WO2016010000A1 - C/c composite molded article, manufacturing method therefor and heat treatment jig using c/c composite molded article - Google Patents

C/c composite molded article, manufacturing method therefor and heat treatment jig using c/c composite molded article Download PDF

Info

Publication number
WO2016010000A1
WO2016010000A1 PCT/JP2015/070070 JP2015070070W WO2016010000A1 WO 2016010000 A1 WO2016010000 A1 WO 2016010000A1 JP 2015070070 W JP2015070070 W JP 2015070070W WO 2016010000 A1 WO2016010000 A1 WO 2016010000A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall portion
side wall
molded body
composite molded
composite
Prior art date
Application number
PCT/JP2015/070070
Other languages
French (fr)
Japanese (ja)
Inventor
裕二 富田
洋 町野
平岡 利治
信吾 尾藤
修平 冨田
Original Assignee
東洋炭素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋炭素株式会社 filed Critical 東洋炭素株式会社
Publication of WO2016010000A1 publication Critical patent/WO2016010000A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core

Definitions

  • the present invention relates to a C / C composite molded body, a manufacturing method thereof, and a jig for heat treatment using the C / C composite molded body.
  • Patent Document 1 a method using an integrated C / C composite, specifically, a method of obtaining an integrated molded body by flowing fibers by die molding using a short fiber prepreg. Etc. have been proposed (Patent Document 1 below).
  • an object of the present invention is to provide a high-strength C / C composite molded body, a manufacturing method thereof, and a heat treatment jig using the C / C composite molded body.
  • a C / C composite molded article of the present invention comprises a bottom wall portion and a side wall portion standing on the periphery of the bottom wall portion, and includes carbon fibers and a matrix.
  • the side wall portion has at least one bent portion and / or a curved portion in plan view, and at least some of the carbon fibers are It is characterized by being provided continuously from the bottom wall portion to the side wall portion.
  • FIG. 1 is a plan view showing a prepreg sheet cutting and processing method in Example 1 of the first embodiment.
  • FIG. 1 (a) is a plan view of the prepreg sheet 10
  • FIG. 1 (b) is a plan view of the prepreg sheet 11.
  • FIG. 2A is a perspective view showing an assembled state of the prepreg sheet 11
  • FIG. 2B is a perspective view showing an assembled state of the prepreg sheet 10
  • FIG. 2C is a perspective view of a molding die. It is a perspective view which shows the C / C composite molded object produced with the method of Example 1 of 1st Example.
  • FIG. 1A is a perspective view showing an assembled state of the prepreg sheet 14
  • FIG. 1B is a perspective view showing the prepreg sheet 13
  • FIG. 1C is a perspective view showing an assembled state of the prepreg sheet 12.
  • FIG. (D) is a perspective view of a shaping
  • FIG. 4A is a perspective view showing the assembled state of the prepreg sheet 17
  • FIG. 4B is a perspective view showing the assembled state of the prepreg sheet 16
  • FIG. 4C is a perspective view showing the assembled state of the prepreg sheet 15.
  • FIG. 4D is a perspective view of the mold.
  • FIG. 4A is a side view showing a strength test method
  • FIG. 4B is a front view of a test sample.
  • FIG. 4A is a perspective view showing the assembled state of the prepreg sheet 40
  • FIG. 4B is a perspective view showing the assembled state of the prepreg sheet 41
  • FIG. 4C is a perspective view of the molding die. It is a perspective view which shows the C / C composite molded object produced with the method of Example 1 of 2nd Example.
  • FIG. 4A is a perspective view showing the assembled state of the prepreg sheet 50
  • FIG. 4B is a perspective view showing the assembled state of the prepreg sheet 51
  • FIG. It is a perspective view which shows the C / C composite molded object produced by the method of Example 2 of 2nd Example.
  • FIG. 4A is a perspective view showing the assembled state of the prepreg sheet 60
  • FIG. 4B is a perspective view showing the assembled state of the prepreg sheet 61
  • FIG. 4C is a perspective view of the mold. It is a perspective view which shows the C / C composite molded object produced by the method of Example 3 of 2nd Example.
  • FIG. 4A is a perspective view showing the assembled state of the prepreg sheet 70
  • FIG. 4B is a perspective view showing the prepreg sheet 71
  • FIG. 4C is a perspective view showing the assembled state of the prepreg sheet 72
  • FIG. (D) is a perspective view of a shaping
  • the side wall part which consists of a curved plate-shaped side wall part structural member. It is the elements on larger scale which show the example of carbon fiber. It is the elements on larger scale which show the example of carbon fiber. It is the elements on larger scale which show the example of carbon fiber. It is the elements on larger scale which show the example of carbon fiber. It is the elements on larger scale which show the example of carbon fiber. It is the elements on larger scale which show the example of carbon fiber. It is the elements on larger scale which show the example of carbon fiber. It is the elements on larger scale which show the example of carbon fiber. It is the elements on larger scale which show the example of carbon fiber. It is the elements on larger scale which show the example of carbon fiber. It is the elements on larger scale which show the example of carbon fiber. It is the elements on larger scale which show the example of carbon fiber.
  • the present invention is a C / C composite molded body comprising a bottom wall portion and a side wall portion standing on the periphery of the bottom wall portion, and comprising carbon fibers and a matrix, wherein the side wall portion Has at least one bent portion and / or curved portion in plan view, and at least some of the carbon fibers are continuously provided from the bottom wall portion to the side wall portion. It is characterized by that.
  • the strength as a molded body is improved. That is, when an object is placed on the bottom wall portion of the molded body, the load applied to the bottom wall portion is also distributed to the side wall portion, so the bottom wall portion (including the boundary portion between the bottom wall portion and the side wall portion). Can be prevented from being damaged and falling. Therefore, for example, when used as a heat treatment jig, it is possible to suppress the drop of the product due to the breakage of the heat treatment jig.
  • the said side wall part may be provided in the peripheral edge of the said bottom wall part over the perimeter. If the side wall portion is provided on the entire periphery of the bottom wall portion, the load dispersed on the side wall portion increases, so that the bottom wall portion can be further prevented from being damaged and falling.
  • a cutout may be formed in at least a part of the side wall. If the notch is formed in at least a part of the side wall, the weight of the C / C composite molded body can be reduced. Even if the cutout is formed in at least a part of the side wall portion, the load is distributed to the remaining side wall portion, so that the bottom wall portion can be prevented from being damaged and falling.
  • the side wall portion is flat and the angle formed by the bent portion is 150 ° or less.
  • the carbon fiber is preferably continuously extended from one side wall portion to the other side wall portion facing each other across the bottom portion. If the carbon fibers are continuously extended between the opposing side wall portions, the downward load acts as a tensile load of the carbon fibers even when a load is applied to the bottom portion. In this case, since the tensile strength of the carbon fiber is extremely high, it is possible to further prevent the molded body from being deformed or damaged (particularly, the bottom wall portion is damaged) due to the load.
  • the side wall portion has carbon fibers provided continuously with the bent portion interposed therebetween. If it is the said structure, the intensity
  • 1D cloth, 2D cloth, three-way cloth, two-dimensional random orientation paper, or the like can be used as the carbon fiber.
  • 1D cloth and 2D cloth are preferable because carbon fibers can be densely arranged, and a high-strength molded body can be obtained.
  • the carbon fiber woven fabric and nonwoven fabric which are generally known can be used.
  • the carbon fiber is preferably a net-like body in which a gap is provided between a plurality of bundled strands. If a void is provided between the strands, a gas or a liquid can pass through the void. Therefore, it becomes possible to use it more suitably for the heat processing use made to contact gas or a liquid.
  • the heat treatment of the object can be performed safely and reliably.
  • the C / C composite has high heat resistance, and has a characteristic that the mechanical strength increases as the temperature increases at 3000 ° C. or lower. Therefore, during normal heat treatment, there is little risk of deformation, stable heat treatment can be achieved, and repeated use can be performed many times.
  • a method for producing a molded article made of C / C composite comprising a bottom wall portion and a side wall portion and comprising carbon fibers and a matrix, wherein the prepreg is impregnated with a resin after impregnating the carbon fibers with a resin.
  • the molding after impregnating the resin is preferably performed by vacuum bag molding or autoclave molding.
  • Example 1 Using a 2D plain woven cloth made of PAN-based carbon fiber (Torayca T-300, manufactured by 6K Toray Industries, Inc.), this carbon fiber woven fabric was immersed in a liquid phenolic resin and impregnated with the resin. Next, after adjusting the amount of resin impregnated in the carbon fiber woven fabric using a squeezing roller, it was dried in an oven heated to 100 ° C., thereby obtaining a prepreg sheet.
  • PAN-based carbon fiber Torayca T-300, manufactured by 6K Toray Industries, Inc.
  • the obtained prepreg sheet was cut into a square shape, and cuts 1 shown in FIGS. 1 (a) and 1 (b) were made, whereby molded sheets 10 and 11 were produced.
  • the extending directions of the carbon fibers in the molded body sheets 10 and 11 are both the A direction and the B direction.
  • the said molded object sheets 10 and 11 were bend
  • FIGS. 2 (a) and 2 (b) since the rising portions 10a and 11a are bent downward, it may be considered that they do not coincide with the designation.
  • the molded body was fired at about 1000 ° C. in a N 2 atmosphere, then impregnated with pitch, and further fired at about 1000 ° C. Finally, by performing the treatment at about 2000 ° C. in an N 2 atmosphere, an integrated C / C composite molded body using a 2D carbon fiber cloth was obtained.
  • the C / C composite molded body 30 is provided with a bottom wall portion 32 and four side wall portion constituting members 31 a, 31 b, 31 c, 31 d ( And a side wall portion 31 composed of the rising portions 10a and 11a).
  • the angle at the bent portion 33 is 90 ° in plan view.
  • the C / C composite molded body thus produced is hereinafter referred to as a molded body A1.
  • Example 2 After obtaining a prepreg sheet in the same manner as in Example 1, the prepreg sheet was cut into a shape as shown in FIGS. 4 (a) to 4 (c) to produce molded body sheets 12-14.
  • the extending directions of the carbon fibers in the molded body sheets 12 to 14 are both the A direction and the B direction.
  • seats 12 and 14 for molded objects were bent by the bending part 2 of Fig.4 (a) (c), and were made into the shape as shown to Fig.5 (a) (c). At this time, a rising portion 12 a was formed on the molded body sheet 12.
  • molded body A2 vacuum bag molding is performed at about 200 ° C., and box-shaped molding using a 2D carbon fiber cloth is performed. The body was made. Thereafter, the same treatment as in Example 1 was performed to obtain an integrated C / C composite molded body.
  • the C / C composite molded body has the same shape as that shown in FIG.
  • the C / C composite molded body thus produced is hereinafter referred to as molded body A2.
  • Example 3 A prepreg sheet was prepared in the same manner as in Example 1 except that the same carbon fiber as that used in Example 1 was used for the warp while a UD cloth using glass fiber was used for the weft.
  • Sheets 15 to 17 for molded bodies were produced by cutting into shapes as shown in 6 (a) to (c). At that time, the extending direction of the carbon fibers of the molded body sheet 15 is set to the A direction, and the extending direction of the carbon fibers of the molded body sheet 16 is set to the B direction. The direction and the extending direction of the carbon fibers of the molded body sheet 16 were perpendicular to each other. In addition, the extending direction of the carbon fiber of the sheet
  • the molded body sheets 15 to 17 were bent at the bending portion 2 of FIGS. 6A to 6C to have shapes as shown in FIGS. 7A to 7C.
  • rising portions 15 a and 16 a were formed on the molded body sheets 15 and 16.
  • a vacuum bag molding is performed at about 200 ° C. in a state in which the three molding sheets 15 to 17 are superimposed on the molding die 20 shown in FIG. 7D, and a box-shaped molding using a UD carbon fiber cloth is performed.
  • the body was made. Thereafter, the same treatment as in Example 1 was performed to obtain an integrated C / C composite molded body.
  • the C / C composite molded body has the same shape as that shown in FIG.
  • the C / C composite molded body thus produced is hereinafter referred to as a molded body A3.
  • Example 4 First, a prepreg sheet was obtained in the same manner as in Example 1 by using a triaxial carbon fiber woven net instead of the 2D plain weave cloth. Next, the obtained prepreg sheet was cut into a square shape, and cuts 1 shown in FIGS. 1 (a) and 1 (b) were made, whereby molded sheets 10 and 11 were produced. Next, the molded body sheets 10 and 11 are bent at the bent portion 2 in FIGS. 1A and 1B, and the rising portions 10a and 11a are formed as shown in FIGS. 2A and 2B. did. Thereafter, a box using a triaxial carbon fiber woven net is formed by vacuum bag molding at about 200 ° C. in a state where the two molded body sheets 10 and 11 are superimposed on the mold 20 shown in FIG. A shaped molded body was produced.
  • Example 2 the same treatment as in Example 1 was performed to obtain an integrated C / C composite molded body using a triaxial carbon fiber woven net.
  • the C / C composite molded body has the same shape as that shown in FIG.
  • the C / C composite molded body thus produced is hereinafter referred to as molded body A4.
  • a T300 carbon fiber was cut into a length of about 12 mm, spread in a metal vat, and the same phenol resin as the phenol resin used in Example 1 was poured into the metal vat to impregnate the carbon fiber. Then, it dried in the oven heated at 100 degreeC, and obtained the sheet molding compound prepreg. Next, the obtained prepreg is set in a mold composed of an outer mold and an inner mold, and is molded at a surface pressure of about 30 Kg / cm 2 and a temperature of 200 ° C., and has an inner dimension of 150 mm ⁇ 100 mm ⁇ 30 mm and a wall thickness of 2 mm A box-shaped molded product was obtained. Thereafter, the same treatment as in Example 1 was performed to obtain a chopped type integrated C / C composite molded body. The C / C composite molded body thus produced is hereinafter referred to as a molded body Z.
  • Example 3 A cylindrical metal part made of chromium molybdenum steel (SCM435) and having a diameter of 20 mm and a height of 80 mm is heated to about 1100 ° C. using the molded bodies A4 and Z, and then rapidly cooled by spraying 20 bar of pressurized N 2 gas. It was. And since the Vickers hardness of the center part of a part was investigated as a quenching characteristic of the obtained metal part, the result is shown in Table 3.
  • the molded body A4 has a strength that allows the quenching operation of the metal parts, and the hardness improvement by quenching is smoothly performed, whereas the characteristics are good.
  • the quenching characteristics of the metal parts were poor. This is because the molded body Z inhibits the passage of N 2 gas, so that sufficient cooling is not performed, whereas the molded body A4 does not inhibit the passage of N 2 gas, so that sufficient cooling is performed. It is thought to be caused by
  • Example 1 In the same manner as in Example 1 of the first example, the prepreg sheet cut into a square shape was cut into 1 shown in FIGS. 9 (a) and 9 (b) to produce molded body sheets 40 and 41.
  • seats 40,41 for the said molded object is both A direction and B direction.
  • seats 40 and 41 for molded objects were bent in the bending part 2 of Fig.9 (a) (b), and the raising part 40a, 41a was formed as a shape as shown to Fig.10 (a) (b). .
  • the C / C composite molded body 45 includes a bottom wall portion 43 and two side wall portion constituting members 44a and 44b (the above-described rising portion 40a) that are provided upright on the periphery of the bottom wall portion 43. , 41a).
  • Example 2 In the same manner as in Example 1 of the first example, the prepreg sheets cut into a square shape were cut 1 shown in FIGS. 12 (a) and 12 (b) to produce molded body sheets 50 and 51.
  • the extending directions of the carbon fibers in the molded body sheets 50 and 51 are both the A direction and the B direction.
  • the molded body sheets 50 and 51 were bent at the bending portion 2 in FIGS. 12A and 12B, and the rising portions 50a and 51a were formed in a shape as shown in FIGS. 13A and 13B. .
  • vacuum bag molding is performed at about 200 ° C., and a box shape using a 2D carbon fiber cloth is used.
  • a molded body was produced.
  • the C / C composite molded body 55 includes a bottom wall portion 53 and three side wall portion constituting members 54 a, 54 b, 54 c (the above-described rising portions) that are provided upright on the periphery of the bottom wall portion 53. And a side wall portion 54 consisting of portions 50a and 51a).
  • Example 3 In the same manner as in Example 1 of the first example, a prepreg sheet cut into a square shape was provided with cuts 1 shown in FIGS. At this time, a notch 67 was formed in a portion that later became a side wall portion. Thereby, the sheet
  • the extending directions of the carbon fibers in the molded body sheets 60 and 61 are both the A direction and the B direction. Thereafter, the molded body sheets 60 and 61 were bent at the bending portion 2 in FIGS. 15A and 15B, and the rising portions 60a and 61a were formed in the shapes as shown in FIGS. 16A and 16B. .
  • the C / C composite molded body 65 includes a side wall portion 64 including a bottom wall portion 63 and side wall portion constituting members 64a, 64b, 64c, and 64d (corresponding to the rising portions 60a and 61a). And a notch 67 is formed in the side wall portion 64.
  • the notch 67 does not need to be formed in each side wall constituent member 64a, 64b, 64c, 64d, and may be formed only in an arbitrary side wall constituent member.
  • Example 4 A prepreg sheet is produced in the same manner as in Example 1 of the first example, and the prepreg sheet is cut into a shape as shown in FIGS. 18A to 18C to produce molded body sheets 70 to 72. did. At that time, the extending direction of the carbon fibers of the molded body sheet 70 is set to the A direction, and the extending direction of the carbon fibers of the molded body sheet 71 is set to the B direction. The direction and the extending direction of the carbon fibers of the molded body sheet 71 were perpendicular to each other. In addition, the extending direction of the carbon fiber of the sheet
  • seat 70 for molded objects has the convex piece 70a, 70b, 70c which becomes a side wall part structural member later.
  • the convex piece 70a becomes the flat plate-like side wall part constituting member 74a of FIG. 20
  • the convex piece 70b becomes the flat plate shaped side wall part constituting member 74b of FIG. 20
  • the convex piece 70c has the curved plate shape of FIG. Side wall portion constituting member 74c.
  • the molded body sheet 70 is bent at the bending portion 2 in FIG. 18A, and as shown in FIGS. 19A and 19B, the rising portions 70d, 70e, and 70f (the protruding pieces 70a, 70b and 70c). Thereafter, a vacuum bag is formed at about 200 ° C. in a state in which three molding sheets 70 to 72 are superimposed on the molding die 20 shown in FIG. 19 (d), and a box shape using a 2D carbon fiber cloth is used. A molded body was produced. Thereafter, the same process as in Example 1 of the first example was performed to obtain an integrated C / C composite molded body.
  • the C / C composite molded body has a bottom wall portion 73 and flat side wall portion constituting members 74 a and 74 b (the above-described rising portions) that are provided on the periphery of the bottom wall portion 73. 70d and 70e) and a side wall portion 74 formed of a curved plate-like side wall portion constituting member 74c (corresponding to the rising portion 70f), and this side wall portion has an arc shape in plan view to form a curved portion. .
  • the angle ⁇ formed by the tangents 740c and 740d at the center points 740a and 740b of the curved plate-like side wall component member 74c (corresponding to the convex piece 70c) is less than 180 °.
  • the shape of the bottom wall portion is not limited to the quadrangular shape or the partial arc shape, and may be a triangular shape, a hexagonal shape, or the like.
  • the carbon fibers may be those shown in FIGS. Each figure will be briefly described. As shown in FIG. 22, the carbon fiber 140 is a triaxial woven fabric in which a plurality of strands 141, 142, and 143 are woven from three directions, and a hexagonal mesh is formed. In each strand 141, 142, 143, a plurality of carbon fibers are arranged without being twisted.
  • the carbon fiber 150 is a biaxial woven fabric, and a plurality of carbon fibers are bundled.
  • the carbon fibers are arranged without being twisted, whereas in the strand (twisted strand) 152 of the vertical axis, the two strands 152a and 152b are rotated once (360 ° twist) between the lattices. Is gently twisted together.
  • the strand 151 on the horizontal axis passes between the two strands 152a and 152b on the vertical axis.
  • the carbon fiber 153 differs from the carbon fiber 150 shown in FIG. 23 in that a twisted strand 154 is used on the horizontal axis. That is, in the stranded strand 154 on the horizontal axis, the strands 154a and 154b in which carbon fibers are bundled are gently twisted.
  • the carbon fiber 160 is a biaxial woven fabric, and in each strand 161, 162. A plurality of carbon fibers are bundled. In the strand 161 on the horizontal axis, a plurality of carbon fibers are arranged without being twisted, while in the strand strand 162 on the vertical axis, two strands 162a and 162b are twisted together. Since the number of twists of the twisted strand 162 is larger than the number of twists of the twisted strand 152 shown in FIG. 23, the strength of the twisted strand 162 is higher than the strength of the twisted strand 152.
  • the carbon fiber 163 is different from the carbon fiber 160 shown in FIG. 25 in that a twisted strand 164 is used on the horizontal axis. That is, the strands 164a and 164b in which carbon fibers are bundled are twisted together in the twisted strand 164 on the horizontal axis.
  • the carbon fiber 170 is a biaxial woven fabric, and twisted strands 171 and 172 are used on the horizontal axis and the vertical axis.
  • the two strands 171a and 171b are gently twisted, and in the twisted strand 172 on the vertical axis, the two strands 172a and 172b are gently twisted.
  • the horizontal axis 171a and the strand 171b both pass between the vertical axis 172a and the strand 172b. Further, both the strand 172a and the strand 172b on the vertical axis pass between the strand 171a and the strand 171b on the horizontal axis.
  • the carbon fiber 174 shown in FIG. 28 differs from the carbon fiber 170 shown in FIG. 27 in that the number of twists of the twisted strands 175 and 176 is increased on the horizontal axis and the vertical axis.
  • the carbon fiber 180 shown in FIG. 29 is a knotted network in which knots are formed at the intersections (nodes of the mesh) of the strands 181 and 182.
  • a C / C composite molded body was prepared using two or more prepreg sheets, but a C / C composite molded body may be manufactured using one prepreg sheet. However, in this case, it is necessary to use something other than the UD cloth, such as a 2D plain weave cloth, a triaxial carbon fiber woven fabric, or the like.
  • the present invention can be used as a product case or basket used in a heat treatment furnace, a structural material used at high temperature, a panel-like reinforcing material, or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

The purpose of the present invention is to provide a high-strength C/C composite molded article, a manufacturing method therefor and a heat treatment jig using the C/C composite molded article. A C/C composite molded article comprises a bottom wall part (32) and a side wall part (31) that stands upright along the periphery of the bottom wall part (32), and the C/C composite molded article is configured by including carbon fibers and a matrix. The C/C composite molded article is characterized in that the side wall part (31) has, in plan view, bent portions (33) at four locations, and in that at least some of the carbon fibers are provided so as to be continuous from the bottom wall part (32) to the side wall part (31).

Description

C/Cコンポジット製成形体、その製造方法、及びC/Cコンポジット製成形体を用いた熱処理用冶具C / C composite molded body, manufacturing method thereof, and heat treatment jig using C / C composite molded body
 本発明は、C/Cコンポジット製成形体、その製造方法、及びC/Cコンポジット製成形体を用いた熱処理用冶具に関するものである。 The present invention relates to a C / C composite molded body, a manufacturing method thereof, and a jig for heat treatment using the C / C composite molded body.
 通常、箱型のC/Cコンポジットを得ようとした場合、組み立て構造となるが、厚肉となりやすく構造が複雑になるため、重量が大きくなるという問題点があった。このような問題点を解決するために、一体型のC/Cコンポジットを用いる方法、具体的には、短繊維プリプレグを用い金型成形により繊維を流動させて、一体型の成形体を得る方法等が提案されている(下記特許文献1)。 Usually, when trying to obtain a box-shaped C / C composite, an assembled structure is obtained, but there is a problem that the structure becomes complicated because the structure tends to be thick. In order to solve such problems, a method using an integrated C / C composite, specifically, a method of obtaining an integrated molded body by flowing fibers by die molding using a short fiber prepreg. Etc. have been proposed (Patent Document 1 below).
特開平01-160866号公報Japanese Patent Laid-Open No. 01-160866
 しかしながら、上記特許文献1に示した提案では、炭素繊維の流動が十分でないことがあることから、特に、底壁部と側壁部との境界部分や底壁部自体が低強度になったり、強度のばらつきが多いなどの問題が生ずることがあった。このため、熱処理用冶具等として用いた場合に、底壁部等が破損して、製品が落下する場合があるといった課題を有していた。 However, in the proposal shown in Patent Document 1, since the flow of the carbon fiber may not be sufficient, in particular, the boundary part between the bottom wall part and the side wall part or the bottom wall part itself becomes low strength, In some cases, there were problems such as large variations in For this reason, when it used as a jig for heat processing etc., it had the subject that a bottom wall part etc. were damaged and a product might fall.
 そこで本発明は、高強度なC/Cコンポジット製成形体、その製造方法、及びC/Cコンポジット製成形体を用いた熱処理用冶具を提供することを目的としている。 Accordingly, an object of the present invention is to provide a high-strength C / C composite molded body, a manufacturing method thereof, and a heat treatment jig using the C / C composite molded body.
 上記目的を達成するために本発明のC/Cコンポジット製成形体は、底壁部と、この底壁部の周縁に立設された側壁部とを備え、炭素繊維及びマトリックスを含んで構成されるC/Cコンポジット製成形体であって、上記側壁部は、平面視において少なくとも1箇所の屈曲部及び/又は湾曲部を有し、且つ上記炭素繊維のうち少なくとも一部の炭素繊維は、上記底壁部から上記側壁部にかけて連続して設けられていることを特徴とする。 In order to achieve the above object, a C / C composite molded article of the present invention comprises a bottom wall portion and a side wall portion standing on the periphery of the bottom wall portion, and includes carbon fibers and a matrix. The side wall portion has at least one bent portion and / or a curved portion in plan view, and at least some of the carbon fibers are It is characterized by being provided continuously from the bottom wall portion to the side wall portion.
 本発明によれば、高強度なC/Cコンポジット製成形体、その製造方法、及びC/Cコンポジット製成形体を用いた熱処理用冶具を提供できるといった優れた効果を奏する。 According to the present invention, it is possible to provide an excellent effect that a high-strength C / C composite molded body, a manufacturing method thereof, and a heat treatment jig using the C / C composite molded body can be provided.
図1は第1実施例の実施例1におけるプリプレグシートの切り込み、加工方法を示す平面図であり、同図(a)はプリプレグシート10の平面図、同図(b)はプリプレグシート11の平面図である。FIG. 1 is a plan view showing a prepreg sheet cutting and processing method in Example 1 of the first embodiment. FIG. 1 (a) is a plan view of the prepreg sheet 10, and FIG. 1 (b) is a plan view of the prepreg sheet 11. FIG. 同図(a)はプリプレグシート11の組み立て状態を示す斜視図、同図(b)はプリプレグシート10の組み立て状態を示す斜視図、同図(c)は成形型の斜視図である。2A is a perspective view showing an assembled state of the prepreg sheet 11, FIG. 2B is a perspective view showing an assembled state of the prepreg sheet 10, and FIG. 2C is a perspective view of a molding die. 第1実施例の実施例1の方法で作製したC/Cコンポジット製成形体を示す斜視図である。It is a perspective view which shows the C / C composite molded object produced with the method of Example 1 of 1st Example. 第1実施例の実施例2におけるプリプレグシートの切り込み、加工方法を示す平面図であり、同図(a)はプリプレグシート12の平面図、同図(b)はプリプレグシート13の平面図、同図(c)はプリプレグシート14の平面図である。It is a top view which shows the cutting and processing method of the prepreg sheet in Example 2 of 1st Example, The figure (a) is a top view of the prepreg sheet 12, The figure (b) is a top view of the prepreg sheet 13, FIG. 3C is a plan view of the prepreg sheet 14. 同図(a)はプリプレグシート14の組み立て状態を示す斜視図、同図(b)はプリプレグシート13を示す斜視図、同図(c)はプリプレグシート12の組み立て状態を示す斜視図、同図(d)は成形型の斜視図である。1A is a perspective view showing an assembled state of the prepreg sheet 14, FIG. 1B is a perspective view showing the prepreg sheet 13, and FIG. 1C is a perspective view showing an assembled state of the prepreg sheet 12. FIG. (D) is a perspective view of a shaping | molding die. 第1実施例の実施例3におけるプリプレグシートの切り込み、加工方法を示す平面図であり、同図(a)はプリプレグシート15の平面図、同図(b)はプリプレグシート16の平面図、同図(c)はプリプレグシート17の平面図である。It is a top view which shows the cutting and processing method of the prepreg sheet in Example 3 of 1st Example, The figure (a) is a top view of the prepreg sheet 15, The figure (b) is a top view of the prepreg sheet 16, FIG. 3C is a plan view of the prepreg sheet 17. 同図(a)はプリプレグシート17の組み立て状態を示す斜視図、同図(b)はプリプレグシート16の組み立て状態を示す斜視図、同図(c)はプリプレグシート15の組み立て状態を示す斜視図、同図(d)は成形型の斜視図である。4A is a perspective view showing the assembled state of the prepreg sheet 17, FIG. 4B is a perspective view showing the assembled state of the prepreg sheet 16, and FIG. 4C is a perspective view showing the assembled state of the prepreg sheet 15. FIG. 4D is a perspective view of the mold. 同図(a)は強度試験の方法を示す側面図、同図(b)は試験試料の正面図である。FIG. 4A is a side view showing a strength test method, and FIG. 4B is a front view of a test sample. 第2実施例の実施例1におけるプリプレグシートの切り込み、加工方法を示す平面図であり、同図(a)はプリプレグシート40の平面図、同図(b)はプリプレグシート41の平面図である。It is a top view which shows the cutting and processing method of the prepreg sheet in Example 1 of 2nd Example, The figure (a) is a top view of the prepreg sheet 40, The figure (b) is a top view of the prepreg sheet 41. . 同図(a)はプリプレグシート40の組み立て状態を示す斜視図、同図(b)はプリプレグシート41の組み立て状態を示す斜視図、同図(c)は成形型の斜視図である。4A is a perspective view showing the assembled state of the prepreg sheet 40, FIG. 4B is a perspective view showing the assembled state of the prepreg sheet 41, and FIG. 4C is a perspective view of the molding die. 第2実施例の実施例1の方法で作製したC/Cコンポジット製成形体を示す斜視図である。It is a perspective view which shows the C / C composite molded object produced with the method of Example 1 of 2nd Example. 第2実施例の実施例2におけるプリプレグシートの切り込み、加工方法を示す平面図であり、同図(a)はプリプレグシート50の平面図、同図(b)はプリプレグシート51の平面図である。It is a top view which shows the cutting of the prepreg sheet in Example 2 of 2nd Example, and the processing method, The figure (a) is a top view of the prepreg sheet 50, The figure (b) is a top view of the prepreg sheet 51. . 同図(a)はプリプレグシート50の組み立て状態を示す斜視図、同図(b)はプリプレグシート51の組み立て状態を示す斜視図、同図(c)は成形型の斜視図である。FIG. 4A is a perspective view showing the assembled state of the prepreg sheet 50, FIG. 4B is a perspective view showing the assembled state of the prepreg sheet 51, and FIG. 第2実施例の実施例2の方法で作製したC/Cコンポジット製成形体を示す斜視図である。It is a perspective view which shows the C / C composite molded object produced by the method of Example 2 of 2nd Example. 第2実施例の実施例3におけるプリプレグシートの切り込み、加工方法を示す平面図であり、同図(a)はプリプレグシート60の平面図、同図(b)はプリプレグシート61の平面図である。It is a top view which shows the cutting of the prepreg sheet in Example 3 of 2nd Example, and the processing method, The figure (a) is a top view of the prepreg sheet 60, The figure (b) is a top view of the prepreg sheet 61. . 同図(a)はプリプレグシート60の組み立て状態を示す斜視図、同図(b)はプリプレグシート61の組み立て状態を示す斜視図、同図(c)は成形型の斜視図である。4A is a perspective view showing the assembled state of the prepreg sheet 60, FIG. 4B is a perspective view showing the assembled state of the prepreg sheet 61, and FIG. 4C is a perspective view of the mold. 第2実施例の実施例3の方法で作製したC/Cコンポジット製成形体を示す斜視図である。It is a perspective view which shows the C / C composite molded object produced by the method of Example 3 of 2nd Example. 第2実施例の実施例4におけるプリプレグシートの切り込み、加工方法を示す平面図であり、同図(a)はプリプレグシート70の平面図、同図(b)はプリプレグシート71の平面図、同図(c)はプリプレグシート72の平面図である。It is a top view which shows the cutting and processing method of the prepreg sheet in Example 4 of 2nd Example, The figure (a) is a top view of the prepreg sheet 70, The figure (b) is a top view of the prepreg sheet 71, FIG. 3C is a plan view of the prepreg sheet 72. 同図(a)はプリプレグシート70の組み立て状態を示す斜視図、同図(b)はプリプレグシート71を示す斜視図、同図(c)はプリプレグシート72の組み立て状態を示す斜視図、同図(d)は成形型の斜視図である。4A is a perspective view showing the assembled state of the prepreg sheet 70, FIG. 4B is a perspective view showing the prepreg sheet 71, and FIG. 4C is a perspective view showing the assembled state of the prepreg sheet 72, FIG. (D) is a perspective view of a shaping | molding die. 第2実施例の実施例4の方法で作製したC/Cコンポジット製成形体を示す斜視図である。It is a perspective view which shows the C / C composite molded object produced by the method of Example 4 of 2nd Example. 曲板状の側壁部構成部材から成る側壁部の拡大平面図である。It is an enlarged plan view of the side wall part which consists of a curved plate-shaped side wall part structural member. 炭素繊維の例を示す部分拡大図である。It is the elements on larger scale which show the example of carbon fiber. 炭素繊維の例を示す部分拡大図である。It is the elements on larger scale which show the example of carbon fiber. 炭素繊維の例を示す部分拡大図である。It is the elements on larger scale which show the example of carbon fiber. 炭素繊維の例を示す部分拡大図である。It is the elements on larger scale which show the example of carbon fiber. 炭素繊維の例を示す部分拡大図である。It is the elements on larger scale which show the example of carbon fiber. 炭素繊維の例を示す部分拡大図である。It is the elements on larger scale which show the example of carbon fiber. 炭素繊維の例を示す部分拡大図である。It is the elements on larger scale which show the example of carbon fiber. 炭素繊維の例を示す部分拡大図である。It is the elements on larger scale which show the example of carbon fiber.
 本発明は、底壁部と、この底壁部の周縁に立設された側壁部とを備え、炭素繊維及びマトリックスを含んで構成されるC/Cコンポジット製成形体であって、上記側壁部は、平面視において少なくとも1箇所の屈曲部及び/又は湾曲部を有し、且つ上記炭素繊維のうち少なくとも一部の炭素繊維は、上記底壁部から上記側壁部にかけて連続して設けられていることを特徴とする。 The present invention is a C / C composite molded body comprising a bottom wall portion and a side wall portion standing on the periphery of the bottom wall portion, and comprising carbon fibers and a matrix, wherein the side wall portion Has at least one bent portion and / or curved portion in plan view, and at least some of the carbon fibers are continuously provided from the bottom wall portion to the side wall portion. It is characterized by that.
 少なくとも一部の炭素繊維は、上記底壁部から上記側壁部にかけて連続して設けられていれば、成形体としての強度が向上する。即ち、成形体の底壁部上に物を載置した場合、底壁部に加わる荷重が側壁部にも分散されるので、底壁部(底壁部と側壁部との境界部分を含む)が破損して物が落下するのを抑制できる。したがって、例えば、熱処理用冶具として用いた場合、熱処理用冶具の破損に起因する製品の落下を抑制できる。 If at least some of the carbon fibers are continuously provided from the bottom wall portion to the side wall portion, the strength as a molded body is improved. That is, when an object is placed on the bottom wall portion of the molded body, the load applied to the bottom wall portion is also distributed to the side wall portion, so the bottom wall portion (including the boundary portion between the bottom wall portion and the side wall portion). Can be prevented from being damaged and falling. Therefore, for example, when used as a heat treatment jig, it is possible to suppress the drop of the product due to the breakage of the heat treatment jig.
 上記側壁部は、上記底壁部の周縁に全周にわたって設けられていてもよい。
 底壁部の周縁に全周にわたって側壁部が設けられていれば、側壁部に分散される荷重が多くなるので、底壁部が破損して物が落下するのを一層抑制できる。
The said side wall part may be provided in the peripheral edge of the said bottom wall part over the perimeter.
If the side wall portion is provided on the entire periphery of the bottom wall portion, the load dispersed on the side wall portion increases, so that the bottom wall portion can be further prevented from being damaged and falling.
 上記側壁部の少なくとも一部に切り欠きが形成されていてもよい。
 側壁部の少なくとも一部に切り欠きが形成されていれば、C/Cコンポジット製成形体の軽量化を図ることができる。尚、側壁部の少なくとも一部に切り欠きが形成されていても、残余の側壁部に荷重が分散されるので、底壁部が破損して物が落下するのを抑制できる。
A cutout may be formed in at least a part of the side wall.
If the notch is formed in at least a part of the side wall, the weight of the C / C composite molded body can be reduced. Even if the cutout is formed in at least a part of the side wall portion, the load is distributed to the remaining side wall portion, so that the bottom wall portion can be prevented from being damaged and falling.
 上記側壁部は平板状であり、上記屈曲部が成す角度は150°以下であることが望ましい。 It is desirable that the side wall portion is flat and the angle formed by the bent portion is 150 ° or less.
 上記炭素繊維は、一方の側壁部から、底部を挟んで相対向する他方の側壁部まで連続して延設されていることが望ましい。
 炭素繊維が相対向する側壁部間に連続して延設されていれば、底部に荷重がかかった場合であっても、下方への荷重が炭素繊維の引っ張り荷重として作用する。この場合、炭素繊維は引っ張り強さが極めて高いので、荷重によって成形体が変形したり破損(特に、底壁部が破損)したりするのを一層抑制できる。
The carbon fiber is preferably continuously extended from one side wall portion to the other side wall portion facing each other across the bottom portion.
If the carbon fibers are continuously extended between the opposing side wall portions, the downward load acts as a tensile load of the carbon fibers even when a load is applied to the bottom portion. In this case, since the tensile strength of the carbon fiber is extremely high, it is possible to further prevent the molded body from being deformed or damaged (particularly, the bottom wall portion is damaged) due to the load.
 上記側壁部には、上記屈曲部を挟んで連続して設けられた炭素繊維を有することが望ましい。
 上記構成であれば、側壁部の強度がより向上する。したがって、荷重によって成形体が変形したり破損したりするのを一層抑制できる。
It is desirable that the side wall portion has carbon fibers provided continuously with the bent portion interposed therebetween.
If it is the said structure, the intensity | strength of a side wall part will improve more. Accordingly, it is possible to further suppress the molded body from being deformed or damaged by the load.
 上記炭素繊維には1Dクロスや2Dクロス、3方向クロスあるいは2次元ランダム配向ペーパーなどを用いることができる。
 このうち1Dクロスや2Dクロスは緻密に炭素繊維を配置できるため、高強度の成形体が得られ、好ましい。
 なお、炭素繊維形態については、前述のものに限られるわけではなく、一般に知られている炭素繊維の織布、不織布を用いることができる。
As the carbon fiber, 1D cloth, 2D cloth, three-way cloth, two-dimensional random orientation paper, or the like can be used.
Among these, 1D cloth and 2D cloth are preferable because carbon fibers can be densely arranged, and a high-strength molded body can be obtained.
In addition, about a carbon fiber form, it is not necessarily restricted to the above-mentioned thing, The carbon fiber woven fabric and nonwoven fabric which are generally known can be used.
 上記炭素繊維は、複数束ねられたストランド間に空隙部が設けられた網状体となっていることが望ましい。
 ストランド間に空隙部が設けられ網状体であれば、空隙部をガスや液体が通過することができる。したがって、ガスや液体に接触させる熱処理用途に、より好適に用いることが可能となる。
The carbon fiber is preferably a net-like body in which a gap is provided between a plurality of bundled strands.
If a void is provided between the strands, a gas or a liquid can pass through the void. Therefore, it becomes possible to use it more suitably for the heat processing use made to contact gas or a liquid.
 上述のC/Cコンポジット製成形体を用いた熱処理用治具であることを特徴とする。
 底壁部への耐荷重に優れた上述の成形体を用いることで、安全且つ確実に対象物の熱処理を行うことが出来る。またC/Cコンポジットは耐熱性が高く、且つ3000℃以下では、高温になる程、機械的強度が高くなる特性を有する。したがって、通常の熱処理時であれば変形が生じる恐れが小さく、安定した熱処理を図ることが出来ると共に、多数回の繰り返し使用が可能となる。
It is a jig for heat treatment using the above-mentioned C / C composite molded body.
By using the above-described molded body excellent in load resistance to the bottom wall portion, the heat treatment of the object can be performed safely and reliably. Further, the C / C composite has high heat resistance, and has a characteristic that the mechanical strength increases as the temperature increases at 3000 ° C. or lower. Therefore, during normal heat treatment, there is little risk of deformation, stable heat treatment can be achieved, and repeated use can be performed many times.
 底壁部と側壁部とを備え、炭素繊維及びマトリックスを含んで構成されるC/Cコンポジット製成形体の製造方法であって、炭素繊維に樹脂を含浸させた後、加熱することにより、プリプレグシートを作製する工程と、上記プリプレグシートを、炭素繊維が延設されている箇所の一部で折り曲げて立ち上がり部を形成する工程と、上記立ち上がり部を接合して側壁部を形成する工程と、を含むことを特徴とする。
 このような製造方法により、上述のC/Cコンポジット製成形体を製造できる。
A method for producing a molded article made of C / C composite comprising a bottom wall portion and a side wall portion and comprising carbon fibers and a matrix, wherein the prepreg is impregnated with a resin after impregnating the carbon fibers with a resin. A step of forming a sheet, a step of bending the prepreg sheet at a part of a portion where carbon fibers are extended to form a rising portion, a step of bonding the rising portion to form a side wall portion, and It is characterized by including.
By such a manufacturing method, the above-mentioned C / C composite molded body can be manufactured.
 上記樹脂を含浸させた後の成形は、真空バッグ成形又はオートクレーブ成形により行われることが望ましい。 The molding after impregnating the resin is preferably performed by vacuum bag molding or autoclave molding.
          〔第1実施例〕
(実施例1)
 PAN系炭素繊維(トレカT-300、6K 東レ(株)製)の2D平織クロスを用い、この炭素繊維織布を液状フェノール樹脂に浸漬して、当該樹脂を含浸させた。次に、絞りローラーを用いて、炭素繊維織布に含浸された樹脂量を調整した後、100℃に加熱したオーブン中で乾燥させ、これにより、プリプレグシートを得た。
[First embodiment]
(Example 1)
Using a 2D plain woven cloth made of PAN-based carbon fiber (Torayca T-300, manufactured by 6K Toray Industries, Inc.), this carbon fiber woven fabric was immersed in a liquid phenolic resin and impregnated with the resin. Next, after adjusting the amount of resin impregnated in the carbon fiber woven fabric using a squeezing roller, it was dried in an oven heated to 100 ° C., thereby obtaining a prepreg sheet.
 次いで、得られたプリプレグシートを方形状に裁断し、図1(a)(b)に示す切り込み1を入れることにより、成形体用シート10、11を作製した。尚、当該成形体用シート10、11における炭素繊維の延設方向は、共に、A方向とB方向である。その後、上記成形体用シート10、11を、図1(a)(b)の曲げ部2で折り曲げ、図2(a)(b)に示すような形状として、立ち上がり部10a、11aを形成した〔尚、図2(a)(b)では、立ち上がり部10a、11aが下向きに折れ曲がっているため、称呼と一致しないのではとも考えられる。しかし、同図では製造工程をわかり易く説明するために、便宜上下向きに描いたものであり、完成後は図3に示すような状態で用いられる。よって、10a、11aの称呼を立ち上がり部とした。このことは、以下の実施例でも同様である。〕。
 しかる後、図2(c)に示す成形型20に2つの成形体用シート10、11を重ね合わせた状態で、約200℃で真空バッグ成形して、2D炭素繊維クロスを使った箱状の成形体を作製した。得られた成形体は内寸150mm×100mm×30mm、辺部付近の肉厚は2mmであった。
Next, the obtained prepreg sheet was cut into a square shape, and cuts 1 shown in FIGS. 1 (a) and 1 (b) were made, whereby molded sheets 10 and 11 were produced. The extending directions of the carbon fibers in the molded body sheets 10 and 11 are both the A direction and the B direction. Then, the said molded object sheets 10 and 11 were bend | folded by the bending part 2 of Fig.1 (a) (b), and the standing part 10a, 11a was formed as a shape as shown to Fig.2 (a) (b). [In FIGS. 2 (a) and 2 (b), since the rising portions 10a and 11a are bent downward, it may be considered that they do not coincide with the designation. However, in the figure, in order to explain the manufacturing process in an easy-to-understand manner, it is drawn downward for the sake of convenience, and is used in the state shown in FIG. 3 after completion. Therefore, the names 10a and 11a were used as the rising portions. The same applies to the following embodiments. ].
After that, in a state where the two molded body sheets 10 and 11 are superimposed on the molding die 20 shown in FIG. 2 (c), vacuum bag molding is performed at about 200 ° C., and a box shape using a 2D carbon fiber cloth is used. A molded body was produced. The obtained molded body had an internal size of 150 mm × 100 mm × 30 mm, and the thickness near the side was 2 mm.
 次に、上記成形体をN雰囲気下、約1000℃で焼成した後ピッチ含浸し、更に、約1000℃で焼成した。最後に、N雰囲気下約2000℃で処理を行うことによって、2D炭素繊維クロスを用いた一体型のC/Cコンポジット製成形体を得た。図3に示すように、当該C/Cコンポジット製成形体30は、底壁部32と、この底壁部32の周縁に立設され且つ4つの側壁部構成部材31a、31b、31c、31d(上記立ち上がり部10a、11aに対応)から成る側壁部31とを備えている。また、屈曲部33における角度は平面視で90°となっている。
 このようにして作製したC/Cコンポジット製成形体を、以下、成形体A1と称する。
Next, the molded body was fired at about 1000 ° C. in a N 2 atmosphere, then impregnated with pitch, and further fired at about 1000 ° C. Finally, by performing the treatment at about 2000 ° C. in an N 2 atmosphere, an integrated C / C composite molded body using a 2D carbon fiber cloth was obtained. As shown in FIG. 3, the C / C composite molded body 30 is provided with a bottom wall portion 32 and four side wall portion constituting members 31 a, 31 b, 31 c, 31 d ( And a side wall portion 31 composed of the rising portions 10a and 11a). The angle at the bent portion 33 is 90 ° in plan view.
The C / C composite molded body thus produced is hereinafter referred to as a molded body A1.
(実施例2)
 上記実施例1と同様にプリプレグシートを得た後、このプリプレグシートを図4(a)~(c)に示すような形状に裁断して、成形体用シート12~14を作製した。尚、当該成形体用シート12~14における炭素繊維の延設方向は、共に、A方向とB方向である。次に、上記成形体用シート12、14を、図4(a)(c)の曲げ部2で折り曲げ、図5(a)(c)に示すような形状とした。この際、成形体用シート12には、立ち上がり部12aが形成された。次いで、図5(d)に示す成形型20に3つの成形体用シート12~14を重ね合わせた状態で、約200℃で真空バッグ成形して、2D炭素繊維クロスを使った箱状の成形体を作製した。しかる後、上記実施例1と同様な処理を行い、一体型のC/Cコンポジット製成形体を得た。尚、C/Cコンポジット製成形体は、上記図3で示した形状と同様の形状である。
 このようにして作製したC/Cコンポジット製成形体を、以下、成形体A2と称する。
(Example 2)
After obtaining a prepreg sheet in the same manner as in Example 1, the prepreg sheet was cut into a shape as shown in FIGS. 4 (a) to 4 (c) to produce molded body sheets 12-14. The extending directions of the carbon fibers in the molded body sheets 12 to 14 are both the A direction and the B direction. Next, the said sheet | seats 12 and 14 for molded objects were bent by the bending part 2 of Fig.4 (a) (c), and were made into the shape as shown to Fig.5 (a) (c). At this time, a rising portion 12 a was formed on the molded body sheet 12. Next, in a state where the three molding sheets 12 to 14 are superimposed on the molding die 20 shown in FIG. 5 (d), vacuum bag molding is performed at about 200 ° C., and box-shaped molding using a 2D carbon fiber cloth is performed. The body was made. Thereafter, the same treatment as in Example 1 was performed to obtain an integrated C / C composite molded body. The C / C composite molded body has the same shape as that shown in FIG.
The C / C composite molded body thus produced is hereinafter referred to as molded body A2.
(実施例3)
 縦糸に上記実施例1と同一の炭素繊維を用いる一方、横糸にはガラス繊維を使用したUDクロスを用いた他は、上記実施例1と同様にしてプリプレグシートを作製し、このプリプレグシートを図6(a)~(c)に示すような形状に裁断して、成形体用シート15~17を作製した。その際、成形体用シート15の炭素繊維の延設方向はA方向、成形体用シート16の炭素繊維の延設方向はB方向とすることにより、成形体用シート15の炭素繊維の延設方向と成形体用シート16の炭素繊維の延設方向とが直角となるようにした。尚、成形体用シート17の炭素繊維の延設方向はB方向である。
(Example 3)
A prepreg sheet was prepared in the same manner as in Example 1 except that the same carbon fiber as that used in Example 1 was used for the warp while a UD cloth using glass fiber was used for the weft. Sheets 15 to 17 for molded bodies were produced by cutting into shapes as shown in 6 (a) to (c). At that time, the extending direction of the carbon fibers of the molded body sheet 15 is set to the A direction, and the extending direction of the carbon fibers of the molded body sheet 16 is set to the B direction. The direction and the extending direction of the carbon fibers of the molded body sheet 16 were perpendicular to each other. In addition, the extending direction of the carbon fiber of the sheet | seat 17 for molded objects is a B direction.
 次に、上記成形体用シート15~17を、図6(a)~(c)の曲げ部2で折り曲げ、図7(a)~(c)に示すような形状とした。この際、成形体用シート15、16には、立ち上がり部15a、16aが形成された。次いで、図7(d)に示す成形型20に3つの成形体用シート15~17を重ね合わせた状態で、約200℃で真空バッグ成形して、UD炭素繊維クロスを使った箱状の成形体を作製した。しかる後、上記実施例1と同様な処理を行い、一体型のC/Cコンポジット製成形体を得た。尚、C/Cコンポジット製成形体は、上記図3で示した形状と同様の形状である。
 このようにして作製したC/Cコンポジット製成形体を、以下、成形体A3と称する。
Next, the molded body sheets 15 to 17 were bent at the bending portion 2 of FIGS. 6A to 6C to have shapes as shown in FIGS. 7A to 7C. At this time, rising portions 15 a and 16 a were formed on the molded body sheets 15 and 16. Next, a vacuum bag molding is performed at about 200 ° C. in a state in which the three molding sheets 15 to 17 are superimposed on the molding die 20 shown in FIG. 7D, and a box-shaped molding using a UD carbon fiber cloth is performed. The body was made. Thereafter, the same treatment as in Example 1 was performed to obtain an integrated C / C composite molded body. The C / C composite molded body has the same shape as that shown in FIG.
The C / C composite molded body thus produced is hereinafter referred to as a molded body A3.
(実施例4)
 先ず、2D平織クロスに代えて3軸炭素繊維織物の網を用いて、実施例1同様にしてプリプレグシートを得た。次いで、得られたプリプレグシートを方形状に裁断し、図1(a)(b)に示す切り込み1を入れることにより、成形体用シート10、11を作製した。次に、上記成形体用シート10、11を、図1(a)(b)の曲げ部2で折り曲げ、図2(a)(b)に示すような形状として、立ち上がり部10a、11aを形成した。その後、図2(c)に示す成形型20に2つの成形体用シート10、11を重ね合わせた状態で、約200℃で真空バッグ成形して、3軸炭素繊維織物の網を使った箱状の成形体を作製した。
Example 4
First, a prepreg sheet was obtained in the same manner as in Example 1 by using a triaxial carbon fiber woven net instead of the 2D plain weave cloth. Next, the obtained prepreg sheet was cut into a square shape, and cuts 1 shown in FIGS. 1 (a) and 1 (b) were made, whereby molded sheets 10 and 11 were produced. Next, the molded body sheets 10 and 11 are bent at the bent portion 2 in FIGS. 1A and 1B, and the rising portions 10a and 11a are formed as shown in FIGS. 2A and 2B. did. Thereafter, a box using a triaxial carbon fiber woven net is formed by vacuum bag molding at about 200 ° C. in a state where the two molded body sheets 10 and 11 are superimposed on the mold 20 shown in FIG. A shaped molded body was produced.
 最後に、実施例1同様の処理を行って、3軸炭素繊維織物の網を使った一体型のC/Cコンポジット製成形体を得た。尚、C/Cコンポジット製成形体は、上記図3で示した形状と同様の形状である。
 このようにして作製したC/Cコンポジット製成形体を、以下、成形体A4と称する。
Finally, the same treatment as in Example 1 was performed to obtain an integrated C / C composite molded body using a triaxial carbon fiber woven net. The C / C composite molded body has the same shape as that shown in FIG.
The C / C composite molded body thus produced is hereinafter referred to as molded body A4.
(比較例) 先ず、T300炭素繊維を長さ約12mmにカットし、金属バット内に敷き詰め、上記実施例1に用いたフェノール樹脂と同じフェノール樹脂を金属バット内に注ぎ、炭素繊維に含浸させた後、100℃に加熱したオーブン中で乾燥させて、シートモールディングコンパウンドプリプレグを得た。次に、得られたプリプレグを外型と内型からなる金型にセットし、面圧約30Kg/cm、温度200℃で金型成形を行い、内寸150mm×100mm×30mm、肉厚が2mmの箱型成形体を得た。その後、実施例1同様の処理を行い、チョップドタイプの一体型のC/Cコンポジット製成形体を得た。
 このようにして作製したC/Cコンポジット製成形体を、以下、成形体Zと称する。
(Comparative Example) First, a T300 carbon fiber was cut into a length of about 12 mm, spread in a metal vat, and the same phenol resin as the phenol resin used in Example 1 was poured into the metal vat to impregnate the carbon fiber. Then, it dried in the oven heated at 100 degreeC, and obtained the sheet molding compound prepreg. Next, the obtained prepreg is set in a mold composed of an outer mold and an inner mold, and is molded at a surface pressure of about 30 Kg / cm 2 and a temperature of 200 ° C., and has an inner dimension of 150 mm × 100 mm × 30 mm and a wall thickness of 2 mm A box-shaped molded product was obtained. Thereafter, the same treatment as in Example 1 was performed to obtain a chopped type integrated C / C composite molded body.
The C / C composite molded body thus produced is hereinafter referred to as a molded body Z.
(実験1)
 上記成形体A1~A4、Zの表面状態を目視により観察したので、その結果を表1に示す。
(Experiment 1)
The surface states of the molded bodies A1 to A4 and Z were observed visually, and the results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、成形体A1~A4では平滑であるのに、成形体Zでは凹凸が確認された。 As is apparent from Table 1, irregularities were confirmed in the molded body Z while the molded bodies A1 to A4 were smooth.
(実験2)
 上記成形体A1、Zの辺部(底壁部と側壁部との境界部分や、その近傍)を切断し、L型の強度試験用サンプルを得た。そして、図8に示すように、当該強度試験用サンプル22の垂直部中央付近にΦ5の貫通穴を設け固定台23にボルトにより固定し、一端25から荷重を加える点24までの距離L1を20mmとして破壊荷重を測定した。尚、荷重はD方向に加えた。その後、曲げモーメントから辺部曲げ強さを計算した。尚、強度試験用サンプルの厚みL2は2mm、強度試験用サンプルの幅L3は20mmとした。
(Experiment 2)
Side parts (the boundary part between the bottom wall part and the side wall part and the vicinity thereof) of the molded bodies A1 and Z were cut to obtain an L-shaped strength test sample. Then, as shown in FIG. 8, a through hole of Φ5 is provided near the center of the vertical portion of the strength test sample 22 and fixed to the fixing base 23 with a bolt, and the distance L1 from one end 25 to the point 24 where the load is applied is 20 mm. The breaking load was measured as follows. The load was applied in the D direction. Then, the side bending strength was calculated from the bending moment. The thickness L2 of the strength test sample was 2 mm, and the width L3 of the strength test sample was 20 mm.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、成形体A1は成形体Zに比べて、曲げ強さが高くなっていることが確認された。 As is clear from Table 2, it was confirmed that the molded body A1 had higher bending strength than the molded body Z.
(実験3)
 上記成形体A4、Zを用い、クロムモリブテン鋼(SCM435)からなる直径20mm、高さ80mmの円柱状金属部品を約1100℃に加熱した後、20barの加圧Nガスを吹き付けて急冷を行った。そして、得られた金属部品の焼き入れ特性として部品中央部のビッカース硬さを調べたので、その結果を表3に示す。
(Experiment 3)
A cylindrical metal part made of chromium molybdenum steel (SCM435) and having a diameter of 20 mm and a height of 80 mm is heated to about 1100 ° C. using the molded bodies A4 and Z, and then rapidly cooled by spraying 20 bar of pressurized N 2 gas. It was. And since the Vickers hardness of the center part of a part was investigated as a quenching characteristic of the obtained metal part, the result is shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、成形体A4では金属部品の焼入れ作業が可能な程度の強度を有し、且つ焼き入れによる硬度向上が円滑に行われ、特性が良好であったのに対して、成形体Zでは金属部品の焼入れ特性が不良であることが認められた。これは、成形体ZではNガスの通り抜けが阻害されるため、十分な冷却がなされないのに対して、成形体A4ではNガスの通り抜けが阻害されないため、十分な冷却がなされることに起因するものと考えられる。 As is apparent from Table 3, the molded body A4 has a strength that allows the quenching operation of the metal parts, and the hardness improvement by quenching is smoothly performed, whereas the characteristics are good. In the molded body Z, it was recognized that the quenching characteristics of the metal parts were poor. This is because the molded body Z inhibits the passage of N 2 gas, so that sufficient cooling is not performed, whereas the molded body A4 does not inhibit the passage of N 2 gas, so that sufficient cooling is performed. It is thought to be caused by
          〔第2実施例〕
(実施例1)
 第1実施例の実施例1と同様に、方形状に裁断したプリプレグシートを、図9(a)(b)に示す切り込み1を入れることにより、成形体用シート40、41を作製した。尚、当該成形体用シート40、41における炭素繊維の延設方向は、共に、A方向とB方向である。その後、上記成形体用シート40、41を、図9(a)(b)の曲げ部2で折り曲げ、図10(a)(b)に示すような形状として、立ち上がり部40a、41aを形成した。しかる後、図10(c)に示す成形型20に2つの成形体用シート40、41を重ね合わせた状態で、約200℃で真空バッグ成形して、2D炭素繊維クロスを使った箱状の成形体を作製した。
[Second Embodiment]
(Example 1)
In the same manner as in Example 1 of the first example, the prepreg sheet cut into a square shape was cut into 1 shown in FIGS. 9 (a) and 9 (b) to produce molded body sheets 40 and 41. In addition, the extending direction of the carbon fiber in the said sheet | seats 40,41 for the said molded object is both A direction and B direction. Then, the said sheet | seats 40 and 41 for molded objects were bent in the bending part 2 of Fig.9 (a) (b), and the raising part 40a, 41a was formed as a shape as shown to Fig.10 (a) (b). . Thereafter, in a state where the two molded body sheets 40 and 41 are superimposed on the molding die 20 shown in FIG. 10 (c), vacuum bag molding is performed at about 200 ° C., and a box shape using a 2D carbon fiber cloth is used. A molded body was produced.
 その後は、上記第1実施例の実施例1と同様の工程を経て、一体型のC/Cコンポジット製成形体を得た。図11に示すように、当該C/Cコンポジット製成形体45は、底壁部43と、この底壁部43の周縁に立設され且つ2つの側壁部構成部材44a、44b(上記立ち上がり部40a、41aに対応)から成る側壁部44とを備えている。 Thereafter, through the same steps as in Example 1 of the first example, an integrated C / C composite molded body was obtained. As shown in FIG. 11, the C / C composite molded body 45 includes a bottom wall portion 43 and two side wall portion constituting members 44a and 44b (the above-described rising portion 40a) that are provided upright on the periphery of the bottom wall portion 43. , 41a).
(実施例2)
 第1実施例の実施例1と同様に、方形状に裁断したプリプレグシートを、図12(a)(b)に示す切り込み1を入れることにより、成形体用シート50、51を作製した。尚、当該成形体用シート50、51における炭素繊維の延設方向は、共に、A方向とB方向である。その後、上記成形体用シート50、51を、図12(a)(b)の曲げ部2で折り曲げ、図13(a)(b)に示すような形状として、立ち上がり部50a、51aを形成した。しかる後、図13(c)に示す成形型20に2つの成形体用シート50、51を重ね合わせた状態で、約200℃で真空バッグ成形して、2D炭素繊維クロスを使った箱状の成形体を作製した。
(Example 2)
In the same manner as in Example 1 of the first example, the prepreg sheets cut into a square shape were cut 1 shown in FIGS. 12 (a) and 12 (b) to produce molded body sheets 50 and 51. In addition, the extending directions of the carbon fibers in the molded body sheets 50 and 51 are both the A direction and the B direction. Thereafter, the molded body sheets 50 and 51 were bent at the bending portion 2 in FIGS. 12A and 12B, and the rising portions 50a and 51a were formed in a shape as shown in FIGS. 13A and 13B. . Thereafter, in a state where the two molded body sheets 50 and 51 are superimposed on the molding die 20 shown in FIG. 13 (c), vacuum bag molding is performed at about 200 ° C., and a box shape using a 2D carbon fiber cloth is used. A molded body was produced.
 その後は、上記第1実施例の実施例1と同様の工程を経て、一体型のC/Cコンポジット製成形体を得た。図14に示すように、当該C/Cコンポジット製成形体55は、底壁部53と、この底壁部53の周縁に立設され且つ3つの側壁部構成部材54a、54b、54c(上記立ち上がり部50a、51aに対応)から成る側壁部54とを備えている。 Thereafter, through the same steps as in Example 1 of the first example, an integrated C / C composite molded body was obtained. As shown in FIG. 14, the C / C composite molded body 55 includes a bottom wall portion 53 and three side wall portion constituting members 54 a, 54 b, 54 c (the above-described rising portions) that are provided upright on the periphery of the bottom wall portion 53. And a side wall portion 54 consisting of portions 50a and 51a).
(実施例3)
 第1実施例の実施例1と同様に、方形状に裁断したプリプレグシートを、図15(a)(b)に示す切り込み1を入れた。この際、後に側壁部となる部位に切り欠き67を形成した。これにより、成形体用シート60、61を作製した。尚、当該成形体用シート60、61における炭素繊維の延設方向は、共に、A方向とB方向である。その後、上記成形体用シート60、61を、図15(a)(b)の曲げ部2で折り曲げ、図16(a)(b)に示すような形状として、立ち上がり部60a、61aを形成した。しかる後、図16(c)に示す成形型20に2つの成形体用シート60、61を重ね合わせた状態で、約200℃で真空バッグ成形して、2D炭素繊維クロスを使った箱状の成形体を作製した。
(Example 3)
In the same manner as in Example 1 of the first example, a prepreg sheet cut into a square shape was provided with cuts 1 shown in FIGS. At this time, a notch 67 was formed in a portion that later became a side wall portion. Thereby, the sheet | seats 60 and 61 for molded objects were produced. The extending directions of the carbon fibers in the molded body sheets 60 and 61 are both the A direction and the B direction. Thereafter, the molded body sheets 60 and 61 were bent at the bending portion 2 in FIGS. 15A and 15B, and the rising portions 60a and 61a were formed in the shapes as shown in FIGS. 16A and 16B. . Thereafter, in a state where the two molding sheets 60 and 61 are superimposed on the molding die 20 shown in FIG. 16 (c), vacuum bag molding is performed at about 200 ° C., and a box shape using a 2D carbon fiber cloth is used. A molded body was produced.
 その後は、上記第1実施例の実施例1と同様の工程を経て、一体型のC/Cコンポジット製成形体を得た。図17に示すように、当該C/Cコンポジット製成形体65は、底壁部63と、側壁部構成部材64a、64b、64c、64d(上記立ち上がり部60a、61aに対応)から成る側壁部64とを備えており、当該側壁部64には切り欠き67が形成されている。尚、切り欠き67は各側壁部構成部材64a、64b、64c、64dに形成する必要はなく、任意の側壁部構成部材だけに形成しても良い。 Thereafter, through the same steps as in Example 1 of the first example, an integrated C / C composite molded body was obtained. As shown in FIG. 17, the C / C composite molded body 65 includes a side wall portion 64 including a bottom wall portion 63 and side wall portion constituting members 64a, 64b, 64c, and 64d (corresponding to the rising portions 60a and 61a). And a notch 67 is formed in the side wall portion 64. The notch 67 does not need to be formed in each side wall constituent member 64a, 64b, 64c, 64d, and may be formed only in an arbitrary side wall constituent member.
(実施例4)
 第1実施例の実施例1と同様にしてプリプレグシートを作製し、このプリプレグシートを図18(a)~(c)に示すような形状に裁断して、成形体用シート70~72を作製した。その際、成形体用シート70の炭素繊維の延設方向はA方向、成形体用シート71の炭素繊維の延設方向はB方向とすることにより、成形体用シート70の炭素繊維の延設方向と成形体用シート71の炭素繊維の延設方向とが直角となるようにした。尚、成形体用シート72の炭素繊維の延設方向はB方向である。また、成形体用シート70は、後に側壁部構成部材となる凸片70a、70b、70cを有している。上記凸片70aは、図20の平板状の側壁部構成部材74aとなり、上記凸片70bは、図20の平板状の側壁部構成部材74bとなり、上記凸片70cは、図20の曲板状の側壁部構成部材74cとなる。
Example 4
A prepreg sheet is produced in the same manner as in Example 1 of the first example, and the prepreg sheet is cut into a shape as shown in FIGS. 18A to 18C to produce molded body sheets 70 to 72. did. At that time, the extending direction of the carbon fibers of the molded body sheet 70 is set to the A direction, and the extending direction of the carbon fibers of the molded body sheet 71 is set to the B direction. The direction and the extending direction of the carbon fibers of the molded body sheet 71 were perpendicular to each other. In addition, the extending direction of the carbon fiber of the sheet | seat 72 for molded objects is a B direction. Moreover, the sheet | seat 70 for molded objects has the convex piece 70a, 70b, 70c which becomes a side wall part structural member later. The convex piece 70a becomes the flat plate-like side wall part constituting member 74a of FIG. 20, the convex piece 70b becomes the flat plate shaped side wall part constituting member 74b of FIG. 20, and the convex piece 70c has the curved plate shape of FIG. Side wall portion constituting member 74c.
 その後、上記成形体用シート70を、図18(a)の曲げ部2で折り曲げ、図19(a)(b)に示すような形状として、立ち上がり部70d、70e、70f(上記凸片70a、70b、70cに対応)を形成した。しかる後、図19(d)に示す成形型20に3つの成形体用シート70~72を重ね合わせた状態で、約200℃で真空バッグ成形して、2D炭素繊維クロスを使った箱状の成形体を作製した。しかる後、上記第1実施例の実施例1と同様な処理を行い、一体型のC/Cコンポジット製成形体を得た。 After that, the molded body sheet 70 is bent at the bending portion 2 in FIG. 18A, and as shown in FIGS. 19A and 19B, the rising portions 70d, 70e, and 70f (the protruding pieces 70a, 70b and 70c). Thereafter, a vacuum bag is formed at about 200 ° C. in a state in which three molding sheets 70 to 72 are superimposed on the molding die 20 shown in FIG. 19 (d), and a box shape using a 2D carbon fiber cloth is used. A molded body was produced. Thereafter, the same process as in Example 1 of the first example was performed to obtain an integrated C / C composite molded body.
 尚、C/Cコンポジット製成形体は、図20に示すように、底壁部73と、この底壁部73の周縁に立設され且つ平板状の側壁部構成部材74a、74b(上記立ち上がり部70d、70eに対応)及び曲板状の側壁部構成部材74c(上記立ち上がり部70fに対応)から成る側壁部74とを備え、この側壁部が平面視で円弧状となり湾曲部を形成している。また、図21に示すように、曲板状の側壁部構成部材74c(凸片70cに対応)の中央点740a、740bにおける接線740c、740d同士が成す角度θは180°未満となっている。 As shown in FIG. 20, the C / C composite molded body has a bottom wall portion 73 and flat side wall portion constituting members 74 a and 74 b (the above-described rising portions) that are provided on the periphery of the bottom wall portion 73. 70d and 70e) and a side wall portion 74 formed of a curved plate-like side wall portion constituting member 74c (corresponding to the rising portion 70f), and this side wall portion has an arc shape in plan view to form a curved portion. . Further, as shown in FIG. 21, the angle θ formed by the tangents 740c and 740d at the center points 740a and 740b of the curved plate-like side wall component member 74c (corresponding to the convex piece 70c) is less than 180 °.
(その他の事項)
(1)底壁部の形状としては、上記四角形状や一部円弧状に限定するものではなく、三角形状、六角形状等であっても良い。
(Other matters)
(1) The shape of the bottom wall portion is not limited to the quadrangular shape or the partial arc shape, and may be a triangular shape, a hexagonal shape, or the like.
(2)炭素繊維としては、図22~図29に示すものであっても良い。各図について、簡単に説明する。
 図22に示すように、複数のストランド141、142、143を3方向から織り合わせた三軸織物から成る炭素繊維140であり、六角形の網目が形成されている。各ストランド141、142、143では、複数の炭素繊維が撚らずに並べられている。
(2) The carbon fibers may be those shown in FIGS. Each figure will be briefly described.
As shown in FIG. 22, the carbon fiber 140 is a triaxial woven fabric in which a plurality of strands 141, 142, and 143 are woven from three directions, and a hexagonal mesh is formed. In each strand 141, 142, 143, a plurality of carbon fibers are arranged without being twisted.
 図23に示すように、炭素繊維150は二軸織物であり、複数の炭素繊維が束ねられている。横軸のストランド151では、炭素繊維が撚らずに並べられている一方、縦軸のストランド(撚りストランド)152では、2つのストランド152a、152bが格子間で1回転(360°捩り)するように緩やかに撚り合わされている。横軸のストランド151は、縦軸の2つのストランド152a、152bの間を通っている。 23, the carbon fiber 150 is a biaxial woven fabric, and a plurality of carbon fibers are bundled. In the strand 151 of the horizontal axis, the carbon fibers are arranged without being twisted, whereas in the strand (twisted strand) 152 of the vertical axis, the two strands 152a and 152b are rotated once (360 ° twist) between the lattices. Is gently twisted together. The strand 151 on the horizontal axis passes between the two strands 152a and 152b on the vertical axis.
 図24に示すように、炭素繊維153は、図23に示した炭素繊維150と比べて、横軸に撚りストランド154を用いている点で異なる。即ち、横軸の撚りストランド154では炭素繊維を束ねたストランド154a、154bが緩やかに撚り合わされている。 24, the carbon fiber 153 differs from the carbon fiber 150 shown in FIG. 23 in that a twisted strand 154 is used on the horizontal axis. That is, in the stranded strand 154 on the horizontal axis, the strands 154a and 154b in which carbon fibers are bundled are gently twisted.
 図25に示すように、炭素繊維160は二軸織物であり、各ストランド161、162では。複数の炭素繊維が束ねられている。横軸のストランド161では、複数の炭素繊維を撚らずに並べられている一方、縦軸の撚りストランド162は、2つのストランド162a、162bが撚り合わされている。尚、撚りストランド162の撚り数は、図23に示した撚りストランド152の撚り数より多いため、撚りストランド162の強度は、撚りストランド152の強度より高くなっている。 As shown in FIG. 25, the carbon fiber 160 is a biaxial woven fabric, and in each strand 161, 162. A plurality of carbon fibers are bundled. In the strand 161 on the horizontal axis, a plurality of carbon fibers are arranged without being twisted, while in the strand strand 162 on the vertical axis, two strands 162a and 162b are twisted together. Since the number of twists of the twisted strand 162 is larger than the number of twists of the twisted strand 152 shown in FIG. 23, the strength of the twisted strand 162 is higher than the strength of the twisted strand 152.
 図26に示すように、炭素繊維163は、図25に示した炭素繊維160と比べて、横軸に撚りストランド164を用いている点で異なる。即ち、横軸の撚りストランド164では炭素繊維を束ねたストランド164a、164bが撚り合わされている。 26, the carbon fiber 163 is different from the carbon fiber 160 shown in FIG. 25 in that a twisted strand 164 is used on the horizontal axis. That is, the strands 164a and 164b in which carbon fibers are bundled are twisted together in the twisted strand 164 on the horizontal axis.
 図27に示すように、炭素繊維170は二軸織物であり、横軸及び縦軸に撚りストランド171、172を用いている。横軸の撚りストランド171では、2つのストランド171a、171bが緩やかに撚り合わされている、縦軸の撚りストランド172では、2つのストランド172a、172bが緩やかに撚り合わされている。そして、横軸のストランド171aとストランド171bとは、共に、縦軸のストランド172aとストランド172bとの間を通っている。また、縦軸のストランド172aとストランド172bとは、共に、横軸のストランド171aとストランド171bとの間を通っている。 27, the carbon fiber 170 is a biaxial woven fabric, and twisted strands 171 and 172 are used on the horizontal axis and the vertical axis. In the twisted strand 171 on the horizontal axis, the two strands 171a and 171b are gently twisted, and in the twisted strand 172 on the vertical axis, the two strands 172a and 172b are gently twisted. The horizontal axis 171a and the strand 171b both pass between the vertical axis 172a and the strand 172b. Further, both the strand 172a and the strand 172b on the vertical axis pass between the strand 171a and the strand 171b on the horizontal axis.
 図28に示す炭素繊維174は、図27に示した炭素繊維170と比べて、横軸及び縦軸に撚りストランド175、176の撚り数が多くなっている点で異なっている。
 図29に示す炭素繊維180は、ストランド181、182の交差部分(網の節部分)に結び目が形成された有結節網となっている。
(3)上記実施例では、2以上のプリプレグシートを用いてC/Cコンポジット製成形体を作製したが、1つのプリプレグシートを用いてC/Cコンポジット製成形体を作製しても良い。但し、この場合は、UDクロス以外のもの、例えば、2D平織クロス、3軸炭素繊維織物等を用いる必要がある。
The carbon fiber 174 shown in FIG. 28 differs from the carbon fiber 170 shown in FIG. 27 in that the number of twists of the twisted strands 175 and 176 is increased on the horizontal axis and the vertical axis.
The carbon fiber 180 shown in FIG. 29 is a knotted network in which knots are formed at the intersections (nodes of the mesh) of the strands 181 and 182.
(3) In the above example, a C / C composite molded body was prepared using two or more prepreg sheets, but a C / C composite molded body may be manufactured using one prepreg sheet. However, in this case, it is necessary to use something other than the UD cloth, such as a 2D plain weave cloth, a triaxial carbon fiber woven fabric, or the like.
 本発明は、熱処理炉で使用される製品ケースまたはバスケット、高温で使用される構造材またはパネル状補強材等として用いることができる。 The present invention can be used as a product case or basket used in a heat treatment furnace, a structural material used at high temperature, a panel-like reinforcing material, or the like.
 1:切り込み
 2:曲げ部
10:成形体用シート
11:成形体用シート
20:成形型
30:C/Cコンポジット製成形体
31:側壁部
32:底壁部
33:屈曲部
1: Cutting 2: Bending part 10: Molded sheet 11: Molded sheet 20: Mold 30: C / C composite molded article 31: Side wall part 32: Bottom wall part 33: Bent part

Claims (11)

  1. 底壁部と、この底壁部の周縁に立設された側壁部とを備え、炭素繊維及びマトリックスを含んで構成されるC/Cコンポジット製成形体であって、
     上記側壁部は、平面視において少なくとも1箇所の屈曲部及び/又は湾曲部を有し、且つ上記炭素繊維のうち少なくとも一部の炭素繊維は、上記底壁部から上記側壁部にかけて連続して設けられていることを特徴とするC/Cコンポジット製成形体。
    A C / C composite molded body comprising a bottom wall portion and a side wall portion standing on the periphery of the bottom wall portion, and comprising carbon fibers and a matrix,
    The side wall portion has at least one bent portion and / or a curved portion in plan view, and at least some of the carbon fibers are continuously provided from the bottom wall portion to the side wall portion. A molded product made of C / C composite characterized by being made.
  2. 上記側壁部は、上記底壁部の周縁に全周にわたって設けられている、請求項1記載のC/Cコンポジット製成形体。 The C / C composite molded article according to claim 1, wherein the side wall portion is provided around the entire periphery of the bottom wall portion.
  3. 上記側壁部の少なくとも一部に切り欠きが形成されている、請求項1又は2に記載のC/Cコンポジット製成形体。 The C / C composite molded article according to claim 1 or 2, wherein a cutout is formed in at least a part of the side wall.
  4. 上記側壁部は平板状であり、上記屈曲部が成す角度は150°以下である、請求項1~3の何れか1項に記載のC/Cコンポジット製成形体。 The C / C composite molded body according to any one of claims 1 to 3, wherein the side wall portion has a flat plate shape, and the angle formed by the bent portion is 150 ° or less.
  5. 上記炭素繊維は、一方の側壁部から、底部を挟んで相対向する他方の側壁部まで連続して延設されている、請求項1~4の何れか1項に記載のC/Cコンポジット製成形体。 The C / C composite product according to any one of claims 1 to 4, wherein the carbon fiber continuously extends from one side wall portion to the other side wall portion facing each other across the bottom portion. Molded body.
  6. 上記側壁部には、上記屈曲部を挟んで連続して設けられた炭素繊維を有する、請求項1~5の何れか1項に記載のC/Cコンポジット製成形体。 The C / C composite molded body according to any one of claims 1 to 5, wherein the side wall portion has carbon fibers continuously provided with the bent portion interposed therebetween.
  7. 上記炭素繊維には、1Dクロス及び/又は2Dクロスが用いられている、請求項1~6の何れか1項に記載のC/Cコンポジット製成形体。 The C / C composite molded body according to any one of claims 1 to 6, wherein a 1D cloth and / or a 2D cloth is used for the carbon fiber.
  8. 上記炭素繊維は、複数束ねられたストランド間に空隙部が設けられた網状体となっている、請求項1~7の何れか1項に記載のC/Cコンポジット製成形体。 The C / C composite molded body according to any one of claims 1 to 7, wherein the carbon fiber is a net-like body in which a gap is provided between a plurality of bundled strands.
  9. 請求項1~8のいずれか1項に記載のC/Cコンポジット製成形体を用いたことを特徴とする熱処理用治具。 A jig for heat treatment, characterized by using the C / C composite molded article according to any one of claims 1 to 8.
  10. 底壁部と側壁部とを備え、炭素繊維及びマトリックスを含んで構成されるC/Cコンポジット製成形体の製造方法であって、
     炭素繊維に樹脂を含浸させた後、加熱することにより、プリプレグシートを作製する工程と、
     上記プリプレグシートを、炭素繊維が延設されている箇所の一部で折り曲げて立ち上がり部を形成する工程と、
     上記立ち上がり部を接合して側壁部を形成する工程と、
     を含むことを特徴とするC/Cコンポジット製成形体の製造方法。
    A method for producing a molded article made of C / C composite comprising a bottom wall part and a side wall part, comprising a carbon fiber and a matrix,
    A step of producing a prepreg sheet by impregnating a resin into a carbon fiber and then heating;
    Bending the prepreg sheet at a part of the portion where the carbon fiber is extended to form a rising portion; and
    Bonding the rising portion to form a sidewall portion;
    The manufacturing method of the molded object made from C / C composite characterized by including.
  11. 上記樹脂を含浸させた後の成形は、真空バッグ成形又はオートクレーブ成形により行われる、請求項10に記載のC/Cコンポジット製成形体の製造方法。 The method for producing a C / C composite molded article according to claim 10, wherein the molding after impregnating the resin is performed by vacuum bag molding or autoclave molding.
PCT/JP2015/070070 2014-07-18 2015-07-13 C/c composite molded article, manufacturing method therefor and heat treatment jig using c/c composite molded article WO2016010000A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014147423A JP6588691B2 (en) 2014-07-18 2014-07-18 C / C composite molded body, manufacturing method thereof, and heat treatment jig using C / C composite molded body
JP2014-147423 2014-07-18

Publications (1)

Publication Number Publication Date
WO2016010000A1 true WO2016010000A1 (en) 2016-01-21

Family

ID=55078492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070070 WO2016010000A1 (en) 2014-07-18 2015-07-13 C/c composite molded article, manufacturing method therefor and heat treatment jig using c/c composite molded article

Country Status (2)

Country Link
JP (1) JP6588691B2 (en)
WO (1) WO2016010000A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3088029A1 (en) * 2018-11-06 2020-05-08 Safran PROCESS FOR DRAPING PRE-IMPREGNATED FOLD

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184641A (en) * 1983-04-05 1984-10-20 三菱レイヨン株式会社 Structure sheet and molded processed product thereof
JP2001123219A (en) * 1999-10-22 2001-05-08 Nippon Techno:Kk Jig for heat treatment
JP2001252923A (en) * 2000-03-08 2001-09-18 Mitsubishi Rayon Co Ltd Method for manufacturing prepreg mold and prepreg mold
JP2009221390A (en) * 2008-03-18 2009-10-01 Jamco Corp Prepreg peel ply for continuously forming composite material
WO2010087443A1 (en) * 2009-02-02 2010-08-05 東レ株式会社 Process and apparatus for producing reinforcing-fiber strip base having circular-arc part, and multilayer structure, preform, and fiber-reinforced resin composite material each comprising or produced using the base
JP2014019083A (en) * 2012-07-19 2014-02-03 Shindo Co Ltd Carbon fiber stitch base material, and wet prepreg using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5286591B2 (en) * 2008-05-21 2013-09-11 イビデン株式会社 Crucible holding member and manufacturing method thereof
JP2012036018A (en) * 2010-08-04 2012-02-23 Ibiden Co Ltd Carbon fiber-reinforced carbon composite material and method for manufacturing the same
JP2012136358A (en) * 2010-12-24 2012-07-19 Nippon Steel Materials Co Ltd Conveyance member of silicon melt

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184641A (en) * 1983-04-05 1984-10-20 三菱レイヨン株式会社 Structure sheet and molded processed product thereof
JP2001123219A (en) * 1999-10-22 2001-05-08 Nippon Techno:Kk Jig for heat treatment
JP2001252923A (en) * 2000-03-08 2001-09-18 Mitsubishi Rayon Co Ltd Method for manufacturing prepreg mold and prepreg mold
JP2009221390A (en) * 2008-03-18 2009-10-01 Jamco Corp Prepreg peel ply for continuously forming composite material
WO2010087443A1 (en) * 2009-02-02 2010-08-05 東レ株式会社 Process and apparatus for producing reinforcing-fiber strip base having circular-arc part, and multilayer structure, preform, and fiber-reinforced resin composite material each comprising or produced using the base
JP2014019083A (en) * 2012-07-19 2014-02-03 Shindo Co Ltd Carbon fiber stitch base material, and wet prepreg using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3088029A1 (en) * 2018-11-06 2020-05-08 Safran PROCESS FOR DRAPING PRE-IMPREGNATED FOLD
WO2020094965A1 (en) * 2018-11-06 2020-05-14 Safran Method for laying up prepreg plies

Also Published As

Publication number Publication date
JP6588691B2 (en) 2019-10-09
JP2016023214A (en) 2016-02-08

Similar Documents

Publication Publication Date Title
JP4779754B2 (en) Prepreg laminate and fiber reinforced plastic
TWI517968B (en) Fibre reinforced composite material
JP5261171B2 (en) Reinforced reinforcing fiber sheet and method for producing the same
JP5972831B2 (en) Heat treatment furnace jig
EP2642006A1 (en) Structural warp knit sheet and laminate thereof
US9427934B2 (en) Stitched carbon fiber base material and wet prepreg using same
DE102015101672A1 (en) Fiber-reinforced composite material and manufacturing method therefor
KR20130141468A (en) Carbon-fiber-reinforced plastic molded article
US20140001688A1 (en) Fiber reinforced plastic spring
JPWO2018083734A1 (en) REINFORCED SUBSTRATE FOR COMPOSITE MATERIAL, COMPOSITE MATERIAL AND METHOD FOR PRODUCING REINFORCED SUBSTRATE FOR COMPOSITE MATERIAL
US6045926A (en) Thin textile fabric comprising bundles of metal filaments
WO2016010000A1 (en) C/c composite molded article, manufacturing method therefor and heat treatment jig using c/c composite molded article
JP4867259B2 (en) Preform and method for manufacturing preform
JPH07243149A (en) Woven fabric for one direction reinforcement
CN108883599A (en) Fiber-reinforced resin ducted body and its manufacturing method
JP2017065066A (en) Method and device for manufacturing preform
JP2018517058A5 (en)
EP1111110A2 (en) Reinforced panel structure
JP2008127719A (en) Steel woven fabric for reinforcing rubber article
JPWO2020158233A1 (en) Multi-layer sheet and manufacturing method of multi-layer sheet
JP7387963B2 (en) Prepreg, prepreg manufacturing method, molded body, and molded body manufacturing method
KR101187392B1 (en) A plastic matter of grid form having steel material and method for producing the same
JP2006002302A (en) Carbon fiber laminated cloth
WO2005123500A1 (en) A process for manufacturing tridimensional structures
KR200315650Y1 (en) fishing rod make use of carbon sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822335

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15822335

Country of ref document: EP

Kind code of ref document: A1