmospheric pressure, has conditions such as the metal compound (decomposition material), decomposition gas, decomposition temperature, and input power as raw materials. This is preferable because the desired compound can be produced.
 例えば、ケイ素化合物を原料化合物として用い、分解ガスに酸素を用いれば、ケイ素酸化物が生成する。これはプラズマ空間内では非常に活性な荷電粒子・活性ラジカルが高密度で存在するため、プラズマ空間内では多段階の化学反応が非常に高速に促進され、プラズマ空間内に存在する元素は熱力学的に安定な化合物へと非常な短時間で変換されるためである。 For example, if a silicon compound is used as a raw material compound and oxygen is used as a decomposition gas, silicon oxide is generated. This is because highly active charged particles and active radicals exist in the plasma space at a high density, so that multistage chemical reactions are accelerated at high speed in the plasma space, and the elements present in the plasma space are thermodynamic. This is because it is converted into an extremely stable compound in a very short time.
 原料化合物としては、ケイ素化合物、チタン化合物、およびアルミニウム化合物を用いることが好ましい。これら原料化合物は、単独でもまたは2種以上組み合わせても用いることができる。 As a raw material compound, it is preferable to use a silicon compound, a titanium compound, and an aluminum compound. These raw material compounds can be used alone or in combination of two or more.
 これらのうち、ケイ素化合物として、シラン、テトラメトキシシラン、テトラエトキシシラン、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトラt-ブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、フェニルトリエトキシシラン、(3,3,3-トリフルオロプロピル)トリメトキシシラン、ヘキサメチルジシロキサン(HMDSO)、ビス(ジメチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)メチルビニルシラン、ビス(エチルアミノ)ジメチルシラン、N,O-ビス(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)カルボジイミド、ジエチルアミノトリメチルシラン、ジメチルアミノジメチルシラン、ヘキサメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、オクタメチルシクロテトラシラザン、テトラキスジメチルアミノシラン、テトライソシアナートシラン、テトラメチルジシラザン、トリス(ジメチルアミノ)シラン、トリエトキシフルオロシラン、アリルジメチルシラン、アリルトリメチルシラン、ベンジルトリメチルシラン、ビス(トリメチルシリル)アセチレン、1,4-ビストリメチルシリル-1,3-ブタジイン、ジ-t-ブチルシラン、1,3-ジシラブタン、ビス(トリメチルシリル)メタン、シクロペンタジエニルトリメチルシラン、フェニルジメチルシラン、フェニルトリメチルシラン、プロパルギルトリメチルシラン、テトラメチルシラン、トリメチルシリルアセチレン、1-(トリメチルシリル)-1-プロピン、トリス(トリメチルシリル)メタン、トリス(トリメチルシリル)シラン、ビニルトリメチルシラン、ヘキサメチルジシラン、オクタメチルシクロテトラシロキサン、テトラメチルシクロテトラシロキサン、ヘキサメチルシクロテトラシロキサン、Mシリケート51等が挙げられる。また、後述の好適な形態である(i)~(iii)の要件を満たすバリア層の形成の際に用いられる原料化合物であるケイ素化合物が挙げられる。 Among these, as silicon compounds, silane, tetramethoxysilane, tetraethoxysilane, tetra n-propoxysilane, tetraisopropoxysilane, tetra n-butoxysilane, tetra t-butoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, Diethyldimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, phenyltriethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane, hexamethyldisiloxane (HMDSO), bis (dimethylamino) ) Dimethylsilane, bis (dimethylamino) methylvinylsilane, bis (ethylamino) dimethylsilane, N, O-bis (trimethylsilyl) acetamide, bis (trimethylsilyl) carbonate Bodiimide, diethylaminotrimethylsilane, dimethylaminodimethylsilane, hexamethyldisilazane, hexamethylcyclotrisilazane, heptamethyldisilazane, nonamethyltrisilazane, octamethylcyclotetrasilazane, tetrakisdimethylaminosilane, tetraisocyanatosilane, tetramethyldi Silazane, tris (dimethylamino) silane, triethoxyfluorosilane, allyldimethylsilane, allyltrimethylsilane, benzyltrimethylsilane, bis (trimethylsilyl) acetylene, 1,4-bistrimethylsilyl-1,3-butadiyne, di-t-butylsilane 1,3-disilabutane, bis (trimethylsilyl) methane, cyclopentadienyltrimethylsilane, phenyldimethylsilane, phenyltri Tylsilane, propargyltrimethylsilane, tetramethylsilane, trimethylsilylacetylene, 1- (trimethylsilyl) -1-propyne, tris (trimethylsilyl) methane, tris (trimethylsilyl) silane, vinyltrimethylsilane, hexamethyldisilane, octamethylcyclotetrasiloxane, tetra Examples include methylcyclotetrasiloxane, hexamethylcyclotetrasiloxane, and M silicate 51. In addition, a silicon compound that is a raw material compound used in the formation of a barrier layer that satisfies the requirements (i) to (iii), which are preferred forms described later, can be used.
 チタン化合物としては、例えば、チタンメトキシド、チタンエトキシド、チタンイソプロポキシド、チタンテトライソプロポキシド、チタンn-ブトキシド、チタンジイソプロポキシド(ビス-2,4-ペンタンジオネート)、チタンジイソプロポキシド(ビス-2,4-エチルアセトアセテート)、チタンジ-n-ブトキシド(ビス-2,4-ペンタンジオネート)、チタンアセチルアセトネート、ブチルチタネートダイマー等が挙げられる。 Examples of titanium compounds include titanium methoxide, titanium ethoxide, titanium isopropoxide, titanium tetraisopropoxide, titanium n-butoxide, titanium diisopropoxide (bis-2,4-pentanedionate), titanium dioxide. Examples thereof include isopropoxide (bis-2,4-ethylacetoacetate), titanium di-n-butoxide (bis-2,4-pentanedionate), titanium acetylacetonate, and butyl titanate dimer.
 アルミニウム化合物としては、アルミニウムエトキシド、アルミニウムトリイソプロポキシド、アルミニウムイソプロポキシド、アルミニウムn-ブトキシド、アルミニウムs-ブトキシド、アルミニウムt-ブトキシド、アルミニウムアセチルアセトナート、トリエチルジアルミニウムトリ-s-ブトキシド等が挙げられる。 Examples of the aluminum compound include aluminum ethoxide, aluminum triisopropoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum s-butoxide, aluminum t-butoxide, aluminum acetylacetonate, triethyldialuminum tri-s-butoxide, and the like. Can be mentioned.
 また、これらの金属を含む原料ガスを分解して無機化合物を得るための分解ガスとしては、水素ガス、メタンガス、アセチレンガス、一酸化炭素ガス、二酸化炭素ガス、窒素ガス、アンモニアガス、亜酸化窒素ガス、酸化窒素ガス、二酸化窒素ガス、酸素ガス、水蒸気などが挙げられる。また、上記分解ガスを、アルゴンガス、ヘリウムガスなどの不活性ガスと混合してもよい。 In addition, as a decomposition gas for decomposing a raw material gas containing these metals to obtain an inorganic compound, hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, nitrogen gas, ammonia gas, nitrous oxide Examples include gas, nitrogen oxide gas, nitrogen dioxide gas, oxygen gas, and water vapor. Further, the decomposition gas may be mixed with an inert gas such as argon gas or helium gas.
 原料化合物を含む原料ガスと、分解ガスを適宜選択することで所望の無機バリア層を得ることができる。CVD法により形成される無機バリア層は、酸化物、窒化物、酸窒化物または酸炭化物を含む層であることが好ましい。 A desired inorganic barrier layer can be obtained by appropriately selecting a source gas containing a source compound and a decomposition gas. The inorganic barrier layer formed by the CVD method is preferably a layer containing oxide, nitride, oxynitride, or oxycarbide.
 以下、CVD法のうち、好適な形態である真空プラズマCVD法について具体的に説明する。 Hereinafter, the vacuum plasma CVD method, which is a preferred form among the CVD methods, will be described in detail.
 図3は、本発明に係る無機バリア層の形成に用いられる真空プラズマCVD装置の一例を示す模式図である。 FIG. 3 is a schematic view showing an example of a vacuum plasma CVD apparatus used for forming the inorganic barrier layer according to the present invention.
 図3において、真空プラズマCVD装置101は、真空槽102を有しており、真空槽102の内部の底面側には、サセプタ105が配置されている。成膜対象である基材110はサセプタ105上に配置される。また、真空槽102の内部の天井側には、サセプタ105と対向する位置にカソード電極103が配置されている。真空槽102の外部には、熱媒体循環系106と、真空排気系107と、ガス導入系108と、高周波電源109が配置されている。熱媒体循環系106内には熱媒体が配置されている。熱媒体循環系106には、熱媒体を移動させるポンプと、熱媒体を加熱する加熱装置と、冷却する冷却装置と、熱媒体の温度を測定する温度センサと、熱媒体の設定温度を記憶する記憶装置とを有する加熱冷却装置160が設けられている。 3, the vacuum plasma CVD apparatus 101 has a vacuum chamber 102, and a susceptor 105 is disposed on the bottom surface inside the vacuum chamber 102. A base material 110 to be deposited is placed on the susceptor 105. Further, a cathode electrode 103 is disposed on the ceiling side inside the vacuum chamber 102 at a position facing the susceptor 105. A heat medium circulation system 106, a vacuum exhaust system 107, a gas introduction system 108, and a high-frequency power source 109 are disposed outside the vacuum chamber 102. A heat medium is disposed in the heat medium circulation system 106. The heat medium circulation system 106 stores a pump for moving the heat medium, a heating device for heating the heat medium, a cooling device for cooling, a temperature sensor for measuring the temperature of the heat medium, and a set temperature of the heat medium. A heating / cooling device 160 having a storage device is provided.
 また、本発明に係るCVD法により形成される無機バリア層の好適な一実施形態として、無機バリア層は構成元素に炭素、ケイ素、および酸素を含むことが好ましい。より好適な形態は、以下の(i)~(iii)の要件を満たす層である。 As a preferred embodiment of the inorganic barrier layer formed by the CVD method according to the present invention, the inorganic barrier layer preferably contains carbon, silicon, and oxygen as constituent elements. A more preferable form is a layer that satisfies the following requirements (i) to (iii).
 (i)無機バリア層の膜厚方向における前記無機バリア層表面からの距離(L)と、ケイ素原子、酸素原子、および炭素原子の合計量に対するケイ素原子の量の比率(ケイ素の原子比)との関係を示すケイ素分布曲線、前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する酸素原子の量の比率(酸素の原子比)との関係を示す酸素分布曲線、ならびに前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子の量の比率(炭素の原子比)との関係を示す炭素分布曲線において、前記無機バリア層の膜厚の90%以上(上限:100%)の領域で、(酸素の原子比)、(ケイ素の原子比)、(炭素の原子比)の順で多い(原子比がO>Si>C);
 (ii)前記炭素分布曲線が少なくとも2つの極値を有する;
 (iii)前記炭素分布曲線における炭素の原子比の最大値および最小値の差の絶対値(以下、単に「Cmax-Cmin差」とも称する)が3at%以上である。
(I) the distance (L) from the surface of the inorganic barrier layer in the film thickness direction of the inorganic barrier layer, and the ratio of the amount of silicon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms (atom ratio of silicon) The silicon distribution curve showing the relationship of L, the oxygen distribution curve showing the relationship between the L and the ratio of the amount of oxygen atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms (atomic ratio of oxygen), and the L and silicon In a carbon distribution curve showing a relationship with the ratio of the amount of carbon atoms to the total amount of atoms, oxygen atoms, and carbon atoms (carbon atomic ratio), 90% or more of the film thickness of the inorganic barrier layer (upper limit: 100% ) In the order of (atomic ratio of oxygen), (atomic ratio of silicon), (atomic ratio of carbon) (atomic ratio is O>Si>C);
(Ii) the carbon distribution curve has at least two extreme values;
(Iii) The absolute value of the difference between the maximum value and the minimum value of the carbon atomic ratio in the carbon distribution curve (hereinafter also simply referred to as “C max −C min difference”) is 3 at% or more.
 以下、(i)~(iii)の要件について説明する。 Hereinafter, the requirements (i) to (iii) will be described.
 該無機バリア層は、(i)前記無機バリア層の膜厚方向における前記無機バリア層表面からの距離(L)と、ケイ素原子、酸素原子、および炭素原子の合計量に対するケイ素原子の量の比率(ケイ素の原子比)との関係を示すケイ素分布曲線、前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する酸素原子の量の比率(酸素の原子比)との関係を示す酸素分布曲線、ならびに前記Lとケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子の量の比率(炭素の原子比)との関係を示す炭素分布曲線において、前記無機バリア層の膜厚の90%以上(上限:100%)の領域で、(酸素の原子比)、(ケイ素の原子比)、(炭素の原子比)の順で多い(原子比がO>Si>C)ことが好ましい。前記の条件(i)を満たすと、得られるガスバリア性フィルムのガスバリア性や屈曲性が向上しうる。ここで、上記炭素分布曲線において、上記(酸素の原子比)、(ケイ素の原子比)および(炭素の原子比)の関係は、無機バリア層の膜厚の、少なくとも90%以上(上限:100%)の領域で満たされることがより好ましく、少なくとも93%以上(上限:100%)の領域で満たされることがより好ましい。ここで、該無機バリア層の膜厚の少なくとも90%以上とは、無機バリア層中で連続していなくてもよく、単に90%以上の部分で上記した関係を満たしていればよい。 The inorganic barrier layer is (i) the distance (L) from the surface of the inorganic barrier layer in the film thickness direction of the inorganic barrier layer, and the ratio of the amount of silicon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms. The silicon distribution curve showing the relationship with (atom ratio of silicon), the oxygen distribution showing the relationship between the L and the ratio of the amount of oxygen atoms to the total amount of silicon atoms, oxygen atoms and carbon atoms (oxygen atomic ratio) In the carbon distribution curve showing the relationship between the curve and the ratio of the amount of carbon atoms to the total amount of L and silicon atoms, oxygen atoms, and carbon atoms (the atomic ratio of carbon), the thickness of the inorganic barrier layer is 90%. % (Upper limit: 100%) in the order of (atomic ratio of oxygen), (atomic ratio of silicon), and (atomic ratio of carbon) (atomic ratio is preferably O> Si> C). When the above condition (i) is satisfied, the gas barrier property and flexibility of the obtained gas barrier film can be improved. Here, in the carbon distribution curve, the relationship of the above (atomic ratio of oxygen), (atomic ratio of silicon) and (atomic ratio of carbon) is at least 90% or more of the film thickness of the inorganic barrier layer (upper limit: 100 %), More preferably at least 93% or more (upper limit: 100%). Here, at least 90% or more of the film thickness of the inorganic barrier layer does not have to be continuous in the inorganic barrier layer, and only needs to satisfy the above-described relationship at 90% or more.
 また、該無機バリア層は、(ii)前記炭素分布曲線が少なくとも2つの極値を有することが好ましい。該無機バリア層は、前記炭素分布曲線が少なくとも3つの極値を有することがより好ましく、少なくとも4つの極値を有することがさらに好ましいが、5つ以上有していてもよい。前記炭素分布曲線の極値が2つ以上であれば、得られるガスバリア性フィルムを屈曲させた場合におけるガスバリア性が向上しうる。なお、炭素分布曲線の極値の上限は、特に制限されないが、例えば、好ましくは30以下、より好ましくは25以下であるが、極値の数は、無機バリア層の膜厚にも起因するため、一概に規定することはできない。 In the inorganic barrier layer, it is preferable that (ii) the carbon distribution curve has at least two extreme values. The inorganic barrier layer preferably has at least three extreme values in the carbon distribution curve, more preferably has at least four extreme values, but may have five or more extreme values. When the extreme value of the carbon distribution curve is two or more, the gas barrier property when the obtained gas barrier film is bent can be improved. Although the upper limit of the extreme value of the carbon distribution curve is not particularly limited, for example, it is preferably 30 or less, more preferably 25 or less, but the number of extreme values is also caused by the film thickness of the inorganic barrier layer. It cannot be stipulated in general.
 ここで、少なくとも3つの極値を有する場合においては、前記炭素分布曲線の有する1つの極値および該極値に隣接する極値における前記無機バリア層の膜厚方向における前記無機バリア層の表面からの距離(L)の差の絶対値(以下、単に「極値間の距離」とも称する)が、いずれも200nm以下であることが好ましく、100nm以下であることがより好ましく、75nm以下であることが特に好ましい。このような極値間の距離であれば、無機バリア層中に炭素原子比が多い部位(極大値)が適度な周期で存在するため、無機バリア層に適度な屈曲性を付与し、ガスバリア性フィルムの屈曲時のクラックの発生をより有効に抑制・防止できる。なお、本明細書において「極値」とは、前記無機バリア層の膜厚方向における前記無機バリア層の表面からの距離(L)に対する元素の原子比の極大値または極小値のことをいう。また、本明細書において「極大値」とは、無機バリア層の表面からの距離を変化させた場合に元素(酸素、ケイ素または炭素)の原子比の値が増加から減少に変わる点であって、かつその点の元素の原子比の値よりも、該点から無機バリア層の膜厚方向における無機バリア層の表面からの距離をさらに4~20nmの範囲で変化させた位置の元素の原子比の値が3at%以上減少する点のことをいう。すなわち、4~20nmの範囲で変化させた際に、いずれかの範囲で元素の原子比の値が3at%以上減少していればよい。同様にして、本明細書において「極小値」とは、無機バリア層の表面からの距離を変化させた場合に元素(酸素、ケイ素または炭素)の原子比の値が減少から増加に変わる点であり、かつその点の元素の原子比の値よりも、該点から無機バリア層の膜厚方向における無機バリア層の表面からの距離をさらに4~20nmの範囲で変化させた位置の元素の原子比の値が3at%以上増加する点のことをいう。すなわち、4~20nmの範囲で変化させた際に、いずれかの範囲で元素の原子比の値が3at%以上増加していればよい。ここで、少なくとも3つの極値を有する場合の、極値間の距離の下限は、極値間の距離が小さいほどガスバリア性フィルムの屈曲時のクラック発生抑制/防止の向上効果が高いため、特に制限されないが、無機バリア層の屈曲性、クラックの抑制/防止効果、熱膨張性などを考慮すると、10nm以上であることが好ましく、30nm以上であることがより好ましい。 Here, in the case of having at least three extreme values, from the surface of the inorganic barrier layer in the film thickness direction of the inorganic barrier layer at one extreme value that the carbon distribution curve has and the extreme value adjacent to the extreme value. The absolute value of the difference in distance (L) (hereinafter also simply referred to as “distance between extreme values”) is preferably 200 nm or less, more preferably 100 nm or less, and 75 nm or less. Is particularly preferred. If the distance is between such extreme values, the inorganic barrier layer has a portion having a large carbon atom ratio (maximum value) at an appropriate period, so that the inorganic barrier layer is provided with appropriate flexibility and gas barrier properties. Generation of cracks when the film is bent can be more effectively suppressed / prevented. In the present specification, the “extreme value” refers to the maximum value or the minimum value of the atomic ratio of the element to the distance (L) from the surface of the inorganic barrier layer in the film thickness direction of the inorganic barrier layer. Further, in this specification, the “maximum value” means that the value of the atomic ratio of an element (oxygen, silicon or carbon) changes from increasing to decreasing when the distance from the surface of the inorganic barrier layer is changed. And the atomic ratio of the element at a position where the distance from the surface of the inorganic barrier layer in the film thickness direction of the inorganic barrier layer is further changed within the range of 4 to 20 nm from the value of the atomic ratio of the element at that point. This is the point at which the value decreases by 3 at% or more. That is, it is sufficient that the atomic ratio value of the element is reduced by 3 at% or more in any range when changing in the range of 4 to 20 nm. Similarly, in this specification, “minimum value” means that the value of the atomic ratio of an element (oxygen, silicon, or carbon) changes from decrease to increase when the distance from the surface of the inorganic barrier layer is changed. And the atom of the element at a position where the distance from the surface of the inorganic barrier layer in the film thickness direction of the inorganic barrier layer is further changed within the range of 4 to 20 nm from the value of the atomic ratio of the element at that point. This is the point where the ratio value increases by 3 at% or more. That is, when changing in the range of 4 to 20 nm, the atomic ratio value of the element only needs to increase by 3 at% or more in any range. Here, the lower limit of the distance between the extreme values in the case of having at least three extreme values is particularly high because the smaller the distance between the extreme values, the higher the effect of suppressing / preventing crack generation when the gas barrier film is bent. Although not limited, it is preferably 10 nm or more, more preferably 30 nm or more in consideration of the flexibility of the inorganic barrier layer, the effect of suppressing / preventing cracks, thermal expansion, and the like.
 さらに、該無機バリア層は、(iii)前記炭素分布曲線における炭素の原子比の最大値および最小値の差の絶対値(以下、単に「Cmax-Cmin差」とも称する)が3at%以上であることが好ましい。前記絶対値が3at%以上であれば、得られるガスバリア性フィルムを屈曲させた場合のガスバリア性が向上しうる。Cmax-Cmin差は5at%以上であることがより好ましく、7at%以上であることがさらに好ましく、10at%以上であることが特に好ましい。上記Cmax-Cmin差とすることによって、ガスバリア性をより向上することができる。なお、本明細書において、「最大値」とは、各元素の分布曲線において最大となる各元素の原子比であり、極大値の中で最も高い値である。同様にして、本明細書において、「最小値」とは、各元素の分布曲線において最小となる各元素の原子比であり、極小値の中で最も低い値である。ここで、Cmax-Cmin差の上限は、特に制限されないが、ガスバリア性フィルムの屈曲時のクラック発生抑制/防止の向上効果などを考慮すると、50at%以下であることが好ましく、40at%以下であることがより好ましい。 Further, the inorganic barrier layer has (iii) an absolute value of a difference between a maximum value and a minimum value of the atomic ratio of carbon in the carbon distribution curve (hereinafter, also simply referred to as “C max −C min difference”) of 3 at% or more. It is preferable that When the absolute value is 3 at% or more, the gas barrier property when the obtained gas barrier film is bent can be improved. The C max −C min difference is more preferably 5 at% or more, further preferably 7 at% or more, and particularly preferably 10 at% or more. By setting the C max −C min difference, the gas barrier property can be further improved. In the present specification, the “maximum value” is the atomic ratio of each element that is maximum in the distribution curve of each element, and is the highest value among the maximum values. Similarly, in this specification, the “minimum value” is the atomic ratio of each element that is the minimum in the distribution curve of each element, and is the lowest value among the minimum values. Here, the upper limit of the C max -C min difference is not particularly limited, but it is preferably 50 at% or less in consideration of the effect of suppressing / preventing crack generation during bending of the gas barrier film, and is preferably 40 at% or less. It is more preferable that
 本発明において、前記無機バリア層の前記酸素分布曲線が少なくとも1つの極値を有することが好ましく、少なくとも2つの極値を有することがより好ましく、少なくとも3つの極値を有することがさらに好ましい。前記酸素分布曲線が極値を少なくとも1つ有する場合、得られるガスバリア性フィルムを屈曲させた場合におけるガスバリア性が極値を有さないガスバリア性フィルムと比較してより向上する。なお、酸素分布曲線の極値の上限は、特に制限されないが、例えば、好ましくは20以下、より好ましくは10以下である。酸素分布曲線の極値の数においても、無機バリア層の膜厚に起因する部分があり一概に規定できない。また、少なくとも3つの極値を有する場合においては、前記酸素分布曲線の有する1つの極値および該極値に隣接する極値における前記無機バリア層の膜厚方向における無機バリア層の表面からの距離の差の絶対値がいずれも200nm以下であることが好ましく、100nm以下であることがより好ましい。このような極値間の距離であれば、ガスバリア性フィルムの屈曲時のクラックの発生をより有効に抑制・防止できる。ここで、少なくとも3つの極値を有する場合の、極値間の距離の下限は、特に制限されないが、ガスバリア性フィルムの屈曲時のクラック発生抑制/防止の向上効果、熱膨張性などを考慮すると、10nm以上であることが好ましく、30nm以上であることがより好ましい。 In the present invention, the oxygen distribution curve of the inorganic barrier layer preferably has at least one extreme value, more preferably has at least two extreme values, and more preferably has at least three extreme values. When the oxygen distribution curve has at least one extreme value, the gas barrier property when the obtained gas barrier film is bent is further improved as compared with a gas barrier film having no extreme value. The upper limit of the extreme value of the oxygen distribution curve is not particularly limited, but is preferably 20 or less, more preferably 10 or less, for example. Even in the number of extreme values of the oxygen distribution curve, there is a portion caused by the film thickness of the inorganic barrier layer, and it cannot be specified unconditionally. In the case of having at least three extreme values, the distance from the surface of the inorganic barrier layer in the film thickness direction of the inorganic barrier layer at one extreme value of the oxygen distribution curve and the extreme value adjacent to the extreme value The absolute value of the difference is preferably 200 nm or less, and more preferably 100 nm or less. With such a distance between extreme values, the occurrence of cracks during bending of the gas barrier film can be more effectively suppressed / prevented. Here, the lower limit of the distance between the extreme values in the case of having at least three extreme values is not particularly limited, but considering the improvement effect of crack generation suppression / prevention when the gas barrier film is bent, the thermal expansion property, etc. The thickness is preferably 10 nm or more, and more preferably 30 nm or more.
 加えて、前記無機バリア層の前記酸素分布曲線における酸素の原子比の最大値および最小値の差の絶対値(以下、単に「Omax-Omin差」とも称する)が3at%以上であることが好ましく、6at%以上であることがより好ましく、7at%以上であることがさらに好ましい。前記絶対値が3at%以上であれば、得られるガスバリア性フィルムを屈曲させた場合におけるガスバリア性がより向上する。ここで、Omax-Omin差の上限は、特に制限されないが、ガスバリア性フィルムの屈曲時のクラック発生抑制/防止の向上効果などを考慮すると、50at%以下であることが好ましく、40at%以下であることがより好ましい。 In addition, the absolute value of the difference between the maximum value and the minimum value of the atomic ratio of oxygen in the oxygen distribution curve of the inorganic barrier layer (hereinafter also simply referred to as “O max −O min difference”) is 3 at% or more. Is preferably 6 at% or more, and more preferably 7 at% or more. When the absolute value is 3 at% or more, the gas barrier property when the obtained gas barrier film is bent is further improved. Here, the upper limit of the O max -O min difference is not particularly limited, but is preferably 50 at% or less, and is preferably 40 at% or less in consideration of the effect of suppressing / preventing crack generation when the gas barrier film is bent. It is more preferable that
 前記無機バリア層の前記ケイ素分布曲線におけるケイ素の原子比の最大値および最小値の差の絶対値(以下、単に「Simax-Simin差」とも称する)が10at%以下であることが好ましく、7at%以下であることがより好ましく、3at%以下であることがさらに好ましい。前記絶対値が10at%以下である場合、得られるガスバリア性フィルムのガスバリア性がより向上する。ここで、Simax-Simin差の下限は、Simax-Simin差が小さいほどガスバリア性フィルムの屈曲時のクラック発生抑制/防止の向上効果が高いため、特に制限されないが、ガスバリア性などを考慮すると、1at%以上であることが好ましく、2at%以上であることがより好ましい。 The absolute value of the difference between the maximum value and the minimum value of the atomic ratio of silicon in the silicon distribution curve of the inorganic barrier layer (hereinafter, also simply referred to as “Si max −Si min difference”) is preferably 10 at% or less, It is more preferably 7 at% or less, and further preferably 3 at% or less. When the absolute value is 10 at% or less, the gas barrier property of the obtained gas barrier film is further improved. The lower limit of Si max -Si min difference, because the effect of improving the crack generation suppression / prevention during bending of Si max -Si min as gas barrier property difference is small film is high, is not particularly limited, and gas barrier property In consideration, it is preferably 1 at% or more, and more preferably 2 at% or more.
 無機バリア層の膜厚方向に対する炭素および酸素原子の合計量はほぼ一定であることが好ましい。これにより、無機バリア層は適度な屈曲性を発揮し、ガスバリア性フィルムの屈曲時のクラック発生がより有効に抑制・防止される。より具体的には、無機バリア層の膜厚方向における該無機バリア層の表面からの距離(L)とケイ素原子、酸素原子、および炭素原子の合計量に対する、酸素原子および炭素原子の合計量の比率(酸素および炭素の原子比)との関係を示す酸素炭素分布曲線において、前記酸素炭素分布曲線における酸素および炭素の原子比の合計の最大値および最小値の差の絶対値(以下、単に「OCmax-OCmin差」とも称する)が5at%未満であることが好ましく、4at%未満であることがより好ましく、3at%未満であることがさらに好ましい。前記絶対値が5at%未満であれば、得られるガスバリア性フィルムのガスバリア性がより向上する。なお、OCmax-OCmin差の下限は、OCmax-OCmin差が小さいほど好ましいため、0at%であるが、0.1at%以上であれば十分である。 The total amount of carbon and oxygen atoms with respect to the film thickness direction of the inorganic barrier layer is preferably substantially constant. Thereby, an inorganic barrier layer exhibits moderate flexibility, and generation | occurrence | production of the crack at the time of bending of a gas barrier film is suppressed and prevented more effectively. More specifically, the total amount of oxygen atoms and carbon atoms with respect to the distance (L) from the surface of the inorganic barrier layer in the film thickness direction of the inorganic barrier layer and the total amount of silicon atoms, oxygen atoms, and carbon atoms. In the oxygen-carbon distribution curve showing the relationship with the ratio (atomic ratio of oxygen and carbon), the absolute value of the difference between the maximum value and the minimum value of the oxygen-carbon atomic ratio in the oxygen-carbon distribution curve (hereinafter simply referred to as “ OC max -OC min difference ") is preferably less than 5 at%, more preferably less than 4 at%, and even more preferably less than 3 at%. When the absolute value is less than 5 at%, the gas barrier property of the obtained gas barrier film is further improved. The lower limit of the OC max -OC min difference, since preferably as OC max -OC min difference is small, but is 0 atomic%, it is sufficient if more than 0.1 at%.
 前記ケイ素分布曲線、前記酸素分布曲線、前記炭素分布曲線、および前記酸素炭素分布曲線は、X線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)の測定とアルゴン等の希ガスイオンスパッタとを併用することにより、試料内部を露出させつつ順次表面組成分析を行う、いわゆるXPSデプスプロファイル測定により作成することができる。このようなXPSデプスプロファイル測定により得られる分布曲線は、例えば、縦軸を各元素の原子比(単位:at%)とし、横軸をエッチング時間(スパッタ時間)として作成することができる。なお、このように横軸をエッチング時間とする元素の分布曲線においては、エッチング時間は膜厚方向における前記無機バリア層の膜厚方向における前記無機バリア層の表面からの距離(L)に概ね相関することから、「無機バリア層の膜厚方向における無機バリア層の表面からの距離」として、XPSデプスプロファイル測定の際に採用したエッチング速度とエッチング時間との関係から算出される無機バリア層の表面からの距離を採用することができる。なお、ケイ素分布曲線、酸素分布曲線、炭素分布曲線および酸素炭素分布曲線は、下記測定条件にて作成することができる。 The silicon distribution curve, the oxygen distribution curve, the carbon distribution curve, and the oxygen carbon distribution curve are a combination of X-ray photoelectron spectroscopy (XPS) measurement and rare gas ion sputtering such as argon. By doing so, it can be created by so-called XPS depth profile measurement in which surface composition analysis is sequentially performed while exposing the inside of the sample. A distribution curve obtained by such XPS depth profile measurement can be created, for example, with the vertical axis as the atomic ratio (unit: at%) of each element and the horizontal axis as the etching time (sputtering time). In the element distribution curve with the horizontal axis as the etching time, the etching time is generally correlated with the distance (L) from the surface of the inorganic barrier layer in the film thickness direction of the inorganic barrier layer in the film thickness direction. Therefore, as the “distance from the surface of the inorganic barrier layer in the film thickness direction of the inorganic barrier layer”, the surface of the inorganic barrier layer calculated from the relationship between the etching rate and the etching time employed in the XPS depth profile measurement The distance from can be adopted. The silicon distribution curve, oxygen distribution curve, carbon distribution curve, and oxygen carbon distribution curve can be prepared under the following measurement conditions.
 (測定条件)
 エッチングイオン種:アルゴン(Ar
 エッチング速度(SiO熱酸化膜換算値):0.05nm/sec
 エッチング間隔(SiO換算値):10nm
 X線光電子分光装置:Thermo Fisher Scientific社製、機種名”VG Theta Probe”
 照射X線:単結晶分光AlKα
 X線のスポットおよびそのサイズ:800×400μmの楕円形。
(Measurement condition)
Etching ion species: Argon (Ar + )
Etching rate (SiO 2 thermal oxide equivalent value): 0.05 nm / sec
Etching interval (SiO 2 equivalent value): 10 nm
X-ray photoelectron spectrometer: Model name “VG Theta Probe” manufactured by Thermo Fisher Scientific
Irradiation X-ray: Single crystal spectroscopy AlKα
X-ray spot and its size: 800 × 400 μm oval.
 上記のプラズマCVD法により形成される無機バリア層の膜厚(乾燥膜厚)は、特に制限されない。例えば、該無機バリア層の1層当たりの膜厚は、20~3000nmであることが好ましく、50~2500nmであることがより好ましく、30~1000nmであることが特に好ましい。このような膜厚であれば、ガスバリア性フィルムは、優れたガスバリア性および屈曲時のクラック発生抑制/防止効果を発揮できる。なお、上記のプラズマCVD法により形成される無機バリア層が2層以上から構成される場合には、各無機バリア層が上記したような膜厚を有することが好ましい。 The film thickness (dry film thickness) of the inorganic barrier layer formed by the above plasma CVD method is not particularly limited. For example, the thickness of the inorganic barrier layer per layer is preferably 20 to 3000 nm, more preferably 50 to 2500 nm, and particularly preferably 30 to 1000 nm. With such a film thickness, the gas barrier film can exhibit excellent gas barrier properties and the effect of suppressing / preventing cracking during bending. In addition, when the inorganic barrier layer formed by said plasma CVD method is comprised from 2 or more layers, it is preferable that each inorganic barrier layer has a film thickness as mentioned above.
 本発明において、膜面全体において均一でかつ優れたガスバリア性を有する無機バリア層を形成するという観点から、前記無機バリア層が膜面方向(無機バリア層の表面に平行な方向)において実質的に一様であることが好ましい。ここで、無機バリア層が膜面方向において実質的に一様とは、XPSデプスプロファイル測定により無機バリア層の膜面の任意の2箇所の測定箇所について前記酸素分布曲線、前記炭素分布曲線および前記酸素炭素分布曲線を作成した場合に、その任意の2箇所の測定箇所において得られる炭素分布曲線が持つ極値の数が同じであり、それぞれの炭素分布曲線における炭素の原子比の最大値および最小値の差の絶対値が、互いに同じであるかもしくは5at%以内の差であることをいう。 In the present invention, from the viewpoint of forming an inorganic barrier layer having a uniform and excellent gas barrier property over the entire film surface, the inorganic barrier layer is substantially in the film surface direction (direction parallel to the surface of the inorganic barrier layer). Preferably it is uniform. Here, the inorganic barrier layer is substantially uniform in the film surface direction means that the oxygen distribution curve, the carbon distribution curve, and the carbon distribution curve at any two measurement points on the film surface of the inorganic barrier layer by XPS depth profile measurement. When an oxygen carbon distribution curve is created, the number of extreme values of the carbon distribution curve obtained at any two measurement points is the same, and the maximum and minimum carbon atomic ratios in each carbon distribution curve The absolute value of the difference between the values is the same as each other or within 5 at%.
 さらに、本発明においては、前記炭素分布曲線は実質的に連続であることが好ましい。ここで、炭素分布曲線が実質的に連続とは、炭素分布曲線における炭素の原子比が不連続に変化する部分を含まないことを意味し、具体的には、エッチング速度とエッチング時間とから算出される前記無機バリア層のうちの少なくとも1層の膜厚方向における該無機バリア層の表面からの距離(x、単位:nm)と、炭素の原子比(C、単位:at%)との関係において、下記数式1で表される条件を満たすことをいう。 Furthermore, in the present invention, it is preferable that the carbon distribution curve is substantially continuous. Here, the carbon distribution curve is substantially continuous means that the carbon distribution curve does not include a portion where the atomic ratio of carbon changes discontinuously. Specifically, the carbon distribution curve is calculated from the etching rate and the etching time. Between the distance (x, unit: nm) from the surface of the inorganic barrier layer in the film thickness direction of at least one of the inorganic barrier layers to be applied and the atomic ratio of carbon (C, unit: at%) Means satisfying the condition represented by the following formula 1.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 本発明に係るガスバリア性フィルムにおいて、上記条件(i)~(iii)を全て満たす無機バリア層は、1層のみを備えていてもよいし2層以上を備えていてもよい。さらに、このような無機バリア層を2層以上備える場合には、複数の無機バリア層の材質は、同一であってもよいし異なっていてもよい。 In the gas barrier film according to the present invention, the inorganic barrier layer that satisfies all of the above conditions (i) to (iii) may include only one layer or two or more layers. Furthermore, when two or more such inorganic barrier layers are provided, the materials of the plurality of inorganic barrier layers may be the same or different.
 前記ケイ素分布曲線、前記酸素分布曲線、および前記炭素分布曲線において、ケイ素の原子比、酸素の原子比、および炭素の原子比が、該無機バリア層の膜厚の90%以上の領域において前記(i)で表される条件を満たす場合には、前記無機バリア層中におけるケイ素原子、酸素原子、および炭素原子の合計量に対するケイ素原子の含有量の原子比率は、20~45at%であることが好ましく、25~40at%であることがより好ましい。また、前記無機バリア層中におけるケイ素原子、酸素原子、および炭素原子の合計量に対する酸素原子の含有量の原子比率は、45~75at%であることが好ましく、50~70at%であることがより好ましい。さらに、前記無機バリア層中におけるケイ素原子、酸素原子、および炭素原子の合計量に対する炭素原子の含有量の原子比率は、0.5~25at%であることが好ましく、1~20at%であることがより好ましい。 In the silicon distribution curve, the oxygen distribution curve, and the carbon distribution curve, the silicon atomic ratio, the oxygen atomic ratio, and the carbon atomic ratio are 90% or more of the film thickness of the inorganic barrier layer. When the condition represented by i) is satisfied, the atomic ratio of the content of silicon atoms to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the inorganic barrier layer is 20 to 45 at%. Preferably, it is 25 to 40 at%. The atomic ratio of the oxygen atom content to the total amount of silicon atoms, oxygen atoms, and carbon atoms in the inorganic barrier layer is preferably 45 to 75 at%, more preferably 50 to 70 at%. preferable. Further, the atomic ratio of the carbon atom content to the total amount of silicon atoms, oxygen atoms and carbon atoms in the inorganic barrier layer is preferably 0.5 to 25 at%, and preferably 1 to 20 at%. Is more preferable.
 本発明では、無機バリア層の形成方法は特に制限されず、従来と方法を同様にしてあるいは適宜修飾して適用できる。無機バリア層は、好ましくは化学気相成長(CVD)法、特に、プラズマ化学気相成長法(プラズマCVD、PECVD(plasma-enhanced chemical vapor deposition)、以下、単に「プラズマCVD法」とも称する)により形成され、基材を一対の成膜ローラー上に配置し、前記一対の成膜ローラー間に放電してプラズマを発生させるプラズマCVD法により形成されることがより好ましい。 In the present invention, the method for forming the inorganic barrier layer is not particularly limited, and the conventional method and the method can be applied in the same manner or appropriately modified. The inorganic barrier layer is preferably formed by a chemical vapor deposition (CVD) method, particularly a plasma chemical vapor deposition method (plasma CVD, plasma-enhanced chemical vapor deposition (PECVD), hereinafter also simply referred to as “plasma CVD method”). More preferably, the substrate is formed by a plasma CVD method in which a base material is disposed on a pair of film forming rollers and plasma is generated by discharging between the pair of film forming rollers.
 以下では、基材を一対の成膜ローラー上に配置し、前記一対の成膜ローラー間に放電してプラズマを発生させるプラズマCVD法により、基材上に無機バリア層を形成する方法を説明する。 In the following, a method for forming an inorganic barrier layer on a base material by a plasma CVD method in which the base material is disposed on a pair of film forming rollers and plasma is generated by discharging between the pair of film forming rollers will be described. .
 (プラズマCVD法による無機バリア層の形成方法)
 本発明に係る無機バリア層を基材の表面上に形成させる方法としては、ガスバリア性の観点から、プラズマCVD法を採用することが好ましい。なお、前記プラズマCVD法はペニング放電プラズマ方式のプラズマCVD法であってもよい。
(Method of forming inorganic barrier layer by plasma CVD method)
As a method for forming the inorganic barrier layer according to the present invention on the surface of the substrate, it is preferable to employ a plasma CVD method from the viewpoint of gas barrier properties. The plasma CVD method may be a Penning discharge plasma type plasma CVD method.
 また、プラズマCVD法においてプラズマを発生させる際には、複数の成膜ローラーの間の空間にプラズマ放電を発生させることが好ましく、一対の成膜ローラーを用い、その一対の成膜ローラーのそれぞれに基材を配置して、一対の成膜ローラー間に放電してプラズマを発生させることがより好ましい。このようにして、一対の成膜ローラーを用い、その一対の成膜ローラー上に基材を配置して、かかる一対の成膜ローラー間に放電することにより、成膜時に一方の成膜ローラー上に存在する基材の表面部分を成膜しつつ、もう一方の成膜ローラー上に存在する基材の表面部分も同時に成膜することが可能となって効率よく薄膜を製造できるばかりか、通常のローラーを使用しないプラズマCVD法と比較して成膜レートを倍にでき、なおかつ、略同一である構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となり、効率よく上記条件(i)~(iii)を全て満たす層を形成することが可能となる。 Further, when plasma is generated in the plasma CVD method, it is preferable to generate plasma discharge in a space between a plurality of film forming rollers. A pair of film forming rollers is used, and each of the pair of film forming rollers is used. More preferably, a substrate is placed and discharged between a pair of film forming rollers to generate plasma. In this way, by using a pair of film forming rollers, placing a base material on the pair of film forming rollers, and discharging between the pair of film forming rollers, one film forming roller It is possible not only to produce a thin film efficiently because it is possible to form a film on the surface part of the base material existing in the film while simultaneously forming a film on the surface part of the base material present on the other film forming roller. The film formation rate can be doubled compared to the plasma CVD method without using any roller, and since it is possible to form a film having a structure that is substantially the same, it is possible to at least double the extreme value in the carbon distribution curve, It is possible to efficiently form a layer that satisfies all of the above conditions (i) to (iii).
 また、このようにして一対の成膜ローラー間に放電する際には、前記一対の成膜ローラーの極性を交互に反転させることが好ましい。さらに、このようなプラズマCVD法に用いる成膜ガスとしては、有機ケイ素化合物と酸素とを含むものが好ましく、その成膜ガス中の酸素の含有量は、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量未満であることが好ましい。また、本発明のガスバリア性フィルムにおいては、前記無機バリア層が連続的な成膜プロセスにより形成された層であることが好ましい。 Further, when discharging between the pair of film forming rollers in this way, it is preferable to reverse the polarities of the pair of film forming rollers alternately. Further, the film forming gas used in such a plasma CVD method preferably includes an organic silicon compound and oxygen, and the content of oxygen in the film forming gas is determined by the organosilicon compound in the film forming gas. It is preferable that the amount of oxygen be less than the theoretical oxygen amount necessary for complete oxidation. In the gas barrier film of the present invention, the inorganic barrier layer is preferably a layer formed by a continuous film formation process.
 また、本発明に係るガスバリア性フィルムは、生産性の観点から、ロールツーロール方式で前記基材の表面上に前記無機バリア層を形成させることが好ましい。また、このようなプラズマCVD法により無機バリア層を製造する際に用いることが可能な装置としては、特に制限されないが、少なくとも一対の成膜ローラーと、プラズマ電源とを備え、かつ前記一対の成膜ローラー間において放電することが可能な構成となっている装置であることが好ましく、例えば、図2に示す製造装置を用いた場合には、プラズマCVD法を利用しながらロールツーロール方式で製造することも可能となる。 In addition, the gas barrier film according to the present invention preferably has the inorganic barrier layer formed on the surface of the substrate by a roll-to-roll method from the viewpoint of productivity. In addition, an apparatus that can be used when manufacturing the inorganic barrier layer by such a plasma CVD method is not particularly limited, and includes at least a pair of film forming rollers and a plasma power source, and the pair of components. It is preferable that the apparatus has a configuration capable of discharging between film rollers. For example, when the manufacturing apparatus shown in FIG. 2 is used, the apparatus is manufactured by a roll-to-roll method using a plasma CVD method. It is also possible to do.
 以下、図2を参照しながら、基材を一対の成膜ローラー上に配置し、前記一対の成膜ローラー間に放電してプラズマを発生させるプラズマCVD法による無機バリア層の形成方法について、より詳細に説明する。なお、図2は、本製造方法より無機バリア層を製造するために好適に利用することが可能な製造装置の一例を示す模式図である。また、以下の説明および図面中、同一または相当する要素には同一の符号を付し、重複する説明は省略する。 Hereinafter, with reference to FIG. 2, a base material is disposed on a pair of film forming rollers, and a method for forming an inorganic barrier layer by a plasma CVD method in which plasma is generated by discharging between the pair of film forming rollers. This will be described in detail. FIG. 2 is a schematic view showing an example of a manufacturing apparatus that can be suitably used for manufacturing an inorganic barrier layer by this manufacturing method. In the following description and drawings, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted.
 図2に示す製造装置31は、送り出しローラー32と、搬送ローラー33、34、35、36と、成膜ローラー39、40と、ガス供給管41と、プラズマ発生用電源42と、成膜ローラー39および40の内部に設置された磁場発生装置43、44と、巻取りローラー45とを備えている。また、このような製造装置においては、少なくとも成膜ローラー39、40と、ガス供給管41と、プラズマ発生用電源42と、磁場発生装置43、44とが図示を省略した真空チャンバ内に配置されている。さらに、このような製造装置31において前記真空チャンバは図示を省略した真空ポンプに接続されており、かかる真空ポンプにより真空チャンバ内の圧力を適宜調整することが可能となっている。 The manufacturing apparatus 31 shown in FIG. 2 includes a delivery roller 32, transport rollers 33, 34, 35, and 36, film formation rollers 39 and 40, a gas supply pipe 41, a plasma generation power source 42, and a film formation roller 39. And magnetic field generators 43 and 44 installed inside 40 and a winding roller 45. In such a manufacturing apparatus, at least the film forming rollers 39 and 40, the gas supply pipe 41, the plasma generating power source 42, and the magnetic field generating apparatuses 43 and 44 are arranged in a vacuum chamber (not shown). ing. Further, in such a manufacturing apparatus 31, the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump.
 このような製造装置においては、一対の成膜ローラー(成膜ローラー39と成膜ローラー40)を一対の対向電極として機能させることが可能となるように、各成膜ローラーがそれぞれプラズマ発生用電源42に接続されている。そのため、このような製造装置31においては、プラズマ発生用電源42により電力を供給することにより、成膜ローラー39と成膜ローラー40との間の空間に放電することが可能であり、これにより成膜ローラー39と成膜ローラー40との間の空間にプラズマを発生させることができる。なお、このように、成膜ローラー39と成膜ローラー40とを電極としても利用する場合には、電極としても利用可能なようにその材質や設計を適宜変更すればよい。また、このような製造装置においては、一対の成膜ローラー(成膜ローラー39および40)は、その中心軸が同一平面上において略平行となるようにして配置することが好ましい。このようにして、一対の成膜ローラー(成膜ローラー39および40)を配置することにより、成膜レートを倍にでき、なおかつ、同じ構造の膜を成膜できるので前記炭素分布曲線における極値を少なくとも倍増させることが可能となる。そして、このような製造装置によれば、CVD法により基材2の表面上に無機バリア層3を形成することが可能であり、成膜ローラー39上において基材2の表面上に無機バリア層成分を堆積させつつ、さらに成膜ローラー40上においても基材2の表面上に無機バリア層成分を堆積させることもできるため、基材2の表面上に無機バリア層を効率よく形成することができる。 In such a manufacturing apparatus, each film-forming roller has a power source for plasma generation so that the pair of film-forming rollers (the film-forming roller 39 and the film-forming roller 40) can function as a pair of counter electrodes. 42. Therefore, in such a manufacturing apparatus 31, it is possible to discharge into the space between the film forming roller 39 and the film forming roller 40 by supplying electric power from the plasma generating power source 42. Plasma can be generated in the space between the film roller 39 and the film formation roller 40. In this way, when the film forming roller 39 and the film forming roller 40 are also used as electrodes, the material and design thereof may be appropriately changed so that they can also be used as electrodes. Moreover, in such a manufacturing apparatus, it is preferable to arrange | position a pair of film-forming roller (film-forming rollers 39 and 40) so that the central axis may become substantially parallel on the same plane. Thus, by arranging a pair of film forming rollers (film forming rollers 39 and 40), the film forming rate can be doubled and a film having the same structure can be formed. Can be at least doubled. And according to such a manufacturing apparatus, it is possible to form the inorganic barrier layer 3 on the surface of the base material 2 by CVD method, and the inorganic barrier layer on the surface of the base material 2 on the film-forming roller 39. While depositing the components, the inorganic barrier layer component can be deposited on the surface of the substrate 2 also on the film forming roller 40, so that the inorganic barrier layer can be efficiently formed on the surface of the substrate 2. it can.
 成膜ローラー39および成膜ローラー40の内部には、成膜ローラーが回転しても回転しないようにして固定された磁場発生装置43および44がそれぞれ設けられている。 In the film forming roller 39 and the film forming roller 40, magnetic field generators 43 and 44 fixed so as not to rotate even when the film forming roller rotates are provided, respectively.
 成膜ローラー39および成膜ローラー40にそれぞれ設けられた磁場発生装置43および44は、一方の成膜ローラー39に設けられた磁場発生装置43と他方の成膜ローラー40に設けられた磁場発生装置44との間で磁力線がまたがらず、それぞれの磁場発生装置43、44がほぼ閉じた磁気回路を形成するように磁極を配置することが好ましい。このような磁場発生装置43、44を設けることにより、各成膜ローラー39、40の対向側表面付近に磁力線が膨らんだ磁場の形成を促進することができ、その膨出部にプラズマが収束され易くなるため、成膜効率を向上させることができる点で優れている。 The magnetic field generators 43 and 44 provided on the film forming roller 39 and the film forming roller 40 are respectively a magnetic field generating device 43 provided on one film forming roller 39 and a magnetic field generating device provided on the other film forming roller 40. It is preferable to arrange the magnetic poles so that the magnetic field lines do not cross between them and the magnetic field generators 43 and 44 form a substantially closed magnetic circuit. By providing such magnetic field generators 43 and 44, it is possible to promote the formation of a magnetic field in which magnetic lines of force swell near the opposing surface of each film forming roller 39 and 40, and the plasma is converged on the bulging portion. Since it becomes easy, it is excellent at the point which can improve the film-forming efficiency.
 また、成膜ローラー39および成膜ローラー40にそれぞれ設けられた磁場発生装置43、44は、それぞれローラー軸方向に長いレーストラック状の磁極を備え、一方の磁場発生装置43と他方の磁場発生装置44とは向かい合う磁極が同一極性となるように磁極を配置することが好ましい。このような磁場発生装置43、44を設けることにより、それぞれの磁場発生装置43、44について、磁力線が対向するローラー側の磁場発生装置にまたがることなく、ローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場を容易に形成することができ、その磁場にプラズマを収束させることができため、ローラー幅方向に沿って巻き掛けられた幅広の基材2を用いて効率的に蒸着膜である無機バリア層3を形成することができる点で優れている。 The magnetic field generators 43 and 44 provided in the film forming roller 39 and the film forming roller 40 respectively have racetrack-shaped magnetic poles that are long in the roller axis direction, and one magnetic field generator 43 and the other magnetic field generator. It is preferable to arrange the magnetic poles so that the magnetic poles facing to 44 have the same polarity. By providing such magnetic field generators 43 and 44, the opposing space along the length direction of the roller shaft without straddling the magnetic field generator on the roller side where the magnetic lines of force of each of the magnetic field generators 43 and 44 are opposed. A racetrack-like magnetic field can be easily formed in the vicinity of the roller surface facing the (discharge region), and the plasma can be focused on the magnetic field, so that a wide base wound around the roller width direction can be obtained. The material 2 is excellent in that the inorganic barrier layer 3 that is a vapor deposition film can be efficiently formed.
 成膜ローラー39および成膜ローラー40としては適宜公知のローラーを用いることができる。このような成膜ローラー39および40としては、より効率よく薄膜を形成せしめるという観点から、直径が同一のものを使うことが好ましい。また、このような成膜ローラー39および40の直径としては、放電条件、チャンバのスペース等の観点から、直径が300~1000mmφの範囲、特に300~700mmφの範囲が好ましい。成膜ローラーの直径が300mmφ以上であれば、プラズマ放電空間が小さくなることがないため生産性の劣化もなく、短時間でプラズマ放電の全熱量が基材2にかかることを回避できることから、基材2へのダメージを軽減でき好ましい。一方、成膜ローラーの直径が1000mmφ以下であれば、プラズマ放電空間の均一性等も含めて装置設計上、実用性を保持することができるため好ましい。 As the film formation roller 39 and the film formation roller 40, known rollers can be used as appropriate. As such film forming rollers 39 and 40, those having the same diameter are preferably used from the viewpoint of forming a thin film more efficiently. Further, the diameter of the film forming rollers 39 and 40 is preferably in the range of 300 to 1000 mmφ, particularly in the range of 300 to 700 mmφ, from the viewpoint of discharge conditions, chamber space, and the like. If the diameter of the film forming roller is 300 mmφ or more, the plasma discharge space will not be reduced, so that the productivity will not be deteriorated and it is possible to avoid applying the total amount of heat of the plasma discharge to the substrate 2 in a short time. It is preferable because damage to the material 2 can be reduced. On the other hand, if the diameter of the film forming roller is 1000 mmφ or less, it is preferable because practicality can be maintained in terms of apparatus design including uniformity of plasma discharge space.
 このような製造装置31においては、基材2の表面がそれぞれ対向するように、一対の成膜ローラー(成膜ローラー39と成膜ローラー40)上に、基材2が配置されている。このようにして基材2を配置することにより、成膜ローラー39と成膜ローラー40との間の対向空間に放電を行ってプラズマを発生させる際に、一対の成膜ローラー間に存在する基材2のそれぞれの表面を同時に成膜することが可能となる。すなわち、このような製造装置によれば、プラズマCVD法により、成膜ローラー39上にて基材2の表面上に無機バリア層成分を堆積させ、さらに成膜ローラー40上にて無機バリア層成分を堆積させることができるため、基材2の表面上に無機バリア層を効率よく形成することが可能となる。 In such a manufacturing apparatus 31, the base material 2 is disposed on a pair of film forming rollers (the film forming roller 39 and the film forming roller 40) so that the surfaces of the base material 2 face each other. By disposing the base material 2 in this manner, when the plasma is generated by performing discharge in the facing space between the film formation roller 39 and the film formation roller 40, the base existing between the pair of film formation rollers is present. Each surface of the material 2 can be formed simultaneously. That is, according to such a manufacturing apparatus, the inorganic barrier layer component is deposited on the surface of the substrate 2 on the film forming roller 39 by the plasma CVD method, and further the inorganic barrier layer component is formed on the film forming roller 40. Therefore, it is possible to efficiently form an inorganic barrier layer on the surface of the substrate 2.
 このような製造装置に用いる送り出しローラー32および搬送ローラー33、34、35、36としては適宜公知のローラーを用いることができる。また、巻取りローラー45としても、基材2上に無機バリア層3を形成したガスバリア性フィルム1を巻き取ることが可能なものであればよく、特に制限されず、適宜公知のローラーを用いることができる。 As the feed roller 32 and the transport rollers 33, 34, 35, and 36 used in such a manufacturing apparatus, known rollers can be appropriately used. Further, the take-up roller 45 is not particularly limited as long as it can take up the gas barrier film 1 in which the inorganic barrier layer 3 is formed on the substrate 2, and a known roller is appropriately used. Can do.
 また、ガス供給管41および真空ポンプとしては、原料ガス等を所定の速度で供給または排出することが可能なものを適宜用いることができる。 Further, as the gas supply pipe 41 and the vacuum pump, those capable of supplying or discharging the raw material gas at a predetermined speed can be appropriately used.
 また、ガス供給手段であるガス供給管41は、成膜ローラー39と成膜ローラー40との間の対向空間(放電領域;成膜ゾーン)の一方に設けることが好ましく、真空排気手段である真空ポンプ(図示せず)は、前記対向空間の他方に設けることが好ましい。このようにガス供給手段であるガス供給管41と、真空排気手段である真空ポンプを配置することにより、成膜ローラー39と成膜ローラー40との間の対向空間に効率良く成膜ガスを供給することができ、成膜効率を向上させることができる点で優れている。 The gas supply pipe 41 as a gas supply means is preferably provided in one of the facing spaces (discharge region; film formation zone) between the film formation roller 39 and the film formation roller 40, and is a vacuum as a vacuum exhaust means. A pump (not shown) is preferably provided on the other side of the facing space. As described above, by providing the gas supply pipe 41 as the gas supply means and the vacuum pump as the vacuum exhaust means, the film formation gas is efficiently supplied to the facing space between the film formation roller 39 and the film formation roller 40. It is excellent in that the film formation efficiency can be improved.
 さらに、プラズマ発生用電源42としては、適宜公知のプラズマ発生装置の電源を用いることができる。このようなプラズマ発生用電源42は、これに接続された成膜ローラー39と成膜ローラー40とに電力を供給して、これらを放電のための対向電極として利用することを可能とする。このようなプラズマ発生用電源42としては、より効率よくプラズマCVDを実施することが可能となることから、前記一対の成膜ローラーの極性を交互に反転させることが可能なもの(交流電源など)を利用することが好ましい。また、このようなプラズマ発生用電源42としては、より効率よくプラズマCVDを実施することが可能となることから、印加電力を100W~10kWとすることができ、かつ交流の周波数を50Hz~500kHzとすることが可能なものであることがより好ましい。また、磁場発生装置43、44としては適宜公知の磁場発生装置を用いることができる。さらに、基材2としては、本発明で用いられる基材の他に、無機バリア層3を予め形成させたものを用いることができる。このように、基材2として無機バリア層3を予め形成させたものを用いることにより、無機バリア層3の膜厚を厚くすることも可能である。 Furthermore, as the plasma generating power source 42, a known power source of a plasma generating apparatus can be used as appropriate. Such a plasma generating power supply 42 supplies power to the film forming roller 39 and the film forming roller 40 connected thereto, and makes it possible to use these as counter electrodes for discharge. Such a plasma generating power source 42 can perform plasma CVD more efficiently, and can alternately reverse the polarity of the pair of film forming rollers (AC power source or the like). Is preferably used. In addition, since the plasma generating power source 42 can perform plasma CVD more efficiently, the applied power can be set to 100 W to 10 kW, and the AC frequency can be set to 50 Hz to 500 kHz. More preferably, it is possible to do this. As the magnetic field generators 43 and 44, known magnetic field generators can be used as appropriate. Furthermore, as the base material 2, in addition to the base material used in the present invention, a material in which the inorganic barrier layer 3 is previously formed can be used. As described above, the inorganic barrier layer 3 can be made thicker by using the substrate 2 in which the inorganic barrier layer 3 is previously formed.
 このような図2に示す製造装置31を用いて、例えば、原料ガスの種類、プラズマ発生装置の電極ドラムの電力、真空チャンバ内の圧力、成膜ローラーの直径、ならびにフィルム(基材)の搬送速度を適宜調整することにより、本発明に係る無機バリア層を製造することができる。すなわち、図2に示す製造装置31を用いて、成膜ガス(原料ガス等)を真空チャンバ内に供給しつつ、一対の成膜ローラー(成膜ローラー39および40)間に放電を発生させることにより、前記成膜ガス(原料ガス等)がプラズマによって分解され、成膜ローラー39上の基材2の表面上および成膜ローラー40上の基材2の表面上に、無機バリア層3がプラズマCVD法により形成される。この際、成膜ローラー39、40のローラー軸の長さ方向に沿って対向空間(放電領域)に面したローラー表面付近にレーストラック状の磁場が形成して、磁場にプラズマを収束させる。このため、基材2が、図2中の成膜ローラー39のA地点および成膜ローラー40のB地点を通過する際に、無機バリア層で炭素分布曲線の極大値が形成される。これに対して、基材2が、図2中の成膜ローラー39のC1およびC2地点、ならびに成膜ローラー40のC3およびC4地点を通過する際に、無機バリア層で炭素分布曲線の極小値が形成される。このため、2つの成膜ローラーに対して、通常、5つの極値が生成する。また、無機バリア層の極値間の距離(炭素分布曲線の有する1つの極値および該極値に隣接する極値における無機バリア層の膜厚方向における無機バリア層の表面からの距離(L)の差の絶対値)は、成膜ローラー39、40の回転速度(基材の搬送速度)によって調節できる。なお、このような成膜に際しては、基材2が送り出しローラー32や成膜ローラー39等により、それぞれ搬送されることにより、ロールツーロール方式の連続的な成膜プロセスにより基材2の表面上に無機バリア層3が形成される。 Using such a manufacturing apparatus 31 shown in FIG. 2, for example, the type of source gas, the power of the electrode drum of the plasma generator, the pressure in the vacuum chamber, the diameter of the film forming roller, and the transport of the film (base material) The inorganic barrier layer according to the present invention can be produced by appropriately adjusting the speed. That is, using the manufacturing apparatus 31 shown in FIG. 2, a discharge is generated between the pair of film forming rollers (film forming rollers 39 and 40) while supplying a film forming gas (raw material gas, etc.) into the vacuum chamber. As a result, the film-forming gas (raw material gas or the like) is decomposed by plasma, and the inorganic barrier layer 3 is plasma on the surface of the base material 2 on the film-forming roller 39 and the surface of the base material 2 on the film-forming roller 40. It is formed by the CVD method. At this time, a racetrack-shaped magnetic field is formed in the vicinity of the roller surface facing the facing space (discharge region) along the length direction of the roller axes of the film forming rollers 39 and 40, and the plasma is converged on the magnetic field. For this reason, when the base material 2 passes through the point A of the film forming roller 39 and the point B of the film forming roller 40 in FIG. 2, the maximum value of the carbon distribution curve is formed in the inorganic barrier layer. On the other hand, when the base material 2 passes the points C1 and C2 of the film forming roller 39 and the points C3 and C4 of the film forming roller 40 in FIG. 2, the minimum value of the carbon distribution curve in the inorganic barrier layer. Is formed. For this reason, five extreme values are usually generated for two film forming rollers. Further, the distance between extreme values of the inorganic barrier layer (the distance (L) from the surface of the inorganic barrier layer in the film thickness direction of the inorganic barrier layer at one extreme value of the carbon distribution curve and the extreme value adjacent to the extreme value) (The absolute value of the difference) can be adjusted by the rotation speed of the film forming rollers 39 and 40 (base material transport speed). In such film formation, the substrate 2 is conveyed by the delivery roller 32, the film formation roller 39, and the like, respectively, so that the surface of the substrate 2 is formed by a roll-to-roll continuous film formation process. Thus, the inorganic barrier layer 3 is formed.
 前記ガス供給管41から対向空間に供給される成膜ガス(原料ガス等)としては、原料ガス、反応ガス、キャリアガス、放電ガスが単独または2種以上を混合して用いることができる。無機バリア層3の形成に用いる前記成膜ガス中の原料ガスとしては、形成する無機バリア層3の材質に応じて適宜選択して使用することができる。このような原料ガスとしては、例えば、ケイ素を含有する有機ケイ素化合物や炭素を含有する有機化合物ガスを用いることができる。このような有機ケイ素化合物としては、例えば、ヘキサメチルジシロキサン(HMDSO)、ヘキサメチルジシラン(HMDS)、1,1,3,3-テトラメチルジシロキサン、ビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン(TMOS)、テトラエトキシシラン(TEOS)、フェニルトリメトキシシラン、メチルトリエトキシシラン、オクタメチルシクロテトラシロキサンが挙げられる。これらの有機ケイ素化合物の中でも、化合物の取り扱い性および得られる無機バリア層のガスバリア性等の特性の観点から、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサンが好ましい。これらの有機ケイ素化合物は、単独でもまたは2種以上を組み合わせても使用することができる。また、炭素を含有する有機化合物ガスとしては、例えば、メタン、エタン、エチレン、アセチレンを例示することができる。これら有機ケイ素化合物ガスや有機化合物ガスは、無機バリア層3の種類に応じて適切な原料ガスが選択される。 As the film forming gas (raw material gas or the like) supplied from the gas supply pipe 41 to the facing space, a raw material gas, a reactive gas, a carrier gas, or a discharge gas can be used alone or in combination of two or more. The source gas in the film forming gas used for forming the inorganic barrier layer 3 can be appropriately selected and used according to the material of the inorganic barrier layer 3 to be formed. As such a source gas, for example, an organic silicon compound containing silicon or an organic compound gas containing carbon can be used. Examples of such organosilicon compounds include hexamethyldisiloxane (HMDSO), hexamethyldisilane (HMDS), 1,1,3,3-tetramethyldisiloxane, vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane. , Methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane (TMOS), tetraethoxysilane (TEOS), phenyltrimethoxysilane, methyltriethoxy Examples include silane and octamethylcyclotetrasiloxane. Among these organosilicon compounds, hexamethyldisiloxane and 1,1,3,3-tetramethyldisiloxane are preferable from the viewpoints of handling properties of the compound and gas barrier properties of the resulting inorganic barrier layer. These organosilicon compounds can be used alone or in combination of two or more. Examples of the organic compound gas containing carbon include methane, ethane, ethylene, and acetylene. As these organic silicon compound gas and organic compound gas, an appropriate source gas is selected according to the type of the inorganic barrier layer 3.
 また、前記成膜ガスとしては、前記原料ガスの他に反応ガスを用いてもよい。このような反応ガスとしては、前記原料ガスと反応して酸化物、窒化物等の無機化合物となるガスを適宜選択して使用することができる。酸化物を形成するための反応ガスとしては、例えば、酸素、オゾンを用いることができる。また、窒化物を形成するための反応ガスとしては、例えば、窒素、アンモニアを用いることができる。これらの反応ガスは、単独でもまたは2種以上を組み合わせても使用することができ、例えば酸窒化物を形成する場合には、酸化物を形成するための反応ガスと窒化物を形成するための反応ガスとを組み合わせて使用することができる。 Further, as the film forming gas, a reactive gas may be used in addition to the raw material gas. As such a reactive gas, a gas that reacts with the raw material gas to become an inorganic compound such as an oxide or a nitride can be appropriately selected and used. As a reaction gas for forming an oxide, for example, oxygen or ozone can be used. Moreover, as a reactive gas for forming nitride, nitrogen and ammonia can be used, for example. These reaction gases can be used singly or in combination of two or more. For example, when forming an oxynitride, a reaction gas for forming an oxide and a nitride are formed. It can be used in combination with a reaction gas.
 前記成膜ガスとしては、前記原料ガスを真空チャンバ内に供給するために、必要に応じて、キャリアガスを用いてもよい。さらに、前記成膜ガスとしては、プラズマ放電を発生させるために、必要に応じて、放電用ガスを用いてもよい。このようなキャリアガスおよび放電用ガスとしては、適宜公知のものを使用することができ、例えば、ヘリウム、アルゴン、ネオン、キセノン等の希ガス;水素を用いることができる。 As the film forming gas, a carrier gas may be used as necessary in order to supply the source gas into the vacuum chamber. Further, as the film forming gas, a discharge gas may be used as necessary in order to generate plasma discharge. As such carrier gas and discharge gas, known ones can be used as appropriate, for example, rare gases such as helium, argon, neon, xenon; hydrogen can be used.
 このような成膜ガスが原料ガスと反応ガスを含有する場合には、原料ガスと反応ガスの比率としては、原料ガスと反応ガスとを完全に反応させるために理論上必要となる反応ガスの量の比率よりも、反応ガスの比率を過剰にし過ぎないことが好ましい。反応ガスの比率を過剰にし過ぎないことで、形成される無機バリア層3によって、優れたガスバリア性や耐屈曲性を得ることができる点で優れている。また、前記成膜ガスが前記有機ケイ素化合物と酸素とを含有するものである場合には、前記成膜ガス中の前記有機ケイ素化合物の全量を完全酸化するのに必要な理論酸素量以下であることが好ましい。 When such a film-forming gas contains a source gas and a reactive gas, the ratio of the source gas and the reactive gas is the reaction gas that is theoretically necessary for completely reacting the source gas and the reactive gas. It is preferable not to make the ratio of the reaction gas excessive rather than the ratio of the amount. By not making the ratio of the reaction gas excessive, the formed inorganic barrier layer 3 is excellent in that excellent gas barrier properties and bending resistance can be obtained. Further, when the film forming gas contains the organosilicon compound and oxygen, the amount is less than the theoretical oxygen amount necessary for complete oxidation of the entire amount of the organosilicon compound in the film forming gas. It is preferable.
 以下、前記成膜ガスとして、原料ガスとしてのヘキサメチルジシロキサン(有機ケイ素化合物、HMDSO、(CHSiO)と、反応ガスとしての酸素(O)とを含有するものを用い、ケイ素-酸素系の薄膜を製造する場合を例に挙げて、成膜ガス中の原料ガスと反応ガスとの好適な比率等について、より詳細に説明する。 Hereinafter, a gas containing hexamethyldisiloxane (organosilicon compound, HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reaction gas is used as the film forming gas. Taking a case of producing a silicon-oxygen-based thin film as an example, the preferred ratio of the raw material gas to the reactive gas in the film forming gas will be described in more detail.
 原料ガスとしてのヘキサメチルジシロキサン(HMDSO、(CHSiO)と、反応ガスとしての酸素(O)と、を含有する成膜ガスをプラズマCVDにより反応させてケイ素-酸素系の薄膜を作製する場合、その成膜ガスにより下記反応式1で表されるような反応が起こり、二酸化ケイ素が生成する。 A film-forming gas containing hexamethyldisiloxane (HMDSO, (CH 3 ) 6 Si 2 O) as a source gas and oxygen (O 2 ) as a reactive gas is reacted by plasma CVD to form a silicon-oxygen-based system When the thin film is produced, a reaction represented by the following reaction formula 1 occurs by the film forming gas, and silicon dioxide is generated.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 このような反応においては、ヘキサメチルジシロキサン1モルを完全酸化するのに必要な酸素量は12モルである。そのため、成膜ガス中に、ヘキサメチルジシロキサン1モルに対して酸素を12モル以上含有させて完全に反応させた場合には、均一な二酸化ケイ素膜が形成されてしまう(炭素分布曲線が存在しない)ため、上記条件(i)~(iii)を全て満たす無機バリア層を形成することができなくなってしまう。そのため、本発明において、無機バリア層を形成する際には、上記反応式1の反応が完全に進行してしまわないように、ヘキサメチルジシロキサン1モルに対して酸素量を化学量論比の12モルより少なくすることが好ましい。なお、実際のプラズマCVDチャンバ内の反応では、原料のヘキサメチルジシロキサンと反応ガスの酸素とは、ガス供給部から成膜領域へ供給されて成膜されるので、反応ガスの酸素のモル量(流量)が原料のヘキサメチルジシロキサンのモル量(流量)の12倍のモル量(流量)であったとしても、現実には完全に反応を進行させることはできず、酸素の含有量を化学量論比に比して大過剰に供給して初めて反応が完結すると考えられる(例えば、CVDにより完全酸化させて酸化ケイ素を得るために、酸素のモル量(流量)を原料のヘキサメチルジシロキサンのモル量(流量)の20倍以上程度とする場合もある)。そのため、原料のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)は、化学量論比である12倍量以下(より好ましくは、10倍以下)の量であることが好ましい。このような比でヘキサメチルジシロキサンおよび酸素を含有させることにより、完全に酸化されなかったヘキサメチルジシロキサン中の炭素原子や水素原子が無機バリア層中に取り込まれ、上記条件(i)~(iii)を全て満たす無機バリア層を形成することが可能となって、得られるガスバリア性フィルムにおいて優れたガスバリア性および耐屈曲性を発揮させることが可能となる。なお、有機EL素子や太陽電池などのような透明性を必要とするデバイス用のフレキシブル基板への利用の観点から、成膜ガス中のヘキサメチルジシロキサンのモル量(流量)に対する酸素のモル量(流量)の下限は、ヘキサメチルジシロキサンのモル量(流量)の0.1倍より多い量とすることが好ましく、0.5倍より多い量とすることがより好ましい。 In such a reaction, the amount of oxygen required to completely oxidize 1 mol of hexamethyldisiloxane is 12 mol. Therefore, a uniform silicon dioxide film is formed when oxygen is contained in the film forming gas in an amount of 12 moles or more per mole of hexamethyldisiloxane and a uniform silicon dioxide film is formed (a carbon distribution curve exists). Therefore, it becomes impossible to form an inorganic barrier layer that satisfies all the above conditions (i) to (iii). Therefore, in the present invention, when the inorganic barrier layer is formed, the oxygen amount is set to a stoichiometric ratio with respect to 1 mol of hexamethyldisiloxane so that the reaction of the reaction formula 1 does not proceed completely. Preferably less than 12 moles. In the actual reaction in the plasma CVD chamber, the raw material hexamethyldisiloxane and the reaction gas oxygen are supplied from the gas supply unit to the film formation region to form a film, so the molar amount of oxygen in the reaction gas Even if the (flow rate) is 12 times the molar amount (flow rate) of the raw material hexamethyldisiloxane (flow rate), the reaction cannot actually proceed completely, and the oxygen content is reduced. It is considered that the reaction is completed only when a large excess is supplied compared to the stoichiometric ratio (for example, in order to obtain silicon oxide by complete oxidation by CVD, the molar amount (flow rate) of oxygen is changed to the hexamethyldioxide raw material. (It may be about 20 times or more the molar amount (flow rate) of siloxane). Therefore, the molar amount (flow rate) of oxygen with respect to the molar amount (flow rate) of the raw material hexamethyldisiloxane is preferably an amount of 12 times or less (more preferably 10 times or less) which is the stoichiometric ratio. . By containing hexamethyldisiloxane and oxygen at such a ratio, carbon atoms and hydrogen atoms in hexamethyldisiloxane that have not been completely oxidized are taken into the inorganic barrier layer, and the above conditions (i) to ( It becomes possible to form an inorganic barrier layer satisfying all of iii), and it is possible to exhibit excellent gas barrier properties and bending resistance in the obtained gas barrier film. From the viewpoint of use as a flexible substrate for devices that require transparency, such as organic EL elements and solar cells, the molar amount of oxygen relative to the molar amount (flow rate) of hexamethyldisiloxane in the deposition gas The lower limit of (flow rate) is preferably greater than 0.1 times the molar amount (flow rate) of hexamethyldisiloxane, more preferably greater than 0.5 times.
 また、真空チャンバ内の圧力(真空度)は、原料ガスの種類等に応じて適宜調整することができるが、0.5Pa~50Paの範囲とすることが好ましい。 Further, the pressure (degree of vacuum) in the vacuum chamber can be appropriately adjusted according to the type of the raw material gas, but is preferably in the range of 0.5 Pa to 50 Pa.
 また、このようなプラズマCVD法において、成膜ローラー39と成膜ローラー40との間に放電するために、プラズマ発生用電源42に接続された電極ドラム(本実施形態においては、成膜ローラー39および40に設置されている)に印加する電力は、原料ガスの種類や真空チャンバ内の圧力等に応じて適宜調整することができるものであり一概に言えるものでないが、0.1~10kWの範囲とすることが好ましい。このような印加電力が100W以上であれば、パーティクルの発生を十分に抑制することができ、他方、10kW以下であれば、成膜時に発生する熱量を抑えることができ、成膜時の基材表面の温度が上昇するのを抑制できる。そのため基材が熱負けすることなく、成膜時に皺が発生するのを防止できる点で優れている。 In such a plasma CVD method, in order to discharge between the film forming roller 39 and the film forming roller 40, an electrode drum connected to the plasma generating power source 42 (in this embodiment, the film forming roller 39) is used. The power applied to the power source can be adjusted as appropriate according to the type of the source gas, the pressure in the vacuum chamber, and the like. It is preferable to be in the range. If such an applied power is 100 W or more, the generation of particles can be sufficiently suppressed. On the other hand, if the applied power is 10 kW or less, the amount of heat generated at the time of film formation can be suppressed. An increase in surface temperature can be suppressed. Therefore, it is excellent in that wrinkles can be prevented during film formation without causing the substrate to lose heat.
 基材2の搬送速度(ライン速度)は、原料ガスの種類や真空チャンバ内の圧力等に応じて適宜調整することができるが、0.25~100m/minの範囲とすることが好ましく、0.5~20m/minの範囲とすることがより好ましい。ライン速度が0.25m/min以上であれば、基材に熱に起因する皺の発生を効果的に抑制することができる。他方、100m/min以下であれば、生産性を損なうことなく、無機バリア層として十分な膜厚を確保することができる点で優れている。 The conveyance speed (line speed) of the base material 2 can be appropriately adjusted according to the type of source gas, the pressure in the vacuum chamber, etc., but is preferably in the range of 0.25 to 100 m / min. More preferably, it is in the range of 5 to 20 m / min. If the line speed is 0.25 m / min or more, generation of wrinkles due to heat in the substrate can be effectively suppressed. On the other hand, if it is 100 m / min or less, it is excellent at the point which can ensure sufficient film thickness as an inorganic barrier layer, without impairing productivity.
 上記したように、本実施形態のより好ましい態様としては、本発明に係る無機バリア層を、図2に示す対向ロール電極を有するプラズマCVD装置(ロールツーロール方式)を用いたプラズマCVD法によって成膜することを特徴とするものである。これは、対向ロール電極を有するプラズマCVD装置(ロールツーロール方式)を用いて量産する場合に、可撓性(屈曲性)に優れ、機械的強度、特にロールツーロールでの搬送時の耐久性と、ガスバリア性能とが両立する無機バリア層を効率よく製造することができるためである。このような製造装置は、太陽電池や電子部品などに使用される温度変化に対する耐久性が求められるガスバリア性フィルムを、安価でかつ容易に量産することができる点でも優れている。 As described above, as a more preferable aspect of this embodiment, the inorganic barrier layer according to the present invention is formed by a plasma CVD method using the plasma CVD apparatus (roll-to-roll method) having the counter roll electrode shown in FIG. It is characterized by forming a film. This is excellent in flexibility (flexibility) and mechanical strength, especially when transported by roll-to-roll, when mass-produced using a plasma CVD apparatus (roll-to-roll method) having a counter roll electrode. This is because it is possible to efficiently produce an inorganic barrier layer in which gas barrier performance is compatible. Such a manufacturing apparatus is also excellent in that it can inexpensively and easily mass-produce gas barrier films that are required for durability against temperature changes used in solar cells and electronic components.
 <バリア層成膜工程>
 <第1成膜工程>
 本発明の一実施形態として、成膜工程は、第1成膜工程と第2成膜工程とに分けて実施することができる。第1成膜工程は、第1バリア層を形成する工程であり、ケイ素化合物前駆体および溶解度パラメーターが15.5~20.0の溶媒を含む第1バリア層前駆体液を塗布することを含む。ケイ素化合物前駆体は、上記の(ケイ素化合物)の項目で説明したものを使用し得る。
<Barrier layer deposition process>
<First film forming step>
As one embodiment of the present invention, the film forming process can be performed by dividing it into a first film forming process and a second film forming process. The first film forming step is a step of forming a first barrier layer, and includes applying a first barrier layer precursor liquid containing a silicon compound precursor and a solvent having a solubility parameter of 15.5 to 20.0. As the silicon compound precursor, those described in the above item (Silicon compound) can be used.
 第1バリア層前駆体液(塗布液)は、上記のケイ素化合物前駆体及び必要に応じて触媒を、溶解度パラメーターが15.5~20.0の溶媒に溶解して調製できる。ここで、塗布液を調製するための溶媒としては、一般式(1)のケイ素化合物前駆体(ポリシラザン)を溶解できるものが好ましい。ポリシラザンと容易に反応してしまう水及び反応性基(例えば、ヒドロキシル基、あるいはアミン基等)を含まず、ポリシラザンに対して不活性の有機溶媒が好ましく、非プロトン性の有機溶媒がより好ましい。 The first barrier layer precursor solution (coating solution) can be prepared by dissolving the silicon compound precursor and, if necessary, a catalyst in a solvent having a solubility parameter of 15.5 to 20.0. Here, the solvent for preparing the coating solution is preferably a solvent capable of dissolving the silicon compound precursor (polysilazane) of the general formula (1). An organic solvent that does not contain water and reactive groups (for example, hydroxyl group or amine group) that easily react with polysilazane and is inert to polysilazane is preferable, and an aprotic organic solvent is more preferable.
 溶解度パラメーターが15.5~20.0の溶媒としては、具体的には、シクロヘキサン、ドデカン、メチルシクロヘキサン、オクタン、水添トリイソブチレン等の脂肪族炭化水素;ベンゼン、エチルベンゼン、トルエン、o-キシレン等の芳香族炭化水素;ジブチルエーテル、ジオキサン、テトラヒドロフラン等の脂肪族エーテル、脂環式エーテル等のエーテル類;ピリジン、1-メチルピペリジン、1-エチルピペリジン、2-ヒドロキシメチルピペリジン、3-ヒドロキシメチルピペリジン、N,N’-ジメチルピペラジン等のアミン化合物;クロロホルム、1,2ジクロロエタン、トリクロロエチレン等のハロゲン系炭化水素が挙げられる。このうち、特にo-キシレン(SP値:18.1)、トルエン(SP値:18.2)、シクロヘキサン(SP値:17.3)、n-ブチルアセテート(SP値:17.4)、ジエチルエーテル(SP値:15.5)、ジブチルエーテル(SP値:15.9)、ピペリジン(SP値:19.7)が好ましい。上記溶媒は、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。 Specific examples of the solvent having a solubility parameter of 15.5 to 20.0 include aliphatic hydrocarbons such as cyclohexane, dodecane, methylcyclohexane, octane, and hydrogenated triisobutylene; benzene, ethylbenzene, toluene, o-xylene, and the like. Aromatic hydrocarbons; aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran; ethers such as alicyclic ethers; pyridine, 1-methylpiperidine, 1-ethylpiperidine, 2-hydroxymethylpiperidine, 3-hydroxymethylpiperidine And amine compounds such as N, N′-dimethylpiperazine; and halogenated hydrocarbons such as chloroform, 1,2 dichloroethane, and trichloroethylene. Of these, o-xylene (SP value: 18.1), toluene (SP value: 18.2), cyclohexane (SP value: 17.3), n-butyl acetate (SP value: 17.4), diethyl, etc. Ether (SP value: 15.5), dibutyl ether (SP value: 15.9), and piperidine (SP value: 19.7) are preferable. The said solvent may be used independently or may be used with the form of a 2 or more types of mixture.
 また、上記溶媒は、使用する前にあらかじめ酸素濃度や水分含量を低減させておくことが好ましい。溶媒中の酸素濃度や水分含量を低減する手段は特に限定されず、従来公知の手法が適用されうる。 In addition, it is preferable to reduce the oxygen concentration and water content of the solvent before use. Means for reducing the oxygen concentration and water content in the solvent are not particularly limited, and conventionally known methods can be applied.
 第1バリア層前駆体液における一般式(1)のケイ素化合物前駆体の濃度は、特に制限されず、ガスバリア層の膜厚や塗布液のポットライフによっても異なるが、好ましくは0.2~80質量%、より好ましくは1~50質量%、特に好ましくは1.5~35質量%である。 The concentration of the silicon compound precursor of the general formula (1) in the first barrier layer precursor liquid is not particularly limited and varies depending on the film thickness of the gas barrier layer and the pot life of the coating liquid, but is preferably 0.2 to 80 mass. %, More preferably 1 to 50% by mass, particularly preferably 1.5 to 35% by mass.
 第1バリア層前駆体液は、酸窒化ケイ素への変性を促進するために、ポリシラザンとともに触媒を含有させてもよい。本発明に適用可能な触媒としては、塩基性触媒が好ましく、特に、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3-モルホリノプロピルアミン、N,N,N’,N’-テトラメチル-1,3-ジアミノプロパン、N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N-複素環式化合物が挙げられる。これらのうち、アミン触媒を用いることが好ましい。この際添加する触媒の濃度としては、ポリシラザンを基準としたとき、好ましくは0.1~10質量%、より好ましくは0.5~5質量%の範囲である。触媒添加量をこの範囲とすることで、反応の急激な進行よる過剰なシラノール形成、および膜密度の低下、膜欠陥の増大のなどを避けることができる。 The first barrier layer precursor liquid may contain a catalyst together with polysilazane in order to promote modification to silicon oxynitride. As the catalyst applicable to the present invention, a basic catalyst is preferable, and in particular, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, Amine catalysts such as N ′, N′-tetramethyl-1,3-diaminopropane, N, N, N ′, N′-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, propion Examples thereof include metal catalysts such as Pd compounds such as acid Pd, Rh compounds such as Rh acetylacetonate, and N-heterocyclic compounds. Of these, it is preferable to use an amine catalyst. The concentration of the catalyst added at this time is preferably in the range of 0.1 to 10% by mass, more preferably 0.5 to 5% by mass, based on polysilazane. By setting the addition amount of the catalyst within this range, it is possible to avoid excessive silanol formation due to rapid progress of the reaction, reduction in film density, increase in film defects, and the like.
 また、第1バリア層前駆体液に、必要に応じて下記に挙げる添加剤を用いることができる。例えば、セルロースエーテル類、セルロースエステル類;例えば、エチルセルロース、ニトロセルロース、セルロースアセテート、セルロースアセトブチレート等、天然樹脂;例えば、ゴム、ロジン樹脂等、合成樹脂;例えば、重合樹脂等、縮合樹脂;例えば、アミノプラスト、特に尿素樹脂、メラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステルもしくは変性ポリエステル、エポキシド、ポリイソシアネートもしくはブロック化ポリイソシアネート、ポリシロキサン等である。 Moreover, the following additives can be used in the first barrier layer precursor liquid as necessary. For example, cellulose ethers, cellulose esters; for example, ethyl cellulose, nitrocellulose, cellulose acetate, cellulose acetobutyrate, etc., natural resins; for example, rubber, rosin resin, etc., synthetic resins; Aminoplasts, especially urea resins, melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, polysiloxanes, and the like.
 第1バリア層(塗膜)の形成方法は特に制限されず、いずれの方法によって形成されてもよいが、ケイ素化合物前駆体を含有する第1バリア層前駆体液を湿式塗布することにより作製されることが好ましい。塗布方法としては、従来公知の適切な湿式塗布方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、ワイヤレスバーコート法、グラビア印刷法等が挙げられる。第1バリア層は、2層以上の積層体であってもよい。第1バリア層が2層以上の積層体である場合の塗膜の形成方法としては、特に制限されず、逐次重層塗布方式であってもまたは同時重層塗布方式であってもよい。 The method for forming the first barrier layer (coating film) is not particularly limited and may be formed by any method. However, the first barrier layer (coating film) may be formed by wet coating with a first barrier layer precursor liquid containing a silicon compound precursor. It is preferable. As a coating method, a conventionally known appropriate wet coating method can be adopted. Specific examples include spin coating method, roll coating method, flow coating method, ink jet method, spray coating method, printing method, dip coating method, casting film forming method, bar coating method, wireless bar coating method, gravure printing method, etc. Is mentioned. The first barrier layer may be a laminate of two or more layers. The method for forming a coating film when the first barrier layer is a laminate of two or more layers is not particularly limited, and may be a sequential multilayer coating method or a simultaneous multilayer coating method.
 また、本発明の別の実施形態として、第1バリア層前駆体液は、後述する第2バリア層前駆体液と共に、同時重層塗布方式により樹脂基材上に塗布し、第1バリア層と第2バリア層とを同時に形成してもよい。同時重層塗布方式としては、複数のコーターを用いて既塗布層の乾燥前に次の層を塗布して複数層を同時に乾燥させたり、スライドコーティングやカーテンコーティングを用いて、スライド面で複数の塗布液を積層させて塗布したりする方式がある。本発明によれば、互いの溶媒の溶解度パラメーターに差があるため、同時重層塗布方式によっても、第1バリア層と第2バリア層とが一定量以上に混合することがなく、上記した領域Aが所定の厚さで残存する。したがって、より生産性に優れる同時重層塗布法を好ましく適用できる。 As another embodiment of the present invention, the first barrier layer precursor liquid is applied onto a resin substrate together with a second barrier layer precursor liquid described later by a simultaneous multilayer coating method, and the first barrier layer and the second barrier liquid are applied. The layers may be formed simultaneously. The simultaneous multi-layer coating method uses multiple coaters to apply the next layer before drying the already applied layer and simultaneously dry multiple layers, or use slide coating or curtain coating to apply multiple layers on the slide surface. There is a method of laminating and applying liquids. According to the present invention, since the solubility parameters of the solvents are different, the first barrier layer and the second barrier layer are not mixed in a certain amount or more even by the simultaneous multilayer coating method, and the above-described region A Remains at a predetermined thickness. Therefore, the simultaneous multi-layer coating method with higher productivity can be preferably applied.
 第1バリア層の塗膜の厚さ(塗布厚さ)は、特に制限されず、所望の第1バリア層の厚さ(乾燥膜厚)に応じて適切に設定され得る。例えば、塗膜の厚さ(塗布厚さ)は、乾燥後の厚さ(乾燥膜厚)として、1nm~100μm程度であることが好ましく、5nm~10μm程度であることがより好ましく、10nm~1μmであることがさらにより好ましく、30~500nmであることが特に好ましい。塗膜の膜厚が1nm以上であれば、ガスバリア性(例えば、低酸素透過性、低水蒸気透過性)を得ることができ、100μm以下であれば、第1バリア層形成時に安定した塗布性を得ることができ、かつ高い光線透過性を実現できる。なお、塗膜が積層される場合には、塗膜全体の厚さが上記したような厚さになることが好ましい。 The thickness (application thickness) of the coating film of the first barrier layer is not particularly limited, and can be appropriately set according to the desired thickness (dry film thickness) of the first barrier layer. For example, the thickness (coating thickness) of the coating film is preferably about 1 nm to 100 μm, more preferably about 5 nm to 10 μm, and more preferably 10 nm to 1 μm, as the thickness after drying (dry film thickness). It is even more preferable that the thickness is 30 to 500 nm. If the thickness of the coating film is 1 nm or more, gas barrier properties (for example, low oxygen permeability and low water vapor permeability) can be obtained, and if it is 100 μm or less, stable coating properties when forming the first barrier layer. And high light transmittance can be realized. In addition, when a coating film is laminated | stacked, it is preferable that the thickness of the whole coating film becomes thickness as mentioned above.
 本明細書において、層(塗膜)の厚さ(乾燥膜厚)は、各試料を、以下のFIB加工装置により薄片を作製した後、断面のTEM観察を行うことによって測定される。また、層(塗膜)の改質の有無は、上記と同様にして、以下のFIB加工装置により薄片を作製した後、この試料に電子線を照射し続けると、電子線ダメージを受ける部分とそうでない部分にコントラスト差が現れる。この際、改質処理を受けた部分は緻密化するために電子線ダメージを受けにくいが、そうでない部分は電子線ダメージを受け変質が確認される。このようにして確認できた断面TEM観察により、改質部分及び未改質部分の膜厚の算出も可能になる。 In the present specification, the thickness (dry film thickness) of a layer (coating film) is measured by making a TEM observation of a cross section of each sample after producing a flake with the following FIB processing apparatus. Also, the presence or absence of modification of the layer (coating film) is the same as described above, and after producing a flake with the following FIB processing apparatus, if this sample is continuously irradiated with an electron beam, A contrast difference appears in the other part. At this time, the portion that has undergone the modification treatment is densified and thus is less susceptible to electron beam damage, but the other portion is damaged by electron beam damage, and alteration is confirmed. By the cross-sectional TEM observation confirmed in this way, the film thicknesses of the modified portion and the unmodified portion can be calculated.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 第1バリア層前駆体液を塗布後は、塗布膜を乾燥することによって、第1バリア層が形成される。ここで、乾燥条件は、塗膜が形成されれば特に制限されない。具体的には、乾燥温度は、好ましくは50~150℃であり、より好ましくは80~100℃である。乾燥時間は、好ましくは0.5~60分であり、より好ましくは1~10分である。 After applying the first barrier layer precursor liquid, the first barrier layer is formed by drying the coating film. Here, the drying conditions are not particularly limited as long as a coating film is formed. Specifically, the drying temperature is preferably 50 to 150 ° C, more preferably 80 to 100 ° C. The drying time is preferably 0.5 to 60 minutes, more preferably 1 to 10 minutes.
 <第2成膜工程>
 本発明の一実施形態では、上記のように第1バリア層を形成した後、金属化合物および溶解度パラメーターが26.0~32.0の溶媒を含む第2バリア層前駆体液を塗布することを含む、第2バリア層を形成する第2成膜工程を実施する。金属化合物については、上記(金属化合物)の項で述べたものを適宜使用できる。
<Second film forming step>
In one embodiment of the present invention, after forming the first barrier layer as described above, applying a second barrier layer precursor solution containing a metal compound and a solvent having a solubility parameter of 26.0 to 32.0 is included. Then, the second film forming step for forming the second barrier layer is performed. As the metal compound, those described in the above section (Metal compound) can be used as appropriate.
 第2バリア層前駆体液(塗布液)は、金属化合物を、溶媒に溶解して調製できる。ここで、塗布液を調製するための溶媒としては、上記の溶解度パラメーター範囲を満たし金属化合物を溶解できるものであれば特に制限されない。しかし、金属化合物と容易に反応してしまう水及び反応性基(例えば、アミン基等)を含まず、金属化合物に対して不活性の有機溶媒が好ましく、極性有機溶媒がより好ましい。 The second barrier layer precursor liquid (coating liquid) can be prepared by dissolving a metal compound in a solvent. Here, the solvent for preparing the coating solution is not particularly limited as long as it satisfies the above solubility parameter range and can dissolve the metal compound. However, water that easily reacts with the metal compound and reactive groups (for example, amine groups) are not included, and an organic solvent inert to the metal compound is preferable, and a polar organic solvent is more preferable.
 具体的には、第2バリア層前駆体液を調製するための溶媒としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ジエチレングリコール、1,3-プロパンジオール等の2価アルコール、グリセリン、ジグリセリン、トリグリセリン、ポリグリセリン、トリメチロールプロパン等の3価アルコール、ペンタエリスリトール等の4価以上のアルコール、ソルビトール等のヘキシトール、グルコース等のアルドース、ショ糖等の糖骨格を有する化合物、イソプロパノール、ブタノール、エタノール等の低級アルコール等が挙げられる。このうち、特にエタノール(SP値:26.5)、プロピレングリコール(SP値:29.1)、1,3-プロパンジオール(SP値:31.7)、ジエチレングリコール(SP値:27.9)、ジプロピレングリコール(SP値:26.4)、メトキシメタノール(SP値:26.1)が好ましい。これらは1種以上併用してもよい。 Specifically, as a solvent for preparing the second barrier layer precursor liquid, for example, a divalent solvent such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, diethylene glycol, 1,3-propanediol, etc. Alcohol, glycerin, diglycerin, triglycerin, polyglycerin, trimethylolpropane and other trihydric alcohols, pentaerythritol and other tetravalent alcohols, sorbitol and other hexitols, glucose and other aldoses, and sugar skeletons such as sucrose Examples include compounds, lower alcohols such as isopropanol, butanol, and ethanol. Of these, ethanol (SP value: 26.5), propylene glycol (SP value: 29.1), 1,3-propanediol (SP value: 31.7), diethylene glycol (SP value: 27.9), Dipropylene glycol (SP value: 26.4) and methoxymethanol (SP value: 26.1) are preferred. One or more of these may be used in combination.
 第2バリア層前駆体液における金属化合物の濃度は、特に制限されず、バリア層の膜厚や塗布液のポットライフによっても異なるが、好ましくは0.2~80質量%、より好ましくは1~50質量%、特に好ましくは1.5~35質量%である。 The concentration of the metal compound in the second barrier layer precursor liquid is not particularly limited and varies depending on the film thickness of the barrier layer and the pot life of the coating liquid, but is preferably 0.2 to 80% by mass, and more preferably 1 to 50%. % By mass, particularly preferably 1.5 to 35% by mass.
 上記金属化合物を含有する第2バリア層前駆体液を、第1バリア層上に湿式塗布して、塗膜を形成する。塗布方法としては、従来公知の適切な湿式塗布方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、ワイヤレスバーコート法、グラビア印刷法等が挙げられる。 The second barrier layer precursor liquid containing the metal compound is wet-applied on the first barrier layer to form a coating film. As a coating method, a conventionally known appropriate wet coating method can be adopted. Specific examples include spin coating method, roll coating method, flow coating method, ink jet method, spray coating method, printing method, dip coating method, casting film forming method, bar coating method, wireless bar coating method, gravure printing method, etc. Is mentioned.
 また、第2バリア層は2層以上の積層体であってもよい。第2バリア層が2層以上の積層体である場合の塗膜の形成方法としては、特に制限されず、逐次重層塗布方式であってもまたは同時重層塗布方式であってもよい。 Further, the second barrier layer may be a laminate of two or more layers. The method for forming a coating film when the second barrier layer is a laminate of two or more layers is not particularly limited, and may be a sequential multilayer coating method or a simultaneous multilayer coating method.
 本発明の別の実施形態として、上記したように、第2バリア層前駆体液は、第1バリア層前駆体液と共に、同時重層塗布方式により樹脂基材上に同時に塗布し、第1バリア層と第2バリア層とを同時に形成してもよい。同時重層塗布方式としては、複数のコーターを用いて既塗布層の乾燥前に次の層を塗布して複数層を同時に乾燥させたり、スライドコーティングやカーテンコーティングを用いて、スライド面で複数の塗布液を積層させて塗布したりする方式がある。本発明によれば、第1バリア層前駆体液と第2バリア層前駆体液の互いの溶媒の溶解度パラメーターに差があるため、同時重層塗布方式によっても、第1バリア層と第2バリア層とが一定量以上に混合することがない。したがって、上記した領域Aが所定の厚さで残存する。 As another embodiment of the present invention, as described above, the second barrier layer precursor liquid is simultaneously applied onto the resin substrate together with the first barrier layer precursor liquid by the simultaneous multilayer coating method, Two barrier layers may be formed simultaneously. The simultaneous multi-layer coating method uses multiple coaters to apply the next layer before drying the already applied layer and simultaneously dry multiple layers, or use slide coating or curtain coating to apply multiple layers on the slide surface. There is a method of laminating and applying liquids. According to the present invention, the first barrier layer precursor liquid and the second barrier layer precursor liquid have different solvent solubility parameters, so that the first barrier layer and the second barrier layer can be obtained by the simultaneous multilayer coating method. Never mix more than a certain amount. Therefore, the above-described region A remains with a predetermined thickness.
 (改質工程)
 本発明の好ましい実施形態は、ケイ素化合物前駆体が、下記一般式(1):
(Reforming process)
In a preferred embodiment of the present invention, the silicon compound precursor is represented by the following general formula (1):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記一般式(1)において、R、RおよびRは、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基を表わす、
 で示される構造を有する前駆体であり、
 前記成膜工程の後、活性エネルギー線を照射することにより、ケイ素化合物前駆体(第1バリア層)を改質する改質工程を含む。
In the general formula (1), R 1 , R 2 and R 3 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. ,
A precursor having a structure represented by:
After the film forming step, a modification step of modifying the silicon compound precursor (first barrier layer) by irradiating active energy rays is included.
 すなわち、本発明の好ましい製造方法では、第1バリア層を塗布形成後、改質前に第2バリア層を塗布形成し、その後に第2バリア層を介して活性エネルギー線を照射し、第1バリア層を改質する。または、第1バリア層と第2バリア層とを同時重層塗布により同時に形成した後、第2バリア層を介して活性エネルギー線を照射する等して、第1バリア層を改質する。本発明においては、溶解度パラメーターの互いに異なる溶媒をそれぞれ使用するため、第1バリア層と第2バリア層とは、改質時に界面近傍でわずかに混合するだけであり、第2バリア層由来の部分は所定の厚さで残存する。したがって、第1バリア層と第2バリア層とを同時重層塗布方式で積層することができ、2層を積層後に、改質処理を行ってバリア層を完成させることができる。従来は、第1バリア層を形成後に改質処理をし、第2バリア層を形成する手順であったため、第1バリア層の改質時に低分子のケイ素化合物の揮発や飛散によりランプ照度が低下し、改質度合いに差が生じることを避けられなかった。しかし、本実施形態の方法によれば、第2バリア層が第1バリア層上に形成された状態で改質処理を行うため、ケイ素化合物の揮発または飛散を防止でき、均質で優れたバリア性能のガスバリア性フィルムを製造できる。 That is, in a preferable manufacturing method of the present invention, after the first barrier layer is applied and formed, the second barrier layer is applied and formed before the modification, and then the active energy rays are irradiated through the second barrier layer, Modify the barrier layer. Alternatively, after the first barrier layer and the second barrier layer are simultaneously formed by simultaneous multilayer coating, the first barrier layer is modified by irradiating active energy rays through the second barrier layer. In the present invention, since solvents having different solubility parameters are used, the first barrier layer and the second barrier layer are only slightly mixed in the vicinity of the interface at the time of modification. Remains at a predetermined thickness. Therefore, the first barrier layer and the second barrier layer can be laminated by the simultaneous multilayer coating method, and after the two layers are laminated, the modification process can be performed to complete the barrier layer. Conventionally, the modification process was performed after the first barrier layer was formed, and the second barrier layer was formed. Therefore, the lamp illuminance decreased due to volatilization and scattering of low-molecular silicon compounds during the modification of the first barrier layer. However, it is inevitable that a difference occurs in the degree of modification. However, according to the method of the present embodiment, since the reforming process is performed in a state where the second barrier layer is formed on the first barrier layer, volatilization or scattering of the silicon compound can be prevented, and the barrier performance is uniform and excellent. The gas barrier film can be produced.
 (改質処理)
 本発明における改質処理とは、ケイ素化合物前駆体(ポリシラザン)の一部または全部が、酸化珪素または酸化窒化珪素への転化する反応をいう。これによって、本発明のガスバリア性フィルムが全体としてガスバリア性(水蒸気透過率が、1×10-3g/m・day以下)を発現するに貢献できるレベルの無機薄膜を形成することができる。具体的には、改質処理は、加熱処理、プラズマ処理、活性エネルギー線照射処理等が挙げられる。中でも、低温で改質可能であり基材種の選択の自由度が高いという観点から、活性エネルギー線照射による処理が好ましい。
(Modification process)
The modification treatment in the present invention refers to a reaction in which part or all of the silicon compound precursor (polysilazane) is converted into silicon oxide or silicon oxynitride. Thus, an inorganic thin film of a level that can contribute to the development of the gas barrier property (water vapor permeability of 1 × 10 −3 g / m 2 · day or less) as a whole of the gas barrier film of the present invention can be formed. Specifically, the modification treatment includes heat treatment, plasma treatment, active energy ray irradiation treatment, and the like. Among these, from the viewpoint that it can be modified at a low temperature and has a high degree of freedom in selecting a base material species, a treatment with active energy ray irradiation is preferable.
 (加熱処理)
 加熱処理の方法としては、例えば、ヒートブロック等の発熱体に基板を接触させ熱伝導により塗膜を加熱する方法、抵抗線等による外部ヒーターにより塗膜が載置される環境を加熱する方法、IRヒーターといった赤外領域の光を用いた方法等が挙げられるが、これらに限定されない。加熱処理を行う場合、塗膜の平滑性を維持できる方法を適宜選択すればよい。
(Heat treatment)
As a heat treatment method, for example, a method of heating a coating film by heat conduction by bringing a substrate into contact with a heating element such as a heat block, a method of heating an environment in which the coating film is placed by an external heater such as a resistance wire, Although the method using the light of infrared region, such as IR heater, is mentioned, It is not limited to these. What is necessary is just to select suitably the method which can maintain the smoothness of a coating film, when performing heat processing.
 塗膜を加熱する温度としては、40~250℃の範囲が好ましく、60~150℃の範囲がより好ましい。加熱時間としては、10秒~100時間の範囲が好ましく、30秒~5分の範囲が好ましい。 The temperature for heating the coating film is preferably in the range of 40 to 250 ° C, more preferably in the range of 60 to 150 ° C. The heating time is preferably in the range of 10 seconds to 100 hours, and more preferably in the range of 30 seconds to 5 minutes.
 (プラズマ処理)
 本発明において、改質処理として用いることのできるプラズマ処理は、公知の方法を用いることができるが、好ましくは大気圧プラズマ処理等を挙げることが出来る。大気圧近傍でのプラズマCVD処理を行う大気圧プラズマCVD法は、真空下のプラズマCVD法に比べ、減圧にする必要がなく生産性が高いだけでなく、プラズマ密度が高密度であるために成膜速度が速く、更には通常のCVD法の条件に比較して、大気圧下という高圧力条件では、ガスの平均自由工程が非常に短いため、極めて均質の膜が得られる。
(Plasma treatment)
In the present invention, a known method can be used as the plasma treatment that can be used as the modification treatment, and an atmospheric pressure plasma treatment or the like can be preferably used. The atmospheric pressure plasma CVD method, which performs plasma CVD processing near atmospheric pressure, does not need to be reduced in pressure and is more productive than the plasma CVD method under vacuum. The film speed is high, and further, under a high pressure condition of atmospheric pressure as compared with the conditions of a normal CVD method, the gas mean free path is very short, so that a very homogeneous film can be obtained.
 大気圧プラズマ処理の場合は、放電ガスとしては窒素ガスまたは長周期型周期表の第18族原子、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ましい。 In the case of atmospheric pressure plasma treatment, as the discharge gas, nitrogen gas or a group 18 atom of the long-period periodic table, specifically helium, neon, argon, krypton, xenon, radon, or the like is used. Among these, nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost.
 (活性エネルギー線照射処理)
 活性エネルギー線としては、例えば、赤外線、可視光線、紫外線、X線、電子線、α線、β線、γ線等が使用可能であるが、電子線または紫外線が好ましく、紫外線がより好ましい。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性とを有するケイ素含有膜を形成することが可能である。
(Active energy ray irradiation treatment)
As the active energy rays, for example, infrared rays, visible rays, ultraviolet rays, X rays, electron rays, α rays, β rays, γ rays and the like can be used, but electron rays or ultraviolet rays are preferable, and ultraviolet rays are more preferable. Ozone and active oxygen atoms generated by ultraviolet light (synonymous with ultraviolet light) have high oxidation ability, and can form a silicon-containing film having high density and insulating properties at low temperatures.
 (紫外線照射処理)
 第1バリア層の改質処理の方法の1つとして、紫外線照射による処理が好ましい。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性を有する酸化ケイ素膜または酸窒化ケイ素膜を形成することが可能である。
(UV irradiation treatment)
As one of the methods for modifying the first barrier layer, treatment by ultraviolet irradiation is preferable. Ozone and active oxygen atoms generated by ultraviolet rays (synonymous with ultraviolet light) have high oxidation ability, and can form silicon oxide films or silicon oxynitride films with high density and insulation at low temperatures It is.
 この紫外線照射により、基材が加熱され、セラミックス化(シリカ転化)に寄与するOとHOや、紫外線吸収剤、ポリシラザン自身が励起、活性化されるため、ポリシラザンが励起し、ポリシラザンのセラミックス化が促進され、また得られる第1バリア層が一層緻密になる。紫外線照射は、塗膜形成後であればいずれの時点で実施しても有効である。 By this ultraviolet irradiation, the base material is heated, and O 2 and H 2 O contributing to ceramicization (silica conversion), an ultraviolet absorber, and polysilazane itself are excited and activated. The conversion to ceramics is promoted, and the obtained first barrier layer becomes denser. Irradiation with ultraviolet rays is effective at any time after the formation of the coating film.
 紫外線照射処理においては、常用されているいずれの紫外線発生装置を使用することも可能である。なお、本発明でいう紫外線とは、一般には、10~400nmの波長を有する電磁波をいうが、後述する真空紫外線(10~200nm)処理以外の紫外線照射処理の場合は、好ましくは210~375nmの紫外線を用いる。 In the ultraviolet irradiation treatment, any commonly used ultraviolet ray generator can be used. The ultraviolet ray referred to in the present invention generally refers to an electromagnetic wave having a wavelength of 10 to 400 nm, but in the case of an ultraviolet irradiation treatment other than the vacuum ultraviolet ray (10 to 200 nm) treatment described later, it is preferably 210 to 375 nm. Use ultraviolet light.
 紫外線の照射は、照射される第1バリア層を担持している基材がダメージを受けない範囲で、照射強度や照射時間を設定することが好ましい。基材としてプラスチックフィルムを用いた場合を例にとると、例えば、2kW(80W/cm×25cm)のランプを用い、基材表面の強度が20~300mW/cm、好ましくは50~200mW/cmになるように基材-紫外線照射ランプ間の距離を設定し、0.1秒~10分間の照射を行うことができる。 It is preferable that the irradiation intensity and the irradiation time be set within the range where the substrate carrying the first barrier layer to be irradiated is not damaged. Taking the case of using a plastic film as a base material, for example, a 2 kW (80 W / cm × 25 cm) lamp is used, and the strength of the base material surface is 20 to 300 mW / cm 2 , preferably 50 to 200 mW / cm. The distance between the base material and the ultraviolet irradiation lamp is set so as to be 2, and irradiation can be performed for 0.1 seconds to 10 minutes.
 このような紫外線の発生手段としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ(172nm、222nm、308nmの単一波長、例えば、ウシオ電機株式会社製、MDエキシマ社製など)、UV光レーザー、等が挙げられるが、特に限定されない。また、発生させた紫外線を第1バリア層に照射する際には、効率向上と均一な照射を達成する観点から、発生源からの紫外線を反射板で反射させてから第1バリア層に当てることが好ましい。 Examples of such ultraviolet ray generating means include metal halide lamps, high pressure mercury lamps, low pressure mercury lamps, xenon arc lamps, carbon arc lamps, and excimer lamps (single wavelengths of 172 nm, 222 nm, and 308 nm, for example, USHIO INC. Manufactured by MD Excimer Co., Ltd.), UV light laser, and the like. In addition, when irradiating the generated ultraviolet rays to the first barrier layer, from the viewpoint of achieving efficiency improvement and uniform irradiation, the ultraviolet rays from the generation source are reflected by the reflector and then applied to the first barrier layer. Is preferred.
 紫外線照射は、バッチ処理にも連続処理にも適合可能であり、使用する基材の形状によって適宜選定することができる。例えば、バッチ処理の場合には、第1バリア層を表面に有する積層体を上記のような紫外線発生源を具備した紫外線焼成炉で処理することができる。紫外線焼成炉自体は一般に知られており、例えば、アイグラフィクス株式会社製の紫外線焼成炉を使用することができる。また、第1バリア層を表面に有する積層体が長尺フィルム状である場合には、これを搬送させながら上記のような紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することによりセラミックス化することができる。紫外線照射に要する時間は、使用する基材や第1バリア層の組成、濃度にもよるが、一般に0.1秒~10分であり、好ましくは0.5秒~3分である。 UV irradiation can be applied to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate used. For example, in the case of batch processing, the laminated body having the first barrier layer on the surface can be processed in an ultraviolet baking furnace equipped with the above-described ultraviolet ray generation source. The ultraviolet baking furnace itself is generally known. For example, an ultraviolet baking furnace manufactured by I-Graphics Co., Ltd. can be used. Moreover, when the laminated body which has a 1st barrier layer on the surface is a long film form, by conveying this, continuously irradiating with an ultraviolet-ray in the drying zone equipped with the above ultraviolet-ray generation sources. It can be made into ceramics. The time required for ultraviolet irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, depending on the base material used and the composition and concentration of the first barrier layer.
 (真空紫外線照射処理:エキシマ照射処理)
 本発明において、最も好ましい改質処理方法は、真空紫外線照射による処理(エキシマ照射処理)である。真空紫外線照射による処理は、ポリシラザン化合物内の原子間結合力より大きい100~200nmの光エネルギーを用い、好ましくは100~180nmの波長の光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温(約200℃以下)で、酸化ケイ素膜の形成を行う方法である。
(Vacuum ultraviolet irradiation treatment: excimer irradiation treatment)
In the present invention, the most preferable modification treatment method is treatment by vacuum ultraviolet irradiation (excimer irradiation treatment). The treatment by the vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy of a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the polysilazane compound, and bonds atoms with only photons called photon processes. This is a method of forming a silicon oxide film at a relatively low temperature (about 200 ° C. or lower) by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly by action.
 本発明においての放射線源は、100~180nmの波長の光を発生させるものであれば良いが、好適には約172nmに最大放射を有するエキシマラジエータ(例えば、Xeエキシマランプ)、約185nmに輝線を有する低圧水銀蒸気ランプ、並びに230nm以下の波長成分を有する中圧および高圧水銀蒸気ランプ、および約222nmに最大放射を有するエキシマランプである。 The radiation source in the present invention may be any radiation source that emits light having a wavelength of 100 to 180 nm, but is preferably an excimer radiator having a maximum emission at about 172 nm (eg, Xe excimer lamp), and has an emission line at about 185 nm. Low pressure mercury vapor lamps, and medium and high pressure mercury vapor lamps having a wavelength component of 230 nm or less, and excimer lamps having maximum emission at about 222 nm.
 このうち、Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから、発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。 Among these, the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen.
 また、波長の短い172nmの光のエネルギーは、有機物の結合を解離させる能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン塗膜の改質を実現できる。 Also, it is known that the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds. Due to the high energy possessed by the active oxygen, ozone and ultraviolet radiation, the polysilazane coating can be modified in a short time.
 エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で、すなわち短い波長でエネルギーを照射するため、解射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるPETなどのフレシキブルフィルム材料に適している。 ¡Excimer lamps have high light generation efficiency and can be lit with low power. In addition, light having a long wavelength that causes a temperature increase due to light is not emitted, and energy is irradiated in the ultraviolet region, that is, in a short wavelength, so that the increase in the surface temperature of the target object is suppressed. For this reason, it is suitable for flexible film materials such as PET that are easily affected by heat.
 紫外線照射時の反応には、酸素が必要であるが、真空紫外線は、酸素による吸収があるため紫外線照射工程での効率が低下しやすいことから、真空紫外線の照射は、可能な限り酸素濃度および水蒸気濃度の低い状態で行うことが好ましい。すなわち、真空紫外線照射時の酸素濃度は、10~20,000体積ppmとすることが好ましく、より好ましくは50~10,000体積ppmである。また、転化プロセスの間の水蒸気濃度は、好ましくは1000~4000体積ppmの範囲である。 Oxygen is required for the reaction at the time of ultraviolet irradiation, but since vacuum ultraviolet rays are absorbed by oxygen, the efficiency in the ultraviolet irradiation process tends to decrease. It is preferable to perform in a state where the water vapor concentration is low. That is, the oxygen concentration at the time of irradiation with vacuum ultraviolet rays is preferably 10 to 20,000 volume ppm, more preferably 50 to 10,000 volume ppm. Also, the water vapor concentration during the conversion process is preferably in the range of 1000 to 4000 ppm by volume.
 真空紫外線照射時に用いられる、照射雰囲気を満たすガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。 The gas satisfying the irradiation atmosphere used at the time of irradiation with vacuum ultraviolet rays is preferably a dry inert gas, and particularly preferably dry nitrogen gas from the viewpoint of cost. The oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.
 真空紫外線照射工程において、ポリシラザン塗膜が受ける塗膜面での該真空紫外線の照度は1mW/cm~10W/cmであると好ましく、30mW/cm~200mW/cmであることがより好ましく、50mW/cm~160mW/cmであるとさらに好ましい。1mW/cm以上であれば、十分な改質効率が得られ、10W/cm以下であれば、塗膜にアブレーションを生じにくく、基材にダメージを与えにくい。 In the vacuum ultraviolet irradiation step, the illuminance of the vacuum ultraviolet light on the coating surface received by the polysilazane coating is preferably 1 mW / cm 2 to 10 W / cm 2 , more preferably 30 mW / cm 2 to 200 mW / cm 2. preferably, further preferably at 50mW / cm 2 ~ 160mW / cm 2. If it is 1 mW / cm 2 or more, sufficient reforming efficiency is obtained, and if it is 10 W / cm 2 or less, it is difficult to cause ablation in the coating film and damage the substrate.
 塗膜面における真空紫外線の照射エネルギー量(積算光量)は、10~10000mJ/cmであることが好ましく、100~8000mJ/cmであることがより好ましく、200~6000mJ/cmであることがさらに好ましい。10mJ/cm以上であれば、改質が十分に進行しうる。10000mJ/cm以下であれば、過剰改質によるクラック発生や、基材の熱変形が生じにくい。 Irradiation energy amount of the VUV in the coated surface (integrated quantity of light), it preferably from 10 ~ 10000mJ / cm 2, more preferably 100 ~ 8000mJ / cm 2, a 200 ~ 6000mJ / cm 2 Is more preferable. If it is 10 mJ / cm 2 or more, the modification can proceed sufficiently. If it is 10,000 mJ / cm 2 or less, cracking due to over-reformation and thermal deformation of the substrate are unlikely to occur.
 また、真空紫外光(VUV)を照射する際の、酸素濃度は300~10000体積ppm(1体積%)とすることが好ましく、更に好ましくは、500~5000体積ppmである。このような酸素濃度の範囲に調整することにより、酸素過多のバリア層の生成を防止してバリア性の劣化を防止することができる。 In addition, the oxygen concentration at the time of irradiation with vacuum ultraviolet light (VUV) is preferably 300 to 10000 volume ppm (1 volume%), more preferably 500 to 5000 volume ppm. By adjusting to such an oxygen concentration range, it is possible to prevent the formation of an excessive oxygen barrier layer and to prevent the deterioration of the barrier property.
 Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。また、有機物の結合を解離させる波長の短い172nmの光のエネルギーは能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン化合物を含む塗布層の改質を実現できる。従って、波長185nm、254nmの発する低圧水銀ランプやプラズマ洗浄と比べて高スループットに伴うプロセス時間の短縮や設備面積の縮小、熱によるダメージを受けやすい有機材料やプラスチック基板、樹脂フィルム等への照射を可能としている。 The Xe excimer lamp is excellent in luminous efficiency because it emits ultraviolet light having a short wavelength of 172 nm at a single wavelength. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen. In addition, it is known that the energy of light having a short wavelength of 172 nm for dissociating the bonds of organic substances has high ability. The coating layer containing the polysilazane compound can be modified in a short time by the high energy of the active oxygen, ozone and ultraviolet radiation. Therefore, compared to low-pressure mercury lamps with wavelengths of 185 nm and 254 nm and plasma cleaning, shortening process time and equipment area associated with high throughput, irradiation to organic materials, plastic substrates, resin films, etc. that are easily damaged by heat. It is possible.
 上記の塗布によって形成される層は、ポリシラザン化合物を含む塗膜に真空紫外線を照射する工程において、ポリシラザンの少なくとも一部が改質されることで、層全体としてSiOの組成で示される酸化窒化ケイ素を含むバリア層が形成される。 The layer formed by the above coating has a composition of SiO x N y M z as a whole layer by modifying at least part of the polysilazane in the step of irradiating the coating film containing the polysilazane compound with vacuum ultraviolet rays. A barrier layer comprising the silicon oxynitride shown is formed.
 なお、膜組成は、XPS表面分析装置を用いて、原子組成比を測定することで測定できる。また、ポリシラザン化合物を含有する溶液を塗布して形成されたバリア層を切断して切断面をXPS表面分析装置で原子組成比を測定することでも測定することができる。 The film composition can be measured by measuring the atomic composition ratio using an XPS surface analyzer. Alternatively, the barrier layer formed by applying a solution containing a polysilazane compound is cut, and the cut surface can be measured by measuring the atomic composition ratio with an XPS surface analyzer.
 また、膜密度は、目的に応じて適切に設定され得る。例えば、ポリシラザン化合物を含有する溶液を塗布して形成されたバリア層の膜密度は、1.5~2.6g/cmの範囲にあることが好ましい。この範囲内であれば、膜の緻密さが向上しガスバリア性の劣化や、高温高湿条件下での膜の劣化を防止することができる。 Further, the film density can be appropriately set according to the purpose. For example, the film density of the barrier layer formed by applying a solution containing a polysilazane compound is preferably in the range of 1.5 to 2.6 g / cm 3 . Within this range, the density of the film can be improved and deterioration of gas barrier properties and film deterioration under high temperature and high humidity conditions can be prevented.
 また、改質に用いられる真空紫外光は、CO、COおよびCHの少なくとも一種を含むガスで形成されたプラズマにより発生させてもよい。さらに、CO、COおよびCHの少なくとも一種を含むガス(以下、炭素含有ガスとも称する)は、炭素含有ガスを単独で使用してもよいが、希ガスまたはHを主ガスとして、炭素含有ガスを少量添加することが好ましい。プラズマの生成方式としては容量結合プラズマなどが挙げられる。 Further, the vacuum ultraviolet light used for reforming, CO, may be generated by plasma formed in a gas containing at least one of CO 2 and CH 4. Further, as the gas containing at least one of CO, CO 2 and CH 4 (hereinafter also referred to as carbon-containing gas), the carbon-containing gas may be used alone, but carbon containing rare gas or H 2 as the main gas. It is preferable to add a small amount of the contained gas. Examples of plasma generation methods include capacitively coupled plasma.
 上記のように改質処理を行うことによって、バリア層が完成され、本発明のガスバリア性フィルムが得られる。 By performing the modification treatment as described above, the barrier layer is completed, and the gas barrier film of the present invention is obtained.
 (後処理)
 ポリシラザン化合物を含む溶液を塗布することによって形成されたバリア層は、塗布した後または改質処理した後、特には改質処理した後、後処理を施してもよい。ここで述べる後処理とは、温度40~120℃の温度処理(熱処理)あるいは湿度:30%以上100%以下、または、水浴に浸漬した湿度処理も含み、処理時間は、30秒から100時間の範囲より選択される範囲と定義する。温度と湿度の両方の処理を施しても良く、どちらか一方だけでも良いが、少なくとも温度処理(熱処理)を施すことが好ましい。好ましい条件は、温度40~120℃、湿度30%から85%、処理時間は30秒から100時間である。
(Post-processing)
The barrier layer formed by applying a solution containing a polysilazane compound may be subjected to post-treatment after coating or after modification, in particular after modification. The post-treatment described here includes temperature treatment (heat treatment) at a temperature of 40 to 120 ° C. or humidity: 30% to 100%, or humidity treatment immersed in a water bath, and the treatment time is from 30 seconds to 100 hours. It is defined as a range selected from the range. Both temperature and humidity treatments may be performed, or only one of them may be performed, but at least temperature treatment (heat treatment) is preferably performed. Preferred conditions are a temperature of 40 to 120 ° C., a humidity of 30% to 85%, and a treatment time of 30 seconds to 100 hours.
 温度処理を施す際は、ホットプレート上に置く等の接触式方式、オーブンにつるして放置する非接触方式等特に方式は問わず、併用でも、単式でも良い。 When performing the temperature treatment, any method such as a contact method such as placing on a hot plate or a non-contact method standing on an oven may be used.
 なお、ポリシラザン化合物を含有する溶液を塗布して形成されたバリア層は、1層のみを形成してもよく、2層以上を積層してもよい。このように複数の塗布層を設けることでガスバリア性がより向上しうる。好ましくは、基材上に、気相成膜によって形成されたバリア層を形成し、次いで、添加元素を含むポリシラザン化合物を含有する溶液を塗布して形成されたバリア層を、2層以上、例えば2層または3層、積層する。 In addition, the barrier layer formed by applying a solution containing a polysilazane compound may form only one layer or may laminate two or more layers. By providing a plurality of coating layers in this way, the gas barrier property can be further improved. Preferably, two or more barrier layers formed by applying a solution containing a polysilazane compound containing an additive element on a substrate and then forming a barrier layer formed by vapor phase film formation, for example, Two or three layers are stacked.
 [電子デバイス]
 本発明のガスバリア性フィルムは、空気中の化学成分(酸素、水、窒素酸化物、硫黄酸化物、オゾン等)によって性能が劣化するデバイスに好ましく用いることができる。したがって、本発明は、電子デバイス本体と本発明の方法によって製造されるガスバリア性フィルムまたは本発明に係るガスバリア性フィルムとを含む、電子デバイスをも提供する。
[Electronic device]
The gas barrier film of the present invention can be preferably used for a device whose performance is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air. Accordingly, the present invention also provides an electronic device comprising the electronic device body and the gas barrier film produced by the method of the present invention or the gas barrier film according to the present invention.
 前記デバイスの例としては、例えば、有機EL素子、液晶表示素子(LCD)、薄膜トランジスタ、タッチパネル、電子ペーパー、太陽電池(PV)等の電子デバイスを挙げることができる。本発明の効果がより効率的に得られるという観点から、有機EL素子または太陽電池に好ましく用いられ、有機EL素子に特に好ましく用いられる。 Examples of the devices include electronic devices such as organic EL elements, liquid crystal display elements (LCD), thin film transistors, touch panels, electronic paper, solar cells (PV), and the like. From the viewpoint that the effect of the present invention can be obtained more efficiently, it is preferably used for an organic EL device or a solar cell, and particularly preferably used for an organic EL device.
 本発明のガスバリア性フィルムは、また、デバイスの膜封止に用いることができる。すなわち、本発明は、電子デバイス本体と、本発明のガスバリア性フィルムとを含む電子デバイスをも提供する。具体的には、デバイス自体を支持体として、その表面に本発明のガスバリア性フィルムを設ける。なお、ガスバリア性フィルムを設ける前にデバイスを保護層で覆ってもよい。 The gas barrier film of the present invention can also be used for device film sealing. That is, the present invention also provides an electronic device including the electronic device body and the gas barrier film of the present invention. Specifically, the gas barrier film of the present invention is provided on the surface of the device itself as a support. Note that the device may be covered with a protective layer before providing the gas barrier film.
 本発明のガスバリア性フィルムは、デバイスの基板や固体封止法による封止のためのフィルムとしても用いることができる。固体封止法とはデバイスの上に保護層を形成した後、接着剤層、ガスバリア性フィルムを重ねて硬化する方法である。接着剤は特に制限はないが、熱硬化性エポキシ樹脂、光硬化性アクリレート樹脂等が例示される。 The gas barrier film of the present invention can also be used as a device substrate or a film for sealing by a solid sealing method. The solid sealing method is a method in which after a protective layer is formed on a device, an adhesive layer and a gas barrier film are stacked and cured. Although there is no restriction | limiting in particular in an adhesive agent, A thermosetting epoxy resin, a photocurable acrylate resin, etc. are illustrated.
 有機EL素子としては、ガスバリア性フィルムを用いた有機EL素子の例は、特開2007-30387号公報に詳しく記載されている。 As the organic EL element, an example of an organic EL element using a gas barrier film is described in detail in JP-A-2007-30387.
 液晶表示素子としては、反射型液晶表示装置は、下から順に、下基板、反射電極、下配向膜、液晶層、上配向膜、透明電極、上基板、λ/4板、そして偏光膜からなる構成を有する。本発明におけるガスバリア性フィルムは、前記透明電極基板および上基板として使用することができる。 As a liquid crystal display element, a reflective liquid crystal display device is composed of a lower substrate, a reflective electrode, a lower alignment film, a liquid crystal layer, an upper alignment film, a transparent electrode, an upper substrate, a λ / 4 plate, and a polarizing film in order from the bottom. It has a configuration. The gas barrier film in the present invention can be used as the transparent electrode substrate and the upper substrate.
 太陽電池としては、本発明のガスバリア性フィルムは、太陽電池素子の封止フィルムとしても用いることができる。ここで、本発明のガスバリア性フィルムは、バリア層が太陽電池素子に近い側となるように封止することが好ましい。 As a solar cell, the gas barrier film of the present invention can also be used as a sealing film for solar cell elements. Here, the gas barrier film of the present invention is preferably sealed so that the barrier layer is closer to the solar cell element.
 その他の適用例としては、特表平10-512104号公報に記載の薄膜トランジスタ、特開平5-127822号公報、特開2002-48913号公報等に記載のタッチパネル、特開2000-98326号公報に記載の電子ペーパー等が挙げられる。 As other application examples, the thin film transistor described in JP-T-10-512104, the touch panel described in JP-A-5-127822, JP-A-2002-48913, etc., and described in JP-A-2000-98326 Electronic paper and the like.
 本発明のガスバリア性フィルムは、光学部材としても用いることができる。光学部材の例としては円偏光板等が挙げられる。 The gas barrier film of the present invention can also be used as an optical member. Examples of the optical member include a circularly polarizing plate.
 円偏光板は、本発明におけるガスバリア性フィルムを基板としλ/4板と偏光板とを積層し、作製することができる。この場合、λ/4板の遅相軸と偏光板の吸収軸とのなす角が45°になるように積層する。このような偏光板は、長手方向(MD)に対し45°の方向に延伸されているものを用いることが好ましく、例えば、特開2002-865554号公報に記載のものを好適に用いることができる。 The circularly polarizing plate can be produced by laminating a λ / 4 plate and a polarizing plate using the gas barrier film in the present invention as a substrate. In this case, the lamination is performed so that the angle formed by the slow axis of the λ / 4 plate and the absorption axis of the polarizing plate is 45 °. As such a polarizing plate, one that is stretched in a direction of 45 ° with respect to the longitudinal direction (MD) is preferably used. For example, those described in JP-A-2002-865554 can be suitably used. .
 以下、実施例および比較例を用いて本発明を具体的に説明するが、本発明は以下の実施例には限定されない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described using examples and comparative examples, but the present invention is not limited to the following examples. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
 <実施例1-1>
 《ガスバリア性フィルムの作製》
 〔ガスバリア性フィルム1の作製〕
 (樹脂基材の準備)
 厚さ125μmのポリエチレンテレフタレート(PET)フィルム(帝人デュポンフィルム(株)製、商品名「テイジンテトロンフィルム」)を、樹脂基材として用いた。
<Example 1-1>
<< Production of gas barrier film >>
[Preparation of gas barrier film 1]
(Preparation of resin base material)
A polyethylene terephthalate (PET) film having a thickness of 125 μm (trade name “Teijin Tetron Film” manufactured by Teijin DuPont Films Ltd.) was used as a resin substrate.
 (アンカー層の形成)
 上記樹脂基材の易接着面側に、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTARZ7501を用い、乾燥後の層厚が4μmになるようにバーコーターで塗布した後、乾燥条件として、80℃で3分間の乾燥を行った。次いで、空気雰囲気下で、高圧水銀ランプを使用し、硬化条件;500mW/cm・250mJ/cmで硬化を行い、アンカー層を形成した。
(Formation of anchor layer)
On the easy-adhesion surface side of the resin base material, a UV curable organic / inorganic hybrid hard coat material OPSTARZ5011 manufactured by JSR Corporation was used, and after applying with a bar coater so that the layer thickness after drying was 4 μm, drying conditions As a result, drying was performed at 80 ° C. for 3 minutes. Next, curing was performed under an air atmosphere using a high-pressure mercury lamp under curing conditions: 500 mW / cm 2 · 250 mJ / cm 2 to form an anchor layer.
 (無機バリア層の形成:ローラーCVD法)
 図2に記載の磁場を印加したローラー間放電プラズマCVD装置(以下、この方法をローラーCVD法と称す。)を用い、樹脂基材の裏面(アンカー層を設けた側と反対側の面)が成膜ローラーと接触するようにして、樹脂基材を装置に装着し、下記の成膜条件(プラズマCVD条件)により、アンカー層上に無機バリア層を、厚さが100nmとなる条件で成膜した。
(Formation of inorganic barrier layer: Roller CVD method)
Using the inter-roller discharge plasma CVD apparatus to which the magnetic field shown in FIG. 2 is applied (hereinafter, this method is referred to as “roller CVD method”), the back surface of the resin substrate (the surface opposite to the side on which the anchor layer is provided) A resin base material is attached to the apparatus so as to be in contact with the film forming roller, and an inorganic barrier layer is formed on the anchor layer under a condition that the thickness is 100 nm under the following film forming conditions (plasma CVD conditions). did.
 〈プラズマCVD条件〉
 原料ガス(ヘキサメチルジシロキサン、略称:HMDSO)の供給量:50sccm(Standard Cubic Centimeter per Minute)
 酸素ガス(O)の供給量:500sccm
 真空チャンバ内の真空度:3Pa
 プラズマ発生用電源からの印加電力:0.8kW
 プラズマ発生用電源の周波数:70kHz
 樹脂基材の搬送速度:2m/min
 (第1バリア層の形成:シラザン層)
 続いて、下記の第1バリア層前駆体液を、無機バリア層の上にヘキサメチルジシラザン(シラザンとも称する)層としてダイコーター法により塗布成膜した後、80℃で乾燥させた。このようにして、無機バリア層の上に、厚さ50nmの第1バリア層を形成した。
<Plasma CVD conditions>
Feed rate of raw material gas (hexamethyldisiloxane, abbreviation: HMDSO): 50 sccm (Standard Cubic Centimeter per Minute)
Supply amount of oxygen gas (O 2 ): 500 sccm
Degree of vacuum in the vacuum chamber: 3Pa
Applied power from the power source for plasma generation: 0.8 kW
Frequency of power source for plasma generation: 70 kHz
Resin substrate transport speed: 2 m / min
(Formation of first barrier layer: silazane layer)
Subsequently, the following first barrier layer precursor liquid was applied and formed as a hexamethyldisilazane (also referred to as silazane) layer on the inorganic barrier layer by a die coater method, and then dried at 80 ° C. In this way, a first barrier layer having a thickness of 50 nm was formed on the inorganic barrier layer.
 〈第1バリア層前駆体液(塗布液)の調製〉
 ヘキサメチルジシラザン(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)を、溶媒として酢酸n-ブチル(n-buthyl acetate)を用いて固形分濃度が5質量%の溶液に調製した。
<Preparation of first barrier layer precursor liquid (coating liquid)>
Hexamethyldisilazane (manufactured by Momentive Performance Materials Japan GK) was prepared into a solution having a solid content concentration of 5% by mass using n-butyl acetate as a solvent.
 (第2バリア層の形成:金属化合物層)
 続いて、第1バリア層の上に[B(OCH(CH](東京化成工業株式会社製、ほう酸トリイソプロピル)をメトキシメタノールで2質量%に希釈した液をダイコーター法で塗布成膜した。その後、80℃で乾燥させることにより、第2層である第1バリア層の上に、厚さ80nmの第2バリア層を形成した。その後下記の真空紫外線処理を行い第2層(第1バリア層)、第3層(第2バリア層)の改質を行った。
(Formation of second barrier layer: metal compound layer)
Subsequently, a solution obtained by diluting [B (OCH (CH 3 ) 2 ) 3 ] (manufactured by Tokyo Chemical Industry Co., Ltd., triisopropyl borate) with methoxymethanol to 2% by mass on the first barrier layer by a die coater method. A coating film was formed. Thereafter, by drying at 80 ° C., a second barrier layer having a thickness of 80 nm was formed on the first barrier layer as the second layer. Thereafter, the following vacuum ultraviolet ray treatment was performed to modify the second layer (first barrier layer) and the third layer (second barrier layer).
 さらに、上記方法で長さ2000mのフィルムを連続成膜した。 Furthermore, a 2000 m long film was continuously formed by the above method.
 (真空紫外線(VUV光)照射処理条件)
 本発明における真空紫外線(VUV光)の照射は、下記条件にて、下記の装置を用いランプと試料との間隔(Gapともいう)を6mmとなるように試料を設置し、照射した。
(Vacuum ultraviolet (VUV light) irradiation treatment conditions)
In the present invention, irradiation with vacuum ultraviolet rays (VUV light) was performed under the following conditions, using the following apparatus, placing the sample so that the distance between the lamp and the sample (also referred to as Gap) was 6 mm.
 また、真空紫外線(VUV光)照射時の酸素濃度の調整は、照射庫内に導入する窒素ガス、及び酸素ガスの流量をフローメーターにより測定し、庫内に導入するガスの窒素ガス/酸素ガス流量比により調整した。 In addition, the oxygen concentration during irradiation with vacuum ultraviolet rays (VUV light) is adjusted by measuring the flow rate of nitrogen gas and oxygen gas introduced into the irradiation chamber with a flow meter, and nitrogen gas / oxygen gas of the gas introduced into the chamber. The flow rate ratio was adjusted.
  真空紫外線照射装置:キセノンエキシマ照射装置
           (MDエキシマ社製、MECL-M-1-200)
  照度:140mW/cm(172nm)
  処理環境:ドライ窒素ガス雰囲気下
  処理環境の酸素濃度:0.1体積%
  基材の搬送スピード:5m/min
  エキシマ光露光積算量:6000mJ/cm
 <実施例1-2~1-8>
 下記表1-1に記載の材料および条件を使用した以外は、実施例1-1と同様にして、ガスバリア性フィルムを製造した。表中、ALCHは川研ファインケミカル株式会社製、アルミニウムエチルアセトアセテート・ジイソプロピレートを意味する。また、表中Ti(OR)のRは、プロピル基を意味する。また、表中DBEはジブチルエーテル、PHPSはパーヒドロポリシラザンを意味する。
Vacuum ultraviolet irradiation equipment: Xenon excimer irradiation equipment (MD excimer, MECL-M-1-200)
Illuminance: 140 mW / cm 2 (172 nm)
Processing environment: Under dry nitrogen gas atmosphere Oxygen concentration in processing environment: 0.1% by volume
Substrate transport speed: 5 m / min
Excimer light exposure integrated amount: 6000 mJ / cm 2
<Examples 1-2 to 1-8>
A gas barrier film was produced in the same manner as in Example 1-1 except that the materials and conditions listed in Table 1-1 were used. In the table, ALCH means aluminum ethyl acetoacetate diisopropylate manufactured by Kawaken Fine Chemical Co., Ltd. In the table, R in Ti (OR) 4 means a propyl group. In the table, DBE means dibutyl ether, and PHPS means perhydropolysilazane.
 なお、PHPSを用いた場合の第1バリア層の形成方法は以下の通りである。以下は溶媒としてn-buthyl acetateを用いた場合の形成方法の例であるが、各実施例において、溶媒は下記表1-1に記載の溶媒を用いた。 In addition, the formation method of the 1st barrier layer at the time of using PHPS is as follows. The following are examples of formation methods when n-butyl acetate is used as a solvent. In each example, the solvents listed in Table 1-1 were used as the solvent.
 (PHPSを用いた第1バリア層の形成:ポリシラザン層)
 無機バリア層を形成した後、下記のPHPSを用いた第1バリア層前駆体液を、無機バリア層の上にパーヒドロポリシラザン層としてダイコーター法により塗布成膜し、その後、80℃で乾燥させた。このようにして、無機バリア層の上に、厚さ50nmの第1バリア層を形成した。
(Formation of first barrier layer using PHPS: polysilazane layer)
After forming the inorganic barrier layer, the following first barrier layer precursor solution using PHPS was coated on the inorganic barrier layer as a perhydropolysilazane layer by a die coater method, and then dried at 80 ° C. . In this way, a first barrier layer having a thickness of 50 nm was formed on the inorganic barrier layer.
 〈PHPSを用いた第1バリア層前駆体液(塗布液)の調製〉
 パーヒドロポリシラザン(PHPS)溶液は、無触媒のパーヒドロポリシラザン20質量%ジブチルエーテル溶液(AZエレクトロニックマテリアルズ(株)製、アクアミカ(登録商標) NN120-20)、アミン触媒(N,N,N’,N’-テトラメチル-1,6-ジアミノヘキサン)をパーヒドロポリシラザンに対して5質量%含有するパーヒドロポリシラザン20質量%ジブチルエーテル溶液(AZエレクトロニックマテリアルズ(株)製、アクアミカ NAX120-20)を混合して用いた。この混合液を、n-buthyl acetateで適宜希釈することにより、アミン触媒をパーヒドロポリシラザンに対して1質量%、さらにパーヒドロポリシラザン1.7質量%を含むn-buthyl acetate溶液として調製した。
<Preparation of First Barrier Layer Precursor Solution (Coating Solution) Using PHPS>
Perhydropolysilazane (PHPS) solution is a non-catalytic perhydropolysilazane 20% by weight dibutyl ether solution (manufactured by AZ Electronic Materials, Aquamica (registered trademark) NN120-20), amine catalyst (N, N, N ′ , N′-tetramethyl-1,6-diaminohexane) perhydropolysilazane in an amount of 5% by mass with respect to perhydropolysilazane, 20% by mass dibutyl ether solution (manufactured by AZ Electronic Materials Co., Ltd., Aquamica NAX120-20) Were used as a mixture. This mixed solution was appropriately diluted with n-butyl acetate to prepare an n-butyl acetate solution containing 1% by mass of the amine catalyst with respect to perhydropolysilazane and 1.7% by mass of perhydropolysilazane.
 なお、後述の比較例1-1~1~5、実施例2-1~2-3、比較例2-1、実施例3-1~3-3、比較例3-1の第1バリア層についても上記(PHPSを用いた第1バリア層の形成:ポリシラザン層)と同様の方法で、ただし、溶媒および条件は表1-1、表2-1、表3-1に記載の溶媒および条件を用いて調製した。 Incidentally, first barrier layers of Comparative Examples 1-1 to 1-5, Examples 2-1 to 2-3, Comparative Example 2-1, Examples 3-1 to 3-3, and Comparative Example 3-1, which will be described later. In the same manner as in the above (Formation of first barrier layer using PHPS: polysilazane layer), except that the solvents and conditions are those shown in Table 1-1, Table 2-1, and Table 3-1. It was prepared using.
 <比較例1-1~1-5>
 下記表1-1に記載の材料および条件を使用した以外は、実施例1-1と同様にして、ガスバリア性フィルムを製造した。なお、比較例1-4~1-5については、第2バリア層を形成しなかった。また、比較例1-5については無機バリア層を形成しなかった。
<Comparative Examples 1-1 to 1-5>
A gas barrier film was produced in the same manner as in Example 1-1 except that the materials and conditions listed in Table 1-1 were used. In Comparative Examples 1-4 to 1-5, the second barrier layer was not formed. In Comparative Example 1-5, no inorganic barrier layer was formed.
 <実施例2-1~2-3>
 下記表2-1に記載の材料および条件を使用した以外は、実施例1-1と同様にして、ガスバリア性フィルムを製造した。なお、実施例2-1~2-3については、第2バリア層の厚さが200nmと厚いフィルムを製造した。
<Examples 2-1 to 2-3>
A gas barrier film was produced in the same manner as in Example 1-1 except that the materials and conditions described in Table 2-1 were used. For Examples 2-1 to 2-3, a film having a thick second barrier layer of 200 nm was manufactured.
 <比較例2-1>
 下記表2-1に記載の材料および条件を使用した以外は、実施例1-1と同様にして、ガスバリア性フィルムを製造した。なお、比較例2-1については、第2バリア層を形成しなかった。
<Comparative Example 2-1>
A gas barrier film was produced in the same manner as in Example 1-1 except that the materials and conditions described in Table 2-1 were used. In Comparative Example 2-1, the second barrier layer was not formed.
 <実施例3-1~3-3>
 下記表3-1に記載の材料および条件を使用した以外は、実施例1-1と同様にして、ガスバリア性フィルムを製造した。なお、実施例3-1~3-3については、第1バリア層および第2バリア層を同時重層塗布法により形成した。
<Examples 3-1 to 3-3>
A gas barrier film was produced in the same manner as in Example 1-1 except that the materials and conditions shown in Table 3-1 were used. In Examples 3-1 to 3-3, the first barrier layer and the second barrier layer were formed by the simultaneous multilayer coating method.
 <比較例3-1>
 下記表3-1に記載の材料および条件を使用した以外は、実施例1-1と同様にして、ガスバリア性フィルムを製造した。なお、比較例3-1については、第2バリア層を形成しなかった。
<Comparative Example 3-1>
A gas barrier film was produced in the same manner as in Example 1-1 except that the materials and conditions shown in Table 3-1 were used. In Comparative Example 3-1, the second barrier layer was not formed.
 <評価方法>
 上記実施例1-1~1-8、2-1~2-3、3-1~3-3、および、比較例1-1~1-5、2-1、3-1で得られたガスバリア性フィルムについて、以下の項目で評価した。評価結果は、下記表1-2、2-2、3-2に示した。
<Evaluation method>
Obtained in Examples 1-1 to 1-8, 2-1 to 2-3, 3-1 to 3-3, and Comparative Examples 1-1 to 1-5, 2-1, 3-1 The gas barrier film was evaluated according to the following items. The evaluation results are shown in Tables 1-2, 2-2 and 3-2 below.
 (Th1/Th2の算出方法)
 得られた各ガスバリア性フィルムについて、以下の測定条件で、XPSデプスプロファイルを測定した。
(Th1 / Th2 calculation method)
About each obtained gas-barrier film, XPS depth profile was measured on the following measuring conditions.
 (測定条件)
 エッチングイオン種:アルゴン(Ar
 エッチング速度(SiO熱酸化膜換算値):0.01nm/sec
 X線光電子分光装置:Thermo Fisher Scientific社製、機種名“VG Theta Probe”
 照射X線:単結晶分光AlKα
 X線のスポットおよびそのサイズ:800×400μmの楕円形。
(Measurement condition)
Etching ion species: Argon (Ar + )
Etching rate (converted to SiO 2 thermal oxide film): 0.01 nm / sec
X-ray photoelectron spectrometer: Model name “VG Theta Probe” manufactured by Thermo Fisher Scientific
Irradiation X-ray: Single crystal spectroscopy AlKα
X-ray spot and its size: 800 × 400 μm oval.
 得られた膜厚方向のXPS測定結果により、Si元素量と金属化合物に含まれる金属(M)元素量との分布を得た。その分布から、M/Si≧2となる領域の厚みをTh1、0.1≦M/Si≦1となる領域の厚みをTh2とした。 The distribution of the amount of Si element and the amount of metal (M) element contained in the metal compound was obtained from the XPS measurement result in the film thickness direction. From the distribution, the thickness of the region where M / Si ≧ 2 is Th1, and the thickness of the region where 0.1 ≦ M / Si ≦ 1 is Th2.
 (水蒸気バリア性の評価)
 水蒸気バリア性は、各ガスバリア性フィルムについて、成膜開始直後および2000m成膜後の2つの状態でそれぞれ評価した。評価結果は、下記表中「WVTR」の項目に記載した。
(Evaluation of water vapor barrier properties)
The water vapor barrier property was evaluated for each gas barrier film in two states immediately after the start of film formation and after 2000 m film formation. The evaluation results are listed in the item “WVTR” in the following table.
 ・装置
 蒸着装置:日本電子(株)製真空蒸着装置JEE-400
 恒温恒湿度オーブン:Yamato Humidic ChamberIG47M
 水分と反応して腐食する金属:カルシウム(粒状)
 水蒸気不透過性の金属:アルミニウム(φ3~5mm、粒状)
 ・水蒸気バリア性評価用セルの作製
 真空蒸着装置(日本電子製真空蒸着装置 JEE-400)を用い、それぞれのガスバリア性フィルムの表面に金属カルシウムを蒸着させた。その後、乾燥窒素ガス雰囲気下で、厚さ0.2mmの石英ガラスに封止用紫外線硬化樹脂(ナガセケムテックス製)を介して金属カルシウム蒸着面を対面させて接着し、紫外線を照射することで、評価用セルを作製した。
・ Evaporation equipment: Vacuum evaporation equipment JEE-400 manufactured by JEOL Ltd.
Constant temperature and humidity oven: Yamato Humidic Chamber IG47M
Metal that reacts with water and corrodes: Calcium (granular)
Water vapor impermeable metal: Aluminum (φ3-5mm, granular)
-Preparation of water vapor barrier property evaluation cell Using a vacuum vapor deposition apparatus (JEOL-made vacuum vapor deposition apparatus JEE-400), metallic calcium was vapor-deposited on the surface of each gas barrier film. After that, in a dry nitrogen gas atmosphere, the metal calcium vapor deposition surface is bonded and bonded to quartz glass having a thickness of 0.2 mm via a sealing ultraviolet curable resin (manufactured by Nagase ChemteX) and irradiated with ultraviolet rays. An evaluation cell was produced.
 得られた試料(評価用セル)を85℃、85%RHの高温高湿下で保存し、金属カルシウムが100%腐食するまでにかかる時間を測定した。 The obtained sample (evaluation cell) was stored under high temperature and high humidity of 85 ° C. and 85% RH, and the time taken for the metal calcium to corrode 100% was measured.
 なお、ガスバリア性フィルム面以外からの水蒸気の透過がないことを確認するために、比較試料としてガスバリア性フィルムの代わりに、厚さ0.2mmの石英ガラス板を用いて金属カルシウムを蒸着した試料を、同様な85℃、85%RHの高温高湿下保存を行い、1000時間経過後でも金属カルシウム腐食が発生しないことを確認した。 In addition, in order to confirm that there is no permeation of water vapor from other than the gas barrier film surface, a sample obtained by vapor-depositing metallic calcium using a quartz glass plate having a thickness of 0.2 mm instead of the gas barrier film as a comparative sample was used. The same storage at 85 ° C. and 85% RH under high temperature and high humidity was conducted, and it was confirmed that no corrosion of metallic calcium occurred even after 1000 hours.
 こうして得られた各ガスバリア性フィルムの100%腐食時間を下記6段階にて評価した。
×:30時間以下
△×:30時間を超えて100時間以下
△ :100時間を超えて300時間以下
〇△:300時間を超えて600時間以下
○ :600時間を超えて1000時間以下
◎ :1000時間超。
The 100% corrosion time of each gas barrier film thus obtained was evaluated in the following 6 stages.
×: 30 hours or less Δ ×: 30 hours to 100 hours or less Δ: 100 hours to 300 hours or less ○ Δ: 300 hours to 600 hours or less ○: 600 hours to 1000 hours or less ◎: 1000 Over time.
 (屈曲評価)
 得られたガスバリア性フィルムそれぞれについて、85℃、85%RHで100時間保存した後、3cm×12cmのサンプル計5枚を直径5mmφの棒に巻き付け、生じたクラックの本数測定・5サンプルの合計値を計測し評価した。評価結果は、下記表中「クラック」の項目に記載した。
×:21本以上
△ :11~20本
△○:4~10本
○ :1~3本
◎ :発生なし。
(Bending evaluation)
Each of the obtained gas barrier films was stored at 85 ° C. and 85% RH for 100 hours, and then a total of five 3 cm × 12 cm samples were wound around a 5 mm diameter rod, and the number of cracks generated was measured. Was measured and evaluated. The evaluation results are listed in the item “Crack” in the table below.
×: 21 or more △: 11 to 20 △: 4 to 10 ○: 1 to 3 ◎: No occurrence.
 (ランプ照度)
 各ガスバリア性フィルムを2000mに亘って製膜した後、改質に用いたランプの照度をUV(VUV)照度計で測定することによりで調査した。2000m製膜前のUV照度に対する2000m製膜後のUV照度の割合を算出した。ランプ照度は、下記の評価基準で評価した。
◎ :98%以上
○ :93%以上、98%未満
△ :85%以上、93%未満
△×:70%以上、85%未満
×:70%未満。
(Lamp illuminance)
After each gas barrier film was formed over 2000 m, the illuminance of the lamp used for the modification was measured by measuring with a UV (VUV) illuminometer. The ratio of the UV illuminance after 2000 m film formation to the UV illuminance before 2000 m film formation was calculated. The lamp illuminance was evaluated according to the following evaluation criteria.
A: 98% or more B: 93% or more, less than 98% Δ: 85% or more, less than 93% Δ ×: 70% or more, less than 85% ×: less than 70%
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 上記表1-2が示すように、第1バリア層形成と第2バリア層形成とにそれぞれ特定の範囲の溶解度パラメーターの溶媒を使用することにより、実施例1-1~1-8は、比較例1-3~1-5に対比して、高温高湿下においても優れたバリア性能を示し、クラック発生が防止できたことが分かる。また、比較例1-3~1-5に対比すると、実施例1-1~1-8では、2000mの長尺体のフィルムを製造した場合にも、改質度合いの差に由来するバリア性能の低下が抑制されていることが分かる。 As shown in Table 1-2 above, Examples 1-1 to 1-8 were compared by using a solvent having a solubility parameter within a specific range in each of the first barrier layer formation and the second barrier layer formation. Compared to Examples 1-3 to 1-5, it can be seen that excellent barrier performance was exhibited even under high temperature and high humidity, and the occurrence of cracks could be prevented. Further, in comparison with Comparative Examples 1-3 to 1-5, in Examples 1-1 to 1-8, even when a 2000 m long film was produced, the barrier performance derived from the difference in the degree of modification It can be seen that the decrease in the is suppressed.
 また、第1バリア層前駆体液の溶媒の溶解度パラメーターが本発明の製造方法の規定よりも小さい比較例1-1は、第1バリア層(第2層目)が形成されなかった。第2バリア層前駆体液の溶媒の溶解度パラメーターが本発明の製造方法の規定範囲よりも大きい比較例1-2は、第2バリア層(第3層目)が形成されなかった。 Further, in Comparative Example 1-1 in which the solubility parameter of the solvent of the first barrier layer precursor liquid is smaller than that of the production method of the present invention, the first barrier layer (second layer) was not formed. In Comparative Example 1-2, where the solubility parameter of the solvent of the second barrier layer precursor liquid is larger than the specified range of the production method of the present invention, the second barrier layer (third layer) was not formed.
 また、上記表2-2の実施例2-1~2-3と、比較例2-1とを対比すると、実施例2-1~2-3では、第2バリア層の膜厚が200nmと厚くなっても、高温高湿下のクラック発生によるバリア性能低下が抑制され、さらに、長尺体を成膜した後のバリア性能の低下も抑制されていることが分かる。 Further, when Examples 2-1 to 2-3 in Table 2-2 are compared with Comparative Example 2-1, the thickness of the second barrier layer is 200 nm in Examples 2-1 to 2-3. It turns out that even if it becomes thick, the barrier performance fall by the crack generation under high temperature and high humidity is suppressed, and also the barrier performance fall after forming a long body is also controlled.
 また、上記表3-2の実施例では、第1バリア層と第2バリア層とを同時重層塗布によって形成している。同時重層塗布法の場合にも、第1バリア層の溶媒と第2バリア層の溶媒とにそれぞれ特定範囲の溶解度パラメーターのものを使用することにより、第1バリア層と第2バリア層とがほとんど混合せず、Th1が所定の厚さで形成されている。そのために、高温高湿時のクラック発生によるバリア性能の低下、および、ランプ照度の経時的な低下が抑制されていることが分かる。 In the example of Table 3-2 above, the first barrier layer and the second barrier layer are formed by simultaneous multilayer coating. In the case of the simultaneous multi-layer coating method, the first barrier layer and the second barrier layer are mostly used by using a solvent having a solubility parameter in a specific range for each of the solvent for the first barrier layer and the solvent for the second barrier layer. Th1 is formed with a predetermined thickness without mixing. Therefore, it can be seen that a decrease in barrier performance due to the occurrence of cracks at high temperature and high humidity and a decrease in lamp illuminance over time are suppressed.
 なお、本出願は、2014年7月16日に出願された日本特許出願第2014-146138号に基づいており、その開示内容は、参照により全体として引用されている。 Note that this application is based on Japanese Patent Application No. 2014-146138 filed on July 16, 2014, the disclosure of which is incorporated by reference in its entirety.

Claims (9)

  1.  樹脂基材上に、ケイ素化合物および金属原子を含むバリア層を有し、前記バリア層は、
     ケイ素元素量Siと金属元素量Mの比率Si:Mが、1:xであり、x≧2である、膜厚Th1の領域Aと、
     ケイ素元素量Siと金属元素量Mの比率Si:Mが、1:1~1:0.1である、膜厚Th2の領域Bと、を含み、
     前記Th1および前記Th2とは下記式(1)および(2):
     (1) Th1/Th2≧2
     (2) 20nm≦Th1<300nm
     を満たす、ガスバリア性フィルム。
    On the resin substrate, it has a barrier layer containing a silicon compound and a metal atom, the barrier layer,
    The region A of the film thickness Th1 in which the ratio Si: M of the silicon element amount Si and the metal element amount M is 1: x and x ≧ 2,
    A ratio B of silicon element amount Si and metal element amount M Si: M is 1: 1 to 1: 0.1, and region B of film thickness Th2 includes:
    The Th1 and Th2 are the following formulas (1) and (2):
    (1) Th1 / Th2 ≧ 2
    (2) 20 nm ≦ Th1 <300 nm
    Satisfying gas barrier film.
  2.  前記金属原子は、ホウ素原子(B)、アルミニウム原子(Al)、チタン原子(Ti)およびジルコニウム原子(Zr)からなる群より選択される少なくとも一種である、請求項1に記載のガスバリア性フィルム。 The gas barrier film according to claim 1, wherein the metal atom is at least one selected from the group consisting of a boron atom (B), an aluminum atom (Al), a titanium atom (Ti), and a zirconium atom (Zr).
  3.  前記ケイ素化合物は、下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
     上記一般式(1)において、R、RおよびRは、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基を表わす、
     で示される構造を有するケイ素化合物前駆体を、活性エネルギー線を照射することによって改質して得られたものである、請求項1または2に記載のガスバリア性フィルム。
    The silicon compound has the following general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    In the general formula (1), R 1 , R 2 and R 3 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. ,
    The gas barrier film according to claim 1, which is obtained by modifying a silicon compound precursor having a structure represented by the following: irradiation with active energy rays.
  4.  前記樹脂基材と前記バリア層との間に、化学気相成長(CVD)法により形成された無機バリア層をさらに含む、請求項1~3のいずれか一項に記載のガスバリア性フィルム。 The gas barrier film according to any one of claims 1 to 3, further comprising an inorganic barrier layer formed by a chemical vapor deposition (CVD) method between the resin substrate and the barrier layer.
  5.  樹脂基材上に、ケイ素化合物前駆体および溶解度パラメーターが15.5~20.0の溶媒を含む第1バリア層前駆体液と、金属化合物および溶解度パラメーターが26.0~32.0の溶媒を含む第2バリア層前駆体液と、を塗布することを含む成膜工程を有する、ガスバリア性フィルムの製造方法。 A first barrier layer precursor solution containing a silicon compound precursor and a solvent having a solubility parameter of 15.5 to 20.0, and a metal compound and a solvent having a solubility parameter of 26.0 to 32.0 are formed on the resin substrate. The manufacturing method of a gas barrier film which has a film-forming process including apply | coating a 2nd barrier layer precursor liquid.
  6.  前記第1バリア層前駆体液に含まれる前記溶媒の溶解度パラメーターと、前記第2バリア層前駆体液に含まれる前記溶媒の溶解度パラメーターとの差が、7.5~17.5である請求項5に記載の製造方法。 6. The difference between the solubility parameter of the solvent contained in the first barrier layer precursor solution and the solubility parameter of the solvent contained in the second barrier layer precursor solution is 7.5 to 17.5. The manufacturing method as described.
  7.  前記ケイ素化合物前駆体が、下記一般式(1):
    Figure JPOXMLDOC01-appb-C000002
     上記一般式(1)において、R、RおよびRは、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基を表わす、
     で示される構造を有する前駆体であり、
     前記成膜工程の後、活性エネルギー線を照射することにより、前記ケイ素化合物前駆体を改質する改質工程を含む、請求項5または6に記載の製造方法。
    The silicon compound precursor is represented by the following general formula (1):
    Figure JPOXMLDOC01-appb-C000002
    In the general formula (1), R 1 , R 2 and R 3 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. ,
    A precursor having a structure represented by:
    The manufacturing method of Claim 5 or 6 including the modification | reformation process which modify | reforms the said silicon compound precursor by irradiating an active energy ray after the said film-forming process.
  8.  前記成膜工程の前に、前記樹脂基材上に化学気相成長(CVD)法により無機バリア層を形成する、無機バリア層成膜工程をさらに有する、請求項5~7のいずれか一項に記載の製造方法。 The inorganic barrier layer forming step of forming an inorganic barrier layer on the resin base material by a chemical vapor deposition (CVD) method before the film forming step. The manufacturing method as described in.
  9.  請求項1~4のいずれか一項に記載のガスバリア性フィルム、または、請求項5~8のずれか一項に記載の製造方法により得られたガスバリア性フィルムを含む、電子デバイス。 An electronic device comprising the gas barrier film according to any one of claims 1 to 4 or the gas barrier film obtained by the production method according to any one of claims 5 to 8.
PCT/JP2015/070423 2014-07-16 2015-07-16 Gas barrier film and method for producing gas barrier film WO2016010118A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016534490A JPWO2016010118A1 (en) 2014-07-16 2015-07-16 Gas barrier film and method for producing gas barrier film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014146138 2014-07-16
JP2014-146138 2014-07-16

Publications (1)

Publication Number Publication Date
WO2016010118A1 true WO2016010118A1 (en) 2016-01-21

Family

ID=55078604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070423 WO2016010118A1 (en) 2014-07-16 2015-07-16 Gas barrier film and method for producing gas barrier film

Country Status (2)

Country Link
JP (1) JPWO2016010118A1 (en)
WO (1) WO2016010118A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114806328A (en) * 2022-03-28 2022-07-29 武汉华工正源光子技术有限公司 Protective coating for optical module and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970917A (en) * 1995-09-07 1997-03-18 Oike Ind Co Ltd Transparent laminate with gas barrier properties
JP2012250181A (en) * 2011-06-03 2012-12-20 Konica Minolta Holdings Inc Method of manufacturing barrier film and electronic device
WO2014073438A1 (en) * 2012-11-09 2014-05-15 コニカミノルタ株式会社 Electronic device and gas barrier film fabrication method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0970917A (en) * 1995-09-07 1997-03-18 Oike Ind Co Ltd Transparent laminate with gas barrier properties
JP2012250181A (en) * 2011-06-03 2012-12-20 Konica Minolta Holdings Inc Method of manufacturing barrier film and electronic device
WO2014073438A1 (en) * 2012-11-09 2014-05-15 コニカミノルタ株式会社 Electronic device and gas barrier film fabrication method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114806328A (en) * 2022-03-28 2022-07-29 武汉华工正源光子技术有限公司 Protective coating for optical module and preparation method thereof
CN114806328B (en) * 2022-03-28 2023-03-10 武汉华工正源光子技术有限公司 Protective coating for optical module and preparation method thereof

Also Published As

Publication number Publication date
JPWO2016010118A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6504284B2 (en) Gas barrier film, method for producing the same, and electronic device using the same
JP5929775B2 (en) Gas barrier film, method for producing the same, and electronic device including the gas barrier film
JP6056854B2 (en) GAS BARRIER FILM, METHOD FOR PRODUCING GAS BARRIER FILM, AND ELECTRONIC DEVICE
JP6107819B2 (en) Gas barrier film and electronic device using the same
WO2014119750A1 (en) Gas barrier film
WO2015020011A1 (en) Gas barrier film
JP2015003464A (en) Gas barrier film, method for producing the same, and electronic device using the same
JPWO2015002156A1 (en) Gas barrier film, method for producing the same, and electronic device using the same
WO2015053405A1 (en) Method for manufacturing gas barrier film
JP6060848B2 (en) Gas barrier film
WO2015182623A1 (en) Gas barrier film and electronic device using same
JP2014201032A (en) Gas barrier film and method for producing the same
WO2015005198A1 (en) Gas barrier film and electronic device
WO2015119260A1 (en) Modified polysilazane, coating solution containing said modified polysilazane, and gas barrier film produced using said coating solution
WO2014119754A1 (en) Gas barrier film, method for producing same, and electronic device using same
JP6003799B2 (en) Method for producing gas barrier film
JP2016022595A (en) Gas barrier film, production method thereof, and electronic device having gas barrier film
WO2016010118A1 (en) Gas barrier film and method for producing gas barrier film
JP2016022589A (en) Gas barrier film
WO2016010117A1 (en) Gas barrier film, method for producing same, and electronic device using gas barrier film
JP6295864B2 (en) Gas barrier film, method for producing the same, and electronic device using the same
WO2015029795A1 (en) Method for producing gas barrier film
WO2015053055A1 (en) Functional film
WO2015146886A1 (en) Gas barrier film, method for manufacturing same, and electronic device using same
WO2014109353A1 (en) Process for manufacturing gas-barrier film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821855

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016534490

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15821855

Country of ref document: EP

Kind code of ref document: A1