WO2016009540A1 - Measurement timing detection device - Google Patents

Measurement timing detection device Download PDF

Info

Publication number
WO2016009540A1
WO2016009540A1 PCT/JP2014/069084 JP2014069084W WO2016009540A1 WO 2016009540 A1 WO2016009540 A1 WO 2016009540A1 JP 2014069084 W JP2014069084 W JP 2014069084W WO 2016009540 A1 WO2016009540 A1 WO 2016009540A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration sensor
crank
unit
measurement timing
measurement
Prior art date
Application number
PCT/JP2014/069084
Other languages
French (fr)
Japanese (ja)
Inventor
悠史 居鶴
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2016534056A priority Critical patent/JP6215472B2/en
Priority to PCT/JP2014/069084 priority patent/WO2016009540A1/en
Publication of WO2016009540A1 publication Critical patent/WO2016009540A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M3/00Construction of cranks operated by hand or foot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J50/00Arrangements specially adapted for use on cycles not provided for in main groups B62J1/00 - B62J45/00
    • B62J50/20Information-providing devices
    • B62J50/21Information-providing devices intended to provide information to rider or passenger
    • B62J50/22Information-providing devices intended to provide information to rider or passenger electronic, e.g. displays

Definitions

  • the present invention relates to a measurement timing detection device that detects timing for measuring a force applied to a crank that rotates about a rotation axis.
  • a device that is mounted on a human-powered machine such as a bicycle and calculates and displays information related to the traveling of the bicycle and information related to the movement of the driver.
  • This type of device calculates and displays predetermined information by receiving data from a sensor provided on the bicycle.
  • the information to be displayed includes a force (torque or the like) applied to the pedal by the driver.
  • this type of device may display the force applied to the pedal at predetermined angular intervals. For this purpose, it is necessary to detect the angle of the crank relative to the reference position.
  • a magnet group 21 in which a plurality of magnets are arranged at intervals of 30 ° around the center C of the frame-shaped member 20 on the surface of an annular frame-shaped member 20 fixed to the side surface of a bicycle frame.
  • a magnetic sensor 22 that is fixed to the chain ring and rotates together with the crank, and describes that the magnetic sensor 22 detects the position of each magnet in the magnet group 21 to detect the angle. Yes.
  • Patent Document 2 describes that the rotation angle of the crank is detected by the angular velocity sensor 10 and the acceleration sensors 11 and 12.
  • Patent Documents 1 and 2 detect the measurement timing for measuring the force applied to the pedal by detecting the rotation angle of the crank.
  • the pedaling state measuring device described in Patent Document 2 uses an angular velocity sensor, and thus has a problem of increasing power consumption. It is known that an angular velocity sensor generally consumes more power than an acceleration sensor. Since a device attached to a bicycle or the like is driven by a battery or the like as a power source, low power consumption is desired.
  • an object of the present invention is to provide a measurement timing detection device capable of, for example, reducing cost and improving durability and reducing power consumption.
  • the invention described in claim 1 is arranged on a crank attached to a rotating shaft or a member that rotates in conjunction with the crank, and accelerates in a direction parallel to the longitudinal direction of the crank.
  • Next measurement of a first acceleration sensor and a second acceleration sensor to be detected, a reference position detection unit for detecting that the crank is at a predetermined reference position, and a measurement unit for performing a predetermined measurement at an appropriate angular position of the crank A determination unit that determines timing based on an output value of the first acceleration sensor and an output value of the second acceleration sensor, a detection result of the reference position detection unit, and a next measurement angle; This is a characteristic measurement timing detection device.
  • an output of a first acceleration sensor that is arranged on a crank attached to a rotating shaft or a member that rotates in conjunction with the crank and detects acceleration in a direction parallel to the longitudinal direction of the crank.
  • An acquisition step of acquiring a value and an output value of the second acceleration sensor, a reference position detection step of detecting that the crank is at a predetermined reference position, and a measurement unit that performs a predetermined measurement at an appropriate angular position of the crank A determination step of determining a next measurement timing based on an output value of the first acceleration sensor and an output value of the second acceleration sensor, a detection result of the reference position detection step, and a next measurement angle; It is the measurement timing detection method characterized by having.
  • the invention described in claim 13 is a measurement timing detection program that causes a computer to execute the measurement timing detection method according to claim 12.
  • the invention described in claim 14 is a computer-readable recording medium in which the measurement timing detection program according to claim 13 is stored.
  • FIG. 2 is a block configuration diagram of a cycle computer and a measurement module shown in FIG. 1. It is explanatory drawing of arrangement
  • FIG. 4 is a circuit diagram of a measurement module strain detection circuit shown in FIG. 3. It is explanatory drawing of the force added to a right side crank, and a deformation
  • FIG. 20 is a plan view showing the crank shown in FIG. 19.
  • the first acceleration sensor and the second acceleration sensor are arranged on a crank attached to a rotation shaft or a member that rotates in conjunction with the crank, and the longitudinal direction of the crank
  • the acceleration in the parallel direction is detected, and the reference position detector detects that the crank is at a predetermined reference position.
  • the next measurement timing of the measurement unit in which the determination unit performs a predetermined measurement at an appropriate angular position of the crank, the output value of the first acceleration sensor, the output value of the second acceleration sensor, and the detection result of the reference position detection unit Next, it is determined based on the next measurement angle.
  • the acceleration component of the centrifugal force in the longitudinal direction (detection axis direction) of the crank of the acceleration sensor can be calculated. Therefore, the next measurement timing (time until the next measurement timing) can be calculated based on the acceleration component of the centrifugal force and the next measurement angle.
  • the next measurement timing is determined based on the reference position, the offset of the measurement timing generated due to the characteristics of the acceleration sensor, the power supply voltage fluctuation, etc. can be taken into account, and the measurement timing can be calculated with high accuracy. .
  • no magnet since no magnet is used, the cost can be reduced, and since it is not affected by dust or iron sand, durability can be improved. Further, since the angular velocity sensor is not used, the power consumption can be reduced.
  • first acceleration sensor and the second acceleration sensor may be arranged at different distances from the rotation axis. By doing so, the next measurement timing can be determined by arranging the first acceleration sensor and the second acceleration sensor on one crank.
  • the determination unit calculates the rotation speed of the crank from the detection result of the reference position detection unit, and determines the next measurement timing as the output value of the first acceleration sensor and the output value of the second acceleration sensor, the rotation speed of the crank, It may be determined based on the next measurement angle. By doing so, it is possible to determine the measurement timing based on the rotation speed of the crank, and to calculate the measurement timing with high accuracy.
  • the determination unit determines the next measurement timing based on the output values of the first acceleration sensor and the second acceleration sensor, the detection result of the reference position detection unit, and the next measurement angle. You may have a correction
  • the determination unit may determine whether the measurement unit next time based on the plurality of output values of the first acceleration sensor and the plurality of output values of the second acceleration sensor, the detection result of the reference position detection unit, and the next measurement angle.
  • the measurement timing may be determined.
  • the determination unit calculates a crank rotation period based on the output value of the first acceleration sensor and the output value of the second acceleration sensor, and based on the rotation period, the detection result of the reference position detection unit, and the next measurement angle. Then, the next measurement timing of the measurement unit may be determined. By doing so, for example, when measuring at every 30 ° per round, the time until the next measurement can be calculated from the rotation period of the crank and 30 °. Therefore, the next measurement timing can be detected.
  • the measurement unit performs a predetermined measurement at a timing corresponding to an angle obtained by dividing the crank m rotation by n (m and n are integers of 1 or more), and the determination unit performs the next measurement based on m and n.
  • An angle may be obtained. By doing in this way, it can measure at equal intervals, for example, every 30 degrees.
  • the determination unit may detect the measurement timing based on the reference position. By doing in this way, the reference
  • the reference position detection unit may include a detection unit that is fixedly disposed at a position corresponding to a specific rotation angle of the crank, and a detection unit that is disposed on the crank and detects the detection unit. Good. In this way, for example, by providing a magnetic sensor on the crank and providing a magnet on the bicycle frame, the position of the frame can be set as the reference position.
  • a third acceleration sensor for detecting acceleration in a direction parallel to the short direction of the crank; a notification unit for notifying that the detection unit has detected the detected unit; and the first acceleration sensor or the second acceleration sensor.
  • a timing instruction unit that instructs the determination unit to acquire the output value of the first acceleration sensor or the second acceleration sensor and the output value of the third acceleration sensor. Then, the timing instruction unit causes the determination unit to acquire the output value of the first acceleration sensor or the second acceleration sensor and the output value of the third acceleration sensor based on the notification that the notification unit has detected the detected unit, and the reference position
  • the detection unit may set the reference position based on the output value of the first acceleration sensor or the second acceleration sensor acquired by the determination unit and the output value of the third acceleration sensor.
  • the angle with respect to the perpendicular direction of the position where the to-be-detected part was provided can be calculated based on the gravitational acceleration applied to the crank from which the to-be-detected part was detected. Therefore, it is not necessary to investigate the angle in the vertical direction of the bicycle frame or to measure it with a protractor.
  • a filter unit that performs a filter process on the output values of the first acceleration sensor and the output value of the second acceleration, and a delay angle correction unit that performs an angle correction process after the filter process is performed may be included. By doing so, it is possible to remove acceleration components other than gravitational acceleration and acceleration of centrifugal force applied to the crank due to vibration and the like, and the detection accuracy of the next measurement timing can be improved.
  • the delay generated by the filter process can be corrected by the delay angle correction unit.
  • the rotation angle detection method includes a crank from a first acceleration sensor and a second acceleration sensor arranged on a member that rotates in conjunction with a crank or a crank attached to a rotation shaft in the acquisition step.
  • the acceleration in the direction parallel to the longitudinal direction is acquired, and in the reference position detection step, it is detected that the crank is at a predetermined reference position.
  • the next measurement timing of the measurement unit that performs a predetermined measurement at an appropriate angular position of the crank is detected in the output value of the first acceleration sensor, the output value of the second acceleration sensor, and the reference position detection step.
  • a determination is made based on the result and the next measurement angle.
  • the acceleration component of the centrifugal force in the longitudinal direction (detection axis direction) of the crank of the acceleration sensor can be calculated. Therefore, the next measurement timing (time until the next measurement timing) can be calculated based on the acceleration component of the centrifugal force and the next measurement angle.
  • the next measurement timing is determined based on the reference position, the offset of the measurement timing generated due to the characteristics of the acceleration sensor, the power supply voltage fluctuation, etc. can be taken into account, and the measurement timing can be calculated with high accuracy. .
  • no magnet since no magnet is used, the cost can be reduced, and since it is not affected by dust or iron sand, durability can be improved. Further, since the angular velocity sensor is not used, the power consumption can be reduced.
  • a rotation angle detection program that causes a computer to execute the rotation angle detection method described above may be used.
  • the acceleration component of the centrifugal force in the longitudinal direction (detection axis direction) of the crank of the acceleration sensor can be calculated using a computer. Therefore, the next measurement timing (time until the next measurement timing) can be calculated based on the acceleration component of the centrifugal force and the next measurement angle.
  • the next measurement timing is determined based on the reference position, the offset of the measurement timing generated due to the characteristics of the acceleration sensor, the power supply voltage fluctuation, etc. can be taken into account, and the measurement timing can be calculated with high accuracy. .
  • the cost can be reduced, and since it is not affected by dust or iron sand, durability can be improved. Further, since the angular velocity sensor is not used, the power consumption can be reduced.
  • the rotation angle detection program described above may be stored in a computer-readable recording medium. In this way, the program can be distributed as a single unit in addition to being incorporated in the device, and version upgrades can be easily performed.
  • a bicycle 1 including a cycle computer 201 having a rotation angle detection device according to a first embodiment of the present invention will be described with reference to FIGS.
  • the bicycle 1 includes a frame 3, a front wheel 5, a rear wheel 7, a handle 9, a saddle 11, a front fork 13, and a drive mechanism 101.
  • Frame 3 is composed of two truss structures.
  • the frame 3 is rotatably connected to the rear wheel 7 at the rear end portion.
  • a front fork 13 is rotatably connected in front of the frame 3.
  • the front fork 13 is connected to the handle 9.
  • the front fork 13 and the front wheel 5 are rotatably connected at the front end position of the front fork 13 in the downward direction.
  • the front wheel 5 has a hub part, a spoke part, and a tire part.
  • the hub portion is rotatably connected to the front fork 13. And this hub part and the tire part are connected by the spoke part.
  • the rear wheel 7 has a hub part, a spoke part, and a tire part.
  • the hub portion is rotatably connected to the frame 3. And this hub part and the tire part are connected by the spoke part.
  • the hub portion of the rear wheel 7 is connected to a sprocket 113 described later.
  • the bicycle 1 has a drive mechanism 101 that converts a stepping force (stepping force) by a user (driver) foot into a driving force of the bicycle 1.
  • the drive mechanism 101 includes a pedal 103, a crank mechanism 104, a chain ring 109, a chain 111, and a sprocket 113.
  • the pedal 103 is a part in contact with a foot for the user to step on.
  • the pedal 103 is supported so as to be rotatable by a pedal crankshaft 115 of the crank mechanism 104.
  • the crank mechanism 104 includes a crank 105, a crankshaft 107, and a pedal crankshaft 115 (see FIGS. 2, 4 and 10).
  • the crankshaft 107 passes through the frame 3 in the left-right direction (from one side of the bicycle side to the other).
  • the crankshaft 107 is rotatably supported by the frame 3. That is, it becomes the rotating shaft of the crank 105.
  • the crank 105 is provided at a right angle to the crankshaft 107.
  • the crank 105 is connected to the crankshaft 107 at one end.
  • the pedal crankshaft 115 is provided at a right angle to the crank 105.
  • the axial direction of the pedal crankshaft 115 is the same as that of the crankshaft 107.
  • the pedal crankshaft 115 is connected to the crank 105 at the other end of the crank 105.
  • the crank mechanism 104 has such a structure on the side opposite to the side surface of the bicycle 1. That is, the crank mechanism 104 has two cranks 105 and two pedal crankshafts 115. Therefore, the pedal 103 is also provided on each side of the bicycle 1.
  • the right crank 105R and the left crank 105L are connected so as to extend in opposite directions around the crankshaft 107.
  • the right pedal crankshaft 115R, the crankshaft 107, and the left pedal crankshaft 115L are formed in parallel and on the same plane.
  • the right crank 105R and the left crank 105L are formed in parallel and on the same plane.
  • the chain ring 109 is connected to the crankshaft 107.
  • the chain ring 109 is preferably constituted by a variable gear capable of changing the gear ratio.
  • a chain 111 is engaged with the chain ring 109.
  • the chain 111 is engaged with the chain ring 109 and the sprocket 113.
  • the sprocket 113 is connected to the rear wheel 7.
  • the sprocket 113 is preferably composed of a variable gear.
  • the bicycle 1 converts the stepping force of the user into the rotational force of the rear wheel by such a drive mechanism 101.
  • the bicycle 1 has a cycle computer 201 and a measurement module 301 (see also FIG. 2).
  • the cycle computer 201 is disposed on the handle 9. As shown in FIG. 2, the cycle computer 201 includes a cycle computer display unit 203 that displays various types of information and a cycle computer operation unit 205 that receives user operations.
  • the various types of information displayed on the cycle computer display unit 203 include the speed of the bicycle 1, position information, the distance to the destination, the estimated arrival time to the destination, the travel distance since the departure, and the elapsed time since the departure. These are time, propulsive force, loss power, efficiency, etc. for each angle of the crank 105.
  • the propulsive force is the magnitude of the force applied in the rotation direction of the crank 105.
  • the loss force is a magnitude of a force applied in a direction different from the rotation direction of the crank 105.
  • the force applied in a direction different from the rotational direction is a useless force that does not contribute to the driving of the bicycle 1. Therefore, the user can drive the bicycle 1 more efficiently by increasing the propulsive force as much as possible and decreasing the loss force as much as possible. That is, these forces are loads applied to the crank 105 when the crank 105 rotates.
  • the cycle computer operation unit 205 is shown as a push button in FIG. 2, but is not limited thereto, and various input means such as a touch panel or a plurality of input means can be used in combination.
  • the cycle computer 201 has a cycle computer wireless reception unit 209.
  • the cycle computer wireless reception unit 209 is connected to the main body portion of the cycle computer 201 through wiring.
  • the cycle computer wireless reception unit 209 does not need to have a reception-only function. For example, you may have a function as a transmission part.
  • an apparatus described as a transmission unit or a reception unit may also have both a reception function and a transmission function.
  • the measurement module 301 is provided on the inner surface of the crank 105, for example, and a human power (stepping force) applied by the user to the pedal 103 using a strain gauge 369 (see FIGS. 3 and 10) configured from a plurality of strain gauge elements. Is detected. Specifically, a propulsive force that is the rotational force of the crank 105 and serves as the driving force of the bicycle 1 and a loss force that is a force applied in a direction different from the rotational direction are calculated. The measurement module 301 also detects the measurement timing of propulsive force and loss force using an acceleration sensor 371 described later. That is, the detection (calculation) of the propulsive force and the loss force is a predetermined measurement according to the present embodiment.
  • the measurement module 301 has a magnetic sensor 373 that detects the approach of the magnet 503 provided on the frame 3 of the bicycle 1 (see FIG. 3).
  • the magnetic sensor 373 detects the position of the magnet 503 by being turned on by the approaching magnet 503. That is, when the magnetic sensor 373 is turned on, the crank 105 is also present at the position where the magnet 503 is present. Therefore, the cycle computer 201 can obtain cadence [rpm] from the output of the magnetic sensor 373. That is, the measurement module 301 also has a cadence sensor function.
  • FIG. 3 is a block diagram of the cycle computer 201 and the measurement module 301.
  • the measurement module 301 includes a measurement module wireless transmission unit 309, a measurement module control unit 351, a measurement module storage unit 353, a power sensor 368, an acceleration sensor 371, and a magnetic sensor 373.
  • the measurement module wireless transmission unit 309 is a rotation angle of the crank 105 calculated based on the propulsive force and loss force calculated from the strain information by the measurement module control unit 351 and the measurement timing calculated (detected) from the output information of the acceleration sensor 371.
  • the cadence calculated based on the output of the magnetic sensor 373 is transmitted to the cycle computer wireless reception unit 209.
  • the measurement module control unit 351 comprehensively controls the measurement module 301.
  • the measurement module control unit 351 includes a propulsive force calculation unit 351a, a measurement timing determination unit 351b, a reference angle detection unit 351c, a transmission data creation unit 351d, and a cadence calculation unit 351e.
  • the propulsive force calculation unit 351a calculates the propulsive force and the loss force from the strain information output from the power sensor 368. A method for calculating the propulsive force and the loss force will be described later.
  • the reference angle detector 351c detects whether or not the position of the crank 105 is at the reference position.
  • the reference position is detected by receiving an output of an information signal indicating that the magnetic sensor 373 is turned on.
  • the transmission data creation unit 351d includes the rotation angle of the crank 105 calculated from the propulsive force and loss force calculated by the propulsive force calculation unit 351a, the next measurement timing calculated by the measurement timing determination unit 351b, and the reference position, Transmission data is created from the cadence calculated by the cadence calculation unit 351e and output to the measurement module wireless transmission unit 309.
  • the cadence calculation unit 351e refers to the value of the counter that it has. Then, cadence is calculated from the counter value. Specifically, the time (cycle) [second] at which the magnetic sensor 373 is turned on is calculated by multiplying the count number (C) of the counter by one count interval (T). Then, cadence [rpm] is calculated by dividing 60 by this period.
  • the counter may be externally provided as a timer or the like. Further, the cadence calculation unit 351e may obtain cadence by a method other than the above. In short, any other method may be used as long as it is obtained from the interval at which the magnetic sensor 373 is turned on.
  • the measurement module storage unit 353 stores various types of information.
  • the various types of information are, for example, a control program for the measurement module control unit 351 and temporary information required when the measurement module control unit 351 performs control.
  • the measurement module storage unit 353 also stores a reference angle storage unit 355 and an output value storage unit 357.
  • the reference angle storage unit 355 is configured by a non-volatile memory such as a flash memory, for example, and stores an angle with respect to the vertical direction of the frame 3 on which the magnet 503 is provided.
  • a value or the like actually measured using a protractor or the like is stored in advance by referring to a design drawing or specifications of the frame 3 in advance.
  • the output value storage unit 357 is composed of, for example, a RAM (Random Access Memory), and stores a plurality of output values of the first acceleration sensor 371a and a plurality of output values of the second acceleration sensor 371b. For example, it is only necessary to store output values acquired at two or more sampling periods such as from the previous measurement timing calculation to the present (measurement timing calculation).
  • a RAM Random Access Memory
  • the magnetic sensor 373 is switched ON / OFF when the magnet 503 approaches. When the magnetic sensor 373 is turned on, the magnetic sensor 373 outputs an information signal indicating that to the measurement module control unit 351.
  • the acceleration sensor 371 is bonded to the crank 105 and integrated.
  • the acceleration sensor 371 may be appropriately selected from known methods such as a capacitance type and a piezoresistive type.
  • the acceleration sensor 371 includes a first acceleration sensor 371a and a second acceleration sensor 371b.
  • FIG. 4 shows an example of the arrangement of the acceleration sensor 371 in the present embodiment on the crank 105.
  • the acceleration sensor 371 is bonded to the inner surface 119 of the crank 105.
  • the inner surface of the crank 105 is a surface on which the crankshaft 107 is protruded (connected), and is a surface (side surface) parallel to a plane including a circle defined by the rotational motion of the crank 105.
  • the outer surface 120 of the crank 105 is a surface on which the pedal crankshaft 115 is protruded (connected) so as to face the inner surface 119. That is, it is a surface on which the pedal 103 is rotatably provided.
  • the upper surface 117 of the crank 105 is one of the surfaces extending in the longitudinal direction in the same direction as the inner surface 119 and the outer surface 120 and orthogonal to the inner surface 119 and the outer surface 120.
  • a lower surface 118 of the crank 105 is a surface facing the upper surface 117.
  • the acceleration sensor 371 is described as being bonded to the inner surface 119 of the crank 105. However, the acceleration sensor 371 may be bonded to the outer surface 120, the upper surface 117, or the lower surface 118, or provided inside the crank 105. May be.
  • the first acceleration sensor 371a and the second acceleration sensor 371b have a detection direction parallel to the longitudinal direction of the crank 105, that is, parallel to the central axis C1 of the inner surface 119 and provided at different distances from the center of the crank shaft 107. It has been. In the example of FIG. 4, the first acceleration sensor 371a is provided at a position closer to the center of the crankshaft 107 than the second acceleration sensor 371b. The first acceleration sensor 371a and the second acceleration sensor 371b have a detection direction that is parallel to the longitudinal direction of the crank 105. Further, the first acceleration sensor 371a and the second acceleration sensor 371b may not be provided on a straight line as shown in FIG.
  • the detection result (output) of the acceleration sensor 371 is output to the measurement module control unit 351.
  • analog information may be converted into digital information by an A / D converter (not shown).
  • FIG. 5 is an explanatory diagram for the acceleration detected by the acceleration sensor 371 when the crank 105 is stationary.
  • the longitudinal direction in FIG. 5 is the longitudinal direction of the crank 105, and the direction toward the tip of the arrow indicates the direction from the crankshaft 107 toward the pedal crankshaft 115.
  • it is in the state which has stopped at the position shifted
  • the crank 105 rotates, it becomes as shown in FIG.
  • the first acceleration sensor 371a is provided at a distance r1 from the center of the crankshaft 107
  • the second acceleration sensor 371b is provided at a distance r2 from the center of the crankshaft 107. Further, r1 ⁇ r2.
  • centrifugal force is generated in the longitudinal direction of the crank 105 (direction from the crankshaft 107 to the pedal crankshaft 115, that is, the normal direction of rotation of the crank 105) together with the gravitational acceleration. Join.
  • the acceleration of the centrifugal force increases as the distance from the rotation center (center of the crankshaft 107) increases. Further, the acceleration (instantaneous acceleration) obtained by adding the gravitational acceleration and the acceleration of centrifugal force is added to the first acceleration sensor 371a, and the acceleration (acceleration of the gravity acceleration and the acceleration of centrifugal force) is added to the second acceleration sensor 371b.
  • Instantaneous acceleration As described above, since the detection direction of the acceleration sensor 371 is parallel to the longitudinal direction of the crank 105, the longitudinal component of the instantaneous acceleration is actually detected.
  • the instantaneous acceleration of the first acceleration sensor 371a is expressed by the following equation (4)
  • the instantaneous acceleration of the second acceleration sensor 371b is expressed by the following equation (5).
  • the detection value (output value) of the first acceleration sensor 371a is expressed by the following equation (6)
  • the detection value (output value) of the second acceleration sensor 371b is expressed by the following equation (7).
  • the expression (11) is expressed by the following expression (12) when the expression (9) is substituted.
  • the equation (13) can be expressed as the following equation (14) when the calculation result of only the constant is K.
  • the constant K may be stored in advance in a nonvolatile memory or the like in the measurement module control unit 351 and read when calculating the rotation speed R. That is, the rotation speed R is calculated by the measurement timing determination unit 351b by multiplying the output value of the first acceleration sensor 371a by the constant K from the output value of the second acceleration sensor 371b and the square root of the result.
  • the above-described method is good when the crank 105 rotates at a constant speed, but in the case of the bicycle 1, the force applied to the pedal 103 by the driver often fluctuates, and thus the crank 105 does not always rotate at a constant speed. Therefore, the time indicating the next measurement timing set in the timer is corrected before that time.
  • FIG. 7 An example is shown in FIG. In FIG. 7, the measurement timing is set every 30 ° of one round.
  • the star in FIG. 7 is the reference position. It is assumed that (a) is 90 rpm, (b) is 91 rpm, and (c) is 92 rpm at three measurement timings (a), (b), and (c) immediately after the reference position.
  • the timer is set to 55.5 milliseconds from the rotation period and the number of measurements, and started. Then, the rotational speed R is calculated before (b), that is, before 55.5 milliseconds have elapsed. If the calculated result is, for example, 91 rpm, the timer is corrected to 54.9 milliseconds from the rotation period and the number of measurements. Then, the time of (b) is corrected to be shortened by 0.6 milliseconds, and when the timer times out after the corrected time elapses, the measurement timing determining unit 351b calculates the propulsive force and the loss force to the propulsive force calculating unit 351a. The propulsive force, the loss force, and the like are transmitted to the cycle computer 201 via the transmission data creation unit 351d and the measurement module wireless transmission unit 309.
  • the propulsive force calculation unit 351a calculates propulsive force and loss force, and the next measurement timing is set to 54.9 milliseconds and started. Then, the rotational speed R is calculated before (c), that is, before 54.9 milliseconds elapses. If the calculated result is, for example, 92 rpm, the timer is corrected to 54.3 milliseconds from the rotation period and the number of measurements. Then, the time of (c) is corrected to be shortened by 0.6 milliseconds, and when the timer times out after the corrected time elapses, the measurement timing determining unit 351b calculates the propulsive force and the loss force to the propulsive force calculating unit 351a. The propulsive force, the loss force, and the like are transmitted to the cycle computer 201 via the transmission data creation unit 351d and the measurement module wireless transmission unit 309. This is repeated thereafter.
  • the timing for correcting the timer is, for example, about 95% of the time set for the timer. For example, when the timer is set at 55.5 milliseconds, correction processing is performed when 52.7 milliseconds have elapsed. If the timing for this correction is too late, the correction may not be in time. Of course, it is not limited to 95% and may be changed as appropriate. That is, after the next measurement timing is determined based on the output value a1 of the first acceleration sensor 371a, the output value a2 of the second acceleration sensor 371b, and the number of times of measurement n, until the next measurement timing. The next measurement timing is corrected.
  • the output value a1 of the first acceleration sensor 371a and the output value a2 of the second acceleration sensor 371b used for calculating the rotation speed R are not limited to one acquired when calculating the measurement timing, and are used in a plural number. May be.
  • the output value of the acceleration sensor 371b may be used.
  • the plurality of output values can be used by calculating an average, for example. In this way, even if noise or the like is included in the output of the acceleration sensor 371, the influence can be reduced.
  • the rotational speed R according to the above-described equation (14) may cause an error with respect to the actual rotational speed due to variations in characteristics such as temperature characteristics of the acceleration sensor 371 and fluctuations in the power supply voltage. Therefore, the measurement timing determination unit 351b performs correction using the cadence calculated from the detection interval of the magnet 503 by the cadence calculation unit 351e. This operation will be described with reference to FIG.
  • FIG. 8 is a table showing cadence (number of rotations) at each measurement timing when the crank 105 rotates twice.
  • a to l correspond to a, b, c, and l in FIG. 7, and d to k are symbols sequentially attached to measurement timings (every 30 °) in the counterclockwise direction after c in FIG.
  • the first rotation row in FIG. 8 shows the cadence by the acceleration sensor 371, that is, the rotation speed R calculated by the above-described equation (14), and the cadence calculated by the cadence calculation unit 351e, that is, the detection interval of the magnet 503. Is the number of revolutions calculated from As for the cadence by the acceleration sensor 371, the rotation speed R calculated at each measurement timing and the average value thereof are described as AVG. Since the cadence calculated by the cadence calculating unit 351e is calculated once per rotation, it is described in the AVG line.
  • the cadence calculated by the cadence calculating unit 351e is the rotation speed calculated from the detection interval of the magnet 503, the accuracy is higher than the rotation speed R calculated by the above-described equation (14). Therefore, as described in the second rotation column of FIG. 8, the difference between the average value of the cadence by the acceleration sensor 371 of the first rotation and the cadence calculated by the cadence calculation unit 351e is taken, and the difference is used as an offset. This is reflected in the rotation speed R calculated at each measurement timing of the rotation.
  • the second rotation row in FIG. 8 shows the cadence by the acceleration sensor 371, that is, the rotation speed R calculated by the above-described equation (14), and the cadence by the acceleration sensor 371 with the offset, that is, the corrected rotation speed.
  • the offset is subtracted, but of course there is a case where the offset is added. That is, the measurement timing includes the output value of the first acceleration sensor 371a and the output value of the second acceleration sensor 371b, the cadence (the number of rotations of the crank 105) calculated by the cadence calculation unit 351e, and every 30 ° (next measurement angle). ) And is determined based on.
  • the calculation of the offset is not limited to each rotation, but may be calculated only for the first time, and thereafter, the calculated value may be used, or may be calculated once for a plurality of rotations.
  • the cadence calculating unit 351e calculates cadence once per rotation from the detection interval of the magnet 503 as described above.
  • the cadence calculation unit 351e calculates the cadence when it receives an output of an information signal indicating that the magnetic sensor 373 is turned on. Therefore, the position where the magnetic sensor 373 is turned on, that is, the position of the magnet 503 is determined. It becomes the reference position, and the above-described offset is calculated and addition / subtraction is performed when the reference position is detected.
  • the average value of the rotational speed R calculated by the above-described equation (14) is calculated by storing the value calculated at each measurement timing in the measurement module storage unit 353 and at the reference position detection timing. Alternatively, the average value so far may be sequentially calculated at each measurement timing.
  • the reference position is used as the starting angle as shown in FIG. Since the magnet 503 is provided on the frame 3 as described above, an angle ⁇ 0 with respect to the vertical direction of the frame 3 on which the magnet 503 is provided is used as a reference position as shown in FIG.
  • the angle ⁇ 0 of the reference position is stored in the reference angle storage unit 355 in advance by, for example, referring to the design drawing or specification of the frame 3 or measuring in advance with a protractor or the like. Then, every time the magnetic sensor 373 detects the magnet 503, the reference timing detection unit 351c notifies the measurement timing determination unit 351b that the reference position is detected, and the measurement timing determination unit 351b notifies the reference angle detection unit 351c of the notification. Then, the next measurement timing is detected by the method described above.
  • the magnet 503 functions as a detected unit
  • the magnetic sensor 373 functions as a detection unit
  • the reference angle detection unit 351c, the measurement timing determination unit 351b, and the reference angle storage unit 355 function as a reference position detection unit.
  • the reference position is not necessarily an angle that matches the measurement timing that is every 30 ° when the tip of the crank 105 faces directly above is 0 °. Accordingly, the next measurement timing of the reference position is not a time corresponding to, for example, 30 °, but a time until an angle corresponding to the latest angle of every 30 ° is set. For example, when the reference position in FIG. 7 is 250 °, the time required for rotation by 20 °, which is the difference up to 270 °, which is the angle every 30 °, is calculated from the rotation speed R. And after 270 degrees, the time to the angle equivalent to the angle for every 30 degrees is set.
  • the rotation angle of the crank 105 can be calculated from the angle of the reference position and the angle of the measurement timing, which are known in advance. For example, in the case of FIG. 7, if the reference position is 250 °, the angle of the measurement timing is every 30 °, so (a) is calculated as 270 °, (b) is 300 °, and (c) is calculated as 330 °. Is done.
  • the measurement module control unit 351 (measurement timing determination unit 351b, reference angle detection unit 351c, transmission data creation unit 351d, cadence calculation unit 351e) and measurement module storage unit 353 (reference angle storage unit) 355, output value storage unit 357), acceleration sensor 371 (first acceleration sensor 371a, second acceleration sensor 371b), magnetic sensor 373, and magnet 503 constitute the measurement timing detection device 310 according to the present embodiment. is doing.
  • the measurement timing determination unit 351b determines the next measurement timing of the propulsion force calculation unit 351a that performs predetermined measurement 12 times while the crank 105 makes one rotation (one revolution). It is determined based on the output value a1 and the output value a1 of the second acceleration sensor 371b, the number of revolutions calculated from the reference position, and 12 times. Here, from 12 times per rotation, it can be detected that the angle of every 30 ° which is the next measurement angle has been reached. That is, in this embodiment, detection of a predetermined angle is converted into time and detected as measurement timing.
  • the magnetic sensor 373 and the magnet 503 are used as the detecting unit and the detected unit.
  • the present invention is not limited to this, and can be installed on the crank 105 and the frame 3 such as an optical sensor or a mechanical sensor. Any sensor capable of detecting one rotation may be used.
  • the power sensor 368 has a strain gauge 369 and a measurement module strain detection circuit 365.
  • the strain gauge 369 is bonded to the crank 105 and integrated.
  • the strain gauge 369 includes a first strain gauge 369a, a second strain gauge 369b, a third strain gauge 369c, and a fourth strain gauge 369d (see FIG. 10 and the like). Each terminal of the strain gauge 369 is connected to the measurement module strain detection circuit 365.
  • FIG. 10 shows an example of the arrangement of the strain gauge 369 on the crank 105 in this embodiment.
  • the strain gauge 369 is bonded to the inner surface 119 of the crank 105.
  • the first strain gauge 369a and the second strain gauge 369b have a detection direction parallel to the longitudinal direction of the crank 105, that is, parallel to the central axis C1 of the inner surface 119 and symmetrical to the central axis C1 of the inner surface 119. It is provided to become.
  • the third strain gauge 369c is provided on the central axis C1, and the detection direction is parallel to the central axis C1, and is provided between the first strain gauge 369a and the second strain gauge 369b.
  • the fourth strain gauge 369d is provided on the central axis C1 in the detection direction perpendicular to the longitudinal direction of the crank 105, that is, perpendicular to the central axis C1 of the inner surface 119.
  • the direction parallel to the central axis C1 (the longitudinal direction in FIG. 10) that is the axis extending in the longitudinal direction of the crank 105, that is, the direction parallel to the longitudinal direction of the crank 105 is the first strain gauge 369a
  • the detection direction of the strain gauge 369b and the third strain gauge 369c is the direction perpendicular to the central axis C1 (the lateral direction in FIG. 10), that is, the direction perpendicular to the longitudinal direction of the crank 105, and the detection direction of the fourth strain gauge 369d. It becomes. Accordingly, the detection directions of the first strain gauge 369a to the third strain gauge 369c and the fourth strain gauge 369d are orthogonal to each other.
  • or the 4th strain gauge 369d is not restricted to FIG. In other words, other arrangements may be used as long as a parallel or vertical relationship with the central axis C1 is maintained.
  • the first strain gauge 369a and the second strain gauge 369b are arranged symmetrically across the central axis C1
  • the third strain gauge 369c and the fourth strain gauge 369d are arranged on the central axis C1, as will be described later. This is preferable because each deformation can be detected with high accuracy.
  • crank 105 is described as a simple rectangular parallelepiped, but the corners may be rounded or a part of the surface may be formed of a curved surface depending on the design or the like. Even in such a case, each deformation described later can be detected by arranging the strain gauge 369 so as to maintain the above-described arrangement as much as possible. However, the detection accuracy decreases as the relationship (parallel or vertical) with the center axis C1 is shifted.
  • the measurement module strain detection circuit 365 is connected to the first strain gauge 369a, the second strain gauge 369b, the third strain gauge 369c, and the fourth strain gauge 369d, and outputs the strain amount of the strain gauge 369 as a voltage.
  • the output of the measurement module strain detection circuit 365 is converted from analog information to strain information signals that are digital information by an A / D converter (not shown). Then, the strain information signal is output to the propulsive force calculation unit 351a of the measurement module control unit 351.
  • the measurement module strain detection circuit 365 includes a first detection circuit 373a and a second detection circuit 373b that are two bridge circuits.
  • the first strain gauge 369a and the second strain gauge 369b are connected in this order from the power source Vcc. That is, the first strain gauge 369a and the second strain gauge 369b are connected in series with the power supply Vcc.
  • the fixed resistor R and the fixed resistor R are connected in this order from the power source Vcc.
  • the third strain gauge 369c and the fourth strain gauge 369d are connected in this order from the power source Vcc. That is, the third strain gauge 369c and the fourth strain gauge 369d are connected in series with the power supply Vcc.
  • the fixed resistor R and the fixed resistor R are connected in this order from the power source Vcc.
  • the two fixed resistors R are shared by the first detection circuit 373a and the second detection circuit 373b.
  • the two fixed resistors R have the same resistance value.
  • the two fixed resistors R have the same resistance value as that before the compression or expansion of the strain gauge 369 occurs.
  • the first strain gauge 369a to the fourth strain gauge 369d have the same resistance value.
  • the detection direction of the strain gauge 369 is the direction in which the wiring extends, and as described above, the first strain gauge 369a, the second strain gauge 369b, and the third strain gauge 369c are parallel to the central axis C1,
  • the fourth strain gauge 369d is in a direction perpendicular to the central axis C1.
  • the resistance value of the first strain gauge 369a decreases and the resistance value of the second strain gauge 369b increases. It becomes higher and the potential Vr does not change. That is, a potential difference is generated between the potential Vab and the potential Vr.
  • the resistance value of the first strain gauge 369a increases and the resistance value of the second strain gauge 369b decreases. The potential Vr does not change. That is, a potential difference is generated between the potential Vab and the potential Vr.
  • both the first strain gauge 369a and the second strain gauge 369b When both the first strain gauge 369a and the second strain gauge 369b are compressed, the resistance value of both the first strain gauge 369a and the second strain gauge 369b decreases, so the potential difference between the potential Vab and the potential Vr is almost zero. It becomes.
  • both the first strain gauge 369a and the second strain gauge 369b are extended, the resistance value of both the first strain gauge 369a and the second strain gauge 369b increases, so that the potential difference between the potential Vab and the potential Vr is almost zero. It becomes.
  • the second detection circuit 373b operates similarly to the first detection circuit 373a. That is, when the third strain gauge 369c is compressed and the fourth strain gauge 369d is expanded, the potential Vcd is increased, the potential Vr is decreased, and a potential difference is generated between the potential Vcd and the potential Vr. When the third strain gauge 369c is expanded and the fourth strain gauge 369d is compressed, the potential Vcd is decreased, the potential Vr is increased, and a potential difference is generated between the potential Vcd and the potential Vr. When both the third strain gauge 369c and the fourth strain gauge 369d are compressed and when both the third strain gauge 369c and the fourth strain gauge 369d are expanded, the potential difference between the potential Vcd and the potential Vr becomes almost zero. .
  • the first detection circuit includes a connection point between the first strain gauge 369a and the second strain gauge 369b where the potential Vab of the first detection circuit 373a can be measured, and a connection point between the two fixed resistors R capable of measuring the potential Vr.
  • the output of 373a (hereinafter referred to as A output).
  • the connection point between the third strain gauge 369c and the fourth strain gauge 369d that can measure the potential Vcd of the second detection circuit 373b, and the connection point of the two fixed resistors R that can measure the potential Vr are represented by the second detection circuit 373b.
  • Output (hereinafter referred to as B output).
  • the A output and B output become strain information.
  • FIG. 12 shows a deformed state of the right crank 105R when a force (stepping force) is applied by the user.
  • (A) is a plan view seen from the upper surface 117 of the right crank 105R
  • (b) is a plan view seen from the inner surface 119 of the right crank 105R
  • (c) is seen from the end of the right crank 105R on the crankshaft 107 side. It is a top view.
  • the right crank 105R will be described, but the same applies to the left crank 105L.
  • the bending deformation x is a deformation in which the right crank 105R is bent so as to bend from the upper surface 117 toward the lower surface 118 or from the lower surface 118 toward the upper surface 117. Is a deformation caused by That is, distortion due to deformation generated in the rotation direction of the crank 105 (distortion generated in the rotation direction of the crank 105) is detected, and rotation direction distortion generated in the crank 105 can be detected by detecting the bending deformation x.
  • the bending deformation y is a deformation in which the right crank 105R bends from the outer surface 120 toward the inner surface 119 or from the inner surface 119 toward the outer surface 120, and the loss force Fr.
  • the tensile deformation z is a deformation caused by the right force 105R being stretched or compressed in the longitudinal direction and caused by the loss force Fr. That is, the strain due to the deformation generated in the direction in which the crank 105 is pulled or pushed in the longitudinal direction (strain generated in the direction parallel to the longitudinal direction) is detected. The strain in the tensile direction can be detected.
  • the torsional deformation rz is that the right crank 105R is deformed so as to be twisted, and is generated by the propulsive force Ft. That is, distortion due to deformation generated in the direction in which the crank 105 is twisted is detected, and distortion in the torsion direction generated in the crank 105 can be detected by detecting the torsional deformation rz.
  • each deformation may occur in the direction opposite to the arrow. .
  • the measurement module strain detection circuit 365 is arranged as shown in FIG. 10 and connected to the first strain gauge 369a, the second strain gauge 369b, the third strain gauge 369c, and the fourth strain gauge 369d as shown in FIG.
  • a method for detecting (measuring) the bending deformation x, the bending deformation y, the tensile deformation z, and the torsional deformation rz will be described.
  • the output A of the first detection circuit 373a is a positive output (the potential Vab is high and the potential Vr is low).
  • the output A of the first detection circuit 373a is a negative output (the potential Vab is low and the potential Vr is high).
  • Bending deformation y causes the right crank 105R to deform from the outer surface 120 toward the inner surface 119 or in the opposite direction.
  • the resistance value of both decreases. Therefore, the output A of the first detection circuit 373a is zero (there is no potential difference between the potential Vab and the potential Vr).
  • both the first strain gauge 369a and the second strain gauge 369b are stretched, so that the resistance value of both increases. For this reason, the output A of the first detection circuit 373a is zero.
  • the tensile deformation z deforms so that the right crank 105R is stretched or compressed in the longitudinal direction.
  • both the first strain gauge 369a and the second strain gauge 369b are extended, so that the resistance value of both increases. For this reason, the output A of the first detection circuit 373a is zero.
  • both the first strain gauge 369a and the second strain gauge 369b are compressed, so that the resistance value of both decreases. For this reason, the output A of the first detection circuit 373a is zero.
  • the twist deformation rz deforms so that the right crank 105R is twisted.
  • both the first strain gauge 369a and the second strain gauge 369b are stretched, so that the resistance value of both increases. For this reason, the output A of the first detection circuit 373a is zero.
  • both the first strain gauge 369a and the second strain gauge 369b are expanded, so that the resistance value of both increases. For this reason, the output A of the first detection circuit 373a is zero.
  • the first detection circuit 373a is connected to the first strain gauge 369a and the second strain gauge 369b, and detects the rotational strain generated in the crank 105.
  • the B output of the second detection circuit 373b is zero.
  • Bending deformation y causes the right crank 105R to deform from the outer surface 120 toward the inner surface 119 or in the opposite direction.
  • the third strain gauge 369c is compressed and thus the resistance value is decreased, and the fourth strain gauge 369d is expanded and the resistance value is increased. Therefore, the B output of the second detection circuit 373b is a positive output (the potential Vcd is high and the potential Vr is low).
  • the third strain gauge 369c is expanded and thus the resistance value is increased, and the fourth strain gauge 369d is compressed and the resistance value is decreased. Therefore, the output B of the second detection circuit 373b is a negative output (the potential Vcd is low and the potential Vr is high).
  • the tensile deformation z deforms so that the right crank 105R is stretched or compressed in the longitudinal direction.
  • the third strain gauge 369c is extended and the resistance value is increased, and the fourth strain gauge 369d is compressed and the resistance value is decreased. Therefore, the B output of the second detection circuit 373b is a negative output.
  • the third strain gauge 369c is compressed and thus the resistance value is decreased, and the fourth strain gauge 369d is expanded and the resistance value is increased. Therefore, the B output of the second detection circuit 373b is a positive output.
  • the twist deformation rz deforms so that the right crank 105R is twisted.
  • the third strain gauge 369c is expanded, so that the resistance value increases, and the fourth strain gauge 369d is not deformed in the detection direction, so the resistance value does not change. . Therefore, the B output of the second detection circuit 373b is a negative output.
  • the third strain gauge 369c is expanded, so that the resistance value increases, and the fourth strain gauge 369d is not deformed in the detection direction, so that the resistance value is increased. Does not change. Therefore, the B output of the second detection circuit 373b is a negative output.
  • the second detection circuit 373b is connected to the third strain gauge 369c and the fourth strain gauge 369d, and detects the inward / outward strain or tensile strain generated in the crank 105.
  • the propulsive force calculation unit 351a determines that the propulsive force Ft is the following equation (15) and the loss force Fr is the following (16).
  • Each is calculated by an equation.
  • the tensile deformation z is very small compared to the bending deformation y and can be ignored. That is, the values calculated by the equations (15) and (16) are values relating to the load applied to the crank 105 when the crank 105 rotates.
  • A is the A output value at the time of calculating the propulsive force Ft (or loss force Fr)
  • A0 is the A output value at no load
  • B is B at the time of calculating the propulsive force Ft (or loss force Fr).
  • the output value, B0 is the B output value when there is no load
  • p, q, s, u are coefficients, which are values calculated by simultaneous equations consisting of the following equations (17) to (20).
  • Am is an A output value when m [kg] is placed on the pedal 103 with the angle of the crank 105 facing forward in the horizontal direction (a state in which the crank 105 extends horizontally and in the direction of the front wheel 5).
  • Be is the B output value when the angle of the crank 105 is horizontally forward and m [kg] is placed on the pedal 103.
  • Ae is an A output value when m [kg] is placed on the pedal 103 with the angle of the crank 105 being vertically downward (a state in which the crank 105 extends vertically and toward the ground).
  • Bm is the B output value when the angle of the crank 105 is vertically downward and m [kg] is placed on the pedal 103.
  • the thrust Ft can be calculated by substituting A and B into the equation (15).
  • the A output is corrected using the B output.
  • the arrangement of the strain gauges 369 and the configuration of the bridge circuit are not limited to the configurations shown in FIGS.
  • the number of strain gauges 369 is not limited to four, and the number of bridge circuits is not limited to one.
  • any configuration that can calculate the propulsive force Ft and the loss force Fr may be used.
  • the cycle computer 201 includes a cycle computer display unit 203, a cycle computer operation unit 205, a cycle computer wireless reception unit 209, a cycle computer storage unit 253, and a cycle computer control unit 251.
  • the cycle computer display unit 203 displays various types of information based on user instructions and the like.
  • the propulsive force Ft and the loss force Fr are visualized and displayed.
  • the visualization method may be any method, but based on the rotation angle of the crank 105 transmitted from the measurement module 301, for example, the propulsive force Ft and the loss when the rotation angle of the crank 105 is 30 °.
  • the force Fr can be displayed as a vector.
  • any method such as graph display, color-coded display, symbol display, and three-dimensional display may be used. Also, a combination thereof may be used.
  • the cycle computer operation unit 205 receives a user instruction (input). For example, the cycle computer operation unit 205 receives a display content instruction from the user on the cycle computer display unit 203.
  • the cycle computer wireless reception unit 209 receives transmission data (propulsion force Ft, loss force Fr, rotation angle and cadence of the crank 105) transmitted from the measurement module 301.
  • the cycle computer storage unit 253 has a RAM and a ROM.
  • the ROM stores a control program and various parameters, constants, and the like for converting the propulsive force Ft and the loss force Fr into data that is visually displayed on the cycle computer display unit 203.
  • the cycle computer control unit 251 comprehensively controls the cycle computer 201. Further, the measurement module 301 may be comprehensively controlled. The cycle computer control unit 251 converts the propulsive force Ft and the loss force Fr into data that is visually displayed on the cycle computer display unit 203.
  • step ST11 the measurement timing is detected. That is, the values detected by the first acceleration sensor 371a and the second acceleration sensor 371b are acquired by the method described above. Then, the rotational speed R is calculated, the time from the rotational speed R to the next measurement timing is calculated and set in the timer, the time when the timer times out after correction is performed is the measurement timing detection. In this step, correction corresponding to the correction unit described above is also performed. That is, step ST11 functions as an acquisition process and an output process.
  • step ST13 the measurement module strain detection circuit 365 is driven. That is, a power supply voltage is applied to the bridge circuit as shown in FIG.
  • step ST15 the propulsive force Ft and the loss force Fr are calculated based on the outputs (A output and B output) from the measurement module strain detection circuit 365.
  • the transmission data creation unit 351d transmits the calculated propulsive force Ft, loss force Fr, rotation angle, and cadence as transmission data via the measurement module wireless transmission unit 309.
  • the transmitted propulsive force Ft and loss force Fr, rotation angle, and cadence are received by the cycle computer radio reception unit 209 of the cycle computer 201.
  • the cadence need not be transmitted every time and may be transmitted once per rotation, so in the present embodiment, it may be transmitted once every 12 times.
  • step ST31 it is determined whether or not the reference position has been detected. If it is detected (YES), the process proceeds to step ST32. If not detected (NO), the process waits in this step.
  • step ST32 based on the output value of the first acceleration sensor 371a and the output value of the second acceleration sensor 371b, the rotational speed R is calculated from the above-described equation (14).
  • step ST33 a cycle of one rotation is calculated from the rotation speed R calculated in step ST32, a timer set value is calculated and set from the cycle, and the timer is started.
  • step ST34 the rotational speed R is calculated before the set time of the timer set in step ST33.
  • step ST35 it is determined whether or not timer correction is necessary. If necessary (YES), the process proceeds to step ST36, and if not necessary (NO), the process proceeds to step ST37.
  • a cycle of one rotation is calculated from the rotation speed R calculated in step ST34, a timer set value is calculated from the cycle, and correction is necessary if the value is different from the value set in the timer in step ST33. to decide.
  • step ST36 the timer set value is corrected. That is, a value based on the timer set value calculated in step ST35 is set in the timer.
  • step ST37 it is determined whether or not the reference position is detected. If it is detected (YES), the process proceeds to step ST38. If not (NO), the process proceeds to step ST39. In this step, it is determined whether or not the offset calculation is performed at the reference position described above. Since the reference position often exists during the measurement timing, it is performed before the timer times out. Of course, when the reference position coincides with the measurement timing (for example, when the reference position has an angle of every 30 °), it may be performed in step ST39 described later.
  • step ST38 an offset is calculated from the average value of the cadence (rotation speed) calculated by the cadence calculation unit 351e and the rotation speed R calculated at each measurement timing, and calculation (addition / subtraction) based on the offset is performed. .
  • step ST39 it is determined whether or not the timer has timed out. If timed out (in the case of YES), the process returns to step ST33, and the operations after step ST13 in FIG. On the other hand, when the timeout does not occur (in the case of NO), the process returns to step ST37.
  • step ST71 when the cycle computer control unit 251 receives the propulsive force Ft, the loss force Fr, the rotation angle, or the cadence, an interruption is performed. That is, when the cycle computer control unit 251 detects that the cycle computer wireless reception unit 209 has received the propulsive force Ft, the loss force Fr, the rotation angle, or the cadence, the cycle computer control unit 251 interrupts the processing up to that point ( Interrupt) to start the processing from step ST73.
  • step ST73 the cycle computer control unit 251 causes the cycle computer display unit 203 to display the propulsive force Ft, the loss force Fr, and the cadence for each rotation angle.
  • the cycle computer display unit 203 displays the propulsive force Ft and the loss force Fr as a vector for each rotation angle of the crank 105, or displays a cadence value as a numerical value.
  • the propulsive force Ft and the loss force Fr are displayed with arrows or the like at every predetermined rotation angle (30 °) of the crank 105.
  • step ST75 the cycle computer control unit 251 stores the propulsive force Ft, the loss force Fr, and the cadence in the cycle computer storage unit 253 of the cycle computer storage unit 253. Thereafter, the cycle computer control unit 251 performs other processes until the interrupt of step ST51 is performed again.
  • the first acceleration sensor 371a and the second acceleration sensor 371b are arranged on the crank 105 attached to the crankshaft 107, detect accelerations a1 and a2 in a direction parallel to the longitudinal direction of the crank 105,
  • the propulsive force calculation unit 351a measures the propulsive force and the loss force 12 times while the crank 105 rotates once.
  • the measurement timing determination unit 351b is calculated from the output value a1 of the first acceleration sensor 371a and the output value a2 of the second acceleration sensor 371b, and the period at which the magnetic sensor 373 detects that the crank 105 is at the reference position.
  • the rotation speed R of the crank 105 is calculated based on the cadence and 12 measurement times within one rotation, and the next measurement timing of the propulsive force calculating unit 351a is calculated based on the rotation speed R and the 12 measurement times. To decide. By doing so, the acceleration component of the centrifugal force in the longitudinal direction (detection axis direction) of the crank of the acceleration sensor 371 can be calculated. Therefore, the rotation speed R can be calculated based on the acceleration component of the centrifugal force, and the rotation period is calculated from the rotation speed R to calculate the measurement interval per time, that is, the time until the next measurement timing. be able to.
  • the offset of the measurement timing generated due to the characteristics of the acceleration sensor 371, power supply voltage fluctuation, etc. can be taken into account, and the measurement timing is accurately It can be calculated well.
  • the cost can be reduced and it is not affected by dust or iron sand, so that durability can be improved.
  • the angular velocity sensor is not used, the power consumption can be reduced.
  • an angular velocity sensor since an angular velocity sensor is not used, it is possible to reduce power consumption.
  • An angular velocity sensor such as a gyro sensor, generally consumes more power than an acceleration sensor because a vibrator or the like must be constantly vibrated. Therefore, as in this embodiment, by detecting the rotation angle only with the acceleration sensor 371, the power consumption can be reduced and the driving time of the battery or the like can be extended.
  • the power sensor 368 is operated when the detected rotation angle is an angle of every 30 °, the operation period of the power sensor 368 can be limited, and the power consumption can be further reduced.
  • the measurement timing determination unit 351b is calculated from the output value a1 of the first acceleration sensor 371a and the output value a2 of the second acceleration sensor 371b, and the period at which the magnetic sensor 373 detects that the crank 105 is at the reference position. Based on the cadence and the measurement count of 12, the measurement timing of the propulsive force calculation unit 351a is corrected before the next measurement timing determined. By doing so, it is possible to correct the measurement timing once determined due to a change in the rotational speed R or the like, and to increase the measurement timing determination accuracy.
  • the measurement timing determination unit 351b detects a plurality of output values a1 of the first acceleration sensor 371a and a plurality of output values a2 of the second acceleration sensor 371b, and a period at which the magnetic sensor 373 detects that the crank 105 is at the reference position.
  • the next measurement timing of the propulsive force calculation unit 351a is determined based on the cadence calculated from the above and the number of measurements 12 times.
  • the reference position detection unit that sets the reference position of the rotation angle of the crank 105 includes a magnet 503 that is fixedly disposed on the frame 3 and a magnetic sensor 373 that is disposed on the crank 105 and detects the magnet 503. Configured. By doing so, the cadence calculation unit 351e can calculate the cadence based on the detection interval of the magnet 503. In addition, a reference for detecting the measurement timing can be set. Further, the position of the frame 3 can be set as the reference position.
  • the first acceleration sensor 371a and the second acceleration sensor 371b are disposed on one crank 105, but one acceleration sensor is provided for each of the cranks 105 on both sides, that is, the crank 105R and the crank 105L. May be arranged.
  • the absolute value of the distance from the crankshaft 107 of each acceleration sensor may be the same.
  • the distance from the crankshaft 107 may be expressed as a positive number for one crank and a negative number for the other crank.
  • the measured value a (a1 or a2) of the acceleration sensor on the side where the distance is expressed by a negative number may be expressed by multiplying by a negative number ( ⁇ 1).
  • the crank 105 has an angle obtained by dividing one rotation (one revolution) into 12 equal parts.
  • the angle is not limited to one rotation, and an angle obtained by equally dividing two rotations into 12 equal parts. Also good.
  • the measurement timings are equal intervals, but may not be equal intervals. If the output value a1 of the first acceleration sensor 371a, the output value a2 of the second acceleration sensor 371b, and the next measurement angle are known, the next measurement timing can be determined therefrom.
  • the angle of the frame 3 provided with the magnet 503 with respect to the vertical direction needs to be measured in advance using a protractor or the like by referring to the design drawing and specifications of the frame in advance. Then, the point which measures the angle with respect to the vertical direction of the flame
  • FIG. 14 shows the configuration of this example.
  • a third acceleration sensor 371c, an LED 374, and a setting unit 375 are added to FIG.
  • the third acceleration sensor 371c differs from the first acceleration sensor 371a and the second acceleration sensor 371b in that the direction parallel to the short direction of the crank 105 (tangential direction of rotation of the crank 105) is the detection direction. Further, the third acceleration sensor 371c is not an individual sensor, and one of the first acceleration sensor 371a and the second acceleration sensor 371b may be a biaxial acceleration sensor.
  • the LED 374 is a light emitting diode that emits light in response to an information signal indicating that the magnetic sensor 373 is turned on. That is, the LED 374 functions as a notification unit that notifies that the magnetic sensor 373 (detection unit) has detected the magnet 503 (detected unit). Note that the notification unit is not limited to notification by display such as the LED 374 but may be notification by a buzzer or the like.
  • the setting unit 375 is configured by a push button, for example, and can be operated by the user in accordance with the lighting of the LED 374.
  • the setting unit 375 functions as a timing instruction unit that instructs the measurement timing determination unit 351b to acquire the output value of the first acceleration sensor 371a or the second acceleration sensor 371b and the output value of the third acceleration sensor 371c.
  • the first acceleration sensor 371a and the second acceleration sensor 371b detect the longitudinal acceleration of the crank 105, and the third acceleration sensor 371c The acceleration in the short direction is detected.
  • FIG. 15 shows an example in the case of gravitational acceleration G.
  • the longitudinal acceleration component can be detected by the first acceleration sensor 371a or the second acceleration sensor 371b, and the acceleration component in the short direction can be detected by the third acceleration sensor 371c.
  • the relationship between the output values of these accelerations and the rotation angle of the crank 105 is as shown in the graph in FIG. From this graph, the acceleration in the short-side direction has a positive value when 0 ° ⁇ ⁇ ⁇ 180 °, and a negative value when 180 ° ⁇ ⁇ ⁇ 360 °. Therefore, the angle of the frame 3 can be detected by referring to both the acceleration in the longitudinal direction and the acceleration in the short direction.
  • the crank 105 when the crank 105 is rotationally moved to a position parallel to the frame 3, the magnetic sensor 373 detects the magnet 503. Then, an information signal indicating that the magnetic sensor 373 is turned on is output, and the LED 374 emits light. Therefore, the crank 105 is stopped at that position, and the setting unit 375 is operated.
  • the measurement timing determination unit 351b acquires the gravitational acceleration when the setting unit 375 is operated, calculates the crank angle, that is, the angle of the frame 3, and stores the calculated angle of the frame 3 in the reference angle storage unit 355.
  • the setting unit 375 outputs the output value of the first acceleration sensor 371a or the second acceleration sensor 371b and the output value of the third acceleration sensor 371c based on the notification that the LED 374 (notification unit) detects the magnet 503 (detected unit). Is acquired by the measurement timing determination unit 351b. Then, the measurement timing determination unit 351b (reference position detection unit) sets the reference position based on the acquired output value of the first acceleration sensor 371a or the second acceleration sensor 371b and the output value of the third acceleration sensor 371c. is doing.
  • the third acceleration sensor 371c that detects acceleration in a direction parallel to the short direction of the crank 105, the LED 374 that notifies that the magnetic sensor 373 has detected the magnet 503, and the first acceleration sensor 371a.
  • a setting unit 375 that instructs the timing for acquiring the output value of the second acceleration sensor 371b and the output value of the third acceleration sensor 371c is provided. Then, the setting unit 375 instructs acquisition of the output value of the first acceleration sensor 371a or the second acceleration sensor 371b and the output value of the third acceleration sensor 371c based on the notification that the LED 374 detects the magnet 503, and the measurement timing.
  • the determination unit 351b sets the reference position based on the output value of the first acceleration sensor 371a or the second acceleration sensor 371b and the output value of the third acceleration sensor 371c. By doing in this way, the angle with respect to the vertical direction of the said position is computable based on the gravitational acceleration added to the crank 105 by which the magnet 503 was detected. Therefore, it is not necessary to investigate the angle in the vertical direction of the frame 3 of the bicycle 1 or to measure it with a protractor or the like.
  • the notification unit and the timing instruction unit are provided in the measurement module 301, but may be provided separately.
  • the cycle computer display unit 203 and the cycle computer operation unit 205 of the cycle computer 201 may also function.
  • FIGS. a rotation angle detection apparatus according to a third embodiment of the present invention will be described with reference to FIGS.
  • the same parts as those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
  • the output of the acceleration sensor 371 is subjected to a low-pass filter (LPF) process, and the delay caused by the low-pass filter process is corrected by the measurement timing determination unit 351b2. That is, the LPF 372 functions as a filter unit.
  • LPF low-pass filter
  • the acceleration sensor 371 Since a vehicle equipped with a rotation angle detection device such as a bicycle is subjected to various vibrations from the outside, the acceleration sensor 371 often includes an acceleration component other than the acceleration component of gravity acceleration or centrifugal force in its output value. Accordingly, the output of the acceleration sensor 371 is subjected to low-pass filter processing using a digital filter such as an FIR (finite impulse response) filter or an IIR (infinite impulse response) filter with the LPF 372, thereby causing vibrations included in the output of the acceleration sensor 371. Remove noise components.
  • a digital filter such as an FIR (finite impulse response) filter or an IIR (infinite impulse response) filter with the LPF 372, thereby causing vibrations included in the output of the acceleration sensor 371.
  • an analog filter may be used instead of a digital filter.
  • the measurement timing determination unit 351b2 corrects the rotation angle by performing an operation as shown in equation (23) described later. That is, the measurement timing determination unit 351b2 functions as a delay angle correction unit.
  • the correction may be made so that the calculated rotation angle is advanced by equation (23).
  • the acceleration a far from the centrifugal force can be calculated by the equation (9) shown in the first embodiment.
  • the rotation acceleration is calculated by measuring the time between the half rotations, and the acceleration of the centrifugal force for correction is obtained from the value. You may do it. Then, during the half rotation, the acceleration of the centrifugal force calculated from the previous half rotation time is used.
  • an LPF 372 that performs filter processing on the first acceleration and the second acceleration
  • a measurement timing determination unit 351b2 that performs angle correction processing after the filter processing is performed.
  • acceleration components other than gravitational acceleration and acceleration of centrifugal force applied to the crank 105 due to vibration or the like can be removed, and the accuracy of estimating the next measurement timing can be improved.
  • the measurement timing determination unit 351b2 can correct the delay generated by the filter processing.
  • FIGS. a rotation angle detection apparatus according to a fourth embodiment of the present invention will be described with reference to FIGS.
  • the same parts as those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
  • crank 105 components other than the crank 105 that can detect the rotation angle of the crank 105 by detecting the acceleration in the longitudinal direction of the crank 105 will be described.
  • FIG. 19 is a plan view showing the chain ring 109 and the crank 105A according to this embodiment
  • FIG. 20 is a plan view showing the crank 105A shown in FIG.
  • the crank 105A is attached to the chain ring 109 via a spider arm 77 described later.
  • the chain ring 109 has two large and small sprockets (an example of a front chain wheel) 109a and 109b.
  • the crank 105A extends radially from the crankshaft side, and has five spider arms 77 that can mount two large and small sprockets 109a and 109b at the tip, and a pedal crankshaft mounting hole 115a that is fixed to the crankshaft 107 and formed at the tip. And a crank arm 78.
  • the crank 105A is an arm member having a plurality of arm portions extending radially from the crankshaft, and corresponds to a member that rotates in conjunction with the crank.
  • a sprocket mounting portion 77a having a through hole 77b through which a fixing bolt passes and two mounting surfaces 77c for mounting the sprockets 109a and 109b is formed.
  • the large-diameter sprocket 109a has an annular gear member.
  • the gear member is made of, for example, an aluminum alloy material.
  • Gear teeth 86a with which the chain 111 is engaged are formed on the outer periphery of the gear member.
  • the small-diameter sprocket 109b has an annular gear member.
  • the gear member is made of, for example, an aluminum alloy material.
  • Gear teeth 72a with which the chain 111 is engaged are formed on the outer periphery of the gear member.
  • the spider arm 77 is formed integrally with the crank arm 78, but is not limited thereto and may be a separate body.
  • crank 105A having such a configuration, by providing an acceleration sensor on the spider arm 77, it is possible to calculate the next measurement timing and perform timer correction and offset calculation in the same manner as shown in the first embodiment.
  • One acceleration sensor may be disposed on the spider arm 77, the other may be disposed on the crank arm 78, or both may be disposed on the spider arm 77.
  • the detection axes of the two acceleration sensors are parallel to the longitudinal direction of the crank arm 78 and are provided on the same right or left side, The distance from the crankshaft center of the acceleration sensor needs to be different.
  • any crank or member that rotates in conjunction with the crank and that can detect the acceleration in the longitudinal direction of the crank is applicable.
  • the interlock means that the same rotation shaft as the crank rotates at the same rotation speed as the crank.
  • At least one acceleration sensor is arranged on the spider arm 77, the output value of the acceleration sensor, the output value of the acceleration sensor arranged on the other spider arm 77 or the crank arm 78, and m rounds.
  • the next measurement timing is calculated based on the number of hits n.
  • the propulsive force, the loss force, and the rotation angle measured by the measurement module 301 are displayed in real time on the cycle computer display unit 203 of the cycle computer 201.
  • the present invention is not limited to this.
  • the information output from the measurement module 301 to a recording medium such as a memory card, and the information recorded on the memory card later is read by a personal computer or the like, and the propulsive force and loss force are displayed in time series for each rotation angle of the crank 105. May be.
  • the human-powered machine in the present invention refers to a machine driven by human power equipped with a crank 105 (crank arm 78) such as a bicycle 1 or a fitness bike.
  • a crank 105 crank arm 78
  • any human-powered machine may be used as long as it is a machine that is driven by a human power equipped with the crank 105 (it is not always necessary to move locally).
  • the measuring device in the present invention may be a part of the cycle computer 201 or another independent device. Further, it may be an aggregate of a plurality of devices physically separated. In some cases, a device other than the strain gauge 369 (measurement module strain detection circuit 365) and the acceleration sensor 371 may be a device in a completely different place through communication.

Abstract

Provided is a measurement timing detection device capable of reducing cost, improving durability, and lowering power consumption. A first acceleration sensor (371a) and a second acceleration sensor (371b) are arranged on a crank (105) attached to a crank shaft (107) and detect the acceleration (a1, a2) in a direction parallel to the longitudinal direction of the crank (105). A propulsion calculation unit (351a) measures crank (105) propulsion and force loss. A measurement timing determination unit (351b): calculates the rotation speed (R) of the crank (105) on the basis of an output value (a1) for the first acceleration sensor (371a) and an output value (a2) for the second acceleration sensor (371b) and on the basis of 12 times, being the number of measurements in one rotation; and determines the next measurement timing for the propulsion calculation unit (351a) on the basis of the rotation speed (R), the number of measurements, being 12, and the cadence calculated by a cadence calculation unit (351e).

Description

測定タイミング検出装置Measurement timing detector
 本発明は、回転軸を中心として回転するクランクに加わる力を測定するタイミングを検出する測定タイミング検出装置に関する。 The present invention relates to a measurement timing detection device that detects timing for measuring a force applied to a crank that rotates about a rotation axis.
 従来、自転車等の人力機械に装着され、自転車の走行に関する情報や運転者の運動に関する情報等を算出し表示する装置がある。この種の装置は、自転車に設けられたセンサからデータを受信することによって、所定の情報を算出し表示する。表示する情報としては、運転者がペダルに加える力(トルク等)が挙げられる。 Conventionally, there is a device that is mounted on a human-powered machine such as a bicycle and calculates and displays information related to the traveling of the bicycle and information related to the movement of the driver. This type of device calculates and displays predetermined information by receiving data from a sensor provided on the bicycle. The information to be displayed includes a force (torque or the like) applied to the pedal by the driver.
 また、この種の装置は、所定角度間隔でペダルに加える力を表示することが行われる場合がある。そのためには、クランクの基準位置に対する角度を検出する必要がある。例えば特許文献1には、自転車のフレーム側面に固定された円環状の枠状部材20の表面に枠状部材20の中心Cを中心として30°間隔で複数の磁石が配置されている磁石群21と、チェーンリングに固定されてクランクと共に回転する磁気センサ22と、から構成されており、磁石群21の個々の磁石の位置を磁気センサ22が検出することで角度を検出することが記載されている。 Also, this type of device may display the force applied to the pedal at predetermined angular intervals. For this purpose, it is necessary to detect the angle of the crank relative to the reference position. For example, in Patent Document 1, a magnet group 21 in which a plurality of magnets are arranged at intervals of 30 ° around the center C of the frame-shaped member 20 on the surface of an annular frame-shaped member 20 fixed to the side surface of a bicycle frame. And a magnetic sensor 22 that is fixed to the chain ring and rotates together with the crank, and describes that the magnetic sensor 22 detects the position of each magnet in the magnet group 21 to detect the angle. Yes.
 また、特許文献2には、角速度センサ10と、加速度センサ11,12によりクランクの回転角度を検出することが記載されている。 Further, Patent Document 2 describes that the rotation angle of the crank is detected by the angular velocity sensor 10 and the acceleration sensors 11 and 12.
 即ち、特許文献1、2は、クランクの回転角度を検出することでペダルに加わる力を測定する測定タイミングを検出していた。 That is, Patent Documents 1 and 2 detect the measurement timing for measuring the force applied to the pedal by detecting the rotation angle of the crank.
国際公開第2013/046472号公報International Publication No. 2013/046472 特開2014-8789号公報JP 2014-8789 A
 特許文献1に記載された回転角度検出装置の場合、角度の検出精度は高いものの、基準角度とする位置に配置する磁石は磁力の高い磁石を必要とするなど、複数種類の磁石を用いるのでコストアップとなってしまう。 In the case of the rotation angle detection device described in Patent Document 1, although the angle detection accuracy is high, the magnet arranged at the position to be the reference angle requires a magnet with high magnetic force, and thus costs are required because a plurality of types of magnets are used. It will be up.
 また、塵埃、土砂などが多い悪影響下では、枠状部材20とクランクとの間にはごみなどが侵入しやすい。さらに、磁石を用いているので、砂鉄等が付着しやすくなり耐久性が低いという問題がある。 In addition, under adverse effects such as dust and earth and sand, dust and the like are likely to enter between the frame member 20 and the crank. Furthermore, since a magnet is used, there is a problem that sand iron or the like is likely to adhere and the durability is low.
 特許文献2に記載されたペダリング状態計測装置は、角速度センサを利用しているため、消費電力が大きくなってしまうという問題がある。角速度センサは一般的に加速度センサと比較して消費電力が大きいことが知られている。自転車等に取り付けられる装置は電源として電池等によるバッテリ駆動となるため低消費電力化が望まれる。 The pedaling state measuring device described in Patent Document 2 uses an angular velocity sensor, and thus has a problem of increasing power consumption. It is known that an angular velocity sensor generally consumes more power than an acceleration sensor. Since a device attached to a bicycle or the like is driven by a battery or the like as a power source, low power consumption is desired.
 そこで、本発明は、上述した問題に鑑み、例えば、低コスト化と耐久性の向上を図るとともに、低消費電力化も図ることができる測定タイミン    グ検出装置を提供することを目的とする。 Therefore, in view of the above-described problems, an object of the present invention is to provide a measurement timing detection device capable of, for example, reducing cost and improving durability and reducing power consumption.
 上記課題を解決するために、請求項1に記載された発明は、回転軸に取り付けたクランクまたは前記クランクと連動して回転する部材に配置され、前記クランクの長手方向と平行な方向の加速度を検出する第1加速度センサおよび第2加速度センサと、前記クランクが所定の基準位置にあることを検出する基準位置検出部と、前記クランクの適宜角度位置において所定の測定を行う測定部の次回の測定タイミングを、前記第1加速度センサの出力値および前記第2加速度センサの出力値と、前記基準位置検出部の検出結果と、次回の測定角度と、に基づいて決定する決定部と、有することを特徴とする測定タイミング検出装置である。 In order to solve the above-mentioned problems, the invention described in claim 1 is arranged on a crank attached to a rotating shaft or a member that rotates in conjunction with the crank, and accelerates in a direction parallel to the longitudinal direction of the crank. Next measurement of a first acceleration sensor and a second acceleration sensor to be detected, a reference position detection unit for detecting that the crank is at a predetermined reference position, and a measurement unit for performing a predetermined measurement at an appropriate angular position of the crank A determination unit that determines timing based on an output value of the first acceleration sensor and an output value of the second acceleration sensor, a detection result of the reference position detection unit, and a next measurement angle; This is a characteristic measurement timing detection device.
 請求項12に記載された発明は、回転軸に取り付けたクランクまたは前記クランクと連動して回転する部材に配置され、前記クランクの長手方向と平行な方向の加速度を検出する第1加速度センサの出力値および第2加速度センサの出力値を取得する取得工程と、前記クランクが所定の基準位置にあることを検出する基準位置検出工程と、前記クランクの適宜角度位置において所定の測定を行う測定部の次回の測定タイミングを、前記第1加速度センサの出力値および前記第2加速度センサの出力値と、前記基準位置検出工程の検出結果と、次回の測定角度と、に基づいて決定する決定工程と、を有することを特徴とする測定タイミング検出方法である。 According to a twelfth aspect of the present invention, an output of a first acceleration sensor that is arranged on a crank attached to a rotating shaft or a member that rotates in conjunction with the crank and detects acceleration in a direction parallel to the longitudinal direction of the crank. An acquisition step of acquiring a value and an output value of the second acceleration sensor, a reference position detection step of detecting that the crank is at a predetermined reference position, and a measurement unit that performs a predetermined measurement at an appropriate angular position of the crank A determination step of determining a next measurement timing based on an output value of the first acceleration sensor and an output value of the second acceleration sensor, a detection result of the reference position detection step, and a next measurement angle; It is the measurement timing detection method characterized by having.
 請求項13に記載された発明は、請求項12に記載の測定タイミング検出方法を、コンピュータにより実行させることを特徴とする測定タイミング検出プログラムである。 The invention described in claim 13 is a measurement timing detection program that causes a computer to execute the measurement timing detection method according to claim 12.
 請求項14に記載された発明は、請求項13に記載の測定タイミング検出プログラムを格納したことを特徴とするコンピュータ読み取り可能な記録媒体である。 The invention described in claim 14 is a computer-readable recording medium in which the measurement timing detection program according to claim 13 is stored.
本発明の第1の実施例にかかる回転角検出装置を有する自転車の全体構成を示す説明図である。It is explanatory drawing which shows the whole structure of the bicycle which has a rotation angle detection apparatus concerning the 1st Example of this invention. 図1に示されたサイクルコンピュータ及び測定モジュールの位置関係を示した説明図である。It is explanatory drawing which showed the positional relationship of the cycle computer shown in FIG. 1, and a measurement module. 図1に示されたサイクルコンピュータ及び測定モジュールのブロック構成図である。FIG. 2 is a block configuration diagram of a cycle computer and a measurement module shown in FIG. 1. 図3に示された加速度センサのクランクへの配置の説明図である。It is explanatory drawing of arrangement | positioning to the crank of the acceleration sensor shown by FIG. クランクが静止しているときの加速度センサが検出する加速度についての説明図である。It is explanatory drawing about the acceleration which an acceleration sensor detects when a crank is stationary. クランクが回転しているときの加速度センサが検出する加速度についての説明図である。It is explanatory drawing about the acceleration which an acceleration sensor detects when a crank is rotating. 測定タイミングの決定方法の説明図である。It is explanatory drawing of the determination method of a measurement timing. 加速度センサのオフセットについて説明した表である。It is the table | surface explaining the offset of the acceleration sensor. フレームの角度の説明図である。It is explanatory drawing of the angle of a flame | frame. 図3に示されたひずみゲージのクランクへの配置の説明図である。It is explanatory drawing of arrangement | positioning to the crank of the strain gauge shown by FIG. 図3に示された測定モジュールひずみ検出回路の回路図である。FIG. 4 is a circuit diagram of a measurement module strain detection circuit shown in FIG. 3. 右側クランクに加わる力と変形の説明図である。It is explanatory drawing of the force added to a right side crank, and a deformation | transformation. 図3に示された測定モジュール及びサイクルコンピュータの処理のフローチャートである。It is a flowchart of a process of the measurement module and cycle computer shown by FIG. 本発明の第2の実施例にかかるサイクルコンピュータ及び測定モジュールのブロック構成図である。It is a block block diagram of the cycle computer and measurement module concerning 2nd Example of this invention. クランクの長手方向の加速度と短手方向の加速度との関係を示した説明図である。It is explanatory drawing which showed the relationship between the acceleration of the longitudinal direction of a crank, and the acceleration of a transversal direction. クランクの長手方向の加速度および短手方向の加速度とクランクの回転角との関係を示したグラフである。It is the graph which showed the relationship between the acceleration of the longitudinal direction of a crank, the acceleration of a transversal direction, and the rotation angle of a crank. 本発明の第5の実施例にかかるサイクルコンピュータ及び測定モジュールのブロック構成図である。It is a block block diagram of the cycle computer and measurement module concerning the 5th Example of this invention. 図17に示されたLPFを施す前後の加速度センサの出力を示したグラフである。It is the graph which showed the output of the acceleration sensor before and behind giving LPF shown by FIG. 本発明の第6の実施例にかかるチェーンリングとクランクとを示した平面図である。It is the top view which showed the chain ring and crank concerning 6th Example of this invention. 図19に示されたクランクを示した平面図である。FIG. 20 is a plan view showing the crank shown in FIG. 19.
 以下、本発明の一実施形態にかかる回転角検出装置を説明する。本発明の一実施形態にかかる回転角検出装置は、第1加速度センサおよび第2加速度センサが、回転軸に取り付けたクランクまたは前記クランクと連動して回転する部材に配置されてクランクの長手方向と平行な方向の加速度を検出し、基準位置検出部が、クランクが所定の基準位置にあることを検出する。そして、決定部がクランクの適宜角度位置において所定の測定を行う測定部の次回の測定タイミングを、第1加速度センサの出力値および第2加速度センサの出力値と、基準位置検出部の検出結果と、次回の測定角度と、に基づいて決定する。このようにすることにより、加速度センサのクランクの長手方向(検出軸方向)の遠心力の加速度成分を算出することができる。そのため、その遠心力の加速度成分と次回の測定角度に基づいて次回の測定タイミング(次回の測定タイミングまでの時間)を算出することができる。また、基準位置に基づいて次回の測定タイミングを決定するので、加速度センサの特性や電源電圧変動等により発生する測定タイミングのオフセット分を加味することができ、測定タイミングを精度良く算出することができる。また、磁石を用いないので、低コスト化が図れ、ごみや砂鉄などの影響を受けないことから、耐久性を向上させることができる。また、角速度センサを利用しないので、低消費電力化を図ることもできる。 Hereinafter, a rotation angle detection device according to an embodiment of the present invention will be described. In the rotation angle detection device according to an embodiment of the present invention, the first acceleration sensor and the second acceleration sensor are arranged on a crank attached to a rotation shaft or a member that rotates in conjunction with the crank, and the longitudinal direction of the crank The acceleration in the parallel direction is detected, and the reference position detector detects that the crank is at a predetermined reference position. The next measurement timing of the measurement unit in which the determination unit performs a predetermined measurement at an appropriate angular position of the crank, the output value of the first acceleration sensor, the output value of the second acceleration sensor, and the detection result of the reference position detection unit Next, it is determined based on the next measurement angle. In this way, the acceleration component of the centrifugal force in the longitudinal direction (detection axis direction) of the crank of the acceleration sensor can be calculated. Therefore, the next measurement timing (time until the next measurement timing) can be calculated based on the acceleration component of the centrifugal force and the next measurement angle. In addition, since the next measurement timing is determined based on the reference position, the offset of the measurement timing generated due to the characteristics of the acceleration sensor, the power supply voltage fluctuation, etc. can be taken into account, and the measurement timing can be calculated with high accuracy. . In addition, since no magnet is used, the cost can be reduced, and since it is not affected by dust or iron sand, durability can be improved. Further, since the angular velocity sensor is not used, the power consumption can be reduced.
 また、第1加速度センサと前記第2加速度センサとは、回転軸から異なる距離に配置されていてもよい。このようにすることにより、片側のクランクに第1加速度センサと第2加速度センサとを配置して次回の測定タイミングを決定することができる。 Further, the first acceleration sensor and the second acceleration sensor may be arranged at different distances from the rotation axis. By doing so, the next measurement timing can be determined by arranging the first acceleration sensor and the second acceleration sensor on one crank.
 また、決定部は、基準位置検出部の検出結果からクランクの回転数を算出し、次回の測定タイミングを第1加速度センサの出力値および第2加速度センサの出力値と、クランクの回転数と、次回の測定角度と、に基づいて決定してもよい。このようにすることにより、クランクの回転数に基づいて測定タイミングの決定をすることができ、測定タイミングを精度良く算出することができる。 Further, the determination unit calculates the rotation speed of the crank from the detection result of the reference position detection unit, and determines the next measurement timing as the output value of the first acceleration sensor and the output value of the second acceleration sensor, the rotation speed of the crank, It may be determined based on the next measurement angle. By doing so, it is possible to determine the measurement timing based on the rotation speed of the crank, and to calculate the measurement timing with high accuracy.
 また、決定部は、第1加速度センサの出力値および第2加速度センサの出力値と、前記基準位置検出部の検出結果と、次回の測定角度と、に基づいて、次回の測定タイミングを決定した後から当該次回の測定タイミングまでの間に当該測定タイミングを補正する補正部を有してもよい。このようにすることにより、一度決定した測定タイミングが加速度の変化などによって変動した場合に補正することができ、測定タイミングの決定精度を高くすることができる。 The determination unit determines the next measurement timing based on the output values of the first acceleration sensor and the second acceleration sensor, the detection result of the reference position detection unit, and the next measurement angle. You may have a correction | amendment part which correct | amends the said measurement timing after the said next measurement timing after that. By doing so, it is possible to correct the measurement timing once determined due to a change in acceleration or the like, and it is possible to increase measurement timing determination accuracy.
 また、決定部は、第1加速度センサの複数の出力値および第2加速度センサの複数の出力値と、前記基準位置検出部の検出結果と、次回の測定角度と、に基づいて測定部の次回の測定タイミングを決定してもよい。このようにすることにより、第1加速度センサの出力値と第2加速度センサの出力値とを複数用いて、例えばそれらの平均値を使用することができる。したがって、瞬間の出力値のみで決定する場合と比較して加速度センサの出力に重畳するノイズ等の影響を受けにくくすることができる。 In addition, the determination unit may determine whether the measurement unit next time based on the plurality of output values of the first acceleration sensor and the plurality of output values of the second acceleration sensor, the detection result of the reference position detection unit, and the next measurement angle. The measurement timing may be determined. By doing in this way, the output value of a 1st acceleration sensor and the output value of a 2nd acceleration sensor are used in multiple numbers, For example, those average values can be used. Therefore, it is possible to make it less susceptible to the influence of noise or the like superimposed on the output of the acceleration sensor as compared with the case where it is determined only by the instantaneous output value.
 また、決定部は、第1加速度センサの出力値および第2加速度センサの出力値に基づいてクランクの回転周期を算出し、回転周期と基準位置検出部の検出結果と次回の測定角度とに基づいて測定部の次回の測定タイミングを決定してもよい。このようにすることにより、例えば1周に30°ごとで測定する場合は、クランクの回転周期と30°から、次の測定までの時間を算出することができる。したがって、次回の測定タイミングを検出することができる。 The determination unit calculates a crank rotation period based on the output value of the first acceleration sensor and the output value of the second acceleration sensor, and based on the rotation period, the detection result of the reference position detection unit, and the next measurement angle. Then, the next measurement timing of the measurement unit may be determined. By doing so, for example, when measuring at every 30 ° per round, the time until the next measurement can be calculated from the rotation period of the crank and 30 °. Therefore, the next measurement timing can be detected.
 また、測定部は、クランクがm回転をn等分(m、nは1以上の整数)した角度に対応するタイミングで所定の測定を行い、決定部は、mおよびnに基づいて次回の測定角度を求めてもよい。このようにすることにより、例えば30°ごとなど等間隔に測定することができる。 In addition, the measurement unit performs a predetermined measurement at a timing corresponding to an angle obtained by dividing the crank m rotation by n (m and n are integers of 1 or more), and the determination unit performs the next measurement based on m and n. An angle may be obtained. By doing in this way, it can measure at equal intervals, for example, every 30 degrees.
 また、決定部は、基準位置に基づいて測定タイミングを検出してもよい。このようにすることにより、測定タイミングを検出するための基準を設定することができる。 Further, the determination unit may detect the measurement timing based on the reference position. By doing in this way, the reference | standard for detecting a measurement timing can be set.
 また、基準位置検出部が、クランクの特定の回転角に対応する位置に固定されて配置されている被検出部と、クランクに配置され被検出部を検出する検出部と、を有してもよい。このようにすることにより、例えばクランクに磁気センサを設け、自転車のフレームに磁石を設けることで、フレームの位置を基準位置とすることができる。 The reference position detection unit may include a detection unit that is fixedly disposed at a position corresponding to a specific rotation angle of the crank, and a detection unit that is disposed on the crank and detects the detection unit. Good. In this way, for example, by providing a magnetic sensor on the crank and providing a magnet on the bicycle frame, the position of the frame can be set as the reference position.
 また、クランクの短手方向と平行な方向の加速度を検出する第3加速度センサと、検出部が被検出部を検出したことを通知する通知部と、前記第1加速度センサまたは前記第2加速度センサと、第1加速度センサまたは第2加速度センサの出力値と第3加速度センサの出力値とを決定部に取得させるタイミングを指示するタイミング指示部と、を有する。そして、タイミング指示部が、通知部が被検出部を検出した通知に基づいて第1加速度センサまたは第2加速度センサの出力値と第3加速度センサの出力値とを決定部に取得させ、基準位置検出部が、決定部が取得した第1加速度センサまたは第2加速度センサの出力値と、第3加速度センサの出力値と、に基づいて基準位置を設定してもよい。このようにすることにより、被検出部が検出されたクランクに加わる重力加速度に基づいて被検出部が設けられた位置の鉛直方向に対する角度を算出することができる。したがって、自転車のフレームの鉛直方向の角度を調査したり、分度器等で測定する必要が無くなる。 A third acceleration sensor for detecting acceleration in a direction parallel to the short direction of the crank; a notification unit for notifying that the detection unit has detected the detected unit; and the first acceleration sensor or the second acceleration sensor. And a timing instruction unit that instructs the determination unit to acquire the output value of the first acceleration sensor or the second acceleration sensor and the output value of the third acceleration sensor. Then, the timing instruction unit causes the determination unit to acquire the output value of the first acceleration sensor or the second acceleration sensor and the output value of the third acceleration sensor based on the notification that the notification unit has detected the detected unit, and the reference position The detection unit may set the reference position based on the output value of the first acceleration sensor or the second acceleration sensor acquired by the determination unit and the output value of the third acceleration sensor. By doing in this way, the angle with respect to the perpendicular direction of the position where the to-be-detected part was provided can be calculated based on the gravitational acceleration applied to the crank from which the to-be-detected part was detected. Therefore, it is not necessary to investigate the angle in the vertical direction of the bicycle frame or to measure it with a protractor.
 また、第1加速度センサの出力および第2加速度の出力値にフィルタ処理を施すフィルタ部と、フィルタ処理が施された後に角度補正処理を施す遅延角度補正部と、を有してもよい。このようにすることにより、振動などにより重力加速度やクランクに加わる遠心力の加速度以外の加速度成分を取り除くことができ、次回の測定タイミングの検出精度を良くすることができる。また、遅延角度補正部によって、フィルタ処理によって発生する遅延を補正することができる。 Further, a filter unit that performs a filter process on the output values of the first acceleration sensor and the output value of the second acceleration, and a delay angle correction unit that performs an angle correction process after the filter process is performed may be included. By doing so, it is possible to remove acceleration components other than gravitational acceleration and acceleration of centrifugal force applied to the crank due to vibration and the like, and the detection accuracy of the next measurement timing can be improved. The delay generated by the filter process can be corrected by the delay angle correction unit.
 また、本発明の一実施形態にかかる回転角検出方法は、取得工程で、回転軸に取り付けたクランクまたはクランクと連動して回転する部材に配置された第1加速度センサおよび第2加速度センサからクランクの長手方向と平行な方向の加速度を取得し、基準位置検出工程で、クランクが所定の基準位置にあることを検出する。そして、決定工程で、クランクの適宜角度位置において所定の測定を行う測定部の次回の測定タイミングを、第1加速度センサの出力値および第2加速度センサの出力値と、基準位置検出工程での検出結果と、次回の測定角度と、に基づいて決定する。このようにすることにより、加速度センサのクランクの長手方向(検出軸方向)の遠心力の加速度成分を算出することができる。そのため、その遠心力の加速度成分と次回の測定角度に基づいて次回の測定タイミング(次回の測定タイミングまでの時間)を算出することができる。また、基準位置に基づいて次回の測定タイミングを決定するので、加速度センサの特性や電源電圧変動等により発生する測定タイミングのオフセット分を加味することができ、測定タイミングを精度良く算出することができる。また、磁石を用いないので、低コスト化が図れ、ごみや砂鉄などの影響を受けないことから、耐久性を向上させることができる。また、角速度センサを利用しないので、低消費電力化を図ることもできる。 The rotation angle detection method according to an embodiment of the present invention includes a crank from a first acceleration sensor and a second acceleration sensor arranged on a member that rotates in conjunction with a crank or a crank attached to a rotation shaft in the acquisition step. The acceleration in the direction parallel to the longitudinal direction is acquired, and in the reference position detection step, it is detected that the crank is at a predetermined reference position. Then, in the determination step, the next measurement timing of the measurement unit that performs a predetermined measurement at an appropriate angular position of the crank is detected in the output value of the first acceleration sensor, the output value of the second acceleration sensor, and the reference position detection step. A determination is made based on the result and the next measurement angle. In this way, the acceleration component of the centrifugal force in the longitudinal direction (detection axis direction) of the crank of the acceleration sensor can be calculated. Therefore, the next measurement timing (time until the next measurement timing) can be calculated based on the acceleration component of the centrifugal force and the next measurement angle. In addition, since the next measurement timing is determined based on the reference position, the offset of the measurement timing generated due to the characteristics of the acceleration sensor, the power supply voltage fluctuation, etc. can be taken into account, and the measurement timing can be calculated with high accuracy. . In addition, since no magnet is used, the cost can be reduced, and since it is not affected by dust or iron sand, durability can be improved. Further, since the angular velocity sensor is not used, the power consumption can be reduced.
 また、上述した回転角検出方法をコンピュータにより実行させる回転角検出プログラムとしてもよい。このようにすることにより、コンピュータを用いて、加速度センサのクランクの長手方向(検出軸方向)の遠心力の加速度成分を算出することができる。そのため、その遠心力の加速度成分と次回の測定角度に基づいて次回の測定タイミング(次回の測定タイミングまでの時間)を算出することができる。また、基準位置に基づいて次回の測定タイミングを決定するので、加速度センサの特性や電源電圧変動等により発生する測定タイミングのオフセット分を加味することができ、測定タイミングを精度良く算出することができる。また、磁石を用いないので、低コスト化が図れ、ごみや砂鉄などの影響を受けないことから、耐久性を向上させることができる。また、角速度センサを利用しないので、低消費電力化を図ることもできる。 Also, a rotation angle detection program that causes a computer to execute the rotation angle detection method described above may be used. By doing so, the acceleration component of the centrifugal force in the longitudinal direction (detection axis direction) of the crank of the acceleration sensor can be calculated using a computer. Therefore, the next measurement timing (time until the next measurement timing) can be calculated based on the acceleration component of the centrifugal force and the next measurement angle. In addition, since the next measurement timing is determined based on the reference position, the offset of the measurement timing generated due to the characteristics of the acceleration sensor, the power supply voltage fluctuation, etc. can be taken into account, and the measurement timing can be calculated with high accuracy. . In addition, since no magnet is used, the cost can be reduced, and since it is not affected by dust or iron sand, durability can be improved. Further, since the angular velocity sensor is not used, the power consumption can be reduced.
 また、上述した回転角検出プログラムをコンピュータ読み取り可能な記録媒体に格納してもよい。このようにすることにより、当該プログラムを機器に組み込む以外に単体でも流通させることができ、バージョンアップ等も容易に行える。 Further, the rotation angle detection program described above may be stored in a computer-readable recording medium. In this way, the program can be distributed as a single unit in addition to being incorporated in the device, and version upgrades can be easily performed.
 本発明の第1の実施例にかかる回転角検出装置を有するサイクルコンピュータ201を備えた自転車1を図1乃至図13を参照して説明する。自転車1は図1に示すように、フレーム3と、フロント車輪5と、リア車輪7と、ハンドル9と、サドル11と、フロントフォーク13と、駆動機構101と、を有している。 A bicycle 1 including a cycle computer 201 having a rotation angle detection device according to a first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the bicycle 1 includes a frame 3, a front wheel 5, a rear wheel 7, a handle 9, a saddle 11, a front fork 13, and a drive mechanism 101.
 フレーム3は、2つのトラス構造から構成されている。フレーム3は、後方の先端部分において、リア車輪7と回転自在に接続されている。また、フレーム3の前方において、フロントフォーク13が回転自在に接続されている。 フ レ ー ム Frame 3 is composed of two truss structures. The frame 3 is rotatably connected to the rear wheel 7 at the rear end portion. A front fork 13 is rotatably connected in front of the frame 3.
 フロントフォーク13は、ハンドル9と接続されている。フロントフォーク13の下方向の先端位置において、フロントフォーク13とフロント車輪5とは回転自在に接続されている。 The front fork 13 is connected to the handle 9. The front fork 13 and the front wheel 5 are rotatably connected at the front end position of the front fork 13 in the downward direction.
 フロント車輪5は、ハブ部、スポーク部及びタイヤ部を有している。ハブ部はフロントフォーク13と回転自在に接続されている。そして、このハブ部とタイヤ部はスポーク部によって接続されている。 The front wheel 5 has a hub part, a spoke part, and a tire part. The hub portion is rotatably connected to the front fork 13. And this hub part and the tire part are connected by the spoke part.
 リア車輪7は、ハブ部、スポーク部及びタイヤ部を有している。ハブ部はフレーム3と回転自在に接続されている。そして、このハブ部とタイヤ部はスポーク部によって接続されている。リア車輪7のハブ部は、後述するスプロケット113と接続されている。 The rear wheel 7 has a hub part, a spoke part, and a tire part. The hub portion is rotatably connected to the frame 3. And this hub part and the tire part are connected by the spoke part. The hub portion of the rear wheel 7 is connected to a sprocket 113 described later.
 自転車1は、ユーザ(運転者)の足による踏み込み力(踏力)を自転車1の駆動力に変換する駆動機構101を有している。駆動機構101は、ペダル103、クランク機構104、チェーンリング109、チェーン111、スプロケット113と、を有している。 The bicycle 1 has a drive mechanism 101 that converts a stepping force (stepping force) by a user (driver) foot into a driving force of the bicycle 1. The drive mechanism 101 includes a pedal 103, a crank mechanism 104, a chain ring 109, a chain 111, and a sprocket 113.
 ペダル103は、ユーザが踏み込むための足と接する部分である。ペダル103は、クランク機構104のペダルクランク軸115によって回転自在となるように支持されている。 The pedal 103 is a part in contact with a foot for the user to step on. The pedal 103 is supported so as to be rotatable by a pedal crankshaft 115 of the crank mechanism 104.
 クランク機構104は、クランク105とクランク軸107及びペダルクランク軸115(図2、図4および図10参照)から構成されている。 The crank mechanism 104 includes a crank 105, a crankshaft 107, and a pedal crankshaft 115 (see FIGS. 2, 4 and 10).
 クランク軸107はフレーム3を左右方向に(自転車側面の一方から他方に)貫通している。クランク軸107は、フレーム3によって回転自在に支持されている。即ち、クランク105の回転軸となる。 The crankshaft 107 passes through the frame 3 in the left-right direction (from one side of the bicycle side to the other). The crankshaft 107 is rotatably supported by the frame 3. That is, it becomes the rotating shaft of the crank 105.
 クランク105は、クランク軸107と直角に設けられている。クランク105は、一端部において、クランク軸107と接続されている。 The crank 105 is provided at a right angle to the crankshaft 107. The crank 105 is connected to the crankshaft 107 at one end.
 ペダルクランク軸115は、クランク105と直角に設けられている。ペダルクランク軸115の軸方向は、クランク軸107と同一方向となっている。ペダルクランク軸115は、クランク105の他端部においてクランク105と接続されている。 The pedal crankshaft 115 is provided at a right angle to the crank 105. The axial direction of the pedal crankshaft 115 is the same as that of the crankshaft 107. The pedal crankshaft 115 is connected to the crank 105 at the other end of the crank 105.
 クランク機構104は、このような構造を自転車1の側面の反対側にも有している。つまり、クランク機構104は、2個のクランク105及び、2個のペダルクランク軸115を有している。したがって、ペダル103も自転車1の両側面にそれぞれ有している。 The crank mechanism 104 has such a structure on the side opposite to the side surface of the bicycle 1. That is, the crank mechanism 104 has two cranks 105 and two pedal crankshafts 115. Therefore, the pedal 103 is also provided on each side of the bicycle 1.
 これらが自転車1の右側にあるか左側にあるかを区別する場合には、それぞれ右側クランク105R、左側クランク105L、右側ペダルクランク軸115R、左側ペダルクランク軸115L、右側ペダル103R、左側ペダル103Lと記載する。 When distinguishing whether these are on the right side or the left side of the bicycle 1, they are described as a right crank 105R, a left crank 105L, a right pedal crankshaft 115R, a left pedal crankshaft 115L, a right pedal 103R, and a left pedal 103L, respectively. To do.
 また右側クランク105Rと左側クランク105Lは、クランク軸107を中心として反対方向に延びるように接続されている。右側ペダルクランク軸115R、クランク軸107および左側ペダルクランク軸115Lは、平行かつ同一平面に形成されている。右側クランク105R及び左側クランク105Lは、平行かつ同一平面上に形成されている。 The right crank 105R and the left crank 105L are connected so as to extend in opposite directions around the crankshaft 107. The right pedal crankshaft 115R, the crankshaft 107, and the left pedal crankshaft 115L are formed in parallel and on the same plane. The right crank 105R and the left crank 105L are formed in parallel and on the same plane.
 チェーンリング109は、クランク軸107に接続されている。チェーンリング109は、ギア比を変化させることができる可変ギアで構成されると好適である。また、チェーンリング109にはチェーン111が係合されている。 The chain ring 109 is connected to the crankshaft 107. The chain ring 109 is preferably constituted by a variable gear capable of changing the gear ratio. A chain 111 is engaged with the chain ring 109.
 チェーン111はチェーンリング109及びスプロケット113に係合している。スプロケット113は、リア車輪7と接続されている。スプロケット113は、可変ギアで構成されると好適である。 The chain 111 is engaged with the chain ring 109 and the sprocket 113. The sprocket 113 is connected to the rear wheel 7. The sprocket 113 is preferably composed of a variable gear.
 自転車1は、このような駆動機構101によってユーザの踏み込み力をリア車輪の回転力に変換している。 The bicycle 1 converts the stepping force of the user into the rotational force of the rear wheel by such a drive mechanism 101.
 自転車1は、サイクルコンピュータ201と、測定モジュール301と、を有している(図2も参照)。 The bicycle 1 has a cycle computer 201 and a measurement module 301 (see also FIG. 2).
 サイクルコンピュータ201は、ハンドル9に配置されている。サイクルコンピュータ201は、図2に示すように、各種情報を表示するサイクルコンピュータ表示部203およびユーザの操作を受けるサイクルコンピュータ操作部205を有している。 The cycle computer 201 is disposed on the handle 9. As shown in FIG. 2, the cycle computer 201 includes a cycle computer display unit 203 that displays various types of information and a cycle computer operation unit 205 that receives user operations.
 サイクルコンピュータ表示部203に表示される各種情報とは、自転車1の速度、位置情報、目的地までの距離、目的地までの予測到達時間、出発してからの移動距離、出発してからの経過時間、クランク105の角度ごとの推進力や損失力、効率等である。 The various types of information displayed on the cycle computer display unit 203 include the speed of the bicycle 1, position information, the distance to the destination, the estimated arrival time to the destination, the travel distance since the departure, and the elapsed time since the departure. These are time, propulsive force, loss power, efficiency, etc. for each angle of the crank 105.
 ここで、推進力とはクランク105の回転方向に加わる力の大きさである。一方、損失力とは、クランク105の回転方向とは別の方向に加わる力の大きさである。この回転方向とは別の方向に加わる力は、何ら自転車1の駆動に寄与しない無駄な力である。したがって、ユーザは、推進力をできるだけ増加させ、損失力をできるだけ減少させることによって、より効率的に自転車1を駆動させることが可能となる。即ち、これらの力は、クランク105の回転時に当該クランク105に加えられる負荷である。 Here, the propulsive force is the magnitude of the force applied in the rotation direction of the crank 105. On the other hand, the loss force is a magnitude of a force applied in a direction different from the rotation direction of the crank 105. The force applied in a direction different from the rotational direction is a useless force that does not contribute to the driving of the bicycle 1. Therefore, the user can drive the bicycle 1 more efficiently by increasing the propulsive force as much as possible and decreasing the loss force as much as possible. That is, these forces are loads applied to the crank 105 when the crank 105 rotates.
 サイクルコンピュータ操作部205は、図2では押しボタンで示されているが、それに限らず、タッチパネルなど各種入力手段や複数の入力手段を組み合わせて用いることができる。 The cycle computer operation unit 205 is shown as a push button in FIG. 2, but is not limited thereto, and various input means such as a touch panel or a plurality of input means can be used in combination.
 また、サイクルコンピュータ201は、サイクルコンピュータ無線受信部209を有している。サイクルコンピュータ無線受信部209は、配線を介してサイクルコンピュータ201の本体部分と接続されている。なお、サイクルコンピュータ無線受信部209は、受信のみの機能を有する必要はない。例えば、送信部としての機能を有していても良い。以下、送信部又は受信部と記載した装置も、受信機能及び送信機能の両方を有していても良い。 The cycle computer 201 has a cycle computer wireless reception unit 209. The cycle computer wireless reception unit 209 is connected to the main body portion of the cycle computer 201 through wiring. Note that the cycle computer wireless reception unit 209 does not need to have a reception-only function. For example, you may have a function as a transmission part. Hereinafter, an apparatus described as a transmission unit or a reception unit may also have both a reception function and a transmission function.
 測定モジュール301は、例えばクランク105の内面に設けられ、複数のひずみゲージ素子から構成されるひずみゲージ369(図3及び図10参照)を用いて、ペダル103にユーザが加えている人力(踏力)を検出する。具体的には、クランク105の回転力であって自転車1の駆動力となる推進力と、回転方向とは別の方向に加わる力である損失力を算出する。また、測定モジュール301は、後述する加速度センサ371を用いて、推進力や損失力の測定タイミングも検出する。即ち、推進力や損失力の検出(算出)が本実施例にかかる所定の測定となる。 The measurement module 301 is provided on the inner surface of the crank 105, for example, and a human power (stepping force) applied by the user to the pedal 103 using a strain gauge 369 (see FIGS. 3 and 10) configured from a plurality of strain gauge elements. Is detected. Specifically, a propulsive force that is the rotational force of the crank 105 and serves as the driving force of the bicycle 1 and a loss force that is a force applied in a direction different from the rotational direction are calculated. The measurement module 301 also detects the measurement timing of propulsive force and loss force using an acceleration sensor 371 described later. That is, the detection (calculation) of the propulsive force and the loss force is a predetermined measurement according to the present embodiment.
 また、測定モジュール301は、自転車1のフレーム3に設けられた磁石503の接近を検出する磁気センサ373を有している(図3参照)。磁気センサ373は、接近する磁石503によってONになることで、磁石503の位置を検出する。つまり、磁気センサ373がONになるということは、磁石503が存在する位置にクランク105も存在することとなる。したがって、この磁気センサ373の出力から、サイクルコンピュータ201は、ケイデンス[rpm]を得ることができる。即ち、測定モジュール301は、ケイデンスセンサの機能も合わせて有している。 Moreover, the measurement module 301 has a magnetic sensor 373 that detects the approach of the magnet 503 provided on the frame 3 of the bicycle 1 (see FIG. 3). The magnetic sensor 373 detects the position of the magnet 503 by being turned on by the approaching magnet 503. That is, when the magnetic sensor 373 is turned on, the crank 105 is also present at the position where the magnet 503 is present. Therefore, the cycle computer 201 can obtain cadence [rpm] from the output of the magnetic sensor 373. That is, the measurement module 301 also has a cadence sensor function.
 図3は、サイクルコンピュータ201及び測定モジュール301のブロック図である。 FIG. 3 is a block diagram of the cycle computer 201 and the measurement module 301.
 まず、測定モジュール301のブロック構成を説明する。測定モジュール301は、図3に示したように、測定モジュール無線送信部309、測定モジュール制御部351、測定モジュール記憶部353、パワーセンサ368、加速度センサ371及び磁気センサ373を有している。 First, the block configuration of the measurement module 301 will be described. As illustrated in FIG. 3, the measurement module 301 includes a measurement module wireless transmission unit 309, a measurement module control unit 351, a measurement module storage unit 353, a power sensor 368, an acceleration sensor 371, and a magnetic sensor 373.
 測定モジュール無線送信部309は、測定モジュール制御部351がひずみ情報から算出した推進力及び損失力や、加速度センサ371の出力情報から算出(検出)した測定タイミングに基づいて算出したクランク105の回転角や、磁気センサ373の出力に基づいて算出したケイデンス等を、サイクルコンピュータ無線受信部209に送信している。 The measurement module wireless transmission unit 309 is a rotation angle of the crank 105 calculated based on the propulsive force and loss force calculated from the strain information by the measurement module control unit 351 and the measurement timing calculated (detected) from the output information of the acceleration sensor 371. In addition, the cadence calculated based on the output of the magnetic sensor 373 is transmitted to the cycle computer wireless reception unit 209.
 測定モジュール制御部351は、測定モジュール301を包括的に制御している。測定モジュール制御部351は、推進力演算部351aと、測定タイミング決定部351bと、基準角度検出部351cと、送信データ作成部351dと、ケイデンス演算部351eと、を有している。 The measurement module control unit 351 comprehensively controls the measurement module 301. The measurement module control unit 351 includes a propulsive force calculation unit 351a, a measurement timing determination unit 351b, a reference angle detection unit 351c, a transmission data creation unit 351d, and a cadence calculation unit 351e.
 推進力演算部351aは、パワーセンサ368が出力するひずみ情報から推進力及び損失力を算出する。推進力及び損失力の算出方法は後述する。 The propulsive force calculation unit 351a calculates the propulsive force and the loss force from the strain information output from the power sensor 368. A method for calculating the propulsive force and the loss force will be described later.
 測定タイミング決定部351bは、加速度センサ371の出力値と、m周当たりの測定回数nから次回の測定タイミングを算出(決定)し、ひずみ情報を取得するタイミング等を制御している。測定タイミングの算出方法は後述する。なお、本実施例ではm=1、n=12で以下の説明をする。また、測定タイミング決定部351bは、所定のサンプリング周期(所定時間間隔)で加速度センサ371の出力値を取得し、後述する出力値保管部357に保管する。また、所定のサンプリング周期は測定タイミングの間隔よりも短い時間である。 The measurement timing determination unit 351b calculates (determines) the next measurement timing from the output value of the acceleration sensor 371 and the number of measurements n per m laps, and controls the timing at which strain information is acquired. A method for calculating the measurement timing will be described later. In the present embodiment, the following description will be given with m = 1 and n = 12. Further, the measurement timing determination unit 351b acquires the output value of the acceleration sensor 371 at a predetermined sampling cycle (predetermined time interval) and stores it in an output value storage unit 357 described later. The predetermined sampling period is shorter than the measurement timing interval.
 基準角度検出部351cは、クランク105の位置が基準位置にあるか否かを検出する。基準位置は、磁気センサ373がONになった旨の情報信号の出力を受けることで検出される。 The reference angle detector 351c detects whether or not the position of the crank 105 is at the reference position. The reference position is detected by receiving an output of an information signal indicating that the magnetic sensor 373 is turned on.
 送信データ作成部351dは、推進力演算部351aで算出された推進力及び損失力や測定タイミング決定部351bで算出された次回の測定タイミングと基準位置とから算出されたクランク105の回転角や、ケイデンス演算部351eで算出されたケイデンスから送信データを作成して、測定モジュール無線送信部309に出力する。 The transmission data creation unit 351d includes the rotation angle of the crank 105 calculated from the propulsive force and loss force calculated by the propulsive force calculation unit 351a, the next measurement timing calculated by the measurement timing determination unit 351b, and the reference position, Transmission data is created from the cadence calculated by the cadence calculation unit 351e and output to the measurement module wireless transmission unit 309.
 ケイデンス演算部351eは、磁気センサ373がONとなった旨の情報信号の出力を受けると、以下の動作を行う。ケイデンス演算部351eは、自身の持つカウンタの値を参照する。そして、そのカウンタ値からケイデンスを算出する。具体的には、カウンタのカウント数(C)と1度のカウント間隔(T)を掛け合わせることによって、磁気センサ373がONとなる時間(周期)[秒]を算出する。そして、60をこの周期で割ることによって、ケイデンス[rpm]を算出する。なお、カウンタは外部にタイマ等として持っていてもよい。また、ケイデンス演算部351eは、上記以外の方法でケイデンスを求めてもよい。要するに、磁気センサ373がONとなる間隔から求められれば他の方法でもよい。 When the cadence calculating unit 351e receives the output of the information signal indicating that the magnetic sensor 373 is turned on, the cadence calculating unit 351e performs the following operation. The cadence calculation unit 351e refers to the value of the counter that it has. Then, cadence is calculated from the counter value. Specifically, the time (cycle) [second] at which the magnetic sensor 373 is turned on is calculated by multiplying the count number (C) of the counter by one count interval (T). Then, cadence [rpm] is calculated by dividing 60 by this period. The counter may be externally provided as a timer or the like. Further, the cadence calculation unit 351e may obtain cadence by a method other than the above. In short, any other method may be used as long as it is obtained from the interval at which the magnetic sensor 373 is turned on.
 測定モジュール記憶部353には、各種情報が記憶される。各種情報とは、例えば、測定モジュール制御部351の制御プログラム、及び、測定モジュール制御部351が制御を行う際に必要とされる一時的な情報である。測定モジュール記憶部353は、前記した情報の他に、基準角度保管部355及び出力値保管部357も記憶されている。 The measurement module storage unit 353 stores various types of information. The various types of information are, for example, a control program for the measurement module control unit 351 and temporary information required when the measurement module control unit 351 performs control. In addition to the information described above, the measurement module storage unit 353 also stores a reference angle storage unit 355 and an output value storage unit 357.
 基準角度保管部355は、例えばフラッシュメモリ等の不揮発性のメモリで構成され、磁石503が設けられているフレーム3の鉛直方向に対する角度を保管している。このフレーム3の鉛直方向に対する角度は、予めフレーム3の設計図や仕様等を参照するかあるいは分度器等を用いて実際に測定した値等を記憶させる。 The reference angle storage unit 355 is configured by a non-volatile memory such as a flash memory, for example, and stores an angle with respect to the vertical direction of the frame 3 on which the magnet 503 is provided. As for the angle of the frame 3 with respect to the vertical direction, a value or the like actually measured using a protractor or the like is stored in advance by referring to a design drawing or specifications of the frame 3 in advance.
 出力値保管部357は、例えばRAM(Random Access Memory)で構成され、第1加速度センサ371aの複数の出力値と第2加速度センサ371bの複数の出力値とを記憶する。例えば、前の測定タイミング算出時から現在(測定タイミング算出時)までなど2以上のサンプリング周期で取得した出力値が保管されていればよい。 The output value storage unit 357 is composed of, for example, a RAM (Random Access Memory), and stores a plurality of output values of the first acceleration sensor 371a and a plurality of output values of the second acceleration sensor 371b. For example, it is only necessary to store output values acquired at two or more sampling periods such as from the previous measurement timing calculation to the present (measurement timing calculation).
 磁気センサ373は、磁石503が接近することによってON/OFFが切り替わる。そして、磁気センサ373がONとなると、磁気センサ373はその旨の情報信号を測定モジュール制御部351に出力する。 The magnetic sensor 373 is switched ON / OFF when the magnet 503 approaches. When the magnetic sensor 373 is turned on, the magnetic sensor 373 outputs an information signal indicating that to the measurement module control unit 351.
 加速度センサ371は、クランク105に接着されて、一体化される。加速度センサ371は、静電容量型やピエゾ抵抗型等周知の方式を適宜選択すればよい。加速度センサ371は、第1加速度センサ371a、第2加速度センサ371bから構成されている。 The acceleration sensor 371 is bonded to the crank 105 and integrated. The acceleration sensor 371 may be appropriately selected from known methods such as a capacitance type and a piezoresistive type. The acceleration sensor 371 includes a first acceleration sensor 371a and a second acceleration sensor 371b.
 図4に、本実施例における加速度センサ371のクランク105への配置の例を示す。加速度センサ371は、クランク105の内面119に接着されている。クランク105の内面とは、クランク軸107が突設されている(接続されている)面であり、クランク105の回転運動により定義される円を含む平面と平行な面(側面)である。また、図4には図示しないが、クランク105の外面120は、内面119と対向しペダルクランク軸115が突設されている(接続されている)面である。つまり、ペダル103が回転自在に設けられている面である。クランク105の上面117は、内面119および外面120と同じ方向に長手方向が延在し、かつ内面119および外面120と直交する面の一方である。クランク105の下面118は、上面117と対向する面である。なお、本実施例では、加速度センサ371はクランク105の内面119に接着した例で説明するが、外面120や上面117あるいは下面118に接着してあってもよいし、クランク105内部に設けられていてもよい。 FIG. 4 shows an example of the arrangement of the acceleration sensor 371 in the present embodiment on the crank 105. The acceleration sensor 371 is bonded to the inner surface 119 of the crank 105. The inner surface of the crank 105 is a surface on which the crankshaft 107 is protruded (connected), and is a surface (side surface) parallel to a plane including a circle defined by the rotational motion of the crank 105. Although not shown in FIG. 4, the outer surface 120 of the crank 105 is a surface on which the pedal crankshaft 115 is protruded (connected) so as to face the inner surface 119. That is, it is a surface on which the pedal 103 is rotatably provided. The upper surface 117 of the crank 105 is one of the surfaces extending in the longitudinal direction in the same direction as the inner surface 119 and the outer surface 120 and orthogonal to the inner surface 119 and the outer surface 120. A lower surface 118 of the crank 105 is a surface facing the upper surface 117. In this embodiment, the acceleration sensor 371 is described as being bonded to the inner surface 119 of the crank 105. However, the acceleration sensor 371 may be bonded to the outer surface 120, the upper surface 117, or the lower surface 118, or provided inside the crank 105. May be.
 第1加速度センサ371aと第2加速度センサ371bは、クランク105の長手方向に対して検出方向が平行、つまり、内面119の中心軸C1に対して平行かつ、クランク軸107の中心から異なる距離に設けられている。図4の例では、第1加速度センサ371aの方が第2加速度センサ371bよりもクランク軸107の中心に近い位置に設けられている。また、第1加速度センサ371aと第2加速度センサ371bは、クランク105の長手方向に対して平行な方向が検出方向となっている。また、第1加速度センサ371aと第2加速度センサ371bは、図4に示したように一直線上に設けられていなくてもよい。 The first acceleration sensor 371a and the second acceleration sensor 371b have a detection direction parallel to the longitudinal direction of the crank 105, that is, parallel to the central axis C1 of the inner surface 119 and provided at different distances from the center of the crank shaft 107. It has been. In the example of FIG. 4, the first acceleration sensor 371a is provided at a position closer to the center of the crankshaft 107 than the second acceleration sensor 371b. The first acceleration sensor 371a and the second acceleration sensor 371b have a detection direction that is parallel to the longitudinal direction of the crank 105. Further, the first acceleration sensor 371a and the second acceleration sensor 371b may not be provided on a straight line as shown in FIG.
 加速度センサ371の検出結果(出力)は、測定モジュール制御部351に出力される。この際に、図示しないA/Dコンバータによって、アナログ情報からデジタル情報に変換してもよい。 The detection result (output) of the acceleration sensor 371 is output to the measurement module control unit 351. At this time, analog information may be converted into digital information by an A / D converter (not shown).
 ここで、図4に示したように設けられた加速度センサ371を用いて、測定タイミング決定部351bで次回の測定タイミングを検出する方法について、図5乃至図9を参照して説明する。図5は、クランク105が静止しているときの加速度センサ371が検出する加速度についての説明図である。図5の長手方向とは、クランク105の長手方向であり、矢印の先端に向かう方向がクランク軸107からペダルクランク軸115に向かう方向を示している。また、図5の場合、鉛直方向からずれた位置に静止している状態である。 Here, a method of detecting the next measurement timing by the measurement timing determination unit 351b using the acceleration sensor 371 provided as shown in FIG. 4 will be described with reference to FIGS. FIG. 5 is an explanatory diagram for the acceleration detected by the acceleration sensor 371 when the crank 105 is stationary. The longitudinal direction in FIG. 5 is the longitudinal direction of the crank 105, and the direction toward the tip of the arrow indicates the direction from the crankshaft 107 toward the pedal crankshaft 115. Moreover, in the case of FIG. 5, it is in the state which has stopped at the position shifted | deviated from the perpendicular direction.
 図5の場合、クランク105は静止しているので、遠心力は加わらず、加速度センサ371には重力加速度のみが検出される(図5(a))。但し、加速度センサ371は、検出方向がクランク105の長手方向と平行な方向であるので、実際には、重力加速度の長手方向の成分が検出される(図5(b))。重力加速度の長手方向の成分は以下の(1)式により表される。なお、第1加速度センサ371aと第2加速度センサ371bとは同じ値が検出される。
Figure JPOXMLDOC01-appb-M000001
In the case of FIG. 5, since the crank 105 is stationary, no centrifugal force is applied, and only the acceleration of gravity is detected by the acceleration sensor 371 (FIG. 5A). However, since the detection direction of the acceleration sensor 371 is parallel to the longitudinal direction of the crank 105, the longitudinal component of the gravitational acceleration is actually detected (FIG. 5B). The longitudinal component of gravitational acceleration is expressed by the following equation (1). The first acceleration sensor 371a and the second acceleration sensor 371b detect the same value.
Figure JPOXMLDOC01-appb-M000001
 次に、クランク105が回転すると図6に示したようになる。ここで、第1加速度センサ371aはクランク軸107の中心からr1の距離、第2加速度センサ371bはクランク軸107の中心からr2の距離にそれぞれ設けられているとする。また、r1<r2とする。 Next, when the crank 105 rotates, it becomes as shown in FIG. Here, it is assumed that the first acceleration sensor 371a is provided at a distance r1 from the center of the crankshaft 107, and the second acceleration sensor 371b is provided at a distance r2 from the center of the crankshaft 107. Further, r1 <r2.
 クランク105が回転すると、重力加速度とともにクランク105の長手方向(クランク軸107からペダルクランク軸115に向かう方向、即ち、クランク105の回転の法線方向)に遠心力が発生するため、遠心力の加速度も加わる。遠心力の加速度は、回転中心(クランク軸107の中心)から離れるにしたがって大きくなる。また、第1加速度センサ371aには、重力加速度と遠心力の加速度とを加算した加速度(瞬間加速度)が加わり、第2加速度センサ371bには、重力加速度と遠心力の加速度とを加算した加速度(瞬間加速度)が加わる。加速度センサ371は、上述したように、検出方向がクランク105の長手方向と平行な方向であるので、実際には、瞬間加速度の長手方向の成分が検出される。 When the crank 105 rotates, centrifugal force is generated in the longitudinal direction of the crank 105 (direction from the crankshaft 107 to the pedal crankshaft 115, that is, the normal direction of rotation of the crank 105) together with the gravitational acceleration. Join. The acceleration of the centrifugal force increases as the distance from the rotation center (center of the crankshaft 107) increases. Further, the acceleration (instantaneous acceleration) obtained by adding the gravitational acceleration and the acceleration of centrifugal force is added to the first acceleration sensor 371a, and the acceleration (acceleration of the gravity acceleration and the acceleration of centrifugal force) is added to the second acceleration sensor 371b. Instantaneous acceleration). As described above, since the detection direction of the acceleration sensor 371 is parallel to the longitudinal direction of the crank 105, the longitudinal component of the instantaneous acceleration is actually detected.
 図6の場合において、回転時の角速度をωとすると、第1加速度センサ371aの遠心力の加速度は以下の(2)式、第2加速度センサ371bの遠心力の加速度は以下の(3)式によりそれぞれ表される。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
In the case of FIG. 6, if the angular velocity at the time of rotation is ω, the acceleration of the centrifugal force of the first acceleration sensor 371a is the following equation (2), and the acceleration of the centrifugal force of the second acceleration sensor 371b is the following equation (3). Respectively.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 そして、第1加速度センサ371aの瞬間加速度は以下の(4)式、第2加速度センサ371bの瞬間加速度は以下の(5)式によりそれぞれ表される。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
The instantaneous acceleration of the first acceleration sensor 371a is expressed by the following equation (4), and the instantaneous acceleration of the second acceleration sensor 371b is expressed by the following equation (5).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 したがって、第1加速度センサ371aの検出値(出力値)は以下の(6)式、第2加速度センサ371bの検出値(出力値)は以下の(7)式によりそれぞれ表される。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Therefore, the detection value (output value) of the first acceleration sensor 371a is expressed by the following equation (6), and the detection value (output value) of the second acceleration sensor 371b is expressed by the following equation (7).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 ここで、a2-a1とすると、重力の加速度成分がキャンセルできる。即ち、(2)式、(3)式および(6)式、(7)式により以下の(8)式が導かれる。
Figure JPOXMLDOC01-appb-M000008
Here, when a2-a1 is set, the acceleration component of gravity can be canceled. That is, the following equation (8) is derived from the equations (2), (3), (6), and (7).
Figure JPOXMLDOC01-appb-M000008
 (8)式を変形すると、第2加速度センサ371bにおけるクランク105が回転している際の遠心力の加速度が以下の(9)式により表される。
Figure JPOXMLDOC01-appb-M000009
When the equation (8) is transformed, the acceleration of the centrifugal force when the crank 105 in the second acceleration sensor 371b is rotating is expressed by the following equation (9).
Figure JPOXMLDOC01-appb-M000009
 ここで、クランク105の回転数をR[rpm]とすると、(3)式は(10)式で表される。
Figure JPOXMLDOC01-appb-M000010
Here, when the rotation speed of the crank 105 is R [rpm], the expression (3) is expressed by the expression (10).
Figure JPOXMLDOC01-appb-M000010
 したがって、回転数Rは、以下の(11)式で表される。
Figure JPOXMLDOC01-appb-M000011
Therefore, the rotation speed R is expressed by the following equation (11).
Figure JPOXMLDOC01-appb-M000011
 (11)式は、(9)式を代入すると以下の(12)式で表される。
Figure JPOXMLDOC01-appb-M000012
The expression (11) is expressed by the following expression (12) when the expression (9) is substituted.
Figure JPOXMLDOC01-appb-M000012
 (12)式を展開すると以下の(13)式となる。
Figure JPOXMLDOC01-appb-M000013
When the expression (12) is expanded, the following expression (13) is obtained.
Figure JPOXMLDOC01-appb-M000013
 (13)式のa2-a1以外の部分は定数であるので、定数のみの算出結果をKとすると、(13)式は以下の(14)式として表すことができる。定数Kは、その値を予め測定モジュール制御部351内の不揮発性のメモリ等に記憶して、回転数Rの算出時に読み出せばよい。即ち、回転数Rは、測定タイミング決定部351bにより、第2加速度センサ371bの出力値から第1加速度センサ371aの出力値を減算した値に定数Kを乗じてその結果の平方根により算出される。
Figure JPOXMLDOC01-appb-M000014
Since the part other than a2-a1 in the equation (13) is a constant, the equation (13) can be expressed as the following equation (14) when the calculation result of only the constant is K. The constant K may be stored in advance in a nonvolatile memory or the like in the measurement module control unit 351 and read when calculating the rotation speed R. That is, the rotation speed R is calculated by the measurement timing determination unit 351b by multiplying the output value of the first acceleration sensor 371a by the constant K from the output value of the second acceleration sensor 371b and the square root of the result.
Figure JPOXMLDOC01-appb-M000014
 (14)式で算出された回転数Rからクランク105の1周当たりの時間(回転周期)が算出できる。例えば回転数Rが90[rpm]の場合、1周は0.6667秒となる。そして、1周の30°ごとに推進力や損失力を測定する場合、1周を12等分するので(m=1、n=12)、ある測定タイミングから次回の測定タイミングまでの時間は0.0556秒(55.6ミリ秒)となる。したがって、例えば次回の測定角度を30°とすれば、30°ごとの測定タイミングの時間を算出し、その時間を次回の測定タイミングを示す時間として測定タイミング決定部351bが有する不図示のタイマにセットすることで、次回の測定タイミングを検出することができる。この次回の測定角度は、毎回算出する必要はない。本実施例のようにm周(回転)をn等分する場合は、m/nにより予め求めることができる。 The time per rotation of the crank 105 (rotation cycle) can be calculated from the rotation speed R calculated by the equation (14). For example, when the rotation speed R is 90 [rpm], one round is 0.6667 seconds. Then, when measuring the propulsive force and loss force every 30 ° of one lap, since one lap is divided into 12 (m = 1, n = 12), the time from one measurement timing to the next measurement timing is 0. .0556 seconds (55.6 milliseconds). Therefore, for example, if the next measurement angle is 30 °, the time of measurement timing every 30 ° is calculated, and the time is set as a time indicating the next measurement timing in a timer (not shown) included in the measurement timing determination unit 351b. By doing so, the next measurement timing can be detected. This next measurement angle need not be calculated every time. In the case of dividing the m circumference (rotation) into n equal parts as in the present embodiment, it can be obtained in advance by m / n.
 上述した方法は、クランク105が等速回転する場合はよいが、自転車1の場合、運転者がペダル103に加える力は変動することが多いため、必ずしも等速回転するとは限らない。そこで、タイマに設定した次回の測定タイミングを示す時間を、その時間の手前で補正する。 The above-described method is good when the crank 105 rotates at a constant speed, but in the case of the bicycle 1, the force applied to the pedal 103 by the driver often fluctuates, and thus the crank 105 does not always rotate at a constant speed. Therefore, the time indicating the next measurement timing set in the timer is corrected before that time.
 図7に一例を示す。図7は1周の30°ごとに測定タイミングが設定される。図7の星印は基準位置である。そして基準位置直後の3か所の測定タイミング(a)、(b)、(c)について、(a)が90rpm、(b)が91rpm、(c)が92rpmであったとする。 An example is shown in FIG. In FIG. 7, the measurement timing is set every 30 ° of one round. The star in FIG. 7 is the reference position. It is assumed that (a) is 90 rpm, (b) is 91 rpm, and (c) is 92 rpm at three measurement timings (a), (b), and (c) immediately after the reference position.
 まず、(a)の時点で90rpmであるので、その回転周期と測定回数からタイマを55.5ミリ秒に設定してスタートさせる。そして、(b)の手前、つまり55.5ミリ秒経過する手前で、回転数Rを算出する。算出した結果が例えば91rpmであった場合その回転周期と測定回数から54.9ミリ秒にタイマを補正する。すると、(b)の時間が0.6ミリ秒短縮するように補正され、補正された時間経過後にタイマがタイムアウトすると測定タイミング決定部351bが推進力演算部351aに推進力と損失力の演算を行わせ、送信データ作成部351dと、測定モジュール無線送信部309と、を介して推進力や損失力等がサイクルコンピュータ201に送信される。 First, since it is 90 rpm at the time of (a), the timer is set to 55.5 milliseconds from the rotation period and the number of measurements, and started. Then, the rotational speed R is calculated before (b), that is, before 55.5 milliseconds have elapsed. If the calculated result is, for example, 91 rpm, the timer is corrected to 54.9 milliseconds from the rotation period and the number of measurements. Then, the time of (b) is corrected to be shortened by 0.6 milliseconds, and when the timer times out after the corrected time elapses, the measurement timing determining unit 351b calculates the propulsive force and the loss force to the propulsive force calculating unit 351a. The propulsive force, the loss force, and the like are transmitted to the cycle computer 201 via the transmission data creation unit 351d and the measurement module wireless transmission unit 309.
 (b)では、推進力演算部351aに推進力と損失力の演算等を行わせるとともに、次回の測定タイミングとして54.9ミリ秒をタイマに設定してスタートさせる。そして、(c)の手前、つまり54.9ミリ秒経過する手前で、回転数Rを算出する。算出した結果が例えば92rpmであった場合その回転周期と測定回数から54.3ミリ秒にタイマを補正する。すると、(c)の時間が0.6ミリ秒短縮するように補正され、補正された時間経過後にタイマがタイムアウトすると測定タイミング決定部351bが推進力演算部351aに推進力と損失力の演算を行わせ、送信データ作成部351dと、測定モジュール無線送信部309と、を介して推進力や損失力等がサイクルコンピュータ201に送信される。以降、これを繰り返す。 In (b), the propulsive force calculation unit 351a calculates propulsive force and loss force, and the next measurement timing is set to 54.9 milliseconds and started. Then, the rotational speed R is calculated before (c), that is, before 54.9 milliseconds elapses. If the calculated result is, for example, 92 rpm, the timer is corrected to 54.3 milliseconds from the rotation period and the number of measurements. Then, the time of (c) is corrected to be shortened by 0.6 milliseconds, and when the timer times out after the corrected time elapses, the measurement timing determining unit 351b calculates the propulsive force and the loss force to the propulsive force calculating unit 351a. The propulsive force, the loss force, and the like are transmitted to the cycle computer 201 via the transmission data creation unit 351d and the measurement module wireless transmission unit 309. This is repeated thereafter.
 ここで、タイマを補正する時期は、例えばタイマに設定された時間の95%程度の時期に行っている。例えば、55.5ミリ秒でタイマを設定した場合、52.7ミリ秒経過時に補正処理を行う。この補正をする時期が遅すぎると補正が間に合わなくなる可能性がある。勿論95%に限らず適宜変更してもよい。即ち、第1加速度センサ371aの出力値a1および第2加速度センサ371bの出力値a2と、測定回数nと、に基づいて、次回の測定タイミングを決定した後から当該次回の測定タイミングまでの間に当該次回の測定タイミングを補正している。 Here, the timing for correcting the timer is, for example, about 95% of the time set for the timer. For example, when the timer is set at 55.5 milliseconds, correction processing is performed when 52.7 milliseconds have elapsed. If the timing for this correction is too late, the correction may not be in time. Of course, it is not limited to 95% and may be changed as appropriate. That is, after the next measurement timing is determined based on the output value a1 of the first acceleration sensor 371a, the output value a2 of the second acceleration sensor 371b, and the number of times of measurement n, until the next measurement timing. The next measurement timing is corrected.
 なお、回転数Rを算出するために使用する第1加速度センサ371aの出力値a1と第2加速度センサ371bの出力値a2とは、測定タイミングを算出する際に取得する1つに限らず複数用いてもよい。例えば、図7において、(b)の手前で補正する際に(a)よりも更に前の測定タイミングである(l)から補正の直前までにサンプリングした第1加速度センサ371aの出力値と第2加速度センサ371bの出力値とを用いてもよい。これらの複数の出力値は、例えば平均を算出して用いることができる。このようにすることにより、加速度センサ371の出力にノイズ等が含まれていてもその影響を少なくすることができる。なお、複数の出力値を用いる際は、測定タイミングよりも短い所定時間間隔で出力値を出力値保管部357に保管する必要があるが、加速度センサ371の出力値をメモリ等に保管するだけであり、上記式のような演算処理等はタイマがタイムアウトした際しか行わないので消費電力は少ない。 The output value a1 of the first acceleration sensor 371a and the output value a2 of the second acceleration sensor 371b used for calculating the rotation speed R are not limited to one acquired when calculating the measurement timing, and are used in a plural number. May be. For example, in FIG. 7, when the correction is performed before (b), the output value of the first acceleration sensor 371a and the second value sampled from (l), which is the measurement timing before (a), to just before the correction. The output value of the acceleration sensor 371b may be used. The plurality of output values can be used by calculating an average, for example. In this way, even if noise or the like is included in the output of the acceleration sensor 371, the influence can be reduced. When using a plurality of output values, it is necessary to store the output values in the output value storage unit 357 at predetermined time intervals shorter than the measurement timing, but only by storing the output values of the acceleration sensor 371 in a memory or the like. There is little power consumption because the arithmetic processing such as the above formula is performed only when the timer times out.
 但し、第1加速度センサ371aの複数の出力値a1と第2加速度センサ371bの複数の出力値a2とを用いる期間が長すぎると回転数Rの変動が検出されにくくなるため、例えば測定タイミングで1~2区間程度前の時間内に取得された出力値を用いればよい。勿論1~2区間に限らず、適宜変更してもよい。 However, if the period in which the plurality of output values a1 of the first acceleration sensor 371a and the plurality of output values a2 of the second acceleration sensor 371b are used is too long, fluctuations in the rotational speed R are difficult to detect. It is sufficient to use an output value acquired within a time approximately two to two intervals before. Of course, it is not limited to one or two sections, and may be changed as appropriate.
 ところで、上述した(14)式による回転数Rは、加速度センサ371の温度特性等の特性のばらつきや電源電圧の変動等によって実際の回転数に対して誤差を生じることがある。そこで、測定タイミング決定部351bは、ケイデンス演算部351eで磁石503の検出間隔から算出されたケイデンスを用いて補正をする。この動作について図8を参照して説明する。 Incidentally, the rotational speed R according to the above-described equation (14) may cause an error with respect to the actual rotational speed due to variations in characteristics such as temperature characteristics of the acceleration sensor 371 and fluctuations in the power supply voltage. Therefore, the measurement timing determination unit 351b performs correction using the cadence calculated from the detection interval of the magnet 503 by the cadence calculation unit 351e. This operation will be described with reference to FIG.
 図8は、クランク105が2回転する際の各測定タイミングにおけるケイデンス(回転数)を示した表である。表のa~lは、図7のa、b、c、lに対応し、d~kは図7のc以降反時計回りに順次測定タイミング(30°ごと)に付した符号である。 FIG. 8 is a table showing cadence (number of rotations) at each measurement timing when the crank 105 rotates twice. In the table, a to l correspond to a, b, c, and l in FIG. 7, and d to k are symbols sequentially attached to measurement timings (every 30 °) in the counterclockwise direction after c in FIG.
 図8の1回転目の列は、加速度センサ371によるケイデンス、即ち、上述した(14)式により算出された回転数Rと、ケイデンス演算部351eで算出されたケイデンス、即ち、磁石503の検出間隔から算出された回転数である。加速度センサ371によるケイデンスは、各測定タイミングにおいて算出された回転数Rと、それらの平均値がAVGとして記載している。ケイデンス演算部351eで算出されたケイデンスは、1回転に1回算出されるのでAVGの行に記載している。 The first rotation row in FIG. 8 shows the cadence by the acceleration sensor 371, that is, the rotation speed R calculated by the above-described equation (14), and the cadence calculated by the cadence calculation unit 351e, that is, the detection interval of the magnet 503. Is the number of revolutions calculated from As for the cadence by the acceleration sensor 371, the rotation speed R calculated at each measurement timing and the average value thereof are described as AVG. Since the cadence calculated by the cadence calculating unit 351e is calculated once per rotation, it is described in the AVG line.
 ケイデンス演算部351eで算出されたケイデンスは磁石503の検出間隔から算出された回転数であるので、上述した(14)式により算出された回転数Rよりも精度が高い。したがって、図8の2回転目の列に記載したように、1回転目の加速度センサ371によるケイデンスの平均値とケイデンス演算部351eで算出されたケイデンスの差分をとって、その差分をオフセットとして次の回転の各測定タイミングにおいて算出された回転数Rに反映させる。図8の2回転目の列は、加速度センサ371によるケイデンス、即ち、上述した(14)式により算出された回転数Rと、オフセットを加味した加速度センサ371によるケイデンス、即ち補正後の回転数と、を示している。図8の例では、オフセットを減算しているが、勿論加算する場合もあり得る。即ち、測定タイミングは、第1加速度センサ371aの出力値および第2加速度センサ371bの出力値と、ケイデンス演算部351eが算出したケイデンス(クランク105の回転数)と、30°ごと(次回の測定角度)と、に基づいて決定している。 Since the cadence calculated by the cadence calculating unit 351e is the rotation speed calculated from the detection interval of the magnet 503, the accuracy is higher than the rotation speed R calculated by the above-described equation (14). Therefore, as described in the second rotation column of FIG. 8, the difference between the average value of the cadence by the acceleration sensor 371 of the first rotation and the cadence calculated by the cadence calculation unit 351e is taken, and the difference is used as an offset. This is reflected in the rotation speed R calculated at each measurement timing of the rotation. The second rotation row in FIG. 8 shows the cadence by the acceleration sensor 371, that is, the rotation speed R calculated by the above-described equation (14), and the cadence by the acceleration sensor 371 with the offset, that is, the corrected rotation speed. , Shows. In the example of FIG. 8, the offset is subtracted, but of course there is a case where the offset is added. That is, the measurement timing includes the output value of the first acceleration sensor 371a and the output value of the second acceleration sensor 371b, the cadence (the number of rotations of the crank 105) calculated by the cadence calculation unit 351e, and every 30 ° (next measurement angle). ) And is determined based on.
 なお、オフセットを算出するのは毎回転に限らず、初回のみ算出して、以降はその算出値を利用するようにしてもよいし、複数回転に1回算出するようにしてもよい。 Note that the calculation of the offset is not limited to each rotation, but may be calculated only for the first time, and thereafter, the calculated value may be used, or may be calculated once for a plurality of rotations.
 ケイデンス演算部351eは、上述したように磁石503の検出間隔から1回転に1回ケイデンスを算出する。ケイデンス演算部351eがケイデンスを算出するのは、磁気センサ373がONとなった旨の情報信号の出力を受けた際であるので、磁気センサ373がONとなる位置、つまり、磁石503の位置が基準位置となり、基準位置検出時に上述したオフセットを算出し加減算を行う。なお、上述した(14)式により算出される回転数Rの平均値は、各測定タイミングで算出された値を測定モジュール記憶部353に記憶しておき、基準位置検出のタイミングで算出するようにしてもよいし、各測定タイミングでそれまでの平均値を順次算出するようにしてもよい。 The cadence calculating unit 351e calculates cadence once per rotation from the detection interval of the magnet 503 as described above. The cadence calculation unit 351e calculates the cadence when it receives an output of an information signal indicating that the magnetic sensor 373 is turned on. Therefore, the position where the magnetic sensor 373 is turned on, that is, the position of the magnet 503 is determined. It becomes the reference position, and the above-described offset is calculated and addition / subtraction is performed when the reference position is detected. The average value of the rotational speed R calculated by the above-described equation (14) is calculated by storing the value calculated at each measurement timing in the measurement module storage unit 353 and at the reference position detection timing. Alternatively, the average value so far may be sequentially calculated at each measurement timing.
 また、次回の測定タイミングを検出していくため、図7に示したような起点となる角度として基準位置を用いる。磁石503は上述したようにフレーム3に設けられているので、図9に示したように、磁石503が設けられているフレーム3の鉛直方向に対する角度θ0を基準位置とする。 In addition, in order to detect the next measurement timing, the reference position is used as the starting angle as shown in FIG. Since the magnet 503 is provided on the frame 3 as described above, an angle θ 0 with respect to the vertical direction of the frame 3 on which the magnet 503 is provided is used as a reference position as shown in FIG.
 この基準位置の角度θ0は、例えばフレーム3の設計図や仕様を参照あるいは事前に分度器等で測定することによって予め基準角度保管部355に保管する。そして、磁気センサ373が磁石503を検出する度に基準角度検出部351cが基準位置を検出したとして測定タイミング決定部351bに通知し、測定タイミング決定部351bは、基準角度検出部351cからの通知を受けて上述した方法により次回の測定タイミングを検出する。 The angle θ 0 of the reference position is stored in the reference angle storage unit 355 in advance by, for example, referring to the design drawing or specification of the frame 3 or measuring in advance with a protractor or the like. Then, every time the magnetic sensor 373 detects the magnet 503, the reference timing detection unit 351c notifies the measurement timing determination unit 351b that the reference position is detected, and the measurement timing determination unit 351b notifies the reference angle detection unit 351c of the notification. Then, the next measurement timing is detected by the method described above.
 即ち、磁石503が被検出部、磁気センサ373が検出部として機能し、基準角度検出部351c、測定タイミング決定部351b、基準角度保管部355が基準位置検出部として機能する。 That is, the magnet 503 functions as a detected unit, the magnetic sensor 373 functions as a detection unit, and the reference angle detection unit 351c, the measurement timing determination unit 351b, and the reference angle storage unit 355 function as a reference position detection unit.
 なお、基準位置は、必ずしもクランク105の先端が真上を向いたときを0°とした場合に30°ごととなる測定タイミングに合った角度とは限らない。したがって、基準位置の次回の測定タイミングは、例えば30°に相当する時間ではなく、直近の30°ごとの角度に相当する角度までの時間を設定する。例えば、図7の基準位置が250°であった場合、次の30°ごとの角度である270°までの差分である20°分の回転に要する時間を回転数Rから算出する。そして、270°以降は30°ごとの角度に相当する角度までの時間を設定する。 It should be noted that the reference position is not necessarily an angle that matches the measurement timing that is every 30 ° when the tip of the crank 105 faces directly above is 0 °. Accordingly, the next measurement timing of the reference position is not a time corresponding to, for example, 30 °, but a time until an angle corresponding to the latest angle of every 30 ° is set. For example, when the reference position in FIG. 7 is 250 °, the time required for rotation by 20 °, which is the difference up to 270 °, which is the angle every 30 °, is calculated from the rotation speed R. And after 270 degrees, the time to the angle equivalent to the angle for every 30 degrees is set.
 また、クランク105の回転角は、基準位置の角度と測定タイミングの角度も予め判明しているので、それらから算出することができる。例えば図7の場合、基準位置が250°であるとすると、測定タイミングの角度は30°ごとであるので、(a)は270°、(b)は300°、(c)は330°と算出される。 Also, the rotation angle of the crank 105 can be calculated from the angle of the reference position and the angle of the measurement timing, which are known in advance. For example, in the case of FIG. 7, if the reference position is 250 °, the angle of the measurement timing is every 30 °, so (a) is calculated as 270 °, (b) is 300 °, and (c) is calculated as 330 °. Is done.
 以上の説明から明らかなように、測定モジュール制御部351(測定タイミング決定部351b、基準角度検出部351c、送信データ作成部351d、ケイデンス演算部351e)と、測定モジュール記憶部353(基準角度保管部355、出力値保管部357)と、加速度センサ371(第1加速度センサ371a、第2加速度センサ371b)と、磁気センサ373と、磁石503と、で本実施例にかかる測定タイミング検出装置310を構成している。 As is clear from the above description, the measurement module control unit 351 (measurement timing determination unit 351b, reference angle detection unit 351c, transmission data creation unit 351d, cadence calculation unit 351e) and measurement module storage unit 353 (reference angle storage unit) 355, output value storage unit 357), acceleration sensor 371 (first acceleration sensor 371a, second acceleration sensor 371b), magnetic sensor 373, and magnet 503 constitute the measurement timing detection device 310 according to the present embodiment. is doing.
 即ち、測定タイミング決定部351b(決定部)が、クランク105が1回転(1周)する間に12回所定の測定を行う推進力演算部351aの次回の測定タイミングを、第1加速度センサ371aの出力値a1および第2加速度センサ371bの出力値a1と、基準位置から算出された回転数と、12回と、に基づいて決定している。ここで、1回転に12回から、次の測定角度である30°ごとの角度に達したことを検出することができる。つまり、本実施例は所定の角度の検出を時間に換算して測定タイミングとして検出している。 That is, the measurement timing determination unit 351b (determination unit) determines the next measurement timing of the propulsion force calculation unit 351a that performs predetermined measurement 12 times while the crank 105 makes one rotation (one revolution). It is determined based on the output value a1 and the output value a1 of the second acceleration sensor 371b, the number of revolutions calculated from the reference position, and 12 times. Here, from 12 times per rotation, it can be detected that the angle of every 30 ° which is the next measurement angle has been reached. That is, in this embodiment, detection of a predetermined angle is converted into time and detected as measurement timing.
 なお、本実施例では、磁気センサ373と磁石503とを検出部と被検出部として用いたが、それに限らず、光センサやメカニカルセンサなどクランク105とフレーム3とに設置可能で、クランク105の1回転を検出可能なセンサ等であればよい。 In this embodiment, the magnetic sensor 373 and the magnet 503 are used as the detecting unit and the detected unit. However, the present invention is not limited to this, and can be installed on the crank 105 and the frame 3 such as an optical sensor or a mechanical sensor. Any sensor capable of detecting one rotation may be used.
 パワーセンサ368は、ひずみゲージ369と、測定モジュールひずみ検出回路365と、を有している。ひずみゲージ369は、クランク105に接着されて、一体化される。ひずみゲージ369は、第1ひずみゲージ369a、第2ひずみゲージ369b、第3ひずみゲージ369c、第4ひずみゲージ369dから構成されている(図10等参照)。そして、ひずみゲージ369のそれぞれの端子は、測定モジュールひずみ検出回路365に接続されている。 The power sensor 368 has a strain gauge 369 and a measurement module strain detection circuit 365. The strain gauge 369 is bonded to the crank 105 and integrated. The strain gauge 369 includes a first strain gauge 369a, a second strain gauge 369b, a third strain gauge 369c, and a fourth strain gauge 369d (see FIG. 10 and the like). Each terminal of the strain gauge 369 is connected to the measurement module strain detection circuit 365.
 図10に、本実施例におけるひずみゲージ369のクランク105への配置の例を示す。ひずみゲージ369は、クランク105の内面119に接着されている。 FIG. 10 shows an example of the arrangement of the strain gauge 369 on the crank 105 in this embodiment. The strain gauge 369 is bonded to the inner surface 119 of the crank 105.
 第1ひずみゲージ369aと第2ひずみゲージ369bは、クランク105の長手方向に対して検出方向が平行、つまり、内面119の中心軸C1に対して平行かつ、内面119の中心軸C1に対して対称になるように設けられている。第3ひずみゲージ369cは、中心軸C1上に設けられ、検出方向が中心軸C1に対して平行かつ、第1ひずみゲージ369aと第2ひずみゲージ369bに挟まれるように設けられている。第4ひずみゲージ369dは、クランク105の長手方向に対して検出方向が垂直、つまり、内面119の中心軸C1に対して垂直かつ、中心軸C1上に設けられている。 The first strain gauge 369a and the second strain gauge 369b have a detection direction parallel to the longitudinal direction of the crank 105, that is, parallel to the central axis C1 of the inner surface 119 and symmetrical to the central axis C1 of the inner surface 119. It is provided to become. The third strain gauge 369c is provided on the central axis C1, and the detection direction is parallel to the central axis C1, and is provided between the first strain gauge 369a and the second strain gauge 369b. The fourth strain gauge 369d is provided on the central axis C1 in the detection direction perpendicular to the longitudinal direction of the crank 105, that is, perpendicular to the central axis C1 of the inner surface 119.
 即ち、クランク105の長手方向に延在する軸である中心軸C1と平行な方向(図10の縦方向)、つまり、クランク105の長手方向と平行な方向が、第1ひずみゲージ369a、第2ひずみゲージ369b、第3ひずみゲージ369cの検出方向となり、中心軸C1と垂直な方向(図10の横方向)、つまり、クランク105の長手方向と垂直な方向が、第4ひずみゲージ369dの検出方向となる。したがって、第1ひずみゲージ369a乃至第3ひずみゲージ369cと第4ひずみゲージ369dは検出方向が互いに直交している。 That is, the direction parallel to the central axis C1 (the longitudinal direction in FIG. 10) that is the axis extending in the longitudinal direction of the crank 105, that is, the direction parallel to the longitudinal direction of the crank 105 is the first strain gauge 369a, The detection direction of the strain gauge 369b and the third strain gauge 369c is the direction perpendicular to the central axis C1 (the lateral direction in FIG. 10), that is, the direction perpendicular to the longitudinal direction of the crank 105, and the detection direction of the fourth strain gauge 369d. It becomes. Accordingly, the detection directions of the first strain gauge 369a to the third strain gauge 369c and the fourth strain gauge 369d are orthogonal to each other.
 なお、第1ひずみゲージ369a乃至第4ひずみゲージ369dの配置は図10に限らない。つまり、中心軸C1と平行または垂直の関係が維持されていれば他の配置でもよい。但し、第1ひずみゲージ369a及び第2ひずみゲージ369bは、中心軸C1を挟んで対称に配置し、第3ひずみゲージ369c及び第4ひずみゲージ369dは、中心軸C1上に配置する方が、後述する各変形を精度良く検出できるので好ましい。 In addition, arrangement | positioning of the 1st strain gauge 369a thru | or the 4th strain gauge 369d is not restricted to FIG. In other words, other arrangements may be used as long as a parallel or vertical relationship with the central axis C1 is maintained. However, the first strain gauge 369a and the second strain gauge 369b are arranged symmetrically across the central axis C1, and the third strain gauge 369c and the fourth strain gauge 369d are arranged on the central axis C1, as will be described later. This is preferable because each deformation can be detected with high accuracy.
 また、図10では、クランク105を単純な直方体として説明しているが、デザイン等により、角が丸められていたり、一部の面が曲面で構成されていてもよい。そのような場合でも、上述した配置を極力維持するようにひずみゲージ369を配置することで、後述する各変形を検出することができる。但し、上記した中心軸C1との関係(平行または垂直)がずれるにしたがって検出精度が低下する。 In FIG. 10, the crank 105 is described as a simple rectangular parallelepiped, but the corners may be rounded or a part of the surface may be formed of a curved surface depending on the design or the like. Even in such a case, each deformation described later can be detected by arranging the strain gauge 369 so as to maintain the above-described arrangement as much as possible. However, the detection accuracy decreases as the relationship (parallel or vertical) with the center axis C1 is shifted.
 測定モジュールひずみ検出回路365は、第1ひずみゲージ369a、第2ひずみゲージ369b、第3ひずみゲージ369c、第4ひずみゲージ369dが接続されて、ひずみゲージ369のひずみ量が電圧として出力される。測定モジュールひずみ検出回路365の出力は、図示しないA/Dコンバータによって、アナログ情報からデジタル情報であるひずみ情報信号に変換される。そして、ひずみ情報信号は測定モジュール制御部351の推進力演算部351aに出力される。 The measurement module strain detection circuit 365 is connected to the first strain gauge 369a, the second strain gauge 369b, the third strain gauge 369c, and the fourth strain gauge 369d, and outputs the strain amount of the strain gauge 369 as a voltage. The output of the measurement module strain detection circuit 365 is converted from analog information to strain information signals that are digital information by an A / D converter (not shown). Then, the strain information signal is output to the propulsive force calculation unit 351a of the measurement module control unit 351.
 測定モジュールひずみ検出回路365の例を図11に示す。測定モジュールひずみ検出回路365は、2つのブリッジ回路である第1検出回路373aと第2検出回路373bとで構成されている。第1検出回路373aの第1系統側では、電源Vccから順に、第1ひずみゲージ369a、第2ひずみゲージ369bの順に接続されている。即ち、第1ひずみゲージ369aおよび第2ひずみゲージ369bが電源Vccに対して直列に接続されている。第2系統側では、電源Vccから順に、固定抵抗R、固定抵抗Rの順に接続されている。第2検出回路373bの第1系統側では、電源Vccから順に、第3ひずみゲージ369c、第4ひずみゲージ369dの順に接続されている。即ち、第3ひずみゲージ369cおよび第4ひずみゲージ369dが電源Vccに対して直列に接続されている。第2系統側では、電源Vccから順に、固定抵抗R、固定抵抗Rの順に接続されている。 An example of the measurement module strain detection circuit 365 is shown in FIG. The measurement module strain detection circuit 365 includes a first detection circuit 373a and a second detection circuit 373b that are two bridge circuits. On the first system side of the first detection circuit 373a, the first strain gauge 369a and the second strain gauge 369b are connected in this order from the power source Vcc. That is, the first strain gauge 369a and the second strain gauge 369b are connected in series with the power supply Vcc. On the second system side, the fixed resistor R and the fixed resistor R are connected in this order from the power source Vcc. On the first system side of the second detection circuit 373b, the third strain gauge 369c and the fourth strain gauge 369d are connected in this order from the power source Vcc. That is, the third strain gauge 369c and the fourth strain gauge 369d are connected in series with the power supply Vcc. On the second system side, the fixed resistor R and the fixed resistor R are connected in this order from the power source Vcc.
 即ち、2つの固定抵抗Rは、第1検出回路373aと第2検出回路373bとで共有している。ここで、2つの固定抵抗Rは同一の抵抗値を有している。また、2つの固定抵抗Rは、ひずみゲージ369の圧縮又は伸長が生ずる前の抵抗値と同一の抵抗値を有する。なお、第1ひずみゲージ369a乃至第4ひずみゲージ369dは同じ抵抗値を有している。 That is, the two fixed resistors R are shared by the first detection circuit 373a and the second detection circuit 373b. Here, the two fixed resistors R have the same resistance value. The two fixed resistors R have the same resistance value as that before the compression or expansion of the strain gauge 369 occurs. The first strain gauge 369a to the fourth strain gauge 369d have the same resistance value.
 ひずみゲージ369の抵抗値は、公知のように圧縮されている場合には抵抗値が下がり、伸長されている場合には抵抗値が上がる。この抵抗値の変化は、変化量がわずかな場合には比例している。また、ひずみゲージ369の検出方向は、配線が伸びている方向であり、上述したように第1ひずみゲージ369a、第2ひずみゲージ369b、第3ひずみゲージ369cが、中心軸C1と平行な方向、第4ひずみゲージ369dが、中心軸C1と垂直な方向となる。この検出方向以外において圧縮又は伸長が生じた場合には、ひずみゲージ369に抵抗値の変化は生じない。 When the resistance value of the strain gauge 369 is compressed as is known, the resistance value decreases, and when the strain gauge 369 is expanded, the resistance value increases. This change in resistance value is proportional when the amount of change is small. The detection direction of the strain gauge 369 is the direction in which the wiring extends, and as described above, the first strain gauge 369a, the second strain gauge 369b, and the third strain gauge 369c are parallel to the central axis C1, The fourth strain gauge 369d is in a direction perpendicular to the central axis C1. When compression or expansion occurs in a direction other than the detection direction, the strain gauge 369 does not change its resistance value.
 このような特性を持つひずみゲージ369を使用した第1検出回路373aは、第1ひずみゲージ369aと第2ひずみゲージ369bの検出方向で圧縮または伸長されていない場合は、第1ひずみゲージ369aと第2ひずみゲージ369bとの間の電位Vabと、2つの固定抵抗Rの間の電位Vrとの電位差はほぼゼロとなる。 When the first detection circuit 373a using the strain gauge 369 having such characteristics is not compressed or expanded in the detection direction of the first strain gauge 369a and the second strain gauge 369b, the first detection gauge 369a and the first strain gauge 369a The potential difference between the potential Vab between the two strain gauges 369b and the potential Vr between the two fixed resistors R is almost zero.
 第1ひずみゲージ369aが圧縮され、第2ひずみゲージ369bが伸張された場合は、第1ひずみゲージ369aの抵抗値が減少して第2ひずみゲージ369bの抵抗値が増加するために、電位Vabが高くなり、電位Vrは変化しない。つまり、電位Vabと電位Vrとの間に電位差が発生する。第1ひずみゲージ369aが伸張され、第2ひずみゲージ369bが圧縮された場合は、第1ひずみゲージ369aの抵抗値が増加して第2ひずみゲージ369bの抵抗値が減少するために、電位Vabが低くなり、電位Vrは変化しない。つまり、電位Vabと電位Vrとの間に電位差が発生する。 When the first strain gauge 369a is compressed and the second strain gauge 369b is expanded, the resistance value of the first strain gauge 369a decreases and the resistance value of the second strain gauge 369b increases. It becomes higher and the potential Vr does not change. That is, a potential difference is generated between the potential Vab and the potential Vr. When the first strain gauge 369a is expanded and the second strain gauge 369b is compressed, the resistance value of the first strain gauge 369a increases and the resistance value of the second strain gauge 369b decreases. The potential Vr does not change. That is, a potential difference is generated between the potential Vab and the potential Vr.
 第1ひずみゲージ369a、第2ひずみゲージ369bともに圧縮された場合は、第1ひずみゲージ369a、第2ひずみゲージ369bともに抵抗値が減少するために、電位Vabと、電位Vrとの電位差はほぼゼロとなる。第1ひずみゲージ369a、第2ひずみゲージ369bともに伸張された場合は、第1ひずみゲージ369a、第2ひずみゲージ369bともに抵抗値が増加するために、電位Vabと、電位Vrとの電位差はほぼゼロとなる。 When both the first strain gauge 369a and the second strain gauge 369b are compressed, the resistance value of both the first strain gauge 369a and the second strain gauge 369b decreases, so the potential difference between the potential Vab and the potential Vr is almost zero. It becomes. When both the first strain gauge 369a and the second strain gauge 369b are extended, the resistance value of both the first strain gauge 369a and the second strain gauge 369b increases, so that the potential difference between the potential Vab and the potential Vr is almost zero. It becomes.
 第2検出回路373bも第1検出回路373aと同様の動作となる。つまり、第3ひずみゲージ369cが圧縮され、第4ひずみゲージ369dが伸張された場合は、電位Vcdが高くなり、電位Vrは低くなり、電位Vcdと電位Vrとの間に電位差が発生する。第3ひずみゲージ369cが伸張され、第4ひずみゲージ369dが圧縮された場合は、電位Vcdが低くなり、電位Vrは高くなり、電位Vcdと電位Vrとの間に電位差が発生する。第3ひずみゲージ369c、第4ひずみゲージ369dともに圧縮された場合と、第3ひずみゲージ369c、第4ひずみゲージ369dともに伸張された場合は、電位Vcdと、電位Vrとの電位差はほぼゼロとなる。 The second detection circuit 373b operates similarly to the first detection circuit 373a. That is, when the third strain gauge 369c is compressed and the fourth strain gauge 369d is expanded, the potential Vcd is increased, the potential Vr is decreased, and a potential difference is generated between the potential Vcd and the potential Vr. When the third strain gauge 369c is expanded and the fourth strain gauge 369d is compressed, the potential Vcd is decreased, the potential Vr is increased, and a potential difference is generated between the potential Vcd and the potential Vr. When both the third strain gauge 369c and the fourth strain gauge 369d are compressed and when both the third strain gauge 369c and the fourth strain gauge 369d are expanded, the potential difference between the potential Vcd and the potential Vr becomes almost zero. .
 そこで、第1検出回路373aの電位Vabが測定できる第1ひずみゲージ369aと第2ひずみゲージ369bとの接続点と、電位Vrが測定できる2つの固定抵抗Rの接続点と、を第1検出回路373aの出力(以降A出力)とする。第2検出回路373bの電位Vcdが測定できる第3ひずみゲージ369cと第4ひずみゲージ369dとの接続点と、電位Vrが測定できる2つの固定抵抗Rの接続点と、を第2検出回路373bの出力(以降B出力)とする。このA出力とB出力がひずみ情報となる。 Therefore, the first detection circuit includes a connection point between the first strain gauge 369a and the second strain gauge 369b where the potential Vab of the first detection circuit 373a can be measured, and a connection point between the two fixed resistors R capable of measuring the potential Vr. The output of 373a (hereinafter referred to as A output). The connection point between the third strain gauge 369c and the fourth strain gauge 369d that can measure the potential Vcd of the second detection circuit 373b, and the connection point of the two fixed resistors R that can measure the potential Vr are represented by the second detection circuit 373b. Output (hereinafter referred to as B output). The A output and B output become strain information.
 図12は、ユーザにより力(踏力)が加えられた際の右側クランク105Rの変形状態を示している。(a)は右クランク105Rの上面117から見た平面図、(b)は右側クランク105Rの内面119から見た平面図、(c)は右側クランク105Rのクランク軸107側の端部から見た平面図である。なお、以降の説明では右側クランク105Rで説明するが、左側クランク105Lでも同様である。 FIG. 12 shows a deformed state of the right crank 105R when a force (stepping force) is applied by the user. (A) is a plan view seen from the upper surface 117 of the right crank 105R, (b) is a plan view seen from the inner surface 119 of the right crank 105R, and (c) is seen from the end of the right crank 105R on the crankshaft 107 side. It is a top view. In the following description, the right crank 105R will be described, but the same applies to the left crank 105L.
 ユーザの足からペダル103を介して踏力が加えられると、その踏力はクランク105の回転力となる、クランク105の回転の接線方向の力である推進力Ftと、クランク105の回転の法線方向の力である損失力Frとに分けられる。このとき、右側クランク105Rには、曲げ変形x、曲げ変形y、引張変形z、ねじれ変形rzの各変形状態が生じる。 When a pedaling force is applied from the user's foot via the pedal 103, the pedaling force becomes a rotational force of the crank 105, a propulsive force Ft that is a tangential force of the rotation of the crank 105, and a normal direction of the rotation of the crank 105 And the loss power Fr. At this time, the deformation state of bending deformation x, bending deformation y, tensile deformation z, and torsional deformation rz occurs in the right crank 105R.
 曲げ変形xは、図12(a)に示したように、右側クランク105Rが上面117から下面118に向かって、或いは下面118から上面117に向かって曲がるように変形することであり、推進力Ftによって生じる変形である。即ち、クランク105の回転方向に発生する変形によるひずみ(クランク105の回転方向に生じているひずみ)を検出することとなり、曲げ変形xの検出によってクランク105に生じている回転方向ひずみが検出できる。曲げ変形yは、図12(b)に示したように、右側クランク105Rが外面120から内面119に向かって、或いは内面119から外面120に向かって曲がるように変形することであり、損失力Frによって生じる変形である。即ち、クランク105の外面120から内面119、または内面119から外面120に向かって発生する変形によるひずみ(右側クランク105Rの回転運動により定義される円を含む平面と垂直な方向に生じているひずみ)を検出することとなり、曲げ変形yの検出によってクランク105に生じている内外方向ひずみが検出できる。 As shown in FIG. 12A, the bending deformation x is a deformation in which the right crank 105R is bent so as to bend from the upper surface 117 toward the lower surface 118 or from the lower surface 118 toward the upper surface 117. Is a deformation caused by That is, distortion due to deformation generated in the rotation direction of the crank 105 (distortion generated in the rotation direction of the crank 105) is detected, and rotation direction distortion generated in the crank 105 can be detected by detecting the bending deformation x. As shown in FIG. 12B, the bending deformation y is a deformation in which the right crank 105R bends from the outer surface 120 toward the inner surface 119 or from the inner surface 119 toward the outer surface 120, and the loss force Fr. Is a deformation caused by That is, distortion caused by deformation generated from the outer surface 120 of the crank 105 to the inner surface 119 or from the inner surface 119 to the outer surface 120 (strain generated in a direction perpendicular to a plane including a circle defined by the rotational motion of the right crank 105R). Therefore, it is possible to detect the inward and outward strain generated in the crank 105 by detecting the bending deformation y.
 引張変形zは、右側クランク105Rが長手方向に伸張または圧縮されるように変形することであり、損失力Frによって生じる変形である。即ち、クランク105が長手方向に引っ張られるまたは押される方向に発生する変形によるひずみ(長手方向と平行な方向に生じているひずみ)を検出することとなり、引張変形zの検出によってクランク105に生じている引張方向ひずみが検出できる。ねじれ変形rzは、右側クランク105Rが、ねじれるように変形することであり、推進力Ftによって生じる変形である。即ち、クランク105がねじれる方向に発生する変形によるひずみを検出することとなり、ねじれ変形rzの検出によってクランク105に生じているねじり方向ひずみが検出できる。なお、図12は、曲げ変形x、曲げ変形y、引張変形z、ねじれ変形rzの変形方向を矢印で示したが、上述したように、この矢印と逆方向に各変形が発生する場合もある。 The tensile deformation z is a deformation caused by the right force 105R being stretched or compressed in the longitudinal direction and caused by the loss force Fr. That is, the strain due to the deformation generated in the direction in which the crank 105 is pulled or pushed in the longitudinal direction (strain generated in the direction parallel to the longitudinal direction) is detected. The strain in the tensile direction can be detected. The torsional deformation rz is that the right crank 105R is deformed so as to be twisted, and is generated by the propulsive force Ft. That is, distortion due to deformation generated in the direction in which the crank 105 is twisted is detected, and distortion in the torsion direction generated in the crank 105 can be detected by detecting the torsional deformation rz. In FIG. 12, the deformation directions of the bending deformation x, the bending deformation y, the tensile deformation z, and the torsional deformation rz are indicated by arrows. However, as described above, each deformation may occur in the direction opposite to the arrow. .
 したがって、推進力Ftを測定するためには、曲げ変形xまたはねじれ変形rzのいずれか、損失力Frを測定するためには、曲げ変形yまたは引張変形zのいずれかを定量的に検出すればよい。 Therefore, in order to measure the propulsive force Ft, either the bending deformation x or the torsional deformation rz is measured, and in order to measure the loss force Fr, either the bending deformation y or the tensile deformation z is quantitatively detected. Good.
 ここで、図10のように配置され、図11のように第1ひずみゲージ369a、第2ひずみゲージ369b、第3ひずみゲージ369c、第4ひずみゲージ369dが接続された測定モジュールひずみ検出回路365によって、曲げ変形x、曲げ変形y、引張変形z、ねじれ変形rzを検出(測定)する方法を説明する。 Here, the measurement module strain detection circuit 365 is arranged as shown in FIG. 10 and connected to the first strain gauge 369a, the second strain gauge 369b, the third strain gauge 369c, and the fourth strain gauge 369d as shown in FIG. A method for detecting (measuring) the bending deformation x, the bending deformation y, the tensile deformation z, and the torsional deformation rz will be described.
 まず、第1検出回路373aのA出力において、各変形がどのように検出(測定)されるかを説明する。曲げ変形xは、右側クランク105Rが上面117から下面118に向かって、或いはその逆方向に変形する。右側クランク105Rが上面117から下面118に向かって変形する場合、第1ひずみゲージ369aは圧縮されるので抵抗値が減少し、第2ひずみゲージ369bは伸張されるので抵抗値が増加する。そのため、第1検出回路373aのA出力は正出力(電位Vabが高く電位Vrが低い)となる。また、右側クランク105Rが下面118から上面117に向かって変形する場合、第1ひずみゲージ369aは伸張されるので抵抗値が増加し、第2ひずみゲージ369bは圧縮されるので抵抗値が減少する。そのため、第1検出回路373aのA出力は負出力(電位Vabが低く電位Vrが高い)となる。 First, how each deformation is detected (measured) in the output A of the first detection circuit 373a will be described. In the bending deformation x, the right crank 105R is deformed from the upper surface 117 toward the lower surface 118 or in the opposite direction. When the right crank 105R is deformed from the upper surface 117 toward the lower surface 118, the first strain gauge 369a is compressed and thus the resistance value is decreased, and the second strain gauge 369b is expanded and the resistance value is increased. Therefore, the output A of the first detection circuit 373a is a positive output (the potential Vab is high and the potential Vr is low). Further, when the right crank 105R is deformed from the lower surface 118 toward the upper surface 117, the first strain gauge 369a is expanded and thus the resistance value is increased, and the second strain gauge 369b is compressed and the resistance value is decreased. Therefore, the output A of the first detection circuit 373a is a negative output (the potential Vab is low and the potential Vr is high).
 曲げ変形yは、右側クランク105Rが外面120から内面119に向かって、或いはその逆方向に変形する。右側クランク105Rが外面120から内面119に向かって変形する場合、第1ひずみゲージ369a、第2ひずみゲージ369bともに圧縮されるので、どちらも抵抗値が減少する。そのため、第1検出回路373aのA出力はゼロ(電位Vabと電位Vrに電位差が無い)となる。また、右側クランク105Rが内面119から外面120に向かって変形する場合、第1ひずみゲージ369a、第2ひずみゲージ369bともに伸張されるので、どちらも抵抗値が増加する。そのため、第1検出回路373aのA出力はゼロとなる。 Bending deformation y causes the right crank 105R to deform from the outer surface 120 toward the inner surface 119 or in the opposite direction. When the right crank 105R is deformed from the outer surface 120 toward the inner surface 119, since both the first strain gauge 369a and the second strain gauge 369b are compressed, the resistance value of both decreases. Therefore, the output A of the first detection circuit 373a is zero (there is no potential difference between the potential Vab and the potential Vr). Further, when the right crank 105R is deformed from the inner surface 119 toward the outer surface 120, both the first strain gauge 369a and the second strain gauge 369b are stretched, so that the resistance value of both increases. For this reason, the output A of the first detection circuit 373a is zero.
 引張変形zは、右側クランク105Rが長手方向に伸張または圧縮されるように変形する。右側クランク105Rが伸張する場合、第1ひずみゲージ369a、第2ひずみゲージ369bともに伸張されるので、どちらも抵抗値が増加する。そのため、第1検出回路373aのA出力はゼロとなる。また、右側クランク105Rが圧縮する場合、第1ひずみゲージ369a、第2ひずみゲージ369bともに圧縮されるので、どちらも抵抗値が減少する。そのため、第1検出回路373aのA出力はゼロとなる。 The tensile deformation z deforms so that the right crank 105R is stretched or compressed in the longitudinal direction. When the right crank 105R is extended, both the first strain gauge 369a and the second strain gauge 369b are extended, so that the resistance value of both increases. For this reason, the output A of the first detection circuit 373a is zero. Further, when the right crank 105R is compressed, both the first strain gauge 369a and the second strain gauge 369b are compressed, so that the resistance value of both decreases. For this reason, the output A of the first detection circuit 373a is zero.
 ねじれ変形rzは、右側クランク105Rが、ねじれるように変形する。右側クランク105Rが図12(b)の矢印の方向にねじれる場合、第1ひずみゲージ369a、第2ひずみゲージ369bともに伸張されるので、どちらも抵抗値が増加する。そのため、第1検出回路373aのA出力はゼロとなる。また、右側クランク105Rが図12(b)の矢印と逆方向にねじれる場合、第1ひずみゲージ369a、第2ひずみゲージ369bともに伸張されるので、どちらも抵抗値が増加する。そのため、第1検出回路373aのA出力はゼロとなる。 The twist deformation rz deforms so that the right crank 105R is twisted. When the right crank 105R is twisted in the direction of the arrow in FIG. 12B, both the first strain gauge 369a and the second strain gauge 369b are stretched, so that the resistance value of both increases. For this reason, the output A of the first detection circuit 373a is zero. Further, when the right crank 105R is twisted in the direction opposite to the arrow in FIG. 12B, both the first strain gauge 369a and the second strain gauge 369b are expanded, so that the resistance value of both increases. For this reason, the output A of the first detection circuit 373a is zero.
 以上のように、A出力からは、曲げ変形xのみが検出される。即ち、第1検出回路373aは、第1ひずみゲージ369aおよび第2ひずみゲージ369bが接続され、クランク105に生じている回転方向ひずみを検出する。 As described above, only the bending deformation x is detected from the A output. That is, the first detection circuit 373a is connected to the first strain gauge 369a and the second strain gauge 369b, and detects the rotational strain generated in the crank 105.
 次に、第2検出回路373bのB出力において、各変形がどのように検出(測定)されるかを説明する。曲げ変形xは、右側クランク105Rが上面117から下面118に向かって、或いはその逆方向に変形する。右側クランク105Rが上面117から下面118に向かって変形する場合、第3ひずみゲージ369c、第4ひずみゲージ369dは曲がるだけのため、検出方向に圧縮も伸張もされないので抵抗値は変化しない。そのため、第2検出回路373bのB出力はゼロとなる。また、右側クランク105Rが下面118から上面117に向かって変形する場合、第3ひずみゲージ369c、第4ひずみゲージ369dは曲がるだけのため、検出方向に圧縮も伸張もされないので抵抗値は変化しない。そのため、第2検出回路373bのB出力はゼロとなる。 Next, how each deformation is detected (measured) in the B output of the second detection circuit 373b will be described. In the bending deformation x, the right crank 105R is deformed from the upper surface 117 toward the lower surface 118 or in the opposite direction. When the right crank 105R is deformed from the upper surface 117 toward the lower surface 118, since the third strain gauge 369c and the fourth strain gauge 369d are only bent, the resistance value does not change because they are neither compressed nor expanded in the detection direction. Therefore, the B output of the second detection circuit 373b is zero. In addition, when the right crank 105R is deformed from the lower surface 118 toward the upper surface 117, the third strain gauge 369c and the fourth strain gauge 369d are only bent, so that the resistance value does not change because they are neither compressed nor expanded in the detection direction. Therefore, the B output of the second detection circuit 373b is zero.
 曲げ変形yは、右側クランク105Rが外面120から内面119に向かって、或いはその逆方向に変形する。右側クランク105Rが外面120から内面119に向かって変形する場合、第3ひずみゲージ369cは圧縮されるので抵抗値が減少し、第4ひずみゲージ369dは伸張されるので抵抗値が増加する。そのため、第2検出回路373bのB出力は正出力(電位Vcdが高く電位Vrが低い)となる。また、右側クランク105Rが内面119から外面120に向かって変形する場合、第3ひずみゲージ369cは伸張されるので抵抗値が増加し、第4ひずみゲージ369dは圧縮されるので抵抗値が減少する。そのため、第2検出回路373bのB出力は負出力(電位Vcdが低く電位Vrが高い)となる。 Bending deformation y causes the right crank 105R to deform from the outer surface 120 toward the inner surface 119 or in the opposite direction. When the right crank 105R is deformed from the outer surface 120 toward the inner surface 119, the third strain gauge 369c is compressed and thus the resistance value is decreased, and the fourth strain gauge 369d is expanded and the resistance value is increased. Therefore, the B output of the second detection circuit 373b is a positive output (the potential Vcd is high and the potential Vr is low). Further, when the right crank 105R is deformed from the inner surface 119 toward the outer surface 120, the third strain gauge 369c is expanded and thus the resistance value is increased, and the fourth strain gauge 369d is compressed and the resistance value is decreased. Therefore, the output B of the second detection circuit 373b is a negative output (the potential Vcd is low and the potential Vr is high).
 引張変形zは、右側クランク105Rが長手方向に伸張または圧縮されるように変形する。右側クランク105Rが伸張する場合、第3ひずみゲージ369cは伸張されるので抵抗値が増加し、第4ひずみゲージ369dは圧縮されるので抵抗値が減少する。そのため、第2検出回路373bのB出力は負出力となる。また、右側クランク105Rが圧縮する場合、第3ひずみゲージ369cは圧縮されるので抵抗値が減少し、第4ひずみゲージ369dは伸張されるので抵抗値が増加する。そのため、第2検出回路373bのB出力は正出力となる。 The tensile deformation z deforms so that the right crank 105R is stretched or compressed in the longitudinal direction. When the right crank 105R is extended, the third strain gauge 369c is extended and the resistance value is increased, and the fourth strain gauge 369d is compressed and the resistance value is decreased. Therefore, the B output of the second detection circuit 373b is a negative output. When the right crank 105R is compressed, the third strain gauge 369c is compressed and thus the resistance value is decreased, and the fourth strain gauge 369d is expanded and the resistance value is increased. Therefore, the B output of the second detection circuit 373b is a positive output.
 ねじれ変形rzは、右側クランク105Rが、ねじれるように変形する。右側クランク105Rが図12(b)の矢印の方向にねじれる場合、第3ひずみゲージ369cは伸張されるので抵抗値が増加し、第4ひずみゲージ369dは検出方向に変形しないので抵抗値は変化しない。そのため、第2検出回路373bのB出力は負出力となる。また、右側クランク105Rが図12(b)の矢印と逆方向にねじれる場合、第3ひずみゲージ369cは伸張されるので抵抗値が増加し、第4ひずみゲージ369dは検出方向に変形しないので抵抗値は変化しない。そのため、第2検出回路373bのB出力は負出力となる。 The twist deformation rz deforms so that the right crank 105R is twisted. When the right crank 105R is twisted in the direction of the arrow in FIG. 12B, the third strain gauge 369c is expanded, so that the resistance value increases, and the fourth strain gauge 369d is not deformed in the detection direction, so the resistance value does not change. . Therefore, the B output of the second detection circuit 373b is a negative output. Further, when the right crank 105R is twisted in the direction opposite to the arrow in FIG. 12B, the third strain gauge 369c is expanded, so that the resistance value increases, and the fourth strain gauge 369d is not deformed in the detection direction, so that the resistance value is increased. Does not change. Therefore, the B output of the second detection circuit 373b is a negative output.
 以上のように、B出力からは、曲げ変形y、引張変形z、ねじれ変形rzが検出される。即ち、第2検出回路373bは、第3ひずみゲージ369cおよび第4ひずみゲージ369dが接続され、クランク105に生じている内外方向ひずみまたは引張方向ひずみを検出する。 As described above, the bending deformation y, the tensile deformation z, and the torsional deformation rz are detected from the B output. That is, the second detection circuit 373b is connected to the third strain gauge 369c and the fourth strain gauge 369d, and detects the inward / outward strain or tensile strain generated in the crank 105.
 そして、第1検出回路373aのA出力と、第2検出回路373bのB出力から、推進力演算部351aが、推進力Ftは次の(15)式により、損失力Frは次の(16)式によりそれぞれ算出する。なお、引張変形zは曲げ変形yと比較すると非常に小さいので無視することができる。即ち、(15)式及び(16)式で算出される値が、クランク105の回転時に当該クランク105に加えられる負荷に関する値となる。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Then, from the A output of the first detection circuit 373a and the B output of the second detection circuit 373b, the propulsive force calculation unit 351a determines that the propulsive force Ft is the following equation (15) and the loss force Fr is the following (16). Each is calculated by an equation. The tensile deformation z is very small compared to the bending deformation y and can be ignored. That is, the values calculated by the equations (15) and (16) are values relating to the load applied to the crank 105 when the crank 105 rotates.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
 ここで、Aは推進力Ft(あるいは損失力Fr)を算出する時点におけるA出力値、A0は無負荷時のA出力値、Bは推進力Ft(あるいは損失力Fr)を算出する時点におけるB出力値、B0は無負荷時のB出力値、p、q、s、uは係数であり、次の(17)~(20)式からなる連立方程式により算出される値である。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Here, A is the A output value at the time of calculating the propulsive force Ft (or loss force Fr), A0 is the A output value at no load, and B is B at the time of calculating the propulsive force Ft (or loss force Fr). The output value, B0 is the B output value when there is no load, p, q, s, u are coefficients, which are values calculated by simultaneous equations consisting of the following equations (17) to (20).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
 ここで、Amはクランク105の角度が水平前向き(クランク105で水平かつフロント車輪5方向に延在している状態)でペダル103にm[kg]を載せたときのA出力値である。Beはクランク105の角度が水平前向きでペダル103にm[kg]を載せたときのB出力値である。Aeはクランク105の角度が垂直下向き(クランク105で鉛直かつ地面方向に延在している状態)でペダル103にm[kg]を載せたときのA出力値である。Bmはクランク105の角度が垂直下向きでペダル103にm[kg]を載せたときのB出力値である。 Here, Am is an A output value when m [kg] is placed on the pedal 103 with the angle of the crank 105 facing forward in the horizontal direction (a state in which the crank 105 extends horizontally and in the direction of the front wheel 5). Be is the B output value when the angle of the crank 105 is horizontally forward and m [kg] is placed on the pedal 103. Ae is an A output value when m [kg] is placed on the pedal 103 with the angle of the crank 105 being vertically downward (a state in which the crank 105 extends vertically and toward the ground). Bm is the B output value when the angle of the crank 105 is vertically downward and m [kg] is placed on the pedal 103.
 係数p、q、s、uおよびA0、B0は予め算出又は測定可能な値であるので、AおよびBを(15)式に代入することで推進力Ftが算出できる。 Since the coefficients p, q, s, u, and A0 and B0 are values that can be calculated or measured in advance, the thrust Ft can be calculated by substituting A and B into the equation (15).
 また、(15)式ではB出力を用いてA出力の補正をしている。(16)式ではA出力を用いてB出力の補正をしている。これにより、第1検出回路373aや第2検出回路373bに含まれる検出対象以外のひずみの影響を排除することができる。なお、第1ひずみゲージ369aと第2ひずみゲージ369bがクランク方向(中心軸C1と平行な方向)にずれが無い場合、Ae=A0となりB出力による補正の必要がなくなる。 Also, in equation (15), the A output is corrected using the B output. In equation (16), the B output is corrected using the A output. Thereby, the influence of distortion other than the detection target contained in the 1st detection circuit 373a or the 2nd detection circuit 373b can be excluded. If the first strain gauge 369a and the second strain gauge 369b are not displaced in the crank direction (the direction parallel to the central axis C1), Ae = A0 and correction by the B output is not necessary.
 なお、ひずみゲージ369の配置やブリッジ回路の構成は図10や図11に示した構成に限らない。例えばひずみゲージ369は4つに限らないし、ブリッジ回路も1つに限らない。要するに、推進力Ftや損失力Frが算出できる構成であればよい。 In addition, the arrangement of the strain gauges 369 and the configuration of the bridge circuit are not limited to the configurations shown in FIGS. For example, the number of strain gauges 369 is not limited to four, and the number of bridge circuits is not limited to one. In short, any configuration that can calculate the propulsive force Ft and the loss force Fr may be used.
 次に、サイクルコンピュータ201のブロック構成を説明する。サイクルコンピュータ201は、図3に示したように、サイクルコンピュータ表示部203、サイクルコンピュータ操作部205、サイクルコンピュータ無線受信部209、サイクルコンピュータ記憶部253及びサイクルコンピュータ制御部251を有している。 Next, the block configuration of the cycle computer 201 will be described. As illustrated in FIG. 3, the cycle computer 201 includes a cycle computer display unit 203, a cycle computer operation unit 205, a cycle computer wireless reception unit 209, a cycle computer storage unit 253, and a cycle computer control unit 251.
 サイクルコンピュータ表示部203は、ユーザの指示等に基づいて、各種の情報を表示する。本実施例においては、推進力Ftと損失力Frを視覚化して表示する。なお、視覚化の方法はどのような方法であっても良いが、測定モジュール301から送信されたクランク105の回転角に基づいて、例えばクランク105の回転角が30°毎の推進力Ftと損失力Frをベクトル表示することができる。また、他の方法としては、例えば、グラフ表示、色分け表示、記号の表示、3次元表示等どのような方法であってもよい。また、それらの組み合わせ等であってよい。 The cycle computer display unit 203 displays various types of information based on user instructions and the like. In this embodiment, the propulsive force Ft and the loss force Fr are visualized and displayed. The visualization method may be any method, but based on the rotation angle of the crank 105 transmitted from the measurement module 301, for example, the propulsive force Ft and the loss when the rotation angle of the crank 105 is 30 °. The force Fr can be displayed as a vector. As other methods, for example, any method such as graph display, color-coded display, symbol display, and three-dimensional display may be used. Also, a combination thereof may be used.
 サイクルコンピュータ操作部205は、ユーザの指示(入力)を受ける。例えば、サイクルコンピュータ操作部205は、ユーザから、サイクルコンピュータ表示部203に表示内容の指示を受ける。 The cycle computer operation unit 205 receives a user instruction (input). For example, the cycle computer operation unit 205 receives a display content instruction from the user on the cycle computer display unit 203.
 サイクルコンピュータ無線受信部209は、測定モジュール301から送信される送信データ(推進力Ft及び損失力Frとクランク105の回転角とケイデンス)を受信する。 The cycle computer wireless reception unit 209 receives transmission data (propulsion force Ft, loss force Fr, rotation angle and cadence of the crank 105) transmitted from the measurement module 301.
 サイクルコンピュータ記憶部253には、各種情報が記憶される。各種情報とは、例えば、サイクルコンピュータ制御部251の制御プログラム、及び、サイクルコンピュータ制御部251が制御を行う際に必要とされる一時的な情報である。なお、サイクルコンピュータ記憶部253は、RAM及びROMを有している。ROMには制御プログラム、及び、推進力Ftおよび損失力Frをサイクルコンピュータ表示部203に視覚的に表示するデータに変換するための各種のパラメータ、定数、等が記憶されている。 Various information is stored in the cycle computer storage unit 253. The various information is, for example, a control program of the cycle computer control unit 251 and temporary information required when the cycle computer control unit 251 performs control. The cycle computer storage unit 253 has a RAM and a ROM. The ROM stores a control program and various parameters, constants, and the like for converting the propulsive force Ft and the loss force Fr into data that is visually displayed on the cycle computer display unit 203.
 サイクルコンピュータ制御部251は、サイクルコンピュータ201を包括的に制御している。さらに、測定モジュール301をも包括的に制御していても良い。サイクルコンピュータ制御部251は、推進力Ftおよび損失力Frをサイクルコンピュータ表示部203に視覚的に表示するデータに変換する。 The cycle computer control unit 251 comprehensively controls the cycle computer 201. Further, the measurement module 301 may be comprehensively controlled. The cycle computer control unit 251 converts the propulsive force Ft and the loss force Fr into data that is visually displayed on the cycle computer display unit 203.
 次に、測定モジュール301及びサイクルコンピュータ201の処理を図13を参照して説明する。図13の処理は測定モジュール制御部351やサイクルコンピュータ制御部制御部251が内蔵するCPUで動作するソフトウェア(コンピュータプログラム)により実行されてもよいし、ハードウェアで実行されてもよい。まず、測定モジュール301の処理を図13(a)に示す。ステップST11において、測定タイミングを検出する。即ち、上述した方法により第1加速度センサ371a、第2加速度センサ371bで検出された値を取得する。そして、回転数Rを算出して、回転数Rから次回の測定タイミングまでの時間を算出しタイマに設定し、補正を行ってタイマがタイムアウトした時点が測定タイミング検出となる。また、本ステップにおいて、上述した補正部に相当する補正も行う。即ち、ステップST11が、取得工程、出力工程として機能する。 Next, processing of the measurement module 301 and the cycle computer 201 will be described with reference to FIG. The process of FIG. 13 may be executed by software (computer program) operating on a CPU built in the measurement module control unit 351 or the cycle computer control unit control unit 251 or may be executed by hardware. First, the process of the measurement module 301 is shown in FIG. In step ST11, the measurement timing is detected. That is, the values detected by the first acceleration sensor 371a and the second acceleration sensor 371b are acquired by the method described above. Then, the rotational speed R is calculated, the time from the rotational speed R to the next measurement timing is calculated and set in the timer, the time when the timer times out after correction is performed is the measurement timing detection. In this step, correction corresponding to the correction unit described above is also performed. That is, step ST11 functions as an acquisition process and an output process.
 次に、ステップST13において、測定モジュールひずみ検出回路365を駆動する。つまり、図11に示したようなブリッジ回路に電源電圧を印加してひずみゲージ369による測定が可能な状態とする。 Next, in step ST13, the measurement module strain detection circuit 365 is driven. That is, a power supply voltage is applied to the bridge circuit as shown in FIG.
 次に、ステップST15において、測定モジュールひずみ検出回路365からの出力(A出力、B出力)に基づいて推進力Ft及び損失力Frを算出する。 Next, in step ST15, the propulsive force Ft and the loss force Fr are calculated based on the outputs (A output and B output) from the measurement module strain detection circuit 365.
 次に、ステップST17において、送信データ作成部351dは、測定モジュール無線送信部309を介して、算出された推進力Ft及び損失力Frと回転角とケイデンスとを送信データとして送信する。送信された推進力Ft及び損失力Frと回転角とケイデンスとは、サイクルコンピュータ201のサイクルコンピュータ無線受信部209によって受信される。なお、ケイデンスは、毎回送信する必要はなく1回転に1度送信すればよいので、本実施例の場合は12回に1回送信すればよい。 Next, in step ST17, the transmission data creation unit 351d transmits the calculated propulsive force Ft, loss force Fr, rotation angle, and cadence as transmission data via the measurement module wireless transmission unit 309. The transmitted propulsive force Ft and loss force Fr, rotation angle, and cadence are received by the cycle computer radio reception unit 209 of the cycle computer 201. Note that the cadence need not be transmitted every time and may be transmitted once per rotation, so in the present embodiment, it may be transmitted once every 12 times.
 図13(a)の測定タイミング検出処理についての詳細を図13(b)に示す。基本的には上述した説明のとおりであるが、フローチャートにまとめて示す。まず、ステップST31において、基準位置を検出したか否かを判断し、検出した場合(YESの場合)はステップST32に進み、検出しない場合(NOの場合)は本ステップで待機する。 Details of the measurement timing detection process of FIG. 13A are shown in FIG. Although it is basically as described above, it is collectively shown in a flowchart. First, in step ST31, it is determined whether or not the reference position has been detected. If it is detected (YES), the process proceeds to step ST32. If not detected (NO), the process waits in this step.
 次に、ステップST32において、第1加速度センサ371aの出力値と第2加速度センサ371bの出力値に基づいて上述した(14)式から回転数Rを算出する。 Next, in step ST32, based on the output value of the first acceleration sensor 371a and the output value of the second acceleration sensor 371b, the rotational speed R is calculated from the above-described equation (14).
 次に、ステップST33において、ステップST32で算出した回転数Rから1回転の周期を算出し、その周期からタイマ設定値を算出して設定し、タイマをスタートさせる。 Next, in step ST33, a cycle of one rotation is calculated from the rotation speed R calculated in step ST32, a timer set value is calculated and set from the cycle, and the timer is started.
 次に、ステップST34において、ステップST33で設定したタイマの設定時間手前で回転数Rを算出する。 Next, in step ST34, the rotational speed R is calculated before the set time of the timer set in step ST33.
 次に、ステップST35において、タイマの補正が必要か否かを判断し、必要な場合(YESの場合)はステップST36に進み、不要な場合(NOの場合)はステップST37に進む。本ステップでは、ステップST34で算出した回転数Rから1回転の周期を算出し、その周期からタイマ設定値を算出し、その値がタイマにステップST33で設定した値と異なる場合は補正が必要と判断する。 Next, in step ST35, it is determined whether or not timer correction is necessary. If necessary (YES), the process proceeds to step ST36, and if not necessary (NO), the process proceeds to step ST37. In this step, a cycle of one rotation is calculated from the rotation speed R calculated in step ST34, a timer set value is calculated from the cycle, and correction is necessary if the value is different from the value set in the timer in step ST33. to decide.
 次に、ステップST36において、タイマ設定値を補正する。即ち、ステップST35で算出したタイマ設定値に基づく値をタイマに設定する。 Next, in step ST36, the timer set value is corrected. That is, a value based on the timer set value calculated in step ST35 is set in the timer.
 次に、ステップST37において、基準位置を検出したか否かを判断し、検出した場合(YESの場合)はステップST38に進み、検出しない場合(NOの場合)はステップST39に進む。本ステップは、上述した基準位置でオフセット演算を行うか否かを判断している。基準位置は、測定タイミングの間ある場合が多いので、タイマがタイムアウトする前に行っている。勿論基準位置が測定タイミングと同時となる場合(例えば基準位置が30°ごとの角度となっている場合)は、後述するステップST39で行ってもよい。 Next, in step ST37, it is determined whether or not the reference position is detected. If it is detected (YES), the process proceeds to step ST38. If not (NO), the process proceeds to step ST39. In this step, it is determined whether or not the offset calculation is performed at the reference position described above. Since the reference position often exists during the measurement timing, it is performed before the timer times out. Of course, when the reference position coincides with the measurement timing (for example, when the reference position has an angle of every 30 °), it may be performed in step ST39 described later.
 次に、ステップST38において、ケイデンス演算部351eで算出されたケイデンス(回転数)と各測定タイミングで算出された回転数Rの平均値からオフセットを算出し、そのオフセットに基づく演算(加減算)を行う。 Next, in step ST38, an offset is calculated from the average value of the cadence (rotation speed) calculated by the cadence calculation unit 351e and the rotation speed R calculated at each measurement timing, and calculation (addition / subtraction) based on the offset is performed. .
 次に、ステップST39において、タイマがタイムアウトしたか否かを判断し、タイムアウトした場合(YESの場合)はステップST33に戻るとともに、図13(a)のステップST13以降の動作を行う。一方、タイムアウトしない場合(NOの場合)はステップST37に戻る。 Next, in step ST39, it is determined whether or not the timer has timed out. If timed out (in the case of YES), the process returns to step ST33, and the operations after step ST13 in FIG. On the other hand, when the timeout does not occur (in the case of NO), the process returns to step ST37.
 また、サイクルコンピュータ201のサイクルコンピュータ制御部251は、図13(c)の処理を行う。ステップST71において、サイクルコンピュータ制御部251は、推進力Ft、損失力Fr、回転角またはケイデンスを受信すると割り込みが行われる。つまり、サイクルコンピュータ無線受信部209が推進力Ft、損失力Fr、回転角またはケイデンスを受信したことをサイクルコンピュータ制御部251が検出した時には、サイクルコンピュータ制御部251は、それまでの処理を中断(割り込み)し、ステップST73以下の処理を開始する。 Further, the cycle computer control unit 251 of the cycle computer 201 performs the process of FIG. In step ST71, when the cycle computer control unit 251 receives the propulsive force Ft, the loss force Fr, the rotation angle, or the cadence, an interruption is performed. That is, when the cycle computer control unit 251 detects that the cycle computer wireless reception unit 209 has received the propulsive force Ft, the loss force Fr, the rotation angle, or the cadence, the cycle computer control unit 251 interrupts the processing up to that point ( Interrupt) to start the processing from step ST73.
 次に、ステップST73において、サイクルコンピュータ制御部251は、サイクルコンピュータ表示部203に回転角ごとの推進力Ftと損失力Frやケイデンスを表示させる。サイクルコンピュータ表示部203は、推進力Ftと損失力Frをクランク105の回転角ごとにベクトル表示したり、ケイデンス値を数値として表示したりする。 Next, in step ST73, the cycle computer control unit 251 causes the cycle computer display unit 203 to display the propulsive force Ft, the loss force Fr, and the cadence for each rotation angle. The cycle computer display unit 203 displays the propulsive force Ft and the loss force Fr as a vector for each rotation angle of the crank 105, or displays a cadence value as a numerical value.
 例えば、クランク105の所定の回転角(30°)毎に推進力Ftと損失力Frの大きさを矢印等で表示することなどが挙げられる。 For example, the propulsive force Ft and the loss force Fr are displayed with arrows or the like at every predetermined rotation angle (30 °) of the crank 105.
 次に、ステップST75において、サイクルコンピュータ制御部251は、推進力Ftと損失力Fr及びケイデンスをサイクルコンピュータ記憶部253のサイクルコンピュータ記憶部253に記憶する。その後、サイクルコンピュータ制御部251は、再びステップST51の割り込みが行われるまで他の処理を行う。 Next, in step ST75, the cycle computer control unit 251 stores the propulsive force Ft, the loss force Fr, and the cadence in the cycle computer storage unit 253 of the cycle computer storage unit 253. Thereafter, the cycle computer control unit 251 performs other processes until the interrupt of step ST51 is performed again.
 本実施例によれば、第1加速度センサ371aおよび第2加速度センサ371bが、クランク軸107に取り付けたクランク105に配置され、クランク105の長手方向と平行な方向の加速度a1およびa2を検出し、推進力演算部351aが、クランク105が1回転する間に12回推進力および損失力の測定を行う。そして、測定タイミング決定部351bが、第1加速度センサ371aの出力値a1および第2加速度センサ371bの出力値a2と、クランク105が基準位置にあることを磁気センサ373が検出する周期から算出されたケイデンスと、1回転内の測定回数である12回と、に基づいてクランク105の回転数Rを算出し、回転数Rと測定回数12回とに基づいて推進力演算部351aの次回の測定タイミングを決定する。このようにすることにより、加速度センサ371のクランクの長手方向(検出軸方向)の遠心力の加速度成分を算出することができる。そのため、その遠心力の加速度成分に基づいて回転数Rを算出することができ、回転数Rから回転周期を算出して1回当たりの測定間隔、つまり、次回の測定タイミングまでの時間を算出することができる。また、基準位置に基づいて算出されたケイデンスから次回の測定タイミングを決定するので、加速度センサ371の特性や電源電圧変動等により発生する測定タイミングのオフセット分を加味することができ、測定タイミングを精度良く算出することができる。また、したがって、角度の検出自体に磁石を用いないので、低コスト化が図れ、ごみや砂鉄などの影響を受けないことから、耐久性を向上させることができる。また、角速度センサを利用しないので、低消費電力化を図ることもできる。 According to the present embodiment, the first acceleration sensor 371a and the second acceleration sensor 371b are arranged on the crank 105 attached to the crankshaft 107, detect accelerations a1 and a2 in a direction parallel to the longitudinal direction of the crank 105, The propulsive force calculation unit 351a measures the propulsive force and the loss force 12 times while the crank 105 rotates once. Then, the measurement timing determination unit 351b is calculated from the output value a1 of the first acceleration sensor 371a and the output value a2 of the second acceleration sensor 371b, and the period at which the magnetic sensor 373 detects that the crank 105 is at the reference position. The rotation speed R of the crank 105 is calculated based on the cadence and 12 measurement times within one rotation, and the next measurement timing of the propulsive force calculating unit 351a is calculated based on the rotation speed R and the 12 measurement times. To decide. By doing so, the acceleration component of the centrifugal force in the longitudinal direction (detection axis direction) of the crank of the acceleration sensor 371 can be calculated. Therefore, the rotation speed R can be calculated based on the acceleration component of the centrifugal force, and the rotation period is calculated from the rotation speed R to calculate the measurement interval per time, that is, the time until the next measurement timing. be able to. In addition, since the next measurement timing is determined from the cadence calculated based on the reference position, the offset of the measurement timing generated due to the characteristics of the acceleration sensor 371, power supply voltage fluctuation, etc. can be taken into account, and the measurement timing is accurately It can be calculated well. In addition, since no magnet is used for angle detection itself, the cost can be reduced and it is not affected by dust or iron sand, so that durability can be improved. Further, since the angular velocity sensor is not used, the power consumption can be reduced.
 また、角速度センサを利用しないので、低消費電力化を図ることもできる。角速度センサ、例えばジャイロセンサは、振動子などを常時振動させなければならないので加速度センサに比べて一般的に消費電力が大きい。したがって、本実施例のように、加速度センサ371のみで回転角を検出することで、消費電力を低減させて、バッテリ等の駆動時間を延ばすことができる。 Also, since an angular velocity sensor is not used, it is possible to reduce power consumption. An angular velocity sensor, such as a gyro sensor, generally consumes more power than an acceleration sensor because a vibrator or the like must be constantly vibrated. Therefore, as in this embodiment, by detecting the rotation angle only with the acceleration sensor 371, the power consumption can be reduced and the driving time of the battery or the like can be extended.
 また、検出した回転角が30°ごとの角度の場合に、パワーセンサ368を動作させているので、パワーセンサ368の動作期間を制限することができ、消費電力をさらに削減することができる。 Further, since the power sensor 368 is operated when the detected rotation angle is an angle of every 30 °, the operation period of the power sensor 368 can be limited, and the power consumption can be further reduced.
 また、測定タイミング決定部351bは、第1加速度センサ371aの出力値a1および第2加速度センサ371bの出力値a2と、クランク105が基準位置にあることを磁気センサ373が検出する周期から算出されたケイデンスと、測定回数12回と、に基づいて、決定した次回の測定タイミングの手前で、推進力演算部351aの当該測定タイミングを補正している。このようにすることにより、一度決定した測定タイミングが回転数Rの変化などによって変動した場合に補正することができ、測定タイミングの決定精度を高くすることができる。 Further, the measurement timing determination unit 351b is calculated from the output value a1 of the first acceleration sensor 371a and the output value a2 of the second acceleration sensor 371b, and the period at which the magnetic sensor 373 detects that the crank 105 is at the reference position. Based on the cadence and the measurement count of 12, the measurement timing of the propulsive force calculation unit 351a is corrected before the next measurement timing determined. By doing so, it is possible to correct the measurement timing once determined due to a change in the rotational speed R or the like, and to increase the measurement timing determination accuracy.
 また、測定タイミング決定部351bは、第1加速度センサ371aの複数の出力値a1および第2加速度センサ371bの複数の出力値a2と、クランク105が基準位置にあることを磁気センサ373が検出する周期から算出されたケイデンスと、測定回数12回と、に基づいて推進力演算部351aの次回の測定タイミングを決定している。このようにすることにより、第1加速度センサ371aの出力値a1と第2加速度センサ371bの出力値a2とを複数用いて、それらの平均値を用いることができる。したがって、瞬間の出力値のみで決定する場合と比較して加速度センサ371の出力値に重畳するノイズ等の影響を受けにくくすることができる。 In addition, the measurement timing determination unit 351b detects a plurality of output values a1 of the first acceleration sensor 371a and a plurality of output values a2 of the second acceleration sensor 371b, and a period at which the magnetic sensor 373 detects that the crank 105 is at the reference position. The next measurement timing of the propulsive force calculation unit 351a is determined based on the cadence calculated from the above and the number of measurements 12 times. By doing in this way, the output value a1 of the 1st acceleration sensor 371a and the output value a2 of the 2nd acceleration sensor 371b can be used, and those average values can be used. Therefore, it is possible to make it less susceptible to noise or the like superimposed on the output value of the acceleration sensor 371 as compared with the case where the determination is made only with the instantaneous output value.
 また、クランク105の回転角度の基準位置を設定する基準位置検出部が、フレーム3に固定されて配置されている磁石503と、クランク105に配置され磁石503を検出する磁気センサ373と、を有して構成されている。このようにすることにより、ケイデンス演算部351eが磁石503の検出間隔に基づいてケイデンスを算出することができる。また、測定タイミングを検出する基準を設定することができる。また、フレーム3の位置を基準位置とすることができる。 In addition, the reference position detection unit that sets the reference position of the rotation angle of the crank 105 includes a magnet 503 that is fixedly disposed on the frame 3 and a magnetic sensor 373 that is disposed on the crank 105 and detects the magnet 503. Configured. By doing so, the cadence calculation unit 351e can calculate the cadence based on the detection interval of the magnet 503. In addition, a reference for detecting the measurement timing can be set. Further, the position of the frame 3 can be set as the reference position.
 なお、上述した実施例では片側のクランク105に第1加速度センサ371aと第2加速度センサ371bとが配置されていたが、両側のクランク105、つまり、クランク105Rとクランク105Lとに1つずつ加速度センサが配置されていてもよい。この場合、各加速度センサのクランク軸107からの距離の絶対値は同じであってもよい。そして、クランク軸107からの距離は、一方のクランクにおける距離を正数で表し、他方のクランクにおける距離を負数で表せばよい。また、距離を負数で表した側の加速度センサの測定値a(a1やa2)は負数(-1)を掛けて表せばよい。 In the above-described embodiment, the first acceleration sensor 371a and the second acceleration sensor 371b are disposed on one crank 105, but one acceleration sensor is provided for each of the cranks 105 on both sides, that is, the crank 105R and the crank 105L. May be arranged. In this case, the absolute value of the distance from the crankshaft 107 of each acceleration sensor may be the same. The distance from the crankshaft 107 may be expressed as a positive number for one crank and a negative number for the other crank. Further, the measured value a (a1 or a2) of the acceleration sensor on the side where the distance is expressed by a negative number may be expressed by multiplying by a negative number (−1).
 また、上述した実施例ではクランク105が1回転(1周)を12等分した角度であったが、1回転に限らず、2回転を12等分など複数回転を等分した角度であってもよい。また、上述した実施例では、測定タイミングが等間隔であったが、等間隔でなくてもよい。第1加速度センサ371aの出力値a1と第2加速度センサ371bの出力値a2と次回の測定角度が判明していればそれから次回の測定タイミングを決定することができる。 In the above-described embodiment, the crank 105 has an angle obtained by dividing one rotation (one revolution) into 12 equal parts. However, the angle is not limited to one rotation, and an angle obtained by equally dividing two rotations into 12 equal parts. Also good. Further, in the above-described embodiments, the measurement timings are equal intervals, but may not be equal intervals. If the output value a1 of the first acceleration sensor 371a, the output value a2 of the second acceleration sensor 371b, and the next measurement angle are known, the next measurement timing can be determined therefrom.
 次に、本発明の第2の実施例にかかる回転角検出装置を図14乃至図16を参照して説明する。なお、前述した第1の実施例と同一部分には、同一符号を付して説明を省略する。 Next, a rotation angle detection apparatus according to a second embodiment of the present invention will be described with reference to FIGS. The same parts as those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
 第1の実施例では、磁石503の設けられたフレーム3の鉛直方向に対する角度は予めフレームの設計図や仕様を参照するかあるいは分度器等を用いて実際に測定する必要があるが、本実施例では、それらを必要とせずにフレーム3の鉛直方向に対する角度を測定する点が異なる。 In the first embodiment, the angle of the frame 3 provided with the magnet 503 with respect to the vertical direction needs to be measured in advance using a protractor or the like by referring to the design drawing and specifications of the frame in advance. Then, the point which measures the angle with respect to the vertical direction of the flame | frame 3 without requiring them differs.
 本実施例の構成を図14に示す。図14は、図3に対して、第3加速度センサ371cと、LED374と、設定部375と、が追加されている。 FIG. 14 shows the configuration of this example. In FIG. 14, a third acceleration sensor 371c, an LED 374, and a setting unit 375 are added to FIG.
 第3加速度センサ371cは、第1加速度センサ371a、第2加速度センサ371bとは異なり、クランク105の短手方向に対して平行な方向(クランク105回転の接線方向)が検出方向となっている。また、第3加速度センサ371cは、個別のセンサではなく、第1加速度センサ371a、第2加速度センサ371bのいずれか一方を2軸加速度センサとしてもよい。 The third acceleration sensor 371c differs from the first acceleration sensor 371a and the second acceleration sensor 371b in that the direction parallel to the short direction of the crank 105 (tangential direction of rotation of the crank 105) is the detection direction. Further, the third acceleration sensor 371c is not an individual sensor, and one of the first acceleration sensor 371a and the second acceleration sensor 371b may be a biaxial acceleration sensor.
 LED374は、磁気センサ373がONになった旨の情報信号によって発光する発光ダイオードである。即ち、LED374は、磁気センサ373(検出部)が磁石503(被検出部)を検出したことを通知する通知部として機能する。なお、通知部としてはLED374のような表示による通知に限らずブザー等音による通知であってもよい。 The LED 374 is a light emitting diode that emits light in response to an information signal indicating that the magnetic sensor 373 is turned on. That is, the LED 374 functions as a notification unit that notifies that the magnetic sensor 373 (detection unit) has detected the magnet 503 (detected unit). Note that the notification unit is not limited to notification by display such as the LED 374 but may be notification by a buzzer or the like.
 設定部375は、例えば押しボタン等で構成され、ユーザがLED374の点灯に合わせて操作することができるようになっている。設定部375は、第1加速度センサ371aまたは第2加速度センサ371bの出力値と第3加速度センサ371cの出力値とを測定タイミング決定部351bに取得させるタイミングを指示するタイミング指示部として機能する。 The setting unit 375 is configured by a push button, for example, and can be operated by the user in accordance with the lighting of the LED 374. The setting unit 375 functions as a timing instruction unit that instructs the measurement timing determination unit 351b to acquire the output value of the first acceleration sensor 371a or the second acceleration sensor 371b and the output value of the third acceleration sensor 371c.
 加速度センサ371が、本実施例のように配置されると、第1加速度センサ371aと第2加速度センサ371bとは、クランク105の長手方向の加速度を検出し、第3加速度センサ371cは、クランク105の短手方向の加速度を検出する。図15は、重力加速度Gの場合の例である。図14に示したように、第1加速度センサ371aまたは第2加速度センサ371bによって長手方向の加速度成分が検出され、第3加速度センサ371cによって短手方向の加速度成分を検出することができる。 When the acceleration sensor 371 is arranged as in the present embodiment, the first acceleration sensor 371a and the second acceleration sensor 371b detect the longitudinal acceleration of the crank 105, and the third acceleration sensor 371c The acceleration in the short direction is detected. FIG. 15 shows an example in the case of gravitational acceleration G. As shown in FIG. 14, the longitudinal acceleration component can be detected by the first acceleration sensor 371a or the second acceleration sensor 371b, and the acceleration component in the short direction can be detected by the third acceleration sensor 371c.
 これらの加速度の出力値とクランク105の回転角との関係は図16に示したグラフのようになる。このグラフから短手方向の加速度は、0°≦θ<180°が正の値をなり、180°≦θ<360°が負の値となる。したがって、長手方向の加速度と短手方向の加速度との両方の加速度を参照することによって、フレーム3の角度を検出することができる。 The relationship between the output values of these accelerations and the rotation angle of the crank 105 is as shown in the graph in FIG. From this graph, the acceleration in the short-side direction has a positive value when 0 ° ≦ θ <180 °, and a negative value when 180 ° ≦ θ <360 °. Therefore, the angle of the frame 3 can be detected by referring to both the acceleration in the longitudinal direction and the acceleration in the short direction.
 具体的には、クランク105をフレーム3と平行になる位置まで回転移動させると、磁気センサ373が磁石503を検出する。すると磁気センサ373がONになった旨の情報信号を出力し、LED374が発光するので、その位置にクランク105を静止させ、設定部375を操作する。測定タイミング決定部351bは、設定部375が操作された際の重力加速度を取得しクランク角度、即ちフレーム3の角度を求める、そして、求めたフレーム3の角度を基準角度保管部355に保管する。 Specifically, when the crank 105 is rotationally moved to a position parallel to the frame 3, the magnetic sensor 373 detects the magnet 503. Then, an information signal indicating that the magnetic sensor 373 is turned on is output, and the LED 374 emits light. Therefore, the crank 105 is stopped at that position, and the setting unit 375 is operated. The measurement timing determination unit 351b acquires the gravitational acceleration when the setting unit 375 is operated, calculates the crank angle, that is, the angle of the frame 3, and stores the calculated angle of the frame 3 in the reference angle storage unit 355.
 即ち、設定部375が、LED374(通知部)が磁石503(被検出部)を検出した通知に基づいて第1加速度センサ371aまたは第2加速度センサ371bの出力値と第3加速度センサ371cの出力値とを測定タイミング決定部351bに取得させている。そして、測定タイミング決定部351b(基準位置検出部)が、取得した第1加速度センサ371aまたは第2加速度センサ371bの出力値と、第3加速度センサ371cの出力値と、に基づいて基準位置を設定している。 That is, the setting unit 375 outputs the output value of the first acceleration sensor 371a or the second acceleration sensor 371b and the output value of the third acceleration sensor 371c based on the notification that the LED 374 (notification unit) detects the magnet 503 (detected unit). Is acquired by the measurement timing determination unit 351b. Then, the measurement timing determination unit 351b (reference position detection unit) sets the reference position based on the acquired output value of the first acceleration sensor 371a or the second acceleration sensor 371b and the output value of the third acceleration sensor 371c. is doing.
 本実施例によれば、クランク105の短手方向と平行な方向の加速度を検出する第3加速度センサ371cと、磁気センサ373が磁石503を検出したことを通知するLED374と、第1加速度センサ371aまたは第2加速度センサ371bの出力値と第3加速度センサ371cの出力値とを取得するタイミングを指示する設定部375と、を有する。そして、設定部375が、LED374が磁石503を検出した通知に基づいて第1加速度センサ371aまたは第2加速度センサ371bの出力値と第3加速度センサ371cの出力値との取得を指示し、測定タイミング決定部351bが、第1加速度センサ371aまたは第2加速度センサ371bの出力値と、第3加速度センサ371cの出力値と、に基づいて基準位置を設定している。このようにすることにより、磁石503が検出されたクランク105に加わる重力加速度に基づいて当該位置の鉛直方向に対する角度を算出することができる。したがって、自転車1のフレーム3の鉛直方向の角度を調査したり、分度器等で測定する必要が無くなる。 According to the present embodiment, the third acceleration sensor 371c that detects acceleration in a direction parallel to the short direction of the crank 105, the LED 374 that notifies that the magnetic sensor 373 has detected the magnet 503, and the first acceleration sensor 371a. Alternatively, a setting unit 375 that instructs the timing for acquiring the output value of the second acceleration sensor 371b and the output value of the third acceleration sensor 371c is provided. Then, the setting unit 375 instructs acquisition of the output value of the first acceleration sensor 371a or the second acceleration sensor 371b and the output value of the third acceleration sensor 371c based on the notification that the LED 374 detects the magnet 503, and the measurement timing. The determination unit 351b sets the reference position based on the output value of the first acceleration sensor 371a or the second acceleration sensor 371b and the output value of the third acceleration sensor 371c. By doing in this way, the angle with respect to the vertical direction of the said position is computable based on the gravitational acceleration added to the crank 105 by which the magnet 503 was detected. Therefore, it is not necessary to investigate the angle in the vertical direction of the frame 3 of the bicycle 1 or to measure it with a protractor or the like.
 なお、第2の実施例では、通知部やタイミング指示部は測定モジュール301に設けられていたが、別に設けてもよい。例えばサイクルコンピュータ201のサイクルコンピュータ表示部203やサイクルコンピュータ操作部205が兼ねるようにしてもよい。 In the second embodiment, the notification unit and the timing instruction unit are provided in the measurement module 301, but may be provided separately. For example, the cycle computer display unit 203 and the cycle computer operation unit 205 of the cycle computer 201 may also function.
 次に、本発明の第3の実施例にかかる回転角検出装置を図17及び図18を参照して説明する。なお、前述した第1の実施例と同一部分には、同一符号を付して説明を省略する。 Next, a rotation angle detection apparatus according to a third embodiment of the present invention will be described with reference to FIGS. The same parts as those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
 本実施例では、図17に示したように、加速度センサ371の出力にローパスフィルタ(LPF)処理を施し、さらに、ローパスフィルタ処理によって遅延した分を測定タイミング決定部351b2で補正する。即ち、LPF372がフィルタ部として機能する。 In this embodiment, as shown in FIG. 17, the output of the acceleration sensor 371 is subjected to a low-pass filter (LPF) process, and the delay caused by the low-pass filter process is corrected by the measurement timing determination unit 351b2. That is, the LPF 372 functions as a filter unit.
 自転車など回転角検出装置が設けられる車両は外部から様々な振動が加わるため、加速度センサ371は、重力加速度や遠心力の加速度成分以外の加速度成分が出力値に含まれることが多い。したがって、加速度センサ371の出力に対して、LPF372でFIR(有限インパルス応答)フィルタやIIR(無限インパルス応答)フィルタなどデジタルフィルタによるローパスフィルタ処理を施すことで加速度センサ371の出力に含まれる振動などのノイズ成分を除去する。勿論、デジタルフィルタでなくアナログフィルタであってもよい。 Since a vehicle equipped with a rotation angle detection device such as a bicycle is subjected to various vibrations from the outside, the acceleration sensor 371 often includes an acceleration component other than the acceleration component of gravity acceleration or centrifugal force in its output value. Accordingly, the output of the acceleration sensor 371 is subjected to low-pass filter processing using a digital filter such as an FIR (finite impulse response) filter or an IIR (infinite impulse response) filter with the LPF 372, thereby causing vibrations included in the output of the acceleration sensor 371. Remove noise components. Of course, an analog filter may be used instead of a digital filter.
 デジタルフィルタを施された出力値は、図18に示すように、デジタルフィルタの特性によって、一定サンプル数分の遅延した値が出力されるため、測定タイミングから最終的に算出されるクランク105の回転角を補正する必要がある。そこで、測定タイミング決定部351b2では、後述する(23)式に示すような演算を行って回転角の補正を行う。即ち、測定タイミング決定部351b2が遅延角度補正部として機能する。 As shown in FIG. 18, since the output value subjected to the digital filter is a value delayed by a certain number of samples depending on the characteristics of the digital filter, the rotation of the crank 105 finally calculated from the measurement timing is output. It is necessary to correct the corner. Therefore, the measurement timing determination unit 351b2 corrects the rotation angle by performing an operation as shown in equation (23) described later. That is, the measurement timing determination unit 351b2 functions as a delay angle correction unit.
 例えば、nタップのFIRフィルタ、サンプリング周波数fs[Hz]で、クランク軸107中心からr[m]の遠心力の加速度をa[m/sec2]とした場合、n/(2×fs)[sec]前のクランク105の回転角を算出することとなる。 For example, when the acceleration of the centrifugal force of r [m] from the center of the crankshaft 107 is a far [m / sec 2 ] with an n-tap FIR filter and a sampling frequency fs [Hz], n / (2 × fs) [Sec] The rotation angle of the previous crank 105 is calculated.
 また、遠心力の加速度aは角速度をωとすると(21)式により表され、角速度ωは(22)式により表される。
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
Further, the acceleration a far from the centrifugal force is expressed by equation (21) when the angular velocity is ω, and the angular velocity ω is expressed by equation (22).
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
 したがって、算出された回転角に(23)式だけ進めるように補正すればよい。
Figure JPOXMLDOC01-appb-M000023
Therefore, the correction may be made so that the calculated rotation angle is advanced by equation (23).
Figure JPOXMLDOC01-appb-M000023
 なお、遠心力の加速度aは、例えば第2加速度センサ371bの場合、第1の実施例に示した(9)式により算出することができる。勿論第1加速度センサ371aから求めてもよい。その場合も同様にして(7)式-(6)式から求めることができる。 For example, in the case of the second acceleration sensor 371b, the acceleration a far from the centrifugal force can be calculated by the equation (9) shown in the first embodiment. Of course, you may obtain | require from the 1st acceleration sensor 371a. In that case, it can be similarly obtained from the equations (7)-(6).
 あるいは、クランク105が1回転のうちのいずれの半回転にあるかの判定において、半回転間の時間を測定することで、回転加速度を算出し、その値から補正用の遠心力の加速度を求めるようにしてもよい。そして、半回転間は前の半回転の時間から算出された遠心力の加速度を用いる。 Alternatively, in determining which half rotation of the crank 105 is in one rotation, the rotation acceleration is calculated by measuring the time between the half rotations, and the acceleration of the centrifugal force for correction is obtained from the value. You may do it. Then, during the half rotation, the acceleration of the centrifugal force calculated from the previous half rotation time is used.
 本実施例によれば、第1加速度および第2加速度にフィルタ処理を施すLPF372と、フィルタ処理が施された後に角度補正処理を施す測定タイミング決定部351b2と、を有している。このようにすることにより、振動などにより重力加速度やクランク105に加わる遠心力の加速度以外の加速度成分を取り除くことができ、次回の測定タイミングの推測精度を良くすることができる。また、測定タイミング決定部351b2によって、フィルタ処理によって発生する遅延を補正することができる。 According to the present embodiment, there is an LPF 372 that performs filter processing on the first acceleration and the second acceleration, and a measurement timing determination unit 351b2 that performs angle correction processing after the filter processing is performed. In this way, acceleration components other than gravitational acceleration and acceleration of centrifugal force applied to the crank 105 due to vibration or the like can be removed, and the accuracy of estimating the next measurement timing can be improved. In addition, the measurement timing determination unit 351b2 can correct the delay generated by the filter processing.
 次に、本発明の第4の実施例にかかる回転角検出装置を図19および図20を参照して説明する。なお、前述した第1の実施例と同一部分には、同一符号を付して説明を省略する。 Next, a rotation angle detection apparatus according to a fourth embodiment of the present invention will be described with reference to FIGS. The same parts as those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
 本実施例では、クランク105以外にクランク105の長手方向の加速度を検出することによって、クランク105の回転角を検出することができる部品について説明する。 In the present embodiment, components other than the crank 105 that can detect the rotation angle of the crank 105 by detecting the acceleration in the longitudinal direction of the crank 105 will be described.
 図19は、本実施例にかかるチェーンリング109とクランク105Aとを示した平面図、図20は、図19に示されたクランク105Aを示した平面図である。 FIG. 19 is a plan view showing the chain ring 109 and the crank 105A according to this embodiment, and FIG. 20 is a plan view showing the crank 105A shown in FIG.
 クランク105Aは、チェーンリング109に後述するスパイダーアーム77を介して取り付けられている。チェーンリング109は、大小2つのスプロケット(フロントチェーンホイールの一例)109a、109bを有している。 The crank 105A is attached to the chain ring 109 via a spider arm 77 described later. The chain ring 109 has two large and small sprockets (an example of a front chain wheel) 109a and 109b.
 クランク105Aは、クランク軸側から放射状に延び、大小2枚のスプロケット109a、109bを先端に装着可能な5つのスパイダーアーム77と、クランク軸107に固定され先端にペダルクランク軸装着孔115aが形成されたクランクアーム78と、を有している。クランク105Aは、クランク軸から放射状に延びる複数のアーム部を有するアーム部材であって、クランクと連動して回転する部材に相当する。スパイダーアーム77の先端には、固定ボルトが貫通する貫通孔77bとスプロケット109a、109b取付用の2つの取付面77cとを有するスプロケット取付部77aが形成されている。 The crank 105A extends radially from the crankshaft side, and has five spider arms 77 that can mount two large and small sprockets 109a and 109b at the tip, and a pedal crankshaft mounting hole 115a that is fixed to the crankshaft 107 and formed at the tip. And a crank arm 78. The crank 105A is an arm member having a plurality of arm portions extending radially from the crankshaft, and corresponds to a member that rotates in conjunction with the crank. At the tip of the spider arm 77, a sprocket mounting portion 77a having a through hole 77b through which a fixing bolt passes and two mounting surfaces 77c for mounting the sprockets 109a and 109b is formed.
 大径のスプロケット109aは、環状のギア部材を有している。ギア部材は、例えばアルミニウム合金材で形成されている。ギア部材の外周部には、チェーン111が噛み合うギア歯86aが形成されている。小径のスプロケット109bは、環状のギア部材を有している。ギア部材は、例えばアルミニウム合金材で形成されている。ギア部材の外周部には、チェーン111が噛み合うギア歯72aが形成されている。 The large-diameter sprocket 109a has an annular gear member. The gear member is made of, for example, an aluminum alloy material. Gear teeth 86a with which the chain 111 is engaged are formed on the outer periphery of the gear member. The small-diameter sprocket 109b has an annular gear member. The gear member is made of, for example, an aluminum alloy material. Gear teeth 72a with which the chain 111 is engaged are formed on the outer periphery of the gear member.
 なお、図19や図20は、スパイダーアーム77がクランクアーム78と一体的に形成されていたが、それに限らず別体であってもよい。 In FIG. 19 and FIG. 20, the spider arm 77 is formed integrally with the crank arm 78, but is not limited thereto and may be a separate body.
 このような構成のクランク105Aにおいて、スパイダーアーム77に加速度センサを設けることで、第1の実施例に示したのと同様に次に測定タイミングを算出し、タイマ補正やオフセット演算をすることができる。加速度センサは、1つをスパイダーアーム77に配置し、もう1つをクランクアーム78に配置してもいし、2つともスパイダーアーム77に配置してもよい。但し、第1の実施例に示したように、2つの加速度センサの検出軸はクランクアーム78の長手方向と平行な方向であって、かつ、右または左の同じ側に設ける場合は、2つの加速度センサのクランク軸中心からの距離が異なる必要がある。 In the crank 105A having such a configuration, by providing an acceleration sensor on the spider arm 77, it is possible to calculate the next measurement timing and perform timer correction and offset calculation in the same manner as shown in the first embodiment. . One acceleration sensor may be disposed on the spider arm 77, the other may be disposed on the crank arm 78, or both may be disposed on the spider arm 77. However, as shown in the first embodiment, the detection axes of the two acceleration sensors are parallel to the longitudinal direction of the crank arm 78 and are provided on the same right or left side, The distance from the crankshaft center of the acceleration sensor needs to be different.
 なお、スパイダーアーム77だけでなく、ペダルクランク軸115(ペダル軸)に加速度センサを配置してもよい。要するに、回転軸に取り付けたクランクまたはクランクと連動して回転する部材であって、クランクの長手方向の加速度を検出可能な部材であれば適用可能である。ここで、連動とは、クランクと同じ回転軸でクランクと同じ回転速度で回転するという意味である。 In addition, you may arrange | position an acceleration sensor not only to the spider arm 77 but to the pedal crankshaft 115 (pedal shaft). In short, any crank or member that rotates in conjunction with the crank and that can detect the acceleration in the longitudinal direction of the crank is applicable. Here, the interlock means that the same rotation shaft as the crank rotates at the same rotation speed as the crank.
 本実施例によれば、スパイダーアーム77に加速度センサを少なくとも1つ配置し、その加速度センサの出力値と、他のスパイダーアーム77またはクランクアーム78に配置された加速度センサの出力値と、m周当たりの測定回数nと、に基づいて、次回の測定タイミングを算出する。このようにすることにより、クランクアーム78以外の部品に加速度センサを配置してもクランクアーム78の回転角を求めることができ、加速度センサの配置の自由度が増す。 According to the present embodiment, at least one acceleration sensor is arranged on the spider arm 77, the output value of the acceleration sensor, the output value of the acceleration sensor arranged on the other spider arm 77 or the crank arm 78, and m rounds. The next measurement timing is calculated based on the number of hits n. By doing so, the rotational angle of the crank arm 78 can be obtained even if the acceleration sensor is arranged on a part other than the crank arm 78, and the degree of freedom of the arrangement of the acceleration sensor is increased.
 なお、上述した4つの実施例では、測定モジュール301で測定した推進力及び損失力や回転角は、サイクルコンピュータ201のサイクルコンピュータ表示部203にリアルタイムに表示させていたが、それに限らない。例えば、測定モジュール301からメモリカード等の記録媒体に出力し、後にパーソナルコンピュータ等でメモリカードに記録された情報を読み出して時系列にクランク105の回転角ごと推進力及び損失力の表示するようにしてもよい。 In the four embodiments described above, the propulsive force, the loss force, and the rotation angle measured by the measurement module 301 are displayed in real time on the cycle computer display unit 203 of the cycle computer 201. However, the present invention is not limited to this. For example, the information output from the measurement module 301 to a recording medium such as a memory card, and the information recorded on the memory card later is read by a personal computer or the like, and the propulsive force and loss force are displayed in time series for each rotation angle of the crank 105. May be.
 また、本発明おける人力機械とは、自転車1、フィットネスバイク等のクランク105(クランクアーム78)を備えた人力で駆動される機械をいう。つまり、クランク105を備えた人力で駆動(必ずしも場所的な移動をする必要はない)される機械であれば、人力機械はどの様なものであっても良い。 Further, the human-powered machine in the present invention refers to a machine driven by human power equipped with a crank 105 (crank arm 78) such as a bicycle 1 or a fitness bike. In other words, any human-powered machine may be used as long as it is a machine that is driven by a human power equipped with the crank 105 (it is not always necessary to move locally).
 また、本発明における測定装置とは、サイクルコンピュータ201の一部であってもよいし、他の独立した装置であっても良い。さらに、物理的に別れた複数の装置の集合体であっても良い。場合によっては、ひずみゲージ369(測定モジュールひずみ検出回路365)や加速度センサ371以外は通信を介することとし全く別の場所にある装置であってもよい。 Also, the measuring device in the present invention may be a part of the cycle computer 201 or another independent device. Further, it may be an aggregate of a plurality of devices physically separated. In some cases, a device other than the strain gauge 369 (measurement module strain detection circuit 365) and the acceleration sensor 371 may be a device in a completely different place through communication.
 また、本発明は上記実施例に限定されるものではない。即ち、当業者は、従来公知の知見に従い、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。かかる変形によってもなお本発明の測定タイミング検出装置の構成を具備する限り、勿論、本発明の範疇に含まれるものである。 Further, the present invention is not limited to the above embodiment. That is, those skilled in the art can implement various modifications in accordance with conventionally known knowledge without departing from the scope of the present invention. Of course, such modifications are included in the scope of the present invention as long as the configuration of the measurement timing detection apparatus of the present invention is provided.
  1    自転車
  3    フレーム
  77   スパイダーアーム(クランクと連動して回転する部材)
  105  クランク
  107  クランク軸(回転軸)
  310  測定タイミング検出装置
  351  測定モジュール制御部
  351a 推進力演算部(測定部)
  351b 測定タイミング決定部(決定部、補正部、基準位置検出部、遅延角度補正部)
  351c 基準角度検出部(基準位置検出部)
  351e ケイデンス演算部(決定部)
  353  測定モジュール記憶部
  355  基準角度保管部(基準位置検出部)
  371a 第1加速度センサ
  371b 第2加速度センサ
  371c 第3加速度センサ
  372  LPF(フィルタ部)
  373  磁気センサ(検出部)
  374  LED(通知部)
  375  設定部(タイミング指示部)
  503  磁石(被検出部)
  a1   第1加速度センサの出力値
  a2   第2加速度センサの出力値
  ST11 回転角検出(取得工程、出力工程、第1補正工程)
1 Bicycle 3 Frame 77 Spider arm (member that rotates in conjunction with the crank)
105 Crank 107 Crankshaft (Rotating shaft)
310 Measurement Timing Detection Device 351 Measurement Module Control Unit 351a Propulsion Force Calculation Unit (Measurement Unit)
351b Measurement timing determination unit (determination unit, correction unit, reference position detection unit, delay angle correction unit)
351c Reference angle detector (reference position detector)
351e Cadence calculation unit (decision unit)
353 Measurement module storage unit 355 Reference angle storage unit (reference position detection unit)
371a First acceleration sensor 371b Second acceleration sensor 371c Third acceleration sensor 372 LPF (filter unit)
373 Magnetic sensor (detector)
374 LED (notification part)
375 Setting section (timing instruction section)
503 Magnet (Detected part)
a1 Output value of first acceleration sensor a2 Output value of second acceleration sensor ST11 Rotation angle detection (acquisition step, output step, first correction step)

Claims (14)

  1.  回転軸に取り付けたクランクまたは前記クランクと連動して回転する部材に配置され、前記クランクの長手方向と平行な方向の加速度を検出する第1加速度センサおよび第2加速度センサと、
     前記クランクが所定の基準位置にあることを検出する基準位置検出部と、
     前記クランクの適宜角度位置において所定の測定を行う測定部の次回の測定タイミングを、前記第1加速度センサの出力値および前記第2加速度センサの出力値と、前記基準位置検出部の検出結果と、次回の測定角度と、に基づいて決定する決定部と、
    有することを特徴とする測定タイミング検出装置。
    A first acceleration sensor and a second acceleration sensor which are arranged on a crank attached to a rotating shaft or a member which rotates in conjunction with the crank and detects acceleration in a direction parallel to the longitudinal direction of the crank;
    A reference position detector for detecting that the crank is at a predetermined reference position;
    The next measurement timing of the measurement unit that performs a predetermined measurement at an appropriate angular position of the crank, the output value of the first acceleration sensor and the output value of the second acceleration sensor, the detection result of the reference position detection unit, A determination unit for determining based on the next measurement angle;
    A measurement timing detection apparatus comprising:
  2.  前記第1加速度センサと前記第2加速度センサとは、前記回転軸から異なる距離に配置されていることを特徴とする請求項1に記載の測定タイミング検出装置。 The measurement timing detection apparatus according to claim 1, wherein the first acceleration sensor and the second acceleration sensor are arranged at different distances from the rotation axis.
  3.  前記決定部は、前記基準位置検出部の検出結果から前記クランクの回転数を算出し、前記次回の測定タイミングを前記第1加速度センサの出力値および前記第2加速度センサの出力値と、前記クランクの回転数と、次回の測定角度と、に基づいて決定する、
    ことを特徴とする請求項1または2に記載の測定タイミング検出装置。
    The determination unit calculates the rotation speed of the crank from the detection result of the reference position detection unit, and determines the next measurement timing as the output value of the first acceleration sensor and the output value of the second acceleration sensor, and the crank. Determined based on the number of rotations and the next measurement angle,
    The measurement timing detection apparatus according to claim 1, wherein the measurement timing detection apparatus is a measurement timing detection apparatus.
  4.  前記決定部が、前記第1加速度センサの出力値および前記第2加速度センサの出力値と、前記基準位置検出部の検出結果と、前記次回の測定角度と、に基づいて、前記次回の測定タイミングを決定した後から当該次回の測定タイミングまでの間に当該次回の測定タイミングを補正する補正部を有することを特徴とする請求項1乃至3のうちいずれか一項に記載の測定タイミング検出装置。 The determination unit determines the next measurement timing based on the output value of the first acceleration sensor and the output value of the second acceleration sensor, the detection result of the reference position detection unit, and the next measurement angle. 4. The measurement timing detection apparatus according to claim 1, further comprising: a correction unit that corrects the next measurement timing between the determination of the first measurement timing and the next measurement timing. 5.
  5.  前記決定部は、前記第1加速度センサの複数の出力値および前記第2加速度センサの複数の出力値と、前記基準位置検出部の検出結果と、前記次回の測定角度と、に基づいて前記測定部の前記次回の測定タイミングを決定することを特徴とする請求項1乃至4のうちいずれか一項に記載の測定タイミング検出装置。 The determination unit performs the measurement based on a plurality of output values of the first acceleration sensor and a plurality of output values of the second acceleration sensor, a detection result of the reference position detection unit, and the next measurement angle. The measurement timing detection apparatus according to claim 1, wherein the next measurement timing of a unit is determined.
  6.  前記決定部は、前記第1加速度センサの出力値および前記第2加速度センサの出力値に基づいて前記クランクの回転周期を算出し、前記回転周期と前記基準位置検出部の検出結果と前記次回の測定角度とに基づいて前記測定部の次回の測定タイミングを決定することを特徴とする請求項1乃至5のうちいずれか一項に記載の測定タイミング検出装置。 The determination unit calculates a rotation period of the crank based on an output value of the first acceleration sensor and an output value of the second acceleration sensor, and detects the rotation period, a detection result of the reference position detection unit, and the next time. 6. The measurement timing detection apparatus according to claim 1, wherein a next measurement timing of the measurement unit is determined based on a measurement angle.
  7.  前記測定部は、前記クランクが前記m回転を前記n等分(m、nは1以上の整数)した角度に対応するタイミングで前記所定の測定を行い、
     前記決定部は、前記mおよび前記nに基づいて前記次回の測定角度を求める、
    ことを特徴とする請求項1乃至6のうちいずれか一項に記載の測定タイミング検出装置。
    The measuring unit performs the predetermined measurement at a timing corresponding to an angle obtained by dividing the m rotation by the crank into n equal parts (m and n are integers of 1 or more),
    The determination unit obtains the next measurement angle based on the m and the n.
    The measurement timing detection apparatus according to claim 1, wherein the measurement timing detection apparatus is a measurement timing detection apparatus.
  8.  前記決定部は、前記基準位置に基づいて前記測定タイミングを検出することを特徴とする請求項1乃至7のうちいずれか一項に記載の測定タイミング検出装置。 The measurement timing detection apparatus according to any one of claims 1 to 7, wherein the determination unit detects the measurement timing based on the reference position.
  9.  前記基準位置検出部が、前記クランクの特定の回転角に対応する位置に固定されて配置されている被検出部と、
     前記クランクに配置され前記被検出部を検出する検出部と、
    を有していることを特徴とする請求項8に記載の測定タイミング検出装置。
    The detected position, wherein the reference position detection unit is fixed and arranged at a position corresponding to a specific rotation angle of the crank;
    A detection unit disposed on the crank for detecting the detected unit;
    The measurement timing detection apparatus according to claim 8, comprising:
  10.  前記クランクの短手方向と平行な方向の加速度を検出する第3加速度センサと、
     前記検出部が前記被検出部を検出したことを通知する通知部と、
     前記第1加速度センサまたは前記第2加速度センサの出力値と前記第3加速度センサの出力値とを前記決定部に取得させるタイミングを指示するタイミング指示部と、を有し、
     前記タイミング指示部が、前記通知部が前記被検出部を検出した通知に基づいて前記第1加速度センサまたは前記第2加速度センサの出力値と前記第3加速度センサの出力値とを前記決定部に取得させ、
     前記基準位置検出部が、前記決定部が取得した前記第1加速度センサまたは前記第2加速度センサの出力値と前記第3加速度センサの出力値とに基づいて前記基準位置を設定する、
    ことを特徴とする請求項9に記載の測定タイミング検出装置。
    A third acceleration sensor for detecting acceleration in a direction parallel to the short side direction of the crank;
    A notification unit for notifying that the detection unit has detected the detected unit;
    A timing instructing unit that instructs the determination unit to acquire the output value of the first acceleration sensor or the second acceleration sensor and the output value of the third acceleration sensor;
    The timing instruction unit sends the output value of the first acceleration sensor or the second acceleration sensor and the output value of the third acceleration sensor to the determination unit based on the notification that the notification unit has detected the detected unit. Let's get
    The reference position detection unit sets the reference position based on an output value of the first acceleration sensor or the second acceleration sensor acquired by the determination unit and an output value of the third acceleration sensor;
    The measurement timing detection apparatus according to claim 9.
  11.  前記第1加速度センサの出力および前記第2加速度の出力値にフィルタ処理を施すフィルタ部と、
     前記フィルタ処理が施された後に角度補正処理を施す遅延角度補正部と、
    を有していることを特徴とする請求項1乃至10のうちいずれか一項に記載の測定タイミング検出装置。
    A filter unit that performs a filtering process on an output value of the first acceleration sensor and an output value of the second acceleration;
    A delay angle correction unit that performs an angle correction process after the filter process is performed;
    The measurement timing detection apparatus according to claim 1, wherein the measurement timing detection apparatus includes:
  12.  回転軸に取り付けたクランクまたは前記クランクと連動して回転する部材に配置され、前記クランクの長手方向と平行な方向の加速度を検出する第1加速度センサの出力値および第2加速度センサの出力値を取得する取得工程と、
     前記クランクが所定の基準位置にあることを検出する基準位置検出工程と、
     前記クランクの適宜角度位置において所定の測定を行う測定部の次回の測定タイミングを、前記第1加速度センサの出力値および前記第2加速度センサの出力値と、前記基準位置検出工程の検出結果と、次回の測定角度と、に基づいて決定する決定工程と、
    を有することを特徴とする測定タイミング検出方法。
    An output value of a first acceleration sensor and an output value of a second acceleration sensor that are arranged on a crank attached to a rotating shaft or a member that rotates in conjunction with the crank and detects acceleration in a direction parallel to the longitudinal direction of the crank. An acquisition process to acquire;
    A reference position detecting step for detecting that the crank is at a predetermined reference position;
    The next measurement timing of the measurement unit that performs a predetermined measurement at an appropriate angular position of the crank, the output value of the first acceleration sensor and the output value of the second acceleration sensor, the detection result of the reference position detection step, A determination process to be determined based on the next measurement angle;
    A measurement timing detection method comprising:
  13.  請求項12に記載の測定タイミング検出方法を、コンピュータにより実行させることを特徴とする測定タイミング検出プログラム。 A measurement timing detection program that causes a computer to execute the measurement timing detection method according to claim 12.
  14.  請求項13に記載の測定タイミング検出プログラムを格納したことを特徴とするコンピュータ読み取り可能な記録媒体。 A computer-readable recording medium, wherein the measurement timing detection program according to claim 13 is stored.
PCT/JP2014/069084 2014-07-17 2014-07-17 Measurement timing detection device WO2016009540A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016534056A JP6215472B2 (en) 2014-07-17 2014-07-17 Measurement timing detector
PCT/JP2014/069084 WO2016009540A1 (en) 2014-07-17 2014-07-17 Measurement timing detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/069084 WO2016009540A1 (en) 2014-07-17 2014-07-17 Measurement timing detection device

Publications (1)

Publication Number Publication Date
WO2016009540A1 true WO2016009540A1 (en) 2016-01-21

Family

ID=55078057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069084 WO2016009540A1 (en) 2014-07-17 2014-07-17 Measurement timing detection device

Country Status (2)

Country Link
JP (1) JP6215472B2 (en)
WO (1) WO2016009540A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10458868B2 (en) 2015-12-21 2019-10-29 Shimano Inc. Bicycle crank arm assembly
WO2021029099A1 (en) * 2019-08-09 2021-02-18 住友電気工業株式会社 Rotating tool, module, cutting system, processing method, and processing program
JPWO2020110317A1 (en) * 2018-11-30 2021-04-30 太平洋工業株式会社 Acceleration detector
US11029225B1 (en) 2019-12-27 2021-06-08 Shimano Inc. Electronic device, crank assembly with electronic device and drive train including crank assembly with electronic device
JP2021098505A (en) * 2019-12-20 2021-07-01 株式会社ブリッツ Vehicle control system and vehicle control program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053114A1 (en) * 2010-10-22 2012-04-26 パイオニア株式会社 Measurement device and measurement method
JP2014008789A (en) * 2012-06-27 2014-01-20 Tomoki Kitawaki Pedalling state measurement device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053114A1 (en) * 2010-10-22 2012-04-26 パイオニア株式会社 Measurement device and measurement method
JP2014008789A (en) * 2012-06-27 2014-01-20 Tomoki Kitawaki Pedalling state measurement device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10458868B2 (en) 2015-12-21 2019-10-29 Shimano Inc. Bicycle crank arm assembly
JPWO2020110317A1 (en) * 2018-11-30 2021-04-30 太平洋工業株式会社 Acceleration detector
WO2021029099A1 (en) * 2019-08-09 2021-02-18 住友電気工業株式会社 Rotating tool, module, cutting system, processing method, and processing program
JP6901051B1 (en) * 2019-08-09 2021-07-14 住友電気工業株式会社 Rolling tools, modules and cutting systems
CN114096367A (en) * 2019-08-09 2022-02-25 住友电气工业株式会社 Milling tool, module, cutting system, processing method, and processing program
CN114096367B (en) * 2019-08-09 2023-12-12 住友电气工业株式会社 Cutting system, processing method, and non-volatile computer-readable recording medium
JP2021098505A (en) * 2019-12-20 2021-07-01 株式会社ブリッツ Vehicle control system and vehicle control program
JP7051148B2 (en) 2019-12-20 2022-04-11 株式会社ブリッツ Vehicle control system and vehicle control program
US11029225B1 (en) 2019-12-27 2021-06-08 Shimano Inc. Electronic device, crank assembly with electronic device and drive train including crank assembly with electronic device

Also Published As

Publication number Publication date
JP6215472B2 (en) 2017-10-18
JPWO2016009540A1 (en) 2017-06-15

Similar Documents

Publication Publication Date Title
JP6215472B2 (en) Measurement timing detector
JP5490914B2 (en) Measuring apparatus and measuring method
US9528892B2 (en) Measuring device
WO2012056522A1 (en) Pedaling state detection device, pedaling state detection method, pedaling state detection program, medium that records pedaling state detection program
JP2014008789A (en) Pedalling state measurement device
JP6215471B2 (en) Rotation angle detector
JP6995166B2 (en) Seating position estimation device and posture output device
WO2016009536A1 (en) Rotation angle detection device
JP5483299B2 (en) Measuring apparatus and measuring method
WO2016009539A1 (en) Measurement timing detection device
WO2016009538A1 (en) Rotation angle detection device
WO2016009537A1 (en) Rotation angle detection device
JP2014134507A (en) Measuring device
JP6434988B2 (en) Operation posture output device
TW201819241A (en) Power detection system for bicycle that displays instant riding data on an electronic carrier
JP2014134505A (en) Measuring device
JP2016088386A (en) Driving posture output device
JP2014134509A (en) Measuring device
JP2016088387A (en) Driving posture output device
WO2015141008A1 (en) Measurement device
JP5483300B2 (en) Measuring apparatus and measuring method
JP2014134506A (en) Measuring device
JP2014134510A (en) Measuring device
JP2014134508A (en) Measuring device
JP5802825B2 (en) Rotation angle detection device and rotation angle detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897658

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016534056

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14897658

Country of ref document: EP

Kind code of ref document: A1