WO2016009966A1 - Control device, control method and computer program - Google Patents

Control device, control method and computer program Download PDF

Info

Publication number
WO2016009966A1
WO2016009966A1 PCT/JP2015/069929 JP2015069929W WO2016009966A1 WO 2016009966 A1 WO2016009966 A1 WO 2016009966A1 JP 2015069929 W JP2015069929 W JP 2015069929W WO 2016009966 A1 WO2016009966 A1 WO 2016009966A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
rebound
building
control
control target
Prior art date
Application number
PCT/JP2015/069929
Other languages
French (fr)
Japanese (ja)
Inventor
フェイ萱 丁
ウェン 王
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Publication of WO2016009966A1 publication Critical patent/WO2016009966A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/144Demand-response operation of the power transmission or distribution network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • H02J2310/60Limiting power consumption in the network or in one section of the network, e.g. load shedding or peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • Embodiments described herein relate generally to a control device, a control method, and a computer program.
  • VPP Virtual Power Plant
  • DR demand response
  • a heat source facility such as an air conditioner consumes higher power at the time of startup than at normal times. Therefore, when a heat source facility such as an air conditioner is targeted for DR, a peak may occur in power demand at the time of restart after the DR is implemented. Thus, the phenomenon in which a peak occurs at the time of restart after DR execution is called a rebound effect. The peak of power demand generated by the rebound effect is called rebound peak. Due to the occurrence of this rebound peak, the VPP may not be able to supply sufficient power for the power demand at the time of restart after DR execution.
  • the problem to be solved by the present invention is to provide a control device, a control method, and a computer program capable of suppressing an increase in power consumption per unit time due to a rebound effect.
  • the control device of the embodiment has a control unit.
  • the control unit outputs control information for releasing the restriction on the operation of the management target based on a time determined for each management target with respect to a plurality of management targets whose operation is limited to suppress power consumption.
  • the functional block diagram which shows the function structure of CBEMS7.
  • the flowchart which shows the flow of DR control of CBEMS7.
  • the flowchart which shows the flow of the delay time determination process in 2nd Embodiment.
  • FIG. 1 is a system configuration diagram illustrating a system configuration of a VPP system 1 according to the first embodiment.
  • the VPP system 1 in FIG. 1 is a VPP system that controls power supply and demand in a target facility.
  • buildings 2-1 and 2-2 are facilities to be controlled.
  • the building 2-1 has facilities 3-1-1 and 3-1-2.
  • the building 2-2 has facilities 3-2-1 and 3-2-2.
  • the facilities 3-1-1, 3-1-2, 3-2-1 and 3-2-2 are facilities that operate by electricity.
  • VPP-NOC4 control device
  • the VPP-NOC 4 monitors the power consumption in the facility to which power is supplied, and instructs the load controller 5 or BAS (Building Automation System) 6 to execute a demand response (DR).
  • DR Demand response
  • the load controller 5 controls power supply to a building that does not have a BAS.
  • the load controller 5 controls the execution of DR for the facilities 3-1-1 and 3-1-2 based on an instruction from the VPP-NOC 4.
  • the BAS 6 is installed in a control target building and controls power supply to the target building.
  • the BAS 6 controls the execution of DR for the facilities 3-2-1 and 3-2-2 based on an instruction from the VPP-NOC 4.
  • the buildings 2-1 and 2-2 are described as the building 2 unless otherwise distinguished for the sake of simplicity.
  • the equipment 3-1-1 to 3-1-2 are referred to as equipment 3-1.
  • facilities 3-2-1 to 3-2-2 are referred to as facility 3-2.
  • facilities 3-1 and 3-2 are referred to as facility 3.
  • FIG. 2 is a diagram illustrating a specific example of the rebound effect in the first embodiment.
  • the horizontal axis represents time
  • the vertical axis represents power consumption in the building 2 to be controlled.
  • Reference numeral 10 in FIG. 2 represents a baseline set in the building 2 to be controlled.
  • the baseline is electric power that becomes a reference value when measuring a load (electric power) reduction amount of a consumer in a negawatt transaction.
  • the customer's load reduction is marketed as much as the power generated by the power plant. Since the amount of power generation is the amount of power generated itself, it is easy to measure.
  • the load reduction amount of the consumer may have been originally consumed, but cannot be measured because it is the amount of power that was not actually consumed.
  • This preset amount of power is the baseline. That is, when the actual power consumption falls below the baseline power, the difference in the power becomes the load reduction amount of the consumer.
  • Baseline Type 1 a baseline is determined by adjusting the influence of external conditions on a moving average of power consumption on business days excluding holidays using a predetermined algorithm.
  • the baseline formulation method is not limited to a specific method.
  • Reference numeral 11 represents the power consumption actually consumed by the equipment 3 installed in the building 2 to be controlled.
  • DR is running during the time t 2 from time t 1 in FIG. That is, the equipment 3 which is selected to perform the DR is stopped at time t 1 in the building 2 to be controlled.
  • the facilities 3 which are stopped is restarted at time t 2. Therefore, power consumption is reduced in the DR running period from time t 1 at time t 2.
  • the power consumption greatly exceeds the baseline due to the restart of the equipment 3. This is the rebound effect. Specifically, the rebound effect appears in the portion indicated by reference numeral 12 in the example of FIG.
  • FIG. 3 is a functional block diagram showing functional configurations of the VPP-NOC 4 and the load controller 5.
  • the VPP-NOC 4 includes a CPU (Central Processing Unit), a memory, an auxiliary storage device, and the like connected by a bus, and executes a DR control program.
  • the VPP-NOC 4 functions as a device including a communication unit 41, a storage unit 42, a DR control unit 43 (control unit), a load information acquisition unit 44, and an activation information determination unit 45 (determination unit) by executing a DR control program.
  • the DR control program may be recorded on a computer-readable recording medium.
  • the computer-readable recording medium is, for example, a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in the computer system.
  • the DR control program may be transmitted via a telecommunication line.
  • the communication unit 41 is configured using a communication interface such as a LAN (Local Area Network).
  • the communication unit 41 communicates with the load controller 5.
  • the storage unit 42 is configured using a storage device such as a magnetic hard disk device or a semiconductor storage device.
  • the storage unit 42 stores an activation information table 421.
  • FIG. 4 is a diagram illustrating a specific example of the activation information table 421.
  • the activation information table 421 has an activation information record for each control target facility.
  • the activation information record has values of control target equipment, rebound generation amount, rebound time, presence / absence of delay, and delay time.
  • the control target equipment represents equipment that is a DR execution target.
  • the control target equipment is selected by the VPP-NOC 4 at the time of DR execution based on the conditions such as the contents of the contract between the customer and the electric power company and the power consumption characteristics of each equipment 3 that varies depending on the climate.
  • the amount of rebound generated represents the power consumption at startup indicating the power consumed by the control target equipment at startup.
  • the rebound time represents the time during which the rebound effect generated in the controlled facility continues. Specifically, the rebound time is the time from the start of the control target equipment until the power consumption converges to a level close to the steady state after the occurrence of the rebound effect.
  • the presence or absence of the delay time is determined based on the amount of rebound generation and the rebound time, and represents whether or not to delay the restart timing of the controlled equipment.
  • the delay time is a time indicating how much the restart timing of the controlled equipment is delayed. Note that the amount of rebound generation may be determined based on the actual power consumption of the control target equipment in the past DR in addition to the above-described power consumption at startup.
  • a baseline for each control target facility may be determined based on the actual power consumption.
  • the amount of rebound generation may be determined as the amount of power that exceeds the predetermined baseline of each control target facility.
  • the rebound time may be set as the time from when the control target equipment is activated until the peak of power consumption occurs in the rebound effect, in addition to the “time when the rebound effect continues”.
  • the DR control unit 43 controls the execution of DR of the building 2 to be controlled. Specifically, the DR control unit 43 transmits control information for instructing the load controller 5 to execute DR via the communication unit 41. When instructing DR execution, the DR control unit 43 selects the control target equipment and notifies the load controller 5 of it. The DR control unit 43 instructs the load controller 5 to execute DR on the selected control target equipment. When the DR is completed, the DR control unit 43 instructs the load controller 5 to restart the control target equipment based on the presence / absence of delay and the delay time value in the startup information table 421.
  • the load information acquisition unit 44 acquires, from the load controller 5, information on power consumed by the restarted control target equipment (hereinafter referred to as “restart power information”) after DR execution.
  • the load information acquisition unit 44 acquires the rebound generation amount and the rebound time for each control target facility based on the restart power information and the baseline.
  • the load information acquisition unit 44 registers the acquired rebound generation amount and rebound time for each control target facility in the activation information table 421.
  • the activation information determination unit 45 determines a delay time indicating the timing to activate the control target equipment when the control target equipment is restarted after the DR is executed. Specifically, the activation information determination unit 45 determines a delay time for restart of each control target facility for the control target facility restarted at the timing when the DR execution period ends. The delay time is a time based on the timing when the DR execution period ends.
  • the activation information determination unit 45 refers to the activation information table 421 and acquires the rebound generation amount and the rebound time of the controlled facility. Based on the amount of rebound generated and the rebound time of the control target equipment, the start information determining unit 45 controls each control target so that the power consumed by each control target equipment in the control target building 2 does not exceed the baseline. Determine equipment delay time.
  • no delay time is set for the facility 7. This indicates that the delay time of the facility 7 is “0”, that is, there is no delay. Therefore, the presence / absence of delay of the facility 7 is “none”, and the presence / absence of delay of the facilities 7 other than “present”.
  • the load controller 5 includes a CPU, a memory, an auxiliary storage device, and the like connected by a bus, and executes a DR execution program.
  • the load controller 5 functions as a device including the communication unit 51 and the DR execution unit 52 by executing the DR execution program. All or some of the functions of the load controller 5 may be realized using hardware such as an ASIC, PLD, or FPGA.
  • the DR execution program may be recorded on a computer-readable recording medium.
  • the computer-readable recording medium is, for example, a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in the computer system.
  • the DR execution program may be transmitted via a telecommunication line.
  • the communication unit 51 is configured using a communication interface such as a LAN.
  • the communication unit 51 communicates with the VPP-NOC 4.
  • the DR execution unit 52 executes DR of the control target equipment in accordance with an instruction from the VPP-NOC4. Further, the DR execution unit 52 restarts the control target equipment in accordance with an instruction from the VPP-NOC 4 after the DR is executed.
  • FIG. 5 is a flowchart showing a DR control flow of the VPP-NOC4.
  • the DR control unit 43 selects a control target facility that is a target of DR execution (step S101).
  • the DR control unit 43 instructs the load controller 5 to execute DR on the selected control target equipment (step S102).
  • the DR control unit 43 refers to the activation information table 421 and acquires the value of the delay time of each control target facility.
  • the DR control unit 43 waits for the delay time acquired for each control target facility from the timing when the DR execution period ends.
  • the DR control unit 43 instructs the load controller 5 to start the control target equipment corresponding to the delay time. (Step S103).
  • the start information determination unit 45 performs a delay time determination process (step S104), and determines the delay time of each control target facility at the time of restart after the next DR execution. .
  • FIG. 6 is a flowchart showing the flow of the delay time determination process in the first embodiment.
  • the load information acquisition unit 44 acquires restart power information for each control target facility from the load controller 5 (step S201).
  • the load information acquisition unit 44 acquires the rebound generation amount and the rebound time for each control target facility based on the restart power information and the baseline.
  • the load information acquisition unit 44 registers the acquired rebound generation amount and rebound time of each control target facility in the activation information table 421 (step S202).
  • the activation information determination unit 45 determines the delay time of each control target facility based on the rebound generation amount and the rebound time of the control target facility (step S203).
  • the activation information determination unit 45 registers the determined delay time of each control target facility in the activation information table 421.
  • FIG. 7 is a diagram illustrating an operation example of the VPP system 1 according to the first embodiment.
  • the horizontal axis represents time, and the vertical axis represents power consumption in the building 2 to be controlled.
  • Reference numeral 10 in FIG. 7 represents a baseline set in the building 2 to be controlled.
  • symbol 13 represents the electric power actually consumed by the installation 3 installed in the building 2 to be controlled.
  • DR is running during the time period from t 4 in FIG. 7 at time t 3. That is, the equipment 3 which is selected to perform the DR is stopped at time t 3 in the building 2 to be controlled. The facilities 3 which are stopped is restarted at time t 4. Therefore, power consumption is reduced in the DR running period from time t 3 at time t 4.
  • Reference numerals 14-1 to 14-3 represent power consumption at the start-up for each control target facility.
  • DR may be controlled by BAS6 having the same function structure as VPP-NOC4.
  • the BAS 6 performs a delay time determination process similar to that of the VPP-NOC 4 for the control target equipment in the building 2 where the own system is installed, and sets the delay time of each control target equipment in the restart after the DR execution. decide.
  • the delay time in restart after DR execution is determined based on the amount of rebound generated for each control target facility. After the completion of DR, each controlled object facility is restarted based on this delay time, whereby the occurrence of a rebound peak in VPP can be suppressed.
  • FIG. 8 is a system configuration diagram showing a system configuration of the VPP system 1a of the second embodiment.
  • the VPP system 1a shown in FIG. 8 is a VPP that controls the buildings 2-1 to 2-3. Buildings 2-1 to 2-3 are buildings to be controlled by the VPP system 1a.
  • the VPP system 1 a is different from the VPP system 1 in that a CBEMS (registered trademark, the same applies hereinafter) (Cluster Building Energy Management System) 7 is provided instead of the load controller 5 and the BAS 6.
  • the VPP-NOC 4 controls the CBEMS 7 and executes a demand response (DR) for each building to be controlled.
  • DR demand response
  • FIG. 9 is a diagram illustrating a specific example of the rebound effect in the second embodiment.
  • the horizontal axis represents time, and the vertical axis represents the total power consumption of all buildings to be controlled.
  • Reference numeral 15 in FIG. 9 represents a baseline.
  • Reference numeral 16 represents the power actually consumed in the controlled building 2.
  • DR is running during the time period from t 6 from time t 5 in FIG.
  • the DR execution target equipment is stopped in each building 2 selected from the control target buildings 2 to execute DR.
  • the facilities each building 2 which has been stopped is restarted at time t 5. Therefore, power consumption is reduced in the DR running period from time t 5 the time t 6.
  • the total power consumption of each building 2 that is the DR execution target greatly exceeds the baseline.
  • FIG. 10 is a functional block diagram showing a functional configuration of the CBEMS 7.
  • the CBEMS 7 control device
  • the CBEMS 7 includes a communication unit 71, a storage unit 72, a DR control unit 73 (control unit), a load information acquisition unit 74, and an activation information determination unit 75 (determination unit).
  • the communication unit 71 is configured using a communication interface such as a LAN.
  • the communication unit 71 communicates with each building 2.
  • the storage unit 72 is configured using a storage device such as a magnetic hard disk device or a semiconductor storage device.
  • the storage unit 72 stores an activation information table 721.
  • FIG. 11 is a diagram illustrating a specific example of the activation information table 721.
  • the activation information table 721 has an activation information record for each control target building.
  • the activation information record has values of a control target building, a rebound generation amount, a rebound time, a delay presence / absence, and a delay time.
  • the control target building represents a building that is a DR execution target.
  • the controlled building is selected at the time of DR execution based on conditions such as the contents of the contract between the customer and the electric power company and the characteristics of the power consumption of each building that varies depending on the climate.
  • the rebound generation amount represents the amount of power that has exceeded the baseline due to the rebound effect generated in the controlled building.
  • the rebound time represents the time during which the rebound effect generated in the controlled building continues. The presence or absence of the delay time is determined based on the amount of rebound generated and the rebound time, and represents whether or not to delay the timing of restarting the equipment of the controlled building for each controlled building.
  • the delay time is a time indicating how much the restart timing of the equipment of the controlled building is delayed.
  • the DR control unit 73 controls execution of DR of the building 2 to be controlled.
  • the DR control unit 73 receives a DR execution instruction from the VPP-NOC 4.
  • the DR control unit 73 selects a control target building according to the DR execution instruction.
  • the DR control unit 73 executes DR for the selected control target building.
  • the DR control unit 73 restarts the equipment for each controlled building based on the presence / absence of delay and the value of the delay time in the activation information table 721.
  • the load information acquisition unit 74 acquires information on power consumed in each controlled building after the equipment is restarted after DR execution (hereinafter referred to as “restart power information”).
  • the load information acquisition unit 74 acquires the rebound generation amount and the rebound time for each controlled building based on the restart power information and the baseline.
  • the rebound generation amount and rebound time acquired by the load information acquisition unit 74 are registered in the activation information table 721.
  • the activation information determination unit 75 determines the timing for starting the equipment of the controlled building in the restart of the equipment of the controlled building after DR execution. Specifically, the activation information determination unit 75 determines the delay time of each control target building for the control target building whose facilities are restarted at the timing when the DR execution period ends. The activation information determination unit 75 refers to the activation information table 721 and acquires the rebound generation amount and the rebound time for each controlled building. The activation information determination unit 75 determines the delay time of each control target building so that the power consumed when the equipment of the control target building is restarted does not exceed the baseline based on the rebound generation amount and the rebound time of the control target building. To decide. In the example of FIG. 11, no delay time is set for the building 7. This indicates that the delay time of the building 7 is “0”, that is, there is no delay. Therefore, the presence / absence of delay of the building 7 is “None”, and the presence / absence of delay of the building 7 other than “Yes”.
  • FIG. 12 is a flowchart showing the DR control flow of the CBEMS 7.
  • the DR control unit 73 determines whether or not a DR execution instruction has been issued from the VPP-NOC 4 (step S301). If it is determined that the DR execution instruction has not been issued (step S301—NO), the process returns to step S301, and the DR control unit 73 repeats the determination of whether or not the DR execution instruction has been issued. On the other hand, when it is determined that a DR execution instruction has been performed (YES in step S301), the DR control unit 73 selects a control target building in accordance with the DR execution instruction (step S302). The DR control unit 73 executes DR on the selected control target building and stops the operation of the equipment of the control target building (step S303).
  • the DR control unit 73 refers to the activation information table 721 and acquires the delay time value of each control target building.
  • the DR control unit 73 waits for the delay time acquired for each control target building from the timing when the DR execution period ends.
  • the DR control unit 73 activates the equipment of the controlled building corresponding to the delay time. (Step S304).
  • the CBEMS 7 performs a delay time determination process (step S305), and determines the delay time of each control target building at the time of restart after the next DR execution.
  • FIG. 13 is a flowchart showing the flow of the delay time determination process in the second embodiment.
  • the load information acquisition unit 74 acquires restart power information for each control target building (step S401).
  • the load information acquisition unit 74 acquires a rebound generation amount and a rebound time for each control target building based on the restart power information and the baseline.
  • the load information acquisition unit 74 registers the acquired rebound generation amount and rebound time of each control target building in the activation information table 721 (step S402).
  • the activation information determination unit 75 determines the delay time of each control target building based on the rebound generation amount and rebound time of the control target building (step S403).
  • the activation information determination unit 75 registers the determined delay time of each control target building in the activation information table 721.
  • FIG. 14 is a diagram illustrating an operation example of the VPP system 1a according to the second embodiment.
  • the horizontal axis represents time, and the vertical axis represents power consumption in the controlled building.
  • Reference numeral 15 in FIG. 14 represents a baseline of power consumed in all controlled buildings.
  • symbol 18 represents the sum total of the power consumption actually consumed in all the control object buildings.
  • DR is running during the time t 8 from FIG. 14 at time t 7. That is, the equipment of the selected control target buildings to perform the DR is stopped at time t 7 against buildings of the controlled object. The facilities of stop controlled object buildings is restarted at time t 8. Therefore, power consumption in the DR execution period of time t 8 from the time t 7 is lowered.
  • Reference numerals 19-1 to 19-3 represent power consumption at the time of activation for each control target building.
  • the equipment of the control target building is activated at different timings as shown in FIG. 14 so that the rebound peaks of the control target buildings are not overlapped.
  • the delay time in restarting the equipment of each controlled building after DR execution is determined based on the amount of rebound generated for each controlled building. After the completion of DR, the equipment of each controlled building is restarted based on this delay time, so that the occurrence of rebound peaks in VPP can be suppressed.
  • FIG. 15 is a diagram illustrating an operation example of the modified VPP system 1.
  • the horizontal axis represents time, and the vertical axis represents power consumption in the control target equipment.
  • Reference numeral 10 in FIG. 15 represents a baseline set in the building 2 to be controlled.
  • Reference numeral 20 represents the power actually consumed by the equipment 3 installed in the building 2 to be controlled.
  • DR is running during the time t 10 from FIG. 15 at time t 9. That is, the equipment 3 which is selected to perform the DR is stopped at time t 9 in building 2 to be controlled. Then, it restarted in equipment 3 the time t 10 which is stopped.
  • the delay time of the control target facility may be determined such that the generation time of the rebound peak due to the start of the control target facility is a time zone in which the power rate is low.
  • the delay time of the control target building may be determined so that the generation time of the rebound peak due to the restart of the equipment of the control target building is a time zone in which the power rate is low.
  • the VPP system 1a of the embodiment may give an incentive according to the length of the delay time to the controlled building.
  • the storage unit 72 of the CBEMS 7 stores an activation information table 721a in which an incentive is set for each control target building.
  • FIG. 16 is a diagram illustrating a specific example of the activation information table 721a.
  • the activation information table 721a has an activation information record for each control target building.
  • the activation information record has values of a control target building, a rebound generation amount, a rebound time, a delay presence / absence, a delay time, and an incentive.
  • the controlled object building, rebound generation amount, rebound time, presence / absence of delay, and delay time are the same as those in the activation information table 721.
  • the incentive represents the amount of incentive set according to the delay time.
  • a larger incentive value is set for a control target building having a longer delay time.
  • the VPP system 1a can improve the motivation of a power consumer to cooperate with DR by giving an incentive according to delay time to the controlled building cooperated with DR.
  • the VPP system 1 may reduce the amount of rebound generated by stopping the equipment to be controlled in stages during DR execution.
  • FIG. 17 is a diagram illustrating a specific example of the rebound effect when the stepwise DR is executed.
  • the DR execution period is the time between time t 12 and time t 15 .
  • Reference numeral 30 represents power consumption when normal DR is executed.
  • the rebound amount of the rebound effect caused by normal DR is R.
  • Reference numeral 31 represents a power consumption in the case of the conventional DR start time t 12 earlier than the time t 11 to stop the equipment to be stepwise controlled. In this case, the temperature change of the control target of the building at the end time t 15 of the DR is smaller than the normal DR is performed. Therefore, when the controlled object facility is stopped as indicated by reference numeral 31 at the time of DR execution, the amount of rebound that occurs is smaller than that at the time of normal DR execution.
  • reference numeral 32 is stepwise the controlled installation is stopped from the start time t 12 the normal DR, representing the power consumption when stopping the number of the controlled installation than conventional DR.
  • the temperature change of the control target of the building at the end time t 15 of the DR is smaller than the normal DR is performed. Therefore, when the controlled equipment is stopped as indicated by reference numeral 32 at the time of DR execution, the amount of rebound that occurs compared to the time of normal DR execution is reduced.
  • the configuration described above is not necessarily applied to the VPP system. Similarly, the configuration described above is not necessarily applied to a system in which a demand response is executed. In other words, the configuration described above can be applied to all systems that limit and cancel operations of a plurality of facilities to be managed in order to reduce power consumption.
  • This restriction of operation is a restriction such as stopping and starting of equipment based on the above-described demand response and power saving operation.
  • a target on which each facility is installed does not necessarily need to be a building, and may be any facility as long as power consumption by a plurality of facilities is managed in common. .
  • an object on which each facility is installed may be a museum, a leisure facility (for example, a ski resort, a baseball field, etc.), or a facility including a parking lot.
  • the objects managed by the system do not necessarily need to be a plurality of buildings, and may be any area as long as the power consumption by a plurality of facilities is managed in common. .
  • it may be an area having a plurality of facilities such as a university, a hospital or an industrial area, or an administrative area such as a municipality.
  • the rebound time in the first embodiment and the second embodiment does not necessarily need to be the time for which the rebound effect continues, even if it is the time from the start of the managed equipment or facility to the peak of power consumption. Good.
  • DR control that controls the start-up of each equipment after the delay time acquired for each equipment in the facility elapses with reference to the timing when the equipment stoppage in the facility ends.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

A control device of an embodiment of the present invention has a control unit. For a plurality of management objects for which operations are restricted in order to suppress power consumption, the control unit outputs control information for canceling the restrictions on the operations of the management objects, such cancelation carried out on the basis of times that are determined for each of the management objects.

Description

制御装置、制御方法及びコンピュータプログラムControl device, control method, and computer program
 本発明の実施形態は、制御装置、制御方法及びコンピュータプログラムに関する。 Embodiments described herein relate generally to a control device, a control method, and a computer program.
 複数の小規模自家発電設備と電力の需要抑制とをソフトウェアによって統合し、あたかも1つの発電所のように電力需給を制御するVPP(Virtual Power Plant:仮想発電所)という技術が実用化されている。
 従来、VPPにおいてデマンドレスポンス(以下、「DR」という。)によって電力の需給バランスを保つことが行われている。しかしながら、空調機器等の熱源設備は起動時において通常時よりも高い電力を消費する。そのため、空調機器等の熱源設備をDRの対象とした場合、DR実施後の再起動時において電力需要にピークが発生する場合がある。このようにDR実施後の再起動時においてピークが発生する現象はリバウンド効果と呼ばれる。リバウンド効果によって発生する電力需要のピークをリバウンドピークという。このリバウンドピークの発生により、VPPはDR実施後の再起動時において電力需要に対し十分な電力供給を行えない場合があった。
A technology called VPP (Virtual Power Plant) has been put into practical use, which integrates multiple small-scale private power generation facilities and power demand control by software, and controls power supply and demand as if it were a single power plant. .
Conventionally, the supply and demand balance of power is maintained by demand response (hereinafter referred to as “DR”) in VPP. However, a heat source facility such as an air conditioner consumes higher power at the time of startup than at normal times. Therefore, when a heat source facility such as an air conditioner is targeted for DR, a peak may occur in power demand at the time of restart after the DR is implemented. Thus, the phenomenon in which a peak occurs at the time of restart after DR execution is called a rebound effect. The peak of power demand generated by the rebound effect is called rebound peak. Due to the occurrence of this rebound peak, the VPP may not be able to supply sufficient power for the power demand at the time of restart after DR execution.
特開2011-062075号公報JP 2011-062075 A
 本発明が解決しようとする課題は、リバウンド効果による単位時間当たりの消費電力の増大を抑えることができる制御装置、制御方法及びコンピュータプログラムを提供することである。 The problem to be solved by the present invention is to provide a control device, a control method, and a computer program capable of suppressing an increase in power consumption per unit time due to a rebound effect.
 実施形態の制御装置は、制御部を持つ。制御部は、電力消費の抑制のために動作が制限される複数の管理対象について、前記管理対象ごとに決定される時間に基づいて前記管理対象の動作の制限を解除する制御情報を出力する。 The control device of the embodiment has a control unit. The control unit outputs control information for releasing the restriction on the operation of the management target based on a time determined for each management target with respect to a plurality of management targets whose operation is limited to suppress power consumption.
第1の実施形態のVPPシステム1のシステム構成を示すシステム構成図。The system configuration figure showing the system configuration of VPP system 1 of a 1st embodiment. 第1の実施形態におけるリバウンド効果の具体例を示す図。The figure which shows the specific example of the rebound effect in 1st Embodiment. VPP-NOC4及び負荷コントローラ5の機能構成を示す機能ブロック図。The functional block diagram which shows the function structure of VPP-NOC4 and the load controller 5. FIG. 起動情報テーブル421の具体例を示す図。The figure which shows the specific example of the starting information table 421. FIG. VPP-NOC4のDRの制御の流れを示すフローチャート。The flowchart which shows the flow of DR control of VPP-NOC4. 第1の実施形態における遅延時間決定処理の流れを示すフローチャート。The flowchart which shows the flow of the delay time determination process in 1st Embodiment. 第1の実施形態のVPPシステム1の動作例を示す図。The figure which shows the operation example of the VPP system 1 of 1st Embodiment. 第2の実施形態のVPPシステム1aのシステム構成を示すシステム構成図。A system configuration figure showing a system configuration of VPP system 1a of a 2nd embodiment. 第2の実施形態におけるリバウンド効果の具体例を示す図。The figure which shows the specific example of the rebound effect in 2nd Embodiment. CBEMS7の機能構成を示す機能ブロック図。The functional block diagram which shows the function structure of CBEMS7. 起動情報テーブル721の具体例を示す図。The figure which shows the specific example of the starting information table 721. CBEMS7のDRの制御の流れを示すフローチャート。The flowchart which shows the flow of DR control of CBEMS7. 第2の実施形態における遅延時間決定処理の流れを示すフローチャート。The flowchart which shows the flow of the delay time determination process in 2nd Embodiment. 第2の実施形態のVPPシステム1aの動作例を示す図。The figure which shows the operation example of the VPP system 1a of 2nd Embodiment. 変形例のVPPシステム1の動作例を示す図。The figure which shows the operation example of the VPP system 1 of a modification. 起動情報テーブル721aの具体例を示す図。The figure which shows the specific example of the starting information table 721a. 段階的なDRの実行を行ったときのリバウンド効果の具体例を示す図。The figure which shows the specific example of the rebound effect when performing stepwise DR.
 以下、実施形態の制御装置、制御方法及びコンピュータプログラムを、図面を参照して説明する。 Hereinafter, a control device, a control method, and a computer program according to embodiments will be described with reference to the drawings.
 (第1の実施形態)
 図1は、第1の実施形態のVPPシステム1のシステム構成を示すシステム構成図である。
 図1のVPPシステム1は、対象の施設における電力需給を制御するVPPシステムである。図1の例では、ビル2-1及び2-2が制御対象となる施設である。ビル2-1は、設備3-1-1及び3-1-2を有する。ビル2-2は、設備3-2-1及び3-2-2を有する。設備3-1-1、3-1-2、3-2-1及び3-2-2は、電気で動作する設備である。VPP-NOC4(制御装置)は、VPPのネットワークオペレーティングセンター(Network Operating Center)である。VPP-NOC4は、電力を供給する対象の施設における消費電力を監視し、負荷コントローラ5又はBAS(Building Automation System)6にデマンドレスポンス(DR)の実行を指示する。負荷コントローラ5は、BASを備えないビルに対する電力供給を制御する。負荷コントローラ5は、VPP-NOC4の指示に基づいて、設備3-1-1及び3-1-2に対するDRの実行を制御する。BAS6は、制御対象のビルに設置され、対象のビルに対する電力供給を制御する。BAS6は、VPP-NOC4の指示に基づいて、設備3-2-1及び3-2-2に対するDRの実行を制御する。
(First embodiment)
FIG. 1 is a system configuration diagram illustrating a system configuration of a VPP system 1 according to the first embodiment.
The VPP system 1 in FIG. 1 is a VPP system that controls power supply and demand in a target facility. In the example of FIG. 1, buildings 2-1 and 2-2 are facilities to be controlled. The building 2-1 has facilities 3-1-1 and 3-1-2. The building 2-2 has facilities 3-2-1 and 3-2-2. The facilities 3-1-1, 3-1-2, 3-2-1 and 3-2-2 are facilities that operate by electricity. VPP-NOC4 (control device) is a network operating center of VPP. The VPP-NOC 4 monitors the power consumption in the facility to which power is supplied, and instructs the load controller 5 or BAS (Building Automation System) 6 to execute a demand response (DR). The load controller 5 controls power supply to a building that does not have a BAS. The load controller 5 controls the execution of DR for the facilities 3-1-1 and 3-1-2 based on an instruction from the VPP-NOC 4. The BAS 6 is installed in a control target building and controls power supply to the target building. The BAS 6 controls the execution of DR for the facilities 3-2-1 and 3-2-2 based on an instruction from the VPP-NOC 4.
 以下の説明では、説明を簡単にするために特に区別しない限り、ビル2-1及び2-2をビル2と記載する。同様に、設備3-1-1~3-1-2を設備3-1と記載する。同様に、設備3-2-1~3-2-2を設備3-2と記載する。同様に、設備3-1及び3-2を設備3と記載する。 In the following description, the buildings 2-1 and 2-2 are described as the building 2 unless otherwise distinguished for the sake of simplicity. Similarly, the equipment 3-1-1 to 3-1-2 are referred to as equipment 3-1. Similarly, facilities 3-2-1 to 3-2-2 are referred to as facility 3-2. Similarly, facilities 3-1 and 3-2 are referred to as facility 3.
 図2は、第1の実施形態におけるリバウンド効果の具体例を示す図である。
 図2において横軸は時間、縦軸は制御対象のビル2における消費電力を表す。図2の符号10は制御対象のビル2に設定されたベースラインを表す。ベースラインとは、ネガワット取引において需要家の負荷(電力)削減量を測るときの基準値となる電力である。ネガワット取引では、需要家の負荷削減量が発電所の発電量と同等に市場取引される。発電量は生み出された電力量そのものであるため測定は容易である。これに対して、需要家の負荷削減量は、本来消費されたかもしれないが、実際には消費されなかった電力量であり測定できない。そのため、ネガワット取引においては、本来消費されたかもしれない電力量が事前に設定される必要がある。この事前に設定される電力量がベースラインである。
すなわち、実際の消費電力量がベースラインの電力を下回ったとき、その電力量の差が需要家の負荷削減量となる。
FIG. 2 is a diagram illustrating a specific example of the rebound effect in the first embodiment.
In FIG. 2, the horizontal axis represents time, and the vertical axis represents power consumption in the building 2 to be controlled. Reference numeral 10 in FIG. 2 represents a baseline set in the building 2 to be controlled. The baseline is electric power that becomes a reference value when measuring a load (electric power) reduction amount of a consumer in a negawatt transaction. In negawatt trading, the customer's load reduction is marketed as much as the power generated by the power plant. Since the amount of power generation is the amount of power generated itself, it is easy to measure. On the other hand, the load reduction amount of the consumer may have been originally consumed, but cannot be measured because it is the amount of power that was not actually consumed. Therefore, in the negawatt transaction, the amount of power that may have been consumed originally needs to be set in advance. This preset amount of power is the baseline.
That is, when the actual power consumption falls below the baseline power, the difference in the power becomes the load reduction amount of the consumer.
 上記のベースラインは電力の需給バランスを考慮して決定される必要がある。また、1日の消費電力量は、その日の気候や天候などの外部条件によって左右される。そのため、ベースラインは、これらの環境的要因も考慮して決定される必要がある。このようなベースラインを策定するモデルの一例として、Baseline Type 1がある。Baseline Type 1では、休日を除く営業日における消費電力量の移動平均に対し、外部条件による影響を所定のアルゴリズムを用いて調整することによってベースラインが決定される。なお、本実施形態では、ベースラインの策定方法は特定の方法に限定されない。 The above baseline needs to be determined in consideration of the power supply / demand balance. Further, the daily power consumption depends on external conditions such as the climate and the weather of the day. Therefore, the baseline needs to be determined taking into account these environmental factors. One example of a model for formulating such a baseline is Baseline Type 1. In Baseline Type 1, a baseline is determined by adjusting the influence of external conditions on a moving average of power consumption on business days excluding holidays using a predetermined algorithm. In the present embodiment, the baseline formulation method is not limited to a specific method.
 符号11は、制御対象のビル2に設置された設備3によって実際に消費された消費電力を表す。図2では時刻tから時刻tの期間にDRが実行されている。すなわち、制御対象のビル2においてDRを実行するために選択された設備3が時刻tにおいて停止される。そして、停止された設備3が時刻tにおいて再起動される。そのため、時刻tから時刻tの間のDR実行期間においては電力消費量が低下する。しかしながら、DRの終了後、設備3の再起動によって消費電力がベースラインを大きく上回っている。これがリバウンド効果である。具体的には、図2の例の符号12が示す部分にリバウンド効果が表れている。 Reference numeral 11 represents the power consumption actually consumed by the equipment 3 installed in the building 2 to be controlled. DR is running during the time t 2 from time t 1 in FIG. That is, the equipment 3 which is selected to perform the DR is stopped at time t 1 in the building 2 to be controlled. The facilities 3 which are stopped is restarted at time t 2. Therefore, power consumption is reduced in the DR running period from time t 1 at time t 2. However, after the end of the DR, the power consumption greatly exceeds the baseline due to the restart of the equipment 3. This is the rebound effect. Specifically, the rebound effect appears in the portion indicated by reference numeral 12 in the example of FIG.
 図3は、VPP-NOC4及び負荷コントローラ5の機能構成を示す機能ブロック図である。
 まず、VPP-NOC4の機能構成について説明する。
 VPP-NOC4は、バスで接続されたCPU(Central Processing Unit)やメモリや補助記憶装置などを備え、DR制御プログラムを実行する。VPP-NOC4は、DR制御プログラムの実行によって通信部41、記憶部42、DR制御部43(制御部)、負荷情報取得部44及び起動情報決定部45(決定部)を備える装置として機能する。なお、VPP-NOC4の各機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。DR制御プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。DR制御プログラムは、電気通信回線を介して送信されてもよい。
FIG. 3 is a functional block diagram showing functional configurations of the VPP-NOC 4 and the load controller 5.
First, the functional configuration of the VPP-NOC 4 will be described.
The VPP-NOC 4 includes a CPU (Central Processing Unit), a memory, an auxiliary storage device, and the like connected by a bus, and executes a DR control program. The VPP-NOC 4 functions as a device including a communication unit 41, a storage unit 42, a DR control unit 43 (control unit), a load information acquisition unit 44, and an activation information determination unit 45 (determination unit) by executing a DR control program. Note that all or part of the functions of the VPP-NOC 4 may be realized by using hardware such as an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA). The DR control program may be recorded on a computer-readable recording medium. The computer-readable recording medium is, for example, a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in the computer system. The DR control program may be transmitted via a telecommunication line.
 通信部41は、LAN(Local Area Network)等の通信インターフェースを用いて構成される。通信部41は、負荷コントローラ5との間で通信する。
 記憶部42は、磁気ハードディスク装置や半導体記憶装置などの記憶装置を用いて構成される。記憶部42は、起動情報テーブル421を記憶する。
The communication unit 41 is configured using a communication interface such as a LAN (Local Area Network). The communication unit 41 communicates with the load controller 5.
The storage unit 42 is configured using a storage device such as a magnetic hard disk device or a semiconductor storage device. The storage unit 42 stores an activation information table 421.
 図4は、起動情報テーブル421の具体例を示す図である。
 起動情報テーブル421は、制御対象設備ごとに起動情報レコードを有する。起動情報レコードは、制御対象設備、リバウンド発生量、リバウンド時間、遅延有無及び遅延時間の各値を有する。制御対象設備は、DRの実行対象となる設備を表す。制御対象設備は、需要家と電力会社との間の契約内容や、気候によって変動する各設備3の電力消費の特性などの条件に基づいて、DRの実行時にVPP-NOC4によって選択される。
FIG. 4 is a diagram illustrating a specific example of the activation information table 421.
The activation information table 421 has an activation information record for each control target facility. The activation information record has values of control target equipment, rebound generation amount, rebound time, presence / absence of delay, and delay time. The control target equipment represents equipment that is a DR execution target. The control target equipment is selected by the VPP-NOC 4 at the time of DR execution based on the conditions such as the contents of the contract between the customer and the electric power company and the power consumption characteristics of each equipment 3 that varies depending on the climate.
 リバウンド発生量は、制御対象設備が起動時に消費する電力を示す起動時消費電力量を表す。リバウンド時間は、制御対象設備で発生したリバウンド効果が継続する時間を表す。具体的には、リバウンド時間は、制御対象設備の起動時から、リバウンド効果の発生後、消費電力が定常状態に近い程度に収束するまでの時間である。遅延時間有無は、リバウンド発生量及びリバウンド時間に基づいて決定され、制御対象設備の再起動のタイミングを遅延させるか否かを表す。遅延時間は、制御対象設備の再起動のタイミングをどれだけ遅延させるかを示す時間である。
 なお、リバウンド発生量は、上記の起動時消費電力量の他、過去のDRにおける制御対象設備の電力消費の実績に基づいて決定されてもよい。例えば、電力消費の実績に基づいて、制御対象設備ごとのベースラインが定められてもよい。この場合、リバウンド発生量は、各制御対象設備の消費電力が予め定められた各制御対象設備のベースラインを超過した電力量として決定されてもよい。
 また、リバウンド時間は、上記の「リバウンド効果が継続する時間」とされる他、制御対象設備の起動時から、リバウンド効果において消費電力のピークが発生するまでの時間として設定されてもよい。
The amount of rebound generated represents the power consumption at startup indicating the power consumed by the control target equipment at startup. The rebound time represents the time during which the rebound effect generated in the controlled facility continues. Specifically, the rebound time is the time from the start of the control target equipment until the power consumption converges to a level close to the steady state after the occurrence of the rebound effect. The presence or absence of the delay time is determined based on the amount of rebound generation and the rebound time, and represents whether or not to delay the restart timing of the controlled equipment. The delay time is a time indicating how much the restart timing of the controlled equipment is delayed.
Note that the amount of rebound generation may be determined based on the actual power consumption of the control target equipment in the past DR in addition to the above-described power consumption at startup. For example, a baseline for each control target facility may be determined based on the actual power consumption. In this case, the amount of rebound generation may be determined as the amount of power that exceeds the predetermined baseline of each control target facility.
Further, the rebound time may be set as the time from when the control target equipment is activated until the peak of power consumption occurs in the rebound effect, in addition to the “time when the rebound effect continues”.
 図3の説明に戻る。
 DR制御部43は、制御対象となるビル2のDRの実行を制御する。具体的には、DR制御部43は、通信部41を介して負荷コントローラ5にDR実行を指示する制御情報を送信する。DR制御部43は、DR実行を指示する際、制御対象設備を選択して負荷コントローラ5に通知する。DR制御部43は、選択した制御対象設備に対するDR実行を負荷コントローラ5に指示する。DR制御部43は、DRが終了すると、起動情報テーブル421の遅延有無及び遅延時間の値に基づいて、制御対象設備の再起動を負荷コントローラ5に指示する。
Returning to the description of FIG.
The DR control unit 43 controls the execution of DR of the building 2 to be controlled. Specifically, the DR control unit 43 transmits control information for instructing the load controller 5 to execute DR via the communication unit 41. When instructing DR execution, the DR control unit 43 selects the control target equipment and notifies the load controller 5 of it. The DR control unit 43 instructs the load controller 5 to execute DR on the selected control target equipment. When the DR is completed, the DR control unit 43 instructs the load controller 5 to restart the control target equipment based on the presence / absence of delay and the delay time value in the startup information table 421.
 負荷情報取得部44は、DR実行後、再起動された制御対象設備が消費した電力の情報(以下、「再起動電力情報」という。)を負荷コントローラ5から取得する。負荷情報取得部44は、再起動電力情報とベースラインとに基づいて制御対象設備ごとにリバウンド発生量及びリバウンド時間を取得する。負荷情報取得部44は、取得した制御対象設備ごとのリバウンド発生量及びリバウンド時間を起動情報テーブル421に登録する。 The load information acquisition unit 44 acquires, from the load controller 5, information on power consumed by the restarted control target equipment (hereinafter referred to as “restart power information”) after DR execution. The load information acquisition unit 44 acquires the rebound generation amount and the rebound time for each control target facility based on the restart power information and the baseline. The load information acquisition unit 44 registers the acquired rebound generation amount and rebound time for each control target facility in the activation information table 421.
 起動情報決定部45は、DR実行後の制御対象設備の再起動において、制御対象設備を起動するタイミングを示す遅延時間を決定する。具体的には、起動情報決定部45は、DR実行期間が終了したタイミングで再起動される制御対象設備について、各制御対象設備の再起動の遅延時間を決定する。遅延時間は、DR実行期間が終了したタイミングを基準とした時間である。起動情報決定部45は、起動情報テーブル421を参照し、制御対象設備のリバウンド発生量及びリバウンド時間を取得する。起動情報決定部45は、制御対象設備のリバウンド発生量及びリバウンド時間に基づいて、制御対象のビル2において各制御対象設備が再起動時に消費する電力がベースラインを超過しないように、各制御対象設備の遅延時間を決定する。図4の例の場合、設備7には、遅延時間が設定されていない。これは、設備7の遅延時間が“0”、すなわち遅延が無いことを表す。そのため、設備7の遅延有無は“無”となり、設備7以外の遅延有無は“有”となる。 The activation information determination unit 45 determines a delay time indicating the timing to activate the control target equipment when the control target equipment is restarted after the DR is executed. Specifically, the activation information determination unit 45 determines a delay time for restart of each control target facility for the control target facility restarted at the timing when the DR execution period ends. The delay time is a time based on the timing when the DR execution period ends. The activation information determination unit 45 refers to the activation information table 421 and acquires the rebound generation amount and the rebound time of the controlled facility. Based on the amount of rebound generated and the rebound time of the control target equipment, the start information determining unit 45 controls each control target so that the power consumed by each control target equipment in the control target building 2 does not exceed the baseline. Determine equipment delay time. In the example of FIG. 4, no delay time is set for the facility 7. This indicates that the delay time of the facility 7 is “0”, that is, there is no delay. Therefore, the presence / absence of delay of the facility 7 is “none”, and the presence / absence of delay of the facilities 7 other than “present”.
 次に、負荷コントローラ5の機能構成について説明する。
 負荷コントローラ5は、バスで接続されたCPUやメモリや補助記憶装置などを備え、DR実行プログラムを実行する。負荷コントローラ5は、DR実行プログラムの実行によって通信部51及びDR実行部52を備える装置として機能する。なお、負荷コントローラ5の各機能の全て又は一部は、ASICやPLDやFPGA等のハードウェアを用いて実現されてもよい。DR実行プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。DR実行プログラムは、電気通信回線を介して送信されてもよい。
Next, the functional configuration of the load controller 5 will be described.
The load controller 5 includes a CPU, a memory, an auxiliary storage device, and the like connected by a bus, and executes a DR execution program. The load controller 5 functions as a device including the communication unit 51 and the DR execution unit 52 by executing the DR execution program. All or some of the functions of the load controller 5 may be realized using hardware such as an ASIC, PLD, or FPGA. The DR execution program may be recorded on a computer-readable recording medium. The computer-readable recording medium is, for example, a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in the computer system. The DR execution program may be transmitted via a telecommunication line.
 通信部51は、LAN等の通信インターフェースを用いて構成される。通信部51は、VPP-NOC4との間で通信する。
 DR実行部52は、VPP-NOC4の指示に応じて制御対象設備のDRを実行する。
また、DR実行部52は、DR実行後、VPP-NOC4の指示に応じて制御対象設備を再起動させる。
The communication unit 51 is configured using a communication interface such as a LAN. The communication unit 51 communicates with the VPP-NOC 4.
The DR execution unit 52 executes DR of the control target equipment in accordance with an instruction from the VPP-NOC4.
Further, the DR execution unit 52 restarts the control target equipment in accordance with an instruction from the VPP-NOC 4 after the DR is executed.
 図5は、VPP-NOC4のDRの制御の流れを示すフローチャートである。
 まず、DR制御部43は、DR実行の対象となる制御対象設備を選択する(ステップS101)。DR制御部43は、選択した制御対象設備に対するDR実行を負荷コントローラ5に指示する(ステップS102)。
FIG. 5 is a flowchart showing a DR control flow of the VPP-NOC4.
First, the DR control unit 43 selects a control target facility that is a target of DR execution (step S101). The DR control unit 43 instructs the load controller 5 to execute DR on the selected control target equipment (step S102).
 次に、DR制御部43は、起動情報テーブル421を参照し、各制御対象設備の遅延時間の値を取得する。DR制御部43は、DR実行期間が終了したタイミングから、制御対象設備ごとに取得した遅延時間を待機する。DR制御部43は、待機時間が遅延時間を満了すると、遅延時間に対応する制御対象設備の起動を負荷コントローラ5に指示する。(ステップS103)。 Next, the DR control unit 43 refers to the activation information table 421 and acquires the value of the delay time of each control target facility. The DR control unit 43 waits for the delay time acquired for each control target facility from the timing when the DR execution period ends. When the standby time expires the delay time, the DR control unit 43 instructs the load controller 5 to start the control target equipment corresponding to the delay time. (Step S103).
 各制御対象設備の再起動が完了すると、起動情報決定部45は、遅延時間決定処理を行って(ステップS104)、次回のDR実行後の再起動時における各制御対象設備の遅延時間を決定する。 When the restart of each control target facility is completed, the start information determination unit 45 performs a delay time determination process (step S104), and determines the delay time of each control target facility at the time of restart after the next DR execution. .
 図6は、第1の実施形態における遅延時間決定処理の流れを示すフローチャートである。
 まず、負荷情報取得部44が、負荷コントローラ5から制御対象設備ごとの再起動電力情報を取得する(ステップS201)。負荷情報取得部44は、再起動電力情報とベースラインとに基づいて、制御対象設備ごとのリバウンド発生量とリバウンド時間とを取得する。負荷情報取得部44は、取得した各制御対象設備のリバウンド発生量とリバウンド時間とを起動情報テーブル421に登録する(ステップS202)。次に、起動情報決定部45は、制御対象設備のリバウンド発生量及びリバウンド時間に基づいて、各制御対象設備の遅延時間を決定する(ステップS203)。起動情報決定部45は、決定した各制御対象設備の遅延時間を起動情報テーブル421に登録する。
FIG. 6 is a flowchart showing the flow of the delay time determination process in the first embodiment.
First, the load information acquisition unit 44 acquires restart power information for each control target facility from the load controller 5 (step S201). The load information acquisition unit 44 acquires the rebound generation amount and the rebound time for each control target facility based on the restart power information and the baseline. The load information acquisition unit 44 registers the acquired rebound generation amount and rebound time of each control target facility in the activation information table 421 (step S202). Next, the activation information determination unit 45 determines the delay time of each control target facility based on the rebound generation amount and the rebound time of the control target facility (step S203). The activation information determination unit 45 registers the determined delay time of each control target facility in the activation information table 421.
 図7は、第1の実施形態のVPPシステム1の動作例を示す図である。
 図7において横軸は時間、縦軸は制御対象のビル2における消費電力を表す。図7の符号10は制御対象のビル2に設定されたベースラインを表す。符号13は、制御対象のビル2に設置された設備3によって実際に消費された電力を表す。図7では時刻tから時刻tの期間にDRが実行されている。すなわち、制御対象のビル2においてDRを実行するために選択された設備3が時刻tにおいて停止される。そして、停止された設備3が時刻tにおいて再起動される。そのため、時刻tから時刻tの間のDR実行期間においては電力消費量が低下する。そして、時刻tを基準として決定された遅延時間に基づいて制御対象設備が起動されることによって、制御対象のビル2においてDR実行後のリバウンド効果が抑制される。符号14-1~14-3は、制御対象設備ごとの起動時の電力消費を表す。制御対象設備が図7のようにタイミングをずらして起動されることによって、各制御対象設備のリバウンドピークが重複しないように制御される。
FIG. 7 is a diagram illustrating an operation example of the VPP system 1 according to the first embodiment.
In FIG. 7, the horizontal axis represents time, and the vertical axis represents power consumption in the building 2 to be controlled. Reference numeral 10 in FIG. 7 represents a baseline set in the building 2 to be controlled. The code | symbol 13 represents the electric power actually consumed by the installation 3 installed in the building 2 to be controlled. DR is running during the time period from t 4 in FIG. 7 at time t 3. That is, the equipment 3 which is selected to perform the DR is stopped at time t 3 in the building 2 to be controlled. The facilities 3 which are stopped is restarted at time t 4. Therefore, power consumption is reduced in the DR running period from time t 3 at time t 4. Then, the controlled installation based time t 4 to the delay time determined as a reference by being activated, rebound effect after DR execution is suppressed in the building 2 to be controlled. Reference numerals 14-1 to 14-3 represent power consumption at the start-up for each control target facility. By starting the control target equipment at different timings as shown in FIG. 7, the rebound peaks of the control target equipment are controlled so as not to overlap.
 なお、図1のようにVPPシステム1の制御対象のビルにBAS6が存在する場合は、BAS6がVPP-NOC4と同様の機能構成を持つことによって、DRが制御されてもよい。この場合、BAS6は、自システムが設置されたビル2内の制御対象設備について、VPP-NOC4と同様の遅延時間決定処理を行って、DR実行後の再起動における各制御対象設備の遅延時間を決定する。 In addition, when BAS6 exists in the control object building of VPP system 1 like FIG. 1, DR may be controlled by BAS6 having the same function structure as VPP-NOC4. In this case, the BAS 6 performs a delay time determination process similar to that of the VPP-NOC 4 for the control target equipment in the building 2 where the own system is installed, and sets the delay time of each control target equipment in the restart after the DR execution. decide.
 このように構成された第1の実施形態のVPPシステム1では、制御対象設備ごとのリバウンド発生量に基づいて、DR実行後の再起動における遅延時間が決定される。DRの完了後、この遅延時間に基づいて各制御対象設備が再起動されることによって、VPPにおけるリバウンドピークの発生を抑制することができる。 In the VPP system 1 of the first embodiment configured as described above, the delay time in restart after DR execution is determined based on the amount of rebound generated for each control target facility. After the completion of DR, each controlled object facility is restarted based on this delay time, whereby the occurrence of a rebound peak in VPP can be suppressed.
(第2の実施形態)
 図8は、第2の実施形態のVPPシステム1aのシステム構成を示すシステム構成図である。
 図8のVPPシステム1aは、ビル2-1~2-3を制御するVPPである。ビル2-1~2-3は、VPPシステム1aの制御対象となる建物である。VPPシステム1aは、負荷コントローラ5及びBAS6に代えてCBEMS(登録商標、以下同様)(Cluster Building Energy Management System)7を備える点でVPPシステム1と異なる。VPP-NOC4は、CBEMS7を制御し、制御対象となる建物単位のデマンドレスポンス(DR)を実行する。
(Second Embodiment)
FIG. 8 is a system configuration diagram showing a system configuration of the VPP system 1a of the second embodiment.
The VPP system 1a shown in FIG. 8 is a VPP that controls the buildings 2-1 to 2-3. Buildings 2-1 to 2-3 are buildings to be controlled by the VPP system 1a. The VPP system 1 a is different from the VPP system 1 in that a CBEMS (registered trademark, the same applies hereinafter) (Cluster Building Energy Management System) 7 is provided instead of the load controller 5 and the BAS 6. The VPP-NOC 4 controls the CBEMS 7 and executes a demand response (DR) for each building to be controlled.
 図9は、第2の実施形態におけるリバウンド効果の具体例を示す図である。
 図9において横軸は時間、縦軸は制御対象の全てのビルの消費電力の合計を表す。図9の符号15はベースラインを表す。符号16は、制御対象のビル2において実際に消費された電力を表す。図9では時刻tから時刻tの期間にDRが実行されている。すなわち、DRを実行するために制御対象のビル2から選択された各ビル2において、DR実行対象の設備が停止される。そして、停止された各ビル2の設備は時刻tにおいて再起動される。そのため、時刻tから時刻tの間のDR実行期間においては電力消費量が低下する。しかしながら、DRの終了後、DRの実行対象となった各ビル2の消費電力の合計がベースラインを大きく上回っている。これが第2の実施形態におけるリバウンド効果である。具体的には、図9の例の符号17が示す部分にリバウンド効果が表れている。
FIG. 9 is a diagram illustrating a specific example of the rebound effect in the second embodiment.
In FIG. 9, the horizontal axis represents time, and the vertical axis represents the total power consumption of all buildings to be controlled. Reference numeral 15 in FIG. 9 represents a baseline. Reference numeral 16 represents the power actually consumed in the controlled building 2. DR is running during the time period from t 6 from time t 5 in FIG. In other words, the DR execution target equipment is stopped in each building 2 selected from the control target buildings 2 to execute DR. The facilities each building 2 which has been stopped is restarted at time t 5. Therefore, power consumption is reduced in the DR running period from time t 5 the time t 6. However, after the end of the DR, the total power consumption of each building 2 that is the DR execution target greatly exceeds the baseline. This is the rebound effect in the second embodiment. Specifically, the rebound effect appears in the portion indicated by reference numeral 17 in the example of FIG.
 図10は、CBEMS7の機能構成を示す機能ブロック図である。
 CBEMS7(制御装置)は、通信部71、記憶部72、DR制御部73(制御部)、負荷情報取得部74及び起動情報決定部75(決定部)を備える。
FIG. 10 is a functional block diagram showing a functional configuration of the CBEMS 7. As shown in FIG.
The CBEMS 7 (control device) includes a communication unit 71, a storage unit 72, a DR control unit 73 (control unit), a load information acquisition unit 74, and an activation information determination unit 75 (determination unit).
 通信部71は、LAN等の通信インターフェースを用いて構成される。通信部71は、各ビル2との間で通信する。
 記憶部72は、磁気ハードディスク装置や半導体記憶装置などの記憶装置を用いて構成される。記憶部72は、起動情報テーブル721を記憶する。
The communication unit 71 is configured using a communication interface such as a LAN. The communication unit 71 communicates with each building 2.
The storage unit 72 is configured using a storage device such as a magnetic hard disk device or a semiconductor storage device. The storage unit 72 stores an activation information table 721.
 図11は、起動情報テーブル721の具体例を示す図である。
 起動情報テーブル721は、制御対象ビルごとに起動情報レコードを有する。起動情報レコードは、制御対象ビル、リバウンド発生量、リバウンド時間、遅延有無及び遅延時間の各値を有する。制御対象ビルは、DRの実行対象となるビルを表す。制御対象ビルは、需要家と電力会社との間の契約内容や、気候によって変動する各ビルの電力消費の特性などの条件に基づいて、DRの実行時に選択される。
FIG. 11 is a diagram illustrating a specific example of the activation information table 721.
The activation information table 721 has an activation information record for each control target building. The activation information record has values of a control target building, a rebound generation amount, a rebound time, a delay presence / absence, and a delay time. The control target building represents a building that is a DR execution target. The controlled building is selected at the time of DR execution based on conditions such as the contents of the contract between the customer and the electric power company and the characteristics of the power consumption of each building that varies depending on the climate.
 リバウンド発生量は、制御対象ビルで発生したリバウンド効果において、消費電力がベースラインを超過した電力量を表す。リバウンド時間は、制御対象ビルで発生したリバウンド効果が継続する時間を表す。遅延時間有無は、リバウンド発生量及びリバウンド時間に基づいて決定され、制御対象ビルの設備を制御対象ビルごとに再起動するタイミングを遅延させるか否かを表す。遅延時間は、制御対象ビルの設備の再起動のタイミングをどれだけ遅延させるかを示す時間である。 The rebound generation amount represents the amount of power that has exceeded the baseline due to the rebound effect generated in the controlled building. The rebound time represents the time during which the rebound effect generated in the controlled building continues. The presence or absence of the delay time is determined based on the amount of rebound generated and the rebound time, and represents whether or not to delay the timing of restarting the equipment of the controlled building for each controlled building. The delay time is a time indicating how much the restart timing of the equipment of the controlled building is delayed.
 図10の説明に戻る。
 DR制御部73は、制御対象となるビル2のDRの実行を制御する。DR制御部73は、VPP-NOC4からDR実行の指示を受け付ける。DR制御部73は、DR実行の指示に応じて制御対象ビルを選択する。DR制御部73は、選択した制御対象ビルに対してDRを実行する。DR制御部73は、DRの実行が完了すると、起動情報テーブル721の遅延有無及び遅延時間の値に基づいて、制御対象ビルごとに設備を再起動する。
Returning to the description of FIG.
The DR control unit 73 controls execution of DR of the building 2 to be controlled. The DR control unit 73 receives a DR execution instruction from the VPP-NOC 4. The DR control unit 73 selects a control target building according to the DR execution instruction. The DR control unit 73 executes DR for the selected control target building. When the execution of the DR is completed, the DR control unit 73 restarts the equipment for each controlled building based on the presence / absence of delay and the value of the delay time in the activation information table 721.
 負荷情報取得部74は、DR実行後、設備が再起動された後に各制御対象ビルにおいて消費された電力の情報(以下、「再起動電力情報」という。)を取得する。負荷情報取得部74は、再起動電力情報とベースラインとに基づいて制御対象ビルごとにリバウンド発生量及びリバウンド時間を取得する。負荷情報取得部74を取得したリバウンド発生量及びリバウンド時間を起動情報テーブル721に登録する。 The load information acquisition unit 74 acquires information on power consumed in each controlled building after the equipment is restarted after DR execution (hereinafter referred to as “restart power information”). The load information acquisition unit 74 acquires the rebound generation amount and the rebound time for each controlled building based on the restart power information and the baseline. The rebound generation amount and rebound time acquired by the load information acquisition unit 74 are registered in the activation information table 721.
 起動情報決定部75は、DR実行後の制御対象ビルの設備の再起動において、制御対象ビルの設備を起動するタイミングを決定する。具体的には、起動情報決定部75は、DR実行期間が終了したタイミングにおいて設備が再起動される制御対象ビルについて、各制御対象ビルの遅延時間を決定する。起動情報決定部75は、起動情報テーブル721を参照し、制御対象ビルごとにリバウンド発生量及びリバウンド時間を取得する。起動情報決定部75は、制御対象ビルのリバウンド発生量及びリバウンド時間に基づいて、制御対象ビルの設備の再起動時に消費される電力がベースラインを超過しないように、各制御対象ビルの遅延時間を決定する。図11の例の場合、ビル7には、遅延時間が設定されていない。これは、ビル7の遅延時間が“0”、すなわち遅延が無いことを表す。そのため、ビル7の遅延有無は“無”となり、ビル7以外の遅延有無は“有”となる。 The activation information determination unit 75 determines the timing for starting the equipment of the controlled building in the restart of the equipment of the controlled building after DR execution. Specifically, the activation information determination unit 75 determines the delay time of each control target building for the control target building whose facilities are restarted at the timing when the DR execution period ends. The activation information determination unit 75 refers to the activation information table 721 and acquires the rebound generation amount and the rebound time for each controlled building. The activation information determination unit 75 determines the delay time of each control target building so that the power consumed when the equipment of the control target building is restarted does not exceed the baseline based on the rebound generation amount and the rebound time of the control target building. To decide. In the example of FIG. 11, no delay time is set for the building 7. This indicates that the delay time of the building 7 is “0”, that is, there is no delay. Therefore, the presence / absence of delay of the building 7 is “None”, and the presence / absence of delay of the building 7 other than “Yes”.
 図12は、CBEMS7のDRの制御の流れを示すフローチャートである。
 まず、DR制御部73は、VPP-NOC4からDRの実行指示が行われたか否かを判定する(ステップS301)。DRの実行指示が行われていないことが判定された場合(ステップS301-NO)、ステップS301に戻り、DR制御部73は、DRの実行指示が行われたか否かの判定を繰り返す。一方、DRの実行指示が行われたことが判定された場合(ステップS301-YES)、DR制御部73は、DR実行の指示に応じて制御対象ビルを選択する(ステップS302)。DR制御部73は、選択した制御対象ビルに対してDRを実行し、制御対象ビルの設備の稼働を停止させる(ステップS303)。
FIG. 12 is a flowchart showing the DR control flow of the CBEMS 7.
First, the DR control unit 73 determines whether or not a DR execution instruction has been issued from the VPP-NOC 4 (step S301). If it is determined that the DR execution instruction has not been issued (step S301—NO), the process returns to step S301, and the DR control unit 73 repeats the determination of whether or not the DR execution instruction has been issued. On the other hand, when it is determined that a DR execution instruction has been performed (YES in step S301), the DR control unit 73 selects a control target building in accordance with the DR execution instruction (step S302). The DR control unit 73 executes DR on the selected control target building and stops the operation of the equipment of the control target building (step S303).
 次に、DR制御部73は、起動情報テーブル721を参照し、各制御対象ビルの遅延時間の値を取得する。DR制御部73は、DR実行期間が終了したタイミングから、制御対象ビルごとに取得した遅延時間を待機する。DR制御部73は、待機時間が遅延時間を満了すると、遅延時間に対応する制御対象ビルの設備を起動させる。(ステップS304)。 Next, the DR control unit 73 refers to the activation information table 721 and acquires the delay time value of each control target building. The DR control unit 73 waits for the delay time acquired for each control target building from the timing when the DR execution period ends. When the standby time expires the delay time, the DR control unit 73 activates the equipment of the controlled building corresponding to the delay time. (Step S304).
 各制御対象ビルの設備の再起動が完了すると、CBEMS7は、遅延時間決定処理を行って(ステップS305)、次回のDR実行後の再起動時における各制御対象ビルの遅延時間を決定する。 When the restart of the facilities of each control target building is completed, the CBEMS 7 performs a delay time determination process (step S305), and determines the delay time of each control target building at the time of restart after the next DR execution.
 図13は、第2の実施形態における遅延時間決定処理の流れを示すフローチャートである。
 まず、負荷情報取得部74が、制御対象ビルごとに再起動電力情報を取得する(ステップS401)。負荷情報取得部74は、再起動電力情報とベースラインとに基づいて、制御対象ビルごとのリバウンド発生量とリバウンド時間とを取得する。負荷情報取得部74は、取得した各制御対象ビルのリバウンド発生量とリバウンド時間とを起動情報テーブル721に登録する(ステップS402)。次に、起動情報決定部75は、制御対象ビルのリバウンド発生量及びリバウンド時間に基づいて、各制御対象ビルの遅延時間を決定する(ステップS403)。起動情報決定部75は、決定した各制御対象ビルの遅延時間を起動情報テーブル721に登録する。
FIG. 13 is a flowchart showing the flow of the delay time determination process in the second embodiment.
First, the load information acquisition unit 74 acquires restart power information for each control target building (step S401). The load information acquisition unit 74 acquires a rebound generation amount and a rebound time for each control target building based on the restart power information and the baseline. The load information acquisition unit 74 registers the acquired rebound generation amount and rebound time of each control target building in the activation information table 721 (step S402). Next, the activation information determination unit 75 determines the delay time of each control target building based on the rebound generation amount and rebound time of the control target building (step S403). The activation information determination unit 75 registers the determined delay time of each control target building in the activation information table 721.
 図14は、第2の実施形態のVPPシステム1aの動作例を示す図である。
 図14において横軸は時間、縦軸は制御対象ビルにおける消費電力を表す。図14の符号15は全ての制御対象ビルにおいて消費される電力のベースラインを表す。符号18は、全ての制御対象ビルにおいて実際に消費された消費電力の合計を表す。図14では時刻tから時刻tの期間にDRが実行されている。すなわち、制御対象のビル群に対してDRを実行するために選択された制御対象ビルの設備が時刻tにおいて停止される。そして停止された制御対象ビルの設備が時刻tにおいて再起動される。そのため、時刻tから時刻tのDR実行期間における電力消費量が低下する。そして、時刻tを基準として決定された遅延時間に基づいて制御対象ビルごとに設備が起動されることによって、制御対象のビル群においてDR実行後のリバウンド効果が抑制される。符号19-1~19-3は、制御対象ビルごとの起動時の電力消費を表す。制御対象ビルの設備が図14のようにタイミングをずらして起動されることによって、各制御対象ビルのリバウンドピークが重複しないように制御される。
FIG. 14 is a diagram illustrating an operation example of the VPP system 1a according to the second embodiment.
In FIG. 14, the horizontal axis represents time, and the vertical axis represents power consumption in the controlled building. Reference numeral 15 in FIG. 14 represents a baseline of power consumed in all controlled buildings. The code | symbol 18 represents the sum total of the power consumption actually consumed in all the control object buildings. DR is running during the time t 8 from FIG. 14 at time t 7. That is, the equipment of the selected control target buildings to perform the DR is stopped at time t 7 against buildings of the controlled object. The facilities of stop controlled object buildings is restarted at time t 8. Therefore, power consumption in the DR execution period of time t 8 from the time t 7 is lowered. Then, by the equipment is started every control target building on the basis of time t 8 to the delay time which is determined as a reference, rebound effect after DR execution is suppressed in buildings of the controlled object. Reference numerals 19-1 to 19-3 represent power consumption at the time of activation for each control target building. The equipment of the control target building is activated at different timings as shown in FIG. 14 so that the rebound peaks of the control target buildings are not overlapped.
 このように構成された第2の実施形態のVPPシステム1aでは、制御対象ビルごとのリバウンド発生量に基づいて、DR実行後の各制御対象ビルの設備の再起動における遅延時間が決定される。DRの完了後、この遅延時間に基づいて各制御対象ビルの設備が再起動されることによって、VPPにおけるリバウンドピークの発生を抑制することができる。 In the VPP system 1a of the second embodiment configured as described above, the delay time in restarting the equipment of each controlled building after DR execution is determined based on the amount of rebound generated for each controlled building. After the completion of DR, the equipment of each controlled building is restarted based on this delay time, so that the occurrence of rebound peaks in VPP can be suppressed.
 以下に、実施形態のVPPシステム1及び1aの変形例について説明する。
 図15は、変形例のVPPシステム1の動作例を示す図である。
 図15において横軸は時間、縦軸は制御対象設備における消費電力を表す。図15の符号10は制御対象のビル2に設定されたベースラインを表す。符号20は、制御対象のビル2に設置された設備3によって実際に消費された電力を表す。図15では時刻tから時刻t10の期間にDRが実行されている。すなわち、制御対象のビル2においてDRを実行するために選択された設備3が時刻tにおいて停止される。そして、停止された設備3が時刻t10において再起動される。そのため、時刻tから時刻t10の間のDR実行期間においては電力消費量が低下する。そして、時刻tを基準として決定された遅延時間に基づいて制御対象設備が起動される。図15のように、制御対象設備の遅延時間は、制御対象設備の起動によるリバウンドピークの発生時間が電力料金が低い時間帯となるように決定されてもよい。VPPシステム1aにおいても同様に、制御対象ビルの遅延時間は、制御対象ビルの設備の再起動によるリバウンドピークの発生時間が電力料金が低い時間帯となるように決定されてもよい。
Below, the modification of VPP system 1 and 1a of embodiment is demonstrated.
FIG. 15 is a diagram illustrating an operation example of the modified VPP system 1.
In FIG. 15, the horizontal axis represents time, and the vertical axis represents power consumption in the control target equipment. Reference numeral 10 in FIG. 15 represents a baseline set in the building 2 to be controlled. Reference numeral 20 represents the power actually consumed by the equipment 3 installed in the building 2 to be controlled. DR is running during the time t 10 from FIG. 15 at time t 9. That is, the equipment 3 which is selected to perform the DR is stopped at time t 9 in building 2 to be controlled. Then, it restarted in equipment 3 the time t 10 which is stopped. Therefore, power consumption is reduced in the DR running period between the time t 10 from the time t 9. Then, the controlled installation on the basis of time t 9 to the delay time determined as a reference is activated. As illustrated in FIG. 15, the delay time of the control target facility may be determined such that the generation time of the rebound peak due to the start of the control target facility is a time zone in which the power rate is low. Similarly, in the VPP system 1a, the delay time of the control target building may be determined so that the generation time of the rebound peak due to the restart of the equipment of the control target building is a time zone in which the power rate is low.
 実施形態のVPPシステム1aは、遅延時間の長さに応じたインセンティブを制御対象ビルに与えてもよい。例えば、CBEMS7の記憶部72は、制御対象ビルごとにインセンティブが設定された起動情報テーブル721aを記憶する。
 図16は、起動情報テーブル721aの具体例を示す図である。
 起動情報テーブル721aは、制御対象ビルごとに起動情報レコードを有する。起動情報レコードは、制御対象ビル、リバウンド発生量、リバウンド時間、遅延有無、遅延時間及びインセンティブの各値を有する。制御対象ビル、リバウンド発生量、リバウンド時間、遅延有無及び遅延時間は、起動情報テーブル721と同様である。インセンティブは、遅延時間に応じて設定されたインセンティブの量を表す。図16の例では、遅延時間が大きい制御対象ビルほど、大きなインセンティブの値が設定されている。VPPシステム1aは、DRに協力した制御対象ビルに遅延時間に応じたインセンティブを与えることによって、電力需要家がDRに協力するモチベーションを向上させることができる。
The VPP system 1a of the embodiment may give an incentive according to the length of the delay time to the controlled building. For example, the storage unit 72 of the CBEMS 7 stores an activation information table 721a in which an incentive is set for each control target building.
FIG. 16 is a diagram illustrating a specific example of the activation information table 721a.
The activation information table 721a has an activation information record for each control target building. The activation information record has values of a control target building, a rebound generation amount, a rebound time, a delay presence / absence, a delay time, and an incentive. The controlled object building, rebound generation amount, rebound time, presence / absence of delay, and delay time are the same as those in the activation information table 721. The incentive represents the amount of incentive set according to the delay time. In the example of FIG. 16, a larger incentive value is set for a control target building having a longer delay time. The VPP system 1a can improve the motivation of a power consumer to cooperate with DR by giving an incentive according to delay time to the controlled building cooperated with DR.
 VPPシステム1は、DRの実行時において、制御対象となる設備を段階的に停止させることによってリバウンド発生量を低減させてもよい。
 図17は、段階的なDRの実行を行ったときのリバウンド効果の具体例を示す図である。
 図17においてDRの実行期間は時刻t12~時刻t15の間の時間である。符号30は、通常のDRを実行したときの消費電力を表す。通常のDRによって生じるリバウンド効果のリバウンド量はRである。符号31は、通常のDRの開始時刻t12より前の時刻t11から段階的に制御対象となる設備を停止させた場合の消費電力を表す。この場合、DRの終了時刻t15における制御対象のビルの温度変化は、通常のDRが実行された場合よりも小さくなる。そのため、DRの実行時において符号31が示すように制御対象設備が停止された場合、通常のDR実行時よりも発生するリバウンド量が低減される。
The VPP system 1 may reduce the amount of rebound generated by stopping the equipment to be controlled in stages during DR execution.
FIG. 17 is a diagram illustrating a specific example of the rebound effect when the stepwise DR is executed.
In FIG. 17, the DR execution period is the time between time t 12 and time t 15 . Reference numeral 30 represents power consumption when normal DR is executed. The rebound amount of the rebound effect caused by normal DR is R. Reference numeral 31 represents a power consumption in the case of the conventional DR start time t 12 earlier than the time t 11 to stop the equipment to be stepwise controlled. In this case, the temperature change of the control target of the building at the end time t 15 of the DR is smaller than the normal DR is performed. Therefore, when the controlled object facility is stopped as indicated by reference numeral 31 at the time of DR execution, the amount of rebound that occurs is smaller than that at the time of normal DR execution.
 また、符号32は、通常のDRの開始時刻t12から段階的に制御対象設備を停止させ、通常のDRよりも多くの制御対象設備を停止させた場合の消費電力を表す。この場合、DRの終了時刻t15における制御対象のビルの温度変化は、通常のDRが実行された場合よりも小さくなる。そのため、DRの実行時において符号32が示すように制御対象設備が停止された場合、通常のDR実行時よりも発生するリバウンド量が低減される。 Further, reference numeral 32 is stepwise the controlled installation is stopped from the start time t 12 the normal DR, representing the power consumption when stopping the number of the controlled installation than conventional DR. In this case, the temperature change of the control target of the building at the end time t 15 of the DR is smaller than the normal DR is performed. Therefore, when the controlled equipment is stopped as indicated by reference numeral 32 at the time of DR execution, the amount of rebound that occurs compared to the time of normal DR execution is reduced.
 以上説明した構成は、必ずしもVPPシステムに対して適用される必要は無い。同様に、以上説明した構成は、必ずしもデマンドレスポンスが実行されるシステムに対して適用される必要は無い。すなわち、以上説明した構成は、電力消費を抑制するために管理対象となる複数の設備について動作の制限及び解除を行うシステム全般に適用することが可能である。この動作の制限は、上述したデマンドレスポンスに基づく設備の停止及び起動や、省電力動作などの制限である。
 第1の実施形態において、各設備が設置される対象は、必ずしもビルである必要は無く、複数の設備による消費電力が共通して管理される施設であればどのような施設であってもよい。例えば、各設備が設置される対象は、博物館、レジャー施設(例えばスキー場、野球場など)、駐車場を備える施設であってもよい。
 第2の実施形態において、システムによって管理される対象は必ずしも複数のビルである必要は無く、複数の施設による消費電力が共通して管理される区域であればどのような区域であっても良い。例えば、大学や病院や工業地帯のように複数の施設を備える区域、市区町村のような行政区域であってもよい。
 第1実施形態及び第2実施形態におけるリバウンド時間は、必ずしもリバウンド効果が継続する時間である必要はなく、管理対象の設備又は施設の起動から消費電力のピークが発生するまでの時間であってもよい。
The configuration described above is not necessarily applied to the VPP system. Similarly, the configuration described above is not necessarily applied to a system in which a demand response is executed. In other words, the configuration described above can be applied to all systems that limit and cancel operations of a plurality of facilities to be managed in order to reduce power consumption. This restriction of operation is a restriction such as stopping and starting of equipment based on the above-described demand response and power saving operation.
In the first embodiment, a target on which each facility is installed does not necessarily need to be a building, and may be any facility as long as power consumption by a plurality of facilities is managed in common. . For example, an object on which each facility is installed may be a museum, a leisure facility (for example, a ski resort, a baseball field, etc.), or a facility including a parking lot.
In the second embodiment, the objects managed by the system do not necessarily need to be a plurality of buildings, and may be any area as long as the power consumption by a plurality of facilities is managed in common. . For example, it may be an area having a plurality of facilities such as a university, a hospital or an industrial area, or an administrative area such as a municipality.
The rebound time in the first embodiment and the second embodiment does not necessarily need to be the time for which the rebound effect continues, even if it is the time from the start of the managed equipment or facility to the peak of power consumption. Good.
 以上説明した少なくともひとつの実施形態によれば、施設内の設備の停止期間が終了するタイミングを基準として、施設内の設備ごとに取得される遅延時間の経過後に各設備の起動を制御するDR制御部を持つことにより、リバウンド効果による単位時間当たりの消費電力の増大を抑えることができる。 According to at least one embodiment described above, DR control that controls the start-up of each equipment after the delay time acquired for each equipment in the facility elapses with reference to the timing when the equipment stoppage in the facility ends. By having a portion, an increase in power consumption per unit time due to the rebound effect can be suppressed.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.
1、1a…VPPシステム,2、2-1、2-2…ビル,3、3-1-1、3-1-2、3-2-1、3-2-2…設備,4…VPP-NOC(VPP Network Operation Center),5…負荷コントローラ,51…通信部,52…記憶部,53…DR制御部,54…負荷情報取得部,55…起動情報決定部,6…BAS(Building Automation System),7…CBEMS(Cluster Building Energy Management System),71…通信部,72…記憶部,73…DR制御部,74…負荷情報取得部,75…起動情報決定部 1, 1a ... VPP system, 2, 2-1, 2-2 ... Building, 3, 3-1-1, 3-1-2, 3-2-1, 3-2-2 ... Equipment, 4 ... VPP -NOC (VPP Network Operation Center), 5 ... load controller, 51 ... communication unit, 52 ... storage unit, 53 ... DR control unit, 54 ... load information acquisition unit, 55 ... starting information determination unit, 6 ... BAS (Building Automation) System), 7 ... CBEMS (Cluster Building Energy Management System), 71 Communication unit, 72 Storage unit, 73 DR control unit, 74 Load information acquisition unit, 75 Start-up information determination unit

Claims (9)

  1.  電力消費の抑制のために動作が制限される複数の管理対象について、前記管理対象ごとに決定される時間に基づいて前記管理対象の動作の制限を解除する制御情報を出力する制御部を備える、
    制御装置。
    For a plurality of management targets whose operations are restricted to suppress power consumption, a control unit that outputs control information for releasing the restriction on the management target operations based on a time determined for each management target is provided.
    Control device.
  2.  前記時間は、前記管理対象のリバウンド効果におけるリバウンド発生量及びリバウンド時間に基づいて決定される、
    請求項1に記載の制御装置。
    The time is determined based on a rebound generation amount and a rebound time in the managed rebound effect,
    The control device according to claim 1.
  3.  前記時間は、個々の管理対象の消費電力又は各管理対象の消費電力の合計が、予め設定されたベースラインを超過しないように決定される、
    請求項1に記載の制御装置。
    The time is determined so that the power consumption of each management target or the total power consumption of each management target does not exceed a preset baseline.
    The control device according to claim 1.
  4.  前記管理対象は、デマンドレスポンスに基づいて動作が制限される、
    請求項1に記載の制御装置。
    The management target is limited in operation based on demand response.
    The control device according to claim 1.
  5.  前記制御部は、デマンドレスポンスに基づくタイミングを基準として、前記時間の経過後に各管理対象の動作の制限を解除する制御情報を出力する、
    請求項4に記載の制御装置。
    The control unit outputs control information for releasing the restriction on the operation of each managed object after the elapse of time, based on the timing based on the demand response.
    The control device according to claim 4.
  6.  基準とする前記タイミングから消費電力のピークが生じるまでの時間に基づいて、前記管理対象ごとの前記時間を決定する決定部をさらに備える、
    請求項4に記載の制御装置。
    Further comprising a determining unit that determines the time for each of the management targets based on a time from when the reference timing is reached until a peak of power consumption occurs.
    The control device according to claim 4.
  7.  デマンドレスポンスに基づいて動作が制限される複数の管理対象について、デマンドレスポンスに基づいて前記管理対象を段階的に停止させる制御情報を出力する制御部を備える、
    制御装置。
    For a plurality of management objects whose operations are restricted based on a demand response, a control unit that outputs control information for stopping the management objects in stages based on a demand response is provided.
    Control device.
  8.  電力消費の抑制のために動作が制限される複数の管理対象について、前記管理対象ごとに決定される時間に基づいて前記管理対象の動作の制限を解除する制御情報を出力する制御ステップを有する、
    制御方法。
    For a plurality of management objects whose operations are restricted to suppress power consumption, the control step of outputting control information for releasing the restriction of the operations of the management objects based on a time determined for each management object,
    Control method.
  9.  電力消費の抑制のために動作が制限される複数の管理対象について、前記管理対象ごとに決定される時間に基づいて前記管理対象の動作の制限を解除する制御情報を出力する制御ステップを、
    コンピュータに実行させるためのコンピュータプログラム。
    For a plurality of management targets whose operations are restricted to suppress power consumption, a control step of outputting control information for releasing the restriction on the management target operations based on a time determined for each management target,
    A computer program for causing a computer to execute.
PCT/JP2015/069929 2014-07-18 2015-07-10 Control device, control method and computer program WO2016009966A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014148298A JP2016025752A (en) 2014-07-18 2014-07-18 Control apparatus, control method and computer program
JP2014-148298 2014-07-18

Publications (1)

Publication Number Publication Date
WO2016009966A1 true WO2016009966A1 (en) 2016-01-21

Family

ID=55078460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069929 WO2016009966A1 (en) 2014-07-18 2015-07-10 Control device, control method and computer program

Country Status (2)

Country Link
JP (1) JP2016025752A (en)
WO (1) WO2016009966A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105896613A (en) * 2016-05-25 2016-08-24 重庆大学 Microgrid distributed finite time control method based on communication lag
JP2017135824A (en) * 2016-01-27 2017-08-03 住友電気工業株式会社 Power consumption management device, power consumption management system and power consumption management program

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019054579A (en) * 2017-09-13 2019-04-04 株式会社日立製作所 Demand response system and method for controlling power demand
JP2020022339A (en) * 2018-07-20 2020-02-06 積水化学工業株式会社 Power management system, power management device and program
JP7220265B1 (en) 2021-09-14 2023-02-09 株式会社トーエネック Demand control device and demand control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0595629A (en) * 1991-09-30 1993-04-16 Toshiba Corp Power-saving system
JP2007159341A (en) * 2005-12-08 2007-06-21 Hitachi Ltd Load monitoring control method/system
JP2013132187A (en) * 2011-12-22 2013-07-04 Toshiba Corp Operation control system and method of electric apparatus
JP2013188079A (en) * 2012-03-09 2013-09-19 Toshiba Corp Electric power demand control device and electric power demand control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0595629A (en) * 1991-09-30 1993-04-16 Toshiba Corp Power-saving system
JP2007159341A (en) * 2005-12-08 2007-06-21 Hitachi Ltd Load monitoring control method/system
JP2013132187A (en) * 2011-12-22 2013-07-04 Toshiba Corp Operation control system and method of electric apparatus
JP2013188079A (en) * 2012-03-09 2013-09-19 Toshiba Corp Electric power demand control device and electric power demand control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017135824A (en) * 2016-01-27 2017-08-03 住友電気工業株式会社 Power consumption management device, power consumption management system and power consumption management program
CN105896613A (en) * 2016-05-25 2016-08-24 重庆大学 Microgrid distributed finite time control method based on communication lag

Also Published As

Publication number Publication date
JP2016025752A (en) 2016-02-08

Similar Documents

Publication Publication Date Title
WO2016009966A1 (en) Control device, control method and computer program
JP6605609B2 (en) Power consumption control
WO2015122074A1 (en) Demand control device and program
US9853448B2 (en) Systems and methods for coordinating electrical network optimization
JP5439424B2 (en) Control device
JP6426234B2 (en) POWER CONTROL DEVICE, POWER CONTROL METHOD, AND POWER CONTROL SYSTEM
KR20150012235A (en) Voltage regulator control system
JP2015216833A (en) Integration demand control method and integrated demand control device
JP6134286B2 (en) USER ADJUSTMENT PLANNING METHOD AND USER ADJUSTMENT PLANNING DEVICE
JP7054384B2 (en) Use of volatile memory as non-volatile memory
JP6323101B2 (en) Arrangement control program, method and apparatus
WO2021040837A1 (en) Using a supplemental power source to provide temporary performance boosts in computing devices
TW201237608A (en) VR power mode interface
JP2015163010A (en) demand control method and demand control system
WO2016084392A1 (en) Power control device, power control method and power control system
JP6560359B2 (en) Power management server and power management method
JP5632415B2 (en) Control device and control method
JP6141750B2 (en) Thermoelectric supply device control method and thermoelectric supply system
JP2019003281A (en) System management device in parallel processing system, parallel processing system, and power control method
JP6587166B1 (en) Control device, air conditioner, air conditioning system, control method and program
KR101261354B1 (en) Method of controlling virtualization based cpu cooling and computing apparatus performing the same
JP5962095B2 (en) Power control system, management device for power control, and power control method
JP6735165B2 (en) Customer selection method and device
JPWO2013190892A1 (en) LOAD CONTROL DEVICE, ELECTRIC DEVICE, LOAD CONTROL METHOD, AND PROGRAM
JP7517878B2 (en) Demand response control system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821821

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15821821

Country of ref document: EP

Kind code of ref document: A1