WO2016010111A1 - 脂質粒子の製造法および脂質粒子を有する核酸送達キャリア - Google Patents

脂質粒子の製造法および脂質粒子を有する核酸送達キャリア Download PDF

Info

Publication number
WO2016010111A1
WO2016010111A1 PCT/JP2015/070398 JP2015070398W WO2016010111A1 WO 2016010111 A1 WO2016010111 A1 WO 2016010111A1 JP 2015070398 W JP2015070398 W JP 2015070398W WO 2016010111 A1 WO2016010111 A1 WO 2016010111A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
lipid particles
oil phase
ester
alcohol
Prior art date
Application number
PCT/JP2015/070398
Other languages
English (en)
French (fr)
Inventor
西川 尚之
杉山 享
貴宏 関口
大野 誠
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP15822112.7A priority Critical patent/EP3170504B8/en
Publication of WO2016010111A1 publication Critical patent/WO2016010111A1/ja
Priority to US15/405,983 priority patent/US20170121714A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/22Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific

Definitions

  • the present invention relates to a method for producing lipid particles and uses of lipid particles, and preferably relates to a method for producing lipid particles useful for delivering nucleic acids into cells and uses of lipid particles.
  • Nucleic acid drugs have a clear mechanism of action against diseases, have few side effects, and are described as next-generation drugs.
  • a nucleic acid drug using RNA interference can cause degradation of mRNA of a target gene present in a cell and inhibit target gene expression. As a result, it is possible to reduce or treat a disease symptom caused by abnormal expression of a specific gene or gene group.
  • nucleic acid pharmaceuticals utilizing RNA interference for example, nucleic acids such as siRNA are used. In order to express functions of these nucleic acids, it is necessary to deliver the nucleic acids into cells.
  • a carrier is used as a method for effectively delivering a nucleic acid into a cell. Since the nucleic acid is anionic, cationic liposomes using a cationic lipid as a carrier (vector) (Non-patent Document 1), amphoteric liposomes having both cationic and anionic (Patent Documents 1 and 2), etc. Is being studied.
  • the Bangham method is known as the most common method for producing liposomes.
  • the bangham method is to dissolve phospholipids in an organic solvent such as chloroform in a container, then evaporate the organic solvent to create a lipid thin film on the inner surface of the container, and then add water to the thin film to swell the thin film.
  • liposomes are obtained by shaking the container.
  • methods such as an organic solvent extraction method, a surfactant removal method, and a freeze-thaw method are known.
  • Inclusion rate is an important index for evaluating a carrier (vector).
  • the encapsulation rate is an index indicating what percentage of the hydrophilic substance added to retain in the inner aqueous phase when the carrier (vector) is produced is retained in the inner aqueous phase.
  • Conventional methods for producing carriers (vectors) have not been sufficient to obtain carriers (vectors) that can retain nucleic acids at a high encapsulation rate, for example.
  • the present invention has been made to solve the problem of providing a method for producing lipid particles capable of retaining nucleic acids and the like at a high encapsulation rate, and a nucleic acid delivery carrier having lipid particles.
  • the inventors of the present invention have (1) a step of heating an oil phase containing phospholipid, alcohol and ester, (2) an aqueous phase containing nucleic acid, and step (1).
  • the step of removing alcohol and ester from the mixed solution containing the oil phase and the aqueous phase obtained in step 1 above and found that the production method of lipid particles that solves the above problems can be provided, and to complete the present invention It came.
  • Steps (1) to (4) below (1) a step of heating an oil phase containing phospholipid, alcohol and ester; (2) a step of mixing an aqueous phase containing nucleic acid and an oil phase prepared in step (1); (3) in step (2) A step of cooling the liquid mixture containing the obtained oil phase and water phase to crystallize lipid particles; and (4) removing alcohol and ester from the liquid mixture containing the oil phase and water phase obtained in step (3).
  • a process for producing lipid particles encapsulating nucleic acids [2] The method for producing lipid particles according to [1], wherein the alcohol is an alcohol having 1 to 6 carbon atoms.
  • R 1 and R 2 are the same or different and each represents an alkyl group having 10 to 22 carbon atoms, an alkyloxyalkylene group having 10 to 22 carbon atoms, an alkanoyloxyalkylene group having 10 to 22 carbon atoms, and 10 to 10 carbon atoms.
  • the method for producing lipid particles of the present invention it is possible to provide a method for producing lipid particles capable of retaining nucleic acids and the like with a high encapsulation rate, and a nucleic acid delivery carrier having lipid particles.
  • FIG. 1 is a 1 H-NMR diagram of Compound A in Synthesis Examples.
  • FIG. It is a figure of MS spectrum of compound A in a synthesis example.
  • the lipid particles of the present invention are produced by the following steps (1) to (4): (1) heating an oil phase containing phospholipid, alcohol and ester; (2) A step of mixing the aqueous phase containing nucleic acid and the oil phase prepared in step (1); (3) a step of cooling the liquid mixture containing the oil phase and the water phase obtained in step (2) (hereinafter sometimes referred to as an oil phase-water phase mixture) to crystallize lipid particles; and (4 ) A method for producing lipid particles encapsulating nucleic acid (hereinafter referred to as the production method of the present invention), which comprises the step of removing alcohol and ester from the mixed solution containing the oil phase and aqueous phase obtained in step (3). Is).
  • the production method of the present invention is a method for forming particles using coacervation.
  • Coacervation separates into two phases: a colloid-rich liquid phase and a colloid-poor liquid phase when other substances are added to the hydrocolloid, diluted with a poor solvent, or when the pH is changed. It is a phenomenon that does.
  • an oil phase containing phospholipid, alcohol and ester is heated, mixed with an aqueous phase containing nucleic acid, and the obtained oil phase, and then cooled over time, a kind of core cell.
  • the production method of the present invention includes step (1) an oil phase containing phospholipid, alcohol and ester (an oil phase means an oily component contained in a composition obtained by mixing phospholipid, alcohol and ester) ).
  • the phospholipid used in the present invention is not particularly limited. Examples include hydrogenated phospholipids in which unsaturated carbon chains of lipids are saturated with hydrogen, and synthetic phospholipids obtained by modifying natural phospholipids by synthesis. These may be used alone or in combination of two or more. Good.
  • the total amount of phospholipid is preferably 10: 1 to 5000: 1, more preferably 100: 1 to 1000: 1, in terms of molar ratio to the nucleic acid.
  • the alcohol used in the present invention is not particularly limited, but alcohol having 1 to 6 carbon atoms is preferably used. Specific examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 3-methyl-1-butanol and the like. As alcohol used by this invention, it is more preferable to use ethanol from a polar viewpoint.
  • the ester used in the present invention is not particularly limited, but acetate is preferably used. Specific examples include methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, and isobutyl acetate. As ester used by this invention, it is more preferable to use ethyl acetate from a polar or lipophilic viewpoint.
  • the ratio of ester to alcohol in the present invention is preferably 90:10 to 10:90 by volume, more preferably 80:20 to 30:70, and 70:30 to 40:60. Is more preferable.
  • a compound having at least one amino group and at least one imidazolyl group is further included (preferably as a lipid).
  • the compounding amount when using a compound having at least one amino group and at least one imidazolyl group is preferably 10 mol% to 70 mol%, and preferably 15 mol% to 60 mol% with respect to the total amount of lipid. More preferably, it is more preferably 20 mol% to 50 mol%.
  • R 1 and R 2 are the same or different and each represents an alkyl group having 10 to 22 carbon atoms, an alkyloxyalkylene group having 10 to 22 carbon atoms, an alkanoyloxyalkylene group having 10 to 22 carbon atoms, and 10 to 10 carbon atoms.
  • R 1 and R 2 are the same or different and are more preferably an alkyl group having 10 to 22 carbon atoms, more preferably an alkyl group having 14 to 20 carbon atoms. Moreover, you may have a double bond in the alkyl group.
  • the compound having at least one amino group and at least one imidazolyl group represented by the general formula (1) used in the production method of the present invention is not particularly limited.
  • the compound can be synthesized by the following method. it can.
  • PG represents a protecting group
  • X represents a leaving group constituting an active ester
  • an active ester of histidine (A) protected with an appropriate protecting group is reacted with an amine derivative (B) in the presence of a base to obtain a compound (C), and then the general formula is obtained by an appropriate deprotection method.
  • the compound represented by (1) can be synthesized.
  • protecting group that can be used in the active ester (A) of histidine, for example, W. Greene et al., Protective Groups Organic Synthesis 4th edition, pp. 255-265, 2007, John Willie & Sons (John Wiley & Sons, INC.) And the like.
  • preferred examples include Boc group (tert-butoxycarbonyl group), Z group (benzyloxycarbonyl group) and the like.
  • Examples of the active ester that can be used include phenyl ester, trifluorophenyl ester, pentaphenyl ester, and hydroxysuccinimide ester, and hydroxysuccinimide ester is preferable from the viewpoint of raw material availability or stability.
  • bases that can be used include inorganic bases and organic bases.
  • examples of the inorganic base include sodium hydrogen carbonate and sodium carbonate.
  • examples of the organic base include triethylamine and diisopropylamine.
  • the base to be used is preferably an appropriate base depending on the protecting group of the active ester (A) of histidine used in the reaction.
  • the solvent that can be used is not particularly limited, but a general organic solvent can be used. Specifically, ether solvents, ester solvents, amide solvents, and halogen solvents can be used. Preferred examples include ether solvents such as tetrahydrofuran and halogen solvents such as dichloromethane and chloroform.
  • deprotection reactions examples include W.S. W. Greene et al., Protective Groups Organic Synthesis 4th edition, pp. 255-265, 2007, John Willie & Sons (John Wiley & Sons, INC.).
  • a nucleic acid in the production method of the present invention, by using the compound represented by the formula (2), a nucleic acid can be retained with a high encapsulation rate and excellent in the release property of the nucleic acid in the target cell. be able to.
  • the temperature at which the oil phase containing phospholipid, alcohol and ester is heated is preferably 40 to 70 ° C., more preferably 45 to 65 ° C., and more preferably 50 to More preferably, it is 60 degreeC.
  • the heating time is not particularly limited as long as it can be confirmed that the temperature of the entire liquid is uniformly desired.
  • the production method of the present invention may contain sterol in the oil phase.
  • sterols include, but are not limited to, cholesterol, phytosterols (sitosterol, stigmasterol, fucosterol, spinasterol, brassicasterol, etc.), ergosterol, cholestanone, cholestenone, coprostanol, and cholesteryl-2′-hydroxyethyl ether. Cholesteryl-4′-hydroxybutyl ether can be raised.
  • cholesterol is preferable.
  • the compounding amount of sterol is preferably 10 mol% to 60 mol%, more preferably 20 mol% to 55 mol%, and further preferably 25 mol% to 50 mol% with respect to the total lipid amount. .
  • the production method of the present invention may include a lipid having a polyethylene glycol chain (hereinafter referred to as “PEG chain”) in the oil phase.
  • PEG chain a lipid having a polyethylene glycol chain
  • the lipid having a PEG chain is not particularly limited, and examples thereof include PEG-modified phosphoethanolamine, diacylglycerol PEG derivatives, dialkylglycerol PEG derivatives, cholesterol PEG derivatives, and ceramide PEG derivatives. Among these, PEG-modified phosphoethanolamine is preferable.
  • the weight average molecular weight of the PEG chain is preferably 500 to 5000, and more preferably 750 to 2000.
  • the PEG chain may be branched and may have a substituent such as a hydroxymethyl group.
  • the amount of the lipid having a PEG chain is preferably 0.5 mol% to 12 mol%, more preferably 2 mol% to 10 mol%, more preferably 4 mol% to 8 mol% with respect to the total lipid amount. % Is more preferable.
  • the production method of the present invention includes a step (2): a step of mixing an aqueous phase containing a nucleic acid and an oil phase prepared in step (1).
  • the nucleic acid used in the present invention includes any known form of nucleic acid.
  • Specific examples of the nucleic acid include general RNA, DNA, and derivatives thereof, which may be single-stranded DNA or RNA, double-stranded DNA or RNA, DNA- It may be an RNA hybrid.
  • Specific examples of the nucleic acid that can be used in the present invention include antisense DNA, antisense RNA, DNA enzyme, ribozyme, siRNA, shRNA, miRNA, aiRNA, piRNA, decoy nucleic acid, and aptamer.
  • siRNA, miRNA, aiRNA, antisense DNA, and antisense RNA are preferably used.
  • the nucleic acid used in the present invention is not limited to the natural type, and in order to improve stability in vivo such as nuclease resistance, at least a part of the sugar or phosphate backbone constituting the nucleotide is included.
  • the non-natural type may be modified.
  • Non-natural nucleic acids with modified sugar moieties include 2′-O-methyl RNA, 2′-O- (2-methoxy) ethyl RNA, 2′-deoxy-2′-fluoroarabino nucleic acid, and bridged type A nucleic acid (LNA / BNA) etc. are mentioned.
  • PNA Peptide nucleic acid in which the sugar moiety is replaced with a peptide
  • morpholino nucleic acid in which morpholino is replaced can also be given as examples of non-natural nucleic acids.
  • non-natural nucleic acid in which the phosphate backbone is modified include phosphorothioate and phosphorodithioate.
  • the aqueous phase (the aqueous phase means an aqueous component) in the production method of the present invention can be obtained, for example, by dissolving nucleic acid in an aqueous component such as water.
  • step (2) of the present invention the aqueous phase and the oil phase obtained in step (1) are mixed.
  • the ratio (mass ratio) of mixing the water phase and the oil phase is preferably 3.0: 1.0 to 1.0: 1.0, and preferably 1.6: 1.0 to 1.1: 1.0. More preferred.
  • the temperature at the time of mixing the water phase and the oil phase is preferably 40 to 70 ° C, more preferably 45 to 65 ° C, and further preferably 50 to 60 ° C.
  • the mixing time is not particularly limited as long as it can be confirmed that the entire liquid is uniform.
  • the heating time is not particularly limited as long as it can be confirmed that the temperature of the entire liquid is uniformly desired.
  • the production method of the present invention includes a step (3): a step of cooling the oil phase-water phase mixture obtained in step (2) to crystallize lipid particles.
  • the cooling condition of the oil phase-water phase mixture is preferably 10 to 30 ° C, more preferably 15 to 25 ° C.
  • the cooling time is not particularly limited, but the cooling rate is preferably ⁇ 3 ° C./min or less.
  • the production method of the present invention includes a step (4): a step of removing alcohol and ester from the oil phase-water phase mixture obtained in step (3).
  • the method for removing alcohol and ester from the oil phase-water phase mixture is not particularly limited and can be removed by a general method.
  • the lipid particles obtained by the production method of the present invention can be sized as necessary.
  • the particle diameter can be reduced by ultrasonically treating a liquid (suspension) containing lipid particles by either in-tank ultrasonic treatment or probe ultrasonic treatment.
  • the lipid particle obtained by the manufacturing method of this invention can be concentrated as needed.
  • Various known methods can be employed for the concentration, and examples thereof include a concentration method using an ultrafiltration membrane.
  • a lipid particle means the particle
  • Lipid particles of the present invention include liposomes having lamellar structures that are closed vesicles composed of lipid bilayers. As the liposome, structures such as multi-liposome (MLV), small unilamellar liposome (SUV), and giant unilamellar liposome are known, but are not particularly limited.
  • the lipid particles of the present invention also include particles that do not have a lipid bilayer structure (lamellar structure) like the above-mentioned liposome and that have a structure filled with constituent components inside the particle.
  • lipid particles like lipids have a lipid bilayer structure (lamella structure), a structure having an inner water layer, or lipid particles like liposomes. It does not have a lipid bilayer structure (lamella structure) and inner water layer, and has a core with high electron density inside the particle, so it has a structure packed with components such as lipids, etc. Can be confirmed.
  • the presence or absence of lipid bilayer structure (lamella structure) can also be confirmed by lipid X-ray scattering (SAXS) measurement.
  • SAXS lipid X-ray scattering
  • the particle diameter of the lipid particles of the present invention is not particularly limited, but is preferably 10 to 1000 nm, more preferably 50 to 500 nm, and further preferably 75 to 350 nm.
  • the particle diameter of the lipid particles can be measured by a general method (for example, dynamic light scattering method, laser diffraction method, etc.).
  • lipid particles obtained by the production method of the present invention a nucleic acid or the like (for example, a gene or the like) may be introduced into a cell by introducing the lipid particle into the cell in vitro. it can.
  • a nucleic acid obtained by the manufacturing method of this invention contains the nucleic acid which has a pharmaceutical use, a lipid particle can be administered to a biological body as a nucleic acid pharmaceutical.
  • the lipid particles obtained by the production method of the present invention are used as a nucleic acid drug
  • the lipid particles of the present invention are used alone or with a pharmaceutically acceptable administration medium (for example, physiological saline or phosphate buffer). It can be mixed and administered to a living body.
  • a pharmaceutically acceptable administration medium for example, physiological saline or phosphate buffer.
  • concentration of the lipid particles in the mixture with the pharmaceutically acceptable carrier is not particularly limited, and can generally be 0.05% by mass to 90% by mass.
  • the nucleic acid medicine containing the lipid particles of the present invention may contain other pharmaceutically acceptable additive substances such as a pH adjusting buffer and an osmotic pressure adjusting agent.
  • the administration route for administering the nucleic acid drug containing the lipid particles of the present invention in vivo is not particularly limited, and can be administered by any method.
  • the administration method include oral administration and parenteral administration (intra-articular administration, intravenous administration, intraperitoneal administration, intramuscular administration, etc.).
  • the nucleic acid medicament containing the lipid particles of the present invention can also be administered by direct injection at the disease site.
  • the dosage form of the lipid particles of the present invention is not particularly limited, but when oral administration is performed, the lipid particles of the present invention are combined with an appropriate excipient in combination with tablets, troches, capsules, pills, It can be used in the form of a suspension, syrup and the like.
  • preparations suitable for parenteral administration include antioxidants, buffers, bacteriostats, and isotonic sterile injections, suspending agents, solubilizing agents, thickening agents, stabilizers or preservatives. Additives such as can be included as appropriate.
  • nucleic acid delivery carrier The lipid particles obtained by the production method of the present invention are very useful as a nucleic acid delivery carrier because they can hold nucleic acids at a high encapsulation rate.
  • the nucleic acid delivery carrier of the present invention can introduce a nucleic acid or the like into a cell by mixing the obtained lipid particles with a nucleic acid or the like and transfecting the cell in vitro.
  • the nucleic acid delivery carrier of the present invention is also useful as a nucleic acid delivery carrier in nucleic acid medicine.
  • cholesterol is Dishman's cholesterol HP
  • DPPC dipalmitoylphosphatidylcholine
  • NOF COATSOME MC6060 DPPC (dipalmitoylphosphatidylcholine)
  • DSPE-PEG polyethylene glycol-modified phosphoethanolamine, PEG chain molecular weight: 2000
  • NOF used SUNBRIGHT DSPE-020CN and lecithin used NOF COATSOME NC-50.
  • the organic layer was separated, washed successively with saturated aqueous sodium hydrogen carbonate solution, 10% aqueous citric acid solution and saturated aqueous sodium chloride solution, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure.
  • Example 1 (Coacervation method) Preparation of oil phase L- ⁇ -dipalmitoylphosphatidylcholine, lecithin, cholesterol, N- (carbonyl-methoxypolyethylene glycol 2000) -1,2-distearoyl-sn-glycero-3-phosphoethanolamine sodium salt (hereinafter DSPE- PEG) is weighed out to give a molar ratio of 61/15/20/4, 80 mg, 20 mg, 14 mg, and 20 mg, respectively, and 0.3 mL of ethanol and 0.7 mL of ethyl acetate are added and dissolved. Obtained.
  • DSPE- PEG Preparation of oil phase L- ⁇ -dipalmitoylphosphatidylcholine, lecithin, cholesterol, N- (carbonyl-methoxypolyethylene glycol 2000) -1,2-distearoyl-sn-glycero-3-phosphoethanolamine sodium salt
  • nucleic acid-retaining lipid particles To the oil phase obtained in the above step, 0.25 mL of a nucleic acid aqueous solution in which 5 mg of siRNA described below is dissolved in 0.263 mL of sterilized water and 1.0 mL of sterilized water are added and heated at 55 ° C. for 10 minutes. did. Thereafter, the mixture was allowed to cool at room temperature with stirring. Subsequently, the mixture was dialyzed with a 100 mM histidine solution at room temperature to remove the ethanol / ethyl acetate mixed solution. The obtained solution was sized by passing it through a 0.4 ⁇ m filter using an extruder (Mini Extruder manufactured by Avanti Polar Lipids) to obtain lipid particles retaining nucleic acids.
  • an extruder Mini Extruder manufactured by Avanti Polar Lipids
  • Example 2 (Coacervation method) Preparation of 200 mM histidine solution 15.5 g of L-histidine was weighed and dissolved in 500 mL of sterile water. 200 mM HCl was added so that the pH was 7 to obtain a 200 mM histidine solution. Preparation of oil phase L- ⁇ -dipalmitoylphosphatidylcholine, compound A, cholesterol, DSPE-PEG were weighed out in a molar ratio of 26/26/44/4, respectively 37 mg, 30 mg, 33 mg and 20 mg, and ethanol was added. 0.3 mL and 0.7 mL of ethyl acetate were added and dissolved to obtain an oil phase.
  • nucleic Acid-Retaining Lipid Particles To the oil phase obtained in the above step, 0.25 mL of a nucleic acid aqueous solution in which 5 mg of siRNA described below was dissolved in 0.263 mL of sterile water, 0.625 mL of 200 mM histidine solution, and 0.375 mL of sterile water were added. And heated at 55 ° C. for 10 minutes. Subsequently, the mixture was dialyzed with a 100 mM histidine solution at room temperature to remove the ethanol / ethyl acetate mixed solution. The obtained solution was sized by passing through a 0.4 ⁇ m filter using an extruder (Mini Extruder manufactured by Avanti Polar Lipids) to obtain lipid particles retaining nucleic acid.
  • an extruder Mini Extruder manufactured by Avanti Polar Lipids
  • Example 3 (Coacervation method) In the preparation of the oil phase, L- ⁇ -dipalmitoylphosphatidylcholine, compound A, cholesterol, DSPE-PEG were weighed out to a molar ratio of 26/22/44/8, respectively 31 mg, 31 mg, 33 mg, and 44 mg. Except for the above, it was prepared in the same manner as in Example 2 to obtain lipid particles retaining nucleic acid.
  • nucleic Acid-Retaining Lipid Particles To the above-mentioned eggplant flask, add 0.25 mL of a nucleic acid solution prepared by dissolving 5 mg of siRNA described below with 0.263 mL of sterile water, 0.625 mL of 200 mM histidine solution, and 0.375 mL of sterile water, and And hydrated with stirring at 55 ° C.
  • the obtained liquid was sized by passing through a 0.4 ⁇ m filter using an extruder (Mini Extruder manufactured by Avanti Polar Lipids) to obtain lipid particles retaining nucleic acid.
  • nucleic Acid-Retaining Lipid Particles To the above-mentioned eggplant flask, 0.25 mL of a nucleic acid aqueous solution prepared by dissolving 5 mg of siRNA described below in 0.263 mL of sterilized water and 1.0 mL of sterilized water are added and stirred at 55 ° C. using a vortex mixer. While hydrated. The obtained liquid was sized by passing through a 0.4 ⁇ m filter using an extruder (Mini Extruder manufactured by Avanti Polar Lipids) to obtain lipid particles retaining nucleic acid.
  • an extruder Mini Extruder manufactured by Avanti Polar Lipids
  • siRNA having the following sequence was used. 5′-GUUCAGACCACUUCAGCUU-3 ′ (sense chain) (SEQ ID NO: 1) 3′-CAAGUCUGGUGAAGUCGAA-5 ′ (antisense chain) (SEQ ID NO: 2)
  • the particle size of the lipid particles was measured with the lipid particle dispersion as it was using the zeta potential / particle size measurement system ELS-Z2 manufactured by Otsuka Electronics Co., Ltd.
  • siRNA encapsulation rate (quantification of total nucleic acid concentration) To 0.02 mL of lipid particles holding nucleic acid, 0.01 mL of 3M ammonium acetate solution and 0.003 mL of glycogen were added, and then 0.5 mL of ethanol was added to dissolve the lipid and precipitate only the nucleic acid. . After standing at ⁇ 20 ° C. for 2 hours, the mixture was centrifuged at 14000 ⁇ g and 4 ° C. for 15 minutes to remove the supernatant. After air-drying for 15 minutes or more, water was added to redissolve, and the total nucleic acid concentration was quantified by measuring the concentration using Nanodrop NF1000 (Thermo Fisher Scientific).
  • Quantification of nucleic acid concentration in the external water phase Quantification was performed using Quant-iT RiboGreen RNA Assay Kit (Invitrogen) according to the low-range assay described in the manual & protocol.
  • 20 ⁇ TE buffer contained in the above-described kit was diluted with water to obtain 1 ⁇ TE buffer.
  • 0.095 mL of 1 ⁇ TE buffer was added to 0.005 mL of lipid particles holding nucleic acid to prepare a 20-fold diluted solution.
  • the lipid particles prepared by the coacervation method are compared with the conventional preparation method Bangham method without using a compound having at least one amino group and at least one imidazolyl group. It was found that the inclusion rate was unexpectedly improved.
  • lipid particles retaining nucleic acids obtained by a coacervation method using a compound having at least one amino group and at least one imidazolyl group have a very high encapsulation rate. It was found to have

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Dispersion Chemistry (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

 本発明の課題は、高い内包率で核酸などを保持することが可能な脂質粒子の製造法、および脂質粒子を有する核酸送達キャリアを提供することである。本発明によれば、下記(1)~(4)の工程: (1)リン脂質、アルコールおよびエステルを含む油相を加熱する工程; (2)核酸を含む水相と、工程(1)で調製した油相を混合する工程; (3)工程(2)で得た油相および水相を含む混合液を冷却し、脂質粒子を晶出する工程;および (4)工程(3)で得た油相および水相を含む混合液からアルコールおよびエステルを除去する工程、 を含む、核酸を内包した脂質粒子の製造法が提供される。

Description

脂質粒子の製造法および脂質粒子を有する核酸送達キャリア
 本発明は、脂質粒子の製造法および脂質粒子の用途に関し、好適には核酸を細胞内に送達するのに有用な脂質粒子の製造法および脂質粒子の用途に関する。
 核酸医薬は、疾患に対する作用機序が明確で、副作用も少なく、次世代の医薬品として記載されている。例えば、RNA干渉(RNAi)を用いた核酸医薬は、細胞に存在する標的遺伝子のmRNAの分解を惹起し、標的遺伝子の発現を阻害することができる。その結果、特定の遺伝子または遺伝子群の異常な発現原因となって生じる疾患症状を軽減または治療することができる。このようなRNA干渉を利用した核酸医薬において、例えば、siRNAなどの核酸が利用されるが、これらの核酸に機能を発現させるためには、核酸を細胞内に送達することが必要である。
 核酸を細胞内に効果的に送達する方法として一般にキャリア(ベクター)が用いられる。核酸がアニオン性であることから、キャリア(ベクター)としてカチオン脂質を用いたカチオン性のリポソーム(非特許文献1)、カチオン性とアニオン性の両方を併せもつ両性リポソーム(特許文献1、2)などの検討がなされている。
 最も一般的なリポソームの製造法として、Bangham(バンガム)法が知られている。バンガム法とは、容器内でリン脂質をクロロホルムなどの有機溶媒に溶解させ、次いで有機溶媒を蒸発させて容器内面上に脂質薄膜を作成した後、薄膜に水を加えて薄膜を膨潤させ、さらに容器を振盪することによりリポソームを得る方法である。
 その他にも、有機溶媒抽出法、界面活性剤除去法、凍結融解法などの方法が知られている。
特開2011-21026号公報 特表2005-517739号公報
Gene Therapy, Vol.6, p271, 1999
 キャリア(ベクター)の評価のための重要な指標として、内包率がある。内包率とは、キャリア(ベクター)の製造時に内水相に保持させるために添加した親水性物質中の何%が内水相中に保持されているかを示す指標である。
 従来のキャリア(ベクター)の製造法では、例えば、核酸を高い内包率で保持することのできるキャリア(ベクター)を得るには十分ではなかった。
 本発明は、高い内包率で核酸などを保持することが可能な脂質粒子の製造法、および脂質粒子を有する核酸送達キャリアを提供することを解決すべき課題とした。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、(1)リン脂質、アルコールおよびエステルを含む油相を加熱する工程と、(2)核酸を含む水相と、工程(1)で調製した油相を混合する工程と、(3)工程(2)で得た油相および水相を含む混合液を冷却し、脂質粒子を晶出する工程と、(4)工程(3)で得た油相および水相を含む混合液からアルコールおよびエステルを除去する工程と、を含む製造法が、上記課題を解決した脂質粒子の製造法として提供できることを見出し、本発明を完成するに至った。
 すなわち、課題を解決するための手段は以下の通りである。
[1] 下記(1)~(4)の工程:
(1)リン脂質、アルコールおよびエステルを含む油相を加熱する工程;(2)核酸を含む水相と、工程(1)で調製した油相を混合する工程;(3)工程(2)で得た油相および水相を含む混合液を冷却し、脂質粒子を晶出する工程;および(4)工程(3)で得た油相および水相を含む混合液からアルコールおよびエステルを除去する工程、を含む、核酸を内包した脂質粒子の製造法。
[2] アルコールが炭素数1~6のアルコールである、[1]に記載の脂質粒子の製造法。
[3] エステルが酢酸エステルである、[1]または[2]に記載の脂質粒子の製造法。
[4] 工程(1)において、油相が、少なくとも1つのアミノ基と少なくとも1つのイミダゾイル基を有する化合物をさらに含む、[1]~[3]のいずれか1つに記載の脂質粒子の製造法。
[5] 少なくとも1つのアミノ基と少なくとも1つのイミダゾイル基を有する化合物が一般式(1)で表される化合物である、[4]に記載の脂質粒子の製造法:
Figure JPOXMLDOC01-appb-C000002
式中、R1およびR2は、同一または異なって、炭素数10~22のアルキル基、炭素数10~22のアルキルオキシアルキレン基、炭素数10~22のアルカノイルオキシアルキレン基および炭素数10~22のアルキルオキシカルボニルアルキレン基から選択される置換基である。
[6] 工程(1)において、リン脂質、アルコールおよびエステルを含む油相を40~70℃で加熱する、[1]~[5]のいずれか1つに記載の脂質粒子の製造法。
[7] 工程(3)において、油相および水相を含む混合液を10~30℃で冷却する、[1]~[6]のいずれか1つに記載の脂質粒子の製造法。
[8] [1]~[7]のいずれか1つに記載の製造法によって得られる脂質粒子を有する核酸送達キャリア。
 本発明の脂質粒子の製造法によれば、高い内包率で核酸などを保持することが可能な脂質粒子の製造法、および脂質粒子を有する核酸送達キャリアを提供することができる。
合成例における化合物Aの1H-NMRの図である。 合成例における化合物AのMSスペクトルの図である。
 以下、本発明について詳細に説明する。
 本明細書において「~」は、その前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
(1)脂質粒子の製造法
 本発明の脂質粒子の製造は、下記(1)~(4)の工程:
(1)リン脂質、アルコールおよびエステルを含む油相を加熱する工程;
(2)核酸を含む水相と、工程(1)で調製した油相を混合する工程;
(3)工程(2)で得た油相および水相を含む混合液(以下、油相-水相混合液と称することがある)を冷却し、脂質粒子を晶出する工程;および
(4)工程(3)で得られた油相および水相を含む混合液からアルコールおよびエステルを除去する工程、を含む、核酸を内包した脂質粒子の製造法(以下、本発明の製造法と称することがある)である。
 本発明の製造法は、コアセルベーションを利用した粒子の形成方法である。コアセルベーションとは、親水コロイドに他の物質を添加したり、貧溶媒で希釈したり、pHを変化させたりするとき、コロイドに富む液相とコロイドに乏しい液相とのふたつの相に分離する現象のことである。
 本発明の製造法において、リン脂質、アルコールおよびエステルを含む油相を加熱し、核酸を含む水相と、得られた油相を混合した後に、時間をかけて冷却することによって一種のコアセルベーション現象が起こり、リン脂質が核酸を内包するように自己組織化することで、高い内包率で核酸を保持したリポソームを得ることができる。
[工程(1)]
 本発明の製造法は、工程(1)リン脂質、アルコールおよびエステルを含む油相(油相とは、リン脂質、アルコールおよびエステルを混合して得られる組成物中に含まれる油性成分を意味する)を加熱する工程を含む。
 本発明で用いられるリン脂質としては、特に限定されないが、例えば、ホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルセリン、ホスファチジルイノシトール、リゾホスファチジルコリン、スフィンゴミエリン、卵黄レシチン、大豆レシチンなどの天然リン脂質、天然由来のリン脂質の不飽和炭素鎖を水素により飽和とした水素添加リン脂質、天然由来のリン脂質に合成により修飾を加えた合成リン脂質などが挙げられ、これらを1種または2種以上組み合わせて用いてもよい。
 本発明におけるリン脂質の総量は、核酸に対して、モル比で10:1~5000:1であることが好ましく、100:1~1000:1であることがより好ましい。
 本発明で使用されるアルコールとしては、特に限定されないが、炭素数1~6のアルコールを用いることが好ましい。具体的には、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、3-メチル-1-ブタノールなどが挙げられる。本発明で使用されるアルコールとしては、極性の観点から、エタノールを用いることがより好ましい。
 本発明で使用されるエステルとしては、特に限定されないが、酢酸エステルを用いることが好ましい。具体的には、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチルなどが挙げられる。本発明で使用されるエステルとしては、極性又は親油性の観点から、酢酸エチルを用いることがより好ましい。
 本発明におけるエステルとアルコールの比率は、容量比率で90:10~10:90であることが好ましく、80:20~30:70であることがより好ましく、70:30~40:60であることがさらに好ましい。
 本発明の製造法では、工程(1)において、少なくとも1つのアミノ基と少なくとも1つのイミダゾイル基を有する化合物を(好ましくは脂質として)さらに含むことが好ましい。
 本発明において、少なくとも1つのアミノ基と少なくとも1つのイミダゾイル基を有する化合物を使用する際の配合量は、脂質全量に対して、10mol%~70mol%であることが好ましく、15mol%~60mol%であることがより好ましく、20mol%~50mol%であることがさらに好ましい。
 本発明で用いられる、少なくとも1つのアミノ基と少なくとも1つのイミダゾイル基を有する化合物としては、特に限定されないが、例えば、一般式(1)で表される化合物を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 式中、R1およびR2は、同一または異なって、炭素数10~22のアルキル基、炭素数10~22のアルキルオキシアルキレン基、炭素数10~22のアルカノイルオキシアルキレン基および炭素数10~22のアルキルオキシカルボニルアルキレン基から選択される置換基である。
 R1およびR2は、同一または異なって、炭素数10~22のアルキル基であることがより好ましく、炭素数14~20のアルキル基であることがさらに好ましい。また、アルキル基中に二重結合を有していてもよい。
 本発明の製造法において用いられる、一般式(1)で表される、少なくとも1つのアミノ基と少なくとも1つのイミダゾイル基を有する化合物は、特に限定されないが、例えば、下記の方法により合成することができる。
Figure JPOXMLDOC01-appb-C000004
 式中、PGは保護基を表し、Xは活性エステルを構成する脱離基を表す。R1およびR2は、上記と同様である。
 すなわち、適切な保護基により保護されたヒスチジンの活性エステル(A)と、アミン誘導体(B)を塩基存在下で反応させ、化合物(C)を得た後、適切な脱保護方法によって、一般式(1)で表される化合物を合成することができる。
 ここで、ヒスチジンの活性エステル(A)において使用できる保護基としては、例えば、W.グリーン(W.Greene)ら、プロテクティブ・グループス・イン・オーガニック・シンセシス(Protective Groups in Organic Synthesis)第4版、第255~265頁、2007年、ジョン・ウィリイ・アンド・サンズ社(John Wiley & Sons,INC.)に記載の保護基などが挙げられる。具体的には、Boc基(tert-ブトキシカルボニル基)、Z基(ベンジルオキシカルボニル基)などが好ましい例として挙げられる。
 使用できる活性エステルの例として、フェニルエステル、トリフルオロフェニルエステル、ペンタフェニルエステル、ヒドロキシスクシンイミドエステルなどを挙げることができ、原料入手性または安定性の観点から、ヒドロキシスクシンイミドエステルが好ましい。
 使用できる塩基としては、無機塩基、有機塩基を挙げることができる。無機塩基の例としては、炭酸水素ナトリウム、炭酸ナトリウムなどを挙げることができ、有機塩基の例としては、トリエチルアミン、ジイソプロピルアミンなどを挙げることができる。使用する塩基は、反応に用いるヒスチジンの活性エステル(A)の保護基によって、適切な塩基を用いることが好ましい。
 使用できる溶媒としては、特に限定されないが、一般的な有機溶媒を用いることができる。具体的には、エーテル系溶剤、エステル系溶剤、アミド系溶剤、ハロゲン系溶剤を用いることができ、テトラヒドロフランなどのエーテル系溶剤、ジクロロメタン、クロロホルムなどのハロゲン系溶剤が好ましい例として挙げられる。
 使用できる脱保護反応としては、例えば、W.グリーン(W.Greene)ら、プロテクティブ・グループス・イン・オーガニック・シンセシス(Protective Groups in Organic Synthesis)第4版、第255~265頁、2007年、ジョン・ウィリイ・アンド・サンズ社(John Wiley & Sons,INC.)に記載の方法などが挙げられる。
 本発明の製造法で用いられる、少なくとも1つのアミノ基と少なくとも1つのイミダゾイル基を有する化合物として、式(2)で表される化合物(2-アミノ-N,N-ジヘキサデシル-3-(1H-イミダゾール-5-イル)プロパンアミド)[本明細書中において化合物Aとも称する]を使用することが好ましい。
Figure JPOXMLDOC01-appb-C000005
 本発明の製造法において、式(2)で表される化合物を使用することで、高い内包率で核酸を保持することができ、且つ、標的細胞における核酸の放出性に優れた脂質粒子を得ることができる。
 本発明の工程(1)において、リン脂質、アルコールおよびエステルを含む油相を加熱する際の温度は、40~70℃であることが好ましく、45~65℃であることがより好ましく、50~60℃であることがさらに好ましい。
 また、加熱時間は、液全体の温度が均一に所望の温度になっていることが確認できればよく、特に限定されない。
[他の成分]
 本発明の油相には、リン脂質、アルコールおよびエステル以外に、本発明の効果を損なわない範囲において、必要に応じて、他の成分を含むことができる。
(ステロール)
 本発明の製造法は、油相にステロールを含んでもよい。本発明において、油相にステロールを含むことで、膜流動性を低下させ、脂質粒子の安定化効果を得ることができる。
 ステロールとしては、特に限定されないが、コレステロール、フィトステロール(シトステロール、スチグマステロール、フコステロール、スピナステロール、ブラシカステロールなど)、エルゴステロール、コレスタノン、コレステノン、コプロスタノール、コレステリル-2’-ヒドロキシエチルエーテル。コレステリル-4’-ヒドロキシブチルエーテルなどを上げることができる。これらの中でも、コレステロールが好ましい。
 本発明において、ステロールの配合量は、全脂質量に対して10mol%~60mol%であることが好ましく、20mol%~55mol%であることがより好ましく、25mol%~50mol%であることがさらに好ましい。
(ポリエチレングリコール鎖を有する脂質)
 本発明の製造法は、油相にポリエチレングリコール鎖(以下、「PEG鎖」と称する。)を有する脂質を含んでもよい。本発明において、油相にPEG鎖を有する脂質を含むことで、脂質粒子の分散安定化効果を得ることができる。
 PEG鎖を有する脂質としては、特に限定されないが、PEG修飾ホスホエタノールアミン、ジアシルグリセロールPEG誘導体、ジアルキルグリセロールPEG誘導体、コレステロールPEG誘導体、セラミドPEG誘導体などが挙げられる。これらの中でも、PEG修飾ホスホエタノールアミンが好ましい。
 PEG鎖の重量平均分子量は、500~5000が好ましく、750~2000がより好ましい。
 PEG鎖は分岐していてもよく、ヒドロキシメチル基のような置換基を有していてもよい。
 本発明おいて、PEG鎖を有する脂質の配合量は、全脂質量に対して0.5mol%~12mol%であることが好ましく、2mol%~10mol%であることがより好ましく、4mol%~8mol%であることがさらに好ましい。
[工程(2)]
 本発明の製造法は、工程(2):核酸を含む水相と、工程(1)で調製した油相を混合する工程を含む。
[核酸]
 本発明に用いられる核酸としては、公知の任意の形態の核酸が含まれる。核酸の具体例としては、一般的なRNA、DNA、およびそれらの誘導体を挙げることができ、一本鎖DNAもしくはRNAであってもよく、二本鎖DNAもしくはRNAであってもよく、DNA-RNAハイブリッドであってもよい。本発明に用いることのできる核酸としては、具体的には、アンチセンスDNA、アンチセンスRNA、DNAエンザイム、リボザイム、siRNA、shRNA、miRNA、aiRNA、piRNA、デコイ核酸、アプタマーなどを挙げることができる。本発明に用いられる核酸としては、siRNA、miRNA、aiRNA、アンチセンスDNA、アンチセンスRNAを使用することが好ましい。
 本発明で用いられる核酸は、天然型に限定されるものではなく、ヌクレアーゼ耐性など、生体内における安定性を高めるために、そのヌクレオチドを構成している糖またはリン酸バックボーンなどの少なくとも一部が修飾されているような非天然型であってもよい。
 糖部が修飾されている非天然型核酸としては、2’-O-メチルRNA、2’-O-(2-メトキシ)エチルRNA、2’-デオキシ-2’-フルオロアラビノ核酸、架橋型核酸(LNA/BNA)などが挙げられる。また、糖部をペプチドに置き換えたペプチド核酸(PNA)、モルフォリノに置き換えたモルフォリノ核酸なども、非天然型核酸の一例として挙げることができる。
 リン酸バックボーンが修飾されている非天然型核酸としては、ホスホロチオエート体、ホスホロジチオエート体などが挙げられる。
 本発明の製造法における水相(水相とは、水性成分を意味する)は、例えば、核酸を水などの水性成分に溶解させることで得られる。
 本発明の工程(2)では、水相と、工程(1)で得られる油相とを混合する。水相と油相とを混合する比率(質量比)は、3.0:1.0~1.0:1.0が好ましく、1.6:1.0~1.1:1.0がより好ましい。
 水相と油相とを混合する際の温度は、40~70℃であることが好ましく、45~65℃であることがより好ましく、50~60℃であることがさらに好ましい。
 また、混合する時間は、液全体が均一になっていることが確認できればよく、特に限定されない。また、加熱時間は、液全体の温度が均一に所望の温度になっていることが確認できればよく、特に限定されない。
[工程(3)]
 本発明の製造法は、工程(3):工程(2)で得た油相-水相混合液を冷却し、脂質粒子を晶出する工程を含む。
 本発明の工程(3)において、油相-水相混合液の冷却条件は10~30℃が好ましく、15~25℃がより好ましい。
 また、冷却時間は、特に限定されないが、冷却速度は-3℃/分以下であることが好ましい。
[工程(4)]
 本発明の製造法は、工程(4):工程(3)で得た油相-水相混合液からアルコールおよびエステルを除去する工程を含む
 本発明の工程(4)において、油相-水相混合液からアルコールおよびエステルを除去する方法としては、特に限定されず、一般的な手法により除去することができる。
[その他の工程]
 本発明の製造法によって得られる脂質粒子は、必要に応じてサイジングを施すことができる。サイジングには、槽内超音波処理またはプローブ超音波処理のいずれかにより脂質粒子を含む液(懸濁液)を超音波処理することにより、粒子径を小さくすることができる。
 また、本発明の製造法によって得られる脂質粒子は、必要に応じて濃縮することができる。濃縮には種々の既知の方法を採用することができ、例えば、限外ろ過膜を用いた濃縮方法を挙げることができる。
(2)脂質粒子について
 本発明において、脂質粒子とは、脂質から構成される粒子を意味し、特に限定されない。本発明の脂質粒子には、脂質二分子膜より構成される閉鎖小胞体であるラメラ構造を持つリポソームが含まれる。リポソームとしては、多重リポソーム(MLV)、小さな一枚膜リポソーム(SUV)、巨大一枚膜リポソームなどの構造が知られているが、特に限定されるものではない。本発明の脂質粒子には、前述のリポソームのような脂質二分子膜構造(ラメラ構造)を持たない、粒子内部も構成成分が詰まった構造を持つ粒子も含まれる。
 脂質形成の形態は、電子顕微鏡観察またはエックス線を用いた構造解析などにより確認できる。例えば、Cryo透過型電子顕微鏡観察(CryoTEM法)を用いた方法により、リポソームのように脂質粒子が脂質二分子膜構造(ラメラ構造)、内水層を持つ構造、またはリポソームのように脂質粒子が脂質二分子膜構造(ラメラ構造)および内水層を持たず、粒子内部に電子密度が高いコアを持っていることから、脂質をはじめとする構成成分が詰まった構造を有していることなどが確認できる。エックス線小角散乱(SAXS)測定によっても、脂質粒子が脂質二分子膜構造(ラメラ構造)の有無を確認できる。
 本発明の脂質粒子の粒子径は特に限定されないが、好ましくは10~1000nmであり、より好ましくは50~500nmであり、さらに好ましくは75~350nmである。脂質粒子の粒子径は、一般的な方法(例えば、動的光散乱法、レーザー回折法など)により測定することができる。
(3)脂質粒子の利用
 本発明の製造法によって得られる脂質粒子の一例としては、脂質粒子をin vitroで細胞に導入することによって、細胞に核酸など(例えば、遺伝子など)を導入することができる。また、本発明の製造法によって得られる脂質粒子に、医薬用途を有する核酸を含む場合、脂質粒子は核酸医薬として生体に投与することができる。
 本発明の製造法によって得られる脂質粒子を核酸医薬として使用する場合には、本発明の脂質粒子は単独でまたは薬学的に許容される投与媒体(例えば、生理食塩水またはリン酸緩衝液)と混合して、生体に投与することができる。
 薬学的に許容される担体との混合物中における脂質粒子の濃度は、特に限定されず、一般的には0.05質量%から90質量%とすることができる。また、本発明の脂質粒子を含む核酸医薬は、薬学的に許容される他の添加物質、例えば、pH調整緩衝剤、浸透圧調整剤などを添加してもよい。
 本発明の脂質粒子を含む核酸医薬をin vivoで投与する際の投与経路は、特に限定されず、任意の方法で投与することができる。投与方法としては、経口投与、非経口投与(関節内投与、静脈内投与、腹腔内投与、筋肉投与など)が挙げられる。本発明の脂質粒子を含む核酸医薬は、疾患部位に直接注射することにより投与することもできる。
 本発明の脂質粒子の剤形は、特に限定されないが、経口投与を行う場合には、本発明の脂質粒子は、適当な賦形剤と組み合わせて、錠剤、トローチ剤、カプセル剤、丸剤、懸濁剤、シロップ剤などの形態で使用することができる。また、非経口投与に適した製剤には、酸化防止剤、緩衝剤、静菌薬、および等張滅菌注射剤、懸濁化剤、溶解補助剤、粘稠化剤、安定化剤または保存料などの添加剤を適宜含めることができる。
(4)核酸送達キャリア
 本発明の製造法によって得られる脂質粒子は、高い内包率で核酸を保持することが可能であるため、核酸送達キャリアとして非常に有用である。本発明の核酸送達キャリアは、例えば、得られた脂質粒子を核酸などと混合して、細胞にin vitroでトランスフェクションをすることにより、細胞に核酸などを導入することができる。また、本発明の核酸送達キャリアは、核酸医薬における核酸送達キャリアとしても有用である。
 以下の実施例により本発明を具体的に説明するが、本発明の範囲は下記の実施例に限定されることはない。
 また、本発明において、コレステロールは、ディッシュマン社製コレステロールHPを、DPPC(ジパルミトイルホスファチジルコリン)は、日油社製COATSOME MC6060を、DSPE-PEG(ポリエチレングリコール修飾ホスホエタノールアミン、PEG鎖分子量:2000)は、日油社製SUNBRIGHT DSPE-020CNを、レシチンは、日油社製COATSOME NC-50を、使用した。
[合成例:式(2)で表される化合物(以下、化合物A)の合成]
第一工程
 テトラヒドロフラン230mLに、ジヘキサデシルアミン23gおよびトリエチルアミン5.52gを加え、攪拌しながらBoc-His(1-Boc)-OSU 24.6gを添加し、室温で1時間攪拌し、50℃で5時間攪拌した。その後、テトラヒドロフランを減圧留去し、反応物にクロロホルム450mLおよび水200mLを加えた。有機層を分取し、飽和炭酸水素ナトリウム水溶液、10%クエン酸水溶液、飽和塩化ナトリウム水溶液で順次洗浄し、無水硫酸マグネシウムで乾燥させ、溶媒を減圧留去した。残留物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=5/1~3/1)で精製し、油状物の保護体24gを得た。
Figure JPOXMLDOC01-appb-C000006
第二工程
 トリフルオロ酢酸35mLに、第一工程で得られた保護体21.7gを少しずつ加え、室温で24時間攪拌した。その後、飽和炭酸水素ナトリウム40gを含む水溶液600mLに徐々に添加し、1時間攪拌した。得られた反応液にクロロホルム500mLを加え、有機層を分取し、飽和炭酸水素ナトリウム水溶液、飽和塩化ナトリウム水溶液で順次洗浄し、無水硫酸マグネシウムで乾燥させ、溶媒を減圧留去した。残留物をシリカゲルクロマトグラフィー(クロロホルム/メタノール=10/1)で精製し、無色固体の化合物Aを11.6g得た。化合物の同定は、NMRおよびMSにより行った。
[実施例1]
(コアセルベーション法)
油相の調製
 L-α―ジパルミトイルホスファチジルコリン、レシチン、コレステロール、N-(カルボニル-メトキシポリエチレングリコール2000)-1,2-ジステアロイル-sn-グリセロ-3-ホスホエタノールアミンナトリウム塩(以下、DSPE-PEG)を、61/15/20/4のモル比となるように、それぞれ80mg、20mg、14mg、20mg量り取り、エタノールを0.3mL、酢酸エチルを0.7mL加えて溶解させ、油相を得た。
核酸保持脂質粒子の調製
 上述の工程で得た油相に、後述のsiRNA5mgを滅菌水0.263mLで溶解した核酸水溶液0.25mL、さらに滅菌水を1.0mL添加し、55℃で10分間加熱した。その後攪拌しながら室温で放冷した。つづいて100mMヒスチジン溶液を用いて室温で透析し、エタノール/酢酸エチル混合溶液を除去した。得られた溶液をエクストルーダー(Avanti Polar Lipids社製Mini Extruder)を用い、0.4μmフィルターを通過させることで整粒し、核酸を保持する脂質粒子を得た。
[実施例2]
(コアセルベーション法)
200mMヒスチジン溶液の調製
 L-ヒスチジン15.5gを量り取り、500mLの滅菌水で溶解した。pH7となるように200mM HClを添加し、200mMヒスチジン溶液を得た。
油相の調製
 L-α―ジパルミトイルホスファチジルコリン、化合物A、コレステロール、DSPE-PEGを、26/26/44/4のモル比となるように、それぞれ37mg、30mg、33mg、20mg量り取り、エタノールを0.3mL、酢酸エチルを0.7mL加えて溶解させ、油相を得た。
核酸保持脂質粒子の調製
 上述の工程で得た油相に、後述のsiRNA5mgを滅菌水0.263mLで溶解した核酸水溶液0.25mL、200mMヒスチジン溶液0.625mL、さらに滅菌水を0.375mL添加し、55℃で10分間加熱した。つづいて100mMヒスチジン溶液を用いて室温で透析し、エタノール/酢酸エチル混合溶液を除去した。得られた溶液をエクストルーダー(Avanti Polar Lipids社製Mini Extruder)用い、0.4μmフィルターを通過させることで整粒し、核酸を保持する脂質粒子を得た。
[実施例3]
(コアセルベーション法)
 油相の調製において、L-α-ジパルミトイルホスファチジルコリン、化合物A、コレステロール、DSPE-PEGを、26/22/44/8のモル比となるように、それぞれ31mg、31mg、33mg、44mg量り取った以外は、実施例2と同様に調製し、核酸を保持する脂質粒子を得た。
比較例1
(バンガム法)
油相の調製
 L-α-ジパルミトイルホスファチジルコリン、化合物A、コレステロール、DSPE-PEGを、26/26/44/4のモル比となるように、それぞれ37mg、30mg、33mg、20mg量り取り、エタノール0.3mL、酢酸エチル0.7mLを加えて溶解させ、油相を得た。
脂質膜の形成
 上述の工程で得た油相をナスフラスコに入れ、エバポレーターでエタノールと酢酸エチルを留去することで脂質膜を得た。
核酸保持脂質粒子の調製
 上述のナスフラスコに、後述のsiRNA5mgを滅菌水0.263mLで溶解した核酸水溶液0.25mL、200mMヒスチジン溶液0.625mL、さらに滅菌水0.375mLを添加し、ボルテックスミキサーを用いて55℃で攪拌しながら水和した。得られた液をエクストルーダー(Avanti Polar Lipids社製Mini Extruder)を用い、0.4μmフィルターを通過させることで整粒し、核酸を保持する脂質粒子を得た。
[比較例2]
(コアセルベーション法)
 油相の調製において、エタノール0.3mLおよび酢酸エチル0.7mLの混合液を、エタノール1mLに替えて溶解した以外は、実施例2と同様に調製し、核酸を保持する脂質粒子を得た。
[比較例3]
(バンガム法)
油相の調製
 L-α-ジパルミトイルホスファチジルコリン、化合物A、コレステロール、DSPE-PEGを、61/15/20/4のモル比となるように、それぞれ80mg、20mg、14mg、20mg量り取り、クロロホルム1.0mLを加えて溶解させ、油相を得た。
脂質膜の形成
 上述の工程で得た油相をナスフラスコに入れ、エバポレーターでエタノールと酢酸エチルを留去することで脂質膜を得た。
核酸保持脂質粒子の調製
 上述のナスフラスコに、後述のsiRNA5mgを滅菌水0.263mLで溶解した核酸水溶液0.25mL、さらに滅菌水1.0mLを添加し、ボルテックスミキサーを用いて55℃で攪拌しながら水和した。得られた液をエクストルーダー(Avanti Polar Lipids社製Mini Extruder)を用い、0.4μmフィルターを通過させることで整粒し、核酸を保持する脂質粒子を得た。
 siRNAは以下の配列のものを使用した。
5’-GUUCAGACCACUUCAGCUU-3’(sense鎖)(配列番号1)
3’-CAAGUCUGGUGAAGUCGAA-5’(antisense鎖)(配列番号2)
脂質粒子の粒径測定
 脂質粒子の粒径は、脂質粒子分散液を、大塚電子(株)製のゼータ電位・粒径測定システムELS-Z2を用いて、原液のまま測定した。
siRNAの内包率の評価
(総核酸濃度定量)
 核酸を保持する脂質粒子0.02mLに、3M酢酸アンモニウム水溶液0.01mLとグリコーゲン0.003mLを添加し、つづいてエタノール0.5mLを添加することで、脂質を溶解し、核酸のみを沈殿させた。-20℃で2時間静置後、14000×g、4℃の条件で15分間遠心し、上清を除去した。15分以上風乾させた後、水を加えて再溶解させ、ナノドロップNF1000(Thermo Fisher Scientific社)を用いて濃度測定することで、総核酸濃度を定量した。
(外水相における核酸濃度の定量)
 Quant-iT RiboGreen RNA Assay Kit(Invitrogen)を用い、マニュアル&プロトコルに記載のlow-range assayに従って定量した。まず、上述のキットに含まれる20×TEバッファーを水で希釈し、1×TEバッファーとした。外水相の核酸のみを定量するため、核酸を保持する脂質粒子0.005mLに1×TEバッファーを0.095mL添加し、20倍希釈液を調整した。つづいて、20倍希釈液0.1mLに1×TEバッファーを1.99mL添加することで、核酸を保持する脂質粒子を破壊せず、TEバッファーで4000倍に希釈したサンプルを得た。
 RiboGreen試薬原液0.009mLに、1×TEバッファー1.791mLを添加し、200倍希釈液を調整し、つづいて200倍希釈液0.22mLに1×TEバッファー1.98mLを添加することで、2000倍に希釈したRiboGreen試薬を得た。
 4000倍に希釈したサンプル0.1mLを、96ウェルプレートに入れ、つづいて2000倍に希釈したRiboGreen試薬0.1mLをサンプルに加え、プレートリーダーInfinit EF200(TECAN)を用いて蛍光(励起波長 485nm、蛍光波長 535nm)を測定することで、外水相における核酸濃度を定量した。
(内包率の算出)
 上述の工程で得られた総核酸濃度および外水相での濃度の定量結果を用いて、下記式に従って、実施例1~3、比較例1~3の核酸を保持する脂質粒子の内包率を算出した。
内包率(%)=(総核酸濃度-外水相における核酸濃度)÷総核酸濃度×100
 結果を表1に表す。
Figure JPOXMLDOC01-appb-T000007
 表1に示すように、コアセルベーション法により調整した脂質粒子は、少なくとも1つのアミノ基と少なくとも1つのイミダゾイル基を有する化合物を使用しなくても、従来の調整法であるバンガム法に比べて、予想外に内包率が向上することが判明した。また、実施例2および3のように、少なくとも1つのアミノ基と少なくとも1つのイミダゾイル基を有する化合物を用いて、コアセルベーション法により得られた核酸を保持する脂質粒子は、非常に高い内包率を有することが分かった。

Claims (8)

  1. 下記(1)~(4)の工程:
    (1)リン脂質、アルコールおよびエステルを含む油相を加熱する工程;
    (2)核酸を含む水相と、工程(1)で調製した油相を混合する工程;
    (3)工程(2)で得た油相および水相を含む混合液を冷却し、脂質粒子を晶出する工程;および
    (4)工程(3)で得た油相および水相を含む混合液からアルコールおよびエステルを除去する工程、
    を含む、核酸を内包した脂質粒子の製造法。
  2. アルコールが炭素数1~6のアルコールである、請求項1に記載の脂質粒子の製造法。
  3. エステルが酢酸エステルである、請求項1または2に記載の脂質粒子の製造法。
  4. 工程(1)において、油相が、少なくとも1つのアミノ基と少なくとも1つのイミダゾイル基を有する化合物をさらに含む、請求項1~3のいずれか1項に記載の脂質粒子の製造法。
  5. 少なくとも1つのアミノ基と少なくとも1つのイミダゾイル基を有する化合物が一般式(1)で表される化合物である、請求項4に記載の脂質粒子の製造法:
    Figure JPOXMLDOC01-appb-C000001
    式中、R1およびR2は、同一または異なって、炭素数10~22のアルキル基、炭素数10~22のアルキルオキシアルキレン基、炭素数10~22のアルカノイルオキシアルキレン基および炭素数10~22のアルキルオキシカルボニルアルキレン基から選択される置換基である。
  6. 工程(1)において、リン脂質、アルコールおよびエステルを含む油相を40~70℃で加熱する、請求項1~5のいずれか1項に記載の脂質粒子の製造法。
  7. 工程(3)において、油相および水相を含む混合液を10~30℃で冷却する、請求項1~6のいずれか1項に記載の脂質粒子の製造法。
  8. 請求項1~7のいずれか1項に記載の製造法によって得られる脂質粒子を有する核酸送達キャリア。
PCT/JP2015/070398 2014-07-17 2015-07-16 脂質粒子の製造法および脂質粒子を有する核酸送達キャリア WO2016010111A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15822112.7A EP3170504B8 (en) 2014-07-17 2015-07-16 Method for producing lipid particle and nucleic acid delivery carrier comprising lipid particle
US15/405,983 US20170121714A1 (en) 2014-07-17 2017-01-13 Method for producing lipid particles and nucleic acid delivery carrier having lipid particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-146809 2014-07-17
JP2014146809A JP2016023148A (ja) 2014-07-17 2014-07-17 脂質粒子の製造法および脂質粒子を有する核酸送達キャリア

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/405,983 Continuation US20170121714A1 (en) 2014-07-17 2017-01-13 Method for producing lipid particles and nucleic acid delivery carrier having lipid particles

Publications (1)

Publication Number Publication Date
WO2016010111A1 true WO2016010111A1 (ja) 2016-01-21

Family

ID=55078597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070398 WO2016010111A1 (ja) 2014-07-17 2015-07-16 脂質粒子の製造法および脂質粒子を有する核酸送達キャリア

Country Status (4)

Country Link
US (1) US20170121714A1 (ja)
EP (1) EP3170504B8 (ja)
JP (1) JP2016023148A (ja)
WO (1) WO2016010111A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7508359B2 (ja) * 2020-12-11 2024-07-01 株式会社東芝 脂質粒子の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997049723A1 (en) * 1996-06-27 1997-12-31 Gilead Sciences, Inc. Cationic lipids for delivery of nucleic acid to cells
JPH10504021A (ja) * 1994-05-16 1998-04-14 ザ ボード オブ リージェンツ オブ ザ ユニヴァーシティ オブ ミシガン 肝細胞選択性水中油型乳剤
JP2002501511A (ja) * 1997-05-14 2002-01-15 イネックス ファーマスーティカルズ コーポレイション 脂質小胞への荷電した治療剤の高率封入
JP2013517265A (ja) * 2010-01-19 2013-05-16 ポリピッド リミテッド 徐放性核酸マトリックス組成物
JP2013537518A (ja) * 2010-07-06 2013-10-03 ノバルティス アーゲー RNA送達に有利なpKa値を有する脂質を含むリポソーム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10504021A (ja) * 1994-05-16 1998-04-14 ザ ボード オブ リージェンツ オブ ザ ユニヴァーシティ オブ ミシガン 肝細胞選択性水中油型乳剤
WO1997049723A1 (en) * 1996-06-27 1997-12-31 Gilead Sciences, Inc. Cationic lipids for delivery of nucleic acid to cells
JP2002501511A (ja) * 1997-05-14 2002-01-15 イネックス ファーマスーティカルズ コーポレイション 脂質小胞への荷電した治療剤の高率封入
JP2013517265A (ja) * 2010-01-19 2013-05-16 ポリピッド リミテッド 徐放性核酸マトリックス組成物
JP2013537518A (ja) * 2010-07-06 2013-10-03 ノバルティス アーゲー RNA送達に有利なpKa値を有する脂質を含むリポソーム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASATO TANAKA, KNOW-HOW IN PREPARATION OF NANO/MICRO-CAPSULES, 6 May 2008 (2008-05-06), pages 24 - 25, XP008183717 *
See also references of EP3170504A4 *

Also Published As

Publication number Publication date
JP2016023148A (ja) 2016-02-08
EP3170504B8 (en) 2018-10-17
EP3170504A4 (en) 2017-07-26
US20170121714A1 (en) 2017-05-04
EP3170504B1 (en) 2018-08-29
EP3170504A1 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
CN110325511B (zh) 用于rna递送的可离子化阳离子脂质
TWI594767B (zh) 含有陽離子性脂質之藥物傳遞系統用脂質奈米粒子
TW201330874A (zh) 含有陽離子性脂質之組合之脂質奈米粒子
JP2014502615A (ja) 陽イオン性脂質を含む陰イオン性薬物伝達体およびその製造方法
JP6887020B2 (ja) 生分解性化合物、脂質粒子、脂質粒子を含む組成物、およびキット
WO2018225871A1 (ja) カチオン性脂質としての化合物
CN111386105B (zh) 用于递送生物活性分子的膜融合化合物
CA3203294A1 (en) Nanomaterials comprising carbonates
US9974862B2 (en) Lipid particles and nucleic acid delivery carrier
JP6388700B2 (ja) 脂質粒子の製造法および脂質粒子を有する核酸送達キャリア
JP5914418B2 (ja) 脂質粒子、核酸送達キャリア、核酸送達キャリア製造用組成物、脂質粒子の製造方法及び遺伝子導入方法
JP6774965B2 (ja) カチオン性脂質としての化合物
WO2016010111A1 (ja) 脂質粒子の製造法および脂質粒子を有する核酸送達キャリア
TW201625310A (zh) CKAP5基因表現抑制RNAi醫藥組合物
EP3521270B1 (en) Cationic lipid compound
JP6495995B2 (ja) 脂質粒子および核酸送達キャリア
WO2018225873A1 (ja) 核酸含有ナノ粒子
WO2022159475A1 (en) Nanomaterials comprising an ionizable lipid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822112

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015822112

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015822112

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE