WO2016009658A1 - Compressor system, subsea production system provided therewith, and compressor cleaning method - Google Patents

Compressor system, subsea production system provided therewith, and compressor cleaning method Download PDF

Info

Publication number
WO2016009658A1
WO2016009658A1 PCT/JP2015/051529 JP2015051529W WO2016009658A1 WO 2016009658 A1 WO2016009658 A1 WO 2016009658A1 JP 2015051529 W JP2015051529 W JP 2015051529W WO 2016009658 A1 WO2016009658 A1 WO 2016009658A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrate
compressor
antifreeze
supply
unit
Prior art date
Application number
PCT/JP2015/051529
Other languages
French (fr)
Japanese (ja)
Inventor
勇哉 紺野
伊藤 栄基
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US15/326,858 priority Critical patent/US20170198724A1/en
Priority to EP15821658.0A priority patent/EP3156665A4/en
Priority to CN201580037321.1A priority patent/CN106489029A/en
Publication of WO2016009658A1 publication Critical patent/WO2016009658A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B37/00Methods or apparatus for cleaning boreholes or wells
    • E21B37/06Methods or apparatus for cleaning boreholes or wells using chemical means for preventing or limiting, e.g. eliminating, the deposition of paraffins or like substances
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • E21B43/36Underwater separating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0686Units comprising pumps and their driving means the pump being electrically driven specially adapted for submerged use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/701Suction grids; Strainers; Dust separation; Cleaning especially adapted for elastic fluid pumps
    • F04D29/705Adding liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/403Casings; Connections of working fluid especially adapted for elastic fluid pumps

Definitions

  • the present invention relates to a compressor system, an undersea production system including the compressor system, and a compressor cleaning method.
  • production fluid mixed with crude oil, natural gas, etc. is pumped from a production well drilled to a depth of several thousand meters from the seabed.
  • the pumped production fluid is separated into a gas such as natural gas and a liquid such as crude oil by a separator such as a scrubber, and then sent to a ship on the sea via a flow line extending in the sea.
  • a separator such as a scrubber
  • a compressor installed on the seabed is used.
  • Patent Document 1 discloses a cleaning method in which a part of condensate, which is a hydrocarbon contained in a liquid separated by a separator, is supplied to the compressor for cleaning.
  • condensate decomposes and removes deposits to clean the internal flow path of the compressor.
  • the above-described cleaning method uses condensate collected from the production well. Therefore, with this cleaning method, there is a possibility that a necessary amount of condensate cannot be collected stably from the production well. As a result, it is difficult to stably clean the compressor.
  • the present invention provides a compressor system capable of stably cleaning a compressor, an undersea production system including the compressor system, and a compressor cleaning method.
  • a compressor system includes a compressor having a casing, a rotating shaft supported in the casing, and an impeller that rotates together with the rotating shaft to compress gas.
  • An internal hydrate antifreeze supplying part for supplying a part of the hydrate antifreeze supplied by the agent supplying part to an internal flow path formed by the impeller and the casing.
  • a part of the hydrate antifreeze agent supplied from the hydrate antifreeze agent supply unit to the compressed gas circulation unit is an internal flow path.
  • the hydrate antifreeze flows along with the gas in the internal flow path, and the deposits accumulated in the internal flow path can be removed.
  • By supplying the hydrate antifreeze directly to the internal flow path it is possible to prevent the hydrate antifreeze from being diluted by gas before reaching the internal flow path, and effectively use the hydrate antifreeze. It is possible to clean the inside of the compressor.
  • the required amount of hydrate antifreeze can be stably supplied to the internal flow path. Can do.
  • the hydrate antifreeze can be supplied in a limited manner to a compressor that requires cleaning. . Therefore, the hydrate antifreeze supplied from the internal hydrate antifreeze supplier can be efficiently used for cleaning the compressor, and the supply amount of the hydrate antifreeze can be suppressed.
  • the control unit determines whether or not a difference between the characteristic values of the gas between the inlet side of the compressor and the outlet side of the compressor satisfies a predetermined first criterion. And when the first reference determination unit determines that the first reference is satisfied, the hydrate to the internal flow path with respect to the internal hydrate antifreeze supply unit is determined.
  • a supply start instructing unit that sends an instruction to start the supply of the rate freeze inhibitor.
  • the supply start instructing unit starts supplying the hydrate antifreeze to the internal flow path based on the determination result, whereby the internal flow path can be cleaned. Therefore, it can be determined with high accuracy whether or not the compressor is in a state requiring cleaning, and the hydrate antifreeze can be supplied more limitedly. As a result, the hydrate antifreeze supplied from the internal hydrate antifreeze supply unit can be used more efficiently for cleaning the compressor with respect to the internal flow path that requires cleaning. The supply amount of the antifreezing agent can be further suppressed.
  • the compressor system includes a heating unit that heats the hydrate antifreeze agent, and the internal hydrate antifreeze supply unit supplies the hydrate antifreeze agent heated by the heating unit to the internal flow path. You may supply.
  • the high temperature hydrate antifreezing agent can be supplied to the internal flow path by providing the heating unit.
  • the solubility of the hydrate antifreeze in the deposit can be improved. Therefore, the dissolution rate of the deposit accumulated in the internal channel can be improved, and the internal channel can be effectively cleaned.
  • the compressor system includes a heating unit that heats the hydrate antifreeze agent, and the control unit opens the inlet of the compressor after opening the supply of the hydrate antifreeze agent to the internal flow path.
  • a second reference determination unit that determines whether or not a difference between the characteristic value of the gas on the outlet side and the outlet side of the compressor satisfies a predetermined second reference, and the second reference determination unit When it is determined that the second standard is satisfied, the internal hydrate antifreeze supply unit is instructed to supply the internal flow path with the hydrate antifreeze heated by the heating unit. You may have the heating supply instruction
  • a difference is calculated from the characteristic values of the gas on the inlet side and the outlet side of the compressor, and the internal flow is again determined by comparing the second reference determination unit with the second reference. It can be easily estimated whether or not the road is in a state requiring cleaning. Therefore, for example, it is possible to easily estimate the state of the internal flow path that is different from the case of determination using the first reference.
  • the heating supply instruction unit sends an instruction to supply the hydrate antifreezing agent heated by the heating unit to the internal flow path, so that the hydrate antifreezing agent heated to a high temperature is The flow path can be more effectively cleaned. Therefore, powerful cleaning can be performed on the compressor as needed. As a result, when the internal flow path is in a state that requires strong cleaning, the heated hydrate antifreeze can be efficiently supplied and the compressor can be cleaned more efficiently.
  • the subsea production system includes the compressor system and a separator that separates the production fluid pumped from the production well into the gas and the liquid and supplies the gas and liquid to the compressor.
  • a compressor cleaning method cleans a compressor having a casing, a rotating shaft supported in the casing, and an impeller that rotates together with the rotating shaft to compress gas.
  • a first determination is made as to whether or not a difference in the characteristic value of the gas between the inlet side of the compressor and the outlet side of the compressor satisfies a predetermined first criterion.
  • the internal flow path formed by the impeller and the casing is compressed by the compressor.
  • a supply start step of starting supply of a hydrate antifreeze agent that suppresses hydration of the gas supplied to the gas.
  • a difference is calculated from the gas characteristic values on the inlet side and the outlet side of the compressor, and the internal flow path is determined by comparing with the first reference in the first reference determining step. It can be easily estimated whether or not is in a state that requires cleaning.
  • the internal flow path can be cleaned by starting the supply of the hydrate antifreeze to the internal flow path in the supply start step based on the determination result. Therefore, it can be determined with high accuracy whether or not the compressor is in a state requiring cleaning, and the hydrate antifreeze can be supplied more limitedly.
  • the hydrate antifreeze supplied from the internal hydrate antifreeze supply unit can be used more efficiently for cleaning the compressor with respect to the internal flow path that requires cleaning.
  • the supply amount of the antifreezing agent can be further suppressed.
  • the gas characteristic values of the inlet side of the compressor and the outlet side of the compressor are The second reference determination step for determining whether or not the difference satisfies a predetermined second criterion, and when it is determined that the second criterion is satisfied in the second reference determination step, the heated A heating and supplying step of supplying a hydrate antifreeze to the internal flow path.
  • a difference is calculated from the gas characteristic values on the inlet side and the outlet side of the compressor, and the internal flow is again determined by comparing with the second reference in the second reference determining step. It can be easily estimated whether or not the road is in a state requiring cleaning. For example, it is possible to easily estimate whether the state of the internal flow path is different from that determined using the first reference (for example, whether the internal flow path needs stronger cleaning). it can. Based on the determination result, the hydrate antifreeze that has been heated to a high temperature is supplied from the hydrate antifreeze injection part to the internal flow path in the heating supply process, thereby cleaning the internal flow path more effectively. Can be implemented. Therefore, powerful cleaning can be performed on the compressor as needed. As a result, when the internal flow path is in a state that requires strong cleaning, the heated hydrate antifreeze can be efficiently supplied and the compressor can be cleaned more efficiently.
  • the compressor can be efficiently cleaned by supplying the hydrate antifreeze to the internal flow path.
  • the undersea production system 1 is a Subsea Production System that is one of the offshore oil and gas field development methods. As shown in FIG. 1, the undersea production system 1 is a production well W that collects a production fluid PF that mixes crude oil O, natural gas G, and the like mined from an oil and gas field F existing at several hundred to several thousand meters in the seabed.
  • a production fluid PF that mixes crude oil O, natural gas G, and the like mined from an oil and gas field F existing at several hundred to several thousand meters in the seabed.
  • a manifold M that collects and branches the production fluid PF collected at the production well W, a flow line FL that is a pipe that conveys the production fluid PF branched by the manifold M, and a production fluid PF that is conveyed by the flow line FL.
  • a subsea module SM that separates liquid and gas and sends them to the sea is provided.
  • the undersea production system 1 is moored at sea, a riser R that is a pipe that carries crude oil O and natural gas G from the subsea module SM to the sea, an umbilical line AL that is a cable that supplies power to the subsea module SM, etc.
  • a riser R and an umbilical line AL are connected to each other, and a ship S for storing crude oil O and natural gas G is provided.
  • Manifold M is installed in the vicinity of production well W of submarine oil and gas field F.
  • the manifold M is a device that transports the mined production fluid PF to a plurality of flow lines FL by collecting and branching.
  • the flow line FL is a pipeline that pumps the production fluid PF from the manifold M to the subsea module SM by the pressure energy of the oil and gas field F.
  • the riser R extends from the subsea module SM on the sea floor to the ship S on the sea.
  • the riser R of the present embodiment includes an oil pipeline OR that conveys crude oil O sent from the subsea module SM to a storage tank (not shown) disposed on the marine vessel S, and a natural gas G sent from the subsea module SM. Is separately provided with a gas pipeline GR for conveying the gas to the storage tank.
  • the riser R also has a pipeline AR for hydrate antifreeze that supplies hydrate antifreeze from the ship S to the gas pipeline GR that supplies natural gas G so that the natural gas G does not freeze due to hydrate formation on the sea floor. Is provided.
  • the umbilical line AL is a composite cable having a power cable, a hydraulic cable, and a signal cable for controlling the subsea module SM.
  • the umbilical line AL sends power and signals from a generator (not shown) on the ship S to the subsea module SM and the manifold M.
  • the subsea module SM separates the production fluid PF supplied via the flow line FL into a gas and a liquid, and pumps the gas and the liquid to the sea respectively.
  • the subsea module SM of the present embodiment gasses the main heat exchanger 2 that cools the production fluid PF pumped up from the production well W and the production fluid PF that is cooled by the main heat exchanger 2.
  • a separator 3 for separating the liquid into the liquid
  • a pump system 4 for sending the liquid separated by the separator 3 to the riser R
  • a compressor system 5 for sending the gas separated by the separator 3 to the riser R.
  • the main heat exchanger 2 cools the high-temperature production fluid PF pumped from the production well W and sent through the flow line FL to a temperature that can be used by the separator 3.
  • the main heat exchanger 2 of the present embodiment cools the production fluid PF by exchanging heat with low-temperature seawater on the seabed.
  • the separator 3 separates the production fluid PF into natural gas G that is a gas and crude oil O that is a liquid.
  • the separator 3 of this embodiment is a scrubber.
  • the separator 3 separates the natural gas G and the crude oil O containing condensate from the production fluid PF.
  • the separator 3 sends the separated crude oil O to the pump system 4.
  • the separator 3 sends the separated natural gas G to the compressor system 5.
  • the pump system 4 compresses the crude oil O sent from the separator 3 and sends it to the oil pipeline OR.
  • the pump system 4 includes a pump 41 that compresses crude oil O, a liquid circulation part 42 that sends the crude oil O from the separator 3 to the pump 41, and a compressed liquid in which crude oil O compressed by the pump 41 circulates.
  • a distribution unit 43 is shown in FIG. 2, the pump system 4 that compresses crude oil O, a liquid circulation part 42 that sends the crude oil O from the separator 3 to the pump 41, and a compressed liquid in which crude oil O compressed by the pump 41 circulates.
  • the pump 41 compresses the sent crude oil O and sends it out.
  • the liquid circulation unit 42 supplies the crude oil O from the separator 3 to the pump 41.
  • the liquid circulation part 42 of the present embodiment is a pipe connected from the separator 3 to the pump 41.
  • crude oil O circulates inside.
  • the compressed liquid circulation unit 43 sends the crude oil O compressed by the pump 41 to the oil pipeline OR.
  • the compressed liquid circulation part 43 of this embodiment is a pipe connected from the pump 41 to the oil pipeline OR.
  • the compressed liquid circulation part 43 circulates the crude oil O compressed inside.
  • Compressor system 5 compresses natural gas G sent from separator 3 and sends it to gas pipeline GR.
  • the compressor system 5 includes a compressor 50 that compresses the natural gas G, a gas flow part 51 that sends the natural gas G from the separator 3 to the compressor 50, and the natural gas compressed by the compressor 50.
  • An internal hydrate antifreeze supply unit 54 that supplies a part of the hydrate antifreeze supplied by the supply unit 53 to the compressor 50, a heating unit 55 that heats the hydrate antifreeze, and an internal hydrate antifreeze
  • a control unit 60 that performs supply control for starting supply of the hydrate antifreeze agent to the agent supply unit 54.
  • the compressor 50 is a multistage centrifugal compressor including a plurality of impellers 503.
  • the compressor 50 of the present embodiment includes a casing 501 in which an internal flow path FC for flowing gas from the upstream side to the downstream side is formed, and is supported around the casing 501 and rotates about the axis SL.
  • the casing 501 is a stationary body and has a cylindrical shape.
  • the casing 501 has a rotation shaft 502 disposed so as to penetrate the center.
  • the casing 501 is provided with a bearing device (not shown).
  • the bearing device supports the rotating shaft 502 to be rotatable.
  • the rotating shaft 502 is a rotating body, has a columnar shape, and extends in the axis SL direction in which the axis SL extends.
  • the impeller 503 is a rotating body, and a plurality of impellers 503 are provided at intervals in the direction of the axis SL of the rotating shaft 502. Each impeller 503 compresses the natural gas G (gas) using centrifugal force due to rotation.
  • the impeller 503 includes a disk 503a, a blade 503b, and a cover 503c.
  • the impeller 503 is a so-called closed impeller 503.
  • the disks 503a are each formed in a disk shape that gradually increases in diameter radially outward of the rotating shaft 502 toward the downstream side that is one side of the rotating shaft 502 in the axis SL direction.
  • the blade 503b is formed so as to protrude from the disk 503a to the upstream side in the axis SL direction, which is the opposite side to the downstream side in the axis SL direction.
  • a plurality of blades 503b are formed on the disk 503a at predetermined intervals in the circumferential direction of the axis SL.
  • the cover 503c covers the plurality of blades 503b from the upstream side in the axis SL direction.
  • the cover 503c is formed in a disk shape facing the disk 503a.
  • the internal flow path FC is formed by the impeller 503 and the casing 501 so as to connect the impellers 503 so that the natural gas G is compressed stepwise.
  • the internal flow path FC includes a compression flow path FC1 defined by the impeller 503, and a casing flow path FC2 that is formed in the casing 501 and adjusts the flow of the natural gas G.
  • the compression flow path FC1 is defined by a surface facing the upstream side in the axis SL direction of the disk 503a, a surface facing the downstream side in the axis SL direction of the cover 503c, and a surface facing the circumferential direction of the blade 503b. .
  • the casing flow path FC2 adjusts the flow of the natural gas G in order to flow the natural gas G to the compression flow path FC1 defined by the impeller 503.
  • the gas circulation part 51 supplies the natural gas G from the separator 3 to the compressor 50.
  • the gas circulation part 51 of this embodiment is piping connected from the separator 3 to the compressor 50 as shown in FIG.
  • the natural gas G circulates inside.
  • the gas flow unit 51 of the present embodiment has an inlet side characteristic value measuring unit 511 that measures the characteristic value of the natural gas G on the inlet side of the compressor 50.
  • the inlet side characteristic value measuring unit 511 measures the characteristic value of the natural gas G flowing into the compressor 50.
  • the inlet side characteristic value measuring unit 511 is provided in the vicinity of the inlet of the compressor 50 of the gas circulation unit 51.
  • the inlet side characteristic value measuring unit 511 of the present embodiment is a pressure sensor that measures a pressure value as a characteristic value.
  • the inlet side characteristic value measuring unit 511 transmits the measured pressure value of the natural gas G to the control unit 60.
  • the compressed gas circulation part 52 sends the natural gas G compressed by the compressor 50 to the riser R.
  • the compressed gas circulation part 52 of this embodiment is piping connected from the compressor 50 to the gas pipeline GR.
  • the compressed gas circulation part 52 circulates the natural gas G compressed inside.
  • the compressed gas circulation unit 52 of the present embodiment has an outlet side characteristic value measuring unit 521 that measures a characteristic value of the natural gas G that is a gas on the outlet side of the compressor 50.
  • the outlet side characteristic value measuring unit 521 measures the characteristic value of the natural gas G flowing out from the compressor 50.
  • the outlet side characteristic value measuring unit 521 is provided in the vicinity of the outlet of the compressor 50 of the compressed gas circulation unit 52.
  • the outlet side characteristic value measuring unit 521 of the present embodiment is a pressure sensor that measures a pressure value as a characteristic value, like the inlet side characteristic value measuring unit 511.
  • the outlet side characteristic value measuring unit 521 transmits the measured pressure value of the natural gas G to the control unit 60.
  • the hydrate antifreeze supply unit 53 distributes the hydrate antifreeze supplied from the marine vessel S through the hydrate antifreeze pipeline AR to the compressed gas circulation unit 52.
  • the hydrate antifreeze supply unit 53 of this embodiment is a pipe connected to the compressed gas circulation unit 52 from the hydrate antifreeze pipeline AR. In the hydrate antifreeze supply unit 53, the hydrate antifreeze flows through the inside.
  • the hydrate antifreeze supply unit 53 is connected to the downstream side of the position where the outlet side characteristic value measurement unit 521 of the compressed gas circulation unit 52 is provided.
  • the hydrate antifreeze for example, it is particularly preferable to use monoethylene glycol which is used for preventing the hydrate formation of the natural gas G and suppressing the hydrate formation.
  • the internal hydrate antifreeze supplying unit 54 supplies a part of the hydrate antifreeze flowing through the hydrate antifreeze supplying unit 53 to the internal flow path FC of the compressor 50.
  • the internal hydrate antifreeze supply unit 54 of the present embodiment includes a first supply pipe 541 and a first supply valve 542 that adjusts the flow of the hydrate antifreeze flowing through the first supply pipe 541.
  • the second supply pipe 543 branched from the first supply pipe 541 and the second supply valve 544 for adjusting the flow of the hydrate antifreeze flowing through the second supply pipe 543 are provided.
  • the first supply pipe 541 branches from the hydrate antifreeze supply unit 53 and is connected to the casing 501 of the compressor 50. Specifically, the first supply pipe 541 of the present embodiment is connected so as to pass through the casing 501 of the compressor 50. The first supply pipe 541 is branched in the casing 501. The first supply pipe 541 is provided with a hydrate antifreeze injection portion 541a for injecting a hydrate antifreeze toward the casing flow path FC2 at the tip portion.
  • the first supply valve 542 adjusts the supply of the hydrate antifreeze to the inside of the first supply pipe 541. Specifically, the first supply valve 542 of the present embodiment is closed to stop the supply of the hydrate antifreeze into the first supply pipe 541 and is opened to open the first supply pipe 541. The supply of hydrate antifreeze to the inside is started.
  • the first supply valve 542 is an electromagnetic valve whose opening and closing operations are controlled by the control unit 60.
  • the second supply pipe 543 branches from the first supply pipe 541 and supplies a hydrate antifreeze to the compressor 50.
  • the second supply pipe 543 of this embodiment branches from the first supply pipe 541 on the upstream side of the position where the first supply valve 542 is provided, and is downstream of the position where the first supply valve 542 is provided. It is again connected to the first supply pipe 541 on the side.
  • the second supply valve 544 adjusts the supply of the hydrate antifreeze to the inside of the second supply pipe 543. Specifically, the second supply valve 544 of the present embodiment is closed to stop the supply of the hydrate antifreeze into the second supply pipe 543, and is opened to release the second supply pipe 543. The supply of hydrate antifreeze to the inside is started.
  • the second supply valve 544 is an electromagnetic valve whose opening and closing operations are controlled by the control unit 60.
  • the heating unit 55 is provided in the internal hydrate antifreeze supplying unit 54 and heats the hydrate antifreeze.
  • the heating part 55 of the present embodiment is provided at a position where the second supply pipe 543 and the liquid circulation part 42 intersect on the downstream side of the second supply valve 544 of the second supply pipe 543.
  • the heating unit 55 uses the heat of the crude oil O flowing through the pump system 4 to heat the hydrate antifreeze.
  • the heating unit 55 has a high temperature of 110 ° C. or higher, for example, monoethylene glycol, which is a hydrate antifreeze flowing in the second supply pipe 543 at an ambient temperature of about 20 ° C. to 50 ° C. Until heated.
  • the control unit 60 causes the internal hydrate antifreeze supply unit 54 to start supplying the hydrate antifreeze to the internal flow path FC of the compressor 50 when a predetermined condition is satisfied. I do.
  • the control unit 60 of the present embodiment controls the opening and closing operations of the first supply valve 542 and the second supply valve 544 when a predetermined condition is satisfied, so that the hydrate to the internal flow path FC is controlled. The supply of antifreeze is controlled.
  • the control unit 60 of the present embodiment has a first input unit 61 to which a characteristic value measured by the inlet side characteristic value measuring unit 511 is input, and a characteristic value measured by the outlet side characteristic value measuring unit 521.
  • a second input unit 62 that is input; and a difference calculation unit 63 that calculates a difference between the characteristic value input to the first input unit 61 and the characteristic value input to the second input unit 62.
  • the control unit 60 of the present embodiment includes a first reference determination unit 64 that determines whether or not the difference calculated by the difference calculation unit 63 satisfies a predetermined first reference, and a determination by the first reference determination unit 64.
  • the control unit 60 of the present embodiment includes a second reference determination unit 66 that determines whether or not the difference calculated by the difference calculation unit 63 satisfies a predetermined second reference, and a determination by the second reference determination unit 66. Based on the determination result of the second reference determination unit 66 and the heating supply instruction unit 67 that sends an instruction to supply the hydrate antifreeze agent heated by the heating unit 55 to the internal flow path FC based on the result. And a cleaning end instruction unit 70 for sending an instruction to end the supply of the hydrate antifreeze to the flow path FC.
  • the controller 60 of the present embodiment opens or closes the first supply valve 542 based on the input signal, and opens or closes the second supply valve 544 based on the input signal.
  • a second supply valve instruction unit 69 to be closed.
  • the first input unit 61 receives the pressure value of the natural gas G measured by the inlet side characteristic value measuring unit 511.
  • the first input unit 61 outputs information on the input pressure value to the difference calculation unit 63.
  • the pressure value of the natural gas G measured by the outlet side characteristic value measuring unit 521 is input to the second input unit 62.
  • the second input unit 62 outputs the input pressure value information to the difference calculation unit 63.
  • the difference calculation unit 63 calculates a difference obtained by subtracting the pressure value on the inlet side of the compressor input by the first input unit 61 from the pressure value on the outlet side of the compressor input by the second input unit 62.
  • the difference calculation unit 63 outputs the calculated difference to the first reference determination unit 64.
  • the difference calculation unit 63 outputs the calculated difference to the second reference determination unit 66 when information is input again from the first input unit 61 and the second input unit 62 after being output to the first reference determination unit 64. Output.
  • the first reference determination unit 64 compares the difference information input from the difference calculation unit 63 with the first reference.
  • the first standard is a value indicating that deposits are deposited and the internal flow path FC of the compressor 50 is narrow, and cleaning is necessary.
  • the first reference of the present embodiment is set to a value smaller than the increase value of the pressure of the natural gas G that is compressed by flowing through the compression channel FC1 in the normal state when cleaning is not necessary. That is, the first reference of the present embodiment is that the difference in pressure between the inlet side and the outlet side of the compressor 50 in a state where the internal channel FC is narrowed by the deposit and the natural gas G is hardly compressed. Value.
  • the first reference determination unit 64 of this embodiment determines whether or not the input difference value is below the first reference.
  • the first reference determination unit 64 sends a signal to the supply start instruction unit 65 when it is determined that the calculated difference is less than the first reference and satisfies the first reference.
  • the supply start instruction unit 65 determines that the first reference is satisfied by the first reference determination unit 64, the supply start instruction unit 65 prevents the hydrate freeze prevention to the internal flow path FC with respect to the internal hydrate antifreeze supply unit 54. Send instructions to start the agent supply.
  • the supply start instruction unit 65 according to the present embodiment sends a signal to the first supply valve instruction unit 68 and sends an instruction to the first supply valve 542 when a signal is input from the first reference determination unit 64.
  • the second reference determination unit 66 compares the difference information input from the difference calculation unit 63 with the second reference.
  • the second standard is a value indicating that the deposits in the internal flow path FC of the compressor 50 are not sufficiently removed and a stronger cleaning is necessary.
  • the second reference of the present embodiment is set to a value that is smaller than the increase value of the pressure of the natural gas G compressed by flowing through the compression passage FC1 in the normal state and larger than the first reference. That is, the second standard of the present embodiment is a state in which deposits remain in the internal flow path FC and the natural gas G is not sufficiently compressed as a result of being washed once but not so much as to satisfy the first standard. This is the value of the difference in pressure between the inlet side and the outlet side of the compressor 50.
  • the second reference determination unit 66 of the present embodiment determines whether or not the input difference value is below the second reference.
  • the second reference determination unit 66 sends a signal to the heating supply instruction unit 67 when it is determined that the calculated difference is less than the second reference and satisfies the second reference.
  • the second reference determination unit 66 sends a signal to the cleaning end instruction unit 70 when it is determined that the calculated difference exceeds the second reference and does not satisfy the second reference.
  • the heat supply instructing unit 67 determines that the second reference is satisfied by the second reference determining unit 66, the hydrate freezing heated by the heating unit 55 with respect to the internal hydrate antifreeze supply unit 54 is performed.
  • An instruction is sent to supply the inhibitor to the internal flow path FC.
  • the heating supply instruction unit 67 of this embodiment receives a signal from the second reference determination unit 66.
  • the heating supply instruction unit 67 sends a signal to the first supply valve instruction unit 68 and the second supply valve instruction unit 69 after the signal is sent from the supply start instruction unit 65, and the first supply valve 542 and the second supply valve instruction unit 69.
  • An instruction is sent to each of the two supply valves 544.
  • the cleaning end instruction unit 70 prevents the internal hydrate antifreeze supply unit 54 from hydrate freezing into the internal flow path FC. Send instructions to end the supply of agent.
  • the cleaning end instruction unit 70 of this embodiment receives a signal from the second reference determination unit 66. As a result, the cleaning end instruction unit 70 sends a signal to the first supply valve instruction unit 68 and the second supply valve instruction unit 69, and sends instructions to the first supply valve 542 and the second supply valve 544, respectively.
  • the first supply valve instruction unit 68 sends an instruction to open the first supply valve 542 when a signal is input from the supply start instruction unit 65.
  • the first supply valve instruction unit 68 sends an instruction to close the first supply valve 542 when a signal is input from the heating supply instruction unit 67.
  • the first supply valve instruction unit 68 sends an instruction to close the first supply valve 542 when a signal is input from the cleaning end instruction unit 70.
  • the second supply valve instruction unit 69 sends an instruction to open the second supply valve 544 when a signal is input from the heating supply instruction unit 67.
  • the second supply valve instruction unit 69 sends an instruction to close the second supply valve 544 when a signal is input from the cleaning end instruction unit 70.
  • the undersea production system 1 of the present embodiment collects the production fluid PF collected from the oil and gas field F through the production well W in the manifold M, and uses the pressure energy when mined from the oil and gas field F in the flow line FL. Is supplied to the subsea module SM.
  • the subsea module SM power is supplied to each device by a umbilical line AL from a generator (not shown) on the ship S.
  • the production fluid PF supplied to the subsea module SM is cooled by the main heat exchanger 2 and flows into the separator 3.
  • the production fluid PF that has flowed into the separator 3 is separated into crude oil O that is liquid and natural gas G that is gas.
  • the crude oil O separated by the separator 3 includes condensate and the like.
  • Crude oil O separated by the separator 3 circulates in the liquid circulation part 42 and is sent to the pump 41.
  • the pump 41 compresses the crude oil O, sends it to the oil pipeline OR through the compressed liquid circulation section 43, and supplies it to a storage tank for crude oil O (not shown) on the ship S.
  • the natural gas G separated by the separator 3 circulates in the liquid circulation part 42 and is sent to the compressor 50.
  • the compressor 50 when the natural gas G flows through the internal flow path FC, the impeller 503 rotates together with the rotating shaft 502, whereby the natural gas G is compressed in the compression flow path FC1 and sent to the compressed gas flow section 52. It is done.
  • a hydrate antifreeze is supplied from the hydrate antifreeze supply unit 53 to the compressed gas circulation unit 52.
  • a hydrate antifreeze agent is fed into the gas pipeline GR together with the compressed natural gas G.
  • the compressed gas circulation part 52 the natural gas G is supplied to a storage tank (not shown) for the natural gas G on the ship S while being prevented from being hydrated by the supplied hydrate antifreeze.
  • the pressure value is measured as a characteristic value of the natural gas G that is a gas separated by the separator 3 on the inlet side and the outlet side of the compressor 50.
  • the state of the compressor 50 is measured (characteristic value acquisition step S100). Specifically, in the characteristic value acquisition step S100, the pressure value of the natural gas G flowing through the gas flow unit 51 is measured by the inlet-side characteristic value measurement unit 511, and the pressure value of the natural gas G on the inlet side of the compressor 50 is measured. To get.
  • the pressure value of the natural gas G flowing through the compressed gas flow unit 52 is measured by the outlet side characteristic value measuring unit 521, and the pressure value of the natural gas G on the outlet side of the compressor 50 is acquired.
  • the difference between the acquired pressure value on the inlet side and the pressure value on the outlet side of the compressor 50 is calculated (difference calculating step S200).
  • difference calculation step S ⁇ b> 200 information on the pressure value measured by the inlet side characteristic value measuring unit 511 is input to the first input unit 61 of the control unit 60.
  • difference calculating step S ⁇ b> 200 information on the pressure value measured by the outlet side characteristic value measuring unit 521 is input to the second input unit 62 of the control unit 60.
  • the control unit 60 information input to the first input unit 61 and the second input unit 62 is input to the difference calculation unit 63.
  • the difference calculation unit 63 the difference between the pressure value on the outlet side and the pressure value on the inlet side of the compressor 50 is obtained by subtracting the information input from the first input unit 61 from the information input from the second input unit 62. Calculated.
  • the difference calculation unit 63 determines whether or not the hydrate antifreeze has already been supplied to the internal flow path FC.
  • the difference calculation part 63 when it determines with information having been once input from the 1st input part 61 and the 2nd input part 62, it determines with having already supplied the hydrate antifreezing agent to the internal flow path FC.
  • the difference information is output to the second reference determination unit 66.
  • the difference calculation unit 63 determines that no information is input from the first input unit 61 and the second input unit 62, the hydrate antifreezing agent is not supplied to the internal flow path FC. Determination is performed, and difference information is output to the first reference determination unit 64.
  • first standard determination step S400 When it is determined that the hydrate antifreeze is not supplied to the internal flow path FC, it is determined whether or not the calculated difference satisfies a predetermined first standard (first standard determination step S400). Specifically, in the first reference determination step S ⁇ b> 400, the calculated difference is input from the difference calculation unit 63 to the first reference determination unit 64 in the control unit 60. The first reference determination unit 64 determines whether or not the input difference value is below the first reference. The first reference determination unit 64 sends a signal to the supply start instruction unit 65 when it is determined that the calculated difference is less than the first reference. Conversely, when the first reference determination unit 64 determines that the calculated difference exceeds the first reference, the first reference determination unit 64 ends the cleaning of the compressor 50 without sending a signal.
  • the internal channel FC is supplied to the gas compressed by the compressor 50.
  • Supply of the hydrate antifreeze is started (supply start step S500). Specifically, in the supply start step S500, the control unit 60 sends a signal from the first reference determination unit 64 to the supply start instruction unit 65, and sends a signal from the supply start instruction unit 65 to the first supply valve instruction unit 68. Sent.
  • the first supply valve instruction unit 68 sends an instruction to the first supply valve 542 to be opened by receiving a signal from the supply start instruction unit 65.
  • the first supply valve 542 Upon receiving the instruction, the first supply valve 542 is opened, so that a part of the hydrate antifreeze flowing through the hydrate antifreeze supply unit 53 flows into the first supply pipe 541.
  • the hydrate antifreeze that has flowed into the first supply pipe 541 is injected from the hydrate antifreeze injection unit 541a provided in the casing 501 toward the casing flow path FC2 and supplied to the internal flow path FC. .
  • the hydrate antifreeze supplied into the internal flow path FC flows through the internal flow path FC together with the natural gas G, flows into the compressed gas flow section 52, and is discharged from the internal flow path FC.
  • the pressure value of the natural gas G is again measured and acquired at the inlet side and the outlet side of the compressor 50, and the state of the compressor 50 is measured (characteristic value acquisition step S100).
  • the difference between the acquired pressure value on the inlet side and the pressure value on the outlet side of the compressor 50 is calculated (difference calculating step S200).
  • it is determined whether or not a hydrate antifreeze is supplied to the internal flow path FC of the compressor 50 (hydrate antifreeze supply determination step S300).
  • the difference calculation unit 63 determines that the hydrate antifreeze is supplied to the internal flow path FC, and outputs the difference information to the second reference determination unit 66. .
  • second standard determination step S600 When it is determined that the hydrate antifreeze is supplied to the internal flow path FC, it is determined whether or not the calculated difference satisfies a predetermined second standard (second standard determination step S600). Specifically, in the second reference determination step S600, the control unit 60 inputs the calculated difference from the difference calculation unit 63 to the second reference determination unit 66. The second reference determination unit 66 determines whether or not the input difference value is below the second reference. The second reference determination unit 66 sends a signal to the heating supply instruction unit 67 when it is determined that the calculated difference is less than the second reference.
  • the second reference determination unit 66 determines that the calculated difference exceeds the second reference, it sends a signal to the cleaning end instruction unit 70 to send the first supply valve 542 and the second supply valve 544. Is closed, and the cleaning of the compressor 50 is completed.
  • the heated hydrate antifreeze is supplied to the internal flow path FC (heating supply step S700).
  • the control unit 60 sends a signal from the second reference determination unit 66 to the heating supply instruction unit 67, and the heating supply instruction unit 67 transmits the first supply valve instruction unit 68 and the second supply valve instruction unit 68.
  • a signal is sent to the supply valve instruction unit 69.
  • the first supply valve instructing unit 68 sends an instruction to close the first supply valve 542 by receiving a signal from the heating supply instructing unit 67.
  • the second supply valve instructing unit 69 sends an instruction to the second supply valve 544 to be opened by receiving a signal from the heating supply instructing unit 67.
  • the first supply valve 542 that has received the instruction is closed, the flow of the hydrate antifreeze into the first supply pipe 541 stops.
  • the second supply valve 544 that has received the instruction is opened, the hydrate antifreeze starts flowing into the second supply pipe 543.
  • the hydrate antifreeze that has flowed into the second supply pipe 543 is heated by being exchanged with the crude oil O flowing in the liquid circulation part 42 by passing through the heating part 55.
  • the hydrate antifreeze that has been heated to a high temperature flows into the first supply pipe 541 from the downstream side of the first supply valve 542.
  • the high temperature hydrate antifreeze flowing into the first supply pipe 541 is injected from the hydrate antifreeze injection part 541a in the casing 501 toward the casing flow path FC2 and supplied to the internal flow path FC.
  • the high-temperature hydrate antifreeze supplied in the internal flow path FC flows through the internal flow path FC together with the natural gas G, flows into the compressed gas flow section 52, and is discharged from the internal flow path FC. .
  • a part of the agent is injected into the casing flow path FC2 through the first supply pipe 541 when the first supply valve 542 is opened.
  • the hydrate antifreeze agent not only prevents the natural gas G from freezing and suppresses hydrate formation, but also has lipophilicity and hydrophilicity. Therefore, oily dirt and aqueous dirt can be removed by the hydrate antifreeze.
  • the hydrate antifreeze injected into the casing flow path FC2 flows in the internal flow path FC together with the natural gas G, thereby effectively removing deposits deposited on the wall surface of the internal flow path FC.
  • the hydrate antifreeze is prevented from being diluted by the natural gas G before reaching the internal flow path FC, and the hydrate antifreeze
  • the inside of the compressor 50 can be cleaned by effectively utilizing the above.
  • a necessary amount of hydrate antifreeze can be stably supplied to the internal flow path FC.
  • the compressor 50 can be cleaned stably and effectively.
  • the hydrate antifreeze supply unit is added to the first supply pipe 541 and the second supply pipe 543. From 53, hydrate antifreeze is introduced. As a result, a hydrate antifreeze agent is ejected into the casing flow path FC2 by the hydrate antifreeze injection unit 541a.
  • the supply control of the hydrate antifreeze to the internal flow path FC is performed by the first reference determination unit 64 and the second reference determination unit 66, so that the compressor 50 in a state that requires cleaning is limited. Hydrate antifreeze can be supplied to Therefore, the hydrate antifreeze supplied from the first supply pipe 541 and the second supply pipe 543 can be efficiently used for cleaning the compressor 50, and the supply amount of the hydrate antifreeze can be suppressed. it can.
  • the pressure value of the natural gas G on the inlet side of the compressor 50 measured by the inlet side characteristic value measuring unit 511 of the gas circulation unit 51 is input to the first input unit 61.
  • the pressure value of the natural gas G on the outlet side of the compressor 50 measured by the outlet side characteristic value measuring unit 521 of the compressed gas circulation unit 52 is input to the second input unit 62.
  • the hydrate antifreeze supplied from the first supply pipe 541 and the second supply pipe 543 is more efficiently used for cleaning the compressor 50 with respect to the internal flow path FC that requires cleaning. And the supply amount of the hydrate antifreeze can be further suppressed.
  • the second supply pipe 543 is provided with a heating unit 55 for heating the hydrate antifreeze. Therefore, a high temperature hydrate antifreeze can be supplied to the internal flow path FC. By being heated to a high temperature, the solubility of the hydrate antifreeze in the deposit can be improved. Therefore, the dissolution rate of the deposit accumulated in the internal flow channel FC can be improved, and the internal flow channel FC can be effectively cleaned.
  • the difference is calculated by the difference calculation unit 63 from the pressure values of the natural gas G at the inlet side and the outlet side of the acquired compressor 50, and the second reference determination unit 66 sets the difference larger than the first reference.
  • the second reference determination unit 66 sets the difference larger than the first reference.
  • the second supply valve 544 is opened. Thereby, the supply of the hydrate antifreeze can be started in the second supply pipe 543 provided with the heating unit 55.
  • the hydrate antifreeze agent that has been heated to a high temperature can be injected from the hydrate antifreeze injection unit 541a to the internal flow path FC, and the internal flow path FC can be more effectively cleaned.
  • Can do it can be determined with high accuracy whether or not the compressor 50 is in a state different from the case where it is determined and cleaned using the first reference, and powerful cleaning is performed on the compressor 50 as necessary.
  • both oily dirt and aquatic dirt in the internal flow path FC are effective. Can be washed.
  • the difference is calculated in the difference calculation step S200 from the pressure values of the natural gas G on the inlet side and the outlet side of the compressor 50 acquired in the characteristic value acquisition step S100.
  • the hydrate antifreeze supply determination step S300 it is determined whether or not the hydrate antifreeze is supplied to the internal flow path FC. After that, it is possible to easily estimate whether or not the internal flow path FC is in a state requiring cleaning by making a determination in comparison with the first reference in the first reference determination step S400. Based on the determination result, the first supply valve 542 can be opened in the supply start step S500 to start the supply of the hydrate antifreeze to the first supply pipe 541.
  • the hydrate antifreeze agent from the hydrate antifreeze injection unit 541a to the internal flow path FC can be started, and the internal flow path FC can be cleaned. Therefore, it can be determined with high accuracy whether or not the compressor 50 is in a state that requires cleaning, and the hydrate antifreeze can be supplied more limitedly. Accordingly, the hydrate antifreeze supplied from the first supply pipe 541 and the second supply pipe 543 is more efficiently used for cleaning the compressor 50 with respect to the internal flow path FC that requires cleaning. And the supply amount of the hydrate antifreeze can be further suppressed.
  • the first reference determination step S400 or the second reference determination step is performed based on the determination result.
  • the cleaning state of the compressor 50 can be estimated. Therefore, the compressor 50 can be more efficiently cleaned according to the cleaning state of the compressor 50.
  • the difference is calculated in the difference calculation step S200 from the pressure values of the natural gas G on the inlet side and the outlet side of the compressor 50 acquired in the characteristic value acquisition step S100, and is larger than the first reference in the second reference determination step S600. Judgment is made by comparison with the second criterion set in the value. Thereby, it can be easily estimated whether or not the internal flow path FC is in a state that requires cleaning again. Therefore, for example, whether the state of the internal flow path FC is different from that determined using the first reference (for example, whether more powerful cleaning is required for the internal flow path FC) is easy. Can be estimated.
  • the first supply valve 542 is closed in the heating supply step S700 and the second supply valve 544 is opened, thereby supplying the hydrate antifreeze to the second supply pipe 543 provided with the heating unit 55.
  • the hydrate antifreeze agent that has been heated to a high temperature can be injected from the hydrate antifreeze injection unit 541a to the internal flow path FC, and the internal flow path FC can be more effectively cleaned.
  • the characteristic value of the gas is not limited to the pressure value of the gas as in this embodiment, and may be a value that causes a difference in state before and after being compressed by the compressor.
  • the characteristic value of the gas may be a value obtained by measuring the temperature of the gas, a value obtained by measuring the flow rate of the gas, or a value obtained by calculating the efficiency of the compressor 50.
  • the internal hydrate antifreeze supply unit 54 of the present embodiment is configured to be branched into a first supply pipe 541 and a second supply pipe 543, but is not limited to such a structure, It is sufficient if the rate antifreeze agent can be supplied to the internal flow path FC of the compressor 50.
  • the internal hydrate antifreezing agent supply unit 54 may have a structure having only one of the first supply pipe 541 and the second supply pipe 543.
  • the hydrate antifreeze agent When determining whether the first standard or the second standard is satisfied, the hydrate antifreeze agent is not supplied based on a single determination result as in the present embodiment, but is repeated multiple times. It is good also as a structure which determines whether one standard or the 2nd standard is satisfy
  • the compressor can be efficiently cleaned by supplying the hydrate antifreeze to the internal flow path.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

This compressor system is provided with a compressor (50) that comprises a casing, a rotation shaft supported inside the casing, and an impeller which compresses air by rotating together with the rotation shaft. The compressor system is provided with a compressed air circulation unit (52) which circulates air compressed by the compressor (50), a hydrate freezing prevention agent supply unit (53) which supplies to the compressed air circulation unit (52) a hydrate freezing prevention agent that prevents the aforementioned gas from forming hydrates, and an inner hydrate freezing prevention agent supply unit (54) which supplies to an inner flow path of the compressor (50) a portion of the aforementioned hydrate freezing prevention agent.

Description

圧縮機システム、これを備える海中生産システム、及び圧縮機の洗浄方法Compressor system, undersea production system equipped with the same, and compressor cleaning method
 本発明は、圧縮機システム、これを備える海中生産システム、及び圧縮機の洗浄方法に関する。 The present invention relates to a compressor system, an undersea production system including the compressor system, and a compressor cleaning method.
 海底資源の採掘する海中生産システムでは、海底から数千mの深さまで掘削した生産井から原油や天然ガス等が混在した生産流体を汲み上げている。海中生産システムでは、汲み上げた生産流体は、スクラバーのようなセパレータによって天然ガス等の気体と原油等の液体とに分離された後に、海中を延びるフローラインを介して海上の船まで送られる。この際、天然ガス等の気体を海上の船まで送るために、海底に設置した圧縮機が用いられている。 In the underwater production system that mines seabed resources, production fluid mixed with crude oil, natural gas, etc. is pumped from a production well drilled to a depth of several thousand meters from the seabed. In the undersea production system, the pumped production fluid is separated into a gas such as natural gas and a liquid such as crude oil by a separator such as a scrubber, and then sent to a ship on the sea via a flow line extending in the sea. At this time, in order to send a gas such as natural gas to a ship on the sea, a compressor installed on the seabed is used.
 このような海底に設置された圧縮機では、連続運転されることにより、天然ガスが流通する内部流路に堆積物がたまってしまう。その結果、内部流路を流通させることができる天然ガスの流量が低下してしまい、圧縮機としての効率が低下してしまう。 In such a compressor installed on the seabed, deposits accumulate in the internal flow path through which natural gas circulates due to continuous operation. As a result, the flow rate of natural gas that can be circulated through the internal flow path is lowered, and the efficiency as a compressor is lowered.
 このような圧縮機に対して、例えば、特許文献1では、セパレータによって分離した液体に含まれる炭化水素であるコンデンセートの一部を圧縮機に供給して洗浄する洗浄方法が開示されている。この圧縮機の洗浄方法では、コンデンセートが堆積物を分解して除去することで、圧縮機の内部流路を洗浄している。 For such a compressor, for example, Patent Document 1 discloses a cleaning method in which a part of condensate, which is a hydrocarbon contained in a liquid separated by a separator, is supplied to the compressor for cleaning. In this compressor cleaning method, condensate decomposes and removes deposits to clean the internal flow path of the compressor.
国際公開第2013/185801号International Publication No. 2013/185801
 しかしながら、上述した洗浄方法では、生産井から採取したコンデンセートを利用している。そのため、この洗浄方法では、生産井から安定して必要な量のコンデンセートが採取できないおそれがある。その結果、圧縮機を安定して洗浄することが難しい。 However, the above-described cleaning method uses condensate collected from the production well. Therefore, with this cleaning method, there is a possibility that a necessary amount of condensate cannot be collected stably from the production well. As a result, it is difficult to stably clean the compressor.
 本発明は、圧縮機を安定して洗浄可能な圧縮機システム、これを備える海中生産システム、及び圧縮機の洗浄方法を提供する。 The present invention provides a compressor system capable of stably cleaning a compressor, an undersea production system including the compressor system, and a compressor cleaning method.
 上記課題を解決するために、本発明は以下の手段を提案している。
 本発明の第一の態様における圧縮機システムは、ケーシングと、このケーシング内に支持された回転軸と、この回転軸とともに回転して気体を圧縮するインペラと、を有する圧縮機と、前記圧縮機で圧縮された気体が流通する圧縮気体流通部と、前記気体のハイドレート化を抑えるハイドレート凍結防止剤を前記圧縮気体流通部に供給するハイドレート凍結防止剤供給部と、前記ハイドレート凍結防止剤供給部で供給する前記ハイドレート凍結防止剤の一部を前記インペラと前記ケーシングとが形成する内部流路に供給する内部ハイドレート凍結防止剤供給部と、を備える。
In order to solve the above problems, the present invention proposes the following means.
A compressor system according to a first aspect of the present invention includes a compressor having a casing, a rotating shaft supported in the casing, and an impeller that rotates together with the rotating shaft to compress gas. A compressed gas flow part through which the gas compressed in the flow passes, a hydrate antifreeze supply part that supplies the compressed gas flow part with a hydrate antifreeze agent that suppresses hydration of the gas, and the hydrate freeze prevention An internal hydrate antifreeze supplying part for supplying a part of the hydrate antifreeze supplied by the agent supplying part to an internal flow path formed by the impeller and the casing.
 このような構成によれば、圧縮機で圧縮した気体のハイドレート化を抑えるためにハイドレート凍結防止剤供給部から圧縮気体流通部に供給されるハイドレート凍結防止剤の一部が内部流路に供給される。そのため、ハイドレート凍結防止剤が気体とともに内部流路内を流れ、内部流路に溜まっている堆積物を除去することができる。内部流路にハイドレート凍結防止剤が直接供給されることで、内部流路に到達する前にハイドレート凍結防止剤が気体によって希釈されることを抑制し、ハイドレート凍結防止剤を効果的に利用して圧縮機内を洗浄することができる。ハイドレート凍結防止剤供給部から圧縮気体流通部に供給されるハイドレート凍結防止剤の一部を利用することで、必要な量のハイドレート凍結防止剤を内部流路に安定して供給することができる。 According to such a configuration, in order to suppress the hydrate formation of the gas compressed by the compressor, a part of the hydrate antifreeze agent supplied from the hydrate antifreeze agent supply unit to the compressed gas circulation unit is an internal flow path. To be supplied. Therefore, the hydrate antifreeze flows along with the gas in the internal flow path, and the deposits accumulated in the internal flow path can be removed. By supplying the hydrate antifreeze directly to the internal flow path, it is possible to prevent the hydrate antifreeze from being diluted by gas before reaching the internal flow path, and effectively use the hydrate antifreeze. It is possible to clean the inside of the compressor. By using a part of the hydrate antifreeze supplied from the hydrate antifreeze supply part to the compressed gas circulation part, the required amount of hydrate antifreeze can be stably supplied to the internal flow path. Can do.
 上記圧縮機システムでは、予め定めた条件を満たした場合に、前記内部ハイドレート凍結防止剤供給部に対して、前記内部流路への前記ハイドレート凍結防止剤の供給を開始させる供給制御を行う制御部を備えていてもよい。 In the compressor system, when a predetermined condition is satisfied, supply control is performed so that the internal hydrate antifreeze supplying unit starts supplying the hydrate antifreeze to the internal flow path. You may provide the control part.
 このような構成によれば、制御部によってハイドレート凍結防止剤の供給制御を行うことで、洗浄を必要とする状態の圧縮機に対して限定的にハイドレート凍結防止剤を供給することができる。したがって、内部ハイドレート凍結防止剤供給部から供給するハイドレート凍結防止剤を効率的に圧縮機の洗浄に利用することができ、ハイドレート凍結防止剤の供給量を抑えることができる。 According to such a configuration, by controlling the supply of the hydrate antifreeze by the control unit, the hydrate antifreeze can be supplied in a limited manner to a compressor that requires cleaning. . Therefore, the hydrate antifreeze supplied from the internal hydrate antifreeze supplier can be efficiently used for cleaning the compressor, and the supply amount of the hydrate antifreeze can be suppressed.
 上記圧縮機システムでは、前記制御部は、前記圧縮機の入口側と、前記圧縮機の出口側との前記気体の特性値の差分が、予め定めた第一基準を満たしているか否かを判定する第一基準判定部と、前記第一基準判定部で前記第一基準を満たしていると判定した場合に、前記内部ハイドレート凍結防止剤供給部に対して、前記内部流路への前記ハイドレート凍結防止剤の供給を開始させる指示を送る供給開始指示部とを有していてもよい。 In the compressor system, the control unit determines whether or not a difference between the characteristic values of the gas between the inlet side of the compressor and the outlet side of the compressor satisfies a predetermined first criterion. And when the first reference determination unit determines that the first reference is satisfied, the hydrate to the internal flow path with respect to the internal hydrate antifreeze supply unit is determined. A supply start instructing unit that sends an instruction to start the supply of the rate freeze inhibitor.
 このような構成によれば、圧縮機の入口側及び出口側での気体の特性値から差分を算出して、第一基準判定部で予め定めた第一基準と比較して判定することで、内部流路が洗浄を必要とする状態となっているか否かを容易に推定することができる。判定結果に基づいて供給開始指示部が、内部流路へのハイドレート凍結防止剤の供給を開始させることで、内部流路の洗浄を実施することができる。したがって、圧縮機が洗浄を必要とする状態であるか否かを高い精度で判定することができ、ハイドレート凍結防止剤をより限定的に供給することができる。これにより、洗浄を必要とする内部流路に対して、内部ハイドレート凍結防止剤供給部から供給されるハイドレート凍結防止剤をより効率的に圧縮機の洗浄に利用することができ、ハイドレート凍結防止剤の供給量をより抑えることができる。 According to such a configuration, by calculating the difference from the characteristic value of the gas on the inlet side and the outlet side of the compressor, and determining by comparing with the first reference predetermined by the first reference determination unit, It can be easily estimated whether or not the internal flow path is in a state that requires cleaning. The supply start instructing unit starts supplying the hydrate antifreeze to the internal flow path based on the determination result, whereby the internal flow path can be cleaned. Therefore, it can be determined with high accuracy whether or not the compressor is in a state requiring cleaning, and the hydrate antifreeze can be supplied more limitedly. As a result, the hydrate antifreeze supplied from the internal hydrate antifreeze supply unit can be used more efficiently for cleaning the compressor with respect to the internal flow path that requires cleaning. The supply amount of the antifreezing agent can be further suppressed.
 上記圧縮機システムでは、前記ハイドレート凍結防止剤を加熱する加熱部を備え、前記内部ハイドレート凍結防止剤供給部は、前記加熱部によって加熱された前記ハイドレート凍結防止剤を前記内部流路に供給してもよい。 The compressor system includes a heating unit that heats the hydrate antifreeze agent, and the internal hydrate antifreeze supply unit supplies the hydrate antifreeze agent heated by the heating unit to the internal flow path. You may supply.
 このような構成によれば、加熱部が設けられていることで、高温のハイドレート凍結防止剤を内部流路に供給することができる。加熱されて高温となることでハイドレート凍結防止剤による堆積物への溶解度を向上させることができる。したがって、内部流路にたまった堆積物の溶解速度を向上させて、効果的に内部流路を洗浄することができる。 According to such a configuration, the high temperature hydrate antifreezing agent can be supplied to the internal flow path by providing the heating unit. By being heated to a high temperature, the solubility of the hydrate antifreeze in the deposit can be improved. Therefore, the dissolution rate of the deposit accumulated in the internal channel can be improved, and the internal channel can be effectively cleaned.
 上記圧縮機システムでは、前記ハイドレート凍結防止剤を加熱する加熱部を備え、前記制御部は、前記ハイドレート凍結防止剤を前記内部流路への供給を開放させた後に、前記圧縮機の入口側と、前記圧縮機の出口側との前記気体の特性値の差分が、予め定めた第二基準を満たしているか否かを判定する第二基準判定部と、前記第二基準判定部で前記第二基準を満たしていると判定した場合に、前記内部ハイドレート凍結防止剤供給部に対して、前記加熱部によって加熱された前記ハイドレート凍結防止剤を前記内部流路に供給させるよう指示を送る加熱供給指示部とを有していてもよい。 The compressor system includes a heating unit that heats the hydrate antifreeze agent, and the control unit opens the inlet of the compressor after opening the supply of the hydrate antifreeze agent to the internal flow path. A second reference determination unit that determines whether or not a difference between the characteristic value of the gas on the outlet side and the outlet side of the compressor satisfies a predetermined second reference, and the second reference determination unit When it is determined that the second standard is satisfied, the internal hydrate antifreeze supply unit is instructed to supply the internal flow path with the hydrate antifreeze heated by the heating unit. You may have the heating supply instruction | indication part to send.
 このような構成によれば、圧縮機の入口側及び出口側での気体の特性値から差分を算出して、第二基準判定部で第二基準と比較して判定することで、再び内部流路が洗浄を必要とする状態となっているか否かを容易に推定することができる。そのため、例えば、第一基準を用いて判定した場合とは異なる内部流路の状態を容易に推定することができる。判定結果に基づいて加熱供給指示部が、加熱部によって加熱されたハイドレート凍結防止剤を内部流路に供給させるよう指示を送ることで、加熱されて高温となったハイドレート凍結防止剤で内部流路のより効果的に洗浄を実施することができる。したがって、必要に応じて強力な洗浄を圧縮機に対して実施することができる。これにより、内部流路が強力な洗浄を必要とする状態である場合に、加熱したハイドレート凍結防止剤を効率よく供給して、より効率的に圧縮機の洗浄することができる。 According to such a configuration, a difference is calculated from the characteristic values of the gas on the inlet side and the outlet side of the compressor, and the internal flow is again determined by comparing the second reference determination unit with the second reference. It can be easily estimated whether or not the road is in a state requiring cleaning. Therefore, for example, it is possible to easily estimate the state of the internal flow path that is different from the case of determination using the first reference. Based on the determination result, the heating supply instruction unit sends an instruction to supply the hydrate antifreezing agent heated by the heating unit to the internal flow path, so that the hydrate antifreezing agent heated to a high temperature is The flow path can be more effectively cleaned. Therefore, powerful cleaning can be performed on the compressor as needed. As a result, when the internal flow path is in a state that requires strong cleaning, the heated hydrate antifreeze can be efficiently supplied and the compressor can be cleaned more efficiently.
 本発明の第二の態様における海中生産システムは、前記圧縮機システムと、生産井から汲み上げた生産流体を前記気体と液体とに分離させ、前記圧縮機に供給するセパレータとを備える。 The subsea production system according to the second aspect of the present invention includes the compressor system and a separator that separates the production fluid pumped from the production well into the gas and the liquid and supplies the gas and liquid to the compressor.
 このような構成によれば、海底等のメンテナンスし難い位置に設置された圧縮機であっても、安定して効率的に洗浄することができる。そのため、堆積物による詰まり抑制でき、圧縮機によって安定して気体に送ることができる。 According to such a configuration, even a compressor installed at a position where maintenance is difficult, such as the seabed, can be stably and efficiently washed. Therefore, clogging due to the deposit can be suppressed, and the gas can be stably sent to the gas by the compressor.
 本発明の第三の態様における圧縮機の洗浄方法は、ケーシングと、このケーシング内に支持された回転軸と、この回転軸とともに回転して気体を圧縮するインペラと、を有する圧縮機を洗浄する圧縮機洗浄方法であって、前記圧縮機の入口側と、前記圧縮機の出口側との前記気体の特性値の差分が、予め定めた第一基準を満たしているか否かを判定する第一基準判定工程と、前記第一基準判定工程で前記第一基準を満たしていると判定した場合に、前記インペラと前記ケーシングとが形成する内部流路に対して、前記圧縮機で圧縮された後の前記気体に供給される前記気体のハイドレート化を抑えるハイドレート凍結防止剤の供給を開始する供給開始工程と、を含む。 A compressor cleaning method according to a third aspect of the present invention cleans a compressor having a casing, a rotating shaft supported in the casing, and an impeller that rotates together with the rotating shaft to compress gas. In the compressor cleaning method, a first determination is made as to whether or not a difference in the characteristic value of the gas between the inlet side of the compressor and the outlet side of the compressor satisfies a predetermined first criterion. When it is determined that the first reference is satisfied in the reference determination step and the first reference determination step, the internal flow path formed by the impeller and the casing is compressed by the compressor. A supply start step of starting supply of a hydrate antifreeze agent that suppresses hydration of the gas supplied to the gas.
 このような構成によれば、圧縮機の入口側及び出口側での気体の特性値から差分を算出して、第一基準判定工程で第一基準と比較して判定することで、内部流路が洗浄を必要とする状態となっているか否かを容易に推定することができる。判定結果に基づいて供給開始工程で内部流路にハイドレート凍結防止剤の供給を開始させることで、内部流路の洗浄を実施することができる。したがって、圧縮機が洗浄を必要とする状態であるか否かを高い精度で判定することができ、ハイドレート凍結防止剤をより限定的に供給することができる。これにより、洗浄を必要とする内部流路に対して、内部ハイドレート凍結防止剤供給部から供給されるハイドレート凍結防止剤をより効率的に圧縮機の洗浄に利用することができ、ハイドレート凍結防止剤の供給量をより抑えることができる。 According to such a configuration, a difference is calculated from the gas characteristic values on the inlet side and the outlet side of the compressor, and the internal flow path is determined by comparing with the first reference in the first reference determining step. It can be easily estimated whether or not is in a state that requires cleaning. The internal flow path can be cleaned by starting the supply of the hydrate antifreeze to the internal flow path in the supply start step based on the determination result. Therefore, it can be determined with high accuracy whether or not the compressor is in a state requiring cleaning, and the hydrate antifreeze can be supplied more limitedly. As a result, the hydrate antifreeze supplied from the internal hydrate antifreeze supply unit can be used more efficiently for cleaning the compressor with respect to the internal flow path that requires cleaning. The supply amount of the antifreezing agent can be further suppressed.
 上記圧縮機の洗浄方法では、前記ハイドレート凍結防止剤の前記内部流路への供給を開放させた後に、前記圧縮機の入口側と、前記圧縮機の出口側との前記気体の特性値の差分が、予め定めた第二基準を満たしているか否かを判定する第二基準判定工程と、前記第二基準判定工程で前記第二基準を満たしていると判定した場合に、加熱された前記ハイドレート凍結防止剤を前記内部流路に供給する加熱供給工程とを含んでいてもよい。 In the compressor cleaning method, after releasing the supply of the hydrate antifreeze to the internal flow path, the gas characteristic values of the inlet side of the compressor and the outlet side of the compressor are The second reference determination step for determining whether or not the difference satisfies a predetermined second criterion, and when it is determined that the second criterion is satisfied in the second reference determination step, the heated A heating and supplying step of supplying a hydrate antifreeze to the internal flow path.
 このような構成によれば、圧縮機の入口側及び出口側での気体の特性値から差分を算出して、第二基準判定工程で第二基準と比較して判定することで、再び内部流路が洗浄を必要とする状態となっているか否かを容易に推定することができる。例えば、第一基準を用いて判定した場合とは異なる内部流路の状態であるか(例えば、内部流路に対してより強力な洗浄が必要な状態か否か)を容易に推定することができる。判定結果に基づいて加熱供給工程で、加熱されて高温となったハイドレート凍結防止剤をハイドレート凍結防止剤噴射部から内部流路へ供給させることで、内部流路のより効果的に洗浄を実施することができる。したがって、必要に応じて強力な洗浄を圧縮機に対して実施することができる。これにより、内部流路が強力な洗浄を必要とする状態である場合に、加熱したハイドレート凍結防止剤を効率よく供給して、より効率的に圧縮機の洗浄することができる。 According to such a configuration, a difference is calculated from the gas characteristic values on the inlet side and the outlet side of the compressor, and the internal flow is again determined by comparing with the second reference in the second reference determining step. It can be easily estimated whether or not the road is in a state requiring cleaning. For example, it is possible to easily estimate whether the state of the internal flow path is different from that determined using the first reference (for example, whether the internal flow path needs stronger cleaning). it can. Based on the determination result, the hydrate antifreeze that has been heated to a high temperature is supplied from the hydrate antifreeze injection part to the internal flow path in the heating supply process, thereby cleaning the internal flow path more effectively. Can be implemented. Therefore, powerful cleaning can be performed on the compressor as needed. As a result, when the internal flow path is in a state that requires strong cleaning, the heated hydrate antifreeze can be efficiently supplied and the compressor can be cleaned more efficiently.
 本発明によれば、ハイドレート凍結防止剤を内部流路に供給することで、圧縮機を効率的に洗浄することができる。 According to the present invention, the compressor can be efficiently cleaned by supplying the hydrate antifreeze to the internal flow path.
本発明の実施形態における海中生産システムを説明する模式図である。It is a mimetic diagram explaining an undersea production system in an embodiment of the present invention. 本発明の実施形態におけるサブシーモジュールを説明する系統図である。It is a distribution diagram explaining a subsea module in an embodiment of the present invention. 本発明の実施形態における圧縮機の内部流路を説明する要部断面図である。It is principal part sectional drawing explaining the internal flow path of the compressor in embodiment of this invention. 本発明の実施形態における圧縮機の洗浄方法を説明する工程図である。It is process drawing explaining the washing | cleaning method of the compressor in embodiment of this invention.
 以下、本発明に係る実施形態について図1から図4を参照して説明する。
 本発明の実施形態に係る海中生産システム1は、海洋油ガス田開発方式の一つであるSubsea Production Systemである。海中生産システム1は、図1に示すように、海底数百から数千mに存在する油ガス田Fから採掘された原油Oや天然ガスG等の混合する生産流体PFを採取する生産井Wと、生産井Wで採取した生産流体PFを集めて分岐させるマニホールドMと、マニホールドMで分岐した生産流体PFを搬送する配管であるフローラインFLと、フローラインFLによって搬送された生産流体PFを液体と気体とに分離して海上に送り出すサブシーモジュールSMとを備えている。海中生産システム1は、サブシーモジュールSMから海上に原油Oや天然ガスGを搬送する配管であるライザーRと、サブシーモジュールSM等に電力を供給するケーブルであるアンビリカルラインALと、海上に係留してライザーRやアンビリカルラインALが接続され、原油Oや天然ガスGを貯蔵する船Sとを備えている。
Hereinafter, embodiments according to the present invention will be described with reference to FIGS. 1 to 4.
The undersea production system 1 according to the embodiment of the present invention is a Subsea Production System that is one of the offshore oil and gas field development methods. As shown in FIG. 1, the undersea production system 1 is a production well W that collects a production fluid PF that mixes crude oil O, natural gas G, and the like mined from an oil and gas field F existing at several hundred to several thousand meters in the seabed. A manifold M that collects and branches the production fluid PF collected at the production well W, a flow line FL that is a pipe that conveys the production fluid PF branched by the manifold M, and a production fluid PF that is conveyed by the flow line FL. A subsea module SM that separates liquid and gas and sends them to the sea is provided. The undersea production system 1 is moored at sea, a riser R that is a pipe that carries crude oil O and natural gas G from the subsea module SM to the sea, an umbilical line AL that is a cable that supplies power to the subsea module SM, etc. A riser R and an umbilical line AL are connected to each other, and a ship S for storing crude oil O and natural gas G is provided.
 マニホールドMは、海底の油ガス田Fの生産井W付近に設置されている。マニホールドMは、採掘された生産流体PFを集め、分岐させることで複数のフローラインFLに搬送する装置である。 Manifold M is installed in the vicinity of production well W of submarine oil and gas field F. The manifold M is a device that transports the mined production fluid PF to a plurality of flow lines FL by collecting and branching.
 フローラインFLは、マニホールドMからサブシーモジュールSMまで生産流体PFを油ガス田Fの圧力エネルギーによって圧送するパイプラインである。 The flow line FL is a pipeline that pumps the production fluid PF from the manifold M to the subsea module SM by the pressure energy of the oil and gas field F.
 ライザーRは、海底のサブシーモジュールSMから海上の船Sまで延びている。本実施形態のライザーRは、サブシーモジュールSMから送られる原油Oを海上の船Sに配置された不図示の貯蔵タンクまで搬送するオイルパイプラインORと、サブシーモジュールSMから送られる天然ガスGを貯蔵タンクまで搬送するガスパイプラインGRとが別々に設けられている。ライザーRは、海底で天然ガスGがハイドレート化によって凍結しないように、天然ガスGを供給するガスパイプラインGRに船Sからハイドレート凍結防止剤を供給するハイドレート凍結防止剤用パイプラインARも設けられている。 The riser R extends from the subsea module SM on the sea floor to the ship S on the sea. The riser R of the present embodiment includes an oil pipeline OR that conveys crude oil O sent from the subsea module SM to a storage tank (not shown) disposed on the marine vessel S, and a natural gas G sent from the subsea module SM. Is separately provided with a gas pipeline GR for conveying the gas to the storage tank. The riser R also has a pipeline AR for hydrate antifreeze that supplies hydrate antifreeze from the ship S to the gas pipeline GR that supplies natural gas G so that the natural gas G does not freeze due to hydrate formation on the sea floor. Is provided.
 アンビリカルラインALは、サブシーモジュールSMを制御するための電力ケーブルや油圧ケーブルや信号ケーブルを有する複合ケーブルである。アンビリカルラインALは、船S上の図示しない発電機から電力や信号をサブシーモジュールSMやマニホールドMに送っている。 The umbilical line AL is a composite cable having a power cable, a hydraulic cable, and a signal cable for controlling the subsea module SM. The umbilical line AL sends power and signals from a generator (not shown) on the ship S to the subsea module SM and the manifold M.
 サブシーモジュールSMは、フローラインFLを介して供給される生産流体PFを気体と液体とに分離して、気体と液体とをそれぞれ海上に圧送する。本実施形態のサブシーモジュールSMは、図2に示すように、生産井Wから汲み上げた生産流体PFを冷却するメイン熱交換器2と、メイン熱交換器2で冷却された生産流体PFを気体と液体とに分離させるセパレータ3と、セパレータ3で分離された液体をライザーRに送るポンプシステム4と、セパレータ3で分離された気体をライザーRに送る圧縮機システム5と、を備えている。 The subsea module SM separates the production fluid PF supplied via the flow line FL into a gas and a liquid, and pumps the gas and the liquid to the sea respectively. As shown in FIG. 2, the subsea module SM of the present embodiment gasses the main heat exchanger 2 that cools the production fluid PF pumped up from the production well W and the production fluid PF that is cooled by the main heat exchanger 2. And a separator 3 for separating the liquid into the liquid, a pump system 4 for sending the liquid separated by the separator 3 to the riser R, and a compressor system 5 for sending the gas separated by the separator 3 to the riser R.
 メイン熱交換器2は、生産井Wから汲み上げられてフローラインFLを送られてきた高温の生産流体PFをセパレータ3で使用可能な温度まで冷却する。本実施形態のメイン熱交換器2は、海底の低温の海水と熱交換することで生産流体PFを冷却する。 The main heat exchanger 2 cools the high-temperature production fluid PF pumped from the production well W and sent through the flow line FL to a temperature that can be used by the separator 3. The main heat exchanger 2 of the present embodiment cools the production fluid PF by exchanging heat with low-temperature seawater on the seabed.
 セパレータ3は、生産流体PFを気体である天然ガスGと、液体である原油Oとに分離させる。本実施形態のセパレータ3は、スクラバーである。セパレータ3は、生産流体PFから天然ガスGとコンデンセートを含む原油Oとを分離している。セパレータ3は、分離させた原油Oをポンプシステム4に送る。セパレータ3は、分離させた天然ガスGを圧縮機システム5に送る。 The separator 3 separates the production fluid PF into natural gas G that is a gas and crude oil O that is a liquid. The separator 3 of this embodiment is a scrubber. The separator 3 separates the natural gas G and the crude oil O containing condensate from the production fluid PF. The separator 3 sends the separated crude oil O to the pump system 4. The separator 3 sends the separated natural gas G to the compressor system 5.
 ポンプシステム4は、セパレータ3から送られてきた原油Oを圧縮してオイルパイプラインORに送る。ポンプシステム4は、図2に示すように、原油Oを圧縮するポンプ41と、セパレータ3からポンプ41まで原油Oを送る液体流通部42と、ポンプ41で圧縮された原油Oが流通する圧縮液体流通部43と、を備える。 The pump system 4 compresses the crude oil O sent from the separator 3 and sends it to the oil pipeline OR. As shown in FIG. 2, the pump system 4 includes a pump 41 that compresses crude oil O, a liquid circulation part 42 that sends the crude oil O from the separator 3 to the pump 41, and a compressed liquid in which crude oil O compressed by the pump 41 circulates. A distribution unit 43.
 ポンプ41は、送られてきた原油Oを圧縮して送り出す。
 液体流通部42は、セパレータ3からポンプ41まで原油Oを供給する。具体的には、本実施形態の液体流通部42は、セパレータ3からポンプ41まで接続される配管である。液体流通部42は、内部を原油Oが流通する。
 圧縮液体流通部43は、ポンプ41で圧縮した原油OをオイルパイプラインORまで送る。具体的には、本実施形態の圧縮液体流通部43は、ポンプ41からオイルパイプラインORまで接続される配管である。圧縮液体流通部43は、内部を圧縮された原油Oが流通する。
The pump 41 compresses the sent crude oil O and sends it out.
The liquid circulation unit 42 supplies the crude oil O from the separator 3 to the pump 41. Specifically, the liquid circulation part 42 of the present embodiment is a pipe connected from the separator 3 to the pump 41. In the liquid circulation part 42, crude oil O circulates inside.
The compressed liquid circulation unit 43 sends the crude oil O compressed by the pump 41 to the oil pipeline OR. Specifically, the compressed liquid circulation part 43 of this embodiment is a pipe connected from the pump 41 to the oil pipeline OR. The compressed liquid circulation part 43 circulates the crude oil O compressed inside.
 圧縮機システム5は、セパレータ3から送られてきた天然ガスGを圧縮してガスパイプラインGRに送る。圧縮機システム5は、図2に示すように、天然ガスGを圧縮する圧縮機50と、セパレータ3から圧縮機50まで天然ガスGを送る気体流通部51と、圧縮機50で圧縮された天然ガスGが流通する圧縮気体流通部52と、天然ガスGのハイドレート化を抑えるハイドレート凍結防止剤を圧縮気体流通部52に供給するハイドレート凍結防止剤供給部53と、ハイドレート凍結防止剤供給部53で供給するハイドレート凍結防止剤の一部を圧縮機50に供給する内部ハイドレート凍結防止剤供給部54と、ハイドレート凍結防止剤を加熱する加熱部55と、内部ハイドレート凍結防止剤供給部54に対してハイドレート凍結防止剤の供給を開始させる供給制御を行う制御部60とを備える。 Compressor system 5 compresses natural gas G sent from separator 3 and sends it to gas pipeline GR. As shown in FIG. 2, the compressor system 5 includes a compressor 50 that compresses the natural gas G, a gas flow part 51 that sends the natural gas G from the separator 3 to the compressor 50, and the natural gas compressed by the compressor 50. Compressed gas circulation section 52 through which gas G circulates, hydrate antifreeze supply section 53 that supplies hydrate antifreeze agent that suppresses hydration of natural gas G to compressed gas circulation section 52, and hydrate antifreeze agent An internal hydrate antifreeze supply unit 54 that supplies a part of the hydrate antifreeze supplied by the supply unit 53 to the compressor 50, a heating unit 55 that heats the hydrate antifreeze, and an internal hydrate antifreeze And a control unit 60 that performs supply control for starting supply of the hydrate antifreeze agent to the agent supply unit 54.
 圧縮機50は、複数のインペラ503を備えた多段式の遠心圧縮機である。本実施形態の圧縮機50は、図3に示すように、気体を上流側から下流側に流す内部流路FCが形成されたケーシング501と、このケーシング501内に支持されて軸線SL回りに回転させられる回転軸502と、回転軸502とともに回転して気体を圧縮するインペラ503とを備えている。 The compressor 50 is a multistage centrifugal compressor including a plurality of impellers 503. As shown in FIG. 3, the compressor 50 of the present embodiment includes a casing 501 in which an internal flow path FC for flowing gas from the upstream side to the downstream side is formed, and is supported around the casing 501 and rotates about the axis SL. A rotating shaft 502 to be rotated, and an impeller 503 that rotates together with the rotating shaft 502 to compress gas.
 ケーシング501は、静止体であり、筒状をなしている。ケーシング501は、中心を貫くように回転軸502が配置されている。ケーシング501には、不図示の軸受装置が設けられている。軸受装置は、回転軸502を回転可能に支持している。 The casing 501 is a stationary body and has a cylindrical shape. The casing 501 has a rotation shaft 502 disposed so as to penetrate the center. The casing 501 is provided with a bearing device (not shown). The bearing device supports the rotating shaft 502 to be rotatable.
 回転軸502は、回転体であり、柱状をなして軸線SLの延びる軸線SL方向に延在している。
 インペラ503は、回転体であり、回転軸502の軸線SL方向に間隔を開けて複数設けられている。各インペラ503は、回転による遠心力を利用して天然ガスG(気体)を圧縮する。インペラ503は、ディスク503aと、ブレード503bと、カバー503cとを備えている。インペラ503は、いわゆるクローズ型のインペラ503である。
The rotating shaft 502 is a rotating body, has a columnar shape, and extends in the axis SL direction in which the axis SL extends.
The impeller 503 is a rotating body, and a plurality of impellers 503 are provided at intervals in the direction of the axis SL of the rotating shaft 502. Each impeller 503 compresses the natural gas G (gas) using centrifugal force due to rotation. The impeller 503 includes a disk 503a, a blade 503b, and a cover 503c. The impeller 503 is a so-called closed impeller 503.
 ディスク503aは、それぞれ回転軸502における軸線SL方向の一方側である下流側に向かって、回転軸502の径方向外側に漸次拡径する円盤状に形成されている。
 ブレード503bは、ディスク503aから軸線SL方向における下流側とは反対側である軸線SL方向の上流側に突出するように形成されている。ブレード503bは、軸線SLの周方向に所定間隔をあけてディスク503aに複数形成されている。
 カバー503cは、軸線SL方向における上流側から複数のブレード503bを覆う。
カバー503cは、ディスク503aに対向する円盤状に形成されている。
The disks 503a are each formed in a disk shape that gradually increases in diameter radially outward of the rotating shaft 502 toward the downstream side that is one side of the rotating shaft 502 in the axis SL direction.
The blade 503b is formed so as to protrude from the disk 503a to the upstream side in the axis SL direction, which is the opposite side to the downstream side in the axis SL direction. A plurality of blades 503b are formed on the disk 503a at predetermined intervals in the circumferential direction of the axis SL.
The cover 503c covers the plurality of blades 503b from the upstream side in the axis SL direction.
The cover 503c is formed in a disk shape facing the disk 503a.
 内部流路FCは、天然ガスGが段階的に圧縮されるように各インペラ503間を繋ぐようにインペラ503とケーシング501とによって形成されている。内部流路FCは、インペラ503によって画成される圧縮流路FC1と、ケーシング501内に形成され、天然ガスGの流れを調整するケーシング流路FC2とを有する。 The internal flow path FC is formed by the impeller 503 and the casing 501 so as to connect the impellers 503 so that the natural gas G is compressed stepwise. The internal flow path FC includes a compression flow path FC1 defined by the impeller 503, and a casing flow path FC2 that is formed in the casing 501 and adjusts the flow of the natural gas G.
 圧縮流路FC1は、ディスク503aの軸線SL方向の上流側を向く面と、カバー503cの軸線SL方向の下流側を向く面と、ブレード503bの周方向に対向する面とによって画成されている。
 ケーシング流路FC2は、天然ガスGをインペラ503によって画成された圧縮流路FC1に流すために、天然ガスGの流れを調整する。
The compression flow path FC1 is defined by a surface facing the upstream side in the axis SL direction of the disk 503a, a surface facing the downstream side in the axis SL direction of the cover 503c, and a surface facing the circumferential direction of the blade 503b. .
The casing flow path FC2 adjusts the flow of the natural gas G in order to flow the natural gas G to the compression flow path FC1 defined by the impeller 503.
 気体流通部51は、セパレータ3から圧縮機50まで天然ガスGを供給する。具体的には、本実施形態の気体流通部51は、図2に示すように、セパレータ3から圧縮機50まで接続される配管である。気体流通部51は、内部を天然ガスGが流通する。本実施形態の気体流通部51は、圧縮機50の入口側に天然ガスGの特性値を測定する入口側特性値測定部511を有している。 The gas circulation part 51 supplies the natural gas G from the separator 3 to the compressor 50. Specifically, the gas circulation part 51 of this embodiment is piping connected from the separator 3 to the compressor 50 as shown in FIG. In the gas circulation part 51, the natural gas G circulates inside. The gas flow unit 51 of the present embodiment has an inlet side characteristic value measuring unit 511 that measures the characteristic value of the natural gas G on the inlet side of the compressor 50.
 入口側特性値測定部511は、圧縮機50に流入する天然ガスGの特性値を測定する。入口側特性値測定部511は、気体流通部51の圧縮機50の入口付近に設けられている。本実施形態の入口側特性値測定部511は、特性値として圧力値を測定する圧力センサーである。入口側特性値測定部511は、測定した天然ガスGの圧力値を制御部60に送信する。 The inlet side characteristic value measuring unit 511 measures the characteristic value of the natural gas G flowing into the compressor 50. The inlet side characteristic value measuring unit 511 is provided in the vicinity of the inlet of the compressor 50 of the gas circulation unit 51. The inlet side characteristic value measuring unit 511 of the present embodiment is a pressure sensor that measures a pressure value as a characteristic value. The inlet side characteristic value measuring unit 511 transmits the measured pressure value of the natural gas G to the control unit 60.
 圧縮気体流通部52は、圧縮機50で圧縮した天然ガスGをライザーRまで送る。具体的には、本実施形態の圧縮気体流通部52は、圧縮機50からガスパイプラインGRまで接続される配管である。圧縮気体流通部52は、内部を圧縮された天然ガスGが流通する。本実施形態の圧縮気体流通部52は、圧縮機50の出口側に気体の天然ガスGの特性値を測定する出口側特性値測定部521を有している。 The compressed gas circulation part 52 sends the natural gas G compressed by the compressor 50 to the riser R. Specifically, the compressed gas circulation part 52 of this embodiment is piping connected from the compressor 50 to the gas pipeline GR. The compressed gas circulation part 52 circulates the natural gas G compressed inside. The compressed gas circulation unit 52 of the present embodiment has an outlet side characteristic value measuring unit 521 that measures a characteristic value of the natural gas G that is a gas on the outlet side of the compressor 50.
 出口側特性値測定部521は、圧縮機50から流出する天然ガスGの特性値を測定する。出口側特性値測定部521は、圧縮気体流通部52の圧縮機50の出口付近に設けられている。本実施形態の出口側特性値測定部521は、入口側特性値測定部511と同様に、特性値として圧力値を測定する圧力センサーである。出口側特性値測定部521は、測定した天然ガスGの圧力値を制御部60に送信する。 The outlet side characteristic value measuring unit 521 measures the characteristic value of the natural gas G flowing out from the compressor 50. The outlet side characteristic value measuring unit 521 is provided in the vicinity of the outlet of the compressor 50 of the compressed gas circulation unit 52. The outlet side characteristic value measuring unit 521 of the present embodiment is a pressure sensor that measures a pressure value as a characteristic value, like the inlet side characteristic value measuring unit 511. The outlet side characteristic value measuring unit 521 transmits the measured pressure value of the natural gas G to the control unit 60.
 ハイドレート凍結防止剤供給部53は、ハイドレート凍結防止剤用パイプラインARを介して海上の船Sから供給されるハイドレート凍結防止剤を、圧縮気体流通部52まで流通させる。本実施形態のハイドレート凍結防止剤供給部53は、ハイドレート凍結防止剤用パイプラインARから圧縮気体流通部52に接続される配管である。ハイドレート凍結防止剤供給部53は、内部をハイドレート凍結防止剤が流通する。ハイドレート凍結防止剤供給部53は、圧縮気体流通部52の出口側特性値測定部521が設けられている位置よりも下流側に接続されている。
 なお、本実施形態のハイドレート凍結防止剤としては、親油性や親水性を有している流体が用いられることが好ましい。ハイドレート凍結防止剤としては、例えば、天然ガスGのハイドレート化を防止してハイドレート化を抑制するために使用されるモノエチレングリコールを用いることが特に好ましい。
The hydrate antifreeze supply unit 53 distributes the hydrate antifreeze supplied from the marine vessel S through the hydrate antifreeze pipeline AR to the compressed gas circulation unit 52. The hydrate antifreeze supply unit 53 of this embodiment is a pipe connected to the compressed gas circulation unit 52 from the hydrate antifreeze pipeline AR. In the hydrate antifreeze supply unit 53, the hydrate antifreeze flows through the inside. The hydrate antifreeze supply unit 53 is connected to the downstream side of the position where the outlet side characteristic value measurement unit 521 of the compressed gas circulation unit 52 is provided.
In addition, as the hydrate antifreeze of this embodiment, it is preferable to use a fluid having lipophilicity or hydrophilicity. As the hydrate antifreeze, for example, it is particularly preferable to use monoethylene glycol which is used for preventing the hydrate formation of the natural gas G and suppressing the hydrate formation.
 内部ハイドレート凍結防止剤供給部54は、ハイドレート凍結防止剤供給部53を流れるハイドレート凍結防止剤の一部を圧縮機50の内部流路FCに供給する。具体的には、本実施形態の内部ハイドレート凍結防止剤供給部54は、第一供給管541と、第一供給管541を流れるハイドレート凍結防止剤の流れを調整する第一供給弁542と、第一供給管541から分岐する第二供給管543と、第二供給管543を流れるハイドレート凍結防止剤の流れを調整する第二供給弁544とを有する。 The internal hydrate antifreeze supplying unit 54 supplies a part of the hydrate antifreeze flowing through the hydrate antifreeze supplying unit 53 to the internal flow path FC of the compressor 50. Specifically, the internal hydrate antifreeze supply unit 54 of the present embodiment includes a first supply pipe 541 and a first supply valve 542 that adjusts the flow of the hydrate antifreeze flowing through the first supply pipe 541. The second supply pipe 543 branched from the first supply pipe 541 and the second supply valve 544 for adjusting the flow of the hydrate antifreeze flowing through the second supply pipe 543 are provided.
 第一供給管541は、ハイドレート凍結防止剤供給部53から分岐して圧縮機50のケーシング501に接続される。具体的には、本実施形態の第一供給管541は、圧縮機50のケーシング501内を挿通するよう接続されている。第一供給管541は、ケーシング501内で分岐している。第一供給管541は、ハイドレート凍結防止剤をケーシング流路FC2に向かって噴射するハイドレート凍結防止剤噴射部541aが先端部分にそれぞれ設けられている。 The first supply pipe 541 branches from the hydrate antifreeze supply unit 53 and is connected to the casing 501 of the compressor 50. Specifically, the first supply pipe 541 of the present embodiment is connected so as to pass through the casing 501 of the compressor 50. The first supply pipe 541 is branched in the casing 501. The first supply pipe 541 is provided with a hydrate antifreeze injection portion 541a for injecting a hydrate antifreeze toward the casing flow path FC2 at the tip portion.
 第一供給弁542は、第一供給管541の内部へのハイドレート凍結防止剤の供給を調整する。具体的には、本実施形態の第一供給弁542は、閉塞されることで第一供給管541内へのハイドレート凍結防止剤の供給を停止させ、開放されることで第一供給管541内へのハイドレート凍結防止剤の供給を開始する。第一供給弁542は、制御部60によって開放及び閉塞の動作が制御される電磁弁である。 The first supply valve 542 adjusts the supply of the hydrate antifreeze to the inside of the first supply pipe 541. Specifically, the first supply valve 542 of the present embodiment is closed to stop the supply of the hydrate antifreeze into the first supply pipe 541 and is opened to open the first supply pipe 541. The supply of hydrate antifreeze to the inside is started. The first supply valve 542 is an electromagnetic valve whose opening and closing operations are controlled by the control unit 60.
 第二供給管543は、第一供給管541から分岐し、圧縮機50にハイドレート凍結防止剤を供給する。本実施形態の第二供給管543は、第一供給弁542が設けられている位置よりも上流側で第一供給管541から分岐し、第一供給弁542が設けられている位置よりも下流側で再び第一供給管541に接続されている。 The second supply pipe 543 branches from the first supply pipe 541 and supplies a hydrate antifreeze to the compressor 50. The second supply pipe 543 of this embodiment branches from the first supply pipe 541 on the upstream side of the position where the first supply valve 542 is provided, and is downstream of the position where the first supply valve 542 is provided. It is again connected to the first supply pipe 541 on the side.
 第二供給弁544は、第二供給管543の内部へのハイドレート凍結防止剤の供給を調整する。具体的には、本実施形態の第二供給弁544は、閉塞されることで第二供給管543内へのハイドレート凍結防止剤の供給を停止させ、開放されることで第二供給管543内へのハイドレート凍結防止剤の供給を開始する。第二供給弁544は、制御部60によって開放及び閉塞の動作が制御される電磁弁である。 The second supply valve 544 adjusts the supply of the hydrate antifreeze to the inside of the second supply pipe 543. Specifically, the second supply valve 544 of the present embodiment is closed to stop the supply of the hydrate antifreeze into the second supply pipe 543, and is opened to release the second supply pipe 543. The supply of hydrate antifreeze to the inside is started. The second supply valve 544 is an electromagnetic valve whose opening and closing operations are controlled by the control unit 60.
 加熱部55は、内部ハイドレート凍結防止剤供給部54に設けられてハイドレート凍結防止剤を加熱する。本実施形態の加熱部55は、第二供給管543の第二供給弁544よりも下流側で、第二供給管543と液体流通部42とが交差する位置に設けられている。加熱部55は、ポンプシステム4を流れる原油Oの熱を利用することで、ハイドレート凍結防止剤を加熱する。具体的には、加熱部55は、例えば、20℃から50℃程度の雰囲気温度で第二供給管543内を流れているハイドレート凍結防止剤であるモノエチレングリコールを110℃以上の高温となるまで加熱する。 The heating unit 55 is provided in the internal hydrate antifreeze supplying unit 54 and heats the hydrate antifreeze. The heating part 55 of the present embodiment is provided at a position where the second supply pipe 543 and the liquid circulation part 42 intersect on the downstream side of the second supply valve 544 of the second supply pipe 543. The heating unit 55 uses the heat of the crude oil O flowing through the pump system 4 to heat the hydrate antifreeze. Specifically, the heating unit 55 has a high temperature of 110 ° C. or higher, for example, monoethylene glycol, which is a hydrate antifreeze flowing in the second supply pipe 543 at an ambient temperature of about 20 ° C. to 50 ° C. Until heated.
 制御部60は、予め定めた条件を満たした場合に、内部ハイドレート凍結防止剤供給部54に対して、圧縮機50の内部流路FCへのハイドレート凍結防止剤の供給を開始させる供給制御を行う。本実施形態の制御部60は、予め定めた条件を満たした場合に、第一供給弁542及び第二供給弁544の開放及び閉塞の動作を制御することで、内部流路FCへのハイドレート凍結防止剤の供給を制御している。 The control unit 60 causes the internal hydrate antifreeze supply unit 54 to start supplying the hydrate antifreeze to the internal flow path FC of the compressor 50 when a predetermined condition is satisfied. I do. The control unit 60 of the present embodiment controls the opening and closing operations of the first supply valve 542 and the second supply valve 544 when a predetermined condition is satisfied, so that the hydrate to the internal flow path FC is controlled. The supply of antifreeze is controlled.
 具体的には、本実施形態の制御部60は、入口側特性値測定部511で測定した特性値が入力される第一入力部61と、出口側特性値測定部521で測定した特性値が入力される第二入力部62と、第一入力部61に入力された特性値と第二入力部62に入力された特性値との差分を算出する差分算出部63と、を有している。本実施形態の制御部60は、差分算出部63で算出された差分が予め定めた第一基準を満たしているか否かを判定する第一基準判定部64と、第一基準判定部64の判定結果に基づいて、内部流路FCへのハイドレート凍結防止剤の供給を開始させる指示を送る供給開始指示部65と、を有している。本実施形態の制御部60は、差分算出部63で算出された差分が予め定めた第二基準を満たしているか否かを判定する第二基準判定部66と、第二基準判定部66の判定結果に基づいて、加熱部55によって加熱されたハイドレート凍結防止剤を内部流路FCに供給させるよう指示を送る加熱供給指示部67と、第二基準判定部66の判定結果に基づいて、内部流路FCへのハイドレート凍結防止剤の供給を終了させる指示を送る洗浄終了指示部70とを有している。本実施形態の制御部60は、入力される信号に基づいて第一供給弁542を開放又は閉塞させる第一供給弁指示部68と、入力される信号に基づいて第二供給弁544を開放又は閉塞させる第二供給弁指示部69と、を有している。 Specifically, the control unit 60 of the present embodiment has a first input unit 61 to which a characteristic value measured by the inlet side characteristic value measuring unit 511 is input, and a characteristic value measured by the outlet side characteristic value measuring unit 521. A second input unit 62 that is input; and a difference calculation unit 63 that calculates a difference between the characteristic value input to the first input unit 61 and the characteristic value input to the second input unit 62. . The control unit 60 of the present embodiment includes a first reference determination unit 64 that determines whether or not the difference calculated by the difference calculation unit 63 satisfies a predetermined first reference, and a determination by the first reference determination unit 64. And a supply start instructing unit 65 for sending an instruction to start the supply of the hydrate antifreeze to the internal flow path FC based on the result. The control unit 60 of the present embodiment includes a second reference determination unit 66 that determines whether or not the difference calculated by the difference calculation unit 63 satisfies a predetermined second reference, and a determination by the second reference determination unit 66. Based on the determination result of the second reference determination unit 66 and the heating supply instruction unit 67 that sends an instruction to supply the hydrate antifreeze agent heated by the heating unit 55 to the internal flow path FC based on the result. And a cleaning end instruction unit 70 for sending an instruction to end the supply of the hydrate antifreeze to the flow path FC. The controller 60 of the present embodiment opens or closes the first supply valve 542 based on the input signal, and opens or closes the second supply valve 544 based on the input signal. And a second supply valve instruction unit 69 to be closed.
 第一入力部61は、入口側特性値測定部511で測定された天然ガスGの圧力値が入力される。第一入力部61は、入力された圧力値の情報を差分算出部63に出力する。
 第二入力部62は、出口側特性値測定部521で測定された天然ガスGの圧力値が入力される。第二入力部62は、入力された圧力値の情報を差分算出部63に出力する。
The first input unit 61 receives the pressure value of the natural gas G measured by the inlet side characteristic value measuring unit 511. The first input unit 61 outputs information on the input pressure value to the difference calculation unit 63.
The pressure value of the natural gas G measured by the outlet side characteristic value measuring unit 521 is input to the second input unit 62. The second input unit 62 outputs the input pressure value information to the difference calculation unit 63.
 差分算出部63は、第二入力部62によって入力された圧縮機の出口側の圧力値から第一入力部61によって入力された圧縮機の入口側の圧力値を引いた差分を算出する。差分算出部63は、算出した差分を第一基準判定部64に出力する。差分算出部63は、第一基準判定部64に出力した後に、再び第一入力部61及び第二入力部62から情報が入力された場合には、算出した差分を第二基準判定部66に出力する。 The difference calculation unit 63 calculates a difference obtained by subtracting the pressure value on the inlet side of the compressor input by the first input unit 61 from the pressure value on the outlet side of the compressor input by the second input unit 62. The difference calculation unit 63 outputs the calculated difference to the first reference determination unit 64. The difference calculation unit 63 outputs the calculated difference to the second reference determination unit 66 when information is input again from the first input unit 61 and the second input unit 62 after being output to the first reference determination unit 64. Output.
 第一基準判定部64は、差分算出部63から入力された差分の情報と、第一基準とを比較する。ここで、第一基準は、堆積物が析出して圧縮機50の内部流路FCが狭くなっており、洗浄が必要な状態であることを表す値である。本実施形態の第一基準は、洗浄が必要ない場合の通常状態の圧縮流路FC1を流通することで圧縮される天然ガスGの圧力の上昇値よりも小さい値に設定されている。即ち、本実施形態の第一基準は、内部流路FCが堆積物によって狭くなっており、天然ガスGがほとんど圧縮されなかった状態の圧縮機50の入口側と出口側との圧力の差分の値である。 The first reference determination unit 64 compares the difference information input from the difference calculation unit 63 with the first reference. Here, the first standard is a value indicating that deposits are deposited and the internal flow path FC of the compressor 50 is narrow, and cleaning is necessary. The first reference of the present embodiment is set to a value smaller than the increase value of the pressure of the natural gas G that is compressed by flowing through the compression channel FC1 in the normal state when cleaning is not necessary. That is, the first reference of the present embodiment is that the difference in pressure between the inlet side and the outlet side of the compressor 50 in a state where the internal channel FC is narrowed by the deposit and the natural gas G is hardly compressed. Value.
 本実施形態の第一基準判定部64は、入力された差分の値が第一基準を下回っているか否かを判定する。第一基準判定部64は、算出した差分が第一基準を下回り、第一基準を満たしていると判定した場合に供給開始指示部65に信号を送る。 The first reference determination unit 64 of this embodiment determines whether or not the input difference value is below the first reference. The first reference determination unit 64 sends a signal to the supply start instruction unit 65 when it is determined that the calculated difference is less than the first reference and satisfies the first reference.
 供給開始指示部65は、第一基準判定部64で第一基準を満たしていると判定した場合に、内部ハイドレート凍結防止剤供給部54に対して、内部流路FCへのハイドレート凍結防止剤の供給を開始させる指示を送る。本実施形態の供給開始指示部65は、第一基準判定部64から信号が入力されることで、第一供給弁指示部68に信号を送り、第一供給弁542に対して指示を送る。 When the supply start instruction unit 65 determines that the first reference is satisfied by the first reference determination unit 64, the supply start instruction unit 65 prevents the hydrate freeze prevention to the internal flow path FC with respect to the internal hydrate antifreeze supply unit 54. Send instructions to start the agent supply. The supply start instruction unit 65 according to the present embodiment sends a signal to the first supply valve instruction unit 68 and sends an instruction to the first supply valve 542 when a signal is input from the first reference determination unit 64.
 第二基準判定部66は、差分算出部63から入力された差分の情報と、第二基準とを比較する。ここで、第二基準は、圧縮機50の内部流路FCの堆積物が十分に除去されておらず、より強力な洗浄が必要な状態であることを表す値である。本実施形態の第二基準は、通常状態の圧縮流路FC1を流通することで圧縮される天然ガスGの圧力の上昇値よりも小さく、第一基準よりも大きい値に設定されている。即ち、本実施形態の第二基準は、一度洗浄された結果、第一基準を満たすほどではないが内部流路FCに堆積物が残っており、天然ガスGが十分に圧縮されていない状態の圧縮機50の入口側と出口側との圧力の差分の値である。 The second reference determination unit 66 compares the difference information input from the difference calculation unit 63 with the second reference. Here, the second standard is a value indicating that the deposits in the internal flow path FC of the compressor 50 are not sufficiently removed and a stronger cleaning is necessary. The second reference of the present embodiment is set to a value that is smaller than the increase value of the pressure of the natural gas G compressed by flowing through the compression passage FC1 in the normal state and larger than the first reference. That is, the second standard of the present embodiment is a state in which deposits remain in the internal flow path FC and the natural gas G is not sufficiently compressed as a result of being washed once but not so much as to satisfy the first standard. This is the value of the difference in pressure between the inlet side and the outlet side of the compressor 50.
 本実施形態の第二基準判定部66は、入力された差分の値が第二基準を下回っているか否かを判定する。第二基準判定部66は、算出した差分が第二基準を下回り、第二基準を満たしていると判定した場合に加熱供給指示部67に信号を送る。第二基準判定部66は、算出した差分が第二基準を上回り、第二基準を満たしていない判定した場合に洗浄終了指示部70に信号を送る。 The second reference determination unit 66 of the present embodiment determines whether or not the input difference value is below the second reference. The second reference determination unit 66 sends a signal to the heating supply instruction unit 67 when it is determined that the calculated difference is less than the second reference and satisfies the second reference. The second reference determination unit 66 sends a signal to the cleaning end instruction unit 70 when it is determined that the calculated difference exceeds the second reference and does not satisfy the second reference.
 加熱供給指示部67は、第二基準判定部66で第二基準を満たしていると判定した場合に、内部ハイドレート凍結防止剤供給部54に対して、加熱部55によって加熱されたハイドレート凍結防止剤を内部流路FCへ供給させるよう指示を送る。本実施形態の加熱供給指示部67は、第二基準判定部66から信号が入力される。その結果、加熱供給指示部67は、供給開始指示部65から信号が送られた後の第一供給弁指示部68及び第二供給弁指示部69に信号を送り、第一供給弁542及び第二供給弁544に対してそれぞれ指示を送る。 When the heat supply instructing unit 67 determines that the second reference is satisfied by the second reference determining unit 66, the hydrate freezing heated by the heating unit 55 with respect to the internal hydrate antifreeze supply unit 54 is performed. An instruction is sent to supply the inhibitor to the internal flow path FC. The heating supply instruction unit 67 of this embodiment receives a signal from the second reference determination unit 66. As a result, the heating supply instruction unit 67 sends a signal to the first supply valve instruction unit 68 and the second supply valve instruction unit 69 after the signal is sent from the supply start instruction unit 65, and the first supply valve 542 and the second supply valve instruction unit 69. An instruction is sent to each of the two supply valves 544.
 洗浄終了指示部70は、第二基準判定部66で第二基準を満たしていないと判定した場合に、内部ハイドレート凍結防止剤供給部54に対して、内部流路FCへのハイドレート凍結防止剤の供給を終了させるよう指示を送る。本実施形態の洗浄終了指示部70は、第二基準判定部66から信号が入力される。その結果、洗浄終了指示部70は、第一供給弁指示部68及び第二供給弁指示部69に信号を送り、第一供給弁542及び第二供給弁544に対してそれぞれ指示を送る。 When the second reference determination unit 66 determines that the second reference is not satisfied, the cleaning end instruction unit 70 prevents the internal hydrate antifreeze supply unit 54 from hydrate freezing into the internal flow path FC. Send instructions to end the supply of agent. The cleaning end instruction unit 70 of this embodiment receives a signal from the second reference determination unit 66. As a result, the cleaning end instruction unit 70 sends a signal to the first supply valve instruction unit 68 and the second supply valve instruction unit 69, and sends instructions to the first supply valve 542 and the second supply valve 544, respectively.
 第一供給弁指示部68は、供給開始指示部65から信号が入力されることで、第一供給弁542を開放させるよう指示を送る。第一供給弁指示部68は、加熱供給指示部67から信号が入力されることで、第一供給弁542を閉塞させるよう指示を送る。第一供給弁指示部68は、洗浄終了指示部70から信号が入力されることで、第一供給弁542を閉塞させるよう指示を送る。 The first supply valve instruction unit 68 sends an instruction to open the first supply valve 542 when a signal is input from the supply start instruction unit 65. The first supply valve instruction unit 68 sends an instruction to close the first supply valve 542 when a signal is input from the heating supply instruction unit 67. The first supply valve instruction unit 68 sends an instruction to close the first supply valve 542 when a signal is input from the cleaning end instruction unit 70.
 第二供給弁指示部69は、加熱供給指示部67から信号が入力されることで、第二供給弁544を開放させるよう指示を送る。第二供給弁指示部69は、洗浄終了指示部70から信号が入力されることで、第二供給弁544を閉塞させるよう指示を送る。 The second supply valve instruction unit 69 sends an instruction to open the second supply valve 544 when a signal is input from the heating supply instruction unit 67. The second supply valve instruction unit 69 sends an instruction to close the second supply valve 544 when a signal is input from the cleaning end instruction unit 70.
 次に、上記実施形態の海中生産システム1の作用について説明する。
 本実施形態の海中生産システム1は、油ガス田Fから生産井Wを介して採取した生産流体PFをマニホールドMに集めて、油ガス田Fから採掘される際の圧力エネルギーによってフローラインFL内を搬送してサブシーモジュールSMまで供給する。
Next, the operation of the undersea production system 1 of the above embodiment will be described.
The undersea production system 1 of the present embodiment collects the production fluid PF collected from the oil and gas field F through the production well W in the manifold M, and uses the pressure energy when mined from the oil and gas field F in the flow line FL. Is supplied to the subsea module SM.
 サブシーモジュールSMでは、船S上の図示しない発電機から、アンビリカルラインALによって電力が各装置に供給されている。サブシーモジュールSMに供給された生産流体PFは、メイン熱交換器2によって冷却されてセパレータ3に流入する。セパレータ3に流入した生産流体PFは、液体である原油Oと気体である天然ガスGとに分離される。
 なお、セパレータ3で分離された原油Oには、コンデンセート等が含まれている。
In the subsea module SM, power is supplied to each device by a umbilical line AL from a generator (not shown) on the ship S. The production fluid PF supplied to the subsea module SM is cooled by the main heat exchanger 2 and flows into the separator 3. The production fluid PF that has flowed into the separator 3 is separated into crude oil O that is liquid and natural gas G that is gas.
The crude oil O separated by the separator 3 includes condensate and the like.
 セパレータ3で分離された原油Oは、液体流通部42内を流通してポンプ41に送られる。ポンプ41は、原油Oを圧縮して圧縮液体流通部43を介してオイルパイプラインORに送り込み、船S上の図示しない原油O用の貯蔵タンクに供給する。 Crude oil O separated by the separator 3 circulates in the liquid circulation part 42 and is sent to the pump 41. The pump 41 compresses the crude oil O, sends it to the oil pipeline OR through the compressed liquid circulation section 43, and supplies it to a storage tank for crude oil O (not shown) on the ship S.
 セパレータ3で分離された天然ガスGは、液体流通部42内を流通して圧縮機50に送られる。圧縮機50では、内部流路FCを天然ガスGが流通する際に、インペラ503が回転軸502とともに回転することによって圧縮流路FC1内で天然ガスGが圧縮されて圧縮気体流通部52に送られる。圧縮気体流通部52にはハイドレート凍結防止剤供給部53からハイドレート凍結防止剤が供給されている。圧縮した天然ガスGと共にハイドレート凍結防止剤がガスパイプラインGRに送り込まれる。圧縮気体流通部52では、供給されたハイドレート凍結防止剤によってハイドレート化を防止されながら天然ガスGが船S上の図示しない天然ガスG用の貯蔵タンクに供給される。 The natural gas G separated by the separator 3 circulates in the liquid circulation part 42 and is sent to the compressor 50. In the compressor 50, when the natural gas G flows through the internal flow path FC, the impeller 503 rotates together with the rotating shaft 502, whereby the natural gas G is compressed in the compression flow path FC1 and sent to the compressed gas flow section 52. It is done. A hydrate antifreeze is supplied from the hydrate antifreeze supply unit 53 to the compressed gas circulation unit 52. A hydrate antifreeze agent is fed into the gas pipeline GR together with the compressed natural gas G. In the compressed gas circulation part 52, the natural gas G is supplied to a storage tank (not shown) for the natural gas G on the ship S while being prevented from being hydrated by the supplied hydrate antifreeze.
 次に上記実施形態の圧縮機50の洗浄方法について説明する。
 上記のように天然ガスGを圧縮して船S上に供給する圧縮機50では、運転し続けることで、天然ガスGが流通する内部流路FCに堆積物が析出してたまってしまう。圧縮機50の洗浄方法は、このように堆積物がたまった圧縮機50に対して洗浄を行われる。本実施形態の圧縮機50の洗浄方法について、図2から図4に基づいて説明する。
Next, a method for cleaning the compressor 50 according to the above embodiment will be described.
As described above, in the compressor 50 that compresses the natural gas G and supplies the compressed gas to the ship S, the deposit is deposited and accumulated in the internal flow path FC through which the natural gas G flows. In the cleaning method of the compressor 50, the compressor 50 in which the deposits are accumulated is cleaned. A method for cleaning the compressor 50 according to the present embodiment will be described with reference to FIGS.
 本実施形態の圧縮機50の洗浄方法では、図4に示すように、圧縮機50の入口側及び出口側でセパレータ3によって分離された気体である天然ガスGの特性値として圧力値を測定して取得し、圧縮機50の状態を測定する(特性値取得工程S100)。具体的には、特性値取得工程S100では、入口側特性値測定部511で気体流通部51を流通する天然ガスGの圧力値を測定し、圧縮機50の入口側の天然ガスGの圧力値を取得する。出口側特性値測定部521で圧縮気体流通部52を流通する天然ガスGの圧力値を測定し、圧縮機50の出口側の天然ガスGの圧力値を取得する。 In the cleaning method for the compressor 50 of the present embodiment, as shown in FIG. 4, the pressure value is measured as a characteristic value of the natural gas G that is a gas separated by the separator 3 on the inlet side and the outlet side of the compressor 50. And the state of the compressor 50 is measured (characteristic value acquisition step S100). Specifically, in the characteristic value acquisition step S100, the pressure value of the natural gas G flowing through the gas flow unit 51 is measured by the inlet-side characteristic value measurement unit 511, and the pressure value of the natural gas G on the inlet side of the compressor 50 is measured. To get. The pressure value of the natural gas G flowing through the compressed gas flow unit 52 is measured by the outlet side characteristic value measuring unit 521, and the pressure value of the natural gas G on the outlet side of the compressor 50 is acquired.
 次に、本実施形態の圧縮機50の洗浄方法では、取得した圧縮機50の入口側の圧力値と出口側の圧力値との差分を算出する(差分算出工程S200)。具体的には、差分算出工程S200では、入口側特性値測定部511で測定した圧力値の情報が制御部60の第一入力部61に入力される。差分算出工程S200では、出口側特性値測定部521で測定した圧力値の情報が制御部60の第二入力部62に入力される。制御部60では、第一入力部61及び第二入力部62に入力された情報が差分算出部63に入力される。差分算出部63では、第二入力部62から入力された情報から第一入力部61から入力された情報を引くことで、圧縮機50の出口側の圧力値と入口側の圧力値の差分が算出される。 Next, in the cleaning method for the compressor 50 of the present embodiment, the difference between the acquired pressure value on the inlet side and the pressure value on the outlet side of the compressor 50 is calculated (difference calculating step S200). Specifically, in the difference calculation step S <b> 200, information on the pressure value measured by the inlet side characteristic value measuring unit 511 is input to the first input unit 61 of the control unit 60. In the difference calculating step S <b> 200, information on the pressure value measured by the outlet side characteristic value measuring unit 521 is input to the second input unit 62 of the control unit 60. In the control unit 60, information input to the first input unit 61 and the second input unit 62 is input to the difference calculation unit 63. In the difference calculation unit 63, the difference between the pressure value on the outlet side and the pressure value on the inlet side of the compressor 50 is obtained by subtracting the information input from the first input unit 61 from the information input from the second input unit 62. Calculated.
 続いて、本実施形態の圧縮機50の洗浄方法では、圧縮機50の内部流路FCにハイドレート凍結防止剤を供給しているか否かを判定する(ハイドレート凍結防止剤供給判定工程S300)。具体的には、ハイドレート凍結防止剤供給判定工程S300では、差分算出部63で、内部流路FCに既にハイドレート凍結防止剤を供給しているか否かを判定する。差分算出部63では、第一入力部61及び第二入力部62から情報が一度入力されたと判定した場合には、内部流路FCに既にハイドレート凍結防止剤を供給していると判定して、第二基準判定部66に差分の情報を出力する。逆に、差分算出部63では、第一入力部61及び第二入力部62から情報が入力されていないと判定した場合には、内部流路FCにハイドレート凍結防止剤を供給していないと判定して、第一基準判定部64に差分の情報を出力する。 Subsequently, in the cleaning method for the compressor 50 according to the present embodiment, it is determined whether or not the hydrate antifreeze is supplied to the internal flow path FC of the compressor 50 (hydrate antifreeze supply determination step S300). . Specifically, in the hydrate antifreeze supply determination step S300, the difference calculation unit 63 determines whether or not the hydrate antifreeze has already been supplied to the internal flow path FC. In the difference calculation part 63, when it determines with information having been once input from the 1st input part 61 and the 2nd input part 62, it determines with having already supplied the hydrate antifreezing agent to the internal flow path FC. The difference information is output to the second reference determination unit 66. Conversely, if the difference calculation unit 63 determines that no information is input from the first input unit 61 and the second input unit 62, the hydrate antifreezing agent is not supplied to the internal flow path FC. Determination is performed, and difference information is output to the first reference determination unit 64.
 内部流路FCにハイドレート凍結防止剤を供給していないと判定した場合には、算出した差分が予め定めた第一基準を満たしているか否かを判定する(第一基準判定工程S400)。具体的には、第一基準判定工程S400では、制御部60において、算出した差分が差分算出部63から第一基準判定部64に入力される。第一基準判定部64は、入力された差分の値が第一基準を下回っているか否かを判定する。第一基準判定部64は、算出した差分が第一基準を下回っていると判定した場合に供給開始指示部65に信号を送る。逆に、第一基準判定部64は、算出した差分が第一基準を上回っていると判定した場合には、信号を送らずに圧縮機50の洗浄を終了する。 When it is determined that the hydrate antifreeze is not supplied to the internal flow path FC, it is determined whether or not the calculated difference satisfies a predetermined first standard (first standard determination step S400). Specifically, in the first reference determination step S <b> 400, the calculated difference is input from the difference calculation unit 63 to the first reference determination unit 64 in the control unit 60. The first reference determination unit 64 determines whether or not the input difference value is below the first reference. The first reference determination unit 64 sends a signal to the supply start instruction unit 65 when it is determined that the calculated difference is less than the first reference. Conversely, when the first reference determination unit 64 determines that the calculated difference exceeds the first reference, the first reference determination unit 64 ends the cleaning of the compressor 50 without sending a signal.
 第一基準判定部64で差分が第一基準を下回って第一基準を満たしていると判定した場合には、内部流路FCに対して、圧縮機50で圧縮された後の気体に供給されるハイドレート凍結防止剤の供給を開始する(供給開始工程S500)。具体的には、供給開始工程S500では、制御部60において、第一基準判定部64から供給開始指示部65に信号が送られ、供給開始指示部65から第一供給弁指示部68に信号が送られる。第一供給弁指示部68では、供給開始指示部65から信号が送られることで、第一供給弁542に対して開放するよう指示を送る。指示を受けた第一供給弁542が開放されることで、ハイドレート凍結防止剤供給部53を流通するハイドレート凍結防止剤の一部が、第一供給管541内に流れ込む。第一供給管541内に流れ込んだハイドレート凍結防止剤は、ケーシング501内に設けられたハイドレート凍結防止剤噴射部541aからケーシング流路FC2に向かって噴射され、内部流路FCに供給される。内部流路FC内に供給されたハイドレート凍結防止剤は、天然ガスGと共に内部流路FC内を流通して圧縮気体流通部52に流入して、内部流路FC内から排出される。 When the first reference determination unit 64 determines that the difference is less than the first reference and satisfies the first reference, the internal channel FC is supplied to the gas compressed by the compressor 50. Supply of the hydrate antifreeze is started (supply start step S500). Specifically, in the supply start step S500, the control unit 60 sends a signal from the first reference determination unit 64 to the supply start instruction unit 65, and sends a signal from the supply start instruction unit 65 to the first supply valve instruction unit 68. Sent. The first supply valve instruction unit 68 sends an instruction to the first supply valve 542 to be opened by receiving a signal from the supply start instruction unit 65. Upon receiving the instruction, the first supply valve 542 is opened, so that a part of the hydrate antifreeze flowing through the hydrate antifreeze supply unit 53 flows into the first supply pipe 541. The hydrate antifreeze that has flowed into the first supply pipe 541 is injected from the hydrate antifreeze injection unit 541a provided in the casing 501 toward the casing flow path FC2 and supplied to the internal flow path FC. . The hydrate antifreeze supplied into the internal flow path FC flows through the internal flow path FC together with the natural gas G, flows into the compressed gas flow section 52, and is discharged from the internal flow path FC.
 その後、再び圧縮機50の入口側及び出口側で天然ガスGの圧力値を測定して取得し、圧縮機50の状態を測定する(特性値取得工程S100)。その後、取得した圧縮機50の入口側の圧力値と出口側の圧力値との差分を算出する(差分算出工程S200)。続いて、圧縮機50の内部流路FCにハイドレート凍結防止剤を供給しているか否かを判定する(ハイドレート凍結防止剤供給判定工程S300)。この際、既に第一入力部61及び第二入力部62から情報が一度入力されている。そのため、ハイドレート凍結防止剤供給判定工程S300では、差分算出部63が内部流路FCにハイドレート凍結防止剤を供給していると判定して第二基準判定部66に差分の情報を出力する。 Thereafter, the pressure value of the natural gas G is again measured and acquired at the inlet side and the outlet side of the compressor 50, and the state of the compressor 50 is measured (characteristic value acquisition step S100). Thereafter, the difference between the acquired pressure value on the inlet side and the pressure value on the outlet side of the compressor 50 is calculated (difference calculating step S200). Subsequently, it is determined whether or not a hydrate antifreeze is supplied to the internal flow path FC of the compressor 50 (hydrate antifreeze supply determination step S300). At this time, information has already been input once from the first input unit 61 and the second input unit 62. Therefore, in the hydrate antifreeze supply determination step S300, the difference calculation unit 63 determines that the hydrate antifreeze is supplied to the internal flow path FC, and outputs the difference information to the second reference determination unit 66. .
 内部流路FCにハイドレート凍結防止剤を供給していると判定した場合には、算出した差分が予め定めた第二基準を満たしているか否かを判定する(第二基準判定工程S600)。具体的には、第二基準判定工程S600では、制御部60において、算出した差分が差分算出部63から第二基準判定部66に入力される。第二基準判定部66は、入力された差分の値が第二基準を下回っているか否かを判定する。第二基準判定部66は、算出した差分が第二基準を下回っていると判定した場合に加熱供給指示部67に信号を送る。逆に、第二基準判定部66は、算出した差分が第二基準を上回っていると判定した場合には、洗浄終了指示部70に信号を送って第一供給弁542及び第二供給弁544を閉塞させ、圧縮機50の洗浄を終了する。 When it is determined that the hydrate antifreeze is supplied to the internal flow path FC, it is determined whether or not the calculated difference satisfies a predetermined second standard (second standard determination step S600). Specifically, in the second reference determination step S600, the control unit 60 inputs the calculated difference from the difference calculation unit 63 to the second reference determination unit 66. The second reference determination unit 66 determines whether or not the input difference value is below the second reference. The second reference determination unit 66 sends a signal to the heating supply instruction unit 67 when it is determined that the calculated difference is less than the second reference. Conversely, when the second reference determination unit 66 determines that the calculated difference exceeds the second reference, it sends a signal to the cleaning end instruction unit 70 to send the first supply valve 542 and the second supply valve 544. Is closed, and the cleaning of the compressor 50 is completed.
 第二基準判定部66で差分が第二基準を下回って第二基準を満たしていると判定した場合には、加熱されたハイドレート凍結防止剤を内部流路FCに供給する(加熱供給工程S700)。具体的には、加熱供給工程S700では、制御部60において、第二基準判定部66から加熱供給指示部67に信号が送られ、加熱供給指示部67から第一供給弁指示部68及び第二供給弁指示部69に信号が送られる。第一供給弁指示部68は、加熱供給指示部67から信号が送られることで、第一供給弁542に対して閉塞するよう指示を送る。第二供給弁指示部69は、加熱供給指示部67から信号が送られることで、第二供給弁544に対して開放するよう指示を送る。指示を受けた第一供給弁542が閉塞されることで、第一供給管541内へのハイドレート凍結防止剤の流入が止まる。指示を受けた第二供給弁544が開放されることで、第二供給管543内へハイドレート凍結防止剤が流れ込み始める。第二供給管543内に流れ込んだハイドレート凍結防止剤は、加熱部55を通ることで、液体流通部42内を流れる原油Oと熱交換されて加熱される。加熱されて高温となったハイドレート凍結防止剤は、第一供給弁542よりも下流側から第一供給管541内に流れ込む。第一供給管541内に流れ込んだ高温のハイドレート凍結防止剤は、ケーシング501内のハイドレート凍結防止剤噴射部541aからケーシング流路FC2に向かって噴射され、内部流路FCに供給される。内部流路FC内に供給された高温のハイドレート凍結防止剤は、天然ガスGと共に内部流路FC内を流通して圧縮気体流通部52に流入して、内部流路FC内から排出される。 When the second reference determination unit 66 determines that the difference is less than the second reference and satisfies the second reference, the heated hydrate antifreeze is supplied to the internal flow path FC (heating supply step S700). ). Specifically, in the heating supply step S700, the control unit 60 sends a signal from the second reference determination unit 66 to the heating supply instruction unit 67, and the heating supply instruction unit 67 transmits the first supply valve instruction unit 68 and the second supply valve instruction unit 68. A signal is sent to the supply valve instruction unit 69. The first supply valve instructing unit 68 sends an instruction to close the first supply valve 542 by receiving a signal from the heating supply instructing unit 67. The second supply valve instructing unit 69 sends an instruction to the second supply valve 544 to be opened by receiving a signal from the heating supply instructing unit 67. When the first supply valve 542 that has received the instruction is closed, the flow of the hydrate antifreeze into the first supply pipe 541 stops. When the second supply valve 544 that has received the instruction is opened, the hydrate antifreeze starts flowing into the second supply pipe 543. The hydrate antifreeze that has flowed into the second supply pipe 543 is heated by being exchanged with the crude oil O flowing in the liquid circulation part 42 by passing through the heating part 55. The hydrate antifreeze that has been heated to a high temperature flows into the first supply pipe 541 from the downstream side of the first supply valve 542. The high temperature hydrate antifreeze flowing into the first supply pipe 541 is injected from the hydrate antifreeze injection part 541a in the casing 501 toward the casing flow path FC2 and supplied to the internal flow path FC. The high-temperature hydrate antifreeze supplied in the internal flow path FC flows through the internal flow path FC together with the natural gas G, flows into the compressed gas flow section 52, and is discharged from the internal flow path FC. .
 上記のような圧縮機システム5によれば、圧縮機50で圧縮した天然ガスGのハイドレード化を抑えるためにハイドレート凍結防止剤供給部53から圧縮気体流通部52に供給されるハイドレート凍結防止剤の一部が、第一供給弁542が開放されることで、第一供給管541を介してケーシング流路FC2に噴射される。ハイドレート凍結防止剤は、天然ガスGの凍結を防いでハイドレート化を抑制するだけでなく、親油性や親水性を有している。そのため、ハイドレート凍結防止剤によって、油性汚れや水性汚れを除去することができる。したがって、ケーシング流路FC2に噴射されたハイドレート凍結防止剤が天然ガスGとともに内部流路FC内を流れることによって、内部流路FCの壁面に析出している堆積物を効果的に除去することができる。
 ケーシング流路FC2にハイドレート凍結防止剤が直接供給されることで、内部流路FCに到達する前にハイドレート凍結防止剤が天然ガスGによって希釈されることを抑制し、ハイドレート凍結防止剤を効果的に利用して圧縮機50内を洗浄することができる。
 ハイドレート凍結防止剤供給部53から圧縮気体流通部52に供給されるハイドレート凍結防止剤の一部を利用することで、必要な量のハイドレート凍結防止剤を内部流路FCに安定して供給することができる。
 これらにより、圧縮機50を安定して効果的に洗浄することができる。
According to the compressor system 5 as described above, the hydrate antifreeze supplied from the hydrate antifreeze supply unit 53 to the compressed gas circulation unit 52 in order to suppress the hydration of the natural gas G compressed by the compressor 50. A part of the agent is injected into the casing flow path FC2 through the first supply pipe 541 when the first supply valve 542 is opened. The hydrate antifreeze agent not only prevents the natural gas G from freezing and suppresses hydrate formation, but also has lipophilicity and hydrophilicity. Therefore, oily dirt and aqueous dirt can be removed by the hydrate antifreeze. Therefore, the hydrate antifreeze injected into the casing flow path FC2 flows in the internal flow path FC together with the natural gas G, thereby effectively removing deposits deposited on the wall surface of the internal flow path FC. Can do.
By directly supplying the hydrate antifreeze to the casing flow path FC2, the hydrate antifreeze is prevented from being diluted by the natural gas G before reaching the internal flow path FC, and the hydrate antifreeze The inside of the compressor 50 can be cleaned by effectively utilizing the above.
By utilizing a part of the hydrate antifreeze supplied from the hydrate antifreeze supply 53 to the compressed gas flow part 52, a necessary amount of hydrate antifreeze can be stably supplied to the internal flow path FC. Can be supplied.
Thus, the compressor 50 can be cleaned stably and effectively.
 制御部60が、第一基準判定部64や第二基準判定部66のように予め定めた条件を満たした場合に、第一供給管541や第二供給管543にハイドレート凍結防止剤供給部53からハイドレート凍結防止剤を流入させる。その結果、ハイドレート凍結防止剤噴射部541aによってケーシング流路FC2内にハイドレート凍結防止剤を噴出させている。即ち、第一基準判定部64や第二基準判定部66によって内部流路FCへのハイドレート凍結防止剤の供給制御を行うことで、洗浄を必要とする状態の圧縮機50に対して限定的にハイドレート凍結防止剤を供給することができる。したがって、第一供給管541や第二供給管543から供給されるハイドレート凍結防止剤を効率的に圧縮機50の洗浄に利用することができ、ハイドレート凍結防止剤の供給量を抑えることができる。 When the control unit 60 satisfies a predetermined condition such as the first reference determination unit 64 and the second reference determination unit 66, the hydrate antifreeze supply unit is added to the first supply pipe 541 and the second supply pipe 543. From 53, hydrate antifreeze is introduced. As a result, a hydrate antifreeze agent is ejected into the casing flow path FC2 by the hydrate antifreeze injection unit 541a. In other words, the supply control of the hydrate antifreeze to the internal flow path FC is performed by the first reference determination unit 64 and the second reference determination unit 66, so that the compressor 50 in a state that requires cleaning is limited. Hydrate antifreeze can be supplied to Therefore, the hydrate antifreeze supplied from the first supply pipe 541 and the second supply pipe 543 can be efficiently used for cleaning the compressor 50, and the supply amount of the hydrate antifreeze can be suppressed. it can.
 制御部60では、気体流通部51の入口側特性値測定部511で測定された圧縮機50の入口側の天然ガスGの圧力値が第一入力部61に入力される。加えて、制御部60では、圧縮気体流通部52の出口側特性値測定部521で測定された圧縮機50の出口側の天然ガスGの圧力値が第二入力部62に入力される。これらにより、圧縮機50の入口側及び出口側での天然ガスGの圧力値をそれぞれ取得することができる。取得した圧縮機50の入口側及び出口側での天然ガスGの圧力値から差分算出部63で差分を算出して、第一基準判定部64で第一基準と比較して判定することで、内部流路FCが洗浄を必要とする状態となっているか否かを容易に推定することができる。判定結果に基づいて第一基準判定部64から供給開始指示部65に信号を送り、第一供給弁指示部68を介して第一供給弁542を開放させることで、第一供給管541にハイドレート凍結防止剤の供給を開始させることができる。その結果、ハイドレート凍結防止剤噴射部541aから内部流路FCへのハイドレート凍結防止剤の噴射を開始させることができ、内部流路FCの洗浄を実施することができる。したがって、圧縮機50が洗浄を必要とする状態であるか否かを高い精度で判定することができ、ハイドレート凍結防止剤をより限定的に供給することができる。これにより、洗浄を必要とする内部流路FCに対して、第一供給管541や第二供給管543から供給されるハイドレート凍結防止剤をより効率的に圧縮機50の洗浄に利用することができ、ハイドレート凍結防止剤の供給量をより抑えることができる。 In the control unit 60, the pressure value of the natural gas G on the inlet side of the compressor 50 measured by the inlet side characteristic value measuring unit 511 of the gas circulation unit 51 is input to the first input unit 61. In addition, in the control unit 60, the pressure value of the natural gas G on the outlet side of the compressor 50 measured by the outlet side characteristic value measuring unit 521 of the compressed gas circulation unit 52 is input to the second input unit 62. By these, the pressure value of the natural gas G at the inlet side and the outlet side of the compressor 50 can be acquired. By calculating the difference with the difference calculation unit 63 from the pressure values of the natural gas G on the inlet side and the outlet side of the acquired compressor 50, and comparing with the first reference by the first reference determination unit 64, It can be easily estimated whether or not the internal flow path FC is in a state that requires cleaning. A signal is sent from the first reference determination unit 64 to the supply start instruction unit 65 based on the determination result, and the first supply valve 542 is opened via the first supply valve instruction unit 68, so that the first supply pipe 541 is closed. The supply of the rate antifreeze can be started. As a result, injection of the hydrate antifreeze agent from the hydrate antifreeze injection unit 541a to the internal flow path FC can be started, and the internal flow path FC can be cleaned. Therefore, it can be determined with high accuracy whether or not the compressor 50 is in a state that requires cleaning, and the hydrate antifreeze can be supplied more limitedly. Accordingly, the hydrate antifreeze supplied from the first supply pipe 541 and the second supply pipe 543 is more efficiently used for cleaning the compressor 50 with respect to the internal flow path FC that requires cleaning. And the supply amount of the hydrate antifreeze can be further suppressed.
 第二供給管543にハイドレート凍結防止剤を加熱する加熱部55が設けられている。そのため、高温のハイドレート凍結防止剤を内部流路FCに供給することができる。加熱されて高温となることでハイドレート凍結防止剤による堆積物への溶解度を向上させることができる。したがって、内部流路FCにたまった堆積物の溶解速度を向上させて、効果的に内部流路FCを洗浄することができる。 The second supply pipe 543 is provided with a heating unit 55 for heating the hydrate antifreeze. Therefore, a high temperature hydrate antifreeze can be supplied to the internal flow path FC. By being heated to a high temperature, the solubility of the hydrate antifreeze in the deposit can be improved. Therefore, the dissolution rate of the deposit accumulated in the internal flow channel FC can be improved, and the internal flow channel FC can be effectively cleaned.
 取得した圧縮機50の入口側及び出口側での天然ガスGの圧力値から差分算出部63で差分を算出して、第二基準判定部66で第一基準よりも大きい値に設定された第二基準と比較して判定することで、再び内部流路FCが洗浄を必要とする状態となっているか否かを容易に推定することができる。そのため、例えば、第一基準を用いて判定した場合とは異なる内部流路FCの状態であるか(例えば、内部流路FCに対してより強力な洗浄が必要な状態か否か)も容易に推定することができる。判定結果に基づいて第二基準判定部66から加熱供給指示部67に信号を送り、第一供給弁指示部68を介して第一供給弁542を閉塞させ、第二供給弁指示部69を介して第二供給弁544を開放させる。これにより、加熱部55が設けられた第二供給管543にハイドレート凍結防止剤の供給を開始させることができる。その結果、加熱されて高温となったハイドレート凍結防止剤をハイドレート凍結防止剤噴射部541aから内部流路FCへ噴射させることができ、内部流路FCのより効果的に洗浄を実施することができる。したがって、圧縮機50が第一基準を用いて判定して洗浄した場合とは異なる状態であるか否かを高い精度で判定することができ、必要に応じて強力な洗浄を圧縮機50に対して実施することができる。これにより、内部流路FCが強力な洗浄を必要とする状態である場合に、加熱したハイドレート凍結防止剤を効率よく供給して、より効率的に圧縮機50の洗浄することができる。 The difference is calculated by the difference calculation unit 63 from the pressure values of the natural gas G at the inlet side and the outlet side of the acquired compressor 50, and the second reference determination unit 66 sets the difference larger than the first reference. By determining in comparison with the two standards, it can be easily estimated whether or not the internal flow path FC is in a state that requires cleaning again. Therefore, for example, whether the state of the internal flow path FC is different from that determined using the first reference (for example, whether more powerful cleaning is required for the internal flow path FC) is easy. Can be estimated. A signal is sent from the second reference determination unit 66 to the heating supply instruction unit 67 based on the determination result, the first supply valve 542 is closed via the first supply valve instruction unit 68, and the second supply valve instruction unit 69 is used. Then, the second supply valve 544 is opened. Thereby, the supply of the hydrate antifreeze can be started in the second supply pipe 543 provided with the heating unit 55. As a result, the hydrate antifreeze agent that has been heated to a high temperature can be injected from the hydrate antifreeze injection unit 541a to the internal flow path FC, and the internal flow path FC can be more effectively cleaned. Can do. Therefore, it can be determined with high accuracy whether or not the compressor 50 is in a state different from the case where it is determined and cleaned using the first reference, and powerful cleaning is performed on the compressor 50 as necessary. Can be implemented. Thereby, when the internal flow path FC is in a state that requires strong cleaning, the heated hydrate antifreeze can be efficiently supplied, and the compressor 50 can be cleaned more efficiently.
 炭化水素の部分が親油性を有し、水酸基及びエーテル基が親水性を有するモノエチレングリコールをハイドレート凍結防止剤として用いることで、内部流路FCの油性汚れと水生汚れとの両方を効果的に洗浄することができる。 By using monoethylene glycol, which has a lipophilic part in the hydrocarbon part and hydrophilicity in the hydroxyl group and ether group, as a hydrate antifreeze agent, both oily dirt and aquatic dirt in the internal flow path FC are effective. Can be washed.
 ハイドレート凍結防止剤供給部53から圧縮気体流通部52に供給されるハイドレート凍結防止剤の一部を圧縮機50の内部流路FCに流して洗浄することで、圧縮機50を洗浄するために圧縮機50の運転を停止させる必要がない。そのため、洗浄用ダウンタイムを発生させずに、効率的に圧縮機50を洗浄することができる。 To wash the compressor 50 by flowing a part of the hydrate antifreeze supplied from the hydrate antifreeze supply part 53 to the compressed gas circulation part 52 through the internal flow path FC of the compressor 50 and washing it. It is not necessary to stop the operation of the compressor 50. Therefore, the compressor 50 can be efficiently cleaned without causing a cleaning down time.
 上記のような海中生産システム1によれば、海底等のメンテナンスし難い位置に設置された圧縮機50であっても安定して効率的に洗浄することができる。そのため、堆積物による詰まりを抑制でき、圧縮機50によって安定して天然ガスGを船S上に送ることができる。 According to the undersea production system 1 as described above, even the compressor 50 installed at a position where maintenance is difficult such as the seabed can be stably and efficiently washed. Therefore, clogging due to deposits can be suppressed, and the natural gas G can be stably sent onto the ship S by the compressor 50.
 上記のような圧縮機50の洗浄方法によれば、特性値取得工程S100で取得した圧縮機50の入口側及び出口側での天然ガスGの圧力値から差分算出工程S200で差分を算出して、ハイドレート凍結防止剤供給判定工程S300で内部流路FCにハイドレート凍結防止剤が供給されているか否かを判定している。その後、第一基準判定工程S400で第一基準と比較して判定することで、内部流路FCが洗浄を必要とする状態となっているか否かを容易に推定することができる。判定結果に基づいて供給開始工程S500で第一供給弁542を開放させて、第一供給管541にハイドレート凍結防止剤の供給を開始させることができる。その結果、ハイドレート凍結防止剤噴射部541aから内部流路FCへのハイドレート凍結防止剤の噴射を開始させることができ、内部流路FCの洗浄を実施することができる。したがって、圧縮機50が洗浄を必要とする状態であるか否かを高い精度で判定することができ、ハイドレート凍結防止剤をより限定的に供給することができる。これにより、洗浄を必要とする内部流路FCに対して、第一供給管541や第二供給管543から供給されるハイドレート凍結防止剤をより効率的に圧縮機50の洗浄に利用することができ、ハイドレート凍結防止剤の供給量をより抑えることができる。 According to the cleaning method for the compressor 50 as described above, the difference is calculated in the difference calculation step S200 from the pressure values of the natural gas G on the inlet side and the outlet side of the compressor 50 acquired in the characteristic value acquisition step S100. In the hydrate antifreeze supply determination step S300, it is determined whether or not the hydrate antifreeze is supplied to the internal flow path FC. After that, it is possible to easily estimate whether or not the internal flow path FC is in a state requiring cleaning by making a determination in comparison with the first reference in the first reference determination step S400. Based on the determination result, the first supply valve 542 can be opened in the supply start step S500 to start the supply of the hydrate antifreeze to the first supply pipe 541. As a result, injection of the hydrate antifreeze agent from the hydrate antifreeze injection unit 541a to the internal flow path FC can be started, and the internal flow path FC can be cleaned. Therefore, it can be determined with high accuracy whether or not the compressor 50 is in a state that requires cleaning, and the hydrate antifreeze can be supplied more limitedly. Accordingly, the hydrate antifreeze supplied from the first supply pipe 541 and the second supply pipe 543 is more efficiently used for cleaning the compressor 50 with respect to the internal flow path FC that requires cleaning. And the supply amount of the hydrate antifreeze can be further suppressed.
 ハイドレート凍結防止剤供給判定工程S300で内部流路FCにハイドレート凍結防止剤が供給されているか否かを判定した後に、判定結果に基づいて、第一基準判定工程S400か第二基準判定工程S600を実施することで、圧縮機50の洗浄状態を推定することができる。そのため、圧縮機50の洗浄状態に合わせて、より一層効率的に圧縮機50を洗浄することができる。 After determining whether or not the hydrate antifreeze is supplied to the internal flow path FC in the hydrate antifreeze supply determination step S300, the first reference determination step S400 or the second reference determination step is performed based on the determination result. By performing S600, the cleaning state of the compressor 50 can be estimated. Therefore, the compressor 50 can be more efficiently cleaned according to the cleaning state of the compressor 50.
 特性値取得工程S100で取得した圧縮機50の入口側及び出口側での天然ガスGの圧力値から差分算出工程S200で差分を算出して、第二基準判定工程S600で第一基準よりも大きい値に設定された第二基準と比較して判定する。これにより、再び内部流路FCが洗浄を必要とする状態となっているか否かを容易に推定することができる。そのため、例えば、第一基準を用いて判定した場合とは異なる内部流路FCの状態であるか(例えば、内部流路FCに対してより強力な洗浄が必要な状態か否か)も容易に推定することができる。判定結果に基づいて加熱供給工程S700で第一供給弁542を閉塞させ、第二供給弁544を開放させることで、加熱部55が設けられた第二供給管543にハイドレート凍結防止剤の供給を開始させることができる。その結果、加熱されて高温となったハイドレート凍結防止剤をハイドレート凍結防止剤噴射部541aから内部流路FCへ噴射させることができ、内部流路FCのより効果的に洗浄を実施することができる。したがって、圧縮機50が第一基準を用いて判定して洗浄した場合とは異なる状態であるか否かを高い精度で判定することができ、必要に応じて強力な洗浄を圧縮機50に対して実施することができる。これにより、内部流路FCが強力な洗浄を必要とする状態である場合に、加熱したハイドレート凍結防止剤を効率よく供給して、より効率的に圧縮機50の洗浄することができる。 The difference is calculated in the difference calculation step S200 from the pressure values of the natural gas G on the inlet side and the outlet side of the compressor 50 acquired in the characteristic value acquisition step S100, and is larger than the first reference in the second reference determination step S600. Judgment is made by comparison with the second criterion set in the value. Thereby, it can be easily estimated whether or not the internal flow path FC is in a state that requires cleaning again. Therefore, for example, whether the state of the internal flow path FC is different from that determined using the first reference (for example, whether more powerful cleaning is required for the internal flow path FC) is easy. Can be estimated. Based on the determination result, the first supply valve 542 is closed in the heating supply step S700 and the second supply valve 544 is opened, thereby supplying the hydrate antifreeze to the second supply pipe 543 provided with the heating unit 55. Can be started. As a result, the hydrate antifreeze agent that has been heated to a high temperature can be injected from the hydrate antifreeze injection unit 541a to the internal flow path FC, and the internal flow path FC can be more effectively cleaned. Can do. Therefore, it can be determined with high accuracy whether or not the compressor 50 is in a state different from the case where it is determined and cleaned using the first reference, and powerful cleaning is performed on the compressor 50 as necessary. Can be implemented. Thereby, when the internal flow path FC is in a state that requires strong cleaning, the heated hydrate antifreeze can be efficiently supplied, and the compressor 50 can be cleaned more efficiently.
 以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。 Although the embodiments of the present invention have been described in detail with reference to the drawings, the configurations and combinations of the embodiments in the embodiments are examples, and the addition and omission of configurations are within the scope not departing from the gist of the present invention. , Substitutions, and other changes are possible. Further, the present invention is not limited by the embodiments, and is limited only by the scope of the claims.
 気体の特性値は、本実施形態のように気体の圧力値に限定されるものでなく、圧縮機で圧縮される前後において状態の差が生じるような値であればよい。例えば、気体の特性値は、気体の温度を測定した値や気体の流量を測定した値でもよく、圧縮機50の効率を算出した値であってもよい。 The characteristic value of the gas is not limited to the pressure value of the gas as in this embodiment, and may be a value that causes a difference in state before and after being compressed by the compressor. For example, the characteristic value of the gas may be a value obtained by measuring the temperature of the gas, a value obtained by measuring the flow rate of the gas, or a value obtained by calculating the efficiency of the compressor 50.
 本実施形態の内部ハイドレート凍結防止剤供給部54は、第一供給管541と第二供給管543とに分岐して構成されているが、このような構造に限定されるものではなく、ハイドレート凍結防止剤を圧縮機50の内部流路FCに供給することができればよい。例えば、内部ハイドレート凍結防止剤供給部54は、第一供給管541や第二供給管543のいずれか一方のみを有する構造であってもよい。 The internal hydrate antifreeze supply unit 54 of the present embodiment is configured to be branched into a first supply pipe 541 and a second supply pipe 543, but is not limited to such a structure, It is sufficient if the rate antifreeze agent can be supplied to the internal flow path FC of the compressor 50. For example, the internal hydrate antifreezing agent supply unit 54 may have a structure having only one of the first supply pipe 541 and the second supply pipe 543.
 第一基準や第二基準を満たしているか判定する際には、本実施形態のように、一回の判定結果に基づいてハイドレート凍結防止剤の供給等を実施するのでなく、複数回にわたって第一基準や第二基準を満たしているか判定するような構成としてもよい。このような構成とすることで、内部流路FCの汚れ具合をより高い精度で推定することができる。 When determining whether the first standard or the second standard is satisfied, the hydrate antifreeze agent is not supplied based on a single determination result as in the present embodiment, but is repeated multiple times. It is good also as a structure which determines whether one standard or the 2nd standard is satisfy | filled. By setting it as such a structure, the dirt condition of the internal flow path FC can be estimated with a higher precision.
 上記圧縮機システムによれば、ハイドレート凍結防止剤を内部流路に供給することで、圧縮機を効率的に洗浄することができる。 According to the above compressor system, the compressor can be efficiently cleaned by supplying the hydrate antifreeze to the internal flow path.
1            海中生産システム
S            船
F            油ガス田
W            生産井
PF          生産流体
M            マニホールド
FL          フローライン
R            ライザー
GR          ガスパイプライン
OR          オイルパイプライン
AR          ハイドレート凍結防止剤用パイプライン
AL          アンビリカルライン
SM          サブシーモジュール
2            メイン熱交換器
3            セパレータ
4            ポンプシステム
41          ポンプ
42          液体流通部
43          圧縮液体流通部
5            圧縮機システム
50          圧縮機
SL          軸線
501        ケーシング
502        回転軸
503        インペラ
503a      ディスク
503b      ブレード
503c      カバー
FC          内部流路
FC1        圧縮流路
FC2        ケーシング流路
51          気体流通部
511        入口側特性値測定部
52          圧縮気体流通部
521        出口側特性値測定部
53          ハイドレート凍結防止剤供給部
54          内部ハイドレート凍結防止剤供給部
541        第一供給管
541a      ハイドレート凍結防止剤噴射部
542        第一供給弁
543        第二供給管
544        第二供給弁
55          加熱部
60          制御部
61          第一入力部
62          第二入力部
63          差分算出部
64          第一基準判定部
65          供給開始指示部
66          第二基準判定部
67          加熱供給指示部
68          第一供給弁指示部
69          第二供給弁指示部
70          洗浄終了指示部
S100      特性値取得工程
S200      差分算出工程
S300      ハイドレート凍結防止剤供給判定工程
S400      第一基準判定工程
S500      供給開始工程
S600      第二基準判定工程
S700      加熱供給工程
1 Undersea Production System S Ship F Oil and Gas Field W Production Well PF Production Fluid M Manifold FL Flow Line R Riser GR Gas Pipeline OR Oil Pipeline AR Hydrate Antifreeze Pipeline AL Umbilical Line SM Subsea Module 2 Main Heat Exchange 3 Separator 4 Pump system 41 Pump 42 Liquid flow part 43 Compressed liquid flow part 5 Compressor system 50 Compressor SL Axis line 501 Casing 502 Rotating shaft 503 Impeller 503a Disk 503b Blade 503c Cover FC Internal flow path FC1 Compression flow path FC2 Sing flow path 51 Gas flow part 511 Inlet side characteristic value measurement part 52 Compressed gas flow part 521 Outlet side characteristic value measurement part 53 Hydrate antifreeze supply part 54 Internal hydrate antifreeze supply part 541 First supply pipe 541a Hyde Rate antifreezing agent injection unit 542 First supply valve 543 Second supply pipe 544 Second supply valve 55 Heating unit 60 Control unit 61 First input unit 62 Second input unit 63 Difference calculation unit 64 First reference determination unit 65 Start of supply Instruction unit 66 Second reference determination unit 67 Heating supply instruction unit 68 First supply valve instruction unit 69 Second supply valve instruction unit 70 Cleaning end instruction unit S100 Characteristic value acquisition step S200 Difference calculation step S300 Hydray Antifreezing agent feed judging step S400 first reference determination step S500 the supply start step S600 the second reference determination step S700 heating supply step

Claims (8)

  1.  ケーシングと、このケーシング内に支持された回転軸と、この回転軸とともに回転して気体を圧縮するインペラと、を有する圧縮機と、
     前記圧縮機で圧縮された気体が流通する圧縮気体流通部と、
     前記気体のハイドレート化を抑えるハイドレート凍結防止剤を前記圧縮気体流通部に供給するハイドレート凍結防止剤供給部と、
     前記ハイドレート凍結防止剤供給部で供給する前記ハイドレート凍結防止剤の一部を前記インペラと前記ケーシングとが形成する内部流路に供給する内部ハイドレート凍結防止剤供給部と、を備える圧縮機システム。
    A compressor having a casing, a rotating shaft supported in the casing, and an impeller that rotates together with the rotating shaft to compress gas;
    A compressed gas flow section through which the gas compressed by the compressor flows,
    A hydrate antifreeze supplying part for supplying a hydrate antifreeze to the compressed gas flow part for suppressing hydration of the gas;
    A compressor comprising: an internal hydrate antifreeze supplying part for supplying a part of the hydrate antifreeze supplied by the hydrate antifreeze supplying part to an internal flow path formed by the impeller and the casing. system.
  2.  予め定めた条件を満たした場合に、前記内部ハイドレート凍結防止剤供給部に対して、前記内部流路への前記ハイドレート凍結防止剤の供給を開始させる供給制御を行う制御部を備える請求項1に記載の圧縮機システム。 The control part which performs supply control which starts supply of the hydrate antifreeze agent to the internal channel to the internal hydrate antifreeze agent supply part when predetermined conditions are satisfied. The compressor system according to 1.
  3.  前記制御部は、
     前記圧縮機の入口側と、前記圧縮機の出口側との前記気体の特性値の差分が、予め定めた第一基準を満たしているか否かを判定する第一基準判定部と、
     前記第一基準判定部で前記第一基準を満たしていると判定した場合に、前記内部ハイドレート凍結防止剤供給部に対して、前記内部流路への前記ハイドレート凍結防止剤の供給を開始させる指示を送る供給開始指示部とを有する請求項2に記載の圧縮機システム。
    The controller is
    A first reference determination unit that determines whether or not the difference between the characteristic values of the gas on the inlet side of the compressor and the outlet side of the compressor satisfies a predetermined first reference;
    When the first reference determination unit determines that the first reference is satisfied, the supply of the hydrate antifreeze to the internal flow path is started with respect to the internal hydrate antifreeze supply unit. The compressor system according to claim 2, further comprising: a supply start instruction unit that sends an instruction to perform the operation.
  4.  前記ハイドレート凍結防止剤を加熱する加熱部を備え、
     前記内部ハイドレート凍結防止剤供給部は、前記加熱部によって加熱された前記ハイドレート凍結防止剤を前記内部流路に供給する請求項1から請求項3のいずれか一項に記載の圧縮機システム。
    A heating unit for heating the hydrate antifreeze,
    The compressor system according to any one of claims 1 to 3, wherein the internal hydrate antifreeze supplying unit supplies the hydrate antifreeze heated by the heating unit to the internal flow path. .
  5.  前記ハイドレート凍結防止剤を加熱する加熱部を備え、
     前記制御部は、
     前記ハイドレート凍結防止剤を前記内部流路への供給を開放させた後に、前記圧縮機の入口側と、前記圧縮機の出口側との前記気体の特性値の差分が、予め定めた第二基準を満たしているか否かを判定する第二基準判定部と、
     前記第二基準判定部で前記第二基準を満たしていると判定した場合に、前記内部ハイドレート凍結防止剤供給部に対して、前記加熱部によって加熱された前記ハイドレート凍結防止剤を前記内部流路に供給させるよう指示を送る加熱供給指示部とを有する請求項3に記載の圧縮機システム。
    A heating unit for heating the hydrate antifreeze,
    The controller is
    After releasing the supply of the hydrate antifreeze to the internal flow path, a difference between the gas characteristic values between the inlet side of the compressor and the outlet side of the compressor is a predetermined second value. A second reference determination unit for determining whether or not the standard is satisfied;
    When it is determined that the second reference is satisfied by the second reference determination unit, the hydrate antifreeze heated by the heating unit is supplied to the internal hydrate antifreeze supply unit. The compressor system according to claim 3, further comprising a heating supply instruction unit that sends an instruction to supply the flow path.
  6.  請求項1から5のいずれか一項に記載の圧縮機システムと、
     生産井から汲み上げた生産流体を前記気体と液体とに分離させ、前記圧縮機に供給するセパレータとを備える海中生産システム。
    A compressor system according to any one of claims 1 to 5;
    A subsea production system comprising a separator that separates a production fluid pumped from a production well into the gas and liquid and supplies the separated fluid to the compressor.
  7.  ケーシングと、このケーシング内に支持された回転軸と、この回転軸とともに回転して気体を圧縮するインペラと、を有する圧縮機を洗浄する圧縮機の洗浄方法であって、
     前記圧縮機の入口側と、前記圧縮機の出口側との前記気体の特性値の差分が、予め定めた第一基準を満たしているか否かを判定する第一基準判定工程と、
     前記第一基準判定工程で前記第一基準を満たしていると判定した場合に、前記インペラと前記ケーシングとが形成する内部流路に対して、前記圧縮機で圧縮された後の前記気体に供給される前記気体のハイドレート化を抑えるハイドレート凍結防止剤の供給を開始する供給開始工程と、を含む圧縮機の洗浄方法。
    A compressor cleaning method for cleaning a compressor having a casing, a rotating shaft supported in the casing, and an impeller that rotates together with the rotating shaft to compress gas,
    A first reference determination step for determining whether or not a difference between the characteristic values of the gas on the inlet side of the compressor and the outlet side of the compressor satisfies a predetermined first reference;
    When it is determined in the first reference determination step that the first reference is satisfied, the internal flow path formed by the impeller and the casing is supplied to the gas after being compressed by the compressor And a supply start step for starting supply of a hydrate antifreeze agent that suppresses the hydrate formation of the gas.
  8.  前記ハイドレート凍結防止剤の前記内部流路への供給を開放させた後に、前記圧縮機の入口側と、前記圧縮機の出口側との前記気体の特性値の差分が、予め定めた第二基準を満たしているか否かを判定する第二基準判定工程と、
     前記第二基準判定工程で前記第二基準を満たしていると判定した場合に、加熱された前記ハイドレート凍結防止剤を前記内部流路に供給する加熱供給工程とを含む請求項7に記載の圧縮機の洗浄方法。
    After the supply of the hydrate antifreeze agent to the internal flow path is opened, a difference between the gas characteristic value between the inlet side of the compressor and the outlet side of the compressor is a predetermined second value. A second reference determination step for determining whether or not the criterion is satisfied;
    The heating supply step of supplying the heated hydrate antifreeze to the internal flow path when it is determined that the second reference is satisfied in the second reference determination step. How to clean the compressor.
PCT/JP2015/051529 2014-07-18 2015-01-21 Compressor system, subsea production system provided therewith, and compressor cleaning method WO2016009658A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/326,858 US20170198724A1 (en) 2014-07-18 2015-01-21 Compressor system, subsea production system provided therewith, and compressor cleaning method
EP15821658.0A EP3156665A4 (en) 2014-07-18 2015-01-21 Compressor system, subsea production system provided therewith, and compressor cleaning method
CN201580037321.1A CN106489029A (en) 2014-07-18 2015-01-21 Compressor assembly, possess the marine production system of this compressor assembly and the cleaning method of compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014147603A JP2016023578A (en) 2014-07-18 2014-07-18 Compressor system, undersea production system with compressor system, and compressor system washing method
JP2014-147603 2014-07-18

Publications (1)

Publication Number Publication Date
WO2016009658A1 true WO2016009658A1 (en) 2016-01-21

Family

ID=55078164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051529 WO2016009658A1 (en) 2014-07-18 2015-01-21 Compressor system, subsea production system provided therewith, and compressor cleaning method

Country Status (5)

Country Link
US (1) US20170198724A1 (en)
EP (1) EP3156665A4 (en)
JP (1) JP2016023578A (en)
CN (1) CN106489029A (en)
WO (1) WO2016009658A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6735978B2 (en) * 2018-03-12 2020-08-05 国立研究開発法人産業技術総合研究所 Gas production system and gas production method
JP6735979B2 (en) * 2018-03-12 2020-08-05 国立研究開発法人産業技術総合研究所 Gas production system and gas production method
IT201900023883A1 (en) * 2019-12-13 2021-06-13 Nuovo Pignone Tecnologie Srl COMPRESSOR WITH A SYSTEM TO REMOVE LIQUID FROM THE COMPRESSOR
US11391289B2 (en) 2020-04-30 2022-07-19 Trane International Inc. Interstage capacity control valve with side stream flow distribution and flow regulation for multi-stage centrifugal compressors
US11536277B2 (en) 2020-04-30 2022-12-27 Trane International Inc. Interstage capacity control valve with side stream flow distribution and flow regulation for multi-stage centrifugal compressors
US11841026B2 (en) 2021-11-03 2023-12-12 Trane International Inc. Compressor interstage throttle, and method of operating therof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004886A1 (en) * 2005-07-05 2007-01-11 Aker Kvaerner Subsea As Device and method for cleaning a compressor
JP2011153568A (en) * 2010-01-27 2011-08-11 Mitsubishi Heavy Ind Ltd Centrifugal compressor and cleaning method
WO2013185801A1 (en) * 2012-06-11 2013-12-19 Statoil Petroleum As Subsea compressor cleaning method wherein the cleaning liquid is retrieved from the multiphase process fluid
JP2014128104A (en) * 2012-12-26 2014-07-07 Mitsubishi Heavy Ind Ltd Compression system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7784288B2 (en) * 2006-03-06 2010-08-31 General Electric Company Methods and systems of variable extraction for compressor protection
CN101410625A (en) * 2006-03-24 2009-04-15 西门子公司 Method for operating a compressor unit and associated compressor unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004886A1 (en) * 2005-07-05 2007-01-11 Aker Kvaerner Subsea As Device and method for cleaning a compressor
JP2011153568A (en) * 2010-01-27 2011-08-11 Mitsubishi Heavy Ind Ltd Centrifugal compressor and cleaning method
WO2013185801A1 (en) * 2012-06-11 2013-12-19 Statoil Petroleum As Subsea compressor cleaning method wherein the cleaning liquid is retrieved from the multiphase process fluid
JP2014128104A (en) * 2012-12-26 2014-07-07 Mitsubishi Heavy Ind Ltd Compression system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3156665A4 *

Also Published As

Publication number Publication date
US20170198724A1 (en) 2017-07-13
JP2016023578A (en) 2016-02-08
CN106489029A (en) 2017-03-08
EP3156665A4 (en) 2017-07-19
EP3156665A1 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
WO2016009658A1 (en) Compressor system, subsea production system provided therewith, and compressor cleaning method
DK178564B1 (en) Gas compression
AU2009202054B2 (en) Subsea Compression System and Method
AU2007275960B2 (en) System and vessel hydrocarbon production and method for intervention on subsea equipment
RU2638199C2 (en) Underwater treatment of wellbore fluids
EA012681B1 (en) Apparatus for extracting, cooling and transporting effluents produced by an undersea well (embodiments)
NO20110003A1 (en) A bidirectional pipeline plug device, fluid flow treatment plant and method of purification
US20220154568A1 (en) Apparatus and method for harnessing energy from a wellbore to perform multiple functions while reducing emissions
US20220268143A1 (en) Apparatus and method for three-phase separation at a well
NO20111091A1 (en) Cold flow centers and centers
WO2013023948A2 (en) Improvements relating to subsea compression
US20170336010A1 (en) Method for managing the heating of fluids flowing through a network of submarine pipelines
EP3551843B1 (en) Fluid injection system
WO2016009659A1 (en) Compressor system, subsea production system provided therewith, and compressor cleaning method
US9803460B2 (en) Wellhead platform systems for use in extracting and testing multi-phase raw mixtures
US20230204309A1 (en) Method, system and apparatus for hydrocarbon flow system fluid cooling
US20230243476A1 (en) Apparatus and method for precipitation of solids in hydrocarbon flow systems
GB2433759A (en) Subsea compression system and method
NO317861B1 (en) Method of removing water from gas produced from an underwater well and apparatus for carrying out the same.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821658

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015821658

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015821658

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15326858

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE