WO2016009825A1 - On-load tap changing device - Google Patents

On-load tap changing device Download PDF

Info

Publication number
WO2016009825A1
WO2016009825A1 PCT/JP2015/068802 JP2015068802W WO2016009825A1 WO 2016009825 A1 WO2016009825 A1 WO 2016009825A1 JP 2015068802 W JP2015068802 W JP 2015068802W WO 2016009825 A1 WO2016009825 A1 WO 2016009825A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil tank
energization
contact
switching switch
oil
Prior art date
Application number
PCT/JP2015/068802
Other languages
French (fr)
Japanese (ja)
Inventor
江口 直紀
拓 石川
泰志 宮本
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to EP15821798.4A priority Critical patent/EP3171373B1/en
Publication of WO2016009825A1 publication Critical patent/WO2016009825A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/0005Tap change devices
    • H01H9/0016Contact arrangements for tap changers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings
    • H01F29/04Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings having provision for tap-changing without interrupting the load current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/0005Tap change devices
    • H01H9/0027Operating mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/0005Tap change devices
    • H01H9/0038Tap change devices making use of vacuum switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/0005Tap change devices
    • H01H9/0044Casings; Mountings; Disposition in transformer housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/08Arrangements to facilitate replacement of a switch, e.g. cartridge housing

Definitions

  • Embodiment of this invention is related with the tap switching apparatus at the time of loading provided with the switching switch of the vacuum valve system.
  • an on-load tap switching device is provided to adjust the voltage of the transmission line or distribution line.
  • the on-load tap switching device 51 shown in FIG. 17 is provided with an on-load tap switching device 52 installed in the transformer tank 60 and an electric operation mechanism 53 installed outside the transformer tank 60. Yes.
  • the electric operation mechanism 53 is for driving and controlling the on-load tap changer 52.
  • the on-load tap changer 52 is a device that switches the taps of the windings in a state where a transformer load is applied in accordance with voltage fluctuations.
  • the on-load tap changer 52 is provided with an oil tank 50 filled with insulating oil 56, and a switching switch 54 is accommodated in the oil tank 50.
  • a fixed contact 47 and a fixed-side energization contact 48 are provided on the inner wall surface of the oil tank 50.
  • a tap selector 55 is installed at the lower part of the oil tank 50. The tap selector 55 is connected to the transformer winding.
  • the switching switch 54 controls the three phases at once and switches the energizing current while continuing the operation of the transformer.
  • the switching switch 54 cuts off the energization current and energizes the main contact in the interruption circuit with the insulating oil 56 in the oil tank 50 exposed.
  • This method is called an arc-in-oil switching method, and for example, configurations shown in FIGS. 18 to 20 are known.
  • the switching switch 54 is provided with a movable contact 36 on the M1 side and a movable contact 38 on the M2 side.
  • Each movable contact 36, 38 is attached to a switching movable link 37, and the switching movable link 37 is connected to a movable contact driving lever 43.
  • These movable contacts 36 and 38 are so-called rotary arm type movable contacts, and perform a switching pole operation with a fixed contact 47 (shown in FIG. 17) attached to the inner wall surface of the oil tank 50 with a phase difference. Yes.
  • the switching switch 54 is provided with a current-carrying conductor 39 on the M1 side and a current-carrying conductor 40 on the M2 side in order to reduce the current flowing in the interrupting portion.
  • a link 41 for supporting the current-carrying conductors 39, 40 is attached to each current-carrying conductor 39, 40, and a drive lever 42 is connected to the link 41.
  • the drive lever 42 drives the current-carrying conductors 39 and 40 in conjunction with a series of movements of the movable contacts 36 and 38.
  • the fixed contact 47 is provided with a fixed contact 44 on the M1 side and a fixed contact 45 on the M2 side.
  • the fixed contact 44 on the M1 side is arranged so as to face and separate from the movable contact 36 on the M1 side (shown in FIG. 18).
  • the fixed contact 45 on the M2 side is disposed so as to face and separate from the movable contact 38 on the M2 side (shown in FIG. 18).
  • the oil tank 50 is composed of a cylindrical insulating cylinder 12 and an oil tank bottom 17 fixed to the lower part thereof, and a switching switch 54 (not shown in FIG. 20) is provided inside the insulating cylinder 12. (Shown) is stored.
  • a tap tow 10 is installed in the upper part of the oil tank 50, and a deceleration Haguru mechanism 11 for transmitting a rotational force to the switching switch 54 is attached thereto.
  • a neutral point connection terminal 14, an M1 side tap connection terminal 15, and an M2 side tap connection terminal 16 are attached to the outer peripheral surface of the insulating cylinder 12 for each phase.
  • a neutral ring 13 is provided for connection.
  • the neutral point connection terminal 14 is disposed below the neutral ring 13, and the tap connection terminals 15 and 16 are disposed below the neutral point connection terminal 14.
  • the tap connection terminals 15 and 16 are arranged in a horizontal direction with a predetermined distance.
  • the contact wear is caused by the arc generated in the insulating oil 56.
  • the carbon sludge generated with the arc may contaminate the insulating oil 56 in the oil tank 50. Therefore, in the switching switch 54 of the arc-in-oil switching system, maintenance inspection work and filtration work of the insulating oil 56 are indispensable, and the work cost is increased.
  • a vacuum valve type switching switch that uses a vacuum valve in the shut-off part has attracted attention.
  • the main contact is sealed in a high vacuum vacuum valve, and the current is cut off by opening and closing the vacuum valve, so that excellent dielectric strength and arc extinguishing performance can be exhibited.
  • JP 2006-520535 A Japanese National Patent Publication No. 11-504755
  • the switching switch of the vacuum valve system Since the switching switch of the vacuum valve system has the above merits, it is desired to change from the arc-in-oil switching system.
  • the following problems have been pointed out when changing the system.
  • the switching switch 54 When changing the switching switch 54 from the arc-in-oil switching method to the vacuum valve method, the fixed contact 47 among the members attached to the inner wall surface of the oil tank 50 is housed in the vacuum valve, but the fixed-side energizing contact Since 48 is attached to the inner wall surface of the oil tank 50, it is necessary to replace it with that for the vacuum valve system.
  • the vacuum valve system In the vacuum valve system, a large number of vacuum valves are arranged, and their opening / closing mechanism is also indispensable. Therefore, the layout of the members arranged in the oil tank was greatly different from that in the oil arc switching system. Therefore, conventionally, when changing from the arc-in-oil switching system to the vacuum valve system, the entire oil tank 50 is replaced or the oil tank 50 is modified for the vacuum valve system.
  • the oil tank 50 is directly installed in the transformer main body tank 60, it is difficult to remove it from the transformer main body tank 60. Further, the service life of the oil tank 50 is normally set to be as long as that of the transformer main body tank 60. For this reason, the switching switch 54 is desired to be changed from the arc-in-oil switching system to the vacuum valve system. On the other hand, the oil tank 50 continues to be used with the transformer main body tank 60 for a long time without replacement or modification. There is a desire to want.
  • the vacuum valve type switching switch is provided with a plurality of drive mechanisms such as a mechanism for opening and closing the vacuum valve and a mechanism for operating the current-carrying conductor in conjunction therewith.
  • these drive mechanisms those having a complicated structure such as a toggle link mechanism are generally used.
  • a large number of vacuum valves are arranged in the vacuum valve system, it is difficult to construct a drive mechanism in a limited space in the oil tank 50.
  • the embodiment of the present invention has been proposed in order to solve the above-mentioned problems, and its purpose is to ensure compatibility of the oil tank when changing from the arc-in-oil switching system to the vacuum valve system, and to retrofit it.
  • An object of the present invention is to provide an on-load tap changer capable of enhancing functions and simplifying a component configuration to enhance space and easily construct a drive mechanism.
  • an embodiment of the present invention includes a vacuum valve type switching switch in an oil tank filled with insulating oil, and the switching switch includes a vacuum valve for storing a main contact;
  • the on-load tap switching device provided with a conducting conductor that reduces the current flowing through the main contact is characterized by the following points.
  • A an energizing cam that rotates about a central axis of the switching switch;
  • B a parallel link mechanism that receives the rotational force of the energization cam and drives the energization conductor in parallel in the radial direction of the switching switch;
  • C a fixed-side energizing contact that is attached to the inner wall surface of the oil tank and is capable of contacting and separating from the energizing conductor.
  • D The switching switch is configured to be attachable to and detachable from the oil tank in a state where the fixed-side energizing contact is attached to the oil tank.
  • the block diagram of 1st Embodiment The perspective view of the whole switching switch of 1st Embodiment. The perspective view of the interruption
  • the first embodiment will be specifically described with reference to FIGS.
  • the first embodiment is obtained by improving the switching switch of the on-load tap switching device, and the same members as those of the conventional on-load tap switching device shown in FIG. Is omitted.
  • the switching valve 46 employs a vacuum valve system, and a fixed energizing contact 48 is attached to the inner wall surface of the oil tank 50.
  • the structures of the oil tank 50 and the fixed-side energizing contact 48 are the same as those in the conventional arc-in-oil switching system shown in FIGS. That is, the fixed side energizing contact 48 is the neutral point energizing contacts 30, 32, the M1 side tap energizing contact 31, and the M2 side tap energizing contact 33 shown in FIG.
  • the first embodiment is characterized in that the switching switch 46 is configured to be detachable from the oil tank 50 while the fixed-side energization contact 48 is attached to the oil tank 50. For this reason, when the switching switch 46 is removed from the oil tank 50 or when the switching switch 46 is attached to the oil tank 50, the switching opening / closing is also performed on the oil tank 50 side at a position that obstructs the attaching / detaching operation of the switching switch 46. No component is provided on the container 46 side.
  • the ground shield 18 is installed above the switching switch 46, and the energy storage mechanism 19 is attached below the shield 18.
  • a blocking part 49 is incorporated in the lower part of the energy storage mechanism 19.
  • a slide neutral point contact 20, a slide M1 contact 21, and a slide M2 contact 22 are provided on the outer peripheral portion of the blocking portion 49.
  • the slide neutral point contact 20, the slide M1 contact 21, and the slide M2 contact 22 are in contact with the neutral point connection terminal 14 and the tap connection terminals 15 and 16 (located outside the oil tank 50) described in FIG. , A contact for drawing current into the switching switch 46. Further, a current limiting resistor 23 and a varistor 24 are provided below each of the contacts 20-22. The varistor 24 protects the portion between the breaking electrodes of the switching switch 54 when an abnormal surge voltage is applied between the taps.
  • FIG. 3 The interruption
  • the shut-off part 49 is provided with three phases of U-phase, V-phase and W-phase, and four vacuum valves per phase and a total of twelve vacuum valves in total for three phases are attached to the shut-off holder 4. .
  • the blocking holder 4 is provided in the middle of the blocking portion 49.
  • One blocking holder 4 is provided for each phase, and a vacuum valve opening / closing mechanism including four vacuum valves and a parallel link mechanism for driving the conducting conductors 7 and 8 in parallel are attached.
  • the M1 side energizing conductor 7 and the M2 side energizing conductor 8 are provided close to the M1 side resistance valve 5 and the M2 side resistance valve 6, respectively.
  • the current-carrying conductors 7 and 8 are closed and energized after the tap switching, thereby suppressing the deterioration of the interruption performance in the interruption section 49 and improving the durability performance, thereby contributing to the downsizing and simplification of the switching switch 46.
  • a resistance switch holder 9 is provided below the resistance valves 5 and 6.
  • the resistance switch holder 9 incorporates a switch mechanism (not shown) that ensures insulation of the non-energized side tap.
  • the switching crank 1 is provided at the upper part of the blocking part 49.
  • the switching crank 1 is connected to a vacuum valve opening / closing mechanism, a parallel link mechanism for driving the energizing conductors 7 and 8 in parallel, and a switch mechanism for ensuring insulation of the non-energizing side tap. These mechanisms are driven.
  • the parallel link mechanism is a contact energization mechanism that operates the energization conductors 7 and 8, and receives the rotational force of the energization cams 26 and 29 to cause the energization conductors 7 and 8 to move in and out in the radial direction of the switching switch 46.
  • This is a mechanism for switching between energization by alternately short-circuiting between the M1 and M2 taps in the energizing contact 48.
  • the energizing cam 26 is a member that operates the parallel link mechanism, and is a disc-shaped cam member that is rotatably provided around the central axis of the switching switch 46. As shown in FIGS. 3 and 4, the energization cam 26 is disposed so as to engage with the upper portions of the energization conductors 7 and 8. The energization cam 29 is disposed so as to engage with the lower portions of the energization conductors 7 and 8 as shown in FIG.
  • the parallel link mechanism is provided with a pair of energizing links 27, and the energizing conductors 7 and 8 rotate at one end of the energizing link 27 via connecting shafts 7b and 8b. It is supported freely.
  • An energization link support pin 28 is attached to the other end of the energization link 27.
  • the energizing link support pin 28 is a member extending in parallel to the axial direction of the blocking portion 49.
  • An end portion of the energization link support pin 28 is rotatably supported by an energization link support hole 25 (shown in FIG. 5) formed in the blocking holder 4.
  • the neutral point energizing contacts 30 and 32 and the M1 and M2 side tap energizing contacts 31 and 33 are provided on the oil tank 50 side as the fixed energizing contact 48. These energizing contacts 30 to 33 will be described with reference to FIGS. As shown in FIGS. 6 and 7, the M1 side tap energizing contact 31 is disposed below the neutral point energizing contact 30, and the M2 side tap energizing contact 32 is disposed below the neutral point energizing contact 32. Has been.
  • drive rollers 7a and 8a are rotatably attached to the upper and lower ends of the current-carrying conductors 7 and 8, and the drive rollers 7a and 8a are sandwiched from above and below.
  • An upper energizing cam 26 and a lower energizing cam 29 are provided.
  • Cam grooves 26a and 29a are formed in the energizing cams 26 and 29, and the driving rollers 7a and 8a are engaged therewith.
  • the parallel link mechanism in the present embodiment is disposed at both ends of the divided area per phase. That is, as shown in FIG. 8, the three phases (U phase, V phase, W phase) are arranged in a similar manner by dividing 120 degrees, and the parallel link mechanism is formed in the blocking holder 4 at both ends of each region of the three phases.
  • the energized link support hole 25 (shown in FIG. 5) is supported and arranged in a mirror image. Further, as shown in FIG. 8, M1, M2 side resistance valves 5, 6 are arranged between the parallel link mechanisms.
  • FIG. 9A the M1 side is closed and becomes the M1 side energization closing part 34, and the M2 side is opened and becomes the M2 side energization opening part 35.
  • FIG. 10 the energization conductor 7 on the M1 side is energized ON, and the energization conductor 8 on the M2 side is energized OFF, which is the energization position of M1.
  • both M1 and M2 are in the open state as shown in FIG. 9B. That is, the energization closing part 34 on the M1 side becomes the energization opening part 36, and the energization opening part 35 on the M2 side remains as it is.
  • This state corresponds to FIGS. That is, the switching operation for retracting the energization conductor 7 on the M1 side is performed, and in FIGS. 11 and 12, the energization OFF is performed on both the M1 side and the M2 side. Then, at the stage of FIG. 13, the current-carrying conductor 8 on the M2 side starts to move outward from the central direction with respect to the radial direction of the switching switch 46.
  • the M1 side is in an open state
  • the M2 side is in a closed state
  • the energization open portion 36 on the M1 side remains.
  • the M2 side becomes the energization closing portion 37 and the tap switching operation is completed.
  • This state corresponds to FIG.
  • the energization conductor 7 on the M1 side is energized OFF
  • the energization conductor 8 on the M2 side is energized ON, which is the energization position of M2.
  • FIG. 15 shows a circuit diagram of the blocking unit 49 of the present embodiment.
  • (A), (B), and (C) shown in FIG. 9 correspond to (a), (b), and (c) in FIG. 15, respectively.
  • the parallel link mechanism which is a contact energization mechanism, has M1 side as Bso and M2 side as Bse.
  • Reference numerals 34 to 37 in FIG. 15 are the same as those in FIG. 9.
  • 34 denotes an energization closing part on the M1 side
  • 35 denotes an energization opening part on the M2 side
  • 36 denotes an energization opening part on the M1 side
  • Reference numeral 37 denotes an energization closing part on the M2 side.
  • FIG. 16 shows an example of a switching sequence of the blocking unit 49 of the present embodiment.
  • the switching angle range is 0 to 75 °
  • the M1 side is set to 0 to 10 ° closed and 10 to 75 ° opened.
  • the M2 side is set to open from 0 to 65 ° and closed from 65 to 75 °.
  • Reference numerals 34 and 35 in FIG. 16 are the same as those in FIG. 9.
  • Reference numeral 34 denotes an energization closing part on the M1 side
  • 35 denotes an energization opening part on the M2 side.
  • the switching switch 46 can be attached to and detached from the oil tank 50 while the fixed-side energizing contact 48 is attached to the oil tank 50.
  • the structure of the oil tank 50 and the fixed-side energizing contact 48 attached thereto is the same as that of the conventional arc switching method in oil shown in FIG.
  • the switching switch 46 is changed from the arc-in-oil switching system to the vacuum valve system, the compatibility of the oil tank 50 that houses the switching switch 46 can be ensured, and the oil tank 50 cannot be replaced or modified at all. It is unnecessary. Therefore, the oil tank 50 can be continuously used without being replaced or modified. Thereby, the oil tank 50 having the same life as the transformer main body tank 60 can be used continuously for a long time, and the retrofit function is improved.
  • the parallel link mechanism that drives the current-carrying conductors 7 and 8 in parallel can be configured with only simple components such as the current-carrying link 27 and the current-carrying link support pin 28.
  • the energizing cams 26 and 29 for applying a driving force to the parallel link mechanism are disk-like members that rotate around the central axis of the switching switch 46, and the switching switch 46 is less likely to swell radially. There is no worry of becoming larger.
  • the energizing contact mechanism can be provided in a space-saving manner.
  • the space in the oil tank 50 is narrowed, but by adopting a parallel link mechanism with good space characteristics, the mechanism construction becomes easy and the vacuum is reduced.
  • a valve system can be implemented reliably.
  • the current-carrying cams 26 and 29 can equally handle the contact pressure of the current-carrying conductors 7 and 8 from the vertical direction. Accordingly, the current-carrying conductors 7 and 8 can obtain a sufficient contact force with respect to the current-carrying contacts 30 to 33, and the parallel link mechanism can obtain high reliability as the current-carrying contact mechanism.
  • the parallel link mechanism which is an electricity supply contact mechanism is arrange
  • a vacuum valve opening / closing mechanism and an energizing contact mechanism are attached to one blocking holder 4 provided for each phase, so that the driving timing of the vacuum valve and energizing contact per phase are driven.
  • the timing can be guaranteed by the manufacturing accuracy of the blocking holder 4 which is a single member. Therefore, the drive timing is not affected by the assembly accuracy of the opening and closing mechanism of the vacuum valve and the parallel link mechanism that is the energizing contact mechanism, and the timing of driving the vacuum valve and energizing contact can be matched with high accuracy. Is possible.
  • an opening that can be taken out from the oil tank is provided on the oil tank side, and a lid that closes the opening is slidably disposed in the horizontal direction. Good. According to such an embodiment, even if a deceleration hagulma mechanism or the like is provided in the vicinity of the opening, the lid of the switching switch from the oil tank can be opened by sliding the lid so as not to hit these mechanisms. The take-out operation can be performed efficiently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

Provided is an on-load tap changing device with which retrofit functionality can be increased while maintaining compatibility of the oil tank when changing from an in-oil arc changing method to a vacuum valve method, and with which the configuration of the components can be simplified, thereby improving the space-saving characteristic and enabling a drive mechanism to be easily constructed. A vacuum valve type tap switch (46) is housed inside an oil tank (50) filled with insulating oil (56). The tap switch (46) is provided with vacuum valves (2, 3, 5, and 6) that house primary contacts, and current-carrying conductors (7, 8) that reduce the current flowing in the primary contacts, and the tap switch is equipped with a parallel link mechanism that moves the current-carrying conductors (7, 8) in a parallel manner. Fixed contacts (47) capable of contacting and separating from the current-carrying conductors (7, 8) are attached to the inner wall surface of the oil tank (50). The configuration is such that the tap switch (46) can be attached to and removed from the oil tank (50) while the fixed contacts (47) are attached to the oil tank (50).

Description

負荷時タップ切換装置Load tap changer
 本発明の実施形態は、真空バルブ方式の切換開閉器を備えた負荷時タップ切換装置に関するものである。 Embodiment of this invention is related with the tap switching apparatus at the time of loading provided with the switching switch of the vacuum valve system.
 一般に、送電線あるいは配電線の電圧を調整するために負荷時タップ切換装置が設けられている。例えば、図17に示す負荷時タップ切換装置51には、変圧器タンク60内に設置される負荷時タップ切換器52と、変圧器タンク60の外部に設置される電動操作機構53が設けられている。 Generally, an on-load tap switching device is provided to adjust the voltage of the transmission line or distribution line. For example, the on-load tap switching device 51 shown in FIG. 17 is provided with an on-load tap switching device 52 installed in the transformer tank 60 and an electric operation mechanism 53 installed outside the transformer tank 60. Yes.
 このうち、電動操作機構53は負荷時タップ切換器52の駆動および制御を行うものである。負荷時タップ切換器52は電圧の変動に応じて変圧器の負荷をかけた状態で巻線のタップを切り換える機器である。負荷時タップ切換器52には、絶縁油56を満たした油槽50が設けられており、油槽50内に切換開閉器54が収納されている。油槽50の内壁面には固定接点47および固定側通電接点48が設けられている。また、油槽50の下部にはタップ選択器55が設置されている。タップ選択器55は変圧器の巻線に接続されている。 Among these, the electric operation mechanism 53 is for driving and controlling the on-load tap changer 52. The on-load tap changer 52 is a device that switches the taps of the windings in a state where a transformer load is applied in accordance with voltage fluctuations. The on-load tap changer 52 is provided with an oil tank 50 filled with insulating oil 56, and a switching switch 54 is accommodated in the oil tank 50. A fixed contact 47 and a fixed-side energization contact 48 are provided on the inner wall surface of the oil tank 50. A tap selector 55 is installed at the lower part of the oil tank 50. The tap selector 55 is connected to the transformer winding.
 切換開閉器54は三相を一括で制御して変圧器の運転を継続したまま通電電流を切り換える。切換開閉器54は遮断回路内の主接点を油槽50中の絶縁油56に露出させた状態で通電電流の遮断と通電を実施する。この方式は油中アーク切換方式と呼ばれており、例えば図18~図20に示すような構成が知られている。 The switching switch 54 controls the three phases at once and switches the energizing current while continuing the operation of the transformer. The switching switch 54 cuts off the energization current and energizes the main contact in the interruption circuit with the insulating oil 56 in the oil tank 50 exposed. This method is called an arc-in-oil switching method, and for example, configurations shown in FIGS. 18 to 20 are known.
 図18に示すように、切換開閉器54には、M1側の可動接触子36およびM2側の可動接触子38が設けられている。各可動接触子36,38は切換可動リンク37に取り付けられており、切換可動リンク37は可動接触子駆動レバー43に連結されている。これら可動接触子36,38は、いわゆる回転アーム式の可動接点であり、位相差を持って、油槽50の内壁面に取り付けられる固定接点47(図17に図示)との開閉極動作を行っている。 As shown in FIG. 18, the switching switch 54 is provided with a movable contact 36 on the M1 side and a movable contact 38 on the M2 side. Each movable contact 36, 38 is attached to a switching movable link 37, and the switching movable link 37 is connected to a movable contact driving lever 43. These movable contacts 36 and 38 are so-called rotary arm type movable contacts, and perform a switching pole operation with a fixed contact 47 (shown in FIG. 17) attached to the inner wall surface of the oil tank 50 with a phase difference. Yes.
 また、切換開閉器54には、遮断部内に流れる電流を軽減するために、M1側の通電導体39およびM2側の通電導体40が設けられている。各通電導体39,40には通電導体39,40を支えるためのリンク41が取り付けられており、リンク41には駆動レバー42が連結されている。駆動レバー42は可動接触子36,38の一連の動きに連動して通電導体39,40を駆動するようになっている。 Further, the switching switch 54 is provided with a current-carrying conductor 39 on the M1 side and a current-carrying conductor 40 on the M2 side in order to reduce the current flowing in the interrupting portion. A link 41 for supporting the current-carrying conductors 39, 40 is attached to each current-carrying conductor 39, 40, and a drive lever 42 is connected to the link 41. The drive lever 42 drives the current-carrying conductors 39 and 40 in conjunction with a series of movements of the movable contacts 36 and 38.
 油槽50側の固定接点47および固定側通電接点48の構成については図19を用いて説明する。図19に示すように、固定接点47にはM1側の固定接触子44およびM2側の固定接触子45が設けられている。M1側の固定接触子44は、M1側の可動接触子36(図18に図示)と接離するように、両者が対向して配置されている。M2側の固定接触子45は、M2側の可動接触子38(図18に図示)と接離するように、両者が対向して配置されている。 The configuration of the fixed contact 47 on the oil tank 50 side and the fixed-side energizing contact 48 will be described with reference to FIG. As shown in FIG. 19, the fixed contact 47 is provided with a fixed contact 44 on the M1 side and a fixed contact 45 on the M2 side. The fixed contact 44 on the M1 side is arranged so as to face and separate from the movable contact 36 on the M1 side (shown in FIG. 18). The fixed contact 45 on the M2 side is disposed so as to face and separate from the movable contact 38 on the M2 side (shown in FIG. 18).
 また、固定側通電接点48としては、油槽50の内壁面に中性点通電接点30,32、M1側のタップ通電接点31およびM2側のタップ通電接点33が設けられている。切換開閉器54では、図18に示した通電導体39,40が駆動すると、中性点通電接点30およびM1側のタップ通電接点31と、中性点通電接点32およびM2側のタップ通電接点33とを交互に短絡し、これによりタップ通電を切換える構造となっている。 Further, as the fixed side energizing contact 48, neutral point energizing contacts 30 and 32, M1 side tap energizing contact 31 and M2 side tap energizing contact 33 are provided on the inner wall surface of the oil tank 50. In the switching switch 54, when the current-carrying conductors 39 and 40 shown in FIG. Are alternately short-circuited, thereby switching the tap energization.
 上記の図19では油槽50の内壁面に取り付けられた部材に関して示したので、続いて図20を用いて油槽50の外観について説明する。図20に示すように、油槽50は、円筒形状の絶縁筒12と、その下部に固定される油槽底17から構成されており、絶縁筒12の内部に切換開閉器54(図20には不図示)が収納される。油槽50の上部にはタップトウブ10が設置されており、ここに、回転力を切換開閉器54に伝達するための減速ハグルマ機構11が取り付けられている。 19 shows the members attached to the inner wall surface of the oil tank 50. Next, the appearance of the oil tank 50 will be described with reference to FIG. As shown in FIG. 20, the oil tank 50 is composed of a cylindrical insulating cylinder 12 and an oil tank bottom 17 fixed to the lower part thereof, and a switching switch 54 (not shown in FIG. 20) is provided inside the insulating cylinder 12. (Shown) is stored. A tap tow 10 is installed in the upper part of the oil tank 50, and a deceleration Haguru mechanism 11 for transmitting a rotational force to the switching switch 54 is attached thereto.
 絶縁筒12の外周表面には、1相ごとに、中性点接続端子14、M1側のタップ接続端子15、M2側のタップ接続端子16が取り付けられており、さらに3相の中性点を連結するための中性リング13が設けられている。中性点接続端子14は中性リング13の下方に配置され、タップ接続端子15、16は中性点接続端子14の下方に配置されている。タップ接続端子15、16は所定の距離を持って、水平方向に並んで配置されている A neutral point connection terminal 14, an M1 side tap connection terminal 15, and an M2 side tap connection terminal 16 are attached to the outer peripheral surface of the insulating cylinder 12 for each phase. A neutral ring 13 is provided for connection. The neutral point connection terminal 14 is disposed below the neutral ring 13, and the tap connection terminals 15 and 16 are disposed below the neutral point connection terminal 14. The tap connection terminals 15 and 16 are arranged in a horizontal direction with a predetermined distance.
 以上のような油中アーク切換方式の切換開閉器54では、絶縁油56中に発生するアークにより接点の摩耗が生じる。また、アークに伴って発生するカーボンスラッジが油槽50内の絶縁油56を汚染することがある。そのため、油中アーク切換方式の切換開閉器54においては、保守点検作業や絶縁油56のろ過作業が不可欠であり、作業コストが増大した。 In the switching switch 54 of the arc-in-oil switching system as described above, the contact wear is caused by the arc generated in the insulating oil 56. Moreover, the carbon sludge generated with the arc may contaminate the insulating oil 56 in the oil tank 50. Therefore, in the switching switch 54 of the arc-in-oil switching system, maintenance inspection work and filtration work of the insulating oil 56 are indispensable, and the work cost is increased.
 そこで、油中アーク切換方式に代わって、遮断部に真空バルブを採用した真空バルブ方式の切換開閉器が注目を集めている。真空バルブ方式では、高真空の真空バルブ内に主接点を密封しており、真空バルブを開閉して電流遮断を行うので、優れた絶縁耐力および消弧性能を発揮することができる。 Therefore, instead of the arc-in-oil switching method, a vacuum valve type switching switch that uses a vacuum valve in the shut-off part has attracted attention. In the vacuum valve system, the main contact is sealed in a high vacuum vacuum valve, and the current is cut off by opening and closing the vacuum valve, so that excellent dielectric strength and arc extinguishing performance can be exhibited.
 しかも、油槽50内でアークが発生することがなく、主接点の消耗を抑えることができる。また、油槽50内の絶縁油56が汚染しないので、絶縁油56のろ過作業が不要となり、保守点検作業のインターバルを延ばすことができる。これにより、メンテナンス性が向上し、作業コストが低減する。 In addition, no arc is generated in the oil tank 50, and consumption of the main contact can be suppressed. Further, since the insulating oil 56 in the oil tank 50 is not contaminated, the filtering operation of the insulating oil 56 is not necessary, and the maintenance inspection work interval can be extended. Thereby, maintainability improves and working cost reduces.
特表2006-520535号公報JP 2006-520535 A 特表平11-504755号公報Japanese National Patent Publication No. 11-504755
 真空バルブ方式の切換開閉器は上記のメリットを持つため、油中アーク切換方式からの変更が望まれているが、方式の変更にあたって次のような課題が指摘されている。油中アーク切換方式から真空バルブ方式へと切換開閉器54を変更する場合、油槽50の内壁面に取り付けられる部材のうち、固定接点47については真空バルブ内に収納されるが、固定側通電接点48は油槽50の内壁面に取り付けられるので、これを真空バルブ方式用のものに代える必要がある。 Since the switching switch of the vacuum valve system has the above merits, it is desired to change from the arc-in-oil switching system. However, the following problems have been pointed out when changing the system. When changing the switching switch 54 from the arc-in-oil switching method to the vacuum valve method, the fixed contact 47 among the members attached to the inner wall surface of the oil tank 50 is housed in the vacuum valve, but the fixed-side energizing contact Since 48 is attached to the inner wall surface of the oil tank 50, it is necessary to replace it with that for the vacuum valve system.
 真空バルブ方式では、多数の真空バルブを配置し、その開閉機構なども不可欠なので、油槽内に配置される部材のレイアウトは、油中アーク切換方式とは大きく異なっていた。したがって従来では、油中アーク切換方式から真空バルブ方式へと変えるとなると、油槽50ごと交換する、あるいは油槽50を真空バルブ方式用に改造していた。 In the vacuum valve system, a large number of vacuum valves are arranged, and their opening / closing mechanism is also indispensable. Therefore, the layout of the members arranged in the oil tank was greatly different from that in the oil arc switching system. Therefore, conventionally, when changing from the arc-in-oil switching system to the vacuum valve system, the entire oil tank 50 is replaced or the oil tank 50 is modified for the vacuum valve system.
 ところが、油槽50は、変圧器本体タンク60内に直接設置されるため、変圧器本体タンク60から外すことが困難である。また、油槽50の耐用年数は通常、変圧器本体タンク60と同程度に長く設定されている。このため、油中アーク切換方式から真空バルブ方式へと切換開閉器54を変更したいが、その反面、油槽50に関しては、交換や改造を行うことなく、変圧器本体タンク60と共に長期間にわたり使い続けたいという要望がある。 However, since the oil tank 50 is directly installed in the transformer main body tank 60, it is difficult to remove it from the transformer main body tank 60. Further, the service life of the oil tank 50 is normally set to be as long as that of the transformer main body tank 60. For this reason, the switching switch 54 is desired to be changed from the arc-in-oil switching system to the vacuum valve system. On the other hand, the oil tank 50 continues to be used with the transformer main body tank 60 for a long time without replacement or modification. There is a desire to want.
 最近では、既存設備をできる限り有効に利用して、低コストで最大限の性能を引き出す機能、いわゆるレトロフィット機能を高めることが求められている。このため、負荷時タップ切換装置の分野では、油中アーク切換方式から真空バルブ方式の切換開閉器へと変更する場合でも、耐用年数が長い油槽50については、これを交換もしくは改造すること無しに、そのまま継続して使用することが期待されている。 Recently, it has been demanded to enhance the function of drawing out the maximum performance at low cost, the so-called retrofit function, by utilizing the existing equipment as effectively as possible. For this reason, in the field of on-load tap switching devices, even when changing from the arc-in-oil switching system to the vacuum valve switching switch, the oil tank 50 with a long service life can be replaced or remodeled. It is expected to be used as it is.
 また、真空バルブ方式の切換開閉器では、真空バルブを開閉するための機構や、それと連動して通電導体を動作させる機構など、複数の駆動機構を設けられている。これらの駆動機構としては、例えばトグルリンク機構といった構造が複雑なものが一般的であった。特に真空バルブ方式において多数の真空バルブを配置するとなると、油槽50内という限られたスペースの中では、駆動機構の構築が困難であった。 In addition, the vacuum valve type switching switch is provided with a plurality of drive mechanisms such as a mechanism for opening and closing the vacuum valve and a mechanism for operating the current-carrying conductor in conjunction therewith. As these drive mechanisms, those having a complicated structure such as a toggle link mechanism are generally used. In particular, when a large number of vacuum valves are arranged in the vacuum valve system, it is difficult to construct a drive mechanism in a limited space in the oil tank 50.
 本発明の実施形態では、以上の課題を解消するために提案されたものであって、その目的は、油中アーク切換方式から真空バルブ方式への変更に際して油槽の互換性を確保してレトロフィット機能を高めることができ、且つ部品構成の簡略化を図ってスペース性を高め駆動機構を容易に構築できる負荷時タップ切換装置を提供することにある。 The embodiment of the present invention has been proposed in order to solve the above-mentioned problems, and its purpose is to ensure compatibility of the oil tank when changing from the arc-in-oil switching system to the vacuum valve system, and to retrofit it. An object of the present invention is to provide an on-load tap changer capable of enhancing functions and simplifying a component configuration to enhance space and easily construct a drive mechanism.
 上記目的を達成するために、本発明の実施形態は、絶縁油を満たした油槽内に真空バルブ方式の切換開閉器を収納し、前記切換開閉器には主接点を収容する真空バルブと、前記主接点に流れる電流を軽減する通電導体を設けた負荷時タップ切換装置において、次の点を特徴とする。 In order to achieve the above object, an embodiment of the present invention includes a vacuum valve type switching switch in an oil tank filled with insulating oil, and the switching switch includes a vacuum valve for storing a main contact; The on-load tap switching device provided with a conducting conductor that reduces the current flowing through the main contact is characterized by the following points.
(a)前記切換開閉器の中心軸廻りに回転する通電カムと、
(b)前記通電カムの回転力を受けて前記切換開閉器の半径方向に前記通電導体を平行駆動する平行リンク機構と、
(c)前記油槽の内壁面に取り付けられ、前記通電導体と接離可能な固定側通電接点と、を有する。
(d)前記切換開閉器は、前記油槽に前記固定側通電接点を取り付けた状態で前記油槽に対し着脱可能に構成する。
(A) an energizing cam that rotates about a central axis of the switching switch;
(B) a parallel link mechanism that receives the rotational force of the energization cam and drives the energization conductor in parallel in the radial direction of the switching switch;
(C) a fixed-side energizing contact that is attached to the inner wall surface of the oil tank and is capable of contacting and separating from the energizing conductor.
(D) The switching switch is configured to be attachable to and detachable from the oil tank in a state where the fixed-side energizing contact is attached to the oil tank.
第1の実施形態の構成図。The block diagram of 1st Embodiment. 第1の実施形態の切換開閉器全体の斜視図。The perspective view of the whole switching switch of 1st Embodiment. 第1の実施形態の切換開閉器の遮断部の斜視図。The perspective view of the interruption | blocking part of the switching switch of 1st Embodiment. 第1の実施形態の平行リンク機構の斜視図。The perspective view of the parallel link mechanism of 1st Embodiment. 第1の実施形態の平行リンク機構の斜視図。The perspective view of the parallel link mechanism of 1st Embodiment. 第1の実施形態の平行リンク機構の斜視図。The perspective view of the parallel link mechanism of 1st Embodiment. 第1の実施形態の平行リンク機構の側面図。The side view of the parallel link mechanism of 1st Embodiment. 第1の実施形態の平行リンク機構の平面図。The top view of the parallel link mechanism of 1st Embodiment. 第1の実施形態の平行リンク機構の動作を説明するための平面図。The top view for demonstrating operation | movement of the parallel link mechanism of 1st Embodiment. 第1の実施形態の平行リンク機構の動作を説明するための斜視図。The perspective view for demonstrating operation | movement of the parallel link mechanism of 1st Embodiment. 第1の実施形態の平行リンク機構の動作を説明するための斜視図。The perspective view for demonstrating operation | movement of the parallel link mechanism of 1st Embodiment. 第1の実施形態の平行リンク機構の動作を説明するための斜視図。The perspective view for demonstrating operation | movement of the parallel link mechanism of 1st Embodiment. 第1の実施形態の平行リンク機構の動作を説明するための斜視図。The perspective view for demonstrating operation | movement of the parallel link mechanism of 1st Embodiment. 第1の実施形態の平行リンク機構の動作を説明するための斜視図。The perspective view for demonstrating operation | movement of the parallel link mechanism of 1st Embodiment. 第1の実施形態の切換開閉器の遮断回路図。The circuit breaker circuit of the switching switch of 1st Embodiment. 第1の実施形態の切換開閉器の遮断部の切換シーケンス。The switching sequence of the interruption | blocking part of the switching switch of 1st Embodiment. 一般的な負荷時タップ切換装置の構成図。The block diagram of the general tap switching device at the time of a load. 油中アーク切換方式の切換開閉器の要部斜視図。The principal part perspective view of the switching switch of the arc switching system in oil. 油中アーク切換方式の切換開閉器の要部平面図。The principal part top view of the switching switch of the arc switching system in oil. 油中アーク切換方式の切換開閉器を収納する油槽の概観を示す斜視図。The perspective view which shows the general view of the oil tank which accommodates the switching switch of the arc switching system in oil.
(第1の実施形態)
(構成)
 第1の実施形態について、図1~図16を用いて具体的に説明する。第1の実施形態は、負荷時タップ切換装置の切換開閉器に改良を加えたものであり、図17に示した従来の負荷時タップ切換装置と同一の部材に関しては同一符号を付して説明は省略する。
(First embodiment)
(Constitution)
The first embodiment will be specifically described with reference to FIGS. The first embodiment is obtained by improving the switching switch of the on-load tap switching device, and the same members as those of the conventional on-load tap switching device shown in FIG. Is omitted.
(切換開閉器の特徴)
 図1に示すように、第1の実施形態に係る切換開閉器46では真空バルブ方式が採用されており、油槽50の内壁面には固定側通電接点48が取り付けられている。油槽50および固定側通電接点48の構造は、図19および図20に示した従来の油中アーク切換方式でのそれと同一のものを用いている。すなわち、固定側通電接点48とは、図19に示した中性点通電接点30,32と、M1側のタップ通電接点31と、M2側のタップ通電接点33である。
(Features of switching switch)
As shown in FIG. 1, the switching valve 46 according to the first embodiment employs a vacuum valve system, and a fixed energizing contact 48 is attached to the inner wall surface of the oil tank 50. The structures of the oil tank 50 and the fixed-side energizing contact 48 are the same as those in the conventional arc-in-oil switching system shown in FIGS. That is, the fixed side energizing contact 48 is the neutral point energizing contacts 30, 32, the M1 side tap energizing contact 31, and the M2 side tap energizing contact 33 shown in FIG.
 第1の実施形態では、油槽50に固定側通電接点48を取り付けた状態のまま、切換開閉器46が油槽50に対し着脱可能に構成されたことを特徴としている。このため、油槽50から切換開閉器46を取り外す場合、あるいは油槽50に切換開閉器46を取り付ける場合に、切換開閉器46の着脱作業を阻害するような位置には、油槽50側にも切換開閉器46側にも構成要素が設けられていない。 The first embodiment is characterized in that the switching switch 46 is configured to be detachable from the oil tank 50 while the fixed-side energization contact 48 is attached to the oil tank 50. For this reason, when the switching switch 46 is removed from the oil tank 50 or when the switching switch 46 is attached to the oil tank 50, the switching opening / closing is also performed on the oil tank 50 side at a position that obstructs the attaching / detaching operation of the switching switch 46. No component is provided on the container 46 side.
(切換開閉器全体)
 図2に示すように、切換開閉器46の上部には対地シールド18が設置され、その下には蓄勢機構19が取り付けられる。蓄勢機構19の下部に遮断部49が組み込まれている。遮断部49の外周部分には、スライド中性点接点20、スライドM1接点21、スライドM2接点22が設けられている。
(Overall switch)
As shown in FIG. 2, the ground shield 18 is installed above the switching switch 46, and the energy storage mechanism 19 is attached below the shield 18. A blocking part 49 is incorporated in the lower part of the energy storage mechanism 19. A slide neutral point contact 20, a slide M1 contact 21, and a slide M2 contact 22 are provided on the outer peripheral portion of the blocking portion 49.
 スライド中性点接点20、スライドM1接点21、スライドM2接点22は、図20で説明した中性点接続端子14、タップ接続端子15、16(油槽50の外部に位置する)に当接しており、切換開閉器46に電流を引き込む接点である。また、各接点20~22の下部には限流抵抗23とバリスタ24が設けられている。バリスタ24はタップ間への異常サージ電圧印加時に切換開閉器54の遮断極間部を保護するものである。 The slide neutral point contact 20, the slide M1 contact 21, and the slide M2 contact 22 are in contact with the neutral point connection terminal 14 and the tap connection terminals 15 and 16 (located outside the oil tank 50) described in FIG. , A contact for drawing current into the switching switch 46. Further, a current limiting resistor 23 and a varistor 24 are provided below each of the contacts 20-22. The varistor 24 protects the portion between the breaking electrodes of the switching switch 54 when an abnormal surge voltage is applied between the taps.
(切換開閉器の遮断部)
 切換開閉器46の遮断部49について図3を用いて説明する。図3において左側をM1側、右側をその対極であるM2側として、真空バルブとして、M1側主バルブ2、M2側主バルブ3、M1側抵抗バルブ5、M2側抵抗バルブ6が設けられている。これらの真空バルブは全て、円筒形の部材から構成され、その長手方向が遮断部49の軸線方向に平行となるように設置されている。
(Switching switch breaker)
The interruption | blocking part 49 of the switching switch 46 is demonstrated using FIG. In FIG. 3, the M1 side main valve 2, the M2 side main valve 3, the M1 side resistance valve 5, and the M2 side resistance valve 6 are provided as vacuum valves, with the left side as the M1 side and the right side as the M2 side which is the opposite electrode. . All of these vacuum valves are formed of a cylindrical member, and are installed so that the longitudinal direction thereof is parallel to the axial direction of the blocking portion 49.
 遮断部49にはU相、V相、W相の3相が設けられており、1相あたり4つの真空バルブ、3相合わせて合計12個の真空バルブが、遮断ホルダ4に取り付けられている。遮断ホルダ4は、遮断部49の中ほどに設けられている。遮断ホルダ4は、1相当たりに1個設けられており、ここに、4つの真空バルブを含めた真空バルブの開閉機構および通電導体7,8を平行駆動する平行リンク機構が取り付けられている。 The shut-off part 49 is provided with three phases of U-phase, V-phase and W-phase, and four vacuum valves per phase and a total of twelve vacuum valves in total for three phases are attached to the shut-off holder 4. . The blocking holder 4 is provided in the middle of the blocking portion 49. One blocking holder 4 is provided for each phase, and a vacuum valve opening / closing mechanism including four vacuum valves and a parallel link mechanism for driving the conducting conductors 7 and 8 in parallel are attached.
 また、M1側の通電導体7と、M2側の通電導体8はそれぞれ、M1側抵抗バルブ5と、M2側抵抗バルブ6に近接して設けられている。通電導体7、8は、タップ切換後に閉極して通電を行うことで、遮断部49における遮断性能の劣化を抑制して耐久性能を高め、切換開閉器46の小型化および簡素化に寄与するものである。さらに、抵抗バルブ5、6の下部には、抵抗スイッチホルダ9が設けられている。抵抗スイッチホルダ9には非通電側タップの絶縁を確保するスイッチ機構(図示せず)が組み込まれている。 Further, the M1 side energizing conductor 7 and the M2 side energizing conductor 8 are provided close to the M1 side resistance valve 5 and the M2 side resistance valve 6, respectively. The current-carrying conductors 7 and 8 are closed and energized after the tap switching, thereby suppressing the deterioration of the interruption performance in the interruption section 49 and improving the durability performance, thereby contributing to the downsizing and simplification of the switching switch 46. Is. Further, a resistance switch holder 9 is provided below the resistance valves 5 and 6. The resistance switch holder 9 incorporates a switch mechanism (not shown) that ensures insulation of the non-energized side tap.
 遮断部49の上部には切換クランク1が設けられている。切換クランク1には、真空バルブの開閉機構と、通電導体7、8を平行駆動する平行リンク機構と、非通電側タップの絶縁を確保するスイッチ機構が連結されており、切換クランク1の回転によって、これらの機構が駆動される。 The switching crank 1 is provided at the upper part of the blocking part 49. The switching crank 1 is connected to a vacuum valve opening / closing mechanism, a parallel link mechanism for driving the energizing conductors 7 and 8 in parallel, and a switch mechanism for ensuring insulation of the non-energizing side tap. These mechanisms are driven.
(平行リンク機構)
 続いて、通電導体7、8を平行駆動する平行リンク機構について説明する。平行リンク機構は通電導体7、8を動作させる接点通電機構であって、通電カム26,29の回転力を受けて、通電導体7、8を切換開閉器46の半径方向に出入りさせ、固定側通電接点48におけるM1、M2タップ間を交互に短絡して、通電切換を行う機構である。
(Parallel link mechanism)
Next, a parallel link mechanism that drives the current-carrying conductors 7 and 8 in parallel will be described. The parallel link mechanism is a contact energization mechanism that operates the energization conductors 7 and 8, and receives the rotational force of the energization cams 26 and 29 to cause the energization conductors 7 and 8 to move in and out in the radial direction of the switching switch 46. This is a mechanism for switching between energization by alternately short-circuiting between the M1 and M2 taps in the energizing contact 48.
 通電カム26は、平行リンク機構を動作させる部材であり、切換開閉器46の中心軸廻りに回転自在に設けられたディスク状のカム部材である。通電カム26は図3および図4に示すように通電導体7、8の上部に係合するように配置されている。また、通電カム29は図4に示すように通電導体7、8の下部に係合するように配置されている。 The energizing cam 26 is a member that operates the parallel link mechanism, and is a disc-shaped cam member that is rotatably provided around the central axis of the switching switch 46. As shown in FIGS. 3 and 4, the energization cam 26 is disposed so as to engage with the upper portions of the energization conductors 7 and 8. The energization cam 29 is disposed so as to engage with the lower portions of the energization conductors 7 and 8 as shown in FIG.
 平行リンク機構の構造について、さらに詳しく説明する。図4に示すように、平行リンク機構には1対の通電リンク27が設けられており、この通電リンク27の一端部には、連結軸7b、8bを介して、通電導体7、8が回転自在に支持されている。通電リンク27の他端部には通電リンク支持ピン28が取り付けられている。通電リンク支持ピン28は遮断部49の軸線方向に平行に延びる部材である。通電リンク支持ピン28の端部は、遮断ホルダ4に形成された通電リンク支持穴25(図5に図示)に回転支持される。 The structure of the parallel link mechanism will be described in more detail. As shown in FIG. 4, the parallel link mechanism is provided with a pair of energizing links 27, and the energizing conductors 7 and 8 rotate at one end of the energizing link 27 via connecting shafts 7b and 8b. It is supported freely. An energization link support pin 28 is attached to the other end of the energization link 27. The energizing link support pin 28 is a member extending in parallel to the axial direction of the blocking portion 49. An end portion of the energization link support pin 28 is rotatably supported by an energization link support hole 25 (shown in FIG. 5) formed in the blocking holder 4.
 既に述べたように油槽50側には固定側通電接点48として中性点通電接点30、32と、M1側およびM2側のタップ通電接点31,33が設けられている。これらの通電接点30~33について、図6~図8を用いて説明する。図6、図7に示すように、中性点通電接点30の下方にM1側のタップ通電接点31が配置されており、中性点通電接点32の下方にM2側のタップ通電接点32が配置されている。 As described above, the neutral point energizing contacts 30 and 32 and the M1 and M2 side tap energizing contacts 31 and 33 are provided on the oil tank 50 side as the fixed energizing contact 48. These energizing contacts 30 to 33 will be described with reference to FIGS. As shown in FIGS. 6 and 7, the M1 side tap energizing contact 31 is disposed below the neutral point energizing contact 30, and the M2 side tap energizing contact 32 is disposed below the neutral point energizing contact 32. Has been.
 図7、図8に示すように、通電導体7、8の上端部および下端部には駆動ローラ7a、8aが回動自在に取り付けられており、これら駆動ローラ7a、8aを上下から挟持するよう上側の通電カム26および下側の通電カム29が設置されている。通電カム26、29にはカム溝26a、29aが形成されており、ここに駆動ローラ7a、8aが係合されている。 As shown in FIGS. 7 and 8, drive rollers 7a and 8a are rotatably attached to the upper and lower ends of the current-carrying conductors 7 and 8, and the drive rollers 7a and 8a are sandwiched from above and below. An upper energizing cam 26 and a lower energizing cam 29 are provided. Cam grooves 26a and 29a are formed in the energizing cams 26 and 29, and the driving rollers 7a and 8a are engaged therewith.
 このため、通電カム26、29が回転すると、カム溝26a、29aが駆動ローラ7a、8aを移動させて通電導体7、8が駆動する。駆動した通電導体7、8は、切換開閉器46の半径方向に出入し、これにより、油槽50側に固定された通電接点30~33に対して、当接又は退避して、M1とM2のタップ通電を切換えるようになっている。 Therefore, when the energization cams 26 and 29 rotate, the cam grooves 26a and 29a move the drive rollers 7a and 8a, and the energization conductors 7 and 8 are driven. The driven current-carrying conductors 7 and 8 are moved in and out in the radial direction of the switching switch 46, and thereby contact or retreat with respect to the current-carrying contacts 30 to 33 fixed on the oil tank 50 side, and M1 and M2 The tap energization is switched.
 本実施形態における平行リンク機構は、1相当たりの分割領域の両端部に配置されている。すなわち、図8に示すように、3相(U相,V相,W相)は120度分割で相似配置されており、平行リンク機構は3相分割各領域の両端部において遮断ホルダ4に形成された通電リンク支持穴25(図5に図示)により支持されて鏡像配置されている。また、図8に示すように、各平行リンク機構の間にM1,M2側抵抗バルブ5、6が配置されている。 The parallel link mechanism in the present embodiment is disposed at both ends of the divided area per phase. That is, as shown in FIG. 8, the three phases (U phase, V phase, W phase) are arranged in a similar manner by dividing 120 degrees, and the parallel link mechanism is formed in the blocking holder 4 at both ends of each region of the three phases. The energized link support hole 25 (shown in FIG. 5) is supported and arranged in a mirror image. Further, as shown in FIG. 8, M1, M2 side resistance valves 5, 6 are arranged between the parallel link mechanisms.
(平行リンク機構の動作)
 図9の(A)、(B)、(C)および図10~図14を用いて、第1の実施形態の切換開閉器の平行リンク機構つまり通電接点機構の動作について説明する。図9(A)においてM1側が閉極してM1側の通電閉極部34となり、M2側が開極してM2側の通電開極部35となる。この状態は図10に対応する。図10では、M1側の通電導体7が通電ON、M2側の通電導体8が通電OFFとなって、M1の通電位置となっている。
(Operation of parallel link mechanism)
The operation of the parallel link mechanism, that is, the energizing contact mechanism of the switching switch according to the first embodiment will be described with reference to FIGS. 9A, 9B and 9C and FIGS. In FIG. 9A, the M1 side is closed and becomes the M1 side energization closing part 34, and the M2 side is opened and becomes the M2 side energization opening part 35. This state corresponds to FIG. In FIG. 10, the energization conductor 7 on the M1 side is energized ON, and the energization conductor 8 on the M2 side is energized OFF, which is the energization position of M1.
 このような状態から通電カム26、29が時計と反対廻りに回転すると、図9(B)に示すように、M1、M2両方共に開極状態となる。つまりM1側の通電閉極部34が通電開極部36となり、M2側の通電開極部35はそのままである。この状態は図11~図13に対応する。すなわち、M1側の通電導体7が退避する切換動作を行っており、図11、図12では、M1側、M2側が共に通電OFFとなっている。そして、図13の段階に移行すると、M2側の通電導体8は切換開閉器46の半径方向に対して中心方向から外に向かって出るように移動を開始する。 When the energizing cams 26 and 29 rotate counterclockwise from this state, both M1 and M2 are in the open state as shown in FIG. 9B. That is, the energization closing part 34 on the M1 side becomes the energization opening part 36, and the energization opening part 35 on the M2 side remains as it is. This state corresponds to FIGS. That is, the switching operation for retracting the energization conductor 7 on the M1 side is performed, and in FIGS. 11 and 12, the energization OFF is performed on both the M1 side and the M2 side. Then, at the stage of FIG. 13, the current-carrying conductor 8 on the M2 side starts to move outward from the central direction with respect to the radial direction of the switching switch 46.
 さらに通電カム26、29が時計と反対廻りの回転を続けると、図9(C)に示すようにM1側が開極状態、M2側が閉極状態となり、M1側の通電開極部36のまま、M2側が通電閉極部37となってタップ切換動作を完了する。この状態が図14に対応する。図14では、M1側の通電導体7が通電OFF、M2側の通電導体8が通電ONとなって、M2の通電位置となる。 When the energization cams 26 and 29 continue to rotate counterclockwise, as shown in FIG. 9C, the M1 side is in an open state, the M2 side is in a closed state, and the energization open portion 36 on the M1 side remains. The M2 side becomes the energization closing portion 37 and the tap switching operation is completed. This state corresponds to FIG. In FIG. 14, the energization conductor 7 on the M1 side is energized OFF, and the energization conductor 8 on the M2 side is energized ON, which is the energization position of M2.
 図15は本実施形態の遮断部49の回路図を示している。図9で示した(A)、(B)、(C)は、各々図15の(a)、(b)、(c)に対応する。図15では、接点通電機構である平行リンク機構のM1側をBso、M2側をBseとしている。図15における符号34~37は、前記図9と同様であり、34はM1側の通電閉極部を、35はM2側の通電開極部を、36はM1側の通電開極部を、37はM2側の通電閉極部を示している。 FIG. 15 shows a circuit diagram of the blocking unit 49 of the present embodiment. (A), (B), and (C) shown in FIG. 9 correspond to (a), (b), and (c) in FIG. 15, respectively. In FIG. 15, the parallel link mechanism, which is a contact energization mechanism, has M1 side as Bso and M2 side as Bse. Reference numerals 34 to 37 in FIG. 15 are the same as those in FIG. 9. 34 denotes an energization closing part on the M1 side, 35 denotes an energization opening part on the M2 side, 36 denotes an energization opening part on the M1 side, Reference numeral 37 denotes an energization closing part on the M2 side.
 また、図16は本実施形態の遮断部49の切換シーケンスの一例を示している。本実施形態では切換角度範囲は0~75°として、M1側は、0~10°閉極し、10~75°開極と設定されている。また、M2側は、0~65°まで開極し、65~75°閉極と設定されている。図16における符号34、35は、前記図9と同様であり、34はM1側の通電閉極部を、35はM2側の通電開極部を示している。 FIG. 16 shows an example of a switching sequence of the blocking unit 49 of the present embodiment. In this embodiment, the switching angle range is 0 to 75 °, and the M1 side is set to 0 to 10 ° closed and 10 to 75 ° opened. Further, the M2 side is set to open from 0 to 65 ° and closed from 65 to 75 °. Reference numerals 34 and 35 in FIG. 16 are the same as those in FIG. 9. Reference numeral 34 denotes an energization closing part on the M1 side, and 35 denotes an energization opening part on the M2 side.
(作用と効果)
 以上のような第1の実施形態は次のような作用および効果を有している。
(1)第1の実施形態では、油槽50に固定側通電接点48を取り付けたまま、油槽50に対し切換開閉器46が着脱可能である。ここでの油槽50およびそれに取り付ける固定側通電接点48の構造については、図19にて示した従来の油中アーク切換方式のそれと同一である。
(Action and effect)
The first embodiment as described above has the following operations and effects.
(1) In the first embodiment, the switching switch 46 can be attached to and detached from the oil tank 50 while the fixed-side energizing contact 48 is attached to the oil tank 50. The structure of the oil tank 50 and the fixed-side energizing contact 48 attached thereto is the same as that of the conventional arc switching method in oil shown in FIG.
 したがって、切換開閉器46が油中アーク切換方式から真空バルブ方式へ変更されたとしても、切換開閉器46を収納する油槽50の互換性を確保することができ、油槽50の交換や改造は一切不要である。このため、油槽50を交換もしくは改造すること無しに、そのまま継続して使用可能となる。これにより、変圧器本体タンク60と同程度の耐用年数を持つ油槽50を、長期にわたり使い続けることができ、レトロフィット機能が向上する。 Accordingly, even if the switching switch 46 is changed from the arc-in-oil switching system to the vacuum valve system, the compatibility of the oil tank 50 that houses the switching switch 46 can be ensured, and the oil tank 50 cannot be replaced or modified at all. It is unnecessary. Therefore, the oil tank 50 can be continuously used without being replaced or modified. Thereby, the oil tank 50 having the same life as the transformer main body tank 60 can be used continuously for a long time, and the retrofit function is improved.
(2)通電導体7、8を平行駆動する平行リンク機構は、通電リンク27と通電リンク支持ピン28といった簡単な部品だけ構成することができる。また、平行リンク機構に駆動力を与える通電カム26、29は、切換開閉器46の中心軸廻りに回転するディスク状の部材であり、切換開閉器46が半径方向側に膨らむことが少なく、機構が大形化する心配がない。 (2) The parallel link mechanism that drives the current-carrying conductors 7 and 8 in parallel can be configured with only simple components such as the current-carrying link 27 and the current-carrying link support pin 28. The energizing cams 26 and 29 for applying a driving force to the parallel link mechanism are disk-like members that rotate around the central axis of the switching switch 46, and the switching switch 46 is less likely to swell radially. There is no worry of becoming larger.
 したがって、第1の実施形態では通電接点機構を省スペースで設けることが可能である。第1の実施形態においては12本もの真空バルブを配置しているため、油槽50内のスペースは狭くなるが、スペース性が良好な平行リンク機構を採用することで、機構構築が容易となり、真空バルブ方式を確実に実施することができる。 Therefore, in the first embodiment, the energizing contact mechanism can be provided in a space-saving manner. In the first embodiment, as many as twelve vacuum valves are arranged, the space in the oil tank 50 is narrowed, but by adopting a parallel link mechanism with good space characteristics, the mechanism construction becomes easy and the vacuum is reduced. A valve system can be implemented reliably.
(3)通電カム26、29が通電導体7、8の上部および下部に係合するので、通電カム26、29は通電導体7、8の接触圧を上下方向から均等に受け持つことができる。したがって、通電導体7、8は通電接点30~33に対して十分な接触力を得ることができ、平行リンク機構は通電接点機構として高い信頼性を得ることができる。 (3) Since the current-carrying cams 26 and 29 are engaged with the upper and lower portions of the current-carrying conductors 7 and 8, the current-carrying cams 26 and 29 can equally handle the contact pressure of the current-carrying conductors 7 and 8 from the vertical direction. Accordingly, the current-carrying conductors 7 and 8 can obtain a sufficient contact force with respect to the current-carrying contacts 30 to 33, and the parallel link mechanism can obtain high reliability as the current-carrying contact mechanism.
(4)第1の実施形態では、通電接点機構である平行リンク機構を1相当たりの分割領域の両端に配置している。そのため、平行リンク機構の間に真空バルブを1相あたり、複数個配置可能である。この結果、スペース性をより高めることができ、切換開閉器46の小型化にいっそう寄与することができる。 (4) In 1st Embodiment, the parallel link mechanism which is an electricity supply contact mechanism is arrange | positioned at the both ends of the division area per phase. Therefore, a plurality of vacuum valves can be arranged per phase between the parallel link mechanisms. As a result, the space can be further improved, and the switching switch 46 can be further reduced in size.
(5)1相当たりに1個設けた遮断ホルダ4に、真空バルブの開閉機構と、通電接点機構つまり平行リンク機構を取り付けたことで、1相当たりの真空バルブの駆動タイミングと通電接点の駆動タイミングを、単一の部材である遮断ホルダ4の製造精度によって、保証することができる。したがって、真空バルブの開閉機構や、通電接点機構である平行リンク機構の組立精度に、駆動タイミングが左右されることがなく、真空バルブの駆動と通電接点の駆動とのタイミングを高い精度で合わせることが可能である。 (5) A vacuum valve opening / closing mechanism and an energizing contact mechanism, that is, a parallel link mechanism, are attached to one blocking holder 4 provided for each phase, so that the driving timing of the vacuum valve and energizing contact per phase are driven. The timing can be guaranteed by the manufacturing accuracy of the blocking holder 4 which is a single member. Therefore, the drive timing is not affected by the assembly accuracy of the opening and closing mechanism of the vacuum valve and the parallel link mechanism that is the energizing contact mechanism, and the timing of driving the vacuum valve and energizing contact can be matched with high accuracy. Is possible.
(他の実施形態)
 上記の実施形態は、本明細書において一例として提示したものであって、発明の範囲を限定することを意図するものではない。すなわち、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことが可能である。これらの実施形態やその変形例は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれるものである。
(Other embodiments)
The above embodiment is presented as an example in the present specification, and is not intended to limit the scope of the invention. In other words, the present invention can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and their equivalents as well as included in the scope and gist of the invention.
 例えば、固定側通電接点を除く切換開閉器に関して、まるごと油槽から取り出すことができる開口部を油槽側に設けておき、この開口部を閉じる蓋部を水平方向にスライド自在に配置するようにしてもよい。このような実施形態によれば、開口部付近に減速ハグルマ機構などが設けられていても、これらの機構にぶつからないように、蓋部をスライドして開けることで、油槽からの切換開閉器の取り出し作業を効率よく行うことができる。 For example, with respect to the switching switch excluding the fixed-side energization contact, an opening that can be taken out from the oil tank is provided on the oil tank side, and a lid that closes the opening is slidably disposed in the horizontal direction. Good. According to such an embodiment, even if a deceleration hagulma mechanism or the like is provided in the vicinity of the opening, the lid of the switching switch from the oil tank can be opened by sliding the lid so as not to hit these mechanisms. The take-out operation can be performed efficiently.
1 切換クランク
2 M1側主バルブ
3 M2側主バルブ
4 遮断ホルダ
5 M1側抵抗バルブ
6 M2側抵抗バルブ
7 M1側の通電導体
8 M2側の通電導体
9 抵抗スイッチホルダ
14 中性点接続端子
15、16 タップ接続端子
18 対地シールド
19 蓄勢機構
20 スライド中性点接点
21 スライドM1接点
22 スライドM2接点
23 限流抵抗
24 バリスタ
25 通電リンク支持穴
26、29 通電カム
27 通電リンク
28 通電リンク支持ピン
30、32 中性点通電接点
31 M1側のタップ通電接点
33 M2側のタップ通電接点
34 M1側の通電閉極部
35 M2側の通電開極部
36 M1側の通電開極部
37 M2側の通電閉極部
46 切換開閉器
47 固定接点
48 固定側通電接点
49 遮断部
50 油槽
51 負荷時タップ切換装置
52 負荷時タップ切換器
53 電動操作機構
54 切換開閉器
55 タップ選択器
56 絶縁油
60 変圧器タンク
 
DESCRIPTION OF SYMBOLS 1 Switching crank 2 M1 side main valve 3 M2 side main valve 4 Shut-off holder 5 M1 side resistance valve 6 M2 side resistance valve 7 M1 side energization conductor 8 M2 side energization conductor 9 Resistance switch holder 14 Neutral point connection terminal 15, 16 Tap connection terminal 18 Ground shield 19 Energy storage mechanism 20 Slide neutral point contact 21 Slide M1 contact 22 Slide M2 contact 23 Current limiting resistor 24 Varistor 25 Energizing link support holes 26, 29 Energizing cam 27 Energizing link 28 Energizing link support pin 30 , 32 Neutral point energization contact 31 M1 side tap energization contact 33 M2 side tapping energization contact 34 M1 side energization closing part 35 M2 side energization opening part 36 M1 side energization opening part 37 M2 side energization Closed part 46 Switching switch 47 Fixed contact 48 Fixed side energizing contact 49 Breaking part 50 Oil tank 51 Load tap changer 52 Load tap Exchanger 53 motor operation mechanism 54 switching switch 55 tap selector 56 insulating oil 60 transformer tank

Claims (5)

  1.  絶縁油を満たした油槽内に真空バルブ方式の切換開閉器を収納し、前記切換開閉器には主接点を収容する真空バルブと、前記主接点に流れる電流を軽減する通電導体を設けた負荷時タップ切換装置において、
     前記切換開閉器の中心軸廻りに回転する通電カムと、
     前記通電カムの回転力を受けて前記切換開閉器の半径方向に前記通電導体を平行駆動する平行リンク機構と、
     前記油槽の内壁面に取り付けられ、前記通電導体と接離可能な固定側通電接点と、
    を有し、
     前記切換開閉器は、前記油槽に前記固定側通電接点を取り付けた状態で前記油槽に対し着脱可能に構成したことを特徴とする負荷時タップ切換装置。
    When a vacuum valve type switching switch is housed in an oil tank filled with insulating oil, the switching switch is equipped with a vacuum valve that houses the main contact, and a current-carrying conductor that reduces the current flowing through the main contact. In the tap switching device,
    An energization cam that rotates about the central axis of the switching switch;
    A parallel link mechanism which receives the rotational force of the energization cam and drives the energization conductor in parallel in the radial direction of the switching switch;
    A fixed-side energizing contact that is attached to the inner wall surface of the oil tank and is capable of contacting and separating from the energizing conductor;
    Have
    The on-load tap switching device, wherein the switching switch is configured to be detachable from the oil tank in a state where the fixed-side energization contact is attached to the oil tank.
  2.  前記油槽および前記固定側通電接点は、前記油槽中の絶縁油に遮断部を露出させた油中アーク切換方式の切換開閉器に用いるものと同一とすることを特徴とする請求項1に記載の負荷時タップ切換装置。 2. The oil tank and the fixed-side energizing contact are the same as those used in a switch for an arc-in-oil switching system in which a blocking portion is exposed in insulating oil in the oil tank. Tap switching device when loaded.
  3.  前記通電カムは、前記通電導体の上部および下部に係合するように配置したことを特徴とする請求項1又は2に記載の負荷時タップ切換装置。 The on-load tap switching device according to claim 1 or 2, wherein the energization cam is arranged to engage with an upper portion and a lower portion of the energization conductor.
  4.  前記切換開閉器における1相当たりの分割領域の両端部に、前記平行リンク機構を配置したことを特徴とする請求項1~3のいずれか1項に記載の負荷時タップ切換装置。 The on-load tap switching device according to any one of claims 1 to 3, wherein the parallel link mechanism is arranged at both ends of a divided area per phase in the switching switch.
  5.  前記切換開閉器における1相当たりに1つの遮断ホルダを設け、
     前記遮断ホルダに前記真空バルブの開閉機構および前記平行リンク機構を取り付けたことを特徴とする請求項1~4のいずれか1項に記載の負荷時タップ切換装置。
     
    Provide one blocking holder per phase in the switching switch,
    The on-load tap switching device according to any one of claims 1 to 4, wherein the vacuum valve opening / closing mechanism and the parallel link mechanism are attached to the shut-off holder.
PCT/JP2015/068802 2014-07-15 2015-06-30 On-load tap changing device WO2016009825A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15821798.4A EP3171373B1 (en) 2014-07-15 2015-06-30 On-load tap changing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014145430A JP6282547B2 (en) 2014-07-15 2014-07-15 Load tap changer
JP2014-145430 2014-07-15

Publications (1)

Publication Number Publication Date
WO2016009825A1 true WO2016009825A1 (en) 2016-01-21

Family

ID=55078323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068802 WO2016009825A1 (en) 2014-07-15 2015-06-30 On-load tap changing device

Country Status (3)

Country Link
EP (1) EP3171373B1 (en)
JP (1) JP6282547B2 (en)
WO (1) WO2016009825A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085459A (en) * 2018-12-12 2019-08-02 浙江腾龙电器有限公司 A kind of novel loaded capacity-regulated tap switch

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021100145B3 (en) * 2021-01-07 2022-04-07 Maschinenfabrik Reinhausen Gmbh SWITCHING MODULE AND ON-LOAD TAP SWITCH WITH SWITCHING MODULE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238683A (en) * 2011-05-11 2012-12-06 Toko Electric Corp Tap changer and pole transformer
JP2012238653A (en) * 2011-05-10 2012-12-06 Toshiba Corp Changeover switch and tap switching device using it
JP2013526772A (en) * 2010-05-11 2013-06-24 マシイネンフアブリーク・ラインハウゼン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Load switching switch for on-load tap changer
JP2013243194A (en) * 2012-05-18 2013-12-05 Toshiba Corp On-load tap changer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58222506A (en) * 1982-06-18 1983-12-24 Hitachi Ltd On-load tap changer
JPS6091608A (en) * 1983-10-26 1985-05-23 Toshiba Corp One tap type on-load tap changer
ES2715046T3 (en) * 2006-08-23 2019-05-31 Abb Schweiz Ag Vacuum-based deviation switch for transformation ratio changer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526772A (en) * 2010-05-11 2013-06-24 マシイネンフアブリーク・ラインハウゼン・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Load switching switch for on-load tap changer
JP2012238653A (en) * 2011-05-10 2012-12-06 Toshiba Corp Changeover switch and tap switching device using it
JP2012238683A (en) * 2011-05-11 2012-12-06 Toko Electric Corp Tap changer and pole transformer
JP2013243194A (en) * 2012-05-18 2013-12-05 Toshiba Corp On-load tap changer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3171373A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110085459A (en) * 2018-12-12 2019-08-02 浙江腾龙电器有限公司 A kind of novel loaded capacity-regulated tap switch

Also Published As

Publication number Publication date
JP2016021533A (en) 2016-02-04
EP3171373A4 (en) 2018-04-11
EP3171373B1 (en) 2019-08-21
JP6282547B2 (en) 2018-02-21
EP3171373A1 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
JP6611792B2 (en) Switching device for control transformer, especially pole switching device
US11004622B2 (en) On-load tap changer
ES2774474T3 (en) Load stepped switch, method of operating a load step switch and electrical installation with load step switch
JP5872487B2 (en) Tap changer with freewheel parts
JP2013539221A5 (en)
JP2016524347A (en) Load tap changer
WO2016009825A1 (en) On-load tap changing device
JP5537365B2 (en) Load tap changer
JP2013243194A (en) On-load tap changer
US9513654B2 (en) Method for performing a switching process in an on-load tap changer
JP2008135651A (en) Tap switching apparatus used in loading case
JP2010080590A (en) Change-over switch for on-load tap changer
JP6523099B2 (en) Load tap switching device and method of manufacturing load tap switching device
ES2786255T3 (en) Switching arrangement
JP2013134997A (en) Diverter switch of on-load tap changer
JP6483450B2 (en) Load tap changer
JP6379192B2 (en) Load tap changer, method of attaching load change switch insertion device to load tap changer, and light oil discharge screw
JP6490069B2 (en) Load selector for tap transformer and support arm for load selector preselector
JP6538451B2 (en) On-load tap changer
JP2017527996A (en) Switching devices for control transformers, especially spare selectors
JP2003188031A (en) On-load tap changer
JP5707071B2 (en) Tap switching method under load
JP3900510B2 (en) Load tap changer
BG112463A (en) Power commutator with vacuum arc-suppression chamber and insulated phases for a step voltage regulator
BG65908B1 (en) Power switch for step voltage regulator with vacuum arc chutes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015821798

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015821798

Country of ref document: EP