JP2012171979A - Resin composition for electric insulation, and enamel wire - Google Patents

Resin composition for electric insulation, and enamel wire Download PDF

Info

Publication number
JP2012171979A
JP2012171979A JP2011032333A JP2011032333A JP2012171979A JP 2012171979 A JP2012171979 A JP 2012171979A JP 2011032333 A JP2011032333 A JP 2011032333A JP 2011032333 A JP2011032333 A JP 2011032333A JP 2012171979 A JP2012171979 A JP 2012171979A
Authority
JP
Japan
Prior art keywords
resin composition
component
electrical insulation
acid
diisocyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011032333A
Other languages
Japanese (ja)
Inventor
Seiichi Sato
誠一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2011032333A priority Critical patent/JP2012171979A/en
Publication of JP2012171979A publication Critical patent/JP2012171979A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)
  • Organic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition for electric insulation, having excellent flexibility, and to provide an enamel wire having excellent flexibility made by using the resin composition.SOLUTION: The resin composition for the electric insulation includes a polyamide-imide resin obtained by reacting (A) a polycarboxylic acid component containing a tri- or poly-basic polycarboxylic acid anhydride having an acid anhydride group and a carboxy group, (B) an imide dicarboxylic acid having a (m-phenylenediisopropylidene) structure and represented by general formula (1), and (C) an aromatic polyisocyanate in a basic polar solvent. The enamel wire is obtained by using the resin composition.

Description

本発明は、電気絶縁用樹脂組成物及びこれを用いたエナメル線に関する。   The present invention relates to a resin composition for electrical insulation and an enameled wire using the same.

ポリアミドイミド樹脂は、耐熱性、耐薬品性及び耐溶剤性に優れているため、各種塗料、例えばエナメル線用ワニスなどとして利用されている。
近年、エナメル線を使用する電気メーカーでは、機器の製造工程の合理化のため、自動高速巻線機を導入しているが、巻線加工時にエナメル線が摩擦、衝撃等を受けてエナメル線の絶縁層に機械的損傷を生じ、レアーショート、アース不良などが発生して製品の不良率が増加するという問題が発生している。そこで、このような機械的損傷の少ないエナメル線が要望されている。
Polyamideimide resins are excellent in heat resistance, chemical resistance, and solvent resistance, and are therefore used as various paints such as enameled wire varnishes.
In recent years, electrical manufacturers that use enameled wires have introduced automatic high-speed winding machines to streamline the manufacturing process of the equipment, but the enameled wires are subject to friction, impact, etc. during the winding process to insulate the enameled wires. There is a problem in that the mechanical defect is caused in the layer, and a short circuit, a ground failure, and the like occur to increase the defective rate of the product. Therefore, an enameled wire with little mechanical damage is desired.

従来のポリアミドイミド線は、機械的強度及び耐熱性が他のポリエステル、ポリエステルイミド線などより優れるため、特に厳しい条件で作業される場合には、例えば4,4´−ジフェニルメタンジイソシアネートと無水トリメリット酸との反応により得られるポリアミドイミド樹脂が単層又は多層構造で適用されていた(特許文献1,2参照)。   Conventional polyamide-imide wire is superior in mechanical strength and heat resistance to other polyesters, polyester-imide wires, etc., so when working under particularly severe conditions, for example, 4,4'-diphenylmethane diisocyanate and trimellitic anhydride The polyamideimide resin obtained by the reaction with is applied in a single layer or multilayer structure (see Patent Documents 1 and 2).

しかし、年々更に巻線機の高速化及び巻線加工の複雑化が進み、エナメル線に対して伸長、摩耗、屈曲等の厳しいストレスが加えられるようになり、特に皮膜の高度な可とう性が要求されるようになってきた。   However, the speed of winding machines and the complexity of winding processes have further increased year by year, and severe stress such as elongation, wear, and bending has been applied to enameled wires, and the high flexibility of the coating has become particularly important. It has come to be required.

ポリアミドイミドワニス皮膜の可とう性を向上させる手段としては、モノマーとして長鎖脂肪族酸を使用する方法があるが、この方法を用いるとエナメル線皮膜の耐熱性が低下する、という問題があった。   As a means for improving the flexibility of the polyamide-imide varnish film, there is a method of using a long-chain aliphatic acid as a monomer, but there is a problem that the heat resistance of the enameled wire film decreases when this method is used. .

特公昭44−019274号公報Japanese Patent Publication No. 44-019274 特公昭45−027611号公報Japanese Examined Patent Publication No. 45-027611

本発明は、エナメル線の機械的特性、耐熱性及び電気絶縁特性などの諸特性を維持しつつ、特に可とう性に優れたポリアミドイミド系電気絶縁用樹脂組成物及びこれを用いたエナメル線を提供するものである。   The present invention provides a polyamide-imide electrical insulating resin composition excellent in flexibility and an enameled wire using the same, while maintaining various properties such as mechanical properties, heat resistance and electrical insulation properties of the enamel wires. It is to provide.

本発明は、次のものに関する。
1. (A)酸無水物基及びカルボキシル基を有する3価以上のポリカルボン酸無水物を必須とするポリカルボン酸成分、(B)一般式(1)

Figure 2012171979
・・・(1)
で表される(m−フェニレンジイソプロピリデン)構造を有するイミドジカルボン酸及び(C)芳香族ポリイソシアネートを塩基性極性溶媒中で反応させて得られるポリアミドイミド樹脂を含む電気絶縁用樹脂組成物。
2. 反応に用いられる(A)成分と(B)成分との配合割合{(B)/(A)}が、当量比で0.01/0.99〜0.70/0.30である項1記載の電気絶縁用樹脂組成物。
3. 反応に用いられるイソシアネート成分とポリカルボン酸成分との配合割合{(C)/〔(A)+(B)〕}が当量比で0.8〜1.4である項1又は項2記載の電気絶縁用樹脂組成物。
4. ポリアミドイミド樹脂が、数平均分子量10,000〜50,000のものである項1〜3いずれかに記載の電気絶縁用樹脂組成物。
5. 項1〜4のいずれかに記載の電気絶縁用樹脂組成物を導体上に塗布し、焼付けてなるエナメル線。 The present invention relates to the following.
1. (A) a polycarboxylic acid component essentially comprising a tricarboxylic or higher polycarboxylic acid anhydride having an acid anhydride group and a carboxyl group, (B) a general formula (1)
Figure 2012171979
... (1)
The resin composition for electrical insulation containing the polyamidoimide resin obtained by making the imide dicarboxylic acid which has (m-phenylene diisopropylidene) structure represented by these, and (C) aromatic polyisocyanate react in a basic polar solvent.
2. Item 1 wherein the blending ratio {(B) / (A)} of the component (A) and the component (B) used in the reaction is 0.01 / 0.99 to 0.70 / 0.30 in terms of equivalent ratio. The resin composition for electrical insulation as described.
3. Item 1 or Item 2 wherein the blending ratio {(C) / [(A) + (B)]} of the isocyanate component and polycarboxylic acid component used in the reaction is 0.8 to 1.4 in terms of equivalent ratio. Resin composition for electrical insulation.
4). Item 4. The resin composition for electrical insulation according to any one of Items 1 to 3, wherein the polyamideimide resin has a number average molecular weight of 10,000 to 50,000.
5. Item 5. An enameled wire obtained by applying and baking a resin composition for electrical insulation according to any one of items 1 to 4 on a conductor.

本発明による電気絶縁用脂組成物を用いれば、可とう性の良好な塗膜を形成することができ、各種基材への絶縁皮膜、保護コートなどに有用であり、殊にエナメル線等の近年の過酷な巻線、加工、組立作業にも好適に利用することができる。
また、本発明のエナメル線は、可とう性に優れるものである。
If the oil composition for electrical insulation according to the present invention is used, it is possible to form a coating film with good flexibility, and it is useful for insulating films and protective coatings on various substrates, especially for enameled wires and the like. It can be suitably used for severe winding, processing, and assembly work in recent years.
Moreover, the enameled wire of the present invention is excellent in flexibility.

本発明におけるポリアミドイミド樹脂の製造に用いられるポリカルボン酸成分(A)は、1分子中に、[イソシアネ−ト基と反応してイミド結合を形成する酸無水物基]及び[イソシアネ−ト基と反応してアミド結合を形成するカルボキシル基]を合計で2個以上有する化合物、又は、その混合物である。
酸無水物基及びカルボキシル基を有する3価以上のポリカルボン酸無水物としては、例えば一般式(2)及び(3)で示す芳香族トリカルボン酸無水物を挙げることができる。耐熱性、コスト面等を考慮すれば、トリメリット酸無水物が特に好ましい。
The polycarboxylic acid component (A) used in the production of the polyamide-imide resin in the present invention contains, in one molecule, [an acid anhydride group that reacts with an isocyanate group to form an imide bond] and [isocyanate group]. Or a mixture thereof having a total of two or more carboxyl groups that form an amide bond by reacting with.
Examples of the trivalent or higher polycarboxylic acid anhydride having an acid anhydride group and a carboxyl group include aromatic tricarboxylic acid anhydrides represented by the general formulas (2) and (3). In view of heat resistance, cost, etc., trimellitic anhydride is particularly preferable.

Figure 2012171979
Figure 2012171979

Figure 2012171979
Figure 2012171979

(但し、両式中、R′は水素、炭素数1〜10のアルキル基又はフェニル基を示し、Yは−CH−、−CO−、−SO−、又は−O−を示す。) (However, in both formulas, R ′ represents hydrogen, an alkyl group having 1 to 10 carbon atoms, or a phenyl group, and Y represents —CH 2 —, —CO—, —SO 2 —, or —O—.)

また、(A)成分のポリカルボン酸成分としては、これらのほかに必要に応じて、テトラカルボン酸二無水物{ピロメリット酸二無水物、3,3’−4,4’−ベンゾフェノンテトラカルボン酸二無水物、3;3´−4,4´−ビフェニルテトラカルボン酸二無水物、2,2´−3,3´−ビフェニルテトラカルボン酸二無水物、2,3,3´,4´−ビフェニルテトラカルボン酸二無水物3,3´,4,4´−ジフェニルスルホンテトラカルボン酸二無水物、エチレングリコ−ルビスアンドヒドロトリメリテ−ト、2,2−ビス(2、5−ジカルボキシフェニル)プロパンニ無水物、1,1−ビス(2、3−ジカルボキシフェニル)エタン酸二無水物、1,1−ビス(3,4−ジカルボキシフェニル)スルホンニ無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,3,5,6−ピリジンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、4,4’−スルホニルジフタル酸二無水物、m−ターフェニル−3,3’,4,4’−テトラカルボン酸二無水物、4,4’−オキシジフタル酸二無水物、1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス(2,3−又は3,4−ジカルボキシフェニル)プロパン二無水物、1,3−ビス(3,4−ジカルボキシルフェニル)−1,1,3,3−テトラメチルジシロキサン二無水物、ブタンテトラカルボン酸二無水物、ビシクロ−[2,2,2]−オクト−7−エン−2:3:5:6−テトラカリボン酸二無水物等}、脂肪族ジカルボン酸(コハク酸、グルタル酸、アジピン酸、アゼライン酸、スベリン酸、セバシン酸、デカン二酸、ドデカン二酸、ダイマー酸等)、芳香族ジカルボン酸(イソフタル酸、テレフタル酸、フタル酸、ナフタレンジカルボン酸、オキシジ安息香酸等)などを併用することができる。また、これらポリカルボン酸成分の誘導体も使用することができる。
これらの酸や酸無水物の使用量は全酸成分の50当量%以下とすることが好ましい。
In addition to these, as the polycarboxylic acid component of component (A), if necessary, tetracarboxylic dianhydride {pyromellitic dianhydride, 3,3′-4,4′-benzophenone tetracarboxylic Acid dianhydride, 3; 3′-4,4′-biphenyltetracarboxylic dianhydride, 2,2′-3,3′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4 ′ -Biphenyltetracarboxylic dianhydride 3,3 ', 4,4'-diphenylsulfonetetracarboxylic dianhydride, ethylene glycol bisandhydrotrimellitate, 2,2-bis (2,5-dicarboxyl Phenyl) propane dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethanoic dianhydride, 1,1-bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,2,5, 6-naphthale Tetracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic Acid dianhydride, 4,4′-sulfonyldiphthalic dianhydride, m-terphenyl-3,3 ′, 4,4′-tetracarboxylic dianhydride, 4,4′-oxydiphthalic dianhydride 1,1,1,3,3,3-hexafluoro-2,2-bis (2,3- or 3,4-dicarboxyphenyl) propane dianhydride, 1,3-bis (3,4- Dicarboxylphenyl) -1,1,3,3-tetramethyldisiloxane dianhydride, butanetetracarboxylic dianhydride, bicyclo- [2,2,2] -oct-7-ene-2: 3: 5 : 6-tetracaribonic acid dianhydride, etc.}, aliphatic dicarboxylic acid (Succinic acid, glutaric acid, adipic acid, azelaic acid, suberic acid, sebacic acid, decanedioic acid, dodecanedioic acid, dimer acid, etc.), aromatic dicarboxylic acid (isophthalic acid, terephthalic acid, phthalic acid, naphthalenedicarboxylic acid, Oxydibenzoic acid etc.) can be used in combination. In addition, derivatives of these polycarboxylic acid components can also be used.
The amount of these acids and acid anhydrides used is preferably 50 equivalent% or less of the total acid component.

本発明において(B)成分として用いる前記(1)で示されるイミドジカルボン酸は、下記(4)で示される4,4´−(m−フェニレンジイソプロピリデン)ジアニリンとトリメリット酸無水物と無溶剤あるいは有機溶剤中で反応させることにより得られる。   In the present invention, the imide dicarboxylic acid represented by (1) used as the component (B) is 4,4 ′-(m-phenylenediisopropylidene) dianiline represented by the following (4), trimellitic anhydride and none. It can be obtained by reacting in a solvent or an organic solvent.

Figure 2012171979
・・・・・(4)
Figure 2012171979
(4)

トリメリット酸無水物と4,4´−(m−フェニレンジイソプロピリデン)ジアニリン成分の配合割合は当量比で酸基/アミン基=1.01以上になるようにすることが好ましく、1.5〜2.5となるようにすることがより好ましく、1.9〜2.1になるようにすることが更に好ましい。
反応は、無溶媒あるいは有機溶媒の存在下で容易に行うことができる。
使用できる有機溶媒としては、例えば、ケトン系溶媒(メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等)エステル系溶媒(酢酸エチル、酢酸ブチル、γ−ブチロラクトン等)、エーテル系溶媒(ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル等)、セロソルブ系溶媒(ブチルセロソルブアセテート、エチルセロソルブアセテート、メチルセロソルブアセテート等)、芳香族炭化水素系溶媒(トルエン、キシレン、p−シメン等)、テトラヒドロフラン、ジオキサン、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシドなどが挙げられる。
The mixing ratio of trimellitic anhydride and 4,4 ′-(m-phenylenediisopropylidene) dianiline component is preferably such that the acid group / amine group is 1.01 or more in terms of equivalent ratio. It is more preferable to set it to -2.5, and it is still more preferable to set it to 1.9-2.1.
The reaction can be easily performed without solvent or in the presence of an organic solvent.
Examples of organic solvents that can be used include ketone solvents (methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.) ester solvents (ethyl acetate, butyl acetate, γ-butyrolactone, etc.), ether solvents (diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, etc.) ), Cellosolve solvents (butyl cellosolve acetate, ethyl cellosolve acetate, methyl cellosolve acetate, etc.), aromatic hydrocarbon solvents (toluene, xylene, p-cymene, etc.), tetrahydrofuran, dioxane, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide and the like can be mentioned.

本発明における(C)成分の芳香族ポリイソシアネ−ト化合物としては、特に制限はなく、例えば、下記一般式(5)で表されるジイソシアネート化合物がある。   There is no restriction | limiting in particular as an aromatic polyisocyanate compound of (C) component in this invention, For example, there exists a diisocyanate compound represented by following General formula (5).

Figure 2012171979
[ただし、式中、Xは、炭素数1〜18のアルキレン基又はフェニレン基、トリレン基等のアリーレン基(これはメチル基等の炭素数1〜4の低級アルキル基を置換基として有していてもよく、炭素数1〜18のアルキレン基を有していてもよい)を示す]。
Figure 2012171979
[Wherein X is an alkylene group having 1 to 18 carbon atoms or an arylene group such as a phenylene group or a tolylene group (this has a lower alkyl group having 1 to 4 carbon atoms such as a methyl group as a substituent). And may have an alkylene group having 1 to 18 carbon atoms)].

また、上記一般式(5)で表されるジイソシアネート化合物としては例えば、ジフェニルメタン−2,4’−ジイソシアネート、3,2’−又は3,3’−又は4,2’−又は4,3’−又は5,2’−又は5,3’−又は6,2’−又は6,3’−ジメチルジフェニルメタン−2,4’−ジイソシアネート、3,2’−又は3,3’−又は4,2’−又は4,3’−又は5,2’−又は5,3’−又は6,2’−又は6,3’−ジエチルジフェニルメタン−2,4’−ジイソシアネート、3,2’−又は3,3’−又は4,2’−又は4,3’−又は5,2’−又は5,3’−又は6,2’−又は6,3’−ジメトキシジフェニルメタン−2,4’ジイソシアネート、ジフェニルメタン−4,4’−ジイソシアネート、ベンゾフェノン−4,4’−ジイソシアネート、ジフェニルスルホン−4,4’−ジイソシアネート、ジフェニルスルホン−4,4’−ジイソシアネート、トリレン−2,4−ジイソシアネート、トリレン−2,6−ジイソシアネート、m−キシリレンジイソシアネート、p−キシリレンジイソシアネート、ナフタレン−2,6−ジイソシアネート、4,4’−{2,2ビス(4−フェノキシフェニル)プロパン}ジイソシアネートなど従来公知の種々のジイソシアネ−ト化合物が挙げられる。これらは単独で、あるいは2種以上混合して使用してもよい。上記各ポリイソシアネ−ト化合物中でも、皮膜の耐熱性及び機械特性の面からジフェニルメタン−4,4’−ジイソシアネートが、本発明に最も好適に使用される。   Examples of the diisocyanate compound represented by the general formula (5) include diphenylmethane-2,4′-diisocyanate, 3,2′- or 3,3′- or 4,2′- or 4,3′-. Or 5,2'- or 5,3'- or 6,2'- or 6,3'-dimethyldiphenylmethane-2,4'-diisocyanate, 3,2'- or 3,3'- or 4,2 ' -Or 4,3'- or 5,2'- or 5,3'- or 6,2'- or 6,3'-diethyldiphenylmethane-2,4'-diisocyanate, 3,2'- or 3,3 '-Or 4,2'- or 4,3'- or 5,2'- or 5,3'- or 6,2'- or 6,3'-dimethoxydiphenylmethane-2,4' diisocyanate, diphenylmethane-4 , 4'-diisocyanate, benzophenone-4 4′-diisocyanate, diphenylsulfone-4,4′-diisocyanate, diphenylsulfone-4,4′-diisocyanate, tolylene-2,4-diisocyanate, tolylene-2,6-diisocyanate, m-xylylene diisocyanate, p-xylylene Various conventionally known diisocyanate compounds such as diisocyanate, naphthalene-2,6-diisocyanate, 4,4 ′-{2,2bis (4-phenoxyphenyl) propane} diisocyanate may be mentioned. These may be used alone or in admixture of two or more. Among the above polyisocyanate compounds, diphenylmethane-4,4'-diisocyanate is most preferably used in the present invention from the viewpoint of heat resistance and mechanical properties of the film.

また、ヘキサメチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、4,4’−ジシクロヘキシルメタンジイソシアネート、トランスシクロヘキサン−1,4−ジイソシアネート、水添m−キシリレンジイソシアネート等の脂肪族又は脂環式ポリイソシアネートを使用してもよい。さらに、3官能以上のポリイソシアネート化合物を用いてもよい。
また、これらのポリイソシアネート化合物は経日変化を避けるために必要なブロック剤で安定化したものを使用してもよい。
In addition, aliphatic such as hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, isophorone diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, transcyclohexane-1,4-diisocyanate, hydrogenated m-xylylene diisocyanate, or the like Alicyclic polyisocyanates may be used. Furthermore, you may use a polyisocyanate compound more than trifunctional.
Further, these polyisocyanate compounds may be stabilized with a blocking agent necessary for avoiding changes over time.

本発明における(B)成分の一般式(1)で表されるイミドジカルボン酸と(A)成分のポリカルボン酸成分の配合割合は、{(B)成分/(A)成分}の当量比で0.01/0.99〜0.70/0.30とすることが好ましく、0.1/0.9〜0.5/0.5とすることがより好ましく、0.2/0.8〜0.4/0.6とすることが特に好ましい。
この当量比が0.01/0.99未満では、可とう性の向上効果がなく、0.70/0.30を超えると、皮膜の耐熱性が著しく低下してしまう恐れがある。
In the present invention, the mixing ratio of the imide dicarboxylic acid represented by the general formula (1) of the component (B) and the polycarboxylic acid component of the component (A) is an equivalent ratio of {(B) component / (A) component}. 0.01 / 0.99 to 0.70 / 0.30 is preferable, 0.1 / 0.9 to 0.5 / 0.5 is more preferable, and 0.2 / 0.8 It is especially preferable to set it to -0.4 / 0.6.
If the equivalent ratio is less than 0.01 / 0.99, there is no effect of improving the flexibility, and if it exceeds 0.70 / 0.30, the heat resistance of the film may be significantly reduced.

また、イソシアネ−ト成分及び酸成分の配合割合は{(C)成分/(B)成分+(A)成分}は、当量比で0.8〜1.4とすることが好ましく、0.9〜1.3となるようにすることがより好ましく、0.9〜1.2となるようにすることが特に好ましい。
この比が0.8未満ではポリアミドイミド樹脂の高分子量化が困難であり、また1.4を超えると、可とう性が著しく低下してしまう恐れがある。
Further, the blending ratio of the isocyanate component and the acid component is preferably such that {(C) component / (B) component + (A) component} is 0.8 to 1.4 in terms of equivalent ratio, 0.9 -1.3 is more preferable, and 0.9-1.2 is particularly preferable.
If this ratio is less than 0.8, it is difficult to increase the molecular weight of the polyamideimide resin, and if it exceeds 1.4, the flexibility may be significantly reduced.

各成分を用いたポリアミドイミド樹脂の合成は、有機溶媒中で行われ、有機溶媒としては、溶解性の点より極性溶媒が好ましく用いられる。具体的には、N−メチル−2−ピロリドン、N、N−ジメチルアセトアミド、N、N−ジエチルアセトアミド、N、N−ジメチルホルムアミド、N、N−ジエチルホルムアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、テトラメチレンスルホン、が挙げられ、単独または併用することができるが、経済性および重合しやすさの面から、N−メチル−2−ピロリドンまたはN、N−ジメチルアセトアミドを用いることが好ましい。また、使用量に特に制限はないが、前記ポリカルボン酸と4,4´−(m−フェニレンジイソプロピリデン)イミドジカルボン酸、芳香向族ポリイソシアネ−トの総量100重量部に対して、100〜900重量部とするのが好ましく、125〜600とすることがより好ましく、150〜400とすることが特に好ましい。   The synthesis of the polyamideimide resin using each component is performed in an organic solvent, and a polar solvent is preferably used as the organic solvent from the viewpoint of solubility. Specifically, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide, N, N-diethylformamide, dimethylsulfoxide, hexamethylphosphoramide, Although tetramethylene sulfone is mentioned, it can be used alone or in combination. From the viewpoint of economy and ease of polymerization, it is preferable to use N-methyl-2-pyrrolidone or N, N-dimethylacetamide. Moreover, although there is no restriction | limiting in particular in the usage-amount, it is 100 to 100 weight part with respect to 100 weight part of total amounts of the said polycarboxylic acid, 4,4'- (m- phenylene diisopropylidene) imide dicarboxylic acid, and aromatic polyisocyanate. The amount is preferably 900 parts by weight, more preferably 125 to 600, and particularly preferably 150 to 400.

このようにして得られたポリアミドイミド樹脂の数平均分子量は、10,000〜50,000であることが好ましく、15,000〜40,000であることがより好ましく、20,000〜35,000であることが特に好ましい。
数平均分子量が10,000未満であると、皮膜の耐熱性や機械的特性等の諸特性が低下する傾向があり、50,000を超えると、塗料として適性な濃度になるよう溶媒に溶解させたときに粘度が高くなり、塗装時の作業性が劣る傾向がある。
The number average molecular weight of the polyamideimide resin thus obtained is preferably 10,000 to 50,000, more preferably 15,000 to 40,000, and 20,000 to 35,000. It is particularly preferred that
If the number average molecular weight is less than 10,000, various properties such as heat resistance and mechanical properties of the film tend to be lowered. If the number average molecular weight is more than 50,000, it is dissolved in a solvent so as to have an appropriate concentration as a paint. The viscosity tends to increase and the workability during painting tends to be inferior.

なお、ポリアミドイミド樹脂の数平均分子量は、合成時に反応液をサンプリングし、ゲルパーミエーションクロマトグラフ(GPC)により、標準ポリスチレンの検量線を用いて測定し、目的の数平均分子量になるまで合成を継続することにより、所望の範囲に調整することができる。   The number average molecular weight of the polyamideimide resin is measured by sampling the reaction solution at the time of synthesis, using a standard polystyrene calibration curve by gel permeation chromatography (GPC), and performing synthesis until the target number average molecular weight is reached. By continuing, it can be adjusted to a desired range.

本発明の電気絶縁用樹脂組成物は、このポリアミドイミド樹脂を固形分として10〜50重量%、好ましくは20〜40重量%を溶剤に溶解した塗料として用いられる。このとき使用できる有機溶媒としては、例えば、ケトン系溶媒(メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等)エステル系溶媒(酢酸エチル、酢酸ブチル、γ−ブチロラクトン等)、エーテル系溶媒(ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル等)、セロソルブ系溶媒(ブチルセロソルブアセテート、エチルセロソルブアセテート、メチルセロソルブアセテート等)、芳香族炭化水素系溶媒(トルエン、キシレン、p−シメン等)、テトラヒドロフラン、ジオキサン、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、テトラメチレンスルホンなどの有機溶剤が挙げられる。
本発明の電気絶縁用樹脂組成物は、前記したポリアミドイミド樹脂の合成液をそのまま使用することができ、適宜固形分が調製され、上記の有機溶剤により固形分を調製することもできる。さらに、合成後、ポリアミドイミド樹脂を分離後、上記の有機溶剤に溶解することもできる。
The resin composition for electrical insulation of the present invention is used as a coating material in which 10 to 50% by weight, preferably 20 to 40% by weight, of this polyamideimide resin is dissolved in a solvent. Examples of organic solvents that can be used at this time include ketone solvents (methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.) ester solvents (ethyl acetate, butyl acetate, γ-butyrolactone, etc.), ether solvents (diethylene glycol dimethyl ether, triethylene glycol). Dimethyl ether, etc.), cellosolve solvents (butyl cellosolve acetate, ethyl cellosolve acetate, methyl cellosolve acetate, etc.), aromatic hydrocarbon solvents (toluene, xylene, p-cymene, etc.), tetrahydrofuran, dioxane, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, dimethyl sulfoxide, hexamethylphos Ruamido, and organic solvents such as tetramethylene sulfone.
In the resin composition for electrical insulation of the present invention, the above-mentioned polyamideimide resin synthesis solution can be used as it is, the solid content is appropriately prepared, and the solid content can also be prepared with the organic solvent. Furthermore, after synthesis, the polyamideimide resin can be separated and then dissolved in the organic solvent.

本発明の電気絶縁用樹脂組成物は、銅線等の導体上に塗布し、焼付けることにより、可とう性に優れたエナメル線とすることができる。本発明の電気絶縁用樹脂組成物を用いること以外は、エナメル線の製造法は特に制限はなく、常法に従うことができる。例えば、導体上に本発明の電気絶縁用樹脂組成物を塗布し、350〜550℃、好ましくは400〜500℃で1〜5分間、好ましくは2〜4分間加熱して焼付ける工程を複数回繰り返し、所望の厚みの皮膜を導体上に形成する方法が挙げられる。最終的に形成される皮膜の厚みは、特に制限はないが、通常0.01〜0.08mmが好ましく、0.02〜0.06mmとすることがより好ましい。また、導体は銅線に限らずアルミ線などを用いても良いし、断面形状は、円形であっても平角状であってもよい。エナメル線皮膜の構成は、本発明の電気絶縁用樹脂組成物単層でも良いし、ポリエステルイミド等を塗布した上層に本発明の電気絶縁用樹脂組成物を塗布した2層構造あるいは、3層以上の皮膜構成でも良い。このようにして得られる本発明のエナメル線は、可とう性及び耐熱性などの諸特性が低下することはない。   The resin composition for electrical insulation of the present invention can be made into an enameled wire with excellent flexibility by applying and baking on a conductor such as a copper wire. There is no restriction | limiting in particular in the manufacturing method of an enamel wire except using the resin composition for electrical insulation of this invention, It can follow a conventional method. For example, the process of applying the resin composition for electrical insulation of the present invention on a conductor and heating and baking at 350 to 550 ° C., preferably 400 to 500 ° C. for 1 to 5 minutes, preferably 2 to 4 minutes, is performed a plurality of times. A method of repeatedly forming a film having a desired thickness on a conductor is mentioned. Although the thickness of the film finally formed is not particularly limited, it is usually preferably 0.01 to 0.08 mm, and more preferably 0.02 to 0.06 mm. In addition, the conductor is not limited to a copper wire, and an aluminum wire or the like may be used, and the cross-sectional shape may be circular or flat. The structure of the enameled wire film may be a single layer of the resin composition for electrical insulation of the present invention, or a two-layer structure in which the resin composition for electrical insulation of the present invention is applied to an upper layer coated with polyesterimide or the like, or three or more layers The film configuration may be as follows. The enameled wire of the present invention thus obtained does not deteriorate various properties such as flexibility and heat resistance.

次に、本発明を実施例により更に詳しく説明するが、本発明はこれらに限定されるものではない。なお、例中の「%」は特に断らない限り「重量%」を意味する。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to these. In the examples, “%” means “% by weight” unless otherwise specified.

4,4´−(m−フェニレンジイソプロピリデン)ジアニリン34.5g(0.1モル)及び無水トリメリット酸38.4g(0.2モル)とN−メチル−2−ピロリドン109.4gを温度計、攪拌機、冷却管を備えたフラスコに仕込み、この混合物を乾燥させた窒素気流中で、約1時間かけて徐々に昇温して100℃まで昇温し、100℃にて1時間保温し、(B)成分のイミドジカルボン酸(0.1モル)を得た。
さらに、この反応液に(A)成分として無水トリメリット酸172.9g(0.90モル)及び(C)成分としてジフェニルメタン−4,4’−ジイソシアネート254.0g(1.015モル)とN−メチル−2−ピロリドン640.3gを仕込み、反応により生ずる炭酸ガスの急激な発泡に注意しながら約4時間かけて除々に昇温して140℃まで昇温した後、6時間反応させて数平均分子量が27100のポリアミドイミド樹脂の溶液を得た。
4,4 '-(m-phenylenediisopropylidene) dianiline 34.5 g (0.1 mol), trimellitic anhydride 38.4 g (0.2 mol) and N-methyl-2-pyrrolidone 109.4 g were heated. A flask equipped with a meter, a stirrer, and a cooling tube was charged, and the mixture was gradually heated up to 100 ° C. over about 1 hour in a dried nitrogen stream, and kept at 100 ° C. for 1 hour. , (B) component imidodicarboxylic acid (0.1 mol) was obtained.
Further, in this reaction solution, 172.9 g (0.90 mol) of trimellitic anhydride as component (A) and 254.0 g (1.015 mol) of diphenylmethane-4,4′-diisocyanate as component (C) and N— Methyl-2-pyrrolidone (640.3 g) was charged, and the temperature was raised gradually to 140 ° C. over about 4 hours, paying attention to the sudden bubbling of carbon dioxide gas generated by the reaction. A solution of polyamideimide resin having a molecular weight of 27100 was obtained.

この反応に用いた(A)成分、(B)成分、(C)成分の配合割合は、当量比で次のとおりである。
{(B)/(A)} =0.10/0.90
{(C)/〔(A)+(B)〕}=1.015
得られた溶液をN−メチル−2−ピロリドンで希釈し、樹脂分濃度30重量%のポリアミドイミド樹脂溶液(電気絶縁用樹脂組成物)を得た。
The blending ratios of component (A), component (B), and component (C) used in this reaction are as follows in terms of equivalent ratio.
{(B) / (A)} = 0.10 / 0.90
{(C) / [(A) + (B)]} = 1.015
The obtained solution was diluted with N-methyl-2-pyrrolidone to obtain a polyamideimide resin solution (resin composition for electrical insulation) having a resin concentration of 30% by weight.

4,4´−(m−フェニレンジイソプロピリデン)ジアニリン103.4g(0.3モル)及び無水トリメリット酸115.3g(0.6モル)とN−メチル−2−ピロリドン328.1gを温度計、攪拌機、冷却管を備えたフラスコに仕込み、この混合物を乾燥させた窒素気流中で、約1時間かけて徐々に昇温して100℃まで昇温し、100℃にて1時間保温し、(B)成分のイミドジカルボン酸(0.3モル)を得た。
さらに、この反応液に(A)成分として無水トリメリット酸134.5g(0.7モル)及び(C)成分としてジフェニルメタン−4,4’−ジイソシアネート256.5g(1.025モル)とN−メチル−2−ピロリドン804.2gを仕込み、反応により生ずる炭酸ガスの急激な発泡に注意しながら約4時間かけて除々に昇温して140℃まで昇温した後、9時間反応させて数平均分子量が31700のポリアミドイミド樹脂の溶液を得た。
A temperature of 103.4 g (0.3 mol) of 4,4 ′-(m-phenylenediisopropylidene) dianiline, 115.3 g (0.6 mol) of trimellitic anhydride and 328.1 g of N-methyl-2-pyrrolidone A flask equipped with a meter, a stirrer, and a cooling tube was charged, and the mixture was gradually heated up to 100 ° C. over about 1 hour in a dried nitrogen stream, and kept at 100 ° C. for 1 hour. , (B) component imidodicarboxylic acid (0.3 mol) was obtained.
Furthermore, 134.5 g (0.7 mol) of trimellitic anhydride as component (A) and 256.5 g (1.025 mol) of diphenylmethane-4,4′-diisocyanate as component (C) and N— Methyl-2-pyrrolidone (804.2 g) was charged, and the temperature was raised gradually to 140 ° C. over about 4 hours, paying attention to the sudden bubbling of carbon dioxide gas generated by the reaction. A solution of polyamideimide resin having a molecular weight of 31700 was obtained.

この反応に用いた(A)成分、(B)成分、(C)成分の配合割合は、当量比で次のとおりである。
{(B)/(A)} =0.30/0.70
{(C)/〔(A)+(B)〕}=1.025
得られた溶液をN−メチル−2−ピロリドンで希釈し、樹脂分濃度30重量%のポリアミドイミド樹脂溶液(電気絶縁用樹脂組成物)を得た。
The blending ratios of component (A), component (B), and component (C) used in this reaction are as follows in terms of equivalent ratio.
{(B) / (A)} = 0.30 / 0.70
{(C) / [(A) + (B)]} = 1.025
The obtained solution was diluted with N-methyl-2-pyrrolidone to obtain a polyamideimide resin solution (resin composition for electrical insulation) having a resin concentration of 30% by weight.

4,4´−(m−フェニレンジイソプロピリデン)ジアニリン68.9g(0.2モル)及び無水トリメリット酸76.9g(0.4モル)とN−メチル−2−ピロリドン218.7gを温度計、攪拌機、冷却管を備えたフラスコに仕込み、この混合物を乾燥させた窒素気流中で、約1時間かけて徐々に昇温して100℃まで昇温し、100℃にて1時間保温し、(B)成分のイミドジカルボン酸(0.2モル)を得た。
さらに、この反応液に(A)成分として無水トリメリット酸153.7g(0.8モル)及び(C)成分としてジフェニルメタン−4,4’−ジイソシアネート202.2g(0.808モル)、さらに3,3´−ジメチルビフェニル−4,4´−ジイソシアネ−ト
53.4g(0.4モル)とN−メチル−2−ピロリドン812.2gを仕込み、反応により生ずる炭酸ガスの急激な発泡に注意しながら約4時間かけて除々に昇温して145℃まで昇温した後、10時間反応させて数平均分子量が32000のポリアミドイミド樹脂の溶液を得た。
A temperature of 68.9 g (0.2 mol) of 4,4 '-(m-phenylenediisopropylidene) dianiline and 76.9 g (0.4 mol) of trimellitic anhydride and 218.7 g of N-methyl-2-pyrrolidone A flask equipped with a meter, a stirrer, and a cooling tube was charged, and the mixture was gradually heated up to 100 ° C. over about 1 hour in a dried nitrogen stream, and kept at 100 ° C. for 1 hour. , (B) component imidodicarboxylic acid (0.2 mol) was obtained.
Furthermore, 153.7 g (0.8 mol) of trimellitic anhydride as component (A) and 202.2 g (0.808 mol) of diphenylmethane-4,4′-diisocyanate as component (C) were added to this reaction solution. , 3'-dimethylbiphenyl-4,4'-diisocyanate 53.4g (0.4mol) and N-methyl-2-pyrrolidone 812.2g, pay attention to the sudden foaming of carbon dioxide generated by the reaction However, the temperature was raised gradually over about 4 hours, and the temperature was raised to 145 ° C., followed by reaction for 10 hours to obtain a polyamideimide resin solution having a number average molecular weight of 32,000.

この反応に用いた(A)成分、(B)成分、(C)成分の配合割合は、当量比で次のとおりである。
{(B)/(A)} =0.20/0.80
{(C)/〔(A)+(B)〕}=1.01
得られた溶液をN−メチル−2−ピロリドンで希釈し、樹脂分濃度30重量%のポリアミドイミド樹脂溶液(電気絶縁用樹脂組成物)を得た。
The blending ratios of component (A), component (B), and component (C) used in this reaction are as follows in terms of equivalent ratio.
{(B) / (A)} = 0.20 / 0.80
{(C) / [(A) + (B)]} = 1.01
The obtained solution was diluted with N-methyl-2-pyrrolidone to obtain a polyamideimide resin solution (resin composition for electrical insulation) having a resin concentration of 30% by weight.

(比較例1)
無水トリメリット酸192.1g(1.0モル)、4,4′−ジフェニルメタンジイソシアネート262.8g(1.05モル)、N−メチル−2−ピロリドン682.4gを温度計、攪拌機、冷却管を備えたフラスコに入れ、この混合物を乾燥させた窒素気流中で、反応により生ずる炭酸ガスの急激な発泡に注意しながら約5時間かけて徐々に昇温して140℃まで昇温し、140℃にて7時間保温した。この結果、数平均分子量が26000のポリアミドイミド樹脂の溶液を得た。
この溶液をN−メチル−2−ピロリドンで希釈し、樹脂分濃度30%のポリアミドイミド樹脂溶液を得た。
(Comparative Example 1)
Add 192.1 g (1.0 mol) of trimellitic anhydride, 262.8 g (1.05 mol) of 4,4'-diphenylmethane diisocyanate, and 682.4 g of N-methyl-2-pyrrolidone to a thermometer, stirrer, and condenser. The mixture was placed in a equipped flask, and the mixture was gradually heated to 140 ° C. over about 5 hours in a dry nitrogen stream while paying attention to the sudden foaming of carbon dioxide gas generated by the reaction. For 7 hours. As a result, a solution of polyamideimide resin having a number average molecular weight of 26000 was obtained.
This solution was diluted with N-methyl-2-pyrrolidone to obtain a polyamideimide resin solution having a resin concentration of 30%.

(比較例2)
4,4´−ジアミノジフェニルエーテル60.1g(0.3モル)及び無水トリメリット酸115.3g(0.6モル)とN−メチル−2−ピロリドン263.1gを温度計、攪拌機、冷却管を備えたフラスコに仕込み、この混合物を乾燥させた窒素気流中で、約1時間かけて徐々に昇温して100℃まで昇温し、100℃にて1時間保温し、イミドジカルボン酸(0.3モル)を得た。
さらに、この反応液に無水トリメリット酸134.5g(0.70モル)及びジフェニルメタン−4,4’−ジイソシアネート255.3g(1.02モル)とN−メチル−2−ピロリドン584.7gを仕込み、反応により生ずる炭酸ガスの急激な発泡に注意しながら約6時間かけて除々に昇温して140℃まで昇温した後、この温度で7時間反応させて、数平均分子量が27000のポリアミドイミド樹脂の溶液を得た。
得られた溶液をN−メチル−2−ピロリドンで希釈し、樹脂分濃度30重量%のポリアミドイミド樹脂溶液を得た。
(Comparative Example 2)
60.1 g (0.3 mol) of 4,4′-diaminodiphenyl ether, 115.3 g (0.6 mol) of trimellitic anhydride and 263.1 g of N-methyl-2-pyrrolidone were thermometer, stirrer and condenser. The mixture was charged into a flask equipped with this mixture, and the mixture was gradually heated in a nitrogen stream for about 1 hour, heated to 100 ° C., kept at 100 ° C. for 1 hour, and imidodicarboxylic acid (0. 3 mol) was obtained.
Furthermore, 134.5 g (0.70 mol) of trimellitic anhydride, 255.3 g (1.02 mol) of diphenylmethane-4,4′-diisocyanate and 584.7 g of N-methyl-2-pyrrolidone were charged into this reaction solution. The polyamide imide having a number average molecular weight of 27000 is obtained by gradually raising the temperature to about 140 ° C. over about 6 hours while paying attention to the sudden foaming of carbon dioxide gas generated by the reaction, and then reacting at this temperature for 7 hours. A resin solution was obtained.
The obtained solution was diluted with N-methyl-2-pyrrolidone to obtain a polyamideimide resin solution having a resin concentration of 30% by weight.

(比較例3)
無水トリメリット酸153.7g(0.8モル)、ドデカン二酸46.1g(0.2モル)、4,4′−ジフェニルメタンジイソシアネート262.8g(1.05モル)、N−メチル−2−ピロリドン682.4gを温度計、攪拌機、冷却管を備えたフラスコに入れ、この混合物を乾燥させた窒素気流中で、反応により生ずる炭酸ガスの急激な発泡に注意しながら約6時間かけて徐々に昇温して140℃まで昇温し、140℃にて7時間保温して、数平均分子量が26000のポリアミドイミド樹脂の溶液を得た。
この溶液をN−メチル−2−ピロリドンで希釈し、樹脂分濃度30%のポリアミドイミド樹脂溶液を得た。
(Comparative Example 3)
Trimellitic anhydride 153.7 g (0.8 mol), dodecanedioic acid 46.1 g (0.2 mol), 4,4'-diphenylmethane diisocyanate 262.8 g (1.05 mol), N-methyl-2- 682.4 g of pyrrolidone was put into a flask equipped with a thermometer, a stirrer and a condenser, and this mixture was gradually dried over a period of about 6 hours in a dry nitrogen stream while paying attention to the sudden foaming of carbon dioxide generated by the reaction. The temperature was raised to 140 ° C., and the mixture was kept at 140 ° C. for 7 hours to obtain a polyamideimide resin solution having a number average molecular weight of 26000.
This solution was diluted with N-methyl-2-pyrrolidone to obtain a polyamideimide resin solution having a resin concentration of 30%.

(試験例)
実施例1〜3及び比較例1〜3で得られたポリアミドイミド樹脂溶液を、下記の焼付け条件に従って直径1.0mmの銅線に塗布し、線速16m/分で焼付け、エナメル線を作製した。
〔塗布・焼付け条件〕
焼付け炉:熱風式竪炉(炉長5.5m)
炉温 :入口/出口=320℃/430℃
塗装方法:樹脂組成物をくぐらせたエナメル線をダイスで絞り、焼付け炉を通過させる手順を8回行う。1回目から8回目までのダイスの径を1.05mm、1.06mm、1.07mm、1.08mm、 1.09mm、1.10mm、1.11mm、1.12mmと変化させた。
また、得られたエナメル線の特性(可とう性、一方向式摩耗、絶縁破壊電圧、耐軟化性、耐熱衝撃性)をJIS C 3003に準じて測定した。その結果を表1に示す。
(Test example)
The polyamideimide resin solutions obtained in Examples 1 to 3 and Comparative Examples 1 to 3 were applied to a copper wire having a diameter of 1.0 mm in accordance with the following baking conditions, and baked at a wire speed of 16 m / min to produce an enameled wire. .
[Coating / baking conditions]
Baking furnace: Hot air type furnace (furnace length 5.5m)
Furnace temperature: Inlet / Outlet = 320 ° C / 430 ° C
Coating method: The procedure of passing the enamel wire through which the resin composition has passed through a die and passing through a baking furnace is performed 8 times. The diameters of the dies from the first to the eighth time were changed to 1.05 mm, 1.06 mm, 1.07 mm, 1.08 mm, 1.09 mm, 1.10 mm, 1.11 mm, and 1.12 mm.
Further, the properties (flexibility, unidirectional wear, dielectric breakdown voltage, softening resistance, thermal shock resistance) of the enameled wire obtained were measured according to JIS C 3003. The results are shown in Table 1.

表1に示した結果から、実施例1〜3で得られたポリアミドイミド樹脂溶液を用いて作製したエナメル線の塗膜は、比較例1〜3で得られたポリアミドイミド樹脂溶液を用いて作製したエナメル線の塗膜に比べて、可とう性に優れるとともに、耐軟化性及び一方向式摩耗もほぼ同等に良好であることがわかる。   From the results shown in Table 1, the enameled wire coatings produced using the polyamideimide resin solutions obtained in Examples 1 to 3 were produced using the polyamideimide resin solutions obtained in Comparative Examples 1 to 3. It can be seen that the film is excellent in flexibility as compared with the coated film of enameled wire, and the softening resistance and unidirectional wear are almost equally good.

Figure 2012171979
Figure 2012171979

Claims (5)

(A)酸無水物基及びカルボキシル基を有する3価以上のポリカルボン酸無水物を必須とするポリカルボン酸成分、(B)一般式(1)
Figure 2012171979
・・・(1)
で表される(m−フェニレンジイソプロピリデン)構造を有するイミドジカルボン酸及び(C)芳香族ポリイソシアネートを塩基性極性溶媒中で反応させて得られるポリアミドイミド樹脂を含む電気絶縁用樹脂組成物。
(A) a polycarboxylic acid component essentially comprising a tricarboxylic or higher polycarboxylic acid anhydride having an acid anhydride group and a carboxyl group, (B) a general formula (1)
Figure 2012171979
... (1)
The resin composition for electrical insulation containing the polyamidoimide resin obtained by making the imide dicarboxylic acid which has (m-phenylene diisopropylidene) structure represented by these, and (C) aromatic polyisocyanate react in a basic polar solvent.
反応に用いられる(A)成分と(B)成分との配合割合{(B)/(A)}が、当量比で0.01/0.99〜0.70/0.30である請求項1記載の電気絶縁用樹脂組成物。   The blending ratio {(B) / (A)} of the component (A) and the component (B) used in the reaction is 0.01 / 0.99 to 0.70 / 0.30 in an equivalent ratio. The resin composition for electrical insulation according to 1. 反応に用いられるイソシアネート成分とポリカルボン酸成分との配合割合{(C)/〔(A)+(B)〕}が当量比で0.8〜1.4である請求項1または2記載の電気絶縁用樹脂組成物。   The blending ratio {(C) / [(A) + (B)]} of the isocyanate component and the polycarboxylic acid component used for the reaction is 0.8 to 1.4 in terms of an equivalent ratio. Resin composition for electrical insulation. ポリアミドイミド樹脂が、数平均分子量10,000〜50,000のものである請求項1〜3いずれかに記載の電気絶縁用樹脂組成物。   The resin composition for electrical insulation according to any one of claims 1 to 3, wherein the polyamideimide resin has a number average molecular weight of 10,000 to 50,000. 請求項1〜4のいずれかに記載の電気絶縁用樹脂組成物を導体上に塗布し、焼付けてなるエナメル線。   An enameled wire obtained by applying and baking the resin composition for electrical insulation according to any one of claims 1 to 4 on a conductor.
JP2011032333A 2011-02-17 2011-02-17 Resin composition for electric insulation, and enamel wire Pending JP2012171979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011032333A JP2012171979A (en) 2011-02-17 2011-02-17 Resin composition for electric insulation, and enamel wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011032333A JP2012171979A (en) 2011-02-17 2011-02-17 Resin composition for electric insulation, and enamel wire

Publications (1)

Publication Number Publication Date
JP2012171979A true JP2012171979A (en) 2012-09-10

Family

ID=46975197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011032333A Pending JP2012171979A (en) 2011-02-17 2011-02-17 Resin composition for electric insulation, and enamel wire

Country Status (1)

Country Link
JP (1) JP2012171979A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215785A (en) * 2009-03-17 2010-09-30 Hitachi Chem Co Ltd Heat-resistant polyamideimide resin and seamless tubular body, coating film, coating film plate, and heat-resistant coating material using the same
JP2014022290A (en) * 2012-07-20 2014-02-03 Denso Corp Insulated wire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123056A (en) * 2003-10-17 2005-05-12 Hitachi Chem Co Ltd Electrical insulating resin composition and enameled wire
JP2006016487A (en) * 2004-07-01 2006-01-19 Hitachi Chem Co Ltd Resin composition for electric insulation, enameled wire, heat resistant resin composition and coating
JP2008243677A (en) * 2007-03-28 2008-10-09 Hitachi Chem Co Ltd Resin composition for electric insulation, and coating and enamel wire using it
JP2010215785A (en) * 2009-03-17 2010-09-30 Hitachi Chem Co Ltd Heat-resistant polyamideimide resin and seamless tubular body, coating film, coating film plate, and heat-resistant coating material using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123056A (en) * 2003-10-17 2005-05-12 Hitachi Chem Co Ltd Electrical insulating resin composition and enameled wire
JP2006016487A (en) * 2004-07-01 2006-01-19 Hitachi Chem Co Ltd Resin composition for electric insulation, enameled wire, heat resistant resin composition and coating
JP2008243677A (en) * 2007-03-28 2008-10-09 Hitachi Chem Co Ltd Resin composition for electric insulation, and coating and enamel wire using it
JP2010215785A (en) * 2009-03-17 2010-09-30 Hitachi Chem Co Ltd Heat-resistant polyamideimide resin and seamless tubular body, coating film, coating film plate, and heat-resistant coating material using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215785A (en) * 2009-03-17 2010-09-30 Hitachi Chem Co Ltd Heat-resistant polyamideimide resin and seamless tubular body, coating film, coating film plate, and heat-resistant coating material using the same
JP2014022290A (en) * 2012-07-20 2014-02-03 Denso Corp Insulated wire

Similar Documents

Publication Publication Date Title
JP2013049843A (en) Polyamide-imide resin insulating varnish and method of manufacturing the same, insulated wire, and coil
JP4650129B2 (en) Polyamideimide resin heat-resistant resin composition, seamless tubular body, coating film, coating plate and heat-resistant paint
JP2012241082A (en) Polyamideimide-based resin composition for electric insulation, coating material, and enamel wire
JP2007099891A (en) Heat-resistant resin composition of polyamideimide resin, and seamless tubular body, coating film, coated plate and heat-resistant coating material using the heat-resistant resin composition
JP2012234625A (en) Insulation wire, electric machine coil using the same, and motor
JP2011231278A (en) Resin composition for polyamideimide resin-based seamless tubular body, and seamless tubular body
JP2009286826A (en) Heat-resistant resin composition and paint containing the same as paint component
JP2012171979A (en) Resin composition for electric insulation, and enamel wire
JP2016017085A (en) Material for electrical insulation, electrically insulated product, electrical insulation coating, and electrically insulated wire
JP5477327B2 (en) Method for producing polyimide resin
JP2011079965A (en) Heat resistant polyamideimide resin, and seamless tubular body, coating film, coating film plate and heat resistant coating material using the same
JP4482857B2 (en) Resin composition for electrical insulation and enameled wire
JP2012224703A (en) Polyamide-imide resin, production method therefor, thermosetting resin composition, insulation coating material and electric insulated wire
JP2011236384A (en) Heat-resistant resin composition, coating material, and enameled wire using the same
JP2010215785A (en) Heat-resistant polyamideimide resin and seamless tubular body, coating film, coating film plate, and heat-resistant coating material using the same
JP2008243677A (en) Resin composition for electric insulation, and coating and enamel wire using it
JP2009091509A (en) Resin composition for electric insulation and enamel wire
JP6012672B2 (en) Insulation coated aluminum wire
JP5804314B2 (en) Polyamideimide resin for insulated wires, insulating paint for insulated wires, and insulated wires using the same
JP2012243614A (en) Insulated wire, and electric coil and motor using the same
JP2006143920A (en) Heat resistant resin composition, paint and enameled wire
JP2011162733A (en) Heat-resistant resin composition and coating using the same
JP2011225741A (en) Polyamideimide resin solution and method for producing the same, resin composition, and coating composition
JP2012219107A (en) Polyamideimide resin composition, production method therefor, curable resin composition using the same and coating
JP4834925B2 (en) Resin composition for electrical insulation and enameled wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141225