WO2016009998A1 - Insulated covered aluminum wire - Google Patents

Insulated covered aluminum wire Download PDF

Info

Publication number
WO2016009998A1
WO2016009998A1 PCT/JP2015/070065 JP2015070065W WO2016009998A1 WO 2016009998 A1 WO2016009998 A1 WO 2016009998A1 JP 2015070065 W JP2015070065 W JP 2015070065W WO 2016009998 A1 WO2016009998 A1 WO 2016009998A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
insulating coating
insulation
molar ratio
coating layer
Prior art date
Application number
PCT/JP2015/070065
Other languages
French (fr)
Japanese (ja)
Inventor
亮介 小比賀
真 大矢
Original Assignee
古河電気工業株式会社
古河マグネットワイヤ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 古河マグネットワイヤ株式会社 filed Critical 古河電気工業株式会社
Publication of WO2016009998A1 publication Critical patent/WO2016009998A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/06Insulation of windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/02Windings characterised by the conductor material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/30Windings characterised by the insulating material

Definitions

  • the present invention relates to an insulation-coated aluminum electric wire, especially a multi-layer insulation-coated aluminum electric wire having an insulating film excellent in winding workability for constructing a coil of a motor, a generator, etc., and in particular, optimum adhesion.
  • the present invention provides adhesion to an aluminum conductor, adhesion between insulating coating resin layers, wear resistance (winding workability of an insulating film), and insulation after processing.
  • An object of the present invention is to provide an insulating coated aluminum electric wire with high performance.
  • the present inventors are excellent in coating resins made of polyamideimide resin, polyimide resin, and polyamide resin, and in particular, the molar ratio of imide ring to benzene ring in the coating resin is important. I found out. In particular, by providing a resin having a high imide ring-containing molar ratio in the innermost layer in contact with the aluminum conductor, adhesion with the aluminum conductor can be satisfied, and the imide ring-containing molar ratio is specified between the coating resin layers. It was found that, in addition to the adhesiveness with the aluminum conductor, the adhesiveness between the insulating coating resin layers, the wear resistance, and the post-processing insulation were excellent. The present invention has been made based on this finding.
  • An insulating coated aluminum electric wire having an insulating coating layer containing at least a resin having a benzene ring and an imide ring on the outer periphery of the conductor and covering two or more insulating coating layers, In the insulating coating layers adjacent to each other, the imide ring-containing molar ratio of the resin constituting the innermost insulating coating layer in contact with the benzene ring determined by the following formula (1) is 0.366 or more.
  • An insulation-coated aluminum electric wire characterized in that the absolute value of the difference in the imide ring-containing molar ratio of the constituent resin is more than 0 and 0.167 or less in any adjacent insulation coating layer.
  • the absolute value of the difference between the maximum value and the minimum value of the imide ring-containing molar ratio among all the insulating coating layers is 0.033 or more and 0.300 or less (1) to The insulation-coated aluminum electric wire according to any one of (4).
  • the imide ring-containing molar ratio of the resin constituting the insulating coating layer is the largest in the innermost insulating coating layer in contact with the conductor and the smallest in the outermost insulating coating layer farthest from the conductor.
  • the insulation-coated aluminum electric wire according to any one of (1) to (5), wherein (7) Among the two or more insulating coating layers, the thickness of the innermost insulating coating layer in contact with the conductor is the same as or thinner than the thickness of any of the remaining insulating coating layers.
  • an insulation-coated aluminum electric wire having high adhesion to an aluminum conductor, adhesion between insulating coating resin layers, wear resistance, and high insulation after processing can be provided in order to meet the demand for severe winding workability.
  • a resin with a high imide ring-containing molar ratio in the innermost layer in contact with the aluminum conductor it is possible to satisfy the adhesiveness with the aluminum conductor, and the specific relationship of the imide ring-containing molar ratio between the coated resin layers
  • the imide ring-containing molar ratio is lowered sequentially from the conductor side, so that in addition to the adhesion to the aluminum conductor, the adhesion between the insulating coating resin layers, the wear resistance, and the insulation after processing are excellent.
  • the “layer” in the present invention means a layer in which the resin and the additive to be contained are laminated adjacent to each other, and includes a layer composed of one layer or a plurality of layers.
  • FIG. 1 is a schematic cross-sectional view of an insulation-coated aluminum electric wire of the present invention.
  • FIG. 2 is a chart of the infrared absorption spectrum of the polyimide resin measured in the examples.
  • the insulation-coated aluminum electric wire of the present invention is an insulation-coated aluminum electric wire having an insulation coating layer containing a resin having at least a benzene ring and an imide ring on the outer periphery of a conductor and covering two or more insulation coating layers.
  • the imide ring-containing molar ratio of the resin constituting the innermost insulating coating layer in contact with the conductor to benzene is 0.366 or more, and the imide of the resin constituting the layer in the insulating coating layers adjacent to each other
  • the absolute value of the difference in the ring-containing molar ratio is more than 0 and 0.167 or less in any adjacent insulating coating layer.
  • the aluminum of the conductor used in the present invention is pure aluminum or an aluminum alloy (in the present specification, these may be simply referred to as aluminum).
  • a conductor may be any pure aluminum or aluminum alloy conventionally used in electric wires.
  • the aluminum alloy include a 1000 series aluminum alloy, a 2000 series aluminum alloy, a 3000 series aluminum alloy, a 4000 series aluminum alloy, a 5000 series aluminum alloy, and a 6000 series aluminum alloy.
  • pure aluminum and aluminum alloys 1000 series aluminum alloys having an aluminum purity of 99% or more are preferable, and those having high electrical conductivity are preferable.
  • the cross-sectional shape of the aluminum conductor is determined according to the application, it may be any shape such as a circle, a flat (rectangular) shape, or a hexagonal shape.
  • a rectangular conductor is preferable in that the occupation ratio of the conductor in the status lot can be increased.
  • the size of the conductor is determined according to the use and is not particularly specified. However, in the case of a round conductor, the diameter is preferably 0.3 mm to 3.0 mm, more preferably 0.4 mm to 2.7 mm.
  • the length of one side is preferably 1.0 mm to 5.0 mm, more preferably 1.4 mm to 4.0 mm, and the thickness (short side) is 0.4 mm to 3 mm.
  • 0.0 mm is preferable, and 0.5 mm to 2.5 mm is more preferable.
  • the range of the conductor size in which the effect of the present invention can be obtained is not limited to this. In the case of a flat rectangular conductor, this also varies depending on the application, but a rectangular cross section is more common than a square cross section.
  • the chamfering (curvature radius r) of the four corners of the flat rectangular conductor cross section is preferably smaller r from the viewpoint of increasing the conductor occupancy in the status lot. From the viewpoint of suppressing the partial discharge phenomenon due to the electric field concentration on the surface, r is preferably larger. Therefore, the curvature radius r is preferably 0.6 mm or less, and more preferably 0.2 mm to 0.4 mm. However, the range in which the effect of the present invention can be obtained is not limited to this.
  • the insulating coating layer is a laminated resin coating layer composed of two or more insulating coating layers.
  • the insulating coating layer is preferably 2 to 10 layers, more preferably 2 to 6 layers, and even more preferably 2 to 5 layers. Further, when the thickness of at least one of the two or more insulating coating layers is 25 ⁇ m or less, that is, more than 0 ⁇ m and 25 ⁇ m or less, the dielectric breakdown voltage (BDV) after stretching is excellent. Further, 0.1 to 10 ⁇ m is more preferable. Of these, the thickness of each of the two or more insulating coating layers is preferably more than 0 ⁇ m and 25 ⁇ m or less, and more preferably 0.1 to 10 ⁇ m.
  • the thickness of each insulating layer is set such that the thickness of the innermost insulating coating layer in contact with the conductor is the same as or thinner than the thickness of any remaining insulating coating layer. Excellent BDV after stretching.
  • the thickness of the innermost insulating coating layer in contact with the conductor is preferably 0.1 to 10 ⁇ m.
  • the total thickness of the insulating coating layer is preferably 10 to 100 ⁇ m and more preferably 20 to 80 ⁇ m because of excellent adhesion, abrasion resistance and post-processing insulation.
  • the resin constituting the insulating coating layer is a resin having at least a benzene ring and an imide ring, and the innermost insulating coating layer in contact with the conductor is made of the resin.
  • Resins having at least a benzene ring and an imide ring include, for example, polyimide resin (PI) [in this specification, including peripheral resins such as polyetherimide resin (PEI) and polyesterimide resin], polyamideimide resin (PAI) As such, it may be a single resin, a mixture of these resins, or a mixture with other resins. In this invention, since it is excellent in abrasion resistance, the resin which mixed the polyimide resin (PI) and the polyamide-imide resin (PAI) is further more preferable.
  • the polyimide resin (PI) can be synthesized by reacting tetracarboxylic dianhydride with polyvalent amines having two or more amine groups in one molecule.
  • Polyamideimide resin (PAI) is obtained by, for example, a method of directly reacting a tricarboxylic acid anhydride with a polyvalent isocyanate having two or more isocyanate groups in one molecule in an organic solvent, or in a polar solvent. Then, the tricarboxylic acid anhydride and the polyvalent amine having two or more amine groups in one molecule are reacted first to introduce an imide bond first, and then two or more isocyanate groups in one molecule.
  • the polyamide resin (PA) can be synthesized by reacting dicarboxylic acid, diester of dicarboxylic acid or dihalide of dicarboxylic acid with polyvalent amines having two or more amine groups in one molecule.
  • tetracarboxylic dianhydride examples include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride (BTDA), 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride (OPDA), 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride (DSDA), bicyclo (2 , 2,2) -Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (BCD), 1,2,4,5-cyclohexanetetracarboxylic dianhydride (H-PMDA) , Pyromellitic dianhydride (PMDA), 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA), 5- (2,5
  • tricarboxylic acid anhydride examples include trimellitic acid anhydride (TMA), 2- (3,4-dicarboxyphenyl) -2- (3-carboxyphenyl) propane anhydride, and (3,4-dicarboxyphenyl).
  • TMA trimellitic acid anhydride
  • 2- (3,4-dicarboxyphenyl) -2- (3-carboxyphenyl) propane anhydride examples include trimellitic acid anhydride (TMA), 2- (3,4-dicarboxyphenyl) -2- (3-carboxyphenyl) propane anhydride, and (3,4-dicarboxyphenyl).
  • Dicarboxylic acids include terephthalic acid, isophthalic acid, 2,2′-biphenyldicarboxylic acid, 2,2-bis (3-carboxyphenyl) propane, bis (3-carboxyphenyl) methane, bis (3-carboxyphenyl) ether 3,3′-dicarboxybenzophenone, dibasic acids such as succinic acid, adipic acid, sebacic acid, dodecanedicarboxylic acid and the like.
  • polyvalent isocyanate having two or more isocyanate groups in one molecule examples include aliphatic, alicyclic, araliphatic, aromatic or heterocyclic polyisocyanates.
  • ethylene diisocyanate, 1 4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,12-dodecane diisocyanate, cyclobutene-1,3-diisocyanate, cyclohexane-1,3-diisocyanate, cyclohexane-1,4-diisocyanate, isophorone diisocyanate, 1 , 3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane-2,4′-diisocyanate, diphenylmethane-4, '-Diisocyanate (MDI)
  • diamines examples include p-phenylene diamine, m-phenylene diamine, silicone diamine, bis (3-aminopropyl) ether ethane, 3,3′-diamino-4,4′-dihydroxydiphenyl sulfone (SO 2 -HOAB), 4 , 4′-diamino-3,3′-dihydroxybiphenyl (HOAB), 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane (HOCF 3 AB), siloxane diamine, bis (3-amino Propyl) ether ethane, N, N-bis (3-aminopropyl) ether, 1,4-bis (3-aminopropyl) piperazine, isophoronediamine, 1,3-bis (aminomethyl) cyclohexane, 3,3′- Dimethyl-4,4′-diaminodicyclohexylmethane, 4,4
  • the mass average molecular weights of the polyimide resin (PI) and the polyamideimide resin (PAI) are preferably 5,000 to 100,000, and more preferably 10,000 to 50,000.
  • the mass average molecular weight is a value determined in terms of polystyrene by GPC (Gel Permeation Chromatography).
  • polyimide resin examples include I.K. S. Pire-ML (trade name) manufactured by T Company, Trenys # 3000 (trade name) manufactured by Toray Industries, Inc., Uimide (trade name) manufactured by Unitika Ltd., Aurum manufactured by Mitsui Chemicals, Inc. PL450C and the like are listed, and are also classified as SABIC innovative Plastic IP BV Ultem (trade name) and polyesterimide resin (synthesized from trimellitic anhydride, diamine), which are classified as polyetherimide resin (PEI).
  • PET polyetherimide resin
  • Terebec 850 trade name
  • Isomi RL trade name manufactured by Nissho Schenectaday Chemical Co., Ltd.
  • polyamide-imide resin examples include HI406 and HI-404 (both trade names) manufactured by Hitachi Chemical Co., Ltd., and AI352 and AI301 manufactured by Arakawa Chemical Co., Ltd.
  • resins include polyamide resin (PA), polyphenylsulfone resin (PPSU), polyethersulfone resin (PES), polyphenylene ether resin (PPE), polyetheretherketone resin (PEEK), polyphenylene sulfide resin (PPS). , Polyketone resin (PK), polysulfone resin (PSU) and the like.
  • PA polyamide resin
  • PPSU polyphenylsulfone resin
  • PPE polyethersulfone resin
  • PEEK polyphenylene ether resin
  • PPS polyetherketone resin
  • PSU polysulfone resin
  • the imide ring-containing molar ratio of the resin constituting the innermost insulating coating layer in contact with the conductor to the benzene ring determined by the following formula (1) is 0.366 or more, and adjacent to each other In the layer, the absolute value of the difference in the imide ring-containing molar ratio of the resin constituting the layer is more than 0 and 0.167 or less in any adjacent insulating coating layer.
  • the polyimide resin (PI) obtained from pyromellitic dianhydride (PMDA) and 4,4′-diaminodiphenyl ether (DDE) there is no amide group, only an imide group, and the above formula (1)
  • the molar ratio of the imide ring to the benzene ring determined in (2) is 2 / 3 ⁇ 0.667.
  • the polyamideimide resin (PAI) obtained from trimellitic anhydride (TMA) and diphenylmethane-4,4′-diisocyanate (MDI) the imide group and the amide group are present in a ratio of 1: 1.
  • the molar ratio of the imide ring to the benzene ring determined in 1) is 1 / 3 ⁇ 0.333.
  • the adjacent insulating coating layers have a laminated structure in which the absolute value of the difference in the imide ring-containing molar ratio is changed in the range of more than 0 and 0.167 or less. It is presumed that the wear resistance is improved because the peeling of the interface between the insulating coating layers is suppressed.
  • the imide ring-containing molar ratio with respect to the benzene ring present in the insulating coating resin is determined by the above formula (1), and is theoretically calculated from the molecular structure if the resin composition is known.
  • the details of the resin composition are unclear, or for the insulation coating resin layer of the manufactured insulated wire, it can be obtained from the absorbance area of the infrared absorption spectrum measured by a reflection type infrared spectrometer. it can.
  • a microtome such as Microtom 2050 SuperCut manufactured by Reichert-Jung
  • a cross-section of the insulating coating layer is cut out, and a reflective infrared spectroscopic apparatus (manufactured by Thermoscience, Inc.) having an attachment capable of surface analysis.
  • the infrared absorption spectrum of each insulating coating layer is measured with a Nicolet iN10 microinfrared spectrometer, etc.), and from the obtained infrared absorption spectrum, the specific formula of the imide ring relative to the benzene ring is determined by the following formula (2).
  • the imide ring-containing molar ratio relative to the benzene ring can be obtained.
  • y is an imide ring-containing molar ratio with respect to the benzene ring
  • x is an absorbance area ratio of a specific absorption peak of the imide ring with respect to the benzene ring, obtained by the above formula (2).
  • c represents a constant.
  • the constant c is obtained from the relationship between y and x in a resin with a known structure.
  • the infrared absorption spectrum of the resin of the insulating coating layer by Pire-ML (trade name; manufactured by I.S. T.), which is a polyimide resin, is obtained as a chart as shown in FIG. From this chart, the absorbance area ( ⁇ portion) of the absorption peak 1500 cm ⁇ 1 derived from the benzene ring and the absorbance area ( ⁇ portion) of the absorption peak 1720 cm ⁇ 1 derived from the imide ring are determined and substituted into the above formula (2).
  • x 2.56 is calculated. Since the constant c calculated
  • the C C stretching vibration, which is the skeleton vibration of the benzene ring, appears as a strong peak in the vicinity of 1450 to 1520 cm ⁇ 1 .
  • the imide ring-containing molar ratio with respect to the benzene ring present in the insulating coating resin may be directly determined by the formula (1) or indirectly by the absorbance area ratio of the infrared absorption spectrum. In the specification, as a representative, hereinafter, it will be described as “determined by the equation (1)”.
  • the imide ring-containing molar ratio of the innermost insulating coating layer in contact with the aluminum conductor is preferably 0.366 to 0.634, more preferably 0.393 to 0.634, and further preferably 0.400 to 0.634. preferable.
  • the imide ring-containing molar ratio of the innermost insulating coating layer in contact with the conductor is 0.366 or more, the adhesiveness with the aluminum conductor is excellent, and when it is less than 0.366, the imide group content is low, Adhesion with the aluminum conductor is deteriorated. If the ratio is 0.634 or less, the adhesion between the aluminum conductors is improved, the adhesion between the insulating coating layers is good, and the wear resistance is excellent.
  • the absolute value of the difference in the imide ring-containing molar ratio of the resins constituting these layers is more than 0 and 0.167 or less between any adjacent insulating coating layers.
  • the absolute value of the difference in the imide ring-containing molar ratio is preferably 0.026 to 0.167, more preferably 0.030 to 0.167, still more preferably 0.033 to 0.167, and 0.033 to 0. .134 is particularly preferred.
  • the wear resistance and the insulation after processing are excellent, and when it is 0, the insulation after processing When the ratio is 0.170 or more, the difference in the imide ring-containing molar ratio between adjacent insulating coating layers becomes large, so that the wear resistance is deteriorated.
  • the absolute value of the difference between the maximum value and the minimum value is preferably more than 0 and 0.300 or less among the imide ring-containing molar ratios obtained for all the insulating coating layers. More preferably, it is 0.300 or less.
  • the imide ring-containing molar ratio of the resin constituting the insulating coating layer is the largest in the innermost insulating coating layer in contact with the conductor and the smallest in the outermost insulating coating layer farthest from the conductor. It is particularly preferable that the insulating coating layer becomes smaller in order as it becomes farther from the insulating coating layer closest to the conductor. In this way, particularly excellent wear resistance can be obtained.
  • the imide ring-containing molar ratio can be within the range defined by the present invention by changing the number of amide groups, imide groups, and benzene rings present in one resin. It is preferable to adjust by mixing, and in particular, it is preferable to adjust by mixing polyimide resin (PI) and polyamideimide resin (PAI), and in this way, particularly excellent adhesion, Abrasion resistance and stretched BDV are obtained.
  • PI polyimide resin
  • PAI polyamideimide resin
  • the insulating coating layer can contain various additives depending on the purpose.
  • additives include pigments, crosslinking agents, catalysts, and antioxidants.
  • the content of such an additive is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the resin constituting the insulating coating layer.
  • the outermost insulating coating layer for coating the conductor of the present invention may be a self-lubricating resin obtained by dispersing and mixing wax or a lubricant by a conventional method.
  • wax to be used commonly used ones can be used without particular limitation, for example, synthetic waxes such as polyethylene wax, petroleum wax, paraffin wax, and natural waxes such as carnauba wax, cadilla wax, and rice wax. Can be mentioned.
  • a lubricant For example, silicone, a silicone macromonomer, a fluororesin etc. can be used.
  • the aluminum conductor is adjusted to a predetermined diameter and hardness by performing a wire drawing step and an annealing step.
  • a wire drawing step for example, an aluminum conductor having a predetermined diameter can be obtained by drawing a rough drawing wire with a die using a lubricant and repeating the surface reduction process.
  • annealing step for example, annealing is performed for 1 to 100 seconds in a 2 to 8 m furnace set to 300 ° C. to 550 ° C.
  • the method for forming the insulating coating layer on the aluminum conductor may be the same as the generally known method for forming the insulating coating layer on the copper conductor, and a step of applying an insulating coating resin on the aluminum conductor and baking it. By repeating the above, an insulating coating layer composed of two or more layers can be formed.
  • the specific baking conditions depend on the shape of the furnace used, but for a natural convection type vertical furnace of about 5 m, the passage time is set to 30 to 90 seconds at 400 to 500 ° C. Can be achieved.
  • the varnish for forming the insulating coating layer can be prepared by dissolving a resin or additive constituting the insulating coating layer in a solvent.
  • a solvent is preferably an organic solvent, for example, an amide solvent such as N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (DMAC), dimethyl sulfoxide, N, N-dimethylformamide, Urea solvents such as N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea, tetramethylurea, lactone solvents such as ⁇ -butyrolactone and ⁇ -caprolactone, carbonate solvents such as propylene carbonate, methyl ethyl ketone, methyl isobutyl Ketone solvents such as ketone, cyclohexanone, ester solvents such as ethyl acetate, n-butyl acetate, butyl cellosolve acetate, butyl car
  • amide solvents and urea solvents are preferable in view of high solubility, high reaction acceleration, and the like, and N-methyl-2 is preferable in that it does not have a hydrogen atom that easily inhibits a crosslinking reaction by heating.
  • -Pyrrolidone, N, N-dimethylacetamide, N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea and tetramethylurea are more preferred, and N-methyl-2-pyrrolidone is particularly preferred.
  • the boiling point of the organic solvent is preferably 160 ° C. to 250 ° C., more preferably 165 ° C. to 210 ° C.
  • the insulation-coated aluminum electric wire of the present invention is excellent in adhesion to an aluminum conductor, adhesion between insulation-coated resin layers, wear resistance, and insulation. These performances can be evaluated by the values measured as follows.
  • the floating length of the insulation film is preferably less than 20 mm, and more preferably less than 2 mm. Since the floating length is measured visually using a measurement gauge, the practical lower limit is 0.1 mm or more.
  • a unidirectional wear test is performed using a scrape tester (wire electric wire wear tester for automobiles), for example, NEMA scrape tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.), and evaluation is performed by the wear resistance test method of JIS C3003-1984.
  • the insulated wire was stretched 10% under the conditions of a temperature of 20 ⁇ 10 ° C. and a relative humidity of 65 ⁇ 15%, attached to a measuring instrument in a straight state, and the load until the insulation coating layer was broken was measured.
  • the value is preferably 1400 g or more, and more preferably 1500 g or more.
  • the practical upper limit is 3520 g or less.
  • the insulation-coated aluminum electric wire of the present invention is lightweight and can be reduced in size, it can be used for coils of motors and generators. Specifically, it can be preferably used for a winding for a drive motor of, for example, a hybrid vehicle (HV) or an electric vehicle (EV) where a high product ratio is required.
  • HV hybrid vehicle
  • EV electric vehicle
  • the materials used for the resin composition are the following materials.
  • varnishes 2-9 are polyamideimide resin (A) and polyimide resin so that the solid content ratios shown in Table 1 below are obtained.
  • varnish 10 is polyamideimide resin (A) and polyetherimide resin (C)
  • varnish 12 is polyamideimide resin (A) and polyethersulfone resin (D) mixed and stirred, and varnish 2 to 10 and 12 were produced.
  • Varnish A had a solid content of 100% polyimide resin (B), and Pire-ML (manufactured by IST Co.) was used as it was.
  • Varnish B had a solid content of 100% polyamideimide resin (A), and HI406 (manufactured by Hitachi Chemical Co., Ltd.) was used as it was.
  • TMA trimellitic anhydride
  • PMDA pyromellitic dianhydride
  • MDI diphenylmethane-4,4′-diisocyanate
  • the imide ring-containing moles of the entire resin of the resin layer formed by baking a plurality of times in a baking furnace with a furnace length of 8 m under a baking temperature of 450 ° C. and a baking time of approximately 15 seconds. The ratios are summarized in Table 1 below.
  • Varnish 4 (layer 2) having a thickness of 3 ⁇ m and an imide ring-containing molar ratio to the benzene ring of 0.467 is formed as a film of varnish 2 (layer 3) having a film thickness of 3 ⁇ m and an imide ring-containing molar ratio to the benzene ring of 0.400.
  • Insulation wire having a thickness of 3 ⁇ m and an insulating coating layer of varnish B (layer 4) having a imide ring-containing molar ratio of 0.333 to a benzene ring in the order of a film thickness of 21 ⁇ m and an overall insulating coating layer thickness of 30 ⁇ m was made.
  • the difference between the imide ring-containing molar ratio of the innermost layer 1 to the benzene ring and the difference in the imide ring-containing molar ratio to the benzene ring in all adjacent layers, and the maximum value of the imide ring-containing molar ratio to the benzene ring in all insulating coating layers The absolute value of the difference between the minimum values is shown in Table 2 below.
  • a plurality of dies having a shape similar to the shape of the conductor are used, and baking is performed a plurality of times in a baking furnace having a furnace length of 8 m under a baking temperature of 450 ° C. and a baking time of approximately 15 seconds. went.
  • Examples 2 to 12 and Comparative Examples 1 to 5 Insulated wires of Examples 2 to 12 and Comparative Examples 1 to 5 were prepared in the same manner as Example 1 except that the varnish types and film thicknesses described in Tables 2 and 3 below were changed as shown in the layer structure. did.
  • Comparative Example 6 A copper circular conductor having an oxygen content of 15 ppm was used in place of the aluminum circular conductor, and the same as in Example 1 except that the type and film thickness of the varnish described in Table 3 below and the layer configuration were changed. Thus, an insulated wire of Comparative Example 6 was produced.
  • the cross section of the insulating coating layer is cut out for each of the insulated wires produced above using a microtome (Microtome 2050 SuperCut manufactured by Reichert-Jung). Measure the infrared absorption spectrum of the cross section of the resin of each insulation coating layer using a reflective infrared spectrometer (Nicolet iN10 microinfrared spectrometer manufactured by Thermoscience) equipped with an attachment capable of surface analysis did.
  • the absorbance area ratio x of the specific absorption peak of the imide ring to the benzene ring obtained from the infrared absorption spectrum is obtained from the following formula (2), and the molar ratio of the imide ring to the benzene ring in the resin is calculated from the following conversion formula (3).
  • the above y is an imide ring-containing molar ratio with respect to the benzene ring
  • x is an absorbance area ratio of a specific absorption peak of the imide ring with respect to the benzene ring, which is obtained by the above formula (2).
  • c represents a constant.
  • FIG. 2 shows a chart of the infrared absorption spectrum of the resin of the insulating coating layer formed of Pire-ML (trade name; manufactured by IST Co.) which is a polyimide resin. From the absorbance area ( ⁇ part) of the absorption peak 1500 cm ⁇ 1 derived from the benzene ring and the absorbance area ( ⁇ part) of the absorption peak 1720 cm ⁇ 1 derived from the imide ring, x was 2.56.
  • the constant c in the formula (3) is 0.2605 from the relationship between the imide ring-containing molar ratio with respect to the benzene ring obtained from a resin having a known structure and the absorbance area ratio of a specific absorption peak of the imide ring with respect to the benzene ring.
  • x 2.56 was substituted into the above formula (3), the imide ring-containing molar ratio was 0.667.
  • x is 1.28
  • x is 1.92
  • the imide ring-containing molar ratios were 0.333 and 0.500, respectively.
  • the imide ring-containing molar ratio of the resin of the insulating coating layer formed from another varnish was determined.
  • Adhesion evaluation In accordance with the adhesion test method of JIS C3003-1984, an autograph AGS-J (manufactured by Shimadzu Corporation) is used as a measuring instrument, and the aluminum conductor is stretched until it breaks. The floating length was measured, and those with a length of less than 2 mm were evaluated as ⁇ , those with a diameter of 2 mm or more but less than 20 mm were evaluated as ⁇ , those with a diameter of 20 mm or more but less than 100 mm were evaluated as ⁇ , and those with a diameter of 100 mm or more as x.
  • a value of 10 kV or more was evaluated as ⁇ , a value of 8 kV or more and less than 10 kV was evaluated as ⁇ , a value of 5 kV or more and less than 8 kV was evaluated as ⁇ , and a value of less than 5 kV was evaluated as ⁇ .
  • the target level is ⁇ or higher.
  • the obtained results are summarized in Tables 2 and 3 below.
  • the imide ring-containing molar ratio is abbreviated as imide ring-containing ratio in the table.
  • the multilayer insulated wires of Examples 1 to 12 are all excellent in adhesion, dielectric breakdown voltage (BDV) after extension, and wear resistance.
  • the single-layer insulation-coated wires of Examples 1 to 3 and the multilayer insulation-coated wires of Comparative Examples 4 to 6 had insufficient adhesion, BDV after elongation, or wear.
  • adhesion was particularly poor.
  • the absolute value of the difference in the imide ring-containing molar ratio of the insulating coating layers adjacent to each other is in the range of 0 to 0.167 or less, and Comparative Examples 4 and 5, which are single-layer insulating coated electric wires. No. 3 did not satisfy the BDV and wear resistance after elongation.
  • Comparative Example 4 not only the absolute value of the difference in the imide ring-containing molar ratio of the insulating coating layers adjacent to each other exceeds 0 and is outside the range of 0.167, but also the imide ring of the innermost insulating coating layer.
  • the content molar ratio is larger than the preferred range, and the absolute value of the difference between the maximum value and the minimum value of the imide ring-containing molar ratio exceeds the preferred range among all the insulating coating layers, so the wear resistance is deteriorated. I think that the.
  • Comparative Example 6 which is the same as the insulating coating layer configuration described in the example of Prior Art Document 1, the adhesion ratio was poor because the imide ring-containing molar ratio of the innermost insulating coating layer was less than 0.366.
  • Insulating layer (first layer: innermost layer) 11 Insulating layer (second layer) 12 Insulating layer (third layer) 13 Insulating layer (4th layer) 14 Insulating layer (5th layer) 20 Insulating layer (6th layer: outermost layer) Absorption area of absorption peak 1500 cm ⁇ 1 derived from ⁇ -benzene ring Absorbance area of absorption peak 1720 cm ⁇ 1 derived from ⁇ -imide ring

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)
  • Windings For Motors And Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

An insulated covered aluminum wire which comprises, on the outer circumference of a conductor, an insulating covering layer that contains a resin having at least a benzene ring and an imide ring, and which is covered by two or more insulating covering layers. The resin which constitutes the innermost insulating covering layer that is in contact with the conductor has a molar ratio of the imide ring content to the benzene ring content of 0.366 or more as determined by formula (1). In addition, the absolute value of the difference of the above-described molar ratio of the imide ring content of the constituent resin between adjacent insulating covering layers is more than 0 but 0.167 or less with respect to any two adjacent insulating covering layers. Total number of moles of imide rings in resin/total number of moles of benzene rings in resin formula (1)

Description

絶縁被覆アルミニウム電線Insulation coated aluminum wire
 本発明は、絶縁被覆アルミニウム電線、なかでもモーターや発電機などのコイルを構成するための巻線加工性、特に最適な密着性に優れた絶縁皮膜の多層絶縁被覆アルミニウム電線に関する。 The present invention relates to an insulation-coated aluminum electric wire, especially a multi-layer insulation-coated aluminum electric wire having an insulating film excellent in winding workability for constructing a coil of a motor, a generator, etc., and in particular, optimum adhesion.
 近年、モーターや発電機のなどに使用されるコイルの軽量化や小型化に伴い、これらに用いられているコイル等の導体においても、特に軽量化が強く要求されている。このため、比重が銅の1/3以下であるアルミニウムまたはアルミニウム合金の採用が検討されている。 In recent years, with the reduction in weight and size of coils used in motors and generators, especially the conductors such as coils used in these have been strongly required to be reduced in weight. For this reason, adoption of aluminum or aluminum alloy whose specific gravity is 1/3 or less of copper is examined.
 これに加えて、絶縁皮膜の巻線加工性の向上や耐熱性の向上が求められている。しかしながら、アルミニウム導体は、酸化皮膜を形成しやすいため、被覆樹脂との密着性が銅と比べて劣る傾向にある。また、銅と比べて、導体の抗張力が小さいため、アルミニウム導体を使用して、コイル巻き加工をした場合には、より大きな伸長や導体変形が生じやすく、絶縁皮膜の絶縁性が低下する問題があり、厳しい巻線加工性に対して、アルミニウム導体との密着性、被覆樹脂の層間密着性、加工後の絶縁性を満足する必要がある。
 従来は、絶縁層として、ポリアミドイミド、ポリイミドを使用することやポリイミドをブレンドした樹脂を絶縁皮膜の一部として使用することが提案されていた(例えば、特許文献1~5参照)。しかしながら、従来技術では、厳しい巻線加工性に対するニーズを十分満たしてはいない。すなわち、従来の絶縁皮膜では、アルミニウム導体と絶縁皮膜の間の密着性が十分ではなかった。また、絶縁被覆を同じ組成の樹脂で形成した場合、絶縁被覆樹脂層間の密着性が高くなりすぎ、巻線加工等で任意の層に発生した傷が絶縁被覆樹脂層の積層方向に広がり、絶縁性が低下するという問題があった。一方、絶縁被覆樹脂層間の密着性が低すぎると、耐摩耗性が悪化する懸念があった。
In addition to this, there is a demand for improvement in winding workability and heat resistance of the insulating film. However, since an aluminum conductor tends to form an oxide film, its adhesiveness with a coating resin tends to be inferior to copper. Also, since the tensile strength of the conductor is small compared to copper, there is a problem that when an aluminum conductor is used and coil winding is performed, larger elongation or conductor deformation is likely to occur, and the insulation of the insulating film is reduced. Yes, it is necessary to satisfy the tight winding workability, the adhesion to the aluminum conductor, the interlayer adhesion of the coating resin, and the insulation after processing.
Conventionally, it has been proposed to use polyamideimide or polyimide as an insulating layer, or to use a resin blended with polyimide as part of an insulating film (see, for example, Patent Documents 1 to 5). However, the prior art does not sufficiently satisfy the need for strict winding workability. That is, in the conventional insulating film, the adhesion between the aluminum conductor and the insulating film is not sufficient. In addition, when the insulation coating is formed of a resin having the same composition, the adhesion between the insulation coating resin layers becomes too high, and scratches generated in any layer due to winding processing spread in the lamination direction of the insulation coating resin layer, and insulation There was a problem that the performance decreased. On the other hand, if the adhesion between the insulating coating resin layers is too low, there is a concern that the wear resistance deteriorates.
特開2005-078934号公報Japanese Patent Laying-Open No. 2005-079934 特開2005-302597号公報JP 2005-302597 A 特開2005-302598号公報JP 2005-302598 A 特開2008-013635号公報JP 2008-013635 A 特開2008-016266号公報JP 2008-016266 A
 導体が銅とアルミニウムでは上記のように性能が大きく異なり、従って、銅導体で得られた知見がそのまま生かせるものではなかった。
 従って、本発明は、厳しい巻線加工性に対するニーズに応えるべく、アルミニウム導体との密着性、絶縁被覆樹脂層間での密着性、耐摩耗性(絶縁皮膜の巻線加工性)および加工後の絶縁性の高い絶縁被覆アルミニウム電線を提供することを課題とする。
As described above, when the conductors are copper and aluminum, the performance differs greatly. Therefore, the knowledge obtained with the copper conductor cannot be used as it is.
Therefore, in order to meet the demands for strict winding workability, the present invention provides adhesion to an aluminum conductor, adhesion between insulating coating resin layers, wear resistance (winding workability of an insulating film), and insulation after processing. An object of the present invention is to provide an insulating coated aluminum electric wire with high performance.
 本発明者らは、種々の絶縁被覆樹脂を各種検討した結果、ポリアミドイミド樹脂、ポリイミド樹脂、ポリアミド樹脂からなる被覆樹脂が優れ、なかでも、被覆樹脂中のベンゼン環に対するイミド環含有モル比が重要であることを見出した。特に、アルミニウム導体と接触する最内層にイミド環含有モル比の高い樹脂を設けることでアルミニウム導体との密着性を満足させることができ、被覆樹脂層の間で、イミド環含有モル比を特定の関係にすることで、アルミニウム導体との密着性に加えて、絶縁被覆樹脂層間での密着性、耐摩耗性、加工後絶縁性に優れることがわかった。本発明は、この知見に基づきなされたものである。 As a result of various investigations of various insulating coating resins, the present inventors are excellent in coating resins made of polyamideimide resin, polyimide resin, and polyamide resin, and in particular, the molar ratio of imide ring to benzene ring in the coating resin is important. I found out. In particular, by providing a resin having a high imide ring-containing molar ratio in the innermost layer in contact with the aluminum conductor, adhesion with the aluminum conductor can be satisfied, and the imide ring-containing molar ratio is specified between the coating resin layers. It was found that, in addition to the adhesiveness with the aluminum conductor, the adhesiveness between the insulating coating resin layers, the wear resistance, and the post-processing insulation were excellent. The present invention has been made based on this finding.
 すなわち、上記課題は以下の手段により解決された。
(1)導体の外周に、少なくともベンゼン環とイミド環を有する樹脂を含む絶縁被覆層を有し、かつ2層以上の絶縁被覆層を被覆してなる絶縁被覆アルミニウム電線であって、該導体に接触する最内層の絶縁被覆層を構成する樹脂の下記式(1)で求められたベンゼン環に対するイミド環含有モル比が0.366以上であり、かつ互いに隣接する絶縁被覆層において、該層を構成する樹脂の該イミド環含有モル比の差の絶対値が、いずれの隣接する絶縁被覆層間においても、0を超え0.167以下であることを特徴とする絶縁被覆アルミニウム電線。
That is, the said subject was solved by the following means.
(1) An insulating coated aluminum electric wire having an insulating coating layer containing at least a resin having a benzene ring and an imide ring on the outer periphery of the conductor and covering two or more insulating coating layers, In the insulating coating layers adjacent to each other, the imide ring-containing molar ratio of the resin constituting the innermost insulating coating layer in contact with the benzene ring determined by the following formula (1) is 0.366 or more. An insulation-coated aluminum electric wire characterized in that the absolute value of the difference in the imide ring-containing molar ratio of the constituent resin is more than 0 and 0.167 or less in any adjacent insulation coating layer.
  樹脂中のイミド環の全モル数/ベンゼン環の全モル数    式(1) Total number of imide rings in resin / Total number of moles of benzene ring Formula (1)
(2)前記イミド環含有モル比の差の絶対値が、0.033以上0.167以下であることを特徴とする(1)に記載の絶縁被覆アルミニウム電線。
(3)前記導体に接触する最内層の絶縁被覆層を構成する樹脂中の前記イミド環含有モル比が、0.366~0.634であることを特徴とする(1)または(2)に記載の絶縁被覆アルミニウム電線。
(4)前記絶縁被覆層の全てのうち、前記イミド環含有モル比の最大値と最小値の差の絶対値が、0を超え0.30以下であることを特徴とする(1)~(3)のいずれか1項に記載の絶縁被覆アルミニウム電線。
(5)前記絶縁被覆層の全てのうち、前記イミド環含有モル比の最大値と最小値の差の絶対値が、0.033以上0.300以下であることを特徴とする(1)~(4)のいずれか1項に記載の絶縁被覆アルミニウム電線。
(6)前記絶縁被覆層を構成する樹脂の前記イミド環含有モル比が、前記導体に接触する最内層の絶縁被覆層で最も大きく、前記導体から最も遠い最外層の絶縁被覆層で、最も小さいことを特徴とする(1)~(5)のいずれか1項に記載の絶縁被覆アルミニウム電線。
(7)前記2層以上の絶縁被覆層のうち、前記導体に接触する最内層の絶縁被覆層の厚さが、残りのいずれかの絶縁被覆層の厚さに対して同じか、または薄いことを特徴とする(1)~(6)のいずれか1項に記載の絶縁被覆アルミニウム電線。
(8)前記2層以上の絶縁被覆層の少なくとも1層の厚さが、0μmを超え25μm以下であることを特徴とする(1)~(7)のいずれか1項に記載の絶縁被覆アルミニウム電線。
(9)前記絶縁被覆層に含まれる樹脂が、ポリアミドイミド樹脂とポリイミド樹脂の混合物であることを特徴とする(1)~(8)のいずれか1項に記載の絶縁被覆アルミニウム電線。
(2) The insulation-coated aluminum electric wire according to (1), wherein an absolute value of the difference in the imide ring-containing molar ratio is 0.033 or more and 0.167 or less.
(3) The (1) or (2) is characterized in that the imide ring-containing molar ratio in the resin constituting the innermost insulating coating layer in contact with the conductor is 0.366 to 0.634. The insulation-coated aluminum electric wire described.
(4) Of all the insulating coating layers, the absolute value of the difference between the maximum value and the minimum value of the imide ring-containing molar ratio is more than 0 and 0.30 or less (1) to ( The insulation-coated aluminum electric wire according to any one of 3).
(5) The absolute value of the difference between the maximum value and the minimum value of the imide ring-containing molar ratio among all the insulating coating layers is 0.033 or more and 0.300 or less (1) to The insulation-coated aluminum electric wire according to any one of (4).
(6) The imide ring-containing molar ratio of the resin constituting the insulating coating layer is the largest in the innermost insulating coating layer in contact with the conductor and the smallest in the outermost insulating coating layer farthest from the conductor The insulation-coated aluminum electric wire according to any one of (1) to (5), wherein
(7) Among the two or more insulating coating layers, the thickness of the innermost insulating coating layer in contact with the conductor is the same as or thinner than the thickness of any of the remaining insulating coating layers. The insulation-coated aluminum electric wire according to any one of (1) to (6), wherein
(8) The insulation-coated aluminum according to any one of (1) to (7), wherein the thickness of at least one of the two or more insulation coating layers is more than 0 μm and 25 μm or less. Electrical wire.
(9) The insulation-coated aluminum electric wire according to any one of (1) to (8), wherein the resin contained in the insulation coating layer is a mixture of a polyamideimide resin and a polyimide resin.
 本発明により、厳しい巻線加工性に対するニーズに応えるべく、アルミニウム導体との密着性、絶縁被覆樹脂層間での密着性、耐摩耗性および加工後の絶縁性の高い絶縁被覆アルミニウム電線が提供できる。
 特に、アルミニウム導体と接触する最内層にイミド環含有モル比の高い樹脂を設けることでアルミニウム導体との密着性を満足させることができ、被覆樹脂層の間におけるイミド環含有モル比を特定の関係、好ましくはイミド環含有モル比を導体側から順次低くすることで、アルミニウム導体との密着性に加えて、絶縁被覆樹脂層間での密着性、耐摩耗性および加工後絶縁性に優れる。
According to the present invention, an insulation-coated aluminum electric wire having high adhesion to an aluminum conductor, adhesion between insulating coating resin layers, wear resistance, and high insulation after processing can be provided in order to meet the demand for severe winding workability.
In particular, by providing a resin with a high imide ring-containing molar ratio in the innermost layer in contact with the aluminum conductor, it is possible to satisfy the adhesiveness with the aluminum conductor, and the specific relationship of the imide ring-containing molar ratio between the coated resin layers Preferably, the imide ring-containing molar ratio is lowered sequentially from the conductor side, so that in addition to the adhesion to the aluminum conductor, the adhesion between the insulating coating resin layers, the wear resistance, and the insulation after processing are excellent.
 なお、本明細書中で使用する「~」とは、その前後に記載される数値を上限値および下限値として含むものとする。
 また、本発明における「層」とは、構成する樹脂および含有する添加物が同じ層を隣接して積層したものをいい、1つの層または複数の層で構成されたものを含むものとする。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
In addition, “to” used in this specification includes numerical values described before and after the upper limit value and the lower limit value.
In addition, the “layer” in the present invention means a layer in which the resin and the additive to be contained are laminated adjacent to each other, and includes a layer composed of one layer or a plurality of layers.
The above and other features and advantages of the present invention will become more apparent from the following description, with reference where appropriate to the accompanying drawings.
図1は、本発明の絶縁被覆アルミニウム電線の断面概略図である。FIG. 1 is a schematic cross-sectional view of an insulation-coated aluminum electric wire of the present invention. 図2は、実施例で測定したポリイミド樹脂の赤外吸収スペクトルのチャート図である。FIG. 2 is a chart of the infrared absorption spectrum of the polyimide resin measured in the examples.
 以下に本発明の実施の形態を詳細に説明する。
 本発明の絶縁被覆アルミニウム電線は、導体の外周に、少なくともベンゼン環とイミド環を有する樹脂を含む絶縁被覆層を有し、かつ2層以上の絶縁被覆層を被覆してなる絶縁被覆アルミニウム電線であり、導体に接触する最内層の絶縁被覆層を構成する樹脂のベンゼンに対するイミド環含有モル比が0.366以上であり、かつ互いに隣接する絶縁被覆層において、該層を構成する樹脂の該イミド環含有モル比の差の絶対値が、いずれの隣接する絶縁被覆層間においても、0を超え0.167以下である。
 以下、本発明で使用する材料、素材を説明する。
Hereinafter, embodiments of the present invention will be described in detail.
The insulation-coated aluminum electric wire of the present invention is an insulation-coated aluminum electric wire having an insulation coating layer containing a resin having at least a benzene ring and an imide ring on the outer periphery of a conductor and covering two or more insulation coating layers. The imide ring-containing molar ratio of the resin constituting the innermost insulating coating layer in contact with the conductor to benzene is 0.366 or more, and the imide of the resin constituting the layer in the insulating coating layers adjacent to each other The absolute value of the difference in the ring-containing molar ratio is more than 0 and 0.167 or less in any adjacent insulating coating layer.
Hereinafter, materials and materials used in the present invention will be described.
<導体>
 本発明で使用する導体のアルミニウムとは、純アルミニウムまたはアルミニウム合金(本明細書中で、これらを併せて、単に、アルミニウムということがある)である。このような導体は、従来電線で使用されている純アルミニウムまたはアルミニウム合金であればどのようなものでも構わない。アルミニウム合金としては、例えば、1000系アルミニウム合金、2000系アルミニウム合金、3000系アルミニウム合金、4000系アルミニウム合金、5000系アルミニウム合金、6000系アルミニウム合金などが挙げられ、代表的には、Feが0.6質量%以下、Siが0.2~1.0質量%、Mgが0.2~1.0質量%の成分を含み、残部がアルミニウムおよび不可避不純物からなるアルミニウム合金が挙げられる。
 純アルミニウムまたはアルミニウム合金のなかでも、アルミニウム純度が99%以上の1000系アルミニウム合金が好ましく、また、高い電気導電性を有するものが好ましい。
<Conductor>
The aluminum of the conductor used in the present invention is pure aluminum or an aluminum alloy (in the present specification, these may be simply referred to as aluminum). Such a conductor may be any pure aluminum or aluminum alloy conventionally used in electric wires. Examples of the aluminum alloy include a 1000 series aluminum alloy, a 2000 series aluminum alloy, a 3000 series aluminum alloy, a 4000 series aluminum alloy, a 5000 series aluminum alloy, and a 6000 series aluminum alloy. An aluminum alloy containing 6 mass% or less, Si being 0.2 to 1.0 mass%, Mg being 0.2 to 1.0 mass%, the balance being aluminum and inevitable impurities.
Among pure aluminum and aluminum alloys, 1000 series aluminum alloys having an aluminum purity of 99% or more are preferable, and those having high electrical conductivity are preferable.
 アルミニウム導体の断面形状は用途に応じて決めるものであるため、丸、平角(矩形)または六角形などいずれの形状でも構わない。例えば回転電機のような用途に対しては、ステータスロット内における導体の占有率を高くできるという点においては平角形状の導体が好ましい。
 導体のサイズは用途に応じて決めるものであるため特に指定はないが、丸形状の導体の場合は直径で0.3mm~3.0mmが好ましく、0.4mm~2.7mmがより好ましい。平角形状の導体の場合は一辺の長さが幅(長辺)は1.0mm~5.0mmが好ましく、1.4mm~4.0mmがより好ましく、厚み(短辺)は0.4mm~3.0mmが好ましく、0.5mm~2.5mmがより好ましい。ただし、本発明の効果が得られる導体サイズの範囲はこの限りではない。また、平角形状の導体の場合、これも用途に応じて異なるが、断面正方形よりも、断面長方形が一般的である。用途が回転電機の場合には、平角形状の導体断面の4隅の面取り(曲率半径r)は、ステータスロット内での導体占有率を高める観点においては、rは小さい方が好ましいが、4隅への電界集中による部分放電現象を抑制するという観点においては、rは大きい方が好ましい。このため、曲率半径rは0.6mm以下が好ましく、0.2mm~0.4mmがより好ましい。ただし本発明の効果が得られる範囲はこの限りではない。
Since the cross-sectional shape of the aluminum conductor is determined according to the application, it may be any shape such as a circle, a flat (rectangular) shape, or a hexagonal shape. For applications such as a rotating electrical machine, for example, a rectangular conductor is preferable in that the occupation ratio of the conductor in the status lot can be increased.
The size of the conductor is determined according to the use and is not particularly specified. However, in the case of a round conductor, the diameter is preferably 0.3 mm to 3.0 mm, more preferably 0.4 mm to 2.7 mm. In the case of a rectangular conductor, the length of one side (width (long side)) is preferably 1.0 mm to 5.0 mm, more preferably 1.4 mm to 4.0 mm, and the thickness (short side) is 0.4 mm to 3 mm. 0.0 mm is preferable, and 0.5 mm to 2.5 mm is more preferable. However, the range of the conductor size in which the effect of the present invention can be obtained is not limited to this. In the case of a flat rectangular conductor, this also varies depending on the application, but a rectangular cross section is more common than a square cross section. When the application is a rotating electrical machine, the chamfering (curvature radius r) of the four corners of the flat rectangular conductor cross section is preferably smaller r from the viewpoint of increasing the conductor occupancy in the status lot. From the viewpoint of suppressing the partial discharge phenomenon due to the electric field concentration on the surface, r is preferably larger. Therefore, the curvature radius r is preferably 0.6 mm or less, and more preferably 0.2 mm to 0.4 mm. However, the range in which the effect of the present invention can be obtained is not limited to this.
<絶縁被覆層>
 本発明では、絶縁被覆層は2層以上の絶縁被覆層からなる積層樹脂被覆層である。
 絶縁被覆層は、2層~10層が好ましく、2層~6層がより好ましく、2層~5層がさらに好ましい。
 また、2層以上の絶縁被覆層の少なくとも1層の厚さを、25μm以下、すなわち、0μmを超え25μm以下とすることで、伸張後の絶縁破壊電圧(BDV)に優れる。さらに、0.1~10μmがより好ましい。
 このなかでも、2層以上の絶縁被覆層の個々の絶縁被覆層の厚さが、いずれも0μmを超え25μm以下が好ましく、0.1~10μmがより好ましい。
 本発明では、個々の絶縁層の厚さを、導体に接触する最内層の絶縁被覆層の厚さが、残りのいずれかの絶縁被覆層の厚さに対して同じか、または薄くすることで、伸張後のBDVに優れる。
 特に、導体に接触する最内層の絶縁被覆層の厚さは0.1~10μmが好ましい。
 一方、絶縁被覆層全体の厚さは、密着性、耐摩耗性および加工後絶縁性に優れることから、10~100μmが好ましく、20~80μmがより好ましい。
<Insulation coating layer>
In the present invention, the insulating coating layer is a laminated resin coating layer composed of two or more insulating coating layers.
The insulating coating layer is preferably 2 to 10 layers, more preferably 2 to 6 layers, and even more preferably 2 to 5 layers.
Further, when the thickness of at least one of the two or more insulating coating layers is 25 μm or less, that is, more than 0 μm and 25 μm or less, the dielectric breakdown voltage (BDV) after stretching is excellent. Further, 0.1 to 10 μm is more preferable.
Of these, the thickness of each of the two or more insulating coating layers is preferably more than 0 μm and 25 μm or less, and more preferably 0.1 to 10 μm.
In the present invention, the thickness of each insulating layer is set such that the thickness of the innermost insulating coating layer in contact with the conductor is the same as or thinner than the thickness of any remaining insulating coating layer. Excellent BDV after stretching.
In particular, the thickness of the innermost insulating coating layer in contact with the conductor is preferably 0.1 to 10 μm.
On the other hand, the total thickness of the insulating coating layer is preferably 10 to 100 μm and more preferably 20 to 80 μm because of excellent adhesion, abrasion resistance and post-processing insulation.
 絶縁被覆層を構成する樹脂は、本発明では、少なくともベンゼン環とイミド環を有する樹脂であって、導体に接触する最内層の絶縁被覆層は、該樹脂で構成される。
 少なくともベンゼン環とイミド環を有する樹脂は、例えば、ポリイミド樹脂(PI)〔本願明細書では、ポリエーテルイミド樹脂(PEI)、ポリエステルイミド樹脂等の周辺樹脂を包含する〕、ポリアミドイミド樹脂(PAI)のように単独の樹脂でも、これらの樹脂を混合した混合物、さらにはこれら以外の樹脂との混合物であってもよい。本発明では、耐摩耗性に優れることからポリイミド樹脂(PI)とポリアミドイミド樹脂(PAI)を混合した樹脂がさらに好ましい。
In the present invention, the resin constituting the insulating coating layer is a resin having at least a benzene ring and an imide ring, and the innermost insulating coating layer in contact with the conductor is made of the resin.
Resins having at least a benzene ring and an imide ring include, for example, polyimide resin (PI) [in this specification, including peripheral resins such as polyetherimide resin (PEI) and polyesterimide resin], polyamideimide resin (PAI) As such, it may be a single resin, a mixture of these resins, or a mixture with other resins. In this invention, since it is excellent in abrasion resistance, the resin which mixed the polyimide resin (PI) and the polyamide-imide resin (PAI) is further more preferable.
 ポリイミド樹脂(PI)は、テトラカルボン酸二無水物と1分子中に2個以上のアミン基を有する多価アミン類を反応させて合成することができる。
 ポリアミドイミド樹脂(PAI)は、例えば、有機溶媒中で、トリカルボン酸無水物と、1分子中に2個以上のイソシアネート基を有する多価イソシアネート類とを直接反応させる方法により、あるいは、極性溶媒中で、トリカルボン酸無水物と、1分子中に2個以上のアミン基を有する多価アミン類を先に反応させて、まずイミド結合を導入し、次いで1分子中に2個以上のイソシアネート基を有する多価イソシアネート類でアミド化する方法等により製造することができる。
 ポリアミド樹脂(PA)は、ジカルボン酸、ジカルボン酸のジエステルもしくはジカルボン酸のジハロゲン化物と、1分子中に2個以上のアミン基を有する多価アミン類を反応させて合成することができる。
The polyimide resin (PI) can be synthesized by reacting tetracarboxylic dianhydride with polyvalent amines having two or more amine groups in one molecule.
Polyamideimide resin (PAI) is obtained by, for example, a method of directly reacting a tricarboxylic acid anhydride with a polyvalent isocyanate having two or more isocyanate groups in one molecule in an organic solvent, or in a polar solvent. Then, the tricarboxylic acid anhydride and the polyvalent amine having two or more amine groups in one molecule are reacted first to introduce an imide bond first, and then two or more isocyanate groups in one molecule. It can be produced by a method of amidation with a polyisocyanate having.
The polyamide resin (PA) can be synthesized by reacting dicarboxylic acid, diester of dicarboxylic acid or dihalide of dicarboxylic acid with polyvalent amines having two or more amine groups in one molecule.
 テトラカルボン酸二無水物としては、例えば、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物(OPDA)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、ビシクロ(2,2,2)-オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物(BCD)、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(H-PMDA)、ピロメリット酸二無水物(PMDA)、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6FDA)、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物(CP)が挙げられる。 Examples of the tetracarboxylic dianhydride include 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride ( BTDA), 3,3 ′, 4,4′-biphenyl ether tetracarboxylic dianhydride (OPDA), 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride (DSDA), bicyclo (2 , 2,2) -Oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (BCD), 1,2,4,5-cyclohexanetetracarboxylic dianhydride (H-PMDA) , Pyromellitic dianhydride (PMDA), 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA), 5- (2,5-dioxotetrahydrofuryl) Methyl-3-cyclohexene-1,2-dicarboxylic anhydride (CP) and the like.
 トリカルボン酸無水物としては、例えば、トリメリット酸無水物(TMA)、2-(3,4-ジカルボキシフェニル)-2-(3-カルボキシフェニル)プロパン無水物、(3,4-ジカルボキシフェニル)(3-カルボキシフェニル)メタン無水物、(3,4-ジカルボキシフェニル)(3-カルボキシフェニル)エーテル無水物、3,3’,4-トリカルボキシベンゾフェノン無水物、1,2,4-ブタントリカルボン酸無水物、2,3,5-ナフタレントリカルボン酸無水物、2,3,6-ナフタレントリカルボン酸無水物、1,2,4-ナフタレントリカルボン酸無水物、2,2’,3-ビフェニルトリカルボン酸無水物が挙げられる。 Examples of the tricarboxylic acid anhydride include trimellitic acid anhydride (TMA), 2- (3,4-dicarboxyphenyl) -2- (3-carboxyphenyl) propane anhydride, and (3,4-dicarboxyphenyl). ) (3-carboxyphenyl) methane anhydride, (3,4-dicarboxyphenyl) (3-carboxyphenyl) ether anhydride, 3,3 ′, 4-tricarboxybenzophenone anhydride, 1,2,4-butane Tricarboxylic acid anhydride, 2,3,5-naphthalene tricarboxylic acid anhydride, 2,3,6-naphthalene tricarboxylic acid anhydride, 1,2,4-naphthalene tricarboxylic acid anhydride, 2,2 ′, 3-biphenyltricarboxylic acid An acid anhydride is mentioned.
 ジカルボン酸としては、テレフタル酸、イソフタル酸、2,2’-ビフェニルジカルボン酸、2,2-ビス(3-カルボキシフェニル)プロパン、ビス(3-カルボキシフェニル)メタン、ビス(3-カルボキシフェニル)エーテル、3,3’-ジカルボキシベンゾフェノン、コハク酸、アジピン酸、セバシン酸、ドデカンジカルボン酸等の2塩基酸等が挙げられる。 Dicarboxylic acids include terephthalic acid, isophthalic acid, 2,2′-biphenyldicarboxylic acid, 2,2-bis (3-carboxyphenyl) propane, bis (3-carboxyphenyl) methane, bis (3-carboxyphenyl) ether 3,3′-dicarboxybenzophenone, dibasic acids such as succinic acid, adipic acid, sebacic acid, dodecanedicarboxylic acid and the like.
 1分子中に2個以上のイソシアネート基を有する多価イソシアネート類としては、脂肪族、脂環族、芳香脂肪族、芳香族または複素環ポリイソシアネートが挙げられ、具体的には、エチレンジイソシアネート、1,4-テトラメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、1,12-ドデカンジイソシアネート、シクロブテン-1,3-ジイソシアネート、シクロヘキサン-1,3-ジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ジフェニルメタン-2,4’-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、ジフェニルエーテル-4,4’-ジイソシアネート、キシリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート、1-メトキシベンゼン-2,4-ジイソシアネート、1-メトキシベンゼン-2,4-ジイソシアネート、ジフェニルスルホン-4,4’-ジイソシアネートおよびこれらのジイソシアネート類を多量化して得られる1分子中に3個以上のイソシアネート基を有する化合物、ポリフェニルメチレンポリイソシアネート等が挙げられる。 Examples of the polyvalent isocyanate having two or more isocyanate groups in one molecule include aliphatic, alicyclic, araliphatic, aromatic or heterocyclic polyisocyanates. Specifically, ethylene diisocyanate, 1 , 4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,12-dodecane diisocyanate, cyclobutene-1,3-diisocyanate, cyclohexane-1,3-diisocyanate, cyclohexane-1,4-diisocyanate, isophorone diisocyanate, 1 , 3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane-2,4′-diisocyanate, diphenylmethane-4, '-Diisocyanate (MDI), diphenyl ether-4,4'-diisocyanate, xylylene diisocyanate, naphthalene-1,5-diisocyanate, 1-methoxybenzene-2,4-diisocyanate, 1-methoxybenzene-2,4-diisocyanate, Examples thereof include diphenylsulfone-4,4′-diisocyanate, a compound having three or more isocyanate groups in one molecule obtained by multiplying these diisocyanates, and polyphenylmethylene polyisocyanate.
 ジアミンとしては、p-フェニレンジアミン、m-フェニレンジアミン、シリコーンジアミン、ビス(3-アミノプロピル)エーテルエタン、3,3’-ジアミノ-4,4’-ジヒドロキシジフェニルスルホン(SO-HOAB)、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル(HOAB)、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕ヘキサフルオロプロパン(HOCFAB)、シロキサンジアミン、ビス(3-アミノプロピル)エーテルエタン、N,N-ビス(3-アミノプロピル)エーテル、1,4-ビス(3-アミノプロピル)ピペラジン、イソホロンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、4,4’-メチレンビス(シクロヘキシルアミン)、4,4’-ジアミノジフェニルエーテル(DDE)、3,4’-ジアミノジフェニルエーテル(m-DDE)、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノ-ジフェニルスルホン(p-DDS)、3,4’-ジアミノ-ジフェニルスルホン、3,3’-ジアミノ-ジフェニルスルホン、2,4’-ジアミノジフェニルエーテル、1,3-ビス(4-アミノフェノキシ)ベンゼン(m-TPE)、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン(BAPP)、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕ヘキサフルオロプロパン(HF-BAPP)、ビス〔4-(4-アミノフェノキシ)フェニル〕スルホン(p-BAPS)、ビス〔4-(3-アミノフェノキシ)フェニル〕スルホン(m-BAPS)、4,4’-ビス(4-アミノフェノキシ)ビフェニル(BAPB)、1,4-ビス(4-アミノフェノキシ)ベンゼン(p-TPE)、4,4’-ジアミノジフェニルスルフィド(ASD)、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、3,3’-ジアミノ-4,4’-ジヒドロキシジフェニルスルホン、2,4-ジアミノトルエン(DAT)、2,5-ジアミノトルエン、3,5-ジアミノ安息香酸(DABz)、2,6-ジアミノピリジン(DAPy)、4,4’-ジアミノ-3,3’-ジメトキシビフェニル(CHOAB)、4,4’-ジアミノ-3,3’-ジメチルビフェニル(CHAB)、9,9’-ビス(4-アミノフェニル)フルオレン(FDA)等が挙げられる。 Examples of diamines include p-phenylene diamine, m-phenylene diamine, silicone diamine, bis (3-aminopropyl) ether ethane, 3,3′-diamino-4,4′-dihydroxydiphenyl sulfone (SO 2 -HOAB), 4 , 4′-diamino-3,3′-dihydroxybiphenyl (HOAB), 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane (HOCF 3 AB), siloxane diamine, bis (3-amino Propyl) ether ethane, N, N-bis (3-aminopropyl) ether, 1,4-bis (3-aminopropyl) piperazine, isophoronediamine, 1,3-bis (aminomethyl) cyclohexane, 3,3′- Dimethyl-4,4′-diaminodicyclohexylmethane, 4,4′-methylenebis ( Cyclohexylamine), 4,4'-diaminodiphenyl ether (DDE), 3,4'-diaminodiphenyl ether (m-DDE), 3,3'-diaminodiphenyl ether, 4,4'-diamino-diphenyl sulfone (p-DDS) ), 3,4′-diamino-diphenylsulfone, 3,3′-diamino-diphenylsulfone, 2,4′-diaminodiphenyl ether, 1,3-bis (4-aminophenoxy) benzene (m-TPE), 1, 3-bis (3-aminophenoxy) benzene (APB), 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP), 2,2-bis [4- (4-aminophenoxy) phenyl ] Hexafluoropropane (HF-BAPP), bis [4- (4-aminophenoxy) phenyl] sulfone (p- APS), bis [4- (3-aminophenoxy) phenyl] sulfone (m-BAPS), 4,4′-bis (4-aminophenoxy) biphenyl (BAPB), 1,4-bis (4-aminophenoxy) Benzene (p-TPE), 4,4′-diaminodiphenyl sulfide (ASD), 3,4′-diaminodiphenyl sulfide, 3,3′-diaminodiphenyl sulfide, 3,3′-diamino-4,4′-dihydroxy Diphenylsulfone, 2,4-diaminotoluene (DAT), 2,5-diaminotoluene, 3,5-diaminobenzoic acid (DABz), 2,6-diaminopyridine (DAPy), 4,4′-diamino-3, 3′-dimethoxybiphenyl (CH 3 OAB), 4,4′-diamino-3,3′-dimethylbiphenyl (CH 3 AB), 9,9′-bis (4-aminophenyl) fluorene (FDA) and the like.
 ポリイミド樹脂(PI)およびポリアミドイミド樹脂(PAI)の質量平均分子量は、5,000~100,000が好ましく、10,000~50,000がより好ましい。
 ここで、質量平均分子量は、GPC〔ゲル浸透クロマトグラフィー(Gel Permeation Chromatography)〕によるポリスチレン換算で求めた値である。
The mass average molecular weights of the polyimide resin (PI) and the polyamideimide resin (PAI) are preferably 5,000 to 100,000, and more preferably 10,000 to 50,000.
Here, the mass average molecular weight is a value determined in terms of polystyrene by GPC (Gel Permeation Chromatography).
 ポリイミド樹脂(PI)としては、(株)I.S.T社製のPyre-ML(商品名)、東レ(株)社製のトレニース#3000(商品名)、ユニチカ(株)社製のUイミド(商品名)、三井化学(株)社製のオーラムPL450C等が挙げられ、ポリエーテルイミド樹脂(PEI)として分類されるSABIC innovative Plastic IP BV社のウルテム(商品名)、ポリエステルイミド樹脂(トリメリット酸無水物、ジアミンから合成)としても分類される大日精化(株)社製のTerebec850(商品名)、日触スケネクタデー化学(株)社製のIsomi RL(商品名)等も挙げられる。
 ポリアミドイミド樹脂(PAI)としては、例えば、日立化成(株)社製のHI406、HI-404(いずれも商品名)、荒川化学(株)社製のAI352、AI301が挙げられる。
Examples of the polyimide resin (PI) include I.K. S. Pire-ML (trade name) manufactured by T Company, Trenys # 3000 (trade name) manufactured by Toray Industries, Inc., Uimide (trade name) manufactured by Unitika Ltd., Aurum manufactured by Mitsui Chemicals, Inc. PL450C and the like are listed, and are also classified as SABIC innovative Plastic IP BV Ultem (trade name) and polyesterimide resin (synthesized from trimellitic anhydride, diamine), which are classified as polyetherimide resin (PEI). Examples include Terebec 850 (trade name) manufactured by Nissei Kasei Co., Ltd., and Isomi RL (trade name) manufactured by Nissho Schenectaday Chemical Co., Ltd.
Examples of the polyamide-imide resin (PAI) include HI406 and HI-404 (both trade names) manufactured by Hitachi Chemical Co., Ltd., and AI352 and AI301 manufactured by Arakawa Chemical Co., Ltd.
 他の樹脂としては、ポリアミド樹脂(PA)、ポリフェニルスルホン樹脂(PPSU)、ポリエーテルスルホン樹脂(PES)、ポリフェニレンエーテル樹脂(PPE)、ポリエーテルエーテルケトン樹脂(PEEK)、ポリフェニレンスルフィド樹脂(PPS)、ポリケトン樹脂(PK)、ポリスルホン樹脂(PSU)等が挙げられる。
 ポリエーテルスルホン樹脂(PES)としては、住友化学(株)社製のスミカエクセル3600G、4100G、4800G等が挙げられる。
Other resins include polyamide resin (PA), polyphenylsulfone resin (PPSU), polyethersulfone resin (PES), polyphenylene ether resin (PPE), polyetheretherketone resin (PEEK), polyphenylene sulfide resin (PPS). , Polyketone resin (PK), polysulfone resin (PSU) and the like.
Examples of the polyethersulfone resin (PES) include Sumika Excel 3600G, 4100G, and 4800G manufactured by Sumitomo Chemical Co., Ltd.
(絶縁被覆層を構成する樹脂のベンゼン環に対するイミド環含有モル比)
 本発明では、導体に接触する最内層の絶縁被覆層を構成する樹脂の下記式(1)で求められたベンゼン環に対するイミド環含有モル比が0.366以上であり、かつ互いに隣接する絶縁被覆層において、該層を構成する樹脂の該イミド環含有モル比の差の絶対値が、いずれの隣接する絶縁被覆層間においても、0を超え0.167以下である。
(Imide ring-containing molar ratio of the resin constituting the insulating coating layer to the benzene ring)
In the present invention, the imide ring-containing molar ratio of the resin constituting the innermost insulating coating layer in contact with the conductor to the benzene ring determined by the following formula (1) is 0.366 or more, and adjacent to each other In the layer, the absolute value of the difference in the imide ring-containing molar ratio of the resin constituting the layer is more than 0 and 0.167 or less in any adjacent insulating coating layer.
  樹脂中のイミド環の全モル数/ベンゼン環の全モル数    式(1) Total number of imide rings in resin / Total number of moles of benzene ring Formula (1)
 例えば、ピロメリット酸二無水物(PMDA)と4,4’-ジアミノジフェニルエーテル(DDE)から得られるポリイミド樹脂(PI)では、アミド基は存在せず、イミド基のみであり、上記式(1)で求められたベンゼン環に対するイミド環含有モル比は2/3≒0.667である。また、トリメリット酸無水物(TMA)とジフェニルメタン-4,4’-ジイソシアネート(MDI)から得られたポリアミドイミド樹脂(PAI)では、イミド基とアミド基は1:1で存在し、上記式(1)で求められたベンゼン環に対するイミド環含有モル比は1/3≒0.333である。 For example, in the polyimide resin (PI) obtained from pyromellitic dianhydride (PMDA) and 4,4′-diaminodiphenyl ether (DDE), there is no amide group, only an imide group, and the above formula (1) The molar ratio of the imide ring to the benzene ring determined in (2) is 2 / 3≈0.667. Further, in the polyamideimide resin (PAI) obtained from trimellitic anhydride (TMA) and diphenylmethane-4,4′-diisocyanate (MDI), the imide group and the amide group are present in a ratio of 1: 1. The molar ratio of the imide ring to the benzene ring determined in 1) is 1 / 3≈0.333.
 アルミニウム導体に接触する絶縁被覆層を構成する樹脂中に存在するベンゼン環に対するイミド環含有モル比を0.366以上とすることで、イミド環とアルミニウム導体の表面との分子間力が強くなり、アルミニウム導体との密着性が向上すると推定される。一方、隣接する絶縁被覆層において、隣接する絶縁被覆層のイミド環含有モル比の差の絶対値を、0を超え0.167以下の範囲で変化させた積層構造とすることで、各隣接する絶縁被覆層間での界面の剥離が抑制されるため、耐摩耗性が向上すると推定される。 By making the imide ring-containing molar ratio with respect to the benzene ring present in the resin constituting the insulating coating layer in contact with the aluminum conductor to be 0.366 or more, the intermolecular force between the imide ring and the surface of the aluminum conductor becomes strong, It is estimated that the adhesion with the aluminum conductor is improved. On the other hand, in the adjacent insulating coating layers, the adjacent insulating coating layers have a laminated structure in which the absolute value of the difference in the imide ring-containing molar ratio is changed in the range of more than 0 and 0.167 or less. It is presumed that the wear resistance is improved because the peeling of the interface between the insulating coating layers is suppressed.
(絶縁被覆樹脂中に存在するベンゼン環に対するイミド環含有モル比の測定)
 絶縁被覆樹脂中に存在するベンゼン環に対するイミド環含有モル比は、前記式(1)で求められ、樹脂組成が既知であれば、分子構造から理論的に算出される。
 一方、樹脂組成の詳細が不明確な場合や、製造された絶縁電線の絶縁被覆樹脂層に対しては、反射型赤外分光装置で、測定された赤外吸収スペクトルの吸光度面積から求めることができる。
 具体的には、例えば、ミクロトーム(Reichert-Jung社製のMicrotome2050 SuperCut等)を用いて、絶縁被覆層の断面を切り出し、面分析が可能なアタッチメントを具備した反射型赤外分光装置(Thermoscientific社製のNicolet iN10顕微赤外分光測定装置等)により、各絶縁被覆層の赤外吸収スペクトルを測定し、得られた赤外吸収スペクトルから、下記式(2)により、ベンゼン環に対するイミド環の特定の吸収ピークの吸光度面積比xを求め、このxを下記式(3)の換算式に代入することで、ベンゼン環に対するイミド環含有モル比を求めることができる。
(Measurement of imide ring-containing molar ratio to benzene ring present in insulation coating resin)
The imide ring-containing molar ratio with respect to the benzene ring present in the insulating coating resin is determined by the above formula (1), and is theoretically calculated from the molecular structure if the resin composition is known.
On the other hand, when the details of the resin composition are unclear, or for the insulation coating resin layer of the manufactured insulated wire, it can be obtained from the absorbance area of the infrared absorption spectrum measured by a reflection type infrared spectrometer. it can.
Specifically, for example, using a microtome (such as Microtom 2050 SuperCut manufactured by Reichert-Jung), a cross-section of the insulating coating layer is cut out, and a reflective infrared spectroscopic apparatus (manufactured by Thermoscience, Inc.) having an attachment capable of surface analysis. The infrared absorption spectrum of each insulating coating layer is measured with a Nicolet iN10 microinfrared spectrometer, etc.), and from the obtained infrared absorption spectrum, the specific formula of the imide ring relative to the benzene ring is determined by the following formula (2). By obtaining the absorbance area ratio x of the absorption peak and substituting this x into the conversion formula of the following formula (3), the imide ring-containing molar ratio relative to the benzene ring can be obtained.
  x=Abs(imidoI)/Abs(BzC=C伸縮)   式(2) X = Abs (imidoI) / Abs (BzC = C expansion / contraction) Formula (2)
 ここで、Abs(imidoI)はイミド環のimidoI(C=O面内伸縮振動;1700~1780cm-1付近の吸収ピーク)の吸光度面積であり、Abs(BzC=C伸縮)は、同一絶縁被覆層におけるベンゼン環のC=C伸縮振動(1450~1520cm-1付近の吸収ピーク)の吸光度面積である。 Here, Abs (imidoI) is an absorbance area of imide ring imidoI (C = O in-plane stretching vibration; absorption peak near 1700-1780 cm −1 ), and Abs (BzC = C stretching) is the same insulating coating layer. Is the absorbance area of the C = C stretching vibration (absorption peak near 1450-1520 cm −1 ) of the benzene ring.
  y=c×x                        式(3) Y = cxx xi expression (3)
 ここで、yはベンゼン環に対するイミド環含有モル比、xは上記式(2)で求めた、ベンゼン環に対するイミド環の特定の吸収ピークの吸光度面積比である。cは定数を表す。 Here, y is an imide ring-containing molar ratio with respect to the benzene ring, and x is an absorbance area ratio of a specific absorption peak of the imide ring with respect to the benzene ring, obtained by the above formula (2). c represents a constant.
 定数cは、構造既知の樹脂でのyとxの関係から求められる。 The constant c is obtained from the relationship between y and x in a resin with a known structure.
 例えば、ポリイミド樹脂であるPyre-ML(商品名;I.S.T社製)による絶縁被覆層の樹脂の赤外吸収スペクトルは、図2のようなチャートとして得られる。このチャートから、ベンゼン環由来の吸収ピーク1500cm-1の吸光度面積(α部分)とイミド環由来の吸収ピーク1720cm-1の吸光度面積(β部分)を求め、上記式(2)に代入することでx=2.56が算出される。構造既知の樹脂から求められた定数cは0.2605であるから、式(3)の換算式より求められるベンゼン環に対するイミド環含有モル比は、0.667である。 For example, the infrared absorption spectrum of the resin of the insulating coating layer by Pire-ML (trade name; manufactured by I.S. T.), which is a polyimide resin, is obtained as a chart as shown in FIG. From this chart, the absorbance area (α portion) of the absorption peak 1500 cm −1 derived from the benzene ring and the absorbance area (β portion) of the absorption peak 1720 cm −1 derived from the imide ring are determined and substituted into the above formula (2). x = 2.56 is calculated. Since the constant c calculated | required from resin with a known structure is 0.2605, the imide ring containing molar ratio calculated | required from the conversion formula of Formula (3) is 0.667.
 なお、イミド環のimidoI(C=O面内伸縮振動)は、通常1700~1780cm-1の領域に1本もしくは2本の吸収があり、最も吸収強度の高い高波数側のピークの吸光度を計算に用いる。また、ベンゼン環の骨格振動であるC=C伸縮振動は、1450~1520cm-1付近に強いピークとして現われる。 The imide ring's imidoI (C = O in-plane stretching vibration) usually has one or two absorptions in the region of 1700 to 1780 cm -1 , and the absorbance at the highest wavenumber peak with the highest absorption intensity is calculated. Used for. The C = C stretching vibration, which is the skeleton vibration of the benzene ring, appears as a strong peak in the vicinity of 1450 to 1520 cm −1 .
 本発明では、絶縁被覆樹脂中に存在するベンゼン環に対するイミド環含有モル比は、前記式(1)で直接求めても、赤外吸収スペクトルの吸光度面積比で間接的に求めてもよく、本明細書では、代表して、以後、「式(1)で求められた」として説明する。 In the present invention, the imide ring-containing molar ratio with respect to the benzene ring present in the insulating coating resin may be directly determined by the formula (1) or indirectly by the absorbance area ratio of the infrared absorption spectrum. In the specification, as a representative, hereinafter, it will be described as “determined by the equation (1)”.
 アルミニウム導体に接触する最内層の絶縁被覆層の前記イミド環含有モル比は、0.366~0.634が好ましく、0.393~0.634がより好ましく、0.400~0.634がさらに好ましい。
 導体に接触する最内層の絶縁被覆層のイミド環含有モル比が0.366以上であると、アルミニウム導体との密着性が優れ、0.366未満であるとイミド基の含有量が少ないため、アルミニウム導体との密着性が悪くなる。なお、該比が0.634以下であると、アルミニウム導体との密着性の良化に加え、絶縁被覆層間での密着性もよく、耐摩耗性にも優れる。
The imide ring-containing molar ratio of the innermost insulating coating layer in contact with the aluminum conductor is preferably 0.366 to 0.634, more preferably 0.393 to 0.634, and further preferably 0.400 to 0.634. preferable.
When the imide ring-containing molar ratio of the innermost insulating coating layer in contact with the conductor is 0.366 or more, the adhesiveness with the aluminum conductor is excellent, and when it is less than 0.366, the imide group content is low, Adhesion with the aluminum conductor is deteriorated. If the ratio is 0.634 or less, the adhesion between the aluminum conductors is improved, the adhesion between the insulating coating layers is good, and the wear resistance is excellent.
 また、互いに隣接する絶縁被覆層において、これらの層を構成する樹脂の前記イミド環含有モル比の差の絶対値が、いずれの隣接する絶縁被覆層間においても、0を超え0.167以下である。該イミド環含有モル比の差の絶対値は、0.026~0.167が好ましく、0.030~0.167がより好ましく、0.033~0.167がさらに好ましく、0.033~0.134が特に好ましい。
 互いに隣接する絶縁被覆層のイミド環含有モル比の差の絶対値が、0を超え0.167以下であると、耐摩耗性および加工後の絶縁性が優れ、0であると加工後の絶縁性の問題が発生し、0.170以上であると隣接する絶縁被覆層間のイミド環含有モル比の差が大きくなるため、耐摩耗性が悪化する。
Also, in the insulating coating layers adjacent to each other, the absolute value of the difference in the imide ring-containing molar ratio of the resins constituting these layers is more than 0 and 0.167 or less between any adjacent insulating coating layers. . The absolute value of the difference in the imide ring-containing molar ratio is preferably 0.026 to 0.167, more preferably 0.030 to 0.167, still more preferably 0.033 to 0.167, and 0.033 to 0. .134 is particularly preferred.
When the absolute value of the difference in the imide ring-containing molar ratio between adjacent insulating coating layers is more than 0 and 0.167 or less, the wear resistance and the insulation after processing are excellent, and when it is 0, the insulation after processing When the ratio is 0.170 or more, the difference in the imide ring-containing molar ratio between adjacent insulating coating layers becomes large, so that the wear resistance is deteriorated.
 本発明では、全ての絶縁被覆層で求めた前記イミド環含有モル比のなかで、最大値と最小値の差の絶対値が、0を超え0.300以下であることが好ましく、0.033以上0.300以下であることがより好ましい。
 上記の最大値と最小値の差の絶対値を、0を超え0.300以下にすることで、特に、優れた耐摩耗性が得られる。
In the present invention, the absolute value of the difference between the maximum value and the minimum value is preferably more than 0 and 0.300 or less among the imide ring-containing molar ratios obtained for all the insulating coating layers. More preferably, it is 0.300 or less.
By setting the absolute value of the difference between the maximum value and the minimum value to be more than 0 and 0.300 or less, particularly excellent wear resistance can be obtained.
 本発明では、絶縁被覆層を構成する樹脂の前記イミド環含有モル比は、導体に接触する最内層の絶縁被覆層で最も大きく、導体から最も遠い最外層の絶縁被覆層で、最も小さいことが好ましく、導体から最も近い側の絶縁被覆層から遠くの絶縁被覆層になるに従って、順に小さくなることが特に好ましい。
 このようにすることで、特に、優れた耐摩耗性が得られる。
In the present invention, the imide ring-containing molar ratio of the resin constituting the insulating coating layer is the largest in the innermost insulating coating layer in contact with the conductor and the smallest in the outermost insulating coating layer farthest from the conductor. It is particularly preferable that the insulating coating layer becomes smaller in order as it becomes farther from the insulating coating layer closest to the conductor.
In this way, particularly excellent wear resistance can be obtained.
 前記イミド環含有モル比は、1つの樹脂中に存在するアミド基とイミド基、ベンゼン環数を変更することで本発明の規定する範囲とすることができるが、本発明では、複数の樹脂を混合することで調節することが好ましく、なかでも、ポリイミド樹脂(PI)とポリアミドイミド樹脂(PAI)を混合することで調節することが好ましく、このようにすることで、特に、優れた密着性、耐摩耗性および伸張後のBDVが得られる。 The imide ring-containing molar ratio can be within the range defined by the present invention by changing the number of amide groups, imide groups, and benzene rings present in one resin. It is preferable to adjust by mixing, and in particular, it is preferable to adjust by mixing polyimide resin (PI) and polyamideimide resin (PAI), and in this way, particularly excellent adhesion, Abrasion resistance and stretched BDV are obtained.
(添加物)
 本発明では、絶縁被覆層には、目的に応じて、各種の添加物を含有させることができる。
 このような添加物としては、例えば、顔料、架橋剤、触媒、酸化防止剤が挙げられる。
 このような添加物の含有量は、絶縁被覆層を構成する樹脂100質量部に対し、0.01~10質量部が好ましい。
(Additive)
In the present invention, the insulating coating layer can contain various additives depending on the purpose.
Examples of such additives include pigments, crosslinking agents, catalysts, and antioxidants.
The content of such an additive is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the resin constituting the insulating coating layer.
 絶縁被覆層のなかでも、本発明の導体を被覆する最外層の絶縁被覆層には、常法によりワックスや潤滑剤を分散、混合して自己潤滑樹脂としたものを使用することもできる。使用されるワックスとしては、通常用いられるものを特に制限なく使用することができ、例えば、ポリエチレンワックス、石油ワックス、パラフィンワックス等の合成ワックスおよびカルナバワックス、キャデリラワックス、ライスワックス等の天然ワックスが挙げられる。潤滑剤についても特に制限はなく、例えば、シリコーン、シリコーンマクロモノマー、フッ素樹脂等を用いることができる。 Among the insulating coating layers, the outermost insulating coating layer for coating the conductor of the present invention may be a self-lubricating resin obtained by dispersing and mixing wax or a lubricant by a conventional method. As the wax to be used, commonly used ones can be used without particular limitation, for example, synthetic waxes such as polyethylene wax, petroleum wax, paraffin wax, and natural waxes such as carnauba wax, cadilla wax, and rice wax. Can be mentioned. There is no restriction | limiting in particular also about a lubricant, For example, silicone, a silicone macromonomer, a fluororesin etc. can be used.
<絶縁被覆アルミニウム電線の製造方法>
 アルミニウム導体は、伸線工程および焼鈍工程を行うことにより、所定の径および硬さに調整する。伸線工程では、例えば、荒引き線を、潤滑剤を使用してダイスで引き抜き、減面加工を繰り返すことにより、所定の径のアルミ導体を得ることができる。焼鈍工程では、例えば、300℃~550℃に設定された2~8mの炉内にて1~100秒間焼鈍する。
 また、このアルミニウム導体は、水あるいは有機溶剤などを使用した洗浄工程により、表面に付着する油成分やアルミ粉などの付着物を除去することが望ましい。
 アルミニウム導体上に絶縁被覆層を形成する方法としては、一般に知られている銅導体上に絶縁被覆層を形成させる方法と同様でよく、絶縁被覆樹脂をアルミニウム導体上に塗布し、焼付け処理する工程を繰り返し行うことで、2層以上の複数層からなる絶縁被覆層を形成することができる。
 具体的な焼き付け条件はその使用される炉の形状などに左右されるが、およそ5mの自然対流式の竪型炉であれば、400~500℃にて通過時間を30~90秒に設定することにより達成することができる。
<Insulation coated aluminum wire manufacturing method>
The aluminum conductor is adjusted to a predetermined diameter and hardness by performing a wire drawing step and an annealing step. In the wire drawing step, for example, an aluminum conductor having a predetermined diameter can be obtained by drawing a rough drawing wire with a die using a lubricant and repeating the surface reduction process. In the annealing step, for example, annealing is performed for 1 to 100 seconds in a 2 to 8 m furnace set to 300 ° C. to 550 ° C.
Moreover, it is desirable to remove deposits such as oil components and aluminum powder adhering to the surface of the aluminum conductor by a cleaning process using water or an organic solvent.
The method for forming the insulating coating layer on the aluminum conductor may be the same as the generally known method for forming the insulating coating layer on the copper conductor, and a step of applying an insulating coating resin on the aluminum conductor and baking it. By repeating the above, an insulating coating layer composed of two or more layers can be formed.
The specific baking conditions depend on the shape of the furnace used, but for a natural convection type vertical furnace of about 5 m, the passage time is set to 30 to 90 seconds at 400 to 500 ° C. Can be achieved.
(溶剤)
 絶縁被覆層を形成するワニスは絶縁被覆層を構成する樹脂や添加物を溶剤に溶解して調製することができる。このような溶剤としては、有機溶剤が好ましく、例えば、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルアセトアミド(DMAC)、ジメチルスルホキシド、N,N-ジメチルホルムアミド等のアミド系溶媒、N,N-ジメチルエチレンウレア、N,N-ジメチルプロピレンウレア、テトラメチル尿素等の尿素系溶媒、γ-ブチロラクトン、γ-カプロラクトン等のラクトン系溶媒、プロピレンカーボネート等のカーボネート系溶媒、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、酢酸エチル、酢酸n-ブチル、ブチルセロソルブアセテート、ブチルカルビトールアセテート、エチルセロソルブアセテート、エチルカルビトールアセテート等のエステル系溶媒、ジグライム、トリグライム、テトラグライム等のグライム系溶媒、トルエン、キシレン、シクロヘキサン等の炭化水素系溶媒、スルホラン等のスルホン系溶媒が挙げられる。これらのうちでは高溶解性、高反応促進性等の点でアミド系溶媒、尿素系溶媒が好ましく、加熱による架橋反応を阻害しやすい水素原子をもたない等の点で、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルエチレンウレア、N,N-ジメチルプロピレンウレア、テトラメチル尿素がより好ましく、N-メチル-2-ピロリドンが特に好ましい。この有機溶剤の沸点は、好ましくは160℃~250℃、より好ましくは165℃~210℃である。
(solvent)
The varnish for forming the insulating coating layer can be prepared by dissolving a resin or additive constituting the insulating coating layer in a solvent. Such a solvent is preferably an organic solvent, for example, an amide solvent such as N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (DMAC), dimethyl sulfoxide, N, N-dimethylformamide, Urea solvents such as N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea, tetramethylurea, lactone solvents such as γ-butyrolactone and γ-caprolactone, carbonate solvents such as propylene carbonate, methyl ethyl ketone, methyl isobutyl Ketone solvents such as ketone, cyclohexanone, ester solvents such as ethyl acetate, n-butyl acetate, butyl cellosolve acetate, butyl carbitol acetate, ethyl cellosolve acetate, ethyl carbitol acetate, diglyme, triglyme, Examples include glyme solvents such as tetraglyme, hydrocarbon solvents such as toluene, xylene, and cyclohexane, and sulfone solvents such as sulfolane. Of these, amide solvents and urea solvents are preferable in view of high solubility, high reaction acceleration, and the like, and N-methyl-2 is preferable in that it does not have a hydrogen atom that easily inhibits a crosslinking reaction by heating. -Pyrrolidone, N, N-dimethylacetamide, N, N-dimethylethyleneurea, N, N-dimethylpropyleneurea and tetramethylurea are more preferred, and N-methyl-2-pyrrolidone is particularly preferred. The boiling point of the organic solvent is preferably 160 ° C. to 250 ° C., more preferably 165 ° C. to 210 ° C.
<絶縁被覆アルミニウム電線の性能>
 本発明の絶縁被覆アルミニウム電線は、アルミニウム導体との密着性、絶縁被覆樹脂層間での密着性、耐摩耗性および絶縁性に優れる。
 これらの性能は、以下のようにして測定した値で評価できる。
<Performance of insulated aluminum wire>
The insulation-coated aluminum electric wire of the present invention is excellent in adhesion to an aluminum conductor, adhesion between insulation-coated resin layers, wear resistance, and insulation.
These performances can be evaluated by the values measured as follows.
(導体との密着性)
 JIS C3003-1984の密着性試験方法に従い、測定器として、例えば、オートグラフAGS-J〔(株)島津製作所製〕を使用し、アルミニウム導体が破断するまで伸長させ、伸長切断後の導体からの絶縁皮膜の浮き長さを測定する。
 本発明では、該浮き長さが、20mm未満が好ましく、2mm未満がより好ましい。測定ゲージを使って目視で浮き長さを測定するため、現実的な下限値は0.1mm以上である。
(Adhesion with conductor)
According to the adhesion test method of JIS C3003-1984, for example, an autograph AGS-J (manufactured by Shimadzu Corporation) is used as a measuring instrument, and the aluminum conductor is stretched until it breaks. Measure the floating length of the insulation film.
In the present invention, the floating length is preferably less than 20 mm, and more preferably less than 2 mm. Since the floating length is measured visually using a measurement gauge, the practical lower limit is 0.1 mm or more.
(耐摩耗性)
 スクレープテスタ(自動車用電線摩耗試験機)、例えば、NEMAスクレープテスター〔(株)東洋精機製作所製〕を使用して一方向摩耗試験を行い、JIS C3003-1984の耐摩耗性試験方法により評価する。
 本発明では、温度20±10℃、相対湿度65±15%の条件で、絶縁電線を10%伸張し、まっすぐにした状態で測定器に取り付け、絶縁被覆層が破壊するまでの荷重を測定した値が、1400g以上が好ましく、1500g以上がより好ましい。本実施例にあるような皮膜の全体の厚さ30μm、直径1mmの円形導体の絶縁被覆アルミニウム電線の場合には現実的な上限値は3520g以下である。
(Abrasion resistance)
A unidirectional wear test is performed using a scrape tester (wire electric wire wear tester for automobiles), for example, NEMA scrape tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.), and evaluation is performed by the wear resistance test method of JIS C3003-1984.
In the present invention, the insulated wire was stretched 10% under the conditions of a temperature of 20 ± 10 ° C. and a relative humidity of 65 ± 15%, attached to a measuring instrument in a straight state, and the load until the insulation coating layer was broken was measured. The value is preferably 1400 g or more, and more preferably 1500 g or more. In the case of an insulating coated aluminum electric wire with a circular conductor having a total thickness of 30 μm and a diameter of 1 mm as in the present embodiment, the practical upper limit is 3520 g or less.
(加工後の絶縁性)
 卓上形精密万能試験機〔例えば、(株)島津製作所製、オートグラフAGS-J〕を使用し、絶縁電線を10%伸長した試験片に対して、JIS C3003-1984の絶縁破壊試験方法により、絶縁破壊電圧測定器を使用して絶縁破壊電圧(BDV)を測定する。値が大きいほど、加工後の絶縁性が良好である。
 本発明では、好ましくは8kV以上、より好ましくは10kV以上である。本実施例にあるような皮膜の全体の厚さ30μm、直径1mm円形導体の絶縁被覆アルミニウム電線の場合には現実的な上限値は25kV以下である。
(Insulation after processing)
Using a tabletop precision universal testing machine (for example, Autograph AGS-J, manufactured by Shimadzu Corporation), a test piece obtained by extending an insulated wire by 10% was subjected to a dielectric breakdown test method of JIS C3003-1984. Measure the breakdown voltage (BDV) using a breakdown voltage measuring instrument. The greater the value, the better the insulation after processing.
In this invention, Preferably it is 8 kV or more, More preferably, it is 10 kV or more. In the case of an insulation coated aluminum electric wire having a total thickness of 30 μm and a diameter of 1 mm, as in the present embodiment, the practical upper limit value is 25 kV or less.
<絶縁被覆アルミニウム電線の適用>
 本発明の絶縁被覆アルミニウム電線は、軽量で小型化も可能なため、モーターや発電機などのコイルに使用することができる。具体的には、高積率が要求される、例えばハイブリッド車(HV)や電気自動車(EV)の駆動モーター用の巻線に好ましく使用できる。
<Application of insulated aluminum wire>
Since the insulation-coated aluminum electric wire of the present invention is lightweight and can be reduced in size, it can be used for coils of motors and generators. Specifically, it can be preferably used for a winding for a drive motor of, for example, a hybrid vehicle (HV) or an electric vehicle (EV) where a high product ratio is required.
 以下に本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.
 樹脂組成物に使用した素材は以下の素材である。
(A)ポリアミドイミド樹脂
 HI406(商品名;日立化成(株)社製):被覆層を形成した状態での樹脂の、ベンゼン環に対するイミド環含有モル比1/3≒0.333
(B)ポリイミド樹脂
 Pyre-ML(商品名;I.S.T社製):被覆層を形成した状態での樹脂のベンゼン環に対するイミド環含有モル比2/3≒0.667
(C)ポリエーテルイミド樹脂
 ULTEM 1010(商品名;ソルベイ社製):被覆層を形成した状態での樹脂のベンゼン環に対するイミド環含有モル比0.400
(D)ポリエーテルスルホン樹脂
 スミカエクセル4800G(商品名;住友化学(株)社製):被覆層を形成した状態での樹脂のベンゼン環に対するイミド環含有モル比0.0
The materials used for the resin composition are the following materials.
(A) Polyamideimide resin HI406 (trade name; manufactured by Hitachi Chemical Co., Ltd.): molar ratio of the imide ring to the benzene ring in the state where the coating layer is formed 1 / 3≈0.333
(B) Polyimide resin Pyre-ML (trade name; manufactured by IST): Imide ring-containing molar ratio of resin to benzene ring in a state where a coating layer is formed 2 / 3≈0.667
(C) Polyetherimide resin ULTEM 1010 (trade name; manufactured by Solvay): molar ratio of imide ring to resin benzene ring in a state where a coating layer is formed is 0.400.
(D) Polyethersulfone resin Sumika Excel 4800G (trade name; manufactured by Sumitomo Chemical Co., Ltd.): Imide ring-containing molar ratio of resin to benzene ring in a state where a coating layer is formed 0.0
(ワニスの作製)
・ワニス1の作製
 ポリアミドイミド樹脂(A)とポリイミド樹脂(B)を固形分比がそれぞれ90%、10%となるように混合、攪拌し、ワニス1を作製した。
(Production of varnish)
-Production of Varnish 1 Polyamideimide resin (A) and polyimide resin (B) were mixed and stirred so that the solid content ratios were 90% and 10%, respectively, and varnish 1 was produced.
・ワニス2~10、ワニス12、ワニスAおよびワニスBの作製
 ワニス1と同様に、下記表1に記載した固形分比率になるように、ワニス2~9はポリアミドイミド樹脂(A)とポリイミド樹脂(B)を、ワニス10はポリアミドイミド樹脂(A)とポリエーテルイミド樹脂(C)を、ワニス12はポリアミドイミド樹脂(A)とポリエーテルスルホン樹脂(D)を混合、攪拌し、ワニス2~10、12を作製した。ワニスAは、固形分がポリイミド樹脂(B)100%であり、Pyre-ML(I.S.T社製)をそのまま使用した。ワニスBは、固形分がポリアミドイミド樹脂(A)100%であり、HI406(日立化成(株)社製)をそのまま使用した。
-Preparation of varnishes 2-10, varnish 12, varnish A, and varnish B As with varnish 1, varnishes 2-9 are polyamideimide resin (A) and polyimide resin so that the solid content ratios shown in Table 1 below are obtained. (B), varnish 10 is polyamideimide resin (A) and polyetherimide resin (C), varnish 12 is polyamideimide resin (A) and polyethersulfone resin (D) mixed and stirred, and varnish 2 to 10 and 12 were produced. Varnish A had a solid content of 100% polyimide resin (B), and Pire-ML (manufactured by IST Co.) was used as it was. Varnish B had a solid content of 100% polyamideimide resin (A), and HI406 (manufactured by Hitachi Chemical Co., Ltd.) was used as it was.
・ワニス11の作製
 容量4リットルの3つ口フラスコに、加熱冷却装置、窒素導入装置、撹拌機を備えた合成装置を用意した。その中に、トリメリット酸無水物(TMA)172.9g(0.9モル)、ピロメリット酸二無水物(PMDA)21.8g(0.1モル)、ジフェニルメタン-4,4’-ジイソシアネート(MDI)250.1g(1.0モル)と、溶媒として、N-メチル-2-ピロリドン851.2gを加え、窒素気流中撹拌しながら常温から140℃ まで2時間かけて昇温した。フラスコ内から激しく炭酸ガスの発生が見られ、フラスコ内の溶液が粘調になるまで、さらに140℃で2時間撹拌を続けた。その後常温まで冷却し、ワニス11(樹脂濃度30質量%)1216gを得た。
-Production of Varnish 11 A three-necked flask with a capacity of 4 liters was prepared with a synthesis apparatus equipped with a heating / cooling device, a nitrogen introducing device, and a stirrer. Among them, trimellitic anhydride (TMA) 172.9 g (0.9 mol), pyromellitic dianhydride (PMDA) 21.8 g (0.1 mol), diphenylmethane-4,4′-diisocyanate ( MDI) 250.1 g (1.0 mol) and 851.2 g of N-methyl-2-pyrrolidone as a solvent were added, and the temperature was raised from room temperature to 140 ° C. over 2 hours while stirring in a nitrogen stream. Stirring was continued at 140 ° C. for 2 hours until carbon dioxide gas was vigorously generated from the flask and the solution in the flask became viscous. Thereafter, it was cooled to room temperature to obtain 1216 g of varnish 11 (resin concentration: 30% by mass).
 上記で作製したワニス1~12、ワニスAおよびBの樹脂成分とともに、各ワニスをアルミニウム純度99.9%以上からなるアルミニウム(直径R=1.0mm)の円形導体に、導体の形状と相似形のダイスを複数個使用して、炉長8mの焼付炉にて、焼き付け温度450℃、焼き付け時間およそ15秒の条件で複数回焼き付けを行って形成された樹脂層の樹脂全体のイミド環含有モル比を下記表1にまとめて示す。 Along with the resin components of varnishes 1 to 12 and varnishes A and B produced above, each varnish is a circular conductor of aluminum (diameter R = 1.0 mm) having an aluminum purity of 99.9% or more, and the shape of the conductor is similar. The imide ring-containing moles of the entire resin of the resin layer formed by baking a plurality of times in a baking furnace with a furnace length of 8 m under a baking temperature of 450 ° C. and a baking time of approximately 15 seconds. The ratios are summarized in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
実施例1
 アルミニウム純度99.9%以上からなるアルミニウム(直径R=1.0mm)の円形導体に、アルミニウム導体側から、ベンゼン環に対するイミド環含有モル比が0.533であるワニス6(層1)を膜厚3μm、ベンゼン環に対するイミド環含有モル比が0.467であるワニス4(層2)を膜厚3μm、ベンゼン環に対するイミド環含有モル比が0.400であるワニス2(層3)を膜厚3μm、ベンゼン環に対するイミド環含有モル比が0.333であるワニスB(層4)を膜厚21μmの順で絶縁被覆層を形成し、全体の絶縁被覆層の膜厚が30μmの絶縁電線を作製した。
 最内層である層1のベンゼン環に対するイミド環含有モル比ならびに全ての隣接層間でのベンゼン環に対するイミド環含有モル比の差および全絶縁被覆層におけるベンゼン環に対するイミド環含有モル比の最大値と最小値の差の絶対値は、下記表2に示した。
 なお、絶縁被覆層の形成に際しては導体の形状と相似形のダイスを複数個使用して、炉長8mの焼付炉にて、焼き付け温度450℃、焼き付け時間およそ15秒の条件で複数回焼き付けを行った。
Example 1
Varnish 6 (layer 1) having a molar ratio of imide ring to benzene ring of 0.533 is formed on a circular conductor of aluminum (diameter R = 1.0 mm) having an aluminum purity of 99.9% or more from the aluminum conductor side. Varnish 4 (layer 2) having a thickness of 3 μm and an imide ring-containing molar ratio to the benzene ring of 0.467 is formed as a film of varnish 2 (layer 3) having a film thickness of 3 μm and an imide ring-containing molar ratio to the benzene ring of 0.400. Insulation wire having a thickness of 3 μm and an insulating coating layer of varnish B (layer 4) having a imide ring-containing molar ratio of 0.333 to a benzene ring in the order of a film thickness of 21 μm and an overall insulating coating layer thickness of 30 μm Was made.
The difference between the imide ring-containing molar ratio of the innermost layer 1 to the benzene ring and the difference in the imide ring-containing molar ratio to the benzene ring in all adjacent layers, and the maximum value of the imide ring-containing molar ratio to the benzene ring in all insulating coating layers The absolute value of the difference between the minimum values is shown in Table 2 below.
In addition, when forming the insulating coating layer, a plurality of dies having a shape similar to the shape of the conductor are used, and baking is performed a plurality of times in a baking furnace having a furnace length of 8 m under a baking temperature of 450 ° C. and a baking time of approximately 15 seconds. went.
実施例2~12および比較例1~5
 下記表2、3に記載したワニスの種類および膜厚、ならびに層構成のように変更した以外は、実施例1と同様にして、実施例2~12および比較例1~5の絶縁電線を作製した。
Examples 2 to 12 and Comparative Examples 1 to 5
Insulated wires of Examples 2 to 12 and Comparative Examples 1 to 5 were prepared in the same manner as Example 1 except that the varnish types and film thicknesses described in Tables 2 and 3 below were changed as shown in the layer structure. did.
比較例6
 アルミニウムの円形導体の代わりに、酸素含有量15ppmの銅の円形導体を使用し、下記表3に記載したワニスの種類および膜厚、ならびに層構成のように変更した以外は、実施例1と同様にして、比較例6の絶縁電線を作製した。
Comparative Example 6
A copper circular conductor having an oxygen content of 15 ppm was used in place of the aluminum circular conductor, and the same as in Example 1 except that the type and film thickness of the varnish described in Table 3 below and the layer configuration were changed. Thus, an insulated wire of Comparative Example 6 was produced.
 上記の各絶縁電線に対して、下記の評価を行った。 The following evaluation was performed on each of the above insulated wires.
(赤外吸収スペクトルによる樹脂中のベンゼン環に対するイミド環含有モル比の算出)
 上記で作製した各絶縁電線に対して、ミクロトーム(Reichert-Jung社製のMicrotome2050 SuperCut)を用いて絶縁被覆層の断面を切り出す。面分析が可能なアタッチメントを具備した反射型赤外分光装置(Thermoscientific社製のNicolet iN10顕微赤外分光測定装置)を用いて、各絶縁被覆層の樹脂の切り出した断面における赤外吸収スペクトルを測定した。
 赤外吸収スペクトルから得られるベンゼン環に対するイミド環の特定の吸収ピークの吸光度面積比xを下記式(2)から求め、以下の換算式(3)から樹脂中のベンゼン環に対するイミド環含有モル比を算出した。
  x=Abs(imidoI)/Abs(BzC=C伸縮)   式(2)
(Calculation of the molar ratio of imide ring to benzene ring in the resin by infrared absorption spectrum)
The cross section of the insulating coating layer is cut out for each of the insulated wires produced above using a microtome (Microtome 2050 SuperCut manufactured by Reichert-Jung). Measure the infrared absorption spectrum of the cross section of the resin of each insulation coating layer using a reflective infrared spectrometer (Nicolet iN10 microinfrared spectrometer manufactured by Thermoscience) equipped with an attachment capable of surface analysis did.
The absorbance area ratio x of the specific absorption peak of the imide ring to the benzene ring obtained from the infrared absorption spectrum is obtained from the following formula (2), and the molar ratio of the imide ring to the benzene ring in the resin is calculated from the following conversion formula (3). Was calculated.
x = Abs (imidoI) / Abs (BzC = C expansion / contraction) Formula (2)
 上記Abs(imidoI)はイミド環のimidoI(C=O面内伸縮振動;1700~1780cm-1付近の吸収ピーク)の吸光度面積であり、Abs(BzC=C伸縮)は、同一絶縁被覆層におけるベンゼン環のC=C伸縮振動(1450~1520cm-1付近の吸収ピーク)の吸光度面積である。 Abs (imido I) is an absorbance area of imide ring imido I (C = O in-plane stretching vibration; absorption peak near 1700-1780 cm −1 ), and Abs (BzC = C stretching) is benzene in the same insulating coating layer. Absorbance area of ring C = C stretching vibration (absorption peak near 1450-1520 cm −1 ).
  y=c×x                        式(3) Y = cxx expression (3)
 上記yはベンゼン環に対するイミド環含有モル比、xは上記式(2)で求めた、ベンゼン環に対するイミド環の特定の吸収ピークの吸光度面積比である。cは定数を表す。 The above y is an imide ring-containing molar ratio with respect to the benzene ring, and x is an absorbance area ratio of a specific absorption peak of the imide ring with respect to the benzene ring, which is obtained by the above formula (2). c represents a constant.
 ポリイミド樹脂であるPyre-ML(商品名;I.S.T社製)で形成された絶縁被覆層の樹脂の赤外吸収スペクトルのチャートを図2に示す。ベンゼン環由来の吸収ピーク1500cm-1の吸光度面積(α部分)とイミド環由来の吸収ピーク1720cm-1の吸光度面積(β部分)から、xは2.56であった。式(3)の定数cは、構造既知の樹脂から求めたベンゼン環に対するイミド環含有モル比とベンゼン環に対するイミド環の特定の吸収ピークの吸光度面積比との関係から、0.2605である。上記式(3)にx=2.56を代入すると、イミド環含有モル比は、0.667であった。 FIG. 2 shows a chart of the infrared absorption spectrum of the resin of the insulating coating layer formed of Pire-ML (trade name; manufactured by IST Co.) which is a polyimide resin. From the absorbance area (α part) of the absorption peak 1500 cm −1 derived from the benzene ring and the absorbance area (β part) of the absorption peak 1720 cm −1 derived from the imide ring, x was 2.56. The constant c in the formula (3) is 0.2605 from the relationship between the imide ring-containing molar ratio with respect to the benzene ring obtained from a resin having a known structure and the absorbance area ratio of a specific absorption peak of the imide ring with respect to the benzene ring. When x = 2.56 was substituted into the above formula (3), the imide ring-containing molar ratio was 0.667.
 ポリアミドイミド樹脂であるHI406(商品名;日立化成(株)社製)の場合、xは1.28であり、ワニス5で形成された絶縁被覆層の樹脂の場合、xは1.92であり、それぞれ、式(3)から、イミド環含有モル比は、順に、0.333、0.500であった。
 同様にして、他のワニスから形成された絶縁被覆層の樹脂のイミド環含有モル比を求めた。
In the case of HI406 (trade name; manufactured by Hitachi Chemical Co., Ltd.) which is a polyamide-imide resin, x is 1.28, and in the case of a resin of an insulating coating layer formed of varnish 5, x is 1.92. From the formula (3), the imide ring-containing molar ratios were 0.333 and 0.500, respectively.
Similarly, the imide ring-containing molar ratio of the resin of the insulating coating layer formed from another varnish was determined.
(密着性評価)
 JIS C3003-1984の密着性試験方法に従い、測定器として、オートグラフAGS-J〔(株)島津製作所製〕を使用し、アルミニウム導体が破断するまで伸長させ、伸長切断後の導体からの絶縁皮膜の浮き長さを測定し、2mm未満のものを◎、2mm以上20mm未満のものを○、20mm以上100mm未満のものを△、100mm以上のものを×とした。
(Adhesion evaluation)
In accordance with the adhesion test method of JIS C3003-1984, an autograph AGS-J (manufactured by Shimadzu Corporation) is used as a measuring instrument, and the aluminum conductor is stretched until it breaks. The floating length was measured, and those with a length of less than 2 mm were evaluated as ◎, those with a diameter of 2 mm or more but less than 20 mm were evaluated as ◯, those with a diameter of 20 mm or more but less than 100 mm were evaluated as Δ, and those with a diameter of 100 mm or more as x.
(耐摩耗性評価)
 JIS C3003-1984の耐摩耗性試験方法により、下記のようにして評価した。
 一方向摩耗試験に、NEMAスクレープテスター〔(株)東洋精機製作所製〕を使用し、温度20±10℃、相対湿度65±15%の条件で、絶縁電線を10%伸張し、まっすぐにした状態で測定器に取り付けた状態で、絶縁被覆層が破壊するまでの荷重を測定した。値が高いほど耐摩耗性が良好である。1500g以上を◎、1400g以上1500g未満のものを○、1300g以上1400g未満のものを△、1300g未満のものを×とした。
(Abrasion resistance evaluation)
Evaluation was carried out as follows by the wear resistance test method of JIS C3003-1984.
A NEMA scrape tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.) was used for the unidirectional wear test, and the insulated wire was stretched 10% and straightened at a temperature of 20 ± 10 ° C and a relative humidity of 65 ± 15%. The load until the insulating coating layer was broken was measured while attached to the measuring instrument. The higher the value, the better the wear resistance. 1500 g or more was evaluated as ◎, 1400 g or more and less than 1500 g was evaluated as ◯, 1300 g or more and less than 1400 g as Δ, and less than 1300 g as x.
〔加工後の絶縁性評価:伸長後の絶縁破壊電圧(BDV)〕
 卓上形精密万能試験機〔(株)島津製作所製、オートグラフAGS-J〕を使用し、絶縁電線を10%伸長した試験片に対して、JIS C3003-1984の絶縁破壊試験方法により行った。測定器として、絶縁破壊電圧測定器を使用し、絶縁破壊電圧(BDV)を測定した。値が大きいほど、加工後の絶縁性が良好である。10kV以上を◎、8kV以上10kV未満のものを○、5kV以上8kV未満のものを△、5kV未満のものを×とした。
[Evaluation of insulation after processing: Dielectric breakdown voltage after elongation (BDV)]
Using a desktop precision universal testing machine (manufactured by Shimadzu Corp., Autograph AGS-J), a test piece obtained by extending an insulated wire by 10% was subjected to a dielectric breakdown test method of JIS C3003-1984. A dielectric breakdown voltage measuring instrument was used as a measuring instrument, and a dielectric breakdown voltage (BDV) was measured. The greater the value, the better the insulation after processing. A value of 10 kV or more was evaluated as ◎, a value of 8 kV or more and less than 10 kV was evaluated as ◯, a value of 5 kV or more and less than 8 kV was evaluated as Δ, and a value of less than 5 kV was evaluated as ×.
 なお、いずれの評価においても○以上が目標レベルである。
 得られた結果を、下記表2、3にまとめて示す。
 ここで、イミド環含有モル比については、表中ではイミド環含有比と省略して記載する。
In all evaluations, the target level is ○ or higher.
The obtained results are summarized in Tables 2 and 3 below.
Here, the imide ring-containing molar ratio is abbreviated as imide ring-containing ratio in the table.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記表2、3から明らかなように、実施例1~12の多層絶縁被覆電線は、密着性、伸長後の絶縁破壊電圧(BDV)および耐摩耗性が全て良好であるのに対して、比較例1~3の単層絶縁被覆電線および比較例4~6の多層絶縁被覆電線は、密着性、伸長後のBDV、摩耗性のいずれかが不十分であった。最内層の絶縁被覆層のイミド環含有モル比が0.366に満たない比較例1では、特に密着性が悪かった。また、互いに隣接する絶縁被覆層のイミド環含有モル比の差の絶対値が、0を越え0.167以下の範囲から外れた比較例4および5ならびに単層絶縁被覆電線である比較例2および3では、伸長後のBDVおよび耐摩耗性を満足しなかった。なお、比較例4は、互いに隣接する絶縁被覆層のイミド環含有モル比の差の絶対値が、0を越え0.167の範囲外であるだけでなく、最内層の絶縁被覆層のイミド環含有モル比が好ましい範囲より大きく、絶縁被覆層の全てのうち、イミド環含有モル比の最大値と最小値の差の絶対値が好ましい範囲を超えているため、耐摩耗性が悪化していると思われる。
 先行技術文献1の実施例に記載されている絶縁被覆層構成と同じ比較例6では、最内層の絶縁被覆層のイミド環含有モル比が0.366に満たないため、密着性が悪かった。
As is apparent from Tables 2 and 3 above, the multilayer insulated wires of Examples 1 to 12 are all excellent in adhesion, dielectric breakdown voltage (BDV) after extension, and wear resistance. The single-layer insulation-coated wires of Examples 1 to 3 and the multilayer insulation-coated wires of Comparative Examples 4 to 6 had insufficient adhesion, BDV after elongation, or wear. In Comparative Example 1 in which the imide ring-containing molar ratio of the innermost insulating coating layer was less than 0.366, adhesion was particularly poor. In addition, the absolute value of the difference in the imide ring-containing molar ratio of the insulating coating layers adjacent to each other is in the range of 0 to 0.167 or less, and Comparative Examples 4 and 5, which are single-layer insulating coated electric wires. No. 3 did not satisfy the BDV and wear resistance after elongation. In Comparative Example 4, not only the absolute value of the difference in the imide ring-containing molar ratio of the insulating coating layers adjacent to each other exceeds 0 and is outside the range of 0.167, but also the imide ring of the innermost insulating coating layer. The content molar ratio is larger than the preferred range, and the absolute value of the difference between the maximum value and the minimum value of the imide ring-containing molar ratio exceeds the preferred range among all the insulating coating layers, so the wear resistance is deteriorated. I think that the.
In Comparative Example 6, which is the same as the insulating coating layer configuration described in the example of Prior Art Document 1, the adhesion ratio was poor because the imide ring-containing molar ratio of the innermost insulating coating layer was less than 0.366.
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2014年7月14日に日本国で特許出願された特願2014-144600に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2014-144600 filed in Japan on July 14, 2014, the contents of which are incorporated herein by reference. Capture as part.
 1 アルミニウム導体
 10 絶縁層(第1層:最内層)
 11 絶縁層(第2層)
 12 絶縁層(第3層)
 13 絶縁層(第4層)
 14 絶縁層(第5層)
 20 絶縁層(第6層:最外層)
  α ベンゼン環由来の吸収ピーク1500cm-1の吸光度面積
  β イミド環由来の吸収ピーク1720cm-1の吸光度面積
1 Aluminum conductor 10 Insulating layer (first layer: innermost layer)
11 Insulating layer (second layer)
12 Insulating layer (third layer)
13 Insulating layer (4th layer)
14 Insulating layer (5th layer)
20 Insulating layer (6th layer: outermost layer)
Absorption area of absorption peak 1500 cm −1 derived from α-benzene ring Absorbance area of absorption peak 1720 cm −1 derived from β-imide ring

Claims (9)

  1.  導体の外周に、少なくともベンゼン環とイミド環を有する樹脂を含む絶縁被覆層を有し、かつ2層以上の絶縁被覆層を被覆してなる絶縁被覆アルミニウム電線であって、該導体に接触する最内層の絶縁被覆層を構成する樹脂の下記式(1)で求められたベンゼン環に対するイミド環含有モル比が0.366以上であり、かつ互いに隣接する絶縁被覆層において、該層を構成する樹脂の該イミド環含有モル比の差の絶対値が、いずれの隣接する絶縁被覆層間においても、0を超え0.167以下であることを特徴とする絶縁被覆アルミニウム電線。
      樹脂中のイミド環の全モル数/ベンゼン環の全モル数    式(1)
    An insulating coated aluminum electric wire having an insulating coating layer containing a resin having at least a benzene ring and an imide ring on the outer periphery of a conductor, and having two or more insulating coating layers coated thereon, Resin constituting the inner insulating coating layer having a molar ratio of imide ring to benzene ring determined by the following formula (1) of 0.366 or more and constituting the insulating coating layer adjacent to each other. An insulation-coated aluminum electric wire characterized in that the absolute value of the difference in the imide ring-containing molar ratio is more than 0 and 0.167 or less between any adjacent insulation coating layers.
    Total number of moles of imide ring in resin / total number of moles of benzene ring Formula (1)
  2.  前記イミド環含有モル比の差の絶対値が、0.033以上0.167以下であることを特徴とする請求項1に記載の絶縁被覆アルミニウム電線。 The insulation-coated aluminum electric wire according to claim 1, wherein an absolute value of the difference in the molar ratio of the imide ring is 0.033 or more and 0.167 or less.
  3.  前記導体に接触する最内層の絶縁被覆層を構成する樹脂中の前記イミド環含有モル比が、0.366~0.634であることを特徴とする請求項1または2に記載の絶縁被覆アルミニウム電線。 The insulating coating aluminum according to claim 1 or 2, wherein the molar ratio of the imide ring contained in the resin constituting the innermost insulating coating layer in contact with the conductor is 0.366 to 0.634. Electrical wire.
  4.  前記絶縁被覆層の全てのうち、前記イミド環含有モル比の最大値と最小値の差の絶対値が、0を超え0.30以下であることを特徴とする請求項1~3のいずれか1項に記載の絶縁被覆アルミニウム電線。 4. The absolute value of the difference between the maximum value and the minimum value of the imide ring-containing molar ratio among all the insulating coating layers is 0 to 0.30 or less. The insulation-coated aluminum electric wire according to item 1.
  5.  前記絶縁被覆層の全てのうち、前記イミド環含有モル比の最大値と最小値の差の絶対値が、0.033以上0.300以下であることを特徴とする請求項1~4のいずれか1項に記載の絶縁被覆アルミニウム電線。 The absolute value of the difference between the maximum value and the minimum value of the imide ring-containing molar ratio in all of the insulating coating layers is 0.033 or more and 0.300 or less. The insulation-coated aluminum electric wire according to claim 1.
  6.  前記絶縁被覆層を構成する樹脂の前記イミド環含有モル比が、前記導体に接触する最内層の絶縁被覆層で最も大きく、前記導体から最も遠い最外層の絶縁被覆層で、最も小さいことを特徴とする請求項1~5のいずれか1項に記載の絶縁被覆アルミニウム電線。 The imide ring-containing molar ratio of the resin constituting the insulating coating layer is the largest in the innermost insulating coating layer in contact with the conductor and the smallest in the outermost insulating coating layer farthest from the conductor. The insulation-coated aluminum electric wire according to any one of claims 1 to 5.
  7.  前記2層以上の絶縁被覆層のうち、前記導体に接触する最内層の絶縁被覆層の厚さが、残りのいずれかの絶縁被覆層の厚さに対して同じか、または薄いことを特徴とする請求項1~6のいずれか1項に記載の絶縁被覆アルミニウム電線。 Of the two or more insulating coating layers, the thickness of the innermost insulating coating layer in contact with the conductor is the same as or thinner than the thickness of any of the remaining insulating coating layers. The insulation-coated aluminum electric wire according to any one of claims 1 to 6.
  8.  前記2層以上の絶縁被覆層の少なくとも1層の厚さが、0μmを超え25μm以下であることを特徴とする請求項1~7のいずれか1項に記載の絶縁被覆アルミニウム電線。 The insulation-coated aluminum electric wire according to any one of claims 1 to 7, wherein a thickness of at least one of the two or more insulation coating layers is more than 0 µm and 25 µm or less.
  9.  前記絶縁被覆層に含まれる樹脂が、ポリアミドイミド樹脂とポリイミド樹脂の混合物であることを特徴とする請求項1~8のいずれか1項に記載の絶縁被覆アルミニウム電線。 The insulation-coated aluminum electric wire according to any one of claims 1 to 8, wherein the resin contained in the insulation coating layer is a mixture of a polyamide-imide resin and a polyimide resin.
PCT/JP2015/070065 2014-07-14 2015-07-13 Insulated covered aluminum wire WO2016009998A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-144600 2014-07-14
JP2014144600A JP6012672B2 (en) 2014-07-14 2014-07-14 Insulation coated aluminum wire

Publications (1)

Publication Number Publication Date
WO2016009998A1 true WO2016009998A1 (en) 2016-01-21

Family

ID=55078490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070065 WO2016009998A1 (en) 2014-07-14 2015-07-13 Insulated covered aluminum wire

Country Status (2)

Country Link
JP (1) JP6012672B2 (en)
WO (1) WO2016009998A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233123A (en) * 2011-05-09 2012-11-29 Sumitomo Electric Wintec Inc Polyimide resin varnish, insulated electric wire using the same, electric machine coil, and motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012233123A (en) * 2011-05-09 2012-11-29 Sumitomo Electric Wintec Inc Polyimide resin varnish, insulated electric wire using the same, electric machine coil, and motor

Also Published As

Publication number Publication date
JP6012672B2 (en) 2016-10-25
JP2016021324A (en) 2016-02-04

Similar Documents

Publication Publication Date Title
JP5486646B2 (en) Insulated wire
US8802231B2 (en) Insulating coating material and insulated wire using the same
WO2012102121A1 (en) Polyimide resin varnish, and insulated electrical wire, electrical coil, and motor using same
US10504636B2 (en) Insulated wire, coil and electric or electronic equipment
JP6373358B2 (en) Flat rectangular insulated wires, coils and electrical / electronic equipment
WO2015098639A1 (en) Multilayer insulated wire, coil and electrical/electronic device
JP2015230752A (en) Insulated wire and production method therefor
KR20130024880A (en) Insulated wire
JP2012184416A (en) Polyamideimide resin insulation coating and insulated electric wire formed by using the same
JP2012224697A (en) Polyimide resin varnish, and electric insulated wire, electric appliance coil and motor using the same
WO2012153636A1 (en) Polyimide resin varnish, insulated electric wire using same, electric coil, and motor
JP5829696B2 (en) Insulated wire
JP2012234625A (en) Insulation wire, electric machine coil using the same, and motor
JP2008016266A (en) Insulated wire
JP5099577B2 (en) Heat resistant resin varnish, heat resistant resin film, and heat resistant resin composite
JP6012672B2 (en) Insulation coated aluminum wire
JP2013101759A (en) Insulation wire, electric machine coil using the same, and motor
JP5829697B2 (en) Insulated wire
JP2013155281A (en) Insulating coating, insulated wire using the insulating coating, and coil using the insulated wire
JP2012241082A (en) Polyamideimide-based resin composition for electric insulation, coating material, and enamel wire
JP2012243614A (en) Insulated wire, and electric coil and motor using the same
JP5342277B2 (en) Multi-layer insulated wire
JP2012171979A (en) Resin composition for electric insulation, and enamel wire
JP2013101758A (en) Insulation wire, electric machine coil using the same, and motor
JP2021106152A (en) Insulated wire, coil and motor for vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15821961

Country of ref document: EP

Kind code of ref document: A1