WO2016009961A1 - Gate position detection system, casting device, gate position detection method, and method for manufacturing cast product - Google Patents

Gate position detection system, casting device, gate position detection method, and method for manufacturing cast product Download PDF

Info

Publication number
WO2016009961A1
WO2016009961A1 PCT/JP2015/069905 JP2015069905W WO2016009961A1 WO 2016009961 A1 WO2016009961 A1 WO 2016009961A1 JP 2015069905 W JP2015069905 W JP 2015069905W WO 2016009961 A1 WO2016009961 A1 WO 2016009961A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate
marker
mold
position detection
detection system
Prior art date
Application number
PCT/JP2015/069905
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 誠也
徳男 堀之内
賢一 川野
Original Assignee
ヤマハ発動機株式会社
浜北工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社, 浜北工業株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2016506387A priority Critical patent/JP6053243B2/en
Priority to EP15821561.6A priority patent/EP3170584B1/en
Priority to CN201580001722.1A priority patent/CN105531054B/en
Publication of WO2016009961A1 publication Critical patent/WO2016009961A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D46/00Controlling, supervising, not restricted to casting covered by a single main group, e.g. for safety reasons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/08Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
    • B22C9/082Sprues, pouring cups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D2/00Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/09Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure
    • B22D27/11Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting by using pressure making use of mechanical pressing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D33/00Equipment for handling moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D45/00Equipment for casting, not otherwise provided for

Definitions

  • the present invention relates to a gate position detection system for detecting the position of a mold gate.
  • the present invention also relates to a casting apparatus, a gate position detection method, and a casting product manufacturing method.
  • Casting technology is widely used in the manufacture of mass-produced products such as parts for motor vehicles, and the development of casting technology to meet various needs is still underway.
  • Patent Document 1 discloses a technique related to a casting removal apparatus for continuously removing a casting from a sand mold that is sequentially conveyed in a casting line.
  • image processing is performed in order to reliably remove a casting.
  • a sand-type image including the gate is taken by a camera (imaging means) arranged near the terminal end of the transfer device, and the position of the gate and the position of the gate are detected by the gate detection determination means (image processing device) based on the image.
  • the dimensions are calculated, and the take-out device is controlled based on the calculated gate position and the like.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a gate position detection system and a gate position detection method capable of accurately detecting the position of the gate of a mold.
  • a gate position detection system is a gate position detection system that detects the position of a gate of a mold, and includes an image processing apparatus that includes an imaging device that moves relative to the mold, and And at least one marker positioned with respect to the gate, wherein the imaging device captures an image including the at least one marker, and the image processing device is captured by the imaging device Information on the position of the gate is generated based on the image.
  • the at least one marker is a plurality of markers.
  • the plurality of markers are three or more markers.
  • each of the at least one marker is a marker member formed from a heat resistant material.
  • the gate position detection system of the present invention further includes a protection member provided so as to surround each of the at least one marker.
  • the gate position detection system of the present invention further includes a light shielding cover that is attached to the imaging device and restricts light incident on the imaging device.
  • the mold has a mold body in which the gate is formed, and a weight placed on the mold body so as not to overlap the gate in plan view, and the at least one marker is the It is provided on the weight.
  • the mold includes a cast frame and a mold body in which the gate is formed and located in the cast frame, and the at least one marker is provided on the cast frame.
  • a casting apparatus sends at least particulate matter from the pouring gate to the pouring gate position detection system described above, a pouring machine for pouring molten metal into the mold from the pouring gate, and the mold into which molten metal has been poured.
  • a pressure device sends at least particulate matter from the pouring gate to the pouring gate position detection system described above, a pouring machine for pouring molten metal into the mold from the pouring gate, and the mold into which molten metal has been poured.
  • the pressurizing device feeds the granular material based on information on the position of the gate generated by the image processing device.
  • a gate position detection method is a gate position detection method for detecting the position of a gate of a mold, and includes an image provided on the mold and including at least one marker positioned with respect to the gate.
  • the gate position detection method according to the present invention includes a step (c) of positioning the at least one marker with respect to the gate using a positioning jig in which at least one opening is formed at a predetermined position. ).
  • the casting product manufacturing method includes a step (A) of injecting a molten metal from a gate into a mold, and a step (B) of generating information on the position of the gate by the above-described gate position detection method. Is included.
  • the casting product manufacturing method of the present invention is a step of feeding at least particulate matter from the gate into the mold into which the molten metal has been injected, and the position of the gate generated in the step (B).
  • the method further includes a step (C) executed based on the information on
  • a gate position detection system and a gate position detection method capable of accurately detecting the position of the gate of the mold are provided.
  • a gate position detection system includes an image processing device including an imaging device and at least one marker positioned with respect to the gate, and in the gate position detection system according to the embodiment of the present invention, Based on the image including the marker imaged by the imaging device, the image processing device generates information on the position of the gate (pouring gate position information). Therefore, the position of the gate can be detected as a relative position with respect to the marker position, so that the position of the gate is accurately detected without being affected by the brightness of the molten metal around the gate and the brightness of the molten metal immediately after pouring. be able to.
  • the position of the gate can be calculated by using two markers as a pair by using a plurality of markers.
  • the position of the gate is calculated from any two pairs of markers, and the average value of the values calculated for the number of pairs can be taken to further increase the detection accuracy.
  • the position of the gate can be calculated even if a good image is obtained for at least two markers even if the remaining markers cannot be photographed successfully due to dirt or the like.
  • the marker is a marker member made of a heat-resistant material, the marker is less likely to be contaminated with hot water balls.
  • a protective member is provided so as to surround the marker, the protective member can prevent the hot water from adhering to the marker, so that the marker can be more reliably prevented from being soiled by the hot water.
  • the light incident on the imaging device can be limited by the light shielding cover, so that adverse effects (disturbances) on the imaging by the light sources around the imaging device can be suppressed.
  • the mold includes, for example, a mold body in which a gate is formed and a weight placed on the mold body.
  • the marker may be provided on the weight.
  • the mold has a cast frame and a mold body located in the cast frame.
  • the marker may be provided on the casting frame.
  • the gate position detection system according to the embodiment of the present invention is suitably used for a casting apparatus.
  • the casting apparatus includes, for example, a gate position detection system according to an embodiment of the present invention and a pouring machine that injects molten metal into the mold from the gate. If the casting apparatus further includes a pressurizing device that feeds the granular material from the gate into the mold into which the molten metal has been poured, the amount of pouring into the mold can be reduced. Therefore, the injection yield is improved, and the processing work after taking out the cast product can be simplified.
  • the pressurizing apparatus preferably feeds the granular material based on the pouring gate position information generated by the image processing apparatus.
  • the gate position detection system can accurately detect the position of the gate, and therefore, by using the gate position information generated by the image processing device of the gate position detection system, the granular material is fed. It can be suitably performed.
  • the gate position detection method includes a step (a) of capturing an image including at least one marker positioned with respect to the gate, and a gate position based on the image captured in the step (a). And (b) generating information related to the position.
  • the process based on the image including the marker imaged in the step (a), the process (b) Information on the position of the gate (gate position information) is generated. Therefore, the position of the gate can be detected as a relative position with respect to the marker position, so that the position of the gate is accurately detected without being affected by the brightness of the molten metal around the gate and the brightness of the molten metal immediately after pouring. be able to.
  • the gate position detection method may further include a step (c) of positioning the marker with respect to the gate using a positioning jig in which at least one opening is formed at a predetermined position.
  • a positioning jig in which at least one opening is formed at a predetermined position.
  • the gate position detection method according to the embodiment of the present invention is preferably used in a method for manufacturing a cast product.
  • the method for producing a cast product includes, for example, a step (A) of injecting a molten metal into a mold from a gate and a step (B) of generating information on the position of the gate by the method of detecting the position of the gate according to the embodiment of the present invention.
  • the pouring gate position detection method according to the embodiment of the present invention can accurately detect the pouring gate position, and therefore, the casting product manufacturing method includes the above-described step (B), and thus it is preferable to manufacture the casting product. Can be done.
  • the method for producing a cast product may further include a step (C) of feeding the granular material from the gate into the mold into which the molten metal has been poured.
  • a step (C) of feeding the granular material from the gate into the mold into which the molten metal has been poured By including the step (C), the amount of pouring water into the mold can be reduced. Therefore, the injection yield is improved, and the processing work after taking out the cast product can be simplified.
  • This step (C) is preferably executed based on the gate position information generated in the step (B). Since the gate position detection method according to the embodiment of the present invention can accurately detect the position of the gate, the step (C) is performed on the basis of the gate position information generated in the step (B). Goods can be sent in suitably.
  • FIG. 2 is a cross-sectional view taken along line 2A-2A ′ in FIG. 1. It is a figure which shows typically the mode of the imaging by the imaging device. It is a top view which shows the positional relationship of the opening part 2a of the weight 2, and the two markers 20 in the case of using the two markers 20 (1st marker 20A and 2nd marker 20B). It is a top view which shows the positional relationship of the opening part 2a of the weight 2, and the three markers 20 in the case of using the three markers 20 (1st marker 20A, 2nd marker 20B, and 3rd marker 20C).
  • 3 is a perspective view schematically showing a specific example of a marker 20.
  • FIG. 3 is a perspective view schematically showing a specific example of a marker 20.
  • FIG. (A) And (b) is the top view and perspective view which show an example of the more concrete structure of the marker 20 which is a marker member. It is a perspective view which shows typically the example in which the protection member 22 was provided so that each marker 20 might be enclosed.
  • (A) And (b) is the top view and side view which show an example of the more concrete structure of the protection member 22.
  • FIG. 3 is a perspective view schematically showing a specific example of a marker 20.
  • FIG. It is a top view which shows the specific example of the position of the marker 20 on the weight 2.
  • FIG. 3 is a top view schematically showing a positioning jig 24.
  • FIG. (A) And (b) is a figure which shows the positioning method using the positioning jig 24.
  • FIG. (A) And (b) is a figure which shows the positioning method using the positioning jig 24.
  • FIG. It is a top view which shows the specific example of the position of the marker 20 on the metal frame (casting frame) 1F.
  • (A) And (b) is the side view and bottom view which show the example of the imaging device 12 typically.
  • FIG. 2 is a view showing a state in which a gas G is blown into a cavity of a mold body 1 from a nozzle part 121 of a pressurizing device 120.
  • FIG. FIG. 2 is a view showing a state where a granular material 129 is fed into (injected into) a cavity of a mold body 1 from a nozzle part 121 of a pressurizing device 120. It is a figure which shows the state which the blowing of the granular material 129 in the cavity of the mold main body 1 was completed.
  • FIG. 1 is a top view schematically showing a gate position detection system 100 installed in the casting line CL
  • FIG. 2 is a cross-sectional view taken along line 2A-2A ′ in FIG.
  • the mold M includes a mold body 1 in which a gate 1g is formed, a cast frame (here, a metal frame) 1F, and a weight 2.
  • the mold body 1 is a sand mold, and a cavity is formed therein.
  • the mold body 1 is located in the metal frame 1F.
  • the mold body 1 is not limited to the sand mold, and may be various molds for casting that perform gravity pouring. For example, a mold formed from ceramic particles or a mold formed from metal particles may be used.
  • the cavity of the mold body 1 is composed of a gate 1a, a runner 1b, a feeder 1c, and a product 1d.
  • a weight 2 is placed on the mold body 1.
  • the weight 2 has an opening 2a and is arranged so that the gate 1g of the mold body 1 is exposed from the opening 2a (that is, the gate 1g overlaps the opening 2a). In other words, the weight 2 is placed on the mold body 1 so as not to overlap the gate 1g in plan view.
  • the gate position detection system 100 detects the position of the gate 1g of the mold M (typically the center position of the gate 1g). As shown in FIGS. 1 and 2, the gate position detection system 100 includes an image processing apparatus 10 including an imaging device (digital camera) 12, and at least one marker that is provided on the mold M and is positioned with respect to the gate 1g. 20.
  • the gate position detection system 100 (portion excluding the marker 20) is movable along a direction D2 opposite to the conveyance direction D1 of the mold M. Therefore, the imaging device 12 can move relative to the mold M.
  • a plurality of (more specifically, two) markers 20 are provided for one template M.
  • the marker 20 is provided on the weight 2.
  • the image processing apparatus 10 includes a calculation unit 14 in addition to the imaging apparatus 12 described above.
  • the computing unit 14 is typically a computer (for example, a panel computer).
  • the image processing apparatus 10 may further include a lighting device (not shown).
  • the imaging device 12 captures an image including the marker 20 as shown in FIG. 2 and further FIG.
  • the image processing apparatus 10 generates information on the position of the gate 1g (hereinafter also referred to as “gate position information”) based on an image (an image including the marker 20) captured by the imaging device 12.
  • the gate position information is generated by performing predetermined image processing on the image including the marker 20.
  • the gate position information is generated based on the image including the marker 20, and thus the position of the gate 1 g of the mold M can be accurately detected.
  • a method of capturing an image including the gate 1g and detecting the position of the gate 1g directly from the image can be considered.
  • such a method may not be able to accurately detect the position of the gate 1g.
  • the detection accuracy of the position of the gate 1g may deteriorate due to the hot water spilling around the gate 1g appearing in the image.
  • the gate position information is generated based on the image including the marker 20 positioned with respect to the gate 1g, so that the gate 1g is a relative position to the position of the marker 20. Can be detected. Therefore, the position of the gate 1g can be detected more accurately than the method of photographing the gate 1g.
  • the case where there are two markers 20 is illustrated, but the number of markers 20 is not limited to this. There may be one marker 20 or three or more markers. However, the position of the gate 1g can be detected more accurately when a plurality of markers 20 are used than when a single marker 20 is used. Further, the position of the gate 1g can be detected more accurately when three or more markers 20 are used than when two markers 20 are used.
  • FIG. 4 is a top view showing the positional relationship between the opening 2a of the weight 2 and the two markers 20 when two markers 20 are used.
  • the marker 20 ⁇ / b> A positioned relatively on the right side is referred to as a first marker
  • the marker 20 ⁇ / b> B positioned relatively on the left side is referred to as a second marker.
  • one point is the origin
  • the axis extending in the left-right direction from the origin is the x-axis (the right side is positive and the left side is negative)
  • the axis extending in the vertical direction from the origin is y.
  • the center of the opening 2a is P0 (x 0 , y 0 ), the center of the first marker 20A is P1 (x 1 , y 1 ), and the center of the second marker 20B is P2 (x 2 , y 2 ).
  • R be the distance between the center P0 of the opening 2a and the center P1 of the first marker 20A, and a straight line connecting the center P1 of the first marker 20A and the center P2 of the second marker 20B and the center P1 of the first marker 20A.
  • the angle formed by the straight line connecting the centers P0 of the openings 2a is ⁇ (counterclockwise is positive).
  • an angle formed by a straight line connecting the center P1 of the first marker 20A and the center P2 of the second marker 20B and the negative direction of the x-axis is ⁇ (counterclockwise is positive).
  • the angle ⁇ is expressed by the following formula (1), and the coordinates (x 0 , y 0 ) of the center P0 of the opening 2a are expressed by the following formulas (2) and (3). Further, the distance R and the angle ⁇ can be obtained in advance using, for example, a positioning jig 24 described later. Therefore, by obtaining the coordinates (x 1 , y 1 ) of P1 and the coordinates (x 2 , y 2 ) of P2 from the image including the first marker 20A and the second marker 20B by image processing, the center of the opening 2a is obtained.
  • the coordinates (x 0 , y 0 ) of P0 that is, the position of the center of the gate 1g can be calculated.
  • FIG. 5 is a top view showing the positional relationship between the opening 2a of the weight 2 and the three markers 20 when three markers 20 (first marker 20A, second marker 20B, and third marker 20C) are used. .
  • any two markers 20 are selected from the three or more markers 20, and the pair (two markers 20) is the same as the method described with reference to FIG.
  • the coordinates (x 0 , y 0 ) of the center P0 of the opening 2a can be calculated.
  • the coordinates (x 0 , y 0 ) of the center P0 of the opening 2a are calculated by the number of pairs (combinations) of the two markers 20 (3 when three markers 20 are used), and the average value of the calculated values By taking this, the detection accuracy can be increased.
  • the center P0 of the opening 2a can be obtained. Coordinates (x 0 , y 0 ) can be calculated.
  • the number of markers 20 may be one.
  • the position of the gate 1g can be calculated as follows.
  • ⁇ x and ⁇ y can be obtained in advance using, for example, a positioning jig 24 described later, coordinates (x 1 , y 1 ) of the center P1 from an image including one marker 20 by image processing. Is obtained, the coordinates (x 0 , y 0 ) of the center P0 of the opening 2a, that is, the position of the center of the gate 1g can be calculated.
  • the marker 20 has a planar shape, and is formed by applying a heat resistant paint or attaching a heat resistant material.
  • the marker 20 is white.
  • the example shown in FIG. 6 has an advantage that the marker 20 can be easily formed.
  • the marker 20 is planar (thickness is almost zero), the marker 20 is easily contaminated with hot water balls.
  • the marker 20 is a marker member made of a heat resistant material (for example, iron) and has a cylindrical shape.
  • the example shown in FIG. 7 has an advantage that the marker 20 is not easily contaminated with hot water balls.
  • the height (thickness) of the marker 20 which is a marker member From a viewpoint of dirt resistance, it is preferable that it is 25 mm or more.
  • the upper surface 20u of the marker 20 is preferably white, and the side surface 20s of the marker 20 is preferably matte black.
  • the diameter d1 of the marker 20 is 30 mm, for example.
  • the height h1 of the marker 20 is, for example, 30 mm.
  • the marker 20 is attached to the weight 2 by, for example, a bolt 21.
  • a protective member 22 is provided so as to surround each marker 20.
  • a cylindrical protective member 22 is disposed outside the columnar marker 20.
  • the protection member 22 is formed from a heat resistant material (for example, iron).
  • the protection member 22 can prevent the hot water from adhering to the marker 20, so that the contamination of the marker 20 by the hot water can be more reliably prevented.
  • FIGS. 10A and 10B are a top view and a side view showing an example of a more specific configuration of the protection member 22.
  • the entire protection member 22 is matte black.
  • the protection member 22 includes a cylindrical base portion 22a and a semi-cylindrical collar portion 22b provided on the base portion 22a.
  • the protection member 22 is disposed such that the collar portion 22b is positioned on the side of the gate 1g (opening portion 2a) with respect to the marker 20.
  • the outer diameter d2 of the base portion 22a is, for example, 70 mm
  • the inner diameter d3 of the collar portion 22b is, for example, 48 mm.
  • the height h2 of the base portion 22a is, for example, 25 mm
  • the height h3 of the collar portion 22b is, for example, 10 mm.
  • the color arrangement of the marker 20 and the protection member 22a is not limited to the above example, but it is preferable that the color arrangement is such that the contrast between the marker 20 (or the upper surface 20u of the marker 20) and its surroundings is as large as possible.
  • the shape of the marker 20 (planar shape of the marker 20) when viewed from the imaging direction (parallel to the central axis of the opening 2) is circular
  • the planar shape is not limited to a circle, and may be any shape.
  • the planar shape of the marker 20 may be rectangular.
  • FIG. 11 shows an example in which a square columnar marker member is provided as the marker 20. Even when the planar shape of the marker 20 is other than a circle, the center position of the opening 2a can be calculated by extracting the center of gravity or edge of the marker 20.
  • the position of the marker 20 on the weight 2 is not limited to the one illustrated so far.
  • the marker 20 can be arranged at an arbitrary position 20 ⁇ / b> P on the weight 2.
  • the marker 20 can be positioned with respect to the gate 1g using a positioning jig 24 as shown in FIG.
  • the positioning jig 24 has at least one (here, a plurality of) openings formed at predetermined positions.
  • the positioning jig 24 has a first opening 24 a corresponding to the opening 2 a of the weight 2 and a second opening 24 b corresponding to the marker 20.
  • FIG. 14A, 14B, 15A, and 15B are diagrams showing a positioning method using the positioning jig 24.
  • FIG. 14 (a) a stopper (lid) 26 made of resin is fitted into the opening 2 a of the weight 2.
  • the stopper 26 has a disk shape.
  • the positioning jig 24 is placed on the weight 2 so that the first opening 24 a fits into the stopper 26.
  • the marker 20 is fitted into the second opening 24 b of the positioning jig 24 and fixed with the bolt 21.
  • the weight 2 to which the marker 20 positioned with respect to the opening 2a (that is, with respect to the gate 1g) is attached can be obtained.
  • the marker 20 can be easily positioned with respect to the plurality of molds 1 (the plurality of weights 2).
  • the stopper 26 can also be used for calibration of the position of the opening 2a of the weight 2.
  • the coordinates (x 0 , y 0 ) of the center P0 of the opening 2a can be obtained from the image taken by the imaging device 12 with the positioning jig 24 placed on the weight 2 (on the mold M).
  • (X 0 , y 0 ) is used to obtain R, ⁇ , ⁇ x, and ⁇ y described above.
  • the positioning jig 24 itself is positioned by the stopper 26 with respect to the weight 2, but the positioning jig 24 is even positioned by some structure with respect to the weight 2 (or the mold M). Any configuration other than the illustrated configuration may be used. Therefore, the positioning jig 24 does not necessarily need to have an opening corresponding to the opening 2a of the weight 2, and it is sufficient that at least an opening corresponding to the marker 20 is formed. Therefore, when there is one marker 20, only one opening may be formed.
  • the marker 20 only needs to be positioned with respect to the gate 1g, and is not necessarily provided on the weight 2.
  • the marker 20 is provided at an arbitrary position 20 ⁇ / b> P on a metal frame (cast frame) 1 ⁇ / b> F of the mold M.
  • FIGS. 17A and 17B show an example of a specific configuration of the imaging device 12.
  • FIGS. 17A and 17B are a side view and a bottom view schematically showing the imaging device 12.
  • the imaging device 12 is connected to a communication cable 13, and an image captured by the imaging device 12 is output to the calculation unit 14 via the communication cable 13. Further, a dustproof cover 15 and a light shielding cover 16 are attached to the imaging device 12. The dust cover 15 can prevent dust from adhering to the lens 12 a of the imaging device 12.
  • the light shielding cover 16 limits the light incident on the imaging device 12.
  • the light shielding cover 16 is provided so as to cover a part of the lens 12a when the imaging device 12 is viewed from below.
  • the light shielding cover 16 can suppress an adverse effect (disturbance) on imaging by a light source around the imaging device 12.
  • the position of the gate 1g of the mold M can be accurately detected.
  • the gate position detection system 100 can be suitably used for a casting apparatus.
  • FIG. 18 shows a casting apparatus 200 including the gate position detection system 100.
  • FIG. 18 is a block diagram schematically showing the casting apparatus 200.
  • the casting apparatus 200 includes a gate position detection system 100, a pouring machine 110, and a pressure device 120.
  • the casting apparatus 200 further includes a control device 130.
  • the pouring machine 110 injects molten metal into the mold M from the gate 1g.
  • various types of pouring machines can be used.
  • a ladle tilting type automatic pouring machine can be used.
  • the ladle tilting type automatic pouring machine has a ladle and a ladle tilting mechanism for tilting the ladle.
  • the pressurizing device 120 feeds at least particulate matter from the gate 1g into the mold M into which the molten metal has been poured.
  • the pressurizing device 120 includes a nozzle unit that sends out the granular material, a moving mechanism that moves the nozzle unit, and a granular material supply machine that supplies the granular material to the nozzle unit.
  • the granular material is formed from a heat-resistant material, and is, for example, sand or a steel ball.
  • the pressurizing device 120 blows the granular material into the mold M from the gate 1g together with gas (for example, compressed air).
  • the control device 130 controls the operation timing, the amount of movement, and the like of the pouring machine 110 and the pressurizing device 120.
  • the control device 130 can perform the above control based on information output from the image processing device 10.
  • the control device 130 is, for example, a programmable logic controller (PLC).
  • the casting apparatus 200 includes the pressurizing apparatus 120, the amount of pouring water into the mold M can be reduced. Therefore, the injection yield is improved, and the processing work after taking out the cast product can be simplified.
  • the pressurizing device 120 is based on information on the position of the gate 1g generated by the image processing apparatus 10 (that is, the position of the gate 1g detected as a relative position with respect to the position of the marker 20).
  • the granular material is fed (injecting gas and granular material). Therefore, the nozzle portion can be accurately positioned on the gate 1g, and the granular material can be suitably fed. Moreover, it can prevent that a nozzle part interferes with the metal frame (casting frame) 1F and weight 2 of the casting_mold
  • the pressurizing device 120 includes a nozzle unit 121, a moving mechanism 122, and a granular material supply machine 123.
  • the nozzle part 121 is a part that blows out (sends out) gas and particulate matter 129 to the gate 1 g of the mold M.
  • the moving mechanism 122 can move the nozzle part 121. Specifically, the moving mechanism 122 can move the nozzle portion 121 in the left-right direction (direction parallel to the conveyance direction D1 of the mold M), the front-rear direction (direction orthogonal to the conveyance direction D1), and the vertical direction. .
  • the moving mechanism 122 is not particularly limited in its specific configuration as long as the nozzle unit 121 can be moved as described above. For example, the moving mechanism 122 can move along the left-right direction, the front-rear direction, and the up-down direction. Includes a servo motor for doing.
  • the granular material supply machine 123 supplies the granular material 129 to the nozzle unit 121.
  • the granular material supply machine 123 includes a granular material tank 124 that stores the granular material 129, a granular material supply pipe 125 that allows the granular material tank 124 and the nozzle part 121 to communicate with each other, and the granular material tank 124 and the granular material supply pipe 125. And an open / close slide member 126 provided.
  • the granular material supply machine 123 further includes a gas supply pipe 127 connected to the granular material supply pipe 125 and an open / close valve 128 attached to the gas supply pipe 127.
  • the casting apparatus 200 can reduce the amount of pouring of the mold M by having the pressurizing apparatus 120.
  • the mold cavity is composed of a gate, a runner, a feeder, and a product (see FIG. 2).
  • the molten metal is injected not only into the product part, but also into the sprue part, the runner part and the feeder part.
  • the mold is cooled after pouring and the solidification of the molten metal is completed, the mold is separated and the cast product is taken out. At this time, only the part corresponding to the product part is separated and finished to obtain the final product. Portions corresponding to the sprue portion, the runner portion and the feeder portion are redissolved as a return material.
  • pouring the hot water in addition to the product portion was the cause of the low injection yield.
  • the extra pouring as described above is also a cause of increasing the processing work after taking out the cast product from the mold.
  • the amount of pouring to the pouring gate portion 1a and the runner portion 1b can be reduced. Therefore, the injection yield is improved, and the processing work after taking out the cast product can be simplified.
  • FIG. 20 shows a state immediately after the molten metal m is poured into the mold M (mold body 1) from the gate 1g.
  • the volume of the injected molten metal m is smaller than the total volume of the cavities of the mold body 1 and is approximately equal to the volume of the product part 1d and the feeder part 1c (or more than the volume of the product part 1d and the feeder part 1c). Slightly large).
  • the nozzle part 121 of the pressurizing device 120 is moved by the moving mechanism 122 (not shown in FIG. 21) on the pouring gate 1 g of the mold M after pouring, and the gas G is cast from the nozzle part 121. It is blown into the cavity of the main body 1.
  • the gas G is blown by opening an open / close valve 128 attached to the gas supply pipe 127. Thereby, the molten metal m is pushed in and filled into the product part 1d and the hot water part 1c.
  • the granular material 129 is fed from the nozzle part 121 into the cavity.
  • the granular material 129 is fed by opening an open / close slide member 126 provided between the granular material tank 124 and the granular material supply pipe 125.
  • the opening / closing valve 128 remains open, and the particulate matter 129 is blown together with the gas G.
  • FIG. 23 shows a state where the blowing of the granular material 129 is completed.
  • the uppermost part of the molten metal m is at a higher position than the last part, so that a fluid force to return to the state shown in FIG. 20 acts on the molten metal m.
  • the flow is stopped by the frictional force caused by the blown granular material 129 (the frictional force between the granular materials 129 and the frictional force between the granular material 129 and the cavity-inner surface).
  • the granular material 129 is fed after the gas G is blown, but the gas G may be blown simultaneously with the feeding of the granular material 129 or after the feeding of the granular material 129.
  • the granular material 129 may be pushed into the cavity by a pressing member (for example, a rod of a pneumatic cylinder).
  • a pressing member for example, a rod of a pneumatic cylinder
  • FIG. 24 is a flowchart showing an example of a gate position detection method in the present embodiment.
  • an image including at least one marker 20 positioned with respect to the gate 1g is captured (step S1).
  • the position of the gate 1g can be detected more accurately by capturing an image including a plurality of markers 20 (preferably three or more markers 20) in this step S1. .
  • step S2 information on the position of the gate 1g is generated by performing image processing on the image obtained in step S1 (step S2). In this way, the position of the gate M of the mold M can be detected.
  • the pouring gate position information is generated based on the image including the marker 20 positioned with respect to the pouring gate 1g, so the position of the pouring gate 1g is detected as a relative position to the position of the marker 20. be able to. Therefore, the position of the gate 1g can be detected accurately.
  • FIG. 25 is a flowchart showing another example of the gate position detection method in the present embodiment.
  • the positioning jig 24 is used to position at least one marker 20 with respect to the gate 1g (step S0).
  • the positioning jig 24 has at least one (a plurality in the example of FIG. 13) opening at a predetermined position.
  • FIG. 26 is a flowchart showing an example of a method for producing a cast product in the present embodiment.
  • step S11 molten metal is poured into the mold M from the gate 1g.
  • step S12 information on the position of the gate 1g is generated. This process S12 is performed by the gate position detection method mentioned above.
  • step S13 At least the granular material 129 is fed into the casting mold M into which the molten metal has been poured from 1 g of the gate (step S13).
  • This process S13 is performed based on the gate position information generated in process S12.
  • mold release and final processing are performed (step S14). In this way, a cast product can be manufactured.
  • the manufacturing method of the cast product of this embodiment can reduce the pouring amount to the casting mold M by including the process S13 which sends the granular material 129 from 1g to the casting mold M in which the molten metal was poured. Therefore, the injection yield is improved, and the processing work after taking out the cast product can be simplified. Moreover, since this process S13 is performed based on the information regarding the position of the gate 1g produced
  • the control based on the gate position information is not limited to this example. Absent.
  • the molten metal may be injected based on the gate position information. By injecting the molten metal based on the pouring gate position information, it becomes possible to make the pouring work more efficient and automated.
  • FIG. 27 is a flowchart showing a more detailed example of the position detection of the gate 1g.
  • the imaging apparatus 12 captures an image including the marker 20 in accordance with a command from the control apparatus 130 (step S21).
  • the marker 20 in the captured image is extracted (step S22).
  • the marker 20 is extracted by, for example, determining the color (brightness), shape, and size. At this time, hot water balls in the image (regions where the brightness is maximum) are excluded.
  • the position of the gate 1g (or the center position of the opening 2a of the weight 2) is calculated from the pair of markers 20 (two markers 20) (step S23).
  • the parallel movement amount at the position of the gate 1g is calculated from one marker 20 of the pair, and the rotational movement amount at the position of the gate 1g is calculated from the other marker 20 (the method described with reference to FIG. 4). ).
  • any two markers 20 are selected and calculated for each pair, and an average value and variance are obtained.
  • step S24 the validity of the calculated position of the gate 1g (or the center position of the opening 2a of the weight 2) is determined (step S24). If the calculated position is not within the assumed range, it is regarded as a defect in the extraction of the marker 20 or the movement of the casting apparatus 200, and an error signal is output. In addition, when the number of markers 20 is three or more and the variance exceeds the assumed range, an error signal is output, or a marker 20 extraction error due to contamination of the markers 20 is assumed and extraction is performed correctly. Only the calculation results for pairs that can be considered as being used are used.
  • step S25 the difference between the calculated position of the gate 1g (or the center position of the opening 2a of the weight 2) and the original position is calculated.
  • the calculation result is output to the control device 130 as a correction value.
  • step S26 the casting apparatus 200 is moved based on the correction value, and the casting operation is executed.
  • step S27 the numerical value and image of the calculation result are stored as a computer file (step S27). Thereafter, the casting apparatus 200 moves to the position of the next mold. In this way, the position detection of the gate 1g and the subsequent casting operation can be executed.
  • a gate position detection system and a gate position detection method capable of accurately detecting the position of the gate of the mold are provided.
  • the gate position detection system and the gate position detection method according to the embodiment of the present invention can be widely used in a casting method in which gravity pouring is performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Image Analysis (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A gate position detection system (100) according to the present invention includes: an image processing apparatus (10) having an imaging device (12) that moves relative to molds (M); and at least one marker (20) positioned relative to a gate (1g) in each mold. The imaging device takes an image including at least the one marker. The image processing apparatus generates information pertaining to the position of the gate on the basis of the image taken by the imaging device.

Description

湯口位置検出システム、鋳造装置、湯口位置検出方法および鋳造品の製造方法Gate position detection system, casting apparatus, gate position detection method and casting product manufacturing method
 本発明は、鋳型の湯口の位置を検出する湯口位置検出システムに関する。また、本発明は、鋳造装置、湯口位置検出方法および鋳造品の製造方法にも関する。 The present invention relates to a gate position detection system for detecting the position of a mold gate. The present invention also relates to a casting apparatus, a gate position detection method, and a casting product manufacturing method.
 鋳造技術は、自動車両の部品等の大量生産品の製造に幅広く用いられており、現在でも様々なニーズを満たすための鋳造技術の開発が行われている。 Casting technology is widely used in the manufacture of mass-produced products such as parts for motor vehicles, and the development of casting technology to meet various needs is still underway.
 特許文献1には、鋳造ラインにおいて順次搬送されてくる砂型から鋳物を連続的に取り出すための鋳物取り出し装置に関する技術が開示されている。特許文献1の技術では、鋳物の取り出しを確実に行うために画像処理が行われる。具体的には、搬送装置の終端部付近に配置されたカメラ(撮像手段)によって湯口を含む砂型の画像が撮像され、その画像に基づいて湯口検出判定手段(画像処理装置)によって湯口の位置および寸法が算出され、算出された湯口位置等に基づいて取り出し装置の制御が行われる。 Patent Document 1 discloses a technique related to a casting removal apparatus for continuously removing a casting from a sand mold that is sequentially conveyed in a casting line. In the technique of Patent Document 1, image processing is performed in order to reliably remove a casting. Specifically, a sand-type image including the gate is taken by a camera (imaging means) arranged near the terminal end of the transfer device, and the position of the gate and the position of the gate are detected by the gate detection determination means (image processing device) based on the image. The dimensions are calculated, and the take-out device is controlled based on the calculated gate position and the like.
特開平9-225625号公報JP-A-9-225625
 しかしながら、特許文献1に開示されている技術では、湯口周辺にこぼれた湯玉が画像に写り込むことによって、湯口の位置検出の精度が低くなることがある。 However, with the technique disclosed in Patent Document 1, the accuracy of detecting the position of the gate may be lowered due to the spilling spilling around the gate in the image.
 本発明は、上記問題に鑑みてなされたものであり、その目的は、鋳型の湯口の位置を正確に検出することができる湯口位置検出システムおよび湯口位置検出方法を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide a gate position detection system and a gate position detection method capable of accurately detecting the position of the gate of a mold.
 本発明の実施形態による湯口位置検出システムは、鋳型の湯口の位置を検出する湯口位置検出システムであって、前記鋳型に対して相対的に移動する撮像装置を含む画像処理装置と、前記鋳型に設けられ、前記湯口に対して位置決めされた少なくとも1つのマーカーと、を備え、前記撮像装置は、前記少なくとも1つのマーカーを含む画像を撮像し、前記画像処理装置は、前記撮像装置によって撮像された前記画像に基づいて、前記湯口の位置に関する情報を生成する。 A gate position detection system according to an embodiment of the present invention is a gate position detection system that detects the position of a gate of a mold, and includes an image processing apparatus that includes an imaging device that moves relative to the mold, and And at least one marker positioned with respect to the gate, wherein the imaging device captures an image including the at least one marker, and the image processing device is captured by the imaging device Information on the position of the gate is generated based on the image.
 ある実施形態において、前記少なくとも1つのマーカーは、複数のマーカーである。 In one embodiment, the at least one marker is a plurality of markers.
 ある実施形態において、前記複数のマーカーは、3つ以上のマーカーである。 In one embodiment, the plurality of markers are three or more markers.
 ある実施形態において、前記少なくとも1つのマーカーのそれぞれは、耐熱性材料から形成されたマーカー部材である。 In one embodiment, each of the at least one marker is a marker member formed from a heat resistant material.
 ある実施形態において、本発明の湯口位置検出システムは、前記少なくとも1つのマーカーのそれぞれを囲うように設けられた保護部材をさらに備える。 In one embodiment, the gate position detection system of the present invention further includes a protection member provided so as to surround each of the at least one marker.
 ある実施形態において、本発明の湯口位置検出システムは、前記撮像装置に取り付けられ、前記撮像装置に入射する光を制限する遮光カバーをさらに備える。 In one embodiment, the gate position detection system of the present invention further includes a light shielding cover that is attached to the imaging device and restricts light incident on the imaging device.
 ある実施形態において、前記鋳型は、前記湯口が形成された鋳型本体と、平面視において前記湯口に重ならないように前記鋳型本体上に乗せられる重りとを有し、前記少なくとも1つのマーカーは、前記重り上に設けられている。 In one embodiment, the mold has a mold body in which the gate is formed, and a weight placed on the mold body so as not to overlap the gate in plan view, and the at least one marker is the It is provided on the weight.
 ある実施形態において、前記鋳型は、鋳枠と、前記湯口が形成され、前記鋳枠内に位置する鋳型本体とを有し、前記少なくとも1つのマーカーは、前記鋳枠上に設けられている。 In one embodiment, the mold includes a cast frame and a mold body in which the gate is formed and located in the cast frame, and the at least one marker is provided on the cast frame.
 本発明の実施形態による鋳造装置は、上述の湯口位置検出システムと、前記鋳型に前記湯口から溶湯を注入する注湯機と、溶湯が注入された前記鋳型に、前記湯口から少なくとも粒状物を送り込む加圧装置と、を備える。 A casting apparatus according to an embodiment of the present invention sends at least particulate matter from the pouring gate to the pouring gate position detection system described above, a pouring machine for pouring molten metal into the mold from the pouring gate, and the mold into which molten metal has been poured. A pressure device.
 ある実施形態において、前記加圧装置は、前記画像処理装置によって生成された前記湯口の位置に関する情報に基づいて前記粒状物の送り込みを行う。 In one embodiment, the pressurizing device feeds the granular material based on information on the position of the gate generated by the image processing device.
 本発明の実施形態による湯口位置検出方法は、鋳型の湯口の位置を検出する湯口位置検出方法であって、前記鋳型に設けられるとともに前記湯口に対して位置決めされた少なくとも1つのマーカーを含む画像を撮像する工程(a)と、前記工程(a)において撮像された前記画像に基づいて前記湯口の位置に関する情報を生成する工程(b)と、を包含する。 A gate position detection method according to an embodiment of the present invention is a gate position detection method for detecting the position of a gate of a mold, and includes an image provided on the mold and including at least one marker positioned with respect to the gate. A step (a) of capturing an image, and a step (b) of generating information on the position of the gate based on the image captured in the step (a).
 ある実施形態において、本発明による湯口位置検出方法は、所定の位置に少なくとも1つの開口部が形成された位置決め治具を用いて、前記少なくとも1つのマーカーを前記湯口に対して位置決めする工程(c)をさらに包含する。 In one embodiment, the gate position detection method according to the present invention includes a step (c) of positioning the at least one marker with respect to the gate using a positioning jig in which at least one opening is formed at a predetermined position. ).
 本発明の実施形態による鋳造品の製造方法は、鋳型に湯口から溶湯を注入する工程(A)と、上述の湯口位置検出方法によって、前記湯口の位置に関する情報を生成する工程(B)と、を包含する。 The casting product manufacturing method according to the embodiment of the present invention includes a step (A) of injecting a molten metal from a gate into a mold, and a step (B) of generating information on the position of the gate by the above-described gate position detection method. Is included.
 ある実施形態において、本発明の鋳造品の製造方法は、溶湯が注入された前記鋳型に、前記湯口から少なくとも粒状物を送り込む工程であって、前記工程(B)において生成された前記湯口の位置に関する情報に基づいて実行される工程(C)をさらに包含する。 In one embodiment, the casting product manufacturing method of the present invention is a step of feeding at least particulate matter from the gate into the mold into which the molten metal has been injected, and the position of the gate generated in the step (B). The method further includes a step (C) executed based on the information on
 本発明の実施形態によると、鋳型の湯口の位置を正確に検出することができる湯口位置検出システムおよび湯口位置検出方法が提供される。 According to the embodiment of the present invention, a gate position detection system and a gate position detection method capable of accurately detecting the position of the gate of the mold are provided.
 本発明の実施形態による湯口位置検出システムは、撮像装置を含む画像処理装置と、湯口に対して位置決めされた少なくとも1つのマーカーとを備えており、本発明の実施形態による湯口位置検出システムでは、撮像装置によって撮像されたマーカーを含む画像に基づいて、画像処理装置が湯口の位置に関する情報(湯口位置情報)を生成する。そのため、マーカーの位置に対する相対位置として湯口の位置を検出することができるので、湯口周辺にこぼれた湯玉や注湯直後の溶湯の明るさの影響を受けることなく、正確に湯口の位置を検出することができる。 A gate position detection system according to an embodiment of the present invention includes an image processing device including an imaging device and at least one marker positioned with respect to the gate, and in the gate position detection system according to the embodiment of the present invention, Based on the image including the marker imaged by the imaging device, the image processing device generates information on the position of the gate (pouring gate position information). Therefore, the position of the gate can be detected as a relative position with respect to the marker position, so that the position of the gate is accurately detected without being affected by the brightness of the molten metal around the gate and the brightness of the molten metal immediately after pouring. be able to.
 湯口の位置の検出をより正確に行う観点からは、1つのマーカーを用いるよりも、複数のマーカーを用いることが好ましい。複数のマーカーを用いることにより、2つのマーカーをペアとして湯口の位置の算出を行うことができるからである。 From the viewpoint of more accurately detecting the position of the gate, it is preferable to use a plurality of markers rather than a single marker. This is because the position of the gate can be calculated by using two markers as a pair by using a plurality of markers.
 特に3つ以上のマーカーを用いると、任意の2つのマーカーのペアから湯口の位置の算出を行い、ペアの数だけ算出された値の平均値をとることにより、検出精度をいっそう高めることができる。また、3つ以上のマーカーを用いる場合、少なくとも2つのマーカーについて良好な画像が得られれば、残りのマーカーを汚れ等の原因によりうまく撮影できなくても、湯口の位置を算出することができる。 In particular, when three or more markers are used, the position of the gate is calculated from any two pairs of markers, and the average value of the values calculated for the number of pairs can be taken to further increase the detection accuracy. . In addition, when using three or more markers, the position of the gate can be calculated even if a good image is obtained for at least two markers even if the remaining markers cannot be photographed successfully due to dirt or the like.
 マーカーが、耐熱性材料から形成されたマーカー部材であると、湯玉によるマーカーの汚れが発生しにくい。 ¡If the marker is a marker member made of a heat-resistant material, the marker is less likely to be contaminated with hot water balls.
 マーカーを囲うように保護部材が設けられていると、保護部材によってマーカーへの湯玉の付着を防止することができるので、湯玉によるマーカーの汚れをより確実に防止することができる。 If a protective member is provided so as to surround the marker, the protective member can prevent the hot water from adhering to the marker, so that the marker can be more reliably prevented from being soiled by the hot water.
 遮光カバーが撮像装置に取り付けられていると、撮像装置に入射する光を遮光カバーによって制限することができるので、撮像装置の周辺の光源による撮像への悪影響(外乱)を抑制することができる。 If the light shielding cover is attached to the imaging device, the light incident on the imaging device can be limited by the light shielding cover, so that adverse effects (disturbances) on the imaging by the light sources around the imaging device can be suppressed.
 鋳型は、例えば、湯口が形成された鋳型本体と、鋳型本体上に乗せられる重りとを有する。この場合、マーカーは、重り上に設けられてもよい。 The mold includes, for example, a mold body in which a gate is formed and a weight placed on the mold body. In this case, the marker may be provided on the weight.
 あるいは、鋳型は、鋳枠と、鋳枠内に位置する鋳型本体とを有する。この場合、マーカーは、鋳枠上に設けられてもよい。 Alternatively, the mold has a cast frame and a mold body located in the cast frame. In this case, the marker may be provided on the casting frame.
 本発明の実施形態による湯口位置検出システムは、鋳造装置に好適に用いられる。鋳造装置は、例えば、本発明の実施形態による湯口位置検出システムと、鋳型に湯口から溶湯を注入する注湯機とを備える。鋳造装置が、溶湯が注入された鋳型に湯口から粒状物を送り込む加圧装置をさらに備えていると、鋳型への注湯量を減らすことができる。そのため、注入歩留りが向上し、また、鋳造品の取り出し後の加工作業を簡略化することができる。 The gate position detection system according to the embodiment of the present invention is suitably used for a casting apparatus. The casting apparatus includes, for example, a gate position detection system according to an embodiment of the present invention and a pouring machine that injects molten metal into the mold from the gate. If the casting apparatus further includes a pressurizing device that feeds the granular material from the gate into the mold into which the molten metal has been poured, the amount of pouring into the mold can be reduced. Therefore, the injection yield is improved, and the processing work after taking out the cast product can be simplified.
 鋳造装置が加圧装置を備えている構成において、加圧装置は、画像処理装置によって生成された湯口位置情報に基づいて粒状物の送り込みを行うことが好ましい。本発明の実施形態による湯口位置検出システムは、湯口の位置を正確に検出することができるので、湯口位置検出システムの画像処理装置によって生成された湯口位置情報を用いることにより、粒状物の送り込みを好適に行うことができる。 In a configuration in which the casting apparatus includes a pressurizing apparatus, the pressurizing apparatus preferably feeds the granular material based on the pouring gate position information generated by the image processing apparatus. The gate position detection system according to the embodiment of the present invention can accurately detect the position of the gate, and therefore, by using the gate position information generated by the image processing device of the gate position detection system, the granular material is fed. It can be suitably performed.
 本発明の実施形態による湯口位置検出方法は、湯口に対して位置決めされた少なくとも1つのマーカーを含む画像を撮像する工程(a)と、工程(a)において撮像された前記画像に基づいて湯口の位置に関する情報を生成する工程(b)とを包含しており、本発明の実施形態による湯口位置検出方法では、工程(a)において撮像されたマーカーを含む画像に基づいて、工程(b)で湯口の位置に関する情報(湯口位置情報)が生成される。そのため、マーカーの位置に対する相対位置として湯口の位置を検出することができるので、湯口周辺にこぼれた湯玉や注湯直後の溶湯の明るさの影響を受けることなく、正確に湯口の位置を検出することができる。 The gate position detection method according to the embodiment of the present invention includes a step (a) of capturing an image including at least one marker positioned with respect to the gate, and a gate position based on the image captured in the step (a). And (b) generating information related to the position. In the gate position detection method according to the embodiment of the present invention, based on the image including the marker imaged in the step (a), the process (b) Information on the position of the gate (gate position information) is generated. Therefore, the position of the gate can be detected as a relative position with respect to the marker position, so that the position of the gate is accurately detected without being affected by the brightness of the molten metal around the gate and the brightness of the molten metal immediately after pouring. be able to.
 湯口位置検出方法は、所定の位置に少なくとも1つの開口部が形成された位置決め治具を用いてマーカーを湯口に対して位置決めする工程(c)をさらに包含してもよい。位置決め治具を用いることにより、複数の鋳型についてマーカーの位置決めを容易に行うことができる。 The gate position detection method may further include a step (c) of positioning the marker with respect to the gate using a positioning jig in which at least one opening is formed at a predetermined position. By using the positioning jig, the marker can be easily positioned for a plurality of molds.
 本発明の実施形態による湯口位置検出方法は、鋳造品の製造方法に好適に用いられる。鋳造品の製造方法は、例えば、鋳型に湯口から溶湯を注入する工程(A)と、本発明の実施形態の湯口位置検出方法によって、湯口の位置に関する情報を生成する工程(B)とを包含する。本発明の実施形態による湯口位置検出方法は、湯口の位置を正確に検出することができるので、鋳造品の製造方法が上述の工程(B)を含んでいることにより、鋳造品の製造を好適に行うことができる。 The gate position detection method according to the embodiment of the present invention is preferably used in a method for manufacturing a cast product. The method for producing a cast product includes, for example, a step (A) of injecting a molten metal into a mold from a gate and a step (B) of generating information on the position of the gate by the method of detecting the position of the gate according to the embodiment of the present invention. To do. The pouring gate position detection method according to the embodiment of the present invention can accurately detect the pouring gate position, and therefore, the casting product manufacturing method includes the above-described step (B), and thus it is preferable to manufacture the casting product. Can be done.
 鋳造品の製造方法は、溶湯が注入された鋳型に湯口から粒状物を送り込む工程(C)をさらに包含してもよい。工程(C)を包含することにより、鋳型への注湯量を減らすことができる。そのため、注入歩留りが向上し、また、鋳造品の取り出し後の加工作業を簡略化することができる。この工程(C)は、工程(B)において生成された湯口位置情報に基づいて実行されることが好ましい。本発明の実施形態による湯口位置検出方法は、湯口の位置を正確に検出することができるので、工程(B)において生成された湯口位置情報に基づいて工程(C)を実行することにより、粒状物の送り込みを好適に行うことができる。 The method for producing a cast product may further include a step (C) of feeding the granular material from the gate into the mold into which the molten metal has been poured. By including the step (C), the amount of pouring water into the mold can be reduced. Therefore, the injection yield is improved, and the processing work after taking out the cast product can be simplified. This step (C) is preferably executed based on the gate position information generated in the step (B). Since the gate position detection method according to the embodiment of the present invention can accurately detect the position of the gate, the step (C) is performed on the basis of the gate position information generated in the step (B). Goods can be sent in suitably.
本発明の実施形態による湯口位置検出システム100を模式的に示す上面図である。It is a top view which shows typically the gate position detection system 100 by embodiment of this invention. 図1中の2A-2A’線に沿った断面図である。FIG. 2 is a cross-sectional view taken along line 2A-2A ′ in FIG. 1. 撮像装置12による撮像の様子を模式的に示す図である。It is a figure which shows typically the mode of the imaging by the imaging device. 2つのマーカー20(第1マーカー20Aおよび第2マーカー20B)を用いる場合における、重り2の開口部2aと2つのマーカー20との位置関係を示す上面図である。It is a top view which shows the positional relationship of the opening part 2a of the weight 2, and the two markers 20 in the case of using the two markers 20 (1st marker 20A and 2nd marker 20B). 3つのマーカー20(第1マーカー20A、第2マーカー20Bおよび第3マーカー20C)を用いる場合における、重り2の開口部2aと3つのマーカー20との位置関係を示す上面図である。It is a top view which shows the positional relationship of the opening part 2a of the weight 2, and the three markers 20 in the case of using the three markers 20 (1st marker 20A, 2nd marker 20B, and 3rd marker 20C). マーカー20の具体例を模式的に示す斜視図である。3 is a perspective view schematically showing a specific example of a marker 20. FIG. マーカー20の具体例を模式的に示す斜視図である。3 is a perspective view schematically showing a specific example of a marker 20. FIG. (a)および(b)は、マーカー部材であるマーカー20のより具体的な構成の一例を示す上面図および斜視図である。(A) And (b) is the top view and perspective view which show an example of the more concrete structure of the marker 20 which is a marker member. 各マーカー20を囲うように保護部材22が設けられた例を模式的に示す斜視図である。It is a perspective view which shows typically the example in which the protection member 22 was provided so that each marker 20 might be enclosed. (a)および(b)は、保護部材22のより具体的な構成の一例を示す上面図および側面図である。(A) And (b) is the top view and side view which show an example of the more concrete structure of the protection member 22. FIG. マーカー20の具体例を模式的に示す斜視図である。3 is a perspective view schematically showing a specific example of a marker 20. FIG. 重り2上におけるマーカー20の位置の具体例を示す上面図である。It is a top view which shows the specific example of the position of the marker 20 on the weight 2. FIG. 位置決め治具24を模式的に示す上面図である。3 is a top view schematically showing a positioning jig 24. FIG. (a)および(b)は、位置決め治具24を用いた位置決め方法を示す図である。(A) And (b) is a figure which shows the positioning method using the positioning jig 24. FIG. (a)および(b)は、位置決め治具24を用いた位置決め方法を示す図である。(A) And (b) is a figure which shows the positioning method using the positioning jig 24. FIG. 金枠(鋳枠)1F上におけるマーカー20の位置の具体例を示す上面図である。It is a top view which shows the specific example of the position of the marker 20 on the metal frame (casting frame) 1F. (a)および(b)は、撮像装置12の例を模式的に示す側面図および下面図である。(A) And (b) is the side view and bottom view which show the example of the imaging device 12 typically. 本発明の実施形態による鋳造装置200を模式的に示すブロック図である。It is a block diagram showing typically casting device 200 by an embodiment of the present invention. 鋳造装置200が備える加圧装置120の例を示す図である。It is a figure which shows the example of the pressurization apparatus 120 with which the casting apparatus 200 is provided. 鋳型M(鋳型本体1)に湯口1gから溶湯mが注入された直後の状態を示す図である。It is a figure which shows the state immediately after the molten metal m was inject | poured into the casting_mold | template M (casting-mold main body 1) from the gate 1g. 加圧装置120のノズル部121からガスGが鋳型本体1のキャビティ―内に吹き込まれている状態を示す図である。2 is a view showing a state in which a gas G is blown into a cavity of a mold body 1 from a nozzle part 121 of a pressurizing device 120. FIG. 加圧装置120のノズル部121から粒状物129が鋳型本体1のキャビティ―内に送り込まれている(吹き込まれている)状態を示す図である。FIG. 2 is a view showing a state where a granular material 129 is fed into (injected into) a cavity of a mold body 1 from a nozzle part 121 of a pressurizing device 120. 鋳型本体1のキャビティ―内への粒状物129の吹き込みが完了した状態を示す図である。It is a figure which shows the state which the blowing of the granular material 129 in the cavity of the mold main body 1 was completed. 本発明の実施形態による湯口位置検出方法の例を示すフローチャートである。It is a flowchart which shows the example of the gate position detection method by embodiment of this invention. 本発明の実施形態による湯口位置検出方法の他の例を示すフローチャートである。It is a flowchart which shows the other example of the gate position detection method by embodiment of this invention. 本発明の実施形態による鋳造品の製造方法の例を示すフローチャートである。It is a flowchart which shows the example of the manufacturing method of the cast goods by embodiment of this invention. 湯口1gの位置検出のより詳細な例を示すフローチャートである。It is a flowchart which shows the more detailed example of the position detection of the gate 1g.
 以下、図面を参照しながら本発明の実施形態を説明する。なお、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment.
 まず、図1および図2を参照しながら、本発明の実施形態による湯口位置検出システム100を説明する。図1は、鋳造ラインCLに設置された湯口位置検出システム100を模式的に示す上面図であり、図2は、図1中の2A-2A’線に沿った断面図である。 First, a gate position detection system 100 according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a top view schematically showing a gate position detection system 100 installed in the casting line CL, and FIG. 2 is a cross-sectional view taken along line 2A-2A ′ in FIG.
 図1に示すように、鋳造ラインCLにおいて、複数の鋳型Mが、所定の方向D1に沿って搬送される。鋳型Mは、湯口1gが形成された鋳型本体1と、鋳枠(ここでは金枠)1Fと、重り2とを有する。鋳型本体1は、砂型であり、その内部にキャビティが形成されている。鋳型本体1は、金枠1F内に位置している。なお、鋳型本体1は、砂型に限定されるものではなく、重力注湯を行う鋳造法用の種々の鋳型であってよい。例えば、セラミックス粒子から形成された鋳型や、金属粒子から形成された鋳型であってもよい。 As shown in FIG. 1, a plurality of molds M are transported along a predetermined direction D1 in the casting line CL. The mold M includes a mold body 1 in which a gate 1g is formed, a cast frame (here, a metal frame) 1F, and a weight 2. The mold body 1 is a sand mold, and a cavity is formed therein. The mold body 1 is located in the metal frame 1F. Note that the mold body 1 is not limited to the sand mold, and may be various molds for casting that perform gravity pouring. For example, a mold formed from ceramic particles or a mold formed from metal particles may be used.
 鋳型本体1のキャビティは、図2に示すように、湯口部1a、湯道部1b、押湯部1cおよび製品部1dから構成される。図1および図2に示す例では、鋳型本体1上には重り2が乗せられている。重り2は、開口部2aを有し、開口部2aから鋳型本体1の湯口1gが露出するように(つまり湯口1gが開口部2aに重なるように)配置されている。言い換えると、重り2は、平面視において湯口1gに重ならないように鋳型本体1上に乗せられている。 As shown in FIG. 2, the cavity of the mold body 1 is composed of a gate 1a, a runner 1b, a feeder 1c, and a product 1d. In the example shown in FIGS. 1 and 2, a weight 2 is placed on the mold body 1. The weight 2 has an opening 2a and is arranged so that the gate 1g of the mold body 1 is exposed from the opening 2a (that is, the gate 1g overlaps the opening 2a). In other words, the weight 2 is placed on the mold body 1 so as not to overlap the gate 1g in plan view.
 湯口位置検出システム100は、鋳型Mの湯口1gの位置(典型的には湯口1gの中心位置)を検出する。湯口位置検出システム100は、図1および図2に示すように、撮像装置(デジタルカメラ)12を含む画像処理装置10と、鋳型Mに設けられ、湯口1gに対して位置決めされた少なくとも1つのマーカー20とを備える。湯口位置検出システム100(マーカー20を除く部分)は、鋳型Mの搬送方向D1と反対の方向D2に沿って移動可能である。そのため、撮像装置12は、鋳型Mに対して相対的に移動可能である。 The gate position detection system 100 detects the position of the gate 1g of the mold M (typically the center position of the gate 1g). As shown in FIGS. 1 and 2, the gate position detection system 100 includes an image processing apparatus 10 including an imaging device (digital camera) 12, and at least one marker that is provided on the mold M and is positioned with respect to the gate 1g. 20. The gate position detection system 100 (portion excluding the marker 20) is movable along a direction D2 opposite to the conveyance direction D1 of the mold M. Therefore, the imaging device 12 can move relative to the mold M.
 本実施形態では、1つの鋳型Mに対して複数の(より具体的には2つの)マーカー20が設けられている。マーカー20は、重り2上に設けられている。 In the present embodiment, a plurality of (more specifically, two) markers 20 are provided for one template M. The marker 20 is provided on the weight 2.
 画像処理装置10は、上述した撮像装置12に加え、演算部14を有する。演算部14は、典型的には、コンピュータ(例えばパネルコンピュータ)である。画像処理装置10は、不図示の照明装置をさらに有してもよい。 The image processing apparatus 10 includes a calculation unit 14 in addition to the imaging apparatus 12 described above. The computing unit 14 is typically a computer (for example, a panel computer). The image processing apparatus 10 may further include a lighting device (not shown).
 撮像装置12は、図2およびさらには図3に示すように、マーカー20を含む画像を撮像する。画像処理装置10は、撮像装置12により撮像された画像(マーカー20を含む画像)に基づいて、湯口1gの位置に関する情報(以下では「湯口位置情報」とも呼ぶ)を生成する。湯口位置情報の生成は、マーカー20を含む画像に対して所定の画像処理を行うことによって実行される。 The imaging device 12 captures an image including the marker 20 as shown in FIG. 2 and further FIG. The image processing apparatus 10 generates information on the position of the gate 1g (hereinafter also referred to as “gate position information”) based on an image (an image including the marker 20) captured by the imaging device 12. The gate position information is generated by performing predetermined image processing on the image including the marker 20.
 上述したように、本実施形態の湯口位置検出システム100では、マーカー20を含む画像に基づいて湯口位置情報が生成され、そのことにより、鋳型Mの湯口1gの位置を正確に検出することができる。画像処理によって湯口の位置を検出しようとする場合、湯口1gを含む画像を撮像し、その画像から直接湯口1gの位置を検出する手法が考えられる。しかしながら、そのような手法では、湯口1gの位置を正確に検出することができないおそれがある。例えば、湯口1gの周辺にこぼれた湯玉が画像に写り込むことにより、湯口1gの位置の検出精度が低下することがある。これに対し、本実施形態の湯口位置検出システム100では、湯口1gに対して位置決めされたマーカー20を含む画像に基づいて湯口位置情報が生成されるので、マーカー20の位置に対する相対位置として湯口1gの位置を検出することができる。そのため、湯口1gを撮影する手法よりも正確に湯口1gの位置を検出することができる。 As described above, in the gate position detection system 100 of the present embodiment, the gate position information is generated based on the image including the marker 20, and thus the position of the gate 1 g of the mold M can be accurately detected. . When trying to detect the position of the gate by image processing, a method of capturing an image including the gate 1g and detecting the position of the gate 1g directly from the image can be considered. However, such a method may not be able to accurately detect the position of the gate 1g. For example, the detection accuracy of the position of the gate 1g may deteriorate due to the hot water spilling around the gate 1g appearing in the image. On the other hand, in the gate position detection system 100 of the present embodiment, the gate position information is generated based on the image including the marker 20 positioned with respect to the gate 1g, so that the gate 1g is a relative position to the position of the marker 20. Can be detected. Therefore, the position of the gate 1g can be detected more accurately than the method of photographing the gate 1g.
 本実施形態では、マーカー20が2つの場合を例示したが、マーカー20の個数はこれに限定されるものではない。マーカー20は、1つであってもよいし、3つ以上であってもよい。ただし、1つのマーカー20を用いる場合よりも、複数のマーカー20を用いる場合の方が、湯口1gの位置をより正確に検出することができる。また、2つのマーカー20を用いる場合よりも、3つ以上のマーカー20を用いる場合の方が、湯口1gの位置をいっそう正確に検出することができる。 In the present embodiment, the case where there are two markers 20 is illustrated, but the number of markers 20 is not limited to this. There may be one marker 20 or three or more markers. However, the position of the gate 1g can be detected more accurately when a plurality of markers 20 are used than when a single marker 20 is used. Further, the position of the gate 1g can be detected more accurately when three or more markers 20 are used than when two markers 20 are used.
 ここで、複数のマーカー20を用いる場合における、湯口1gの位置の算出方法の例を説明する。以下の例では、重り2に形成された円形の開口部2aの中心が、湯口1gの中心に一致するものとして計算を行っている。 Here, an example of a method for calculating the position of the gate 1g when using a plurality of markers 20 will be described. In the following example, calculation is performed assuming that the center of the circular opening 2a formed in the weight 2 coincides with the center of the gate 1g.
 図4は、2つのマーカー20を用いる場合における、重り2の開口部2aと2つのマーカー20との位置関係を示す上面図である。ここでは、図4に示されている2つのマーカー20のうち、相対的に右側に位置するマーカー20Aを第1マーカーと呼び、相対的に左側に位置するマーカー20Bを第2マーカーと呼ぶ。 FIG. 4 is a top view showing the positional relationship between the opening 2a of the weight 2 and the two markers 20 when two markers 20 are used. Here, of the two markers 20 shown in FIG. 4, the marker 20 </ b> A positioned relatively on the right side is referred to as a first marker, and the marker 20 </ b> B positioned relatively on the left side is referred to as a second marker.
 図4において(撮像される画像において)、ある1点を原点とし、原点から左右方向に延びる軸をx軸(原点よりも右側が正、左側が負)、原点から上下方向に延びる軸をy軸(原点よりも上側が正、下側が負)とする座標系を考える。 In FIG. 4 (in the image to be captured), one point is the origin, the axis extending in the left-right direction from the origin is the x-axis (the right side is positive and the left side is negative), and the axis extending in the vertical direction from the origin is y. Consider a coordinate system with axes (positive above the origin and negative below).
 開口部2aの中心をP0(x0, y0)、第1マーカー20Aの中心をP1(x1, y1)、第2マーカー20Bの中心をP2(x2, y2)とする。また、開口部2aの中心P0と第1マーカー20Aの中心P1との距離をRとし、第1マーカー20Aの中心P1および第2マーカー20Bの中心P2を結ぶ直線と、第1マーカー20Aの中心P1および開口部2aの中心P0を結ぶ直線とのなす角度をαとする(反時計回りが正)。さらに、第1マーカー20Aの中心P1および第2マーカー20Bの中心P2を結ぶ直線とx軸の負方向とがなす角度をθ(反時計回りが正)とする。 The center of the opening 2a is P0 (x 0 , y 0 ), the center of the first marker 20A is P1 (x 1 , y 1 ), and the center of the second marker 20B is P2 (x 2 , y 2 ). Further, let R be the distance between the center P0 of the opening 2a and the center P1 of the first marker 20A, and a straight line connecting the center P1 of the first marker 20A and the center P2 of the second marker 20B and the center P1 of the first marker 20A. The angle formed by the straight line connecting the centers P0 of the openings 2a is α (counterclockwise is positive). Furthermore, an angle formed by a straight line connecting the center P1 of the first marker 20A and the center P2 of the second marker 20B and the negative direction of the x-axis is θ (counterclockwise is positive).
 角度θは、下記式(1)により表わされ、開口部2aの中心P0の座標(x0, y0)は、下記式(2)および(3)により表わされる。また、距離Rおよび角度αは、例えば後述する位置決め治具24を用いて予め求めておくことが可能である。そのため、第1マーカー20Aおよび第2マーカー20Bを含む画像から、画像処理によってP1の座標(x1, y1)、P2の座標(x2, y2)を求めることにより、開口部2aの中心P0の座標(x0, y0)、つまり、湯口1gの中心の位置を算出することができる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
The angle θ is expressed by the following formula (1), and the coordinates (x 0 , y 0 ) of the center P0 of the opening 2a are expressed by the following formulas (2) and (3). Further, the distance R and the angle α can be obtained in advance using, for example, a positioning jig 24 described later. Therefore, by obtaining the coordinates (x 1 , y 1 ) of P1 and the coordinates (x 2 , y 2 ) of P2 from the image including the first marker 20A and the second marker 20B by image processing, the center of the opening 2a is obtained. The coordinates (x 0 , y 0 ) of P0, that is, the position of the center of the gate 1g can be calculated.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 図5は、3つのマーカー20(第1マーカー20A、第2マーカー20Bおよび第3マーカー20C)を用いる場合における、重り2の開口部2aと3つのマーカー20との位置関係を示す上面図である。 FIG. 5 is a top view showing the positional relationship between the opening 2a of the weight 2 and the three markers 20 when three markers 20 (first marker 20A, second marker 20B, and third marker 20C) are used. .
 3つ以上のマーカー20を用いる場合、3つ以上のマーカー20のうちから任意の2つのマーカー20を選択し、そのペア(2つのマーカー20)について、図4を参照しながら説明した方法と同様に、開口部2aの中心P0の座標(x0, y0)を算出することができる。2つのマーカー20のペア(組み合わせ)の数(3つのマーカー20を用いる場合には3)だけ開口部2aの中心P0の座標(x0, y0)を算出し、算出された値の平均値をとることにより、検出精度を高めることができる。 When three or more markers 20 are used, any two markers 20 are selected from the three or more markers 20, and the pair (two markers 20) is the same as the method described with reference to FIG. In addition, the coordinates (x 0 , y 0 ) of the center P0 of the opening 2a can be calculated. The coordinates (x 0 , y 0 ) of the center P0 of the opening 2a are calculated by the number of pairs (combinations) of the two markers 20 (3 when three markers 20 are used), and the average value of the calculated values By taking this, the detection accuracy can be increased.
 また、3つ以上のマーカー20を用いる場合、少なくとも2つのマーカー20について良好な画像が得られれば、残りのマーカー20を汚れ等の原因によりうまく撮影できなくても、開口部2aの中心P0の座標(x0, y0)を算出することができる。 Further, when three or more markers 20 are used, if a good image is obtained with respect to at least two markers 20, even if the remaining markers 20 cannot be photographed well due to dirt or the like, the center P0 of the opening 2a can be obtained. Coordinates (x 0 , y 0 ) can be calculated.
 なお、既に説明したように、マーカー20は1つであってもよい。1つのマーカー20を用いる場合、例えば、以下のようにして湯口1gの位置を算出することができる。 Note that as described above, the number of markers 20 may be one. When one marker 20 is used, for example, the position of the gate 1g can be calculated as follows.
 ここでは、すべての鋳型Mが搬送方向Dに対して平行に並んでおり、平面視における時計回り(または反時計回り)のずれは無視できると仮定する。 Here, it is assumed that all the molds M are arranged in parallel with the conveyance direction D, and the clockwise (or counterclockwise) deviation in the plan view can be ignored.
 開口部2aの中心P0の座標 (x0, y0)と、マーカー20の中心P1の座標(x1, y1)との差を(Δx, Δy)とすると、開口部2aの中心P0の座標 (x0, y0)は、下記式(4)および(5)により表わされる。
 x0=x1-Δx  ・・・(4)
 y0=y1-Δy  ・・・(5)
If the difference between the coordinates (x 0 , y 0 ) of the center P0 of the opening 2a and the coordinates (x 1 , y 1 ) of the center P1 of the marker 20 is (Δx, Δy), the center P0 of the opening 2a The coordinates (x 0 , y 0 ) are expressed by the following formulas (4) and (5).
x 0 = x 1 −Δx (4)
y 0 = y 1 −Δy (5)
 Δx、Δyは、例えば後述する位置決め治具24を用いて予め求めておくことが可能であるので、1つのマーカー20を含む画像から、画像処理によってその中心P1の座標(x1, y1)を求めることにより、開口部2aの中心P0の座標(x0, y0)、つまり、湯口1gの中心の位置を算出することができる。 Since Δx and Δy can be obtained in advance using, for example, a positioning jig 24 described later, coordinates (x 1 , y 1 ) of the center P1 from an image including one marker 20 by image processing. Is obtained, the coordinates (x 0 , y 0 ) of the center P0 of the opening 2a, that is, the position of the center of the gate 1g can be calculated.
 続いて、図6から図11を参照しながら、マーカー20の具体的な構成を説明する。 Subsequently, a specific configuration of the marker 20 will be described with reference to FIGS.
 図6に示す例では、マーカー20は、平面状であり、耐熱性塗料の塗布か、または、耐熱性材料の貼り付けにより形成されている。マーカー20の認識を好適に行うためには、マーカー20は、白色であることが好ましい。図6に示した例は、マーカー20を簡便に形成できるという利点を有する。ただし、図6に示した例では、マーカー20が平面状である(厚さがほぼゼロである)ので、マーカー20が湯玉で汚れやすい。 In the example shown in FIG. 6, the marker 20 has a planar shape, and is formed by applying a heat resistant paint or attaching a heat resistant material. In order to perform recognition of the marker 20 suitably, it is preferable that the marker 20 is white. The example shown in FIG. 6 has an advantage that the marker 20 can be easily formed. However, in the example shown in FIG. 6, since the marker 20 is planar (thickness is almost zero), the marker 20 is easily contaminated with hot water balls.
 図7に示す例では、マーカー20は、耐熱性材料(例えば鉄)から形成されたマーカー部材であり、円柱状である。図7に示した例は、マーカー20が湯玉で汚れにくいという利点を有する。マーカー部材であるマーカー20の高さ(厚さ)に特に制限はないが、汚れにくさの観点からは、25mm以上であることが好ましい。 In the example shown in FIG. 7, the marker 20 is a marker member made of a heat resistant material (for example, iron) and has a cylindrical shape. The example shown in FIG. 7 has an advantage that the marker 20 is not easily contaminated with hot water balls. Although there is no restriction | limiting in particular in the height (thickness) of the marker 20 which is a marker member, From a viewpoint of dirt resistance, it is preferable that it is 25 mm or more.
 図8(a)および(b)は、マーカー部材であるマーカー20のより具体的な構成の一例を示す上面図および斜視図である。マーカー20の認識を好適に行うためには、マーカー20の上面20uは白色であることが好ましく、マーカー20の側面20sはつや消しの黒色であることが好ましい。マーカー20の直径d1は、例えば30mmである。マーカー20の高さh1は、例えば30mmである。マーカー20は、図8(a)および(b)に示すように、例えばボルト21によって重り2に取り付けられる。 8A and 8B are a top view and a perspective view showing an example of a more specific configuration of the marker 20 which is a marker member. In order to appropriately recognize the marker 20, the upper surface 20u of the marker 20 is preferably white, and the side surface 20s of the marker 20 is preferably matte black. The diameter d1 of the marker 20 is 30 mm, for example. The height h1 of the marker 20 is, for example, 30 mm. As shown in FIGS. 8A and 8B, the marker 20 is attached to the weight 2 by, for example, a bolt 21.
 図9に示す例では、各マーカー20を囲うように保護部材22が設けられている。ここでは、円柱状のマーカー20の外側に円筒状の保護部材22が配置されている。保護部材22は、耐熱性材料(例えば鉄)から形成されている。図8に示した例では、保護部材22により、マーカー20への湯玉の付着を防止することができるので、湯玉によるマーカー20の汚れをより確実に防止することができる。 In the example shown in FIG. 9, a protective member 22 is provided so as to surround each marker 20. Here, a cylindrical protective member 22 is disposed outside the columnar marker 20. The protection member 22 is formed from a heat resistant material (for example, iron). In the example shown in FIG. 8, the protection member 22 can prevent the hot water from adhering to the marker 20, so that the contamination of the marker 20 by the hot water can be more reliably prevented.
 図10(a)および(b)は、保護部材22のより具体的な構成の一例を示す上面図および側面図である。マーカー20の認識を好適に行うためには、保護部材22は、その全体がつや消しの黒であることが好ましい。図10(a)および(b)に示す例では、保護部材22は、円筒状のベース部22aと、ベース部22a上に設けられた半円筒状のカラー部22bとを有する。保護部材22は、カラー部22bがマーカー20に対して湯口1g側(開口部2a側)に位置するように配置される。ベース部22aの外径d2は、例えば70mmであり、カラー部22bの内径d3は、例えば48mmである。ベース部22aの高さh2は、例えば25mmであり、カラー部22bの高さh3は、例えば10mmである。 FIGS. 10A and 10B are a top view and a side view showing an example of a more specific configuration of the protection member 22. In order to appropriately recognize the marker 20, it is preferable that the entire protection member 22 is matte black. In the example shown in FIGS. 10A and 10B, the protection member 22 includes a cylindrical base portion 22a and a semi-cylindrical collar portion 22b provided on the base portion 22a. The protection member 22 is disposed such that the collar portion 22b is positioned on the side of the gate 1g (opening portion 2a) with respect to the marker 20. The outer diameter d2 of the base portion 22a is, for example, 70 mm, and the inner diameter d3 of the collar portion 22b is, for example, 48 mm. The height h2 of the base portion 22a is, for example, 25 mm, and the height h3 of the collar portion 22b is, for example, 10 mm.
 なお、マーカー20および保護部材22aの配色は、上述の例に限定されないが、マーカー20(あるいはマーカー20の上面20u)とその周囲とのコントラストがなるべく大きくなるような配色であることが好ましい。 The color arrangement of the marker 20 and the protection member 22a is not limited to the above example, but it is preferable that the color arrangement is such that the contrast between the marker 20 (or the upper surface 20u of the marker 20) and its surroundings is as large as possible.
 図6~図10には、撮像方向(開口部2の中心軸に平行)から見たときのマーカー20の形状(マーカー20の平面形状)が円形である場合を示しているが、マーカー20の平面形状は円形に限定されるものではなく、任意の形状であり得る。例えば、図11に示すように、マーカー20の平面形状が矩形であってもよい。図11には、マーカー20として四角柱状のマーカー部材が設けられている例が示されている。マーカー20の平面形状が円形以外である場合でも、マーカー20の重心点やエッジを抽出することにより、開口部2aの中心位置を算出することができる。 6 to 10 show a case where the shape of the marker 20 (planar shape of the marker 20) when viewed from the imaging direction (parallel to the central axis of the opening 2) is circular, The planar shape is not limited to a circle, and may be any shape. For example, as shown in FIG. 11, the planar shape of the marker 20 may be rectangular. FIG. 11 shows an example in which a square columnar marker member is provided as the marker 20. Even when the planar shape of the marker 20 is other than a circle, the center position of the opening 2a can be calculated by extracting the center of gravity or edge of the marker 20.
 また、重り2上におけるマーカー20の位置は、これまで図示したものに限定されない。マーカー20は、例えば、図12に示すように、重り2上の任意の位置20Pに配置することができる。ただし、1回の撮像により、配置されたすべてのマーカー20を撮影し得ることが好ましい。 Further, the position of the marker 20 on the weight 2 is not limited to the one illustrated so far. For example, as shown in FIG. 12, the marker 20 can be arranged at an arbitrary position 20 </ b> P on the weight 2. However, it is preferable that all the arranged markers 20 can be photographed by one imaging.
 ここで、マーカー20を湯口1gに対して位置決めする方法の例を説明する。マーカー20は、例えば、図13に示すような位置決め治具24を用いて、湯口1gに対して位置決めされ得る。位置決め治具24は、所定の位置に形成された少なくとも1つ(ここでは複数)の開口部を有する。図13に示す例では、位置決め治具24は、重り2の開口部2aに対応する第1開口部24aと、マーカー20に対応する第2開口部24bとを有する。 Here, an example of a method for positioning the marker 20 with respect to the gate 1g will be described. For example, the marker 20 can be positioned with respect to the gate 1g using a positioning jig 24 as shown in FIG. The positioning jig 24 has at least one (here, a plurality of) openings formed at predetermined positions. In the example shown in FIG. 13, the positioning jig 24 has a first opening 24 a corresponding to the opening 2 a of the weight 2 and a second opening 24 b corresponding to the marker 20.
 図14(a)、(b)および図15(a)、(b)は、位置決め治具24を用いた位置決め方法を示す図である。まず、図14(a)に示すように、重り2の開口部2aに、樹脂から形成された栓(ふた)26をはめる。ここでは、開口部2aが円形であるので、栓26は円盤状である。次に、図14(b)に示すように、位置決め治具24を、第1開口部24aが栓26にはまるように重り2上にのせる。 14A, 14B, 15A, and 15B are diagrams showing a positioning method using the positioning jig 24. FIG. First, as shown in FIG. 14 (a), a stopper (lid) 26 made of resin is fitted into the opening 2 a of the weight 2. Here, since the opening 2a is circular, the stopper 26 has a disk shape. Next, as shown in FIG. 14B, the positioning jig 24 is placed on the weight 2 so that the first opening 24 a fits into the stopper 26.
 続いて、図15(a)に示すように、位置決め治具24の第2開口部24bにマーカー20をはめ、ボルト21で固定する。このようにして、図15(b)に示すように、開口部2aに対して(つまり湯口1gに対して)位置決めされたマーカー20が取り付けられた重り2を得ることができる。 Subsequently, as shown in FIG. 15A, the marker 20 is fitted into the second opening 24 b of the positioning jig 24 and fixed with the bolt 21. In this way, as shown in FIG. 15B, the weight 2 to which the marker 20 positioned with respect to the opening 2a (that is, with respect to the gate 1g) is attached can be obtained.
 位置決め治具24を用いることにより、複数の鋳型1(複数の重り2)についてマーカー20の位置決めを容易に行うことができる。なお、栓26は、重り2の開口部2aの位置のキャリブレーションにも用いることができる。位置決め治具24を重り2上(鋳型M上)に乗せた状態において撮像装置12で撮像した画像から、開口部2aの中心P0の座標(x0, y0)を求めることができるので、求めた(x0, y0)を用いて、上述したR、α、Δx、Δyが得られる。 By using the positioning jig 24, the marker 20 can be easily positioned with respect to the plurality of molds 1 (the plurality of weights 2). The stopper 26 can also be used for calibration of the position of the opening 2a of the weight 2. The coordinates (x 0 , y 0 ) of the center P0 of the opening 2a can be obtained from the image taken by the imaging device 12 with the positioning jig 24 placed on the weight 2 (on the mold M). (X 0 , y 0 ) is used to obtain R, α, Δx, and Δy described above.
 また、例示した構成では、位置決め治具24自体は、重り2に対して栓26により位置決めされるが、位置決め治具24は、重り2(あるいは鋳型M)に対して何らかの構造により位置決めされてさえいればよく、例示した構成以外の構成であってもよい。そのため、位置決め治具24は、重り2の開口部2aに対応する開口部が必ずしも形成されている必要はなく、少なくともマーカー20に対応する開口部が形成されていればよい。従って、マーカー20が1つの場合には、ただ1つの開口部が形成されていてもよい。 In the illustrated configuration, the positioning jig 24 itself is positioned by the stopper 26 with respect to the weight 2, but the positioning jig 24 is even positioned by some structure with respect to the weight 2 (or the mold M). Any configuration other than the illustrated configuration may be used. Therefore, the positioning jig 24 does not necessarily need to have an opening corresponding to the opening 2a of the weight 2, and it is sufficient that at least an opening corresponding to the marker 20 is formed. Therefore, when there is one marker 20, only one opening may be formed.
 マーカー20は、湯口1gに対して位置決めされていればよく、必ずしも重り2上に設けられている必要はない。マーカー20は、例えば、図16に示すように、鋳型Mの金枠(鋳枠)1F上の任意の位置20Pに設けられる。 The marker 20 only needs to be positioned with respect to the gate 1g, and is not necessarily provided on the weight 2. For example, as shown in FIG. 16, the marker 20 is provided at an arbitrary position 20 </ b> P on a metal frame (cast frame) 1 </ b> F of the mold M.
 図17(a)および(b)に、撮像装置12の具体的な構成の例を示す。図17(a)および(b)は、撮像装置12を模式的に示す側面図および下面図である。 FIGS. 17A and 17B show an example of a specific configuration of the imaging device 12. FIGS. 17A and 17B are a side view and a bottom view schematically showing the imaging device 12.
 図17(a)に示すように、撮像装置12は、通信ケーブル13に接続されており、撮像装置12によって撮像された画像は、この通信ケーブル13を介して演算部14に出力される。また、撮像装置12には、防塵カバー15および遮光カバー16が取り付けられている。防塵カバー15により、撮像装置12のレンズ12aへの塵の付着を防止することができる。 As shown in FIG. 17A, the imaging device 12 is connected to a communication cable 13, and an image captured by the imaging device 12 is output to the calculation unit 14 via the communication cable 13. Further, a dustproof cover 15 and a light shielding cover 16 are attached to the imaging device 12. The dust cover 15 can prevent dust from adhering to the lens 12 a of the imaging device 12.
 遮光カバー16は、撮像装置12に入射する光を制限する。ここでは、遮光カバー16は、図17(b)に示すように、撮像装置12を下側から見たときにレンズ12aの一部を覆うように設けられている。遮光カバー16により、撮像装置12の周辺の光源による撮像への悪影響(外乱)を抑制することができる。 The light shielding cover 16 limits the light incident on the imaging device 12. Here, as shown in FIG. 17B, the light shielding cover 16 is provided so as to cover a part of the lens 12a when the imaging device 12 is viewed from below. The light shielding cover 16 can suppress an adverse effect (disturbance) on imaging by a light source around the imaging device 12.
 上述したように、本実施形態の湯口位置検出システム100によれば、鋳型Mの湯口1gの位置を正確に検出することができる。湯口位置検出システム100は、鋳造装置に好適に用いることができる。 As described above, according to the gate position detection system 100 of the present embodiment, the position of the gate 1g of the mold M can be accurately detected. The gate position detection system 100 can be suitably used for a casting apparatus.
 図18に、湯口位置検出システム100を備える鋳造装置200を示す。図18は、鋳造装置200を模式的に示すブロック図である。 FIG. 18 shows a casting apparatus 200 including the gate position detection system 100. FIG. 18 is a block diagram schematically showing the casting apparatus 200.
 鋳造装置200は、図18に示すように、湯口位置検出システム100と、注湯機110と、加圧装置120とを備える。鋳造装置200は、さらに、制御装置130を備える。 As shown in FIG. 18, the casting apparatus 200 includes a gate position detection system 100, a pouring machine 110, and a pressure device 120. The casting apparatus 200 further includes a control device 130.
 注湯機110は、鋳型Mに湯口1gから溶湯を注入する。注湯機110の構成に特に制限はない。注湯機110としては、種々の方式の注湯機を用いることができ、例えば、取鍋傾動式の自動注湯機を用いることができる。取鍋傾動式の自動注湯機は、取鍋や、取鍋を傾動させる取鍋傾動機構などを有する。 The pouring machine 110 injects molten metal into the mold M from the gate 1g. There is no restriction | limiting in particular in the structure of the pouring machine 110. FIG. As the pouring machine 110, various types of pouring machines can be used. For example, a ladle tilting type automatic pouring machine can be used. The ladle tilting type automatic pouring machine has a ladle and a ladle tilting mechanism for tilting the ladle.
 加圧装置120は、溶湯が注入された鋳型Mに、湯口1gから少なくとも粒状物を送り込む。加圧装置120は、粒状物を送り出すノズル部と、ノズル部を移動させる移動機構と、粒状物をノズル部に供給する粒状物供給機とを有する。粒状物は、耐熱性材料から形成されており、例えば、砂や鋼球である。典型的には、加圧装置120は、粒状物をガス(例えば圧縮空気)とともに湯口1gから鋳型Mに吹き込む。 The pressurizing device 120 feeds at least particulate matter from the gate 1g into the mold M into which the molten metal has been poured. The pressurizing device 120 includes a nozzle unit that sends out the granular material, a moving mechanism that moves the nozzle unit, and a granular material supply machine that supplies the granular material to the nozzle unit. The granular material is formed from a heat-resistant material, and is, for example, sand or a steel ball. Typically, the pressurizing device 120 blows the granular material into the mold M from the gate 1g together with gas (for example, compressed air).
 制御装置130は、注湯機110および加圧装置120の動作するタイミングや移動量などを制御する。制御装置130は、上記の制御を、画像処理装置10から出力される情報に基づいて行うことができる。制御装置130は、例えば、プログラマブルロジックコントローラ(PLC)である。 The control device 130 controls the operation timing, the amount of movement, and the like of the pouring machine 110 and the pressurizing device 120. The control device 130 can perform the above control based on information output from the image processing device 10. The control device 130 is, for example, a programmable logic controller (PLC).
 鋳造装置200は、加圧装置120を有していることにより、鋳型Mへの注湯量を減らすことができる。そのため、注入歩留りが向上し、また、鋳造品の取り出し後の加工作業を簡略化することができる。 Since the casting apparatus 200 includes the pressurizing apparatus 120, the amount of pouring water into the mold M can be reduced. Therefore, the injection yield is improved, and the processing work after taking out the cast product can be simplified.
 なお、加圧装置120による粒状物の送り込みは、鋳型Mへの注湯後に速やかに行われる。しかしながら、仮に、溶湯が注入された直後の湯口1gを撮影すると、溶湯が非常に明るいので、湯口1gの形状を精度良く認識することは難しい。これに対し、鋳造装置200では、加圧装置120は、画像処理装置10によって生成された湯口1gの位置に関する情報(つまりマーカー20の位置に対する相対位置として検出された湯口1gの位置)に基づいて粒状物の送り込み(ガスおよび粒状物の吹き込み)を行う。そのため、ノズル部を、湯口1g上に正確に位置させることができ、粒状物の送り込みを好適に行うことができる。また、ノズル部が、鋳型Mの金枠(鋳枠)1Fや重り2と干渉して破損することを防止することができる。 Note that the feeding of the granular material by the pressurizing device 120 is performed promptly after pouring into the mold M. However, if the spout 1g immediately after the molten metal is poured is photographed, the molten metal is very bright, so it is difficult to accurately recognize the shape of the sprue 1g. On the other hand, in the casting apparatus 200, the pressurizing device 120 is based on information on the position of the gate 1g generated by the image processing apparatus 10 (that is, the position of the gate 1g detected as a relative position with respect to the position of the marker 20). The granular material is fed (injecting gas and granular material). Therefore, the nozzle portion can be accurately positioned on the gate 1g, and the granular material can be suitably fed. Moreover, it can prevent that a nozzle part interferes with the metal frame (casting frame) 1F and weight 2 of the casting_mold | template M, and is damaged.
 ここで、図19を参照しながら、加圧装置120の具体的な構成の例を説明する。図19に示す例では、加圧装置120は、ノズル部121と、移動機構122と、粒状物供給機123とを有する。 Here, an example of a specific configuration of the pressure device 120 will be described with reference to FIG. In the example illustrated in FIG. 19, the pressurizing device 120 includes a nozzle unit 121, a moving mechanism 122, and a granular material supply machine 123.
 ノズル部121は、鋳型Mの湯口1gにガスおよび粒状物129を吹き出す(送り出す)部分である。 The nozzle part 121 is a part that blows out (sends out) gas and particulate matter 129 to the gate 1 g of the mold M.
 移動機構122は、ノズル部121を移動させ得る。具体的には、移動機構122は、ノズル部121を、左右方向(鋳型Mの搬送方向D1に平行な方向)、前後方向(搬送方向D1に直交する方向)および上下方向に移動させることができる。移動機構122は、上述したようなノズル部121の移動が可能である限り、その具体的な構成に特に制限はなく、例えば、左右方向、前後方向および上下方向のそれぞれに沿った移動を可能にするためのサーボモーターを含んでいる。 The moving mechanism 122 can move the nozzle part 121. Specifically, the moving mechanism 122 can move the nozzle portion 121 in the left-right direction (direction parallel to the conveyance direction D1 of the mold M), the front-rear direction (direction orthogonal to the conveyance direction D1), and the vertical direction. . The moving mechanism 122 is not particularly limited in its specific configuration as long as the nozzle unit 121 can be moved as described above. For example, the moving mechanism 122 can move along the left-right direction, the front-rear direction, and the up-down direction. Includes a servo motor for doing.
 粒状物供給機123は、粒状物129をノズル部121に供給する。粒状物供給機123は、粒状物129を収容する粒状物タンク124と、粒状物タンク124およびノズル部121を連通させる粒状物供給管125と、粒状物タンク124および粒状物供給管125の間に設けられた開閉スライド部材126とを有する。粒状物供給機123は、さらに、粒状物供給管125に接続されたガス供給管127と、ガス供給管127に取り付けられた開閉バルブ128とを有する。 The granular material supply machine 123 supplies the granular material 129 to the nozzle unit 121. The granular material supply machine 123 includes a granular material tank 124 that stores the granular material 129, a granular material supply pipe 125 that allows the granular material tank 124 and the nozzle part 121 to communicate with each other, and the granular material tank 124 and the granular material supply pipe 125. And an open / close slide member 126 provided. The granular material supply machine 123 further includes a gas supply pipe 127 connected to the granular material supply pipe 125 and an open / close valve 128 attached to the gas supply pipe 127.
 既に説明したように、鋳造装置200は、加圧装置120を有していることにより、鋳型Mへの注湯量を減らすことができる。 As already explained, the casting apparatus 200 can reduce the amount of pouring of the mold M by having the pressurizing apparatus 120.
 一般に、鋳型のキャビティ―は、湯口部、湯道部、押湯部および製品部から構成される(図2参照)。鋳造品を製造する際、溶湯は、製品部だけでなく、湯口部、湯道部および押湯部にも注入される。注湯後に鋳型が冷却されて溶湯の凝固が完了すると、鋳型がばらされて鋳造品の取り出しが行われる。このとき、製品部に対応する部分のみが分離されて仕上げ加工を施され、最終的な製品となる。湯口部、湯道部および押湯部に対応する部分は、リターン材として再溶解される。このように製品部(キャビティ―のうち実際の製品に対応する領域)以外にも注湯を行うことは、注入歩留りが低いことの原因であった。また、上記のような余分な注湯は、鋳型からの鋳造品の取り出し後の加工作業を増加させる原因でもあった。 Generally, the mold cavity is composed of a gate, a runner, a feeder, and a product (see FIG. 2). When manufacturing a cast product, the molten metal is injected not only into the product part, but also into the sprue part, the runner part and the feeder part. When the mold is cooled after pouring and the solidification of the molten metal is completed, the mold is separated and the cast product is taken out. At this time, only the part corresponding to the product part is separated and finished to obtain the final product. Portions corresponding to the sprue portion, the runner portion and the feeder portion are redissolved as a return material. Thus, pouring the hot water in addition to the product portion (the region corresponding to the actual product in the cavity) was the cause of the low injection yield. Moreover, the extra pouring as described above is also a cause of increasing the processing work after taking out the cast product from the mold.
 これに対し、加圧装置120によって、注湯後の鋳型Mに湯口1gから少なくとも粒状物129を送り込むことにより、湯口部1aおよび湯道部1bへの注湯量を減らすことができる。そのため、注入歩留りが向上し、また、鋳造品の取り出し後の加工作業を簡略化することができる。 On the other hand, by feeding at least the granular material 129 from the pouring gate 1g into the mold M after pouring by the pressurizing device 120, the amount of pouring to the pouring gate portion 1a and the runner portion 1b can be reduced. Therefore, the injection yield is improved, and the processing work after taking out the cast product can be simplified.
 以下、図20~図23を参照しながら、加圧装置120の動作を説明する。 Hereinafter, the operation of the pressurizing device 120 will be described with reference to FIGS.
 図20は、鋳型M(鋳型本体1)に湯口1gから溶湯mが注入された直後の状態を示している。注入された溶湯mの体積は、鋳型本体1のキャビティ―の総体積よりも小さく、製品部1dおよび押湯部1cの体積にほぼ等しい(あるいは、製品部1dおよび押湯部1cの体積よりもやや大きい)。 FIG. 20 shows a state immediately after the molten metal m is poured into the mold M (mold body 1) from the gate 1g. The volume of the injected molten metal m is smaller than the total volume of the cavities of the mold body 1 and is approximately equal to the volume of the product part 1d and the feeder part 1c (or more than the volume of the product part 1d and the feeder part 1c). Slightly large).
 注湯後の鋳型Mの湯口1g上に、図21に示すように、加圧装置120のノズル部121が移動機構122(図21では不図示)により移動し、ノズル部121からガスGが鋳型本体1のキャビティ―内に吹き込まれる。ガスGの吹き込みは、ガス供給管127に取り付けられた開閉バルブ128を開状態とすることによって行われる。これにより、溶湯mが押し込まれ、製品部1dおよび押湯部1cに充填される。 As shown in FIG. 21, the nozzle part 121 of the pressurizing device 120 is moved by the moving mechanism 122 (not shown in FIG. 21) on the pouring gate 1 g of the mold M after pouring, and the gas G is cast from the nozzle part 121. It is blown into the cavity of the main body 1. The gas G is blown by opening an open / close valve 128 attached to the gas supply pipe 127. Thereby, the molten metal m is pushed in and filled into the product part 1d and the hot water part 1c.
 次に、図22に示すように、ノズル部121から粒状物129がキャビティ―内に送り込まれる。粒状物129の送り込みは、粒状物タンク124および粒状物供給管125の間に設けられた開閉スライド部材126を開状態とすることによって行われる。また、このとき、開閉バルブ128も開状態のままであり、粒状物129は、ガスGとともに吹き込まれる。 Next, as shown in FIG. 22, the granular material 129 is fed from the nozzle part 121 into the cavity. The granular material 129 is fed by opening an open / close slide member 126 provided between the granular material tank 124 and the granular material supply pipe 125. At this time, the opening / closing valve 128 remains open, and the particulate matter 129 is blown together with the gas G.
 図23は、粒状物129の吹き込みが完了した状態を示している。図23に示されているように、このとき、溶湯mの最上部は、最後部よりも高い位置にあるので、溶湯mには、図20に示した状態に戻ろうとする流動力が作用するが、吹き込まれた粒状物129による摩擦力(粒状物129同士の摩擦力と、粒状物129およびキャビティ―内面間の摩擦力)によって、その流動が止められている。 FIG. 23 shows a state where the blowing of the granular material 129 is completed. As shown in FIG. 23, at this time, the uppermost part of the molten metal m is at a higher position than the last part, so that a fluid force to return to the state shown in FIG. 20 acts on the molten metal m. However, the flow is stopped by the frictional force caused by the blown granular material 129 (the frictional force between the granular materials 129 and the frictional force between the granular material 129 and the cavity-inner surface).
 このように、加圧装置120によって粒状物129をキャビティ―内に送り込むことにより、湯口部1aおよび湯道部1bへの注湯量を減らす(ほぼ無くす)ことができる。 In this way, by feeding the granular material 129 into the cavity by the pressurizing device 120, the amount of pouring into the gate 1a and the runner 1b can be reduced (substantially eliminated).
 なお、上述した例では、ガスGの吹き込み後に粒状物129の送り込みを行うが、粒状物129の送り込みと同時、あるいは粒状物129の送り込みの後にガスGの吹き込みを行ってもよい。 In the above-described example, the granular material 129 is fed after the gas G is blown, but the gas G may be blown simultaneously with the feeding of the granular material 129 or after the feeding of the granular material 129.
 また、粒状物129をガスGとともにキャビティー内に吹き込む構成に代えて、粒状物129を押圧部材(例えば空気圧シリンダーのロッド)によってキャビティ―内に押し込む構成としてもよい。 Further, instead of the structure in which the granular material 129 is blown into the cavity together with the gas G, the granular material 129 may be pushed into the cavity by a pressing member (for example, a rod of a pneumatic cylinder).
 続いて、上述した湯口位置検出システム100および鋳造装置200を用いて実行される、湯口位置検出方法および鋳造品の製造方法を、フローチャートを参照しながら説明する。 Subsequently, a gate position detection method and a casting product manufacturing method, which are executed using the above-described gate position detection system 100 and casting apparatus 200, will be described with reference to flowcharts.
 図24は、本実施形態における湯口位置検出方法の例を示すフローチャートである。 FIG. 24 is a flowchart showing an example of a gate position detection method in the present embodiment.
 本実施形態における湯口位置検出方法では、まず、湯口1gに対して位置決めされた少なくとも1つのマーカー20を含む画像を撮像する(工程S1)。既に説明したことからわかるように、この工程S1において、複数のマーカー20(好ましくは3つ以上のマーカー20)を含む画像を撮像することにより、湯口1gの位置をより正確に検出することができる。 In the gate position detection method in the present embodiment, first, an image including at least one marker 20 positioned with respect to the gate 1g is captured (step S1). As can be seen from the above description, the position of the gate 1g can be detected more accurately by capturing an image including a plurality of markers 20 (preferably three or more markers 20) in this step S1. .
 次に、工程S1において得られた画像に対して画像処理を行うことによって、湯口1gの位置に関する情報を生成する(工程S2)。このようにして、鋳型Mの湯口1gの位置を検出することができる。 Next, information on the position of the gate 1g is generated by performing image processing on the image obtained in step S1 (step S2). In this way, the position of the gate M of the mold M can be detected.
 本実施形態の湯口位置検出方法では、湯口1gに対して位置決めされたマーカー20を含む画像に基づいて湯口位置情報が生成されるので、マーカー20の位置に対する相対位置として湯口1gの位置を検出することができる。そのため、湯口1gの位置を正確に検出することができる。 In the pouring gate position detection method of the present embodiment, the pouring gate position information is generated based on the image including the marker 20 positioned with respect to the pouring gate 1g, so the position of the pouring gate 1g is detected as a relative position to the position of the marker 20. be able to. Therefore, the position of the gate 1g can be detected accurately.
 図25は、本実施形態における湯口位置検出方法の他の例を示すフローチャートである。 FIG. 25 is a flowchart showing another example of the gate position detection method in the present embodiment.
 図25に示す例では、工程S1の前に、位置決め治具24を用いて、少なくとも1つのマーカー20を湯口1gに対して位置決めする(工程S0)。位置決め治具24には、図13を参照しながら説明したように、所定の位置に少なくとも1つ(図13の例では複数)の開口部が形成されている。位置決め治具24を用いることにより、複数の鋳型Mについてマーカー20の位置決めを容易に行うことができる。 In the example shown in FIG. 25, before the step S1, the positioning jig 24 is used to position at least one marker 20 with respect to the gate 1g (step S0). As described with reference to FIG. 13, the positioning jig 24 has at least one (a plurality in the example of FIG. 13) opening at a predetermined position. By using the positioning jig 24, the marker 20 can be easily positioned with respect to the plurality of molds M.
 図26は、本実施形態における鋳造品の製造方法の例を示すフローチャートである。 FIG. 26 is a flowchart showing an example of a method for producing a cast product in the present embodiment.
 本実施形態における鋳造品の製造方法では、まず、鋳型Mに湯口1gから溶湯を注入する(工程S11)。次に、湯口1gの位置に関する情報を生成する(工程S12)。この工程S12は、上述した湯口位置検出方法によって実行される。 In the method for manufacturing a cast product in the present embodiment, first, molten metal is poured into the mold M from the gate 1g (step S11). Next, information on the position of the gate 1g is generated (step S12). This process S12 is performed by the gate position detection method mentioned above.
 続いて、溶湯が注入された鋳型Mに、湯口1gから少なくとも粒状物129を送り込む(工程S13)。この工程S13は、工程S12において生成された湯口位置情報に基づいて実行される。その後、溶湯の凝固が完了すると、型ばらしおよび最終加工を行う(工程S14)。このようにして、鋳造品の製造を行うことができる。 Subsequently, at least the granular material 129 is fed into the casting mold M into which the molten metal has been poured from 1 g of the gate (step S13). This process S13 is performed based on the gate position information generated in process S12. Thereafter, when solidification of the molten metal is completed, mold release and final processing are performed (step S14). In this way, a cast product can be manufactured.
 本実施形態の鋳造品の製造方法は、溶湯が注入された鋳型Mに湯口1gから粒状物129を送り込む工程S13を含んでいることにより、鋳型Mへの注湯量を減らすことができる。そのため、注入歩留りが向上し、また、鋳造品の取り出し後の加工作業を簡略化することができる。また、この工程S13は、画像処理装置によって生成された湯口1gの位置に関する情報に基づいて行われるので、粒状物129の送り込みを好適に行うことができる。 The manufacturing method of the cast product of this embodiment can reduce the pouring amount to the casting mold M by including the process S13 which sends the granular material 129 from 1g to the casting mold M in which the molten metal was poured. Therefore, the injection yield is improved, and the processing work after taking out the cast product can be simplified. Moreover, since this process S13 is performed based on the information regarding the position of the gate 1g produced | generated by the image processing apparatus, the granular material 129 can be sent in suitably.
 なお、上記の説明では、画像処理装置10によって生成された湯口位置情報に基づいて粒状物129の送り込みを行う例を説明したが、湯口位置情報に基づく制御は、この例に限定されるものではない。例えば、湯口位置情報に基づいて、溶湯の注入を行ってもよい。湯口位置情報に基づいて溶湯の注入を行うことにより、注湯作業のいっそうの効率化や自動化が可能となる。 In the above description, the example in which the granular material 129 is fed based on the gate position information generated by the image processing apparatus 10 has been described. However, the control based on the gate position information is not limited to this example. Absent. For example, the molten metal may be injected based on the gate position information. By injecting the molten metal based on the pouring gate position information, it becomes possible to make the pouring work more efficient and automated.
 図27は、湯口1gの位置検出のより詳細な例を示すフローチャートである。 FIG. 27 is a flowchart showing a more detailed example of the position detection of the gate 1g.
 鋳造装置200がある鋳型の位置へ移動すると、制御装置130からの指令により、撮像装置12がマーカー20を含む画像を撮像する(工程S21)。 When the casting apparatus 200 moves to a certain mold position, the imaging apparatus 12 captures an image including the marker 20 in accordance with a command from the control apparatus 130 (step S21).
 次に、撮像された画像内におけるマーカー20を抽出する(工程S22)。マーカー20の抽出は、例えば、色(明るさ)、形、大きさを判定することにより行われる。このとき、画像内における湯玉(明るさが最大となる領域)は、除外する。 Next, the marker 20 in the captured image is extracted (step S22). The marker 20 is extracted by, for example, determining the color (brightness), shape, and size. At this time, hot water balls in the image (regions where the brightness is maximum) are excluded.
 続いて、マーカー20のペア(2つのマーカー20)から、湯口1gの位置(あるいは重り2の開口部2aの中心位置)を算出する(工程S23)。このとき、ペアの一方のマーカー20から湯口1gの位置の平行移動量を算出し、他方のマーカー20から湯口1gの位置の回転移動量を算出する(図4を参照しながら説明した手法である)。また、3つ以上のマーカー20が設けられている場合には、任意の2つのマーカー20を選択して各ペアについて算出を行い、平均値および分散を求める。 Subsequently, the position of the gate 1g (or the center position of the opening 2a of the weight 2) is calculated from the pair of markers 20 (two markers 20) (step S23). At this time, the parallel movement amount at the position of the gate 1g is calculated from one marker 20 of the pair, and the rotational movement amount at the position of the gate 1g is calculated from the other marker 20 (the method described with reference to FIG. 4). ). When three or more markers 20 are provided, any two markers 20 are selected and calculated for each pair, and an average value and variance are obtained.
 次に、算出された湯口1gの位置(あるいは重り2の開口部2aの中心位置)の妥当性を判定する(工程S24)。算出された位置が想定範囲内でない場合には、マーカー20の抽出または鋳造装置200の移動の不具合であるとみなし、エラー信号が出力される。また、マーカー20が3つ以上である場合に、分散が想定範囲を超えたときは、エラー信号が出力されるか、あるいは、マーカー20の汚れ等によるマーカー20の抽出ミスを想定し、正しく抽出されたと見なせるペアについての算出結果のみを用いる。 Next, the validity of the calculated position of the gate 1g (or the center position of the opening 2a of the weight 2) is determined (step S24). If the calculated position is not within the assumed range, it is regarded as a defect in the extraction of the marker 20 or the movement of the casting apparatus 200, and an error signal is output. In addition, when the number of markers 20 is three or more and the variance exceeds the assumed range, an error signal is output, or a marker 20 extraction error due to contamination of the markers 20 is assumed and extraction is performed correctly. Only the calculation results for pairs that can be considered as being used are used.
 続いて、算出された湯口1gの位置(あるいは重り2の開口部2aの中心位置)と、本来の位置との差を計算する(工程S25)。計算結果は、補正値として制御装置130へ出力される。 Subsequently, the difference between the calculated position of the gate 1g (or the center position of the opening 2a of the weight 2) and the original position is calculated (step S25). The calculation result is output to the control device 130 as a correction value.
 次に、補正値に基づいて鋳造装置200を移動させ、鋳造動作を実行する(工程S26)。 Next, the casting apparatus 200 is moved based on the correction value, and the casting operation is executed (step S26).
 続いて、算出結果の数値および画像をコンピュータファイルとして保存する(工程S27)。その後、鋳造装置200は次の鋳型の位置に移動する。このようにして、湯口1gの位置検出およびそれに続く鋳造動作を実行することができる。 Subsequently, the numerical value and image of the calculation result are stored as a computer file (step S27). Thereafter, the casting apparatus 200 moves to the position of the next mold. In this way, the position detection of the gate 1g and the subsequent casting operation can be executed.
 本発明の実施形態によると、鋳型の湯口の位置を正確に検出することができる湯口位置検出システムおよび湯口位置検出方法が提供される。本発明の実施形態による湯口位置検出システムおよび湯口位置検出方法は、重力注湯を行う鋳造法に広く用いることができる。 According to the embodiment of the present invention, a gate position detection system and a gate position detection method capable of accurately detecting the position of the gate of the mold are provided. The gate position detection system and the gate position detection method according to the embodiment of the present invention can be widely used in a casting method in which gravity pouring is performed.
 M  鋳型
 1  鋳型本体
 1a  湯口部
 1b  湯道部
 1c  押湯部
 1d  製品部
 1g  湯口
 1F  鋳枠(金枠)
 2  重り
 2a 開口部
 10  画像処理装置
 12  撮像装置
 13  通信ケーブル
 14  演算部
 15  防塵カバー
 16  遮光カバー
 20  マーカー
 20u  マーカーの上面
 20s  マーカーの側面
 21  ボルト
 22 保護部材
 22a  ベース部
 22b  カラー部
 24  位置決め治具
 24a  第1開口部
 24b  第2開口部
 26  栓
 100  湯口位置検出システム
 110  注湯機
 120  加圧装置
 121 ノズル部
 122 移動機構
 123 粒状物供給機
 124 粒状物タンク
 125 粒状物供給管
 126 開閉スライド部材
 127 ガス供給管
 128 開閉バルブ
 129 粒状物
 130  制御装置
 200  鋳造装置
M mold 1 mold body 1a gate 1b runner 1c feeder 1d product 1g gate 1F cast frame (gold frame)
2 Weight 2a Opening 10 Image processing device 12 Imaging device 13 Communication cable 14 Calculation unit 15 Dust-proof cover 16 Light-shielding cover 20 Marker 20u Marker upper surface 20s Marker side surface 21 Bolt 22 Protection member 22a Base portion 22b Color portion 24 Positioning jig 24a 1st opening part 24b 2nd opening part 26 Stopper 100 Pouring gate position detection system 110 Pouring machine 120 Pressurizing device 121 Nozzle part 122 Moving mechanism 123 Granular substance supply machine 124 Granular substance tank 125 Granular substance supply pipe 126 Opening and closing slide member 127 Gas Supply pipe 128 Open / close valve 129 Granular material 130 Control device 200 Casting device

Claims (14)

  1.  鋳型の湯口の位置を検出する湯口位置検出システムであって、
     前記鋳型に対して相対的に移動する撮像装置を含む画像処理装置と、
     前記鋳型に設けられ、前記湯口に対して位置決めされた少なくとも1つのマーカーと、を備え、
     前記撮像装置は、前記少なくとも1つのマーカーを含む画像を撮像し、
     前記画像処理装置は、前記撮像装置によって撮像された前記画像に基づいて、前記湯口の位置に関する情報を生成する湯口位置検出システム。
    A gate position detection system for detecting the position of a mold gate,
    An image processing device including an imaging device that moves relative to the mold;
    At least one marker provided on the mold and positioned with respect to the gate;
    The imaging device captures an image including the at least one marker;
    The said image processing apparatus is a gate position detection system which produces | generates the information regarding the position of the said gate based on the said image imaged by the said imaging device.
  2.  前記少なくとも1つのマーカーは、複数のマーカーである請求項1に記載の湯口位置検出システム。 The gate position detection system according to claim 1, wherein the at least one marker is a plurality of markers.
  3.  前記複数のマーカーは、3つ以上のマーカーである請求項2に記載の湯口位置検出システム。 The gate position detection system according to claim 2, wherein the plurality of markers are three or more markers.
  4.  前記少なくとも1つのマーカーのそれぞれは、耐熱性材料から形成されたマーカー部材である請求項1から3のいずれかに記載の湯口位置検出システム。 The gate position detection system according to any one of claims 1 to 3, wherein each of the at least one marker is a marker member formed of a heat resistant material.
  5.  前記少なくとも1つのマーカーのそれぞれを囲うように設けられた保護部材をさらに備える請求項1から4のいずれかに記載の湯口位置検出システム。 The gate position detection system according to any one of claims 1 to 4, further comprising a protection member provided so as to surround each of the at least one marker.
  6.  前記撮像装置に取り付けられ、前記撮像装置に入射する光を制限する遮光カバーをさらに備える請求項1から5のいずれかに記載の湯口位置検出システム。 The gate position detection system according to any one of claims 1 to 5, further comprising a light-shielding cover that is attached to the imaging device and restricts light incident on the imaging device.
  7.  前記鋳型は、前記湯口が形成された鋳型本体と、平面視において前記湯口に重ならないように前記鋳型本体上に乗せられる重りとを有し、
     前記少なくとも1つのマーカーは、前記重り上に設けられている請求項1から6のいずれかに記載の湯口位置検出システム。
    The mold has a mold body in which the gate is formed, and a weight placed on the mold body so as not to overlap the gate in plan view,
    The gate position detection system according to any one of claims 1 to 6, wherein the at least one marker is provided on the weight.
  8.  前記鋳型は、鋳枠と、前記湯口が形成され、前記鋳枠内に位置する鋳型本体とを有し、
     前記少なくとも1つのマーカーは、前記鋳枠上に設けられている請求項1から6のいずれかに記載の湯口位置検出システム。
    The mold includes a casting frame, and a mold body in which the gate is formed and located in the casting frame,
    The gate position detection system according to any one of claims 1 to 6, wherein the at least one marker is provided on the casting frame.
  9.  請求項1から8のいずれかに記載の湯口位置検出システムと、
     前記鋳型に前記湯口から溶湯を注入する注湯機と、
     溶湯が注入された前記鋳型に、前記湯口から少なくとも粒状物を送り込む加圧装置と、を備える鋳造装置。
    The gate position detection system according to any one of claims 1 to 8,
    A pouring machine for injecting molten metal into the mold from the gate;
    A casting apparatus comprising: a pressurizing device that feeds at least particulate matter from the pouring gate into the mold into which molten metal is injected.
  10.  前記加圧装置は、前記画像処理装置によって生成された前記湯口の位置に関する情報に基づいて前記粒状物の送り込みを行う請求項9に記載の鋳造装置。 The casting apparatus according to claim 9, wherein the pressurizing device feeds the granular material based on information on the position of the gate generated by the image processing device.
  11.  鋳型の湯口の位置を検出する湯口位置検出方法であって、
     前記鋳型に設けられるとともに前記湯口に対して位置決めされた少なくとも1つのマーカーを含む画像を撮像する工程(a)と、
     前記工程(a)において撮像された前記画像に基づいて前記湯口の位置に関する情報を生成する工程(b)と、
    を包含する湯口位置検出方法。
    A pouring gate position detection method for detecting the pouring gate position of a mold,
    (A) capturing an image including at least one marker provided on the mold and positioned with respect to the gate;
    (B) generating information on the position of the gate based on the image captured in the step (a);
    A pouring gate position detecting method.
  12.  所定の位置に少なくとも1つの開口部が形成された位置決め治具を用いて、前記少なくとも1つのマーカーを前記湯口に対して位置決めする工程(c)をさらに包含する請求項11に記載の湯口位置検出方法。 The gate position detection according to claim 11, further comprising a step (c) of positioning the at least one marker with respect to the gate using a positioning jig in which at least one opening is formed at a predetermined position. Method.
  13.  鋳型に湯口から溶湯を注入する工程(A)と、
     請求項11または12に記載の湯口位置検出方法によって、前記湯口の位置に関する情報を生成する工程(B)と、
    を包含する鋳造品の製造方法。
    A step (A) of injecting molten metal into the mold from the gate;
    The step (B) of generating information about the position of the gate by the gate position detection method according to claim 11 or 12,
    A method for producing a casting including
  14.  溶湯が注入された前記鋳型に、前記湯口から少なくとも粒状物を送り込む工程であって、前記工程(B)において生成された前記湯口の位置に関する情報に基づいて実行される工程(C)をさらに包含する請求項13に記載の鋳造品の製造方法。 The method further includes a step of feeding at least particulate matter from the gate into the mold into which the molten metal has been injected, the step being executed based on information on the position of the gate generated in the step (B). The method for producing a cast product according to claim 13.
PCT/JP2015/069905 2014-07-14 2015-07-10 Gate position detection system, casting device, gate position detection method, and method for manufacturing cast product WO2016009961A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016506387A JP6053243B2 (en) 2014-07-14 2015-07-10 Gate position detection system, casting apparatus, gate position detection method and casting product manufacturing method
EP15821561.6A EP3170584B1 (en) 2014-07-14 2015-07-10 Gate position detection system, casting device, gate position detection method, and method for manufacturing cast product
CN201580001722.1A CN105531054B (en) 2014-07-14 2015-07-10 Gate position detection system, casting device, gate position detection method, and method for manufacturing cast product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-143997 2014-07-14
JP2014143997 2014-07-14

Publications (1)

Publication Number Publication Date
WO2016009961A1 true WO2016009961A1 (en) 2016-01-21

Family

ID=55078455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069905 WO2016009961A1 (en) 2014-07-14 2015-07-10 Gate position detection system, casting device, gate position detection method, and method for manufacturing cast product

Country Status (4)

Country Link
EP (1) EP3170584B1 (en)
JP (1) JP6053243B2 (en)
CN (1) CN105531054B (en)
WO (1) WO2016009961A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107168222A (en) * 2017-05-05 2017-09-15 应达工业(上海)有限公司 A kind of video running gate system based on intelligent vision camera
CN109062161A (en) * 2018-08-23 2018-12-21 大连重工环保工程有限公司 A kind of tank switching station automatic tapping control system
CN114612424A (en) * 2022-03-10 2022-06-10 昆山缔微致精密电子有限公司 High-precision positioning method and system for mold gate clamping

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106042239B (en) * 2016-06-22 2018-01-02 厦门维克机械设备有限公司 A kind of fully automatic vacuum pouring procedure of more secondary irregular moulds
CN106404039A (en) * 2016-08-31 2017-02-15 宁夏共享模具有限公司 Cast detection method and device
CN106767708A (en) * 2016-12-20 2017-05-31 陈志雄 A kind of industrial automatic control alignment system and its localization method based on figure identification
KR102681357B1 (en) * 2022-04-19 2024-07-03 건설기계부품연구원 Measuring jig for obtaining flask coordinates and volume measurement method for automatic molding sand supply system for sand casting using the same
PL443671A1 (en) * 2023-02-01 2024-08-05 Politechnika Śląska Attachment for contact pouring

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496434A (en) * 1978-01-18 1979-07-30 Kobe Steel Ltd Method of centering molten steel injection flow
JPH04305358A (en) * 1991-04-02 1992-10-28 Hitachi Metals Ltd Gate breaking device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145B2 (en) * 1975-10-29 1980-01-05
EP0747152B1 (en) * 1995-06-07 1999-07-28 Inductotherm Corp. Video positioning system for a pouring vessel
JP2750677B2 (en) * 1995-12-11 1998-05-13 株式会社福山鋳造工場 Casting production method using self-hardening mold and its mold
JPH09225625A (en) * 1996-02-16 1997-09-02 Hitachi Metals Ltd Device for holding out casting in vertical type flaskless casting line
JP4888796B2 (en) * 2009-05-22 2012-02-29 有限会社ファンドリーテック・コンサルティング Casting method
EP2407261B1 (en) * 2010-07-16 2016-04-20 Primetals Technologies Austria GmbH Method for automatic positioning a spout of a metallurgical container
CN101941067A (en) * 2010-08-26 2011-01-12 刘书僮 Numerical control hot metal casting system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496434A (en) * 1978-01-18 1979-07-30 Kobe Steel Ltd Method of centering molten steel injection flow
JPH04305358A (en) * 1991-04-02 1992-10-28 Hitachi Metals Ltd Gate breaking device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107168222A (en) * 2017-05-05 2017-09-15 应达工业(上海)有限公司 A kind of video running gate system based on intelligent vision camera
CN109062161A (en) * 2018-08-23 2018-12-21 大连重工环保工程有限公司 A kind of tank switching station automatic tapping control system
CN114612424A (en) * 2022-03-10 2022-06-10 昆山缔微致精密电子有限公司 High-precision positioning method and system for mold gate clamping

Also Published As

Publication number Publication date
EP3170584A1 (en) 2017-05-24
EP3170584A4 (en) 2018-03-28
CN105531054B (en) 2017-04-12
CN105531054A (en) 2016-04-27
JPWO2016009961A1 (en) 2017-04-27
JP6053243B2 (en) 2016-12-27
EP3170584B1 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
JP6053243B2 (en) Gate position detection system, casting apparatus, gate position detection method and casting product manufacturing method
CN106042239B (en) A kind of fully automatic vacuum pouring procedure of more secondary irregular moulds
JP6611922B2 (en) Sand mold making machine and sand mold part manufacturing method
EP0747152B1 (en) Video positioning system for a pouring vessel
JP2006524137A (en) Automatic placement of core packages
WO2019163221A1 (en) Method for preventing defect due to displacement of cavity portion
US11173540B2 (en) Sand moulding machine and method of producing sand mould parts
CN205869697U (en) Device of automatic projection welding accurate positioning of robot
Butt et al. Intelligent machine vision based modeling and positioning system in sand casting process
JP5408797B2 (en) Pouring facilities
More et al. Review of casting defect analysis to initiate the improvement process
CN103942817B (en) Alloy cast ingot positioning method based on machine vision
CN110072652B (en) Method and device for operating a casting installation
JP4188376B2 (en) Inspection method and inspection apparatus for injection molded products
JP6431937B2 (en) Laser processing machine
CN111598945A (en) Three-dimensional positioning method for automobile engine crankshaft bush cover
JP2009195933A (en) Casting method for cast product, and device therefor
JP6009269B2 (en) Casting filter input device
US20210309036A1 (en) Laser marking apparatus, laser marking system, and laser marking method
Butt et al. Research Article Intelligent Machine Vision Based Modeling and Positioning System in Sand Casting Process
US20210308797A1 (en) Laser marking apparatus and laser marking method
CN116890170A (en) Casting system and casting
CN110345868B (en) Precision detection method of automobile lost foam white mold based on photogrammetry
Tiwari et al. Semi automatic pouring system
KIM et al. Improvement of Filling and Shrinkage Analysis in the Casting of Cast Iron and Steel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201580001722.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2016506387

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015821561

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015821561

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201601245

Country of ref document: ID

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE